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The book is a comprehensive introduction to the theory of algebraic group
schemes over fields, based on modern algebraic geometry, but with minimal
prerequisites.

Algebraic groups play much the same role for algebraists that Lie groups play
for analysts. This book is the first comprehensive introduction to the theory of
algebraic group schemes over fields, including the structure theory of semisimple
algebraic groups, written in the language of modern algebraic geometry. When
Borel, Chevalley, and others introduced algebraic geometry into the theory of
algebraic groups, they used the algebraic geometry of the day, whose terminology
conflicts with that of modern (post 1960) algebraic geometry. As Tits wrote
in 1960, “the scheme viewpoint ... is not only more general but also, in many
respects, more satisfactory.” Indeed, allowing nilpotents gives a much richer and
more natural theory.

The first eight chapters of the book study general algebraic group schemes
over a field. They culminate in a proof of the Barsotti–Chevalley theorem realizing
every algebraic group as an extension of an abelian variety by an affine group.
The remaining chapters treat only affine algebraic groups. After a review of the
Tannakian philosophy, there are short accounts of Lie algebras and finite group
schemes. Solvable algebraic groups are studied in detail in Chapters 12-16. The
final nine chapters treat reductive algebraic groups over arbitrary fields including
the Borel–Chevalley structure theory. Three appendices review the algebraic
geometry needed, the existence of quotients of algebraic groups, and root data.

The exposition incorporates simplifications to the theory by Springer, Stein-
berg, and others. Although the theory of algebraic groups can be considered a
branch of algebraic geometry, most of those using it are not algebraic geomet-
ers. In the present work, prerequisites have been kept to a minimum. The only
requirement is a first course in algebraic geometry including basic commutative
algebra.

The cover picture illustrates Grothendieck’s vision of a pinned reductive
group: the body is a maximal torus T , the wings are the opposite Borel subgroups
B , and the pins rigidify it (SGA 3, XXIII, p. 177). The background image is a
Blue Morpho butterfly.
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Preface

For one who attempts to unravel the story, the problems
are as perplexing as a mass of hemp with a thousand
loose ends.
Dream of the Red Chamber, Tsao Hsueh-Chin.

This book represents my attempt to write a modern successor to the three
standard works, all titled Linear Algebraic Groups, by Borel, Humphreys, and
Springer. More specifically, it is an exposition of the theory of group schemes of
finite type over a field, based on modern algebraic geometry, but with minimal
prerequisites.

It has been clear for fifty years that such a work has been needed.1 When
Borel, Chevalley, and others introduced algebraic geometry into the theory of
algebraic groups, the foundations they used were those of the period (e.g., Weil
1946), and most subsequent writers on algebraic groups have followed them.
Specifically, nilpotents are not allowed, and the terminology used conflicts with
that of modern algebraic geometry. For example, algebraic groups are usually
identified with their points in some large algebraically closed field K, and an
algebraic group over a subfield k of K is an algebraic group over K equipped
with a k-structure. The kernel of a k-homomorphism of algebraic k-groups is an
object over K (not k) which need not be defined over k.

In the modern approach, nilpotents are allowed,2 an algebraic k-group is
intrinsically defined over k, and the kernel of a homomorphism of algebraic
groups over k is (of course) defined over k. Instead of identifying an algebraic
group with its points in some “universal” field, it is more convenient to identify it
with the functor of k-algebras it defines.

The advantages of the modern approach are manifold. For example, the
infinitesimal theory is built into it from the start instead of entering only in an ad
hoc fashion through the Lie algebra. The Noether isomorphism theorems hold for

1“Another remorse concerns the language adopted for the algebrogeometrical foundation of the
theory ... two such languages are briefly introduced ... the language of algebraic sets ... and the
Grothendieck language of schemes. Later on, the preference is given to the language of algebraic sets
... If things were to be done again, I would probably rather choose the scheme viewpoint ... which is
not only more general but also, in many respects, more satisfactory.” Tits 1968, p. 2.

2To anyone who asked why we need to allow nilpotents, Grothendieck would say that they are
already there in nature; neglecting them obscures our vision.

xv



xvi Preface

algebraic group schemes, and so the intuition from abstract group theory applies.
The kernels of infinitesimal homomorphisms become visible as algebraic group
schemes.

The first systematic exposition of the theory of group schemes was in SGA 3.
As was natural for its authors (Demazure, Grothendieck, . . . ), they worked over
an arbitrary base scheme and they used the full theory of schemes (EGA and
SGA). Most subsequent authors on group schemes have followed them. The
only books I know of that give an elementary treatment of group schemes are
Waterhouse 1979 and Demazure and Gabriel 1970. In writing this book, I have
relied heavily on both, but neither goes very far. For example, neither treats the
structure theory of reductive groups, which is a central part of the theory.

As noted, the modern theory is more general than the old theory. The extra
generality gives a richer and more attractive theory, but it does not come for free:
some proofs are more difficult (because they prove stronger statements). In this
work, I have avoided any appeal to advanced scheme theory. Unpleasantly tech-
nical arguments that I have not been able to avoid have been placed in separate
sections where they can be ignored by all but the most serious students. By con-
sidering only schemes algebraic over a field, we avoid many of the technicalities
that plague the general theory. Also, the theory over a field has many special
features that do not generalize to arbitrary bases.

Acknowledgements: The exposition incorporates simplifications to the general
theory from Iversen 1976, Luna 1999, Steinberg 1999, Springer 1998, and other
sources. In writing this book, the following works have been especially useful
to me: Demazure and Gabriel 1966; Demazure and Gabriel 1970; Waterhouse
1979; the expository writings of Springer, especially Springer 1994, 1998; online
notes of Casselman, Ngo, Perrin, and Pink, as well as the discussions, often
anonymous, on https://mathoverflow.net/. Also I wish to thank all those
who have commented on the various notes posted on my website.

https://mathoverflow.net/


Introduction

The book can be divided roughly into five parts.

A. Basic theory of general algebraic groups (Chapters 1–8)

The first eight chapters cover the general theory of algebraic group schemes (not
necessarily affine) over a field. After defining them and giving some examples,
we show that most of the basic theory of abstract groups (subgroups, normal
subgroups, normalizers, centralizers, Noether isomorphism theorems, subnormal
series, etc.) carries over with little change to algebraic group schemes. We
relate affine algebraic group schemes to Hopf algebras, and we prove that all
algebraic group schemes in characteristic zero are smooth. We study the linear
representations of algebraic group schemes and their actions on algebraic schemes.
We show that every algebraic group scheme is an extension of an étale group
scheme by a connected algebraic group scheme, and that every smooth connected
group scheme over a perfect field is an extension of an abelian variety by an affine
group scheme (Barsotti–Chevalley theorem).

Beginning with Chapter 9, all group schemes are affine.

B. Preliminaries on affine algebraic groups (Chapters 9–11)

The next three chapters are preliminary to the more detailed study of affine
algebraic group schemes in the later chapters. They cover basic Tannakian
theory, in which the category of representations of an algebraic group scheme
plays the role of the topological dual of a locally compact abelian group, Jordan
decompositions, the Lie algebra of an algebraic group, and the structure of finite
group schemes. Throughout this work we emphasize the Tannakian point of view
in which the group and its category of representations are placed on an equal
footing.

C. Solvable affine algebraic groups (Chapters 12–16)

The next five chapters study solvable algebraic group schemes. Among these are
the diagonalizable groups, the unipotent groups, and the trigonalizable groups.

1



2 Introduction

An algebraic group G is diagonalizable if every linear representation of G
is a direct sum of one-dimensional representations; in other words if, relative to
some basis, the image of G lies in the algebraic subgroup of diagonal matrices in
GLn. An algebraic group that becomes diagonalizable over an extension of the
base field is said to be of multiplicative type.

An algebraic group G is unipotent if every nonzero representation of G
contains a nonzero fixed vector. This implies that every representation has a
basis for which the image of G lies in the algebraic subgroup of strictly upper
triangular matrices in GLn.

An algebraic group G is trigonalizable if every simple representation has
dimension one. This implies that every representation has a basis for which
the image of G lies in the algebraic subgroup of upper triangular matrices in
GLn. The trigonalizable groups are exactly the extensions of diagonalizable
groups by unipotent groups. Trigonalizable groups are solvable, and the Lie–
Kolchin theorem says that all smooth connected solvable algebraic groups become
trigonalizable over a finite extension of the base field.

D. Reductive algebraic groups (Chapters 17–25)

This is the heart of the book, The first seven chapters develop in detail the structure
theory of split reductive groups and their representations in terms of their root
data. Chapter 24 exhibits all the almost-simple algebraic groups, and Chapter 25
explains how the theory of split groups extends to the nonsplit case.

E. Appendices

The first appendix reviews the definitions and statements from algebraic geometry
needed in the book. Experts need only note that, as we always work with schemes
of finite type over a base field k, it is natural to ignore the nonclosed points
(which we do).

The second appendix proves the existence of a quotient of an algebraic group
by an algebraic subgroup. This is an important result, but the existence of
nilpotents makes the proof difficult, and so most readers should simply accept
the statement.

The third appendix reviews the combinatorial objects, root systems and root
data, on which the theory of split reductive groups is based.

History

Apart from occasional brief remarks, we ignore the history of the subject, which
is quite complex. Many major results were discovered in one situation, and then
extended to other more general situations, sometimes easily and sometimes only
with difficulty. Without too much exaggeration, one can say that all the theory of
algebraic group schemes does is show that the theory of Killing and Cartan for
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“local” objects over C extends in a natural way to “global” objects over arbitrary
fields.

Conventions and notation

Throughout, k is a field and R is a finitely generated k-algebra.1 All k-algebras
and R-algebras are required to be commutative and finitely generated unless it is
specified otherwise. Noncommutative algebras are referred to as “algebras over
k” rather than “k-algebras”. Unadorned tensor products are over k. An extension
of k is a field containing k, and a separable extension is a separable algebraic
extension. When V is a vector space over k, we often write VR for V ˝R; for
v 2 V , we let vR D v˝1 2 VR. The symbol ka denotes an algebraic closure of
k and ks (resp. ki ) denotes the separable (resp. perfect) closure of k in ka. The
characteristic exponent of k is p or 1 according as its characteristic is p or 0.
The group of invertible elements of a ring R is denoted by R�. The symbol AlgR
denotes the category of finitely generated R-algebras.

An algebraic scheme over k (or algebraic k-scheme) is a scheme of finite
type over k. An algebraic scheme is an algebraic variety if it is geometrically
reduced and separated. By a “point” of an algebraic scheme or variety over k
we always mean a closed point. For an algebraic scheme .X;OX / over k, we
often let X denote the scheme and jX j the underlying topological space of closed
points. For a locally closed subset Z of jX j (resp. subscheme Z of X), the
reduced subscheme of X with underlying space Z (resp. jZj) is denoted by Zred.
The residue field at a point x of X is denoted by �.x/. When the base field k is
understood, we omit it, and write “algebraic scheme” for “algebraic scheme over
k”. Unadorned products of algebraic k-schemes are over k. See Appendix A for
more details.

We let Z denote the ring of integers, R the field of real numbers, C the field
of complex numbers, and Fp the field of p elements (p prime).

A functor is said to be an equivalence of categories if it is fully faithful and
essentially surjective. A sufficiently strong version of the axiom of global choice
then implies that there exists a quasi-inverse to the functor. We sometimes loosely
refer to a natural transformation of functors as a map of functors.

All categories are locally small (i.e., the morphisms from one object to a
second are required to form a set). When the objects form a set, the category
is said to be small. A category is essentially small if it is equivalent to a small
subcategory.

Let P be a partially ordered set. A greatest element of P is a g 2 P such
that a � g for all a 2 P . An element m in P is maximal if m� a implies aDm.
A greatest element is a unique maximal element. Least and minimal elements
are defined similarly. When the partial order is inclusion, we replace least and
greatest with smallest and largest. We sometimes use Œx� to denote the class of x
under an equivalence relation.

1Except in Appendix C, whereR is a set of roots.



4 Introduction

Following Bourbaki, we let ND f0;1;2; : : :g. An integer is positive if it lies
in N. A set with an associative binary operation is a semigroup. A monoid is a
semigroup with a neutral element.

By A' B we mean that A and B are canonically isomorphic (or that there is
a given or unique isomorphism), and by A� B we mean simply that A and B
are isomorphic (there exists an isomorphism). The notation A� B means that A
is a subset of B (not necessarily proper). A diagram A! B� C is exact if the
first arrow is the equalizer of the pair of arrows.

Suppose that p and q are statements depending on a field k and we wish
to prove that p.k/ implies q.k/. If p.k/ implies p.ka/ and q.ka/ implies q.k/,
then it suffices to prove that p.ka/ implies q.ka/. In such a situation, we simply
say that “we may suppose that k is algebraically closed”.

We often omit “algebraic” from such expressions as “algebraic subgroup”,
“unipotent algebraic group”, and “semisimple algebraic group”. After p. 162, all
algebraic groups are affine.

We use the terminology of modern (post 1960) algebraic geometry; for
example, for algebraic groups over a field k; a homomorphism is automatically
defined over k, not over some large algebraically closed field.2

Throughout, “algebraic group scheme” is shortened to “algebraic group”. A
statement here may be stronger than a statement in Borel 1991 or Springer 1998
even when the two are word for word the same.3

All constructions are to be understood as being in the sense of schemes. For
example, fibres of maps of algebraic varieties need not be reduced, and the kernel
of a homomorphism of smooth algebraic groups need not be smooth.

Numbering

A reference “17.56” is to item 56 of Chapter 17. A reference “(112)” is to
the 112th numbered equation in the book (we include the page number where
necessary). Section 17c is Section c of Chapter 17 and Section Ac is Section c of
Appendix A. The exercises in Chapter 17 are numbered 17-1, 17-2, . . .

Foundations

We use the von Neumann–Bernays–Gödel (NBG) set theory with the axiom of
choice, which is a conservative extension of Zermelo–Fraenkel set theory with
the axiom of choice (ZFC). This means that a sentence that does not quantify
over a proper class is a theorem of NBG if and only if it is a theorem of ZFC. The
advantage of NBG is that it allows us to speak of classes.

It is not possible to define an “unlimited category theory” that includes the
category of all sets, the category of all groups, etc., and also the categories of

2As much as possible, our statements make sense in a world without choice, where algebraic
closures need not exist.

3An example is Chevalley’s theorem on representations; see 4.30.
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functors from one of these categories to another. Instead, one must consider
only categories of functors from categories that are small in some sense. To
this end, we fix a family of symbols .Ti /i2N indexed by N,4 and let Alg0k denote
the category of k-algebras of the form kŒT0; : : : ;Tn�=a for some n 2 N and ideal
a in kŒT0; : : : ;Tn�. Thus the objects of Alg0k are indexed by the ideals in some
subring kŒT0; : : : ;Tn� of kŒT0; : : :� – in particular, they form a set, and so Alg0k is
small. We call the objects of Alg0k small k-algebras. If R is a small k-algebra,
then the category Alg0R of small R-algebras has as objects pairs consisting of a
small k-algebra A and a homomorphism R! A of k-algebras. Note that tensor
products exist in Alg0k – in fact, if we fix a bijection N$N�N, then˝ becomes
a well-defined bi-functor.

The inclusion functor Alg0k ,! Algk is an equivalence of categories. Choosing
a quasi-inverse amounts to choosing an ordered set of generators for each finitely
generated k-algebra. Once a quasi-inverse has been chosen, every functor on
Alg0k has a well-defined extension to Algk .

Alternatively, readers willing to assume additional axioms in set theory may
use Mac Lane’s “one-universe” solution to defining functor categories (Mac Lane
1969) or Grothendieck’s “multi-universe” solution, and define a small k-algebra
to be one that is small relative to the chosen universe.

Prerequisites

A first course in algebraic geometry (including basic commutative algebra). Since
these vary greatly, we review the definitions and statements that we need from
algebraic geometry in Appendix A. In a few proofs, which can be skipped, we
assume somewhat more.

References

The citations are author–year, except for the following abbreviations:
CA = Milne 2017 (A Primer of Commutative Algebra).

DG = Demazure and Gabriel 1970 (Groupes algébriques).

EGA = Grothendieck 1967 (Eléments de géometrie algébrique).

SGA 3 = Demazure and Grothendieck 2011 (Schémas en groupes, SGA 3).

SHS = Demazure and Gabriel 1966 (Séminaire Heidelberg–Strasbourg 1965–
66).

4Better, use N itself as the set of symbols.



CHAPTER 1

Definitions and Basic Properties

Recall that k is a field, and that an algebraic k-scheme is a scheme of finite type
over k. We let � D Spm.k/.

a. Definition

An algebraic group over k is a group object in the category of algebraic schemes
over k. In detail, this means the following.

DEFINITION 1.1. Let G be an algebraic scheme over k and let mWG�G!G

be a regular map. The pair .G;m/ is an algebraic group over k if there exist
regular maps

eW� !G; invWG!G;

such that the following diagrams commute:

G�G�G G�G

G�G G

m�id

id�m

m

m

��G G�G G��

G

e�id

'
m

id�e

'

(1)

G G�G G

� G �

.inv;id/

m

.id;inv/

e e

(2)

When G is a variety, we call .G;m/ a group variety, and when G is an affine
scheme, we call .G;m/ an affine algebraic group.

For example,

SLn
def
D SpmkŒT11;T12; : : : ;Tnn�=.det.Tij /�1/

6



a. Definition 7

becomes an affine group variety with the usual matrix multiplication on points.
For many more examples, see Chapter 2.

Similarly, an algebraic monoid over k is an algebraic scheme M over k
together with regular mapsmWM �M !M and eW�!M such that the diagrams
(1) commute.

DEFINITION 1.2. A homomorphism 'W.G;m/! .G0;m0/ of algebraic groups
is a regular map 'WG!G0 such that ' ımDm0 ı .'�'/.

An algebraic group G is trivial if eW� !G is an isomorphism, and a homo-
morphism G!G0 is trivial if it factors through e0W�!G0. We often write e for
the trivial algebraic group.

DEFINITION 1.3. An algebraic subgroup of an algebraic group .G;mG/ over k
is an algebraic group .H;mH / over k such thatH is a k-subscheme of G and the
inclusion map is a homomorphism of algebraic groups. An algebraic subgroup is
called a subgroup variety if its underlying scheme is a variety.

Let .G;mG/ be an algebraic group and H a nonempty subscheme of G. If
mG jH �H and invG jH factor through H , then .H;mG jH �H/ is an algebraic
subgroup of G.

Let .G;m/ be an algebraic group over k. For any field k0 containing k, the
pair .Gk0 ;mk0/ is an algebraic group over k0, said to have been obtained from
.G;m/ by extension of scalars or extension of the base field.

Algebraic groups as functors

TheK-points of an algebraic schemeX withK a field do not see the nilpotents in
the structure sheaf. Thus, we are led to consider the R-points with R a k-algebra.
Once we do that, the points capture all information about X .

1.4. An algebraic scheme X over k defines a functor

QX WAlg0k! Set; R X.R/:

For example, if X is affine, say, X D Spm.A/, then

X.R/D Homk-algebra.A;R/:

The functor X  QX is fully faithful (Yoneda lemma, A.33); in particular, QX
determines X uniquely up to a unique isomorphism. We say that a functor from
small k-algebras to sets is representable if it is of the form QX for an algebraic
scheme X over k.

If .G;m/ is an algebraic group over k, then R .G.R/;m.R// is a functor
from small k-algebras to groups.

Let X be an algebraic scheme over k, and suppose that we are given a
factorization of QX through the category of groups. Then the maps

x;y 7! xyWX.R/�X.R/!X.R/; � 7! eW�!X.R/; x 7! x�1WX.R/!X.R/
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given by the group structures on the sets X.R/ define, by the Yoneda lemma,
morphisms

mWX �X !X; �!X; invWX !X

making the diagrams (1) and (2) commute. Therefore, .X;m/ is an algebraic
group over k.

Combining these two statements, we see that to give an algebraic group over
k amounts to giving a functor Alg0k ! Grp whose underlying functor to sets is
representable by an algebraic scheme. We write QG for G regarded as a functor to
groups.

From this perspective, SLn can be described as the algebraic group over k
sending R to the group SLn.R/ of n�n matrices with entries in R and determin-
ant 1.

The functor R .R;C/ is represented by Spm.kŒT �/, and hence is an
algebraic group Ga. Similarly, the functor R .R�;�/ is represented by
Spm.kŒT;T �1�/, and hence is an algebraic group Gm. See 2.1 and 2.2 below.

We often describe a homomorphism of algebraic groups by giving its action
on R-points. For example, when we say that invWG! G is the map x 7! x�1,
we mean that, for all small k-algebras R and all x 2G.R/, inv.x/D x�1.

1.5. If .H;mH / is an algebraic subgroup of .G;mG/, then H.R/ is a subgroup
of G.R/ for all k-algebras R. Conversely, if H is an algebraic subscheme of
G such that H.R/ is a subgroup of G.R/ for all small k-algebras R, then the
Yoneda lemma (A.33) shows that the maps

.h;h0/ 7! hh0WH.R/�H.R/!H.R/

arise from a morphism mH WH �H ! H and that .H;mH / is an algebraic
subgroup of .G;mG/.

1.6. Consider the functor of k-algebras �3WR fa 2 R j a3 D 1g. This is
represented by Spm.kŒT �=.T 3�1//, and so it is an algebraic group. We consider
three cases.

(a) The field k is algebraically closed of characteristic¤ 3. Then

kŒT �=.T 3�1/' kŒT �=.T �1/�kŒT �=.T � �/�kŒT �=.T � �2/

where 1;�;�2 are the cube roots of 1 in k. Thus, �3 is a disjoint union of three
copies of Spm.k/ indexed by the cube roots of 1 in k.

(b) The field k is of characteristic ¤ 3 but does not contain a primitive cube
root of 1. Then

kŒT �=.T 3�1/' kŒT �=.T �1/�kŒT �=.T 2CT C1/;

and so �3 is a disjoint union of Spm.k/ and Spm.kŒ��/ where � is a primitive
cube root of 1 in ks.

(c) The field k is of characteristic 3. Then T 3�1D .T �1/3, and so �3 is
not reduced. Although �3.K/D 1 for all fields K containing k, the algebraic
group �3 is not trivial. Certainly, �3.R/ may be nonzero if R has nilpotents.
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Homogeneity

Recall that, for an algebraic scheme X over k, we write jX j for the underlying
topological space of X , and �.x/ for the residue field at a point x of jX j (it
is a finite extension of k). We can identify X.k/ with the set of points x of
jX j such that �.x/ D k (CA 13.4). An algebraic scheme X over k is said to
be homogeneous if the group of automorphisms of X (as a k-scheme) acts
transitively on jX j. We shall see that an algebraic group is homogeneous when k
is algebraically closed

1.7. Let .G;m/ be an algebraic group over k. The map m.k/WG.k/�G.k/!
G.k/ makes G.k/ into a group with neutral element e.�/ and inverse map inv.k).

When k is algebraically closed, G.k/D jGj, and so mWG�G! G makes
jGj into a group. The maps x 7! x�1 and x 7! ax (a 2G.k/) are automorphisms
of jGj as a topological space.

In general, when k is not algebraically closed, m does not make jGj into
a group, and even when k is algebraically closed, it does not make jGj into a
topological group.

1.8. Let .G;m/ be an algebraic group over k. For each a 2 G.k/, there is a
translation map

laWG ' fag�G
m
�!G; x 7! ax.

For a;b 2G.k/,
la ı lb D lab

and le D id. Therefore la ı la�1 D idD la�1 ı la , and so la is an isomorphism
sending e to a. Hence G is homogeneous when k is algebraically closed (but not
in general otherwise; see 1.6(b)).

Density of points

Because we allow nilpotents in the structure sheaf, a morphism X ! Y of
algebraic schemes is not in general determined by its effect on X.k/, even when
k is algebraically closed. We introduce some terminology to handle this.

DEFINITION 1.9. Let X be an algebraic scheme over k and S a subset of X.k/.
We say that S is schematically dense (or just dense) in X if the only closed
subscheme Z of X such that S �Z.k/ is X itself.

Let X D Spm.A/, and let S be a subset of X.k/. Let Z D Spm.A=a/ be
a closed subscheme of X . Then S � Z.k/ if and only if a � m for all m 2 S .
Therefore, S is schematically dense in X if and only if

T
fm jm 2 Sg D 0.

PROPOSITION 1.10. Let X be an algebraic scheme over k and S a subset of
X.k/� jX j. The following conditions are equivalent:

(a) S is schematically dense in X I
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(b) X is reduced and S is dense in jX j;
(c) the family of homomorphisms

f 7! f .s/WOX ! �.s/D k; s 2 S;

is injective.

PROOF. (a))(b). Let NS denote the closure of S in jX j. There is a unique
reduced subscheme Z of X with underlying space NS . As S � jZj, the scheme
Z DX , and so X is reduced with underlying space NS .

(b))(c). Let U be an open affine subscheme of X , and let ADOX .U /. Let
f 2 A be such that f .s/D 0 for all s 2 S \jU j. Then f .u/D 0 for all u 2 jU j
because S \jU j is dense in jU j. This means that f lies in all maximal ideals of
A, and therefore lies in the radical of A, which is zero because X is reduced (CA
13.11).

(c))(a). Let Z be a closed subscheme of X such that S �Z.k/. Because Z
is closed in X , the homomorphism OX !OZ is surjective. Because S �Z.k/,
the maps f 7! f .s/WOX ! �.s/, s 2 S , factor through OZ , and so the map
OX ! OZ is injective. Hence the map OX ! OZ is an isomorphism, which
implies that Z DX . 2

PROPOSITION 1.11. A schematically dense subset remains schematically dense
under extension of the base field.

PROOF. Let k0 be a field containing k, and let S �X.k/ be schematically dense.
We may suppose that X is affine, say, X D Spm.A/. Let s0WAk0 ! k0 be the map
obtained from sWA! �.s/D k by extension of scalars. The family s0, s 2 S , is
injective because the family s, s 2 S , is injective and k0 is flat over k. 2

COROLLARY 1.12. If X admits a schematically dense subset S � X.k/, then it
is geometrically reduced.

PROOF. The set S remains schematically dense in X.ka/, and so Xka is re-
duced. 2

PROPOSITION 1.13. If S is schematically dense in X and u;vWX � Y are
regular maps from X to a separated algebraic scheme Y such that u.s/D v.s/
for all s 2 S , then uD v.

PROOF. Because Y is separated, the equalizer of the pair of maps is closed in X .
As its underlying space contains S , it equals X . 2

REMARK 1.14. Some of the above discussion extends to base rings. For ex-
ample, let X be an algebraic scheme over a field k and let S be a schematically
dense subset of X.k/. Let R be a k-algebra and, for s 2 S , let

s0 D s�Spm.k/ Spm.R/�X 0 DX �Spm.k/ .R/:

As in the proof of (1.11), the family of maps OX 0 ! Os0.s
0/D R is injective.

It follows, as in the proof of (1.10), that the only closed R-subscheme of X 0

containing all s0 is X 0 itself.
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DEFINITION 1.15. Let X be an algebraic scheme over a field k, and let k0 be a
field containing k. We say that X.k0/ is dense in X if the only closed subscheme
Z of X such that Z.k0/DX.k0/ is X itself.

PROPOSITION 1.16. If X.k0/ is dense in X , then X is reduced. Conversely, if
X.k0/ is dense in the topological space jXk0 j and X is geometrically reduced,
then X.k0/ is dense in X .

PROOF. Recall thatXred is the (unique) reduced subscheme ofX with underlying
space jX j. Moreover Xred.k

0/DX.k0/ because k0 is reduced, and so Xred DX

if X.k0/ is dense in X .
Conversely, suppose that X is geometrically reduced and X.k0/ is dense

in jXk0 j. Let Z be a closed subscheme of X such that Z.k0/ D X.k0/. Then
jZk0 j D jXk0 j by the density condition. This implies that Zk0 DXk0 because Xk0
is reduced, which in turn implies that Z DX (see A.65). 2

COROLLARY 1.17. If X is geometrically reduced, then X.k0/ is dense in X for
every separably closed field k0 containing k.

PROOF. By a standard result (A.48), X.k0/ is dense in jXk0 j. 2

COROLLARY 1.18. Let Z and Z0 be closed subvarieties of an algebraic scheme
X over k. If Z.k0/ D Z0.k0/ for some separably closed field k0 containing k,
then Z DZ0.

PROOF. The closed subscheme Z\Z0 of Z has the property that .Z\Z0/.k0/
DZ.k0/, and so Z\Z0 DZ. Similarly, Z\Z0 DZ0. 2

Thus, a closed subvariety Z of X is determined by the subset Z.ks/ of X.ks/.
More explicitly, if X D Spm.A/ and Z D Spm.A=a/, then a is the set of f 2 A
such that f .P /D 0 for all P 2Z.ks/:

Algebraic groups over rings

Although we are only interested in algebraic groups over fields, occasionally we
shall need to consider them over more general base rings.

1.19. Let R be a (finitely generated) k-algebra. An algebraic scheme over R is
a schemeX equipped with a morphismX! Spm.R/ of finite type. Equivalently,
X is an algebraic scheme over k such that OX is equipped with an R-algebra
structure compatible with its k-algebra structure. For example, affine algebraic
schemes overR are the max-spectra of finitely generatedR-algebras. A morphism
of algebraic R-schemes 'WX ! Y is a morphism of k-schemes compatible with
the R-algebra structures, i.e., such that OY ! '�OX is a homomorphism of
sheaves of R-algebras. Let G be an algebraic scheme over R and letmWG�G!
G be a morphism of R-schemes. The pair .G;m/ is an algebraic group over R if
there existR-morphisms eWSpm.R/!G and invWG!G such that the diagrams
(1) and (2) commute. For example, an algebraic group .G;m/ over k gives rise
to an algebraic group .GR;mR/ over R by extension of scalars.
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ASIDE 1.20. By definition an algebraic group and its multiplication map are described
by polynomials, but we rarely need to know what the polynomials are. Nevertheless, it is
of some interest that it is often possible to realize the coordinate ring of an affine algebraic
group as a quotient of a polynomial ring in a concrete natural way (Popov 2015).

NOTES. As noted elsewhere, in most of the literature, an algebraic group over a field k is
defined to be a group variety over some algebraically closed field K containing k together
with a k-structure (see, for example, Springer 1998 1.6.14, 2.1.1). In particular, nilpotents
are not allowed. An algebraic group over a field k in our sense is a group scheme of
finite type over k in the language of SGA 3. Our notion of an algebraic group over k is
essentially the same as that in DG.

b. Basic properties of algebraic groups

PROPOSITION 1.21. If 'W.G;mG/! .H;mH / is a homomorphism of algebraic
groups, then ' ı eG D eH and ' ı invG D invH ı'. In particular, the maps e and
inv in (1.1) are uniquely determined by .G;m/.

PROOF. For every k-algebra R, the map '.R/ is a homomorphism of abstract
groups .G.R/;mG.R//! .H.R/;mH .R//, and so it maps the neutral element
of G.R/ to that of H.R/ and the inversion map on G.R/ to that on H.R/. The
Yoneda lemma (A.33) now shows that the same is true for '. 2

We often write e for the image of eW� ! G in G.k/ or jGj. Recall (A.41)
that an algebraic scheme X is separated if its diagonal �X is closed in X �X .

PROPOSITION 1.22. Algebraic groups are separated (as algebraic schemes).

PROOF. Let .G;m/ be an algebraic group. The diagonal in G�G is the inverse
image of the closed point e 2 G.k/ under the map m ı .id� inv/WG �G ! G

sending .g1;g2/ to g1g�12 , and so it is closed. 2

Therefore “group variety” = “geometrically reduced algebraic group”.

COROLLARY 1.23. LetG be an algebraic group over k and let k0 be an extension
of k. If G.k0/ is dense in G, then a homomorphism G!H of algebraic groups
is determined by its action on G.k0/.

PROOF. Let '1 and '2 be homomorphisms G!H such that '1.a/D '2.a/ for
all a 2G.k0/. Because H is separated, the equalizer Z of '1 and '2 is a closed
subscheme of G. As Z.k0/DG.k0/, we have Z DG. 2

DEFINITION 1.24. An algebraic group .G;m/ is commutative if m ı t D m,
where t is the transposition map .x;y/ 7! .y;x/WG�G!G�G.

PROPOSITION 1.25. An algebraic group G is commutative if and only if G.R/
is commutative for all k-algebras R. A group variety G is commutative if G.ks/

is commutative.
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PROOF. According to the Yoneda lemma (A.33),mı t Dm if and only ifm.R/ı
t .R/Dm.R/ for all k-algebras R, i.e., if and only if G.R/ is commutative for
all R. This proves the first statement. Let G be a group variety. If G.ks/ is
commutative, then mı t and m agree on .G�G/.ks/, which is dense in G�G
(see 1.17). 2

Smoothness

Let X be an algebraic scheme over k. For x 2 jX j, we have

dim.OX;x/� dim.mx=m2x/.

Here mx is the maximal ideal in the local ring OX;x , the “dim” at left is the Krull
dimension, and the “dim” at right is the dimension as a �.x/-vector space (see
CA, �22). When equality holds, the point x is said to be regular. A scheme X is
said to be regular if x is regular for all x 2 jX j. It is possible for X to be regular
without Xka being regular. To remedy this, we need another notion.

Let kŒ"� be the k-algebra generated by an element " with "2 D 0. From the
homomorphism " 7! 0, we get a mapX.kŒ"�/!X.k/, and we define the tangent
space Tgtx.X/ at a point x 2X.k/ to be the fibre over x. Thus

Tgtx.X/' Homk-linear.mx=m
2
x ;k/;

and so dimTgtx.X/� dim.OX;x/. When equality holds, the point is said to be
smooth. The formation of the tangent space commutes with extension of the
base field, and so a point x 2X.k/ is smooth on X if and only if it is smooth on
Xka . An algebraic scheme X over an algebraically closed field k is said to be
smooth if all x 2 jX j are smooth, and an algebraic scheme X over an arbitrary
field k is said to be smooth if Xka is smooth. Smooth schemes are regular, and
the converse is true when k is algebraically closed. See Section Ah.

PROPOSITION 1.26. Let G be an algebraic group over k.
(a) If G is reduced and k is perfect, then G is geometrically reduced.

(b) If G is geometrically reduced, then it is smooth (and conversely).

PROOF. (a) This is true for all algebraic schemes (A.43).
(b) We have to show that Gka is smooth. But Gka is an algebraic variety, and

so some point on it is smooth (A.55), which implies that every point is smooth by
homogeneity (1.8). 2

Therefore

“group variety” = “smooth algebraic group”.

In characteristic zero, all algebraic groups are smooth (3.23, 8.39 below).
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EXAMPLE 1.27. Let k be a nonperfect field of characteristic p, and let t 2
kXkp . Let G be the algebraic subgroup of A2 defined by the equation

Y p� tXp D 0:

The ring AD kŒX;Y �=.Y p� tXp/ is reduced because Y p� tXp is irreducible
in kŒX;Y �, but A acquires a nilpotent y� t

1
p x when tensored with ka, and so

G is not geometrically reduced. (Over ka, G becomes the line Y D t
1
pX with

multiplicity p.)

PROPOSITION 1.28. The following conditions on an algebraic group G are
equivalent:

(a) G is smooth;

(b) the point e is smooth on G;

(c) the local ring OG;e is regular;

(d) G is geometrically reduced.

PROOF. (a))(b). This implication is obvious from the definitions.
(b))(a). As e is smooth onG, it is smooth onGka (see the above discussion).

By homogeneity (1.8), all points on Gka are smooth, which means that G is
smooth.

(b),(c). Obvious from the definitions (see the above discussion).
(a),(d). This was proved in Proposition 1.26. 2

The identity (neutral) component of an algebraic group

For an algebraic group G, the connected component of G containing e is called
the identity (or neutral) component of G and is denoted by Gı. Before continu-
ing, we need to review a little algebraic geometry.

An étale k-algebra is a finite product of finite separable field extensions of k.
A finite product of étale k-algebras is again étale, and any quotient of an étale
k-algebra is an étale k-algebra. If A1; : : : ;Am are étale subalgebras of a k-algebra
A (not necessarily finitely generated), then their composite A1 � � �Am is an étale
subalgebra of A (because it is a quotient of A1�� � ��Am/. An étale k-scheme X
is the spectrum of an étale k-algebra; equivalently, jX j is discrete and the local
rings OX;x , x 2 jX j, are finite separable field extensions of k. See Section Ai.

Let f be a nontrivial idempotent in a ring A, i.e., f 2 D f and f ¤ 0;1.
Every idempotent in an integral domain is trivial, and so each prime ideal in A
contains exactly one of f or 1�f . Therefore spm.A/ is a disjoint union of the
closed–open subsets D.f / and D.1�f /. More generally, let X be an algebraic
scheme over k. Then O.X/ is a k-algebra (not necessarily finitely generated),
and a nontrivial idempotent in O.X/ decomposes X into a disjoint union of two
nonempty closed-open subsets.
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PROPOSITION 1.29. LetX be an algebraic scheme over k. There exists a largest
étale k-subalgebra �.X/ in O.X/.
PROOF. Let A be an étale subalgebra of O.X/. Then A˝ks ' .ks/n for some
n, and so

1D f1C�� �Cfn

with the fi orthogonal idempotents in O.Gks/. The fi decompose jGks j into
a disjoint union of n open-closed subsets, and so n is at most the number of
connected components of jGks j. Thus the number ŒAWk�D ŒA˝ksWk� is bounded.
It follows that the composite of all étale k-subalgebras of O.X/ is an étale k-
subalgebra which contains all others. 2

Define
�0.X/D Spm.�.X//:

Under the isomorphism (A.13)

Homk-algebra.R;O.X//' Homk-scheme.X;Spm.R//; R a k-algebra,

the inclusion �.X/ ,!O.X/ corresponds to a morphism 'WX ! �0.X/ that is
universal among morphisms from X to an étale k-scheme.

PROPOSITION 1.30. Let X be an algebraic scheme over k.
(a) For all fields k0 containing k,

�0.Xk0/' �0.X/k0 .

(b) Let Y be a second algebraic scheme over k. Then

�0.X �Y /' �0.X/��0.Y /:

PROOF. (a) Let � D �.O.X// and � 0 D �.O.Xk0//. Then �˝k0 � � 0, and we
have to prove equality.

Suppose first that k0 D ks, and let � D Gal.ks=k/. Then � 0 is stable under
� . By Galois theory (A.62), � 0� is étale over k and � 0� ˝k0 ' � 0. On the other
hand � � � 0� , and so � D � 0� . Hence �˝k0 ' � 0.

Now suppose that k D ks and k0 D ka. If ka ¤ k, then k has characteristic
p¤ 0. Let e1; : : : ; em be a basis of idempotents for � 0 as a ka-vector space. Write
ej D

P
ai˝ci with ai 2O.X/ and ci 2 ka. For some r , all the elements cp

r

i lie
in k, and so ej D e

pr

j D
P
a
pr

i ˝ c
pr

i 2O.X/. Hence �˝ka ' � 0.
Next suppose that k and k0 are algebraically closed. We have to show that

X is connected if and only if Xk0 is connected. If � 0 D k0, then � D k because
�˝k0 � � 0. Conversely, if X is connected, then Xk0 is connected because jX j
is dense in jXk0 j.

In the general case, let ka � k0a be algebraic closures of k and k0. If �˝k0 ¤
� 0 then �˝k0˝k0 k0a ¤ � 0˝k0 k0a, and so .�˝ka/˝ka k0a ¤ � 0˝k0 k

0a. But
this contradicts the previous statements.



16 1. Definitions and Basic Properties

(b) After (a), we may suppose that k D ka, and then we have to show that
X � Y is connected if X and Y are. But X � Y is a union of the connected
subvarieties x�Y and X �y with x 2 jX j and y 2 jY j, and so this is obvious.2

The argument shows, more precisely, that the formation of the map X !
�0.X/ commutes with extension of the base field.

If �.X/ is a field, then O.X/ has no nontrivial idempotents, and so X is
connected. If k is algebraically closed in1 O.X/, then it is algebraically closed
in �.X/, and so �.X/D k; in this case, �.Xka/D ka and Xka is connected.

PROPOSITION 1.31. Let X be an algebraic scheme over k.
(a) The fibres of the map 'WX ! �0.X/ are the connected components of X .

(b) For all x 2 j�0.X/j, the fibre '�1.x/ is a geometrically connected scheme
over �.x/.

PROOF. Let x 2 j�0.X/j. For the fibre Xx D '�1.x/, we have �.Xx/D �.x/.
Therefore the statements follow from the above discussion. 2

COROLLARY 1.32. Let X be a connected algebraic scheme over k such that
X.k/¤ ;. Then X is geometrically connected, and X �Y is connected for any
connected algebraic scheme Y over k.

PROOF. By definition, AD �.X/ is a finite product of separable field extensions
of k. If A had more than one factor, O.X/ would contain a nontrivial idempotent,
and X would not be connected. Therefore, A is a field containing k. Because
X.k/ is nonempty, there is a k-homomorphism A! k, and so AD k. Now Xka

is connected by the above discussion. Moreover,

�0.X �Y /' �0.X/��0.Y /' �0.Y /;

and so X �Y is connected. 2

REMARK 1.33. Let X be an algebraic scheme over k.
(a) The connected components of Xks form a finite set on which Gal.ks=k/

acts continuously, and �0.X/ is the étale scheme over k corresponding to
this set under the equivalence Z Z.ks/ in (A.62).

(b) The morphism '�1.x/! Spm.�.x// is flat because �.x/ is a field. There-
fore, 'WX ! �0.X/ is faithfully flat.

PROPOSITION 1.34. Let G be an algebraic group. The identity component Gı

of G is an algebraic subgroup of G. Its formation commutes with extension
of the base field: .Gı/k0 ' .Gk0/ı. In particular, the algebraic group Gı is
geometrically connected.

1This means that an a in O.X/ belongs to k if f .a/D 0 for some nonzero f .T / 2 kŒT �.
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PROOF. The identity component Gı of G has a k-point, namely, e, and so
Gı�Gı is a connected component of G �G (1.32). As m maps .e;e/ to e, it
maps Gı�Gı into Gı. Similarly, inv maps Gı into Gı. It follows that Gı is
an algebraic subgroup of G. Because the formation of the map G ! �0.G/

commutes with extension of the base field, so does its fibre over e. In particular,
.Gı/ka ' .Gka/ı, and so Gı is geometrically connected. 2

COROLLARY 1.35. Every connected component of an algebraic group is irredu-
cible.

PROOF. Let G be an algebraic group over k, and suppose that some connec-
ted component of it is reducible. Then some point of G lies on more than one
irreducible component, and the same is true for Gka . By definition, no irredu-
cible component of Gka is contained in the union of the remainder. Therefore,
there exists a point of Gka that lies on exactly one irreducible component. By
homogeneity (1.8), all points have this property, which is a contradiction. 2

Note that G is smooth if Gı is smooth (1.28b). A connected component of
G, other than Gı, need not be geometrically connected (see 1.6b).

SUMMARY 1.36. The following conditions on an algebraic group G over k are
equivalent:

(a) G is irreducible;

(b) G is connected;

(c) G is geometrically connected.
When G is affine, the conditions are equivalent to:

(d) the quotient of O.G/ by its nilradical is an integral domain.

Algebraic groups are unusual: for an algebraic scheme over k, (b) implies
neither (a) nor (c), and neither (a) nor (c) implies the other.

The dimension of an algebraic group

The dimension dim.X/ of an irreducible algebraic schemeX is the common Krull
dimension of its local rings OX;x , x 2 jX j. When X is reduced, this equals the
transcendence degree of its function field k.X/ over k. An irreducible algebraic
scheme X over k becomes over ka a finite union of irreducible algebraic schemes
all of dimension dim.X/. See Section Ag.

The irreducible components of an algebraic group G over k are its connected
components (1.35). They all have the same dimension, because this is true over
ka by homogeneity. The dimension dim.G/ of G is the common dimension of
its connected components, which equals the common Krull dimension of each of
its local rings OG;x , x 2 jGj.
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PROPOSITION 1.37. For an algebraic group G,

dimTgte.G/� dimG;

with equality if and only if G is smooth.

PROOF. In general, for a point e on an algebraic k-scheme G with �.e/ D k,
dimTgte.G/� dimG with equality if and only if the point e is smooth on G (see
A.52). An algebraic group is smooth if and only if e is smooth on G (see 1.28).2

c. Algebraic subgroups

Let X and Y be algebraic schemes over k with Y reduced, and let Z be a closed
subscheme of X . A morphism 'WY !X factors through Zred if and only if j'j
factors through jZj. See A.30.

PROPOSITION 1.38. Let .G;m/ be an algebraic group over k. If Gred is geomet-
rically reduced, then it is an algebraic subgroup of G.

PROOF. If Gred is geometrically reduced, then Gred�Gred is reduced (A.43), and
so the restriction of m to Gred�Gred factors through Gred ,!G:

Gred�Gred
mred
�!Gred ,!G.

Similarly, e and inv induce maps �!Gred and Gred!Gred, and it follows that
.Gred;mred/ is an algebraic subgroup of .G;m/. 2

COROLLARY 1.39. Let G be an algebraic group over k. If k is perfect, then
Gred is an algebraic subgroup of G.

PROOF. As k is perfect, Gred is geometrically reduced (1.26). 2

In general, Gred need not be an algebraic group (1.57, 1.58), and when it is
an algebraic group, it need not be a normal algebraic subgroup, even when k is
perfect (2.35).

LEMMA 1.40. Let G be an algebraic group over k and S an abstract subgroup
of G.k/. The Zariski closure NS of S of G.k/ is also a subgroup of G.k/.

PROOF. Let a;b 2 NS , and let U be a neighbourhood of ab. As multiplication is
continuous, there exist neighbourhoods A and B of a and b such that AB � U .
Both A and B meet S , and so U meets S . As this is true for all neighbourhoods
of ab, we see that ab 2 NS . Let a 2 NS . As inversion is a homeomorphism, a�1

lies in the closure of S�1 D S . 2

PROPOSITION 1.41. Algebraic subgroups of algebraic groups are closed (in the
Zariski topology).
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PROOF. Let H be an algebraic subgroup of an algebraic group G over k. The
canonical map jGka j ! jGj realizes the topological space jGj as a quotient of
jGka j (see A.20). Thus, jH j is closed in jGj if and only if its inverse image jHka j

is closed in jGka j. This allows us to suppose that k is algebraically closed.
We may also suppose that H and G are reduced because passing to the

reduced algebraic subgroup does not change the underlying topological space.
By definition, jH j is locally closed, i.e., open in its closure jH j. According to the
lemma, jH j is a subgroup of jGj. Therefore, it is a disjoint union of cosets of jH j,
which are finite in number. As each coset is open, it is also closed. Therefore jH j
is closed in jH j, and so equals it. 2

COROLLARY 1.42. The algebraic subgroups of an algebraic group satisfy the
descending chain condition.

PROOF. This is true for the closed subschemes of an algebraic scheme (A.24).2

COROLLARY 1.43. Algebraic subgroups of affine algebraic groups are affine.

PROOF. Closed subschemes of affine algebraic schemes are affine. 2

COROLLARY 1.44. Let H1 and H2 be subgroup varieties of an algebraic group
G. If H1.ks/DH2.k

s/, then H1 DH2.

PROOF. As H1 and H2 are closed, we can apply (1.18). 2

Recall (p. 9) that we identify G.k/ with the set of points x in jGj such
that �.x/D k. Let S be a subgroup of G.k/. If S DH.k/ for some algebraic
subgroup H of G, then S D jH j \G.k/, and so it is closed in G.k/ for the
induced topology (1.41). We prove a converse.

THEOREM 1.45. LetG be an algebraic group over k and S a closed subgroup of
G.k/. There is a unique reduced algebraic subgroupH ofG such that S DH.k/,
and H is geometrically reduced. The algebraic subgroups H of G that arise in
this way are exactly those for which H.k/ is schematically dense in H .

PROOF. Let H be the reduced closed subscheme of G such that jH j D S . Then
S D G.k/\ jH j D H.k/. As H.k/ is dense in jH j and H is reduced, H.k/
is schematically dense in H (see 1.10) and H is geometrically reduced (1.12).
Therefore H �H is reduced, and so the map mG WH �H !G factors through
H . Similarly, invG restricts to a regular mapH !H and �!G factors through
H . Therefore H is an algebraic subgroup of G such that H.k/ is schematically
dense in H .

Conversely, let H be an algebraic subgroup of G. Then H.k/DG.k/\jH j
and so H.k/ is closed in G.k/. If H.k/ is schematically dense in H , then the
above construction starting with S DH.k/ gives back H . 2
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COROLLARY 1.46. Let G be an algebraic group over k. Every closed subgroup
S of G.k/ is the group of k-points of a unique subgroup variety H of G. The
subgroup varietiesH ofG that arise in this way are exactly those for whichH.k/
is dense in jH j.

PROOF. This is a restatement of the theorem using Proposition 1.10. 2

COROLLARY 1.47. Let G be an algebraic group over a separably closed field k.
The map H 7!H.k/ is a bijection from the set of subgroup varieties of G onto
the set of closed subgroups of G.k/.

PROOF. As k is separably closed, H.k/ is dense in jH j for every group subvari-
ety of G (see 1.17). 2

DEFINITION 1.48. Let G be an algebraic group over k and S a subgroup of
G.k/. The unique subgroup variety H of G such that H.k/ is the Zariski closure
of S is called the Zariski closure of S in G.

PROPOSITION 1.49. The intersection H D
T
j2J Hj of a family .Hj /j2J of

algebraic subgroups of G is an algebraic subgroup of G. If G is affine, then H is
affine, and its coordinate ring is O.G/=I where I is the ideal in O.G/ generated
by the ideals I.Hj / of the Hj .

PROOF. Certainly, H is a closed subscheme. Moreover, for all k-algebras R,

H.R/D
\

j2J
Hj .R/ (intersection inside G.R/),

which is a subgroup of G.R/, and so H is an algebraic subgroup of G (see 1.5).
Assume that G is affine. For any k-algebra R,

Hj .R/D fg 2G.R/ j fR.g/D 0 for all f 2 I.Hj /g:

Therefore,

H.R/D fg 2G.R/ j fR.g/D 0 for all f 2
[
I.Hj /g

D Hom.O.G/=I;R/: 2

In fact, because of Corollary 1.42, every infinite intersection of algebraic
subgroups is equal to a finite intersection.

REMARK 1.50. Over a field k of nonzero characteristic p, an intersection of
smooth algebraic subgroups of a smooth algebraic group need not be smooth.
For example, both SLp and the group H of scalar matrices in GLp are smooth
algebraic subgroups of GLp , but SLp\H D �p , which is not reduced (hence
not smooth). As another example, let G DG2a, and let t 2 kXkp . Then H1 D
Ga � f0g and H1WXp

2
� tXp D Y are smooth algebraic subgroups of G, but

their intersection is not reduced (it is the group in 1.57 below).
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Normal and characteristic subgroups

DEFINITION 1.51. Let G be an algebraic group.
(a) An algebraic subgroup H of G is normal if H.R/ is normal in G.R/ for

all small k-algebras R.

(b) An algebraic subgroup H of G is characteristic if ˛ .HR/DHR for all
small k-algebras R and all automorphisms ˛ of GR.

The conditions hold for all k-algebras R if they hold for all small k-algebras.
In (b), GR and HR can be interpreted as functors from the category of (small)
finitely generatedR-algebras to the category of groups, or as algebraicR-schemes
(1.19). Because of the Yoneda lemma (A.33), the two interpretations give the
same condition.

PROPOSITION 1.52. The identity component Gı of an algebraic group G is a
characteristic subgroup of G (hence a normal subgroup).

PROOF. As Gı is the unique connected open subgroup of G containing e, every
automorphism of G fixing e maps Gı into itself. Let k0 be a field containing
k. As .Gı/k0 D .Gk0/ı, every automorphism of Gk0 fixing e maps .Gı/k0 into
itself.

LetR be a k-algebra and let ˛ be an automorphism ofGR. We regardGıR and
GR as algebraic R-schemes. It suffices to show that ˛.GıR/�G

ı
R, and, because

GıR is an open subscheme of GR, for this it suffices to show that ˛.jGıRj/� jG
ı
Rj.

Let x 2 jGıRj, and let s be the image of x in Spm.R/. Then x lies in the fibre
G�.s/ of GR over s:

GR G�.s/

Spm.R/ Spm.�.s//:

In fact, x 2 jGıR \G�.s/j D jG
ı
�.s/
j. From the first paragraph of the proof,

˛�.s/.x/ 2 jG
ı
�.s/
j, and so ˛.x/ 2 jGıRj, as required. 2

REMARK 1.53. Let H be an algebraic subgroup of G. If ˛.HR/�HR for all
k-algebras R and endomorphisms ˛ of GR, then H is characteristic. To see this,
let ˛ be an automorphism of GR. Then ˛�1.HR/�HR, and so HR � ˛.HR/.

Descent of subgroups

1.54. Let G be an algebraic scheme over a field k, let k0 be a field containing k,
and let H 0 be an algebraic subgroup of G0 DGk0 .

(a) There exists at most one algebraic subgroup H of G such that Hk0 DH 0

(as an algebraic subgroup of Gk0 ). When such an H exists, we say that H 0

is defined over k (as an algebraic subgroup of G0).
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(b) Let k0 be a Galois extension of k (possibly infinite) and let � DGal.k0=k/.
Then H 0 is defined over k if and only if it is stable under the action of �
on G0, i.e., the sheaf of ideals defining it is stable under the action of �
on OG0 . When H 0.k0/ is schematically dense in H 0 (see 1.9), H 0 is stable
under the action of � on G if and only if H 0.k0/ is stable under the action
of � on G.k0/.

Apply A.65 and A.66.

ASIDE 1.55. A submonoid H of a finite abstract group G is a subgroup because the
map x 7! hxWH !H is injective, hence bijective, for all h 2H . A similar statement is
true with a similar proof for algebraic groups as a consequence of the Ax–Grothendieck
theorem:

Let X be a scheme of finite presentation over a scheme S . An S-endo-
morphism of X is an automorphism if it is a monomorphism (EGA IV,
17.9.6).

Let H be an algebraic submonoid of an algebraic group G, and let h 2H.R/ for some
k-algebra R. Then x 7! hxWH.R0/! H.R0/ is injective for all R-algebras R0. This
means that left translationHR!HR by h is a monomorphism and hence an isomorphism.
Therefore, x 7! hxWH.R/!H.R/ is bijective for all h andH.R/ is a subgroup of G.R/.
As this is true for all R, we see that H is an algebraic subgroup of G (see 1.5).

d. Examples

We give some examples to illustrate what can go wrong in nonzero characteristic.
Recall that Ga is the algebraic group with points Ga.R/D .R;C/ and underlying
scheme Spm.kŒT �/D A1.

1.56. Let k be nonperfect of characteristic p > 2, and let t 2 kXkp . Let G be
the algebraic subgroup of G2a defined by

Y p�Y D tXp .

This is a connected group variety over k that becomes isomorphic to Ga over ka,
but G.k/ is finite if, for example, k is the field k0..t// of Laurent series over a
field k0 (Exercise 2-5; Rosenlicht 1957, p. 46).

1.57. Let k be nonperfect of characteristic p, and let t 2 kXkp . Let G be the
finite algebraic subgroup of Ga defined by the equation

Xp
2

� tXp D 0:

Then Gred is defined by the equation X.Xp.p�1/� t /D 0. It is smooth at 0, but
it is not geometrically reduced because .Xp.p�1/� t /D .Xp�1� t1=p/p , and
so it is not an algebraic group for any map mWGred�Gred!Gred (Exercise 2-4;
SGA 3, VIA, 1.3.2a).
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1.58. Let k be nonperfect of characteristic p � 3, and let t 2 kXkp . Let G be
the algebraic subgroup of G4a defined by the equations

U p� tV p D 0DXp� tY p:

Then G is a connected algebraic group of dimension 2, but Gred is singular at the
origin, and hence not an algebraic group for any map m (SGA 3, VIA, 1.3.2b).
Similarly, the algebraic subgroup of G3a defined by

Xp� tY p D 0D Y p� tZp

is a connected one-dimensional algebraic group such that Gred is not an algebraic
group.

1.59. The formation of Gred does not commute with change of the base field.
For example, G may be reduced without Gka being reduced (1.27). The best
one can say is that the algebraic subgroup .Gka/red of Gka is defined over a finite
purely inseparable extension of k.

To see this, let G be an algebraic group over a field k of characteristic p ¤ 0,
and let

ki D kp
�1 def
D fx 2 ka

j 9m� 1 such that xp
m

2 kg

be the perfect closure of k in ka – it is the smallest perfect subfield of ka containing
k. Now .Gki /red is a smooth algebraic subgroup of Gki (see 1.39), which is
defined over a finite subextension of ki .

e. Kernels and exact sequences

The kernel of a homomorphism 'WG!H of algebraic groups is defined to be
the following fibred product:

Ker.'/DG�H � �

G H

e

'

Thus Ker.'/ is the closed subscheme of G such that Ker.'/.R/D Ker.'.R//
for all k-algebras R. As Ker.'.R// is a normal subgroup of G.R/ for all R, we
see that Ker.'/ is a normal algebraic subgroup of G (1.5). When G and H are
affine, so also is N D Ker.'/, and

O.N /DO.G/˝O.H/ k 'O.G/=IHO.G/

where IH D Ker.O.H/ f 7!f .e/�����! k/ is the augmentation ideal of H .
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EXAMPLE 1.60. Let Ga be the algebraic group .A1;C/. The algebraic group
G in 1.27 is the kernel of the homomorphism

'WGa�Ga!Ga; .x;y/ 7! yp� txp:

It is not geometrically reduced, which shows that the kernel of a homomorphism
of smooth algebraic groups need not be smooth. As another example, �3 is the
kernel of t 7! t3WGm!Gm, and it is not smooth in characteristic 3 (see 1.6).

DEFINITION 1.61. A sequence of algebraic groups

e!N
i
�!G

q
�!Q (3)

is exact if i is an isomorphism of N onto the kernel of q. A sequence

e!N
i
�!G

q
�!Q! e (4)

is exact if in addition q is faithfully flat. When (4) is exact, we say that G is an
extension of Q by N .

Obviously (3) is exact if and only if

e!N.R/!G.R/!Q.R/

is exact for all (small) k-algebras R. An exact sequence remains exact under
extension of the base field. We shall see (1.71) that, for group varieties (but not
algebraic groups in general), a homomorphism qWG!Q is faithfully flat if it is
surjective as a map of schemes, i.e., if jqj W jGj ! jQj is surjective.

PROPOSITION 1.62. Let

e!N
i
�!G

q
�!Q! e

be an exact sequence of algebraic groups.
(a) If N and Q are smooth, then G is smooth.

(b) If G is smooth, then Q is smooth.

PROOF. (a) By definition, q is flat, and its geometric fibres are translates of N ,
which are smooth if N is smooth. Thus the map q is smooth if N is smooth. If,
in addition, Q is smooth, this implies that G is smooth (A.71).

(b) If q is faithfully flat, then the map OQ! q�OG is injective (CA 11.12),
and remains injective after extension of the base field. Therefore OQ is geomet-
rically reduced, hence smooth (1.28), if G is. 2

In particular, extensions and quotients of group varieties are group varieties.
In (1.62), N need not be smooth when G is smooth. For example, Gm is smooth,
but the kernel �p of the faithfully flat map x 7! xpWGm! Gm is not smooth
when p D char.k/¤ 0.
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PROPOSITION 1.63. Let 'WG ! H be a surjective homomorphism of group
varieties. The following conditions are equivalent:

(a) the map .d'/e WTgte.G/! Tgte.H/ is surjective;

(b) the kernel of ' is smooth;

(c) the map ' is smooth.

PROOF. We may suppose that k is algebraically closed. Let N D Ker.'/. The
fibres of ' are the translates N in G, which all have the same dimension, and so
(see A.72)

dimG D dimN CdimH . (5)

We interpret the tangent spaces in terms of dual numbers. The exact commut-
ative diagram

0 N.kŒ"�/ G.kŒ"�/ H.kŒ"�/

0 N.k/ G.k/ H.k/

gives an exact sequence of kernels

0! Tgte.N /! Tgte.G/! Tgte.H/;

and so
dimTgte.G/� dimTgte.N /CdimTgte.H/

with equality if and only if Tgte.G/! Tgte.H/ is surjective. On the other hand,
by (1.37),

dimG D dimTgte.G/
dimH D dimTgte.H/

dimTgte.N /� dimN , with equality if and only if N is smooth.

The equivalence of (a) and (b) follows from this and (5).
If ' is smooth, then, by definition (A.71), so are its fibres. In particular N is

smooth. Conversely, if .d'/e is surjective, then, by homogeneity (1.8), .d'/g
is surjective for all g 2 G.k/. As G and H are smooth, this implies that ' is
smooth (A.71). 2

NOTES. As we saw in 1.60, the kernel of a homomorphism 'WG!H of smooth algebraic
groups over k need not be smooth. This creates problems for those working in a world
without nilpotents. In the old literature, an algebraically closed field K containing k is
fixed, and the kernel of ' is defined to be Ker.'K/red. If there exists a smooth algebraic
subgroup N of G such that NK DKer.'K/red, then the kernel is said to be defined over k.
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f. Group actions

By a functor (resp. group functor) in this section, we mean a functor from small
k-algebras to sets (resp. groups). An action of a group functor G on a functor X
is a natural transformation �WG�X !X such that �.R/ is an action of G.R/
on X.R/ for all k-algebras R.

An action of an algebraic groupG on an algebraic scheme X is a regular map

�WG�X !X

such that the following diagrams commute:

G�G�X G�X

G�X X

id��

m�id �

�

��X G�X

X:

e�id

'
�

Because of the Yoneda lemma (A.33), to give an action of G on X is the same as
giving an action of QG on QX . We often write gx or g �x for �.g;x/. We say that
a subscheme Y of X is stable under G if the restriction of � to G �Y factors
through Y ,!X .

Let � be an action of a group functor G on a functor X . The following
diagram obviously commutes:

G�X G�X

X X:

.g;x/7!.g;gx/

.g;x/ 7!gx� .g;x/ 7!xp2

x 7!x

Moreover, both horizontal maps are isomorphisms; for example, the inverse of
the top map is .g;x/ 7! .g;g�1x/.

LEMMA 1.64. Let �WG�X ! X be an action of an algebraic group G on an
algebraic scheme X . Then � is faithfully flat, and it is smooth (resp. finite) if G
is smooth (resp. finite).

PROOF. The above diagram shows that the �WG�X !X is isomorphic to the
projection map p2, which is faithfully flat and is smooth or finite if G is. 2

Let � and �0 be actions of G on X and X 0. A morphism ˛WX !X 0 is equi-
variant or a G-morphism if ˛.�.g;x//D �0.g;˛.x// for all small k-algebras R,
all g 2G.R/, and all x 2X.R/.

PROPOSITION 1.65. Let G be a group functor. Let X and Y be nonempty
algebraic schemes on which G acts, and let f WX ! Y be an equivariant map.

(a) If Y is reduced and G.ka/ acts transitively on Y.ka/, then f is faithfully
flat.
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(b) If G.ka/ acts transitively on X.ka/, then the set f .jX j/ is locally closed in
jY j; let f .X/red denote f .jX j/ with its reduced subscheme structure.

(c) If X is reduced and G.ka/ acts transitively on X.ka/, then f factors into

X
faithfully
�����!

flat
f .X/red

immersion
������! Y .

Moreover, f .X/red is stable under the action of G.

PROOF. (a) As G.ka/ acts transitively on Y.ka/ and X is nonempty, the map
f .ka/ is surjective, which implies that f is surjective. In proving that f is flat,
we may replace k with its algebraic closure. By generic flatness (A.70), there
exists a nonempty open subset U of Y such that f defines a flat map from f �1U

onto U . As G.k/ acts transitively on Y.k/, the translates gU of U by elements
g of G.k/ cover Y , which shows that f is flat. It is faithfully flat because it is
surjective.

(b) In order to prove that f .jX j/ is locally closed in jY j, it suffices to prove
that its inverse image fka.jXka j/ in jYka j is locally closed (because jYka j ! jY j

is a quotient map of topological spaces (A.20)). Thus, we may suppose that k is
algebraically closed.

Because f .jX j/ is the image of a regular map, it contains a dense open
subset U of its closure f .jX j/ (see A.15). We shall show that f .jX j/ is open
in f .jX j/ (hence locally closed in jY j). The translates of f �1.U / by elements
of G.k/ cover X , and so y D gu for some .g;u/ 2 G.k/�U.k/. Therefore
y 2 gU � f .jX j/, which shows that it is an interior point of f .jX j/ in f .jX j/.

(c) Because X is reduced, f factors through f .X/red, and so the first state-
ment follows from (a) and (b). The proof of the second statement uses similar
ideas (DG, II, �5, 3.1). 2

Orbits

Let �WG�X !X be an action of an algebraic group G on an algebraic scheme
X . For an x 2X.k/, the orbit map

�x WG!X; g 7! gx;

is defined to be the restriction of � to G�fxg 'G. If G.ka/ acts transitively on
X.ka/, then the orbit map �x is surjective because it is on ka-points. The orbit
of x is the image of j�xj. According to (1.65b), it is a locally closed subset of X .

PROPOSITION 1.66 (ORBIT LEMMA). Let G be a group variety acting on a
variety X over an algebraically closed field. Every orbit of minimum dimension
is closed.

PROOF. The orbit O of x 2X.k/ is the image of the regular map �x , and so it
contains a dense open subset U of its closure NO (see A.15). But O is a union
of the sets gU , g 2G.k/, and so is itself open in NO . Therefore NO XO is closed
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of dimension < dim NO , and so (if nonempty) is a union of orbits of dimension
< dimO . Therefore O is closed if it has minimum dimension. 2

In particular, there exists a closed orbit.

EXAMPLE 1.67. Let k be algebraically closed. In the action,

SL2�A2! A2;
�
a b

c d

��
x

y

�
D

�
axCby

cxCdy

�
,

there are two orbits, namely, f.0;0/g and its complement. The smaller of these is
closed, but the larger is not closed and not even affine.

NOTES. The orbit lemma was first proved in Borel 1956. Today, it is an elementary fact,
but in the 1950s it was considered surprising because the statement is false for a complex
Lie group acting on complex variety. Proposition 1.65 is DG, II, �5, 3.1.

g. The homomorphism theorem for smooth groups

In this section, 'WG!H is a homomorphism of algebraic groups over k.

PROPOSITION 1.68. The image '.jGj/ of jGj in jH j is closed.

PROOF. As in the proof of Proposition 1.65(b), we may suppose that k is algeb-
raically closed. Now j'.G/j D '.G.k//, which is a subgroup of H.k/D jH j.
According to 1.65(b), j'.G/j is open in its closure j'.G/j, which is also a sub-
group of jH j (see 1.40). Therefore, j'.G/j is a disjoint union of cosets of j'.G/j,
which are finite in number. As each coset is open, it is also closed. Therefore
j'.G/j is closed in j'.G/j, and so equals it. 2

COROLLARY 1.69. If ' is dominant, then it is surjective.

PROOF. The image of j'j is both dense and closed in jH j, and so equals jH j.2

PROPOSITION 1.70. If H is reduced and ' is surjective, then ' is faithfully flat.

PROOF. When we let G act on H through ', then ' is equivariant. As ' is
surjective, G.ka/ acts transitively on H.ka/, and so the statement follows from
Proposition 1.65(a). 2

SUMMARY 1.71. The following are equivalent (H reduced):
(a) ' is dominant;

(b) ' is surjective (i.e., j'j is surjective);

(c) ' is faithfully flat.
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THEOREM 1.72 (HOMOMORPHISM THEOREM). Let 'WG ! H be a homo-
morphism of algebraic groups over k. If G is smooth, then ' factors as a
composite of homomorphisms

G
q
�! I

i
�!H

with q faithfully flat and i a closed immersion.

PROOF. Let I D '.G/red. When we let G act on H through ', the map 'WG!
H is equivariant, and so ' D i ıq with qWG! I faithfully flat and i WI !H an
immersion (1.65c). From Proposition 1.68, we see that i is a closed immersion.
As q is faithfully flat, the map OI ! q�OG is injective. It remains injective after
extension of the base field, and so I is geometrically reduced. As mH maps
I.ka/� I.ka/ into I.ka/, it maps I � I into I . It follows that I is an algebraic
subgroup of H and that q and i are homomorphisms. 2

DEFINITION 1.73. When 'WG!H factors into G
q
�! I �H with I an algeb-

raic subgroup of H and q a faithfully flat homomorphism, we call I the image
of '.

Thus, the image of a homomorphism exists whenever the homomorphism
theorem holds. Later we shall see that the homomorphism theorem always holds
(3.34, 5.39).

h. Closed subfunctors: definitions and statements

Before defining normalizers and centralizers, we discuss some more general
constructions. By a functor in this section, we mean a functor Alg0k! Set.

1.74. Let A be a k-algebra, and let hA denote the functorR Hom.A;R/. Let
a be an ideal in A. The set of zeros of a in hA.R/ is

Z.R/D f'WA!R j '.a/D 0 for all a 2 ag:

A homomorphism of k-algebras R! R0 defines a map Z.R/! Z.R0/, and
these maps make R Z.R/ into a subfunctor of hA, called the functor of zeros
of a. For example, if AD kŒT1; : : : ;Tn�, then hA D An, and the set of zeros of
aD .f1; : : : ;fm/ in hA.R/ is the set of zeros in Rn of the polynomials fi .

1.75. LetZ be a subfunctor of a functorX . From a map of functors f WhA!X ,
we obtain a subfunctor f �1.Z/ def

DZ�X h
A of hA, namely,

R fa 2 hA.R/ j f .R/.a/ 2Z.R/g:

We say that Z is a closed subfunctor of X if, for every map f WhA! X , the
subfunctor f �1.Z/ of hA is the functor of zeros of some ideal a in A.
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We defer the proofs of the next three statements to the last section of this
chapter.

1.76. Let X be an algebraic scheme over k. The closed subfunctors of QX are
exactly those of the form QZ with Z a closed subscheme of X (see 1.100).

1.77. Let Y !X be a map of functors. If Z is a closed subfunctor of X , then
Z�X Y is a closed subfunctor of Y (see 1.101).

Let R be a small k-algebra. For a functor X , we let XR denote the functor of
smallR-algebras defined by composingX with the forgetful functor Alg0R!Alg0k .
For functors Y and X , we let Mor.Y;X/ denote the functor

R Mor.YR;XR/:

If Z is a subfunctor of X , then Mor.Y;Z/ is a subfunctor of Mor.Y;X/.

1.78. LetX be a functor and Y an algebraic scheme. IfZ is a closed subfunctor
of X , then Mor. QY ;Z/ is a closed subfunctor of Mor. QY ;X/ (see 1.105).

i. Transporters

Let G�X !X be an action of an algebraic group G on an algebraic scheme X
over k, and let Y and Z be subschemes of X . The transporter TG.Y;Z/ of Y
into Z is the functor

R fg 2G.R/ j gYR �ZRg.

According to the Yoneda lemma, gYR �ZR (as schemes) ” gY.R0/�Z.R0/

for all (small) R-algebras R0.

PROPOSITION 1.79. If Z is closed in X and Y is an algebraic scheme, then
TG.Y;Z/ is represented by a closed subscheme of G.

PROOF. Consider the diagram

TG.Y;Z/' Mor.Y;Z/�Mor.Y;X/G G

Mor.Y;Z/ Mor.Y;X/

b

c

in which b is defined by the action of G on X and c is defined by the inclusion of
Z into X . Then Mor.Y;Z/ is a closed subfunctor of Mor.Y;X/ (see 1.78), and
so TG.Y;Z/ is a closed subfunctor of X (see 1.77). Therefore it is represented
by a closed subscheme of G (see 1.76). 2
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COROLLARY 1.80. If Y and Z are closed in X , then the functor

R fg 2G.R/ j gYR DZRg

is represented by a closed subscheme of G.

PROOF. The hypothesis implies that TG.Y;Z/ and TG.Z;Y / are represented by
closed subschemes of G. But the functor in question is equal to

TG.Y;Z/\ inv.TG.Z;Y //;

and so it also is represented by a closed subscheme of G. 2

COROLLARY 1.81. If Y is closed in G, then the functor

R fg 2G.R/ j gYR D YRg

is represented by a subgroup scheme of G (called the stabilizer StabG.Y / of Y
in G).

PROOF. It is clearly a subgroup functor of G, and it is represented by a closed
subscheme. 2

ASIDE 1.82. Let Y be a subscheme of X . It follows from the Ax–Grothendieck theorem
(1.55) that TG.Y;Y / acts on Y by automorphisms, i.e.,

TG.Y;Y /.R/D fg 2G.R/ j gYR D YRg

for all k-algebras R. Thus TG.Y;Y /D StabG.Y /.

j. Normalizers

Let G be an algebraic group over k. We wish to define the normalizer N D
NG.H/ of an algebraic subgroup H of G. In characteristic zero, this is the
unique algebraic subgroup N of G such that N.ka/ is the normalizer of H.ka/ in
G.ka/. In the general case, we need to consider the points in all small k-algebras.

PROPOSITION 1.83. Let H be an algebraic subgroup of G. There is a unique
algebraic subgroup N DNG.H/ of G such that, for all k-algebras R,

N.R/D
˚
g 2G.R/ j gHRg

�1
DHR

	
:

In other words, NG.H/ represents the functor

R N.R/
def
D fg 2G.R/ j gH.R0/g�1 DH.R0/ for all R-algebras R0g.

PROOF. The uniqueness follows from the Yoneda lemma (A.33). Clearly N.R/
is a subgroup of G.R/, and so it remains to show that N is represented by a
closed subscheme of G (see 1.5). But, when we let G act on itself by inner
automorphisms,

N D TG.H;H/\ inv.TG.H;H//;

and so this follows from Proposition 1.79. 2
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The algebraic subgroup NG.H/ is called the normalizer of H in G. Dir-
ectly from its definition, one sees that the formation of NG.H/ commutes with
extension of the base field. Clearly H is normal in G if and only if NG.H/DG.

PROPOSITION 1.84. Let H be a smooth algebraic subgroup of G and let k0 be
an extension of k such that H.k0/ is dense in H . Then NG.H/.k/ consists of
the elements of G.k/ normalizing H.k0/ in G.k0/.

PROOF. Let g 2 G.k/ normalize H.k0/, and let gH denote the image of H
under the isomorphism x 7! gxg�1WG ! G. Then gH \H is an algebraic
subgroup of H such that .gH \H/.k0/DH.k0/, and so gH DH . Therefore
gH.R/g�1 DH.R/ for all k-algebras R, and so g 2NG.H/.k/. The converse
is obvious. 2

We let inn.g/ denote the inner automorphism x 7! gxg�1WG ! G of G
defined by g 2G.k/.

COROLLARY 1.85. Let H be an algebraic subgroup of a smooth algebraic
group G, and let k0 be a separably closed field containing k. If Hk0 is stable
under inn.g/ for all g 2G.k0/, then H is normal in G.

PROOF. Let N D NG.H/. Then N is an algebraic subgroup of G, and the
hypothesis implies that N.k0/DG.k0/. As G is smooth, this implies that N DG
(see 1.15b). 2

COROLLARY 1.86. Let H be a subgroup variety of a group variety G, and k0

be a separably closed field containing k. If H.k0/ is normal in G.k0/, then H is
normal in G.

PROOF. Because H is a variety, H.k0/ is dense in H , and so Proposition 1.84
shows that NG.H/.k0/ D G.k0/. Because G is a variety, this implies that
NG.H/DG. 2

COROLLARY 1.87. LetH be a normal algebraic subgroup of a smooth algebraic
group G. If Hred is an algebraic subgroup of G, then it is normal in G.

PROOF. As H is normal in G, H.ks/ is normal in G.ks/, but H.ks/DHred.k
s/

and so we can apply Corollary 1.86. 2

Corollaries 1.86 and 1.87 may fail if G is not smooth. For example, if k is
perfect, then Gred is a subgroup variety of G such that Gred.k/D G.k/, but it
need not be normal in G (see 2.35 below for examples).

REMARK 1.88. Let H be a smooth algebraic subgroup of an algebraic group G
over k.

(a) If k is perfect, then N D NG.H/red is the unique subgroup variety of G
such that N.ka/ is the normalizer of H.ka/ in G.ka/.
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(b) If N DNG.H/ is smooth, then it is the unique subgroup variety of G such
that N.ka/ is the normalizer of H.ka/ in G.ka/.

For (a), note that Proposition 1.84 implies that N has the specified property,
which characterizes it by 1.44. Statement (b) follows from (a). Note that (b)
always applies in characteristic zero because then all algebraic groups are smooth
(3.23, 8.39 below).

DEFINITION 1.89. An algebraic subgroup H of an algebraic group G is weakly
characteristic if, for all fields k0 containing k, Hk0 is stable under all automorph-
isms of Gk0 .

PROPOSITION 1.90. Let H �N be algebraic subgroups of a smooth algebraic
group G. If H is weakly characteristic in N and N is normal in G; then H is
normal in G.

PROOF. By hypothesis, Hks is stable under inn.g/jNks for all g 2G.ks/, and so
this follows from (1.86). 2

REMARK 1.91. A weakly characteristic algebraic subgroup need not be charac-
teristic. For example, the largest unipotent subgroup of a commutative algebraic
group over a perfect field is weakly characteristic but not in general characteristic
(see 16.19 below).

k. Centralizers

LetG be an algebraic group over k. We wish to define the centralizerC DCG.H/
of an algebraic subgroup H of G. In characteristic zero, this is the unique
algebraic subgroup of G such that C.ka/ is the centralizer of H.ka/ in G.ka/. In
the general case, we need to consider the points in all small k-algebras.

PROPOSITION 1.92. Let H be an algebraic subgroup of G. There is a unique
algebraic subgroup C D CG.H/ of G such that, for all k-algebras R,

C.R/D fg 2N.R/ j g centralizes H.R0/ in G.R0/ for all R-algebras R0g:

PROOF. Let G act on G�G by

g.g1;g2/D .g1;gg2g
�1/; g;g1;g2 2G.R/:

Embed H diagonally in G�G, and let �H denote the diagonal in H �H . Then
�H is closed in H �H (see 1.22), and hence in G�G. Now C D TG.H;�H /,
and so Proposition 1.79 shows that it is represented by a closed subscheme G.2

The algebraic subgroup CG.H/ is called the centralizer of H in G. It is the
largest algebraic subgroup of NG.H/ acting trivially on H . Directly from its
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definition, one sees that the formation of CG.H/ commutes with extension of
the base field. The centre Z.G/ of G is defined to be CG.G/. An extension

e!N
i
�!G

�
�!Q! e

is central if N is contained in Z.G/.

PROPOSITION 1.93. Let H be a smooth algebraic subgroup of G, and let k0 be
an extension of k such thatH.k0/ is dense inH . Then CG.H/.k/ consists of the
elements of G.k/ centralizing H.k0/ in G.k0/.

PROOF. Let g be an element of G.k/ centralizing H.k0/. Then g 2NG.H/.k/
(see 1.84), and the homomorphism x 7! gxg�1WH ! H coincides with the
identity map on an algebraic subgroup H 0 of H such that H 0.k0/DH.k0/. This
implies that H 0 DH , and so g centralizes H . 2

COROLLARY 1.94. Let H be a subgroup variety of a group variety G. If H.ks/

is contained in the centre of G.ks/, then H is contained in the centre of G.

PROOF. We may suppose that k is separably closed (1.54a). Because H is a
variety, H.k/ is dense in H , and so the proposition shows that CG.H/.k/ D
G.k/. As G is a group variety, this implies that CG.H/DG (1.17). 2

REMARK 1.95. Let H be a smooth algebraic subgroup of an algebraic group G
over k:

(a) If k is perfect, then C D CG.H/red is the unique subgroup variety of G
such that C.ka/ is the centralizer of H.ka/ in G.ka/.

(b) If C D CG.H/ is smooth, then it is the unique subgroup variety of G such
that C.ka/ is the centralizer of H.ka/ in G.ka/.

The proof is similar to that of the statements in Remark 1.88. Again, (b) always
applies in characteristic zero.

REMARK 1.96. The centralizer of an algebraic subgroup H of an algebraic
group G need not be smooth, even when G and H are smooth. For example, let
k be a field of characteristic 2¤ 0, and let a 2 kXk2. Let G D SL4, and let H
be the algebraic subgroup of G generated by

hD

�
0 0 0 a

0 0 a�1 0

0 1 0 0

1 0 0 0

˘

2G.k/:

It is smooth (see 2.51 below), and CG.H/ is the algebraic subgroup of G of
matrices �

x 0 0 ay

0 z t 0

0 at z 0

y 0 0 x

˘

2G.R/

with .xzCayt/2�a.xtCyz/2 D 1. This is not reduced.
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REMARK 1.97. The centre Z.G/ of a smooth algebraic group need not be
smooth – for example, in characteristic p, the centre of SLp is the nonreduced
algebraic group �p . For another example, let G, ', and N be as in 6.48 below,
and let H DGa Ì' G; then Z.H/DN , which is not reduced.

For some situations (other than characteristic zero) where centralizers and
normalizers are smooth, see (13.16) and (15.20) below.

NOTES. The normalizer N of a subgroup variety H of a group variety G need not be
smooth. In the old literature, the normalizer of H in G is defined to be the subgroup
variety .Nka/red of Gka , which “need not be defined over k” (Borel 1991, p. 52). The
centralizer is similarly defined to be a subgroup variety of Gka (not of G).

l. Closed subfunctors: proofs

In this section, all functors are from the category of small k-algebras to sets.

Closed subfunctors

LEMMA 1.98. Let Z be a subfunctor of a functor X . Then Z is closed in X if
and only if it satisfies the following condition: for every k-algebra A and map of
functors f WhA! Y , the subfunctor f �1.Z/ of hA is represented by a quotient
of A.

PROOF. This is a restatement of the definition. 2

A map of functors f WhA! X corresponds to an element ˛ 2 X.A/. Ex-
plicitly, f .R/WhA.R/!X.R/ is the map sending ' 2 hA.R/D Hom.A;R/ to
X.'/.˛)2X.R/, and so

f �1.Z/.R/D f'WA!R jX.'/.˛/ 2Z.R/g.

Therefore, Z is closed in X if and only if, for every A and ˛ 2X.A/, the functor

R f'WA!R jX.'/.˛/ 2Z.R/g

is represented by a quotient of A. In down-to-earth terms, this means that there
exists an ideal a� A such that

X.'/.˛/ 2Z.R/ ” '.a/D 0:

EXAMPLE 1.99. Let B be a k-algebra and Z a subfunctor of X D hB . For the
identity map f WhB!X , f �1.Z/DZ. It follows that, ifZ is closed in hB , then
it is represented by a quotient of B . Conversely, suppose that Z is represented by
a quotient B=b of B , so that

Z.R/D f'WB!R j '.b/D 0g:
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Let ˛ 2 X.A/D Hom.B;A/, and let f be the corresponding map f WhA! X .
Then

f �1.Z/.R/D f'WA!R j ' ı˛ 2Z.R/g D f'WA!R j '.˛.b//D 0g,

and so f �1.Z/ is represented by the quotient A=˛.b/ of A.
We conclude that the closed subfunctors of hB are exactly those defined by

closed subschemes of Spm.B/.

EXAMPLE 1.100. Consider the functor hX WR X.R/ defined by an algebraic
scheme X over k. If Z is a closed subscheme of X , then certainly hZ is a closed
subfunctor of hX . Conversely, let Z be a closed subfunctor of X . For each
open affine subscheme U of X , there is a unique ideal I.U / in O.U / such that
Z\hU D h

O.U /=I.U / (apply 1.99). Because of the uniqueness, the sheaves on U
and U 0 defined by I.U / and I.U 0/ coincide on U \U 0. Therefore, there exists
a (unique) coherent sheaf I on X such that � .U;I/D I.U / for all open affine
subschemes U in X . Now Z D hZ0 , where Z0 is the closed subscheme of X
defined by I.

We conclude that the closed subfunctors of hX are exactly those defined by
closed subschemes of X .

PROPOSITION 1.101. Let Z be a closed subfunctor of a functor X . For every
map Y !X of functors, Z�X Y is a closed subfunctor of Y .

PROOF. Let f WhA! Y be a map of functors. Then

f �1.Z�X Y /
def
D .Z�X Y /�Y h

A
DZ�X h

A,

which is the functor of zeros of some a� A because Z is closed in X . 2

Restriction of scalars

LEMMA 1.102. Let A and B be k-algebras and let b be an ideal in B ˝A.
Among the ideals a in A such that B˝a� b, there exists a smallest one.

PROOF. Choose a basis .ei /i2I for B as k-vector space. Each element b of
B˝A can be expressed uniquely as a finite sum b D

P
ei ˝ ai , ai 2 A, and

we let a0 denote the ideal in A generated by the coordinates ai of the elements
b 2 b. Clearly B˝a0 � b. Let a be a second ideal such that B˝a� b. Then
the coordinates of all elements of b lie in a, and so a� a0. 2

Let B be a small k-algebra and X a functor Alg0k! Set. We define X� to be
the functor

R X.B˝R/WAlg0k! Set:

PROPOSITION 1.103. Let B be a small k-algebra, and let Z be a subfunctor of
a functor X . If Z is closed in X , then Z� is closed in X�.
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PROOF. Let A be a k-algebra, and ˛ 2X�.A/. To prove that Z� is closed in X�
we have to show that there exists an ideal a� A such that, for a homomorphism
'WA!R,

X�.'/.˛/ 2Z�.R/ ” '.a/D 0;

i.e.,
X.B˝'/.˛/ 2Z.B˝R/ ” '.a/D 0:

We regard ˛ as an element of X.B˝A/. Because Z is closed in X , there
exists an ideal b in B˝A such that, for all homomorphisms '0WB˝A!R0,

X.'0/.˛/ 2Z.R0/ ” '0.b/D 0:

In particular (taking '0 D B˝'/, we have

X.B˝'/.˛/ 2Z.B˝R/ ” .B˝'/.b/D 0: (6)

According to Lemma 1.102, there exists a well-defined ideal a in A such that
an ideal a0 of A contains a if and only if B˝a0 � b. On applying this to the ideal
a0 D Ker.'/, we find that

a� Ker.'/ ” b� B˝Ker.'/D Ker.B˝'/: (7)

Now

'.a/D 0
(7)
” .B˝'/.b/D 0

(6)
” X.B˝'/.˛/ 2Z.B˝R/;

as required. 2

Application to Mor

LEMMA 1.104. An intersection of closed subfunctors of a functor is closed.

PROOF. Let Zi , i 2 I , be closed subfunctors of X and f WhA! X a map of
functors. For each i 2 I , there is an ideal ai of A such that f �1.Zi /� hA.R/ is
the functor of zeros of ai . Now f �1.

T
i2I Zi /D

T
i2I f

�1.Zi / is the functor
of zeros of aD

P
i2I ai . 2

THEOREM 1.105. Let Z be a subfunctor of a functor X , and let Y be an algeb-
raic scheme. If Z is closed in X , then Mor.Y;Z/ is closed in Mor.Y;X/.

PROOF. Suppose first that Y D hB for some k-algebra B (which we may assume
to be small). Then, for every k-algebra R,

Mor.Y;X/.R/DX.B˝R/;

and so Mor.Y;X/DX�. In this case, the theorem is proved in Proposition 1.103.
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Let Y D
S
i Yi be a finite covering of Y by open affine subschemes, and

consider the diagram

Mor.Y;X/
�i
�! Mor.Yi ;X/

[ [

Mor.Y;Z/ �! Mor.Yi ;Z/

in which �i is the restriction map. We know that Mor.Yi ;Z/ is closed in the
functor Mor.Yi ;X/, hence ��1i .Mor.Yi ;Z// is closed in Mor.Y;X/ (see 1.101),
and so (see 1.104) it remains to show that

Mor.Y;Z/D
\

i
��1i .Mor.Yi ;Z// .

Let Hi D ��1i .Mor.Yi ;Z//. Certainly, Mor.Y;Z/ �
T
iHi , and for the

reverse inclusion it suffices to show that the map of functors�\
i
Hi

�
�Y !X

defined by the evaluation map �WMor.Y;X/�Y ! X factors through Z. For
each i , we know that Hi �Yi ! X factors through Z. By definition, Z will
become a closed subscheme of an (affine) scheme X after we have pulled back by
a map of functors hA!X . Then ��1.Z/ is a closed subscheme of Mor.Y;X/�
Y containing

�T
iHi

�
�Yi for all i , and hence containing

�T
iHi

�
�Y . Since

this holds for all maps hA!X , it follows that ��1.Z/�
�T

iHi
�
�Y . 2

ASIDE 1.106. In this section, we used that k is a field only to deduce in the proof of
Lemma 1.102 that B is free as a k-module. The same arguments suffice to prove the
following more general statement: let k be a commutative ring; let X be a functor of
k-algebras and Z a closed subfunctor of X ; let Y be a scheme locally free over k, i.e.,
Y admits a covering by open affine subschemes Yi such that each O.Yi / is free as a
k-module; then Mor.Y;Z/ is a closed subfunctor of Mor.Y;X/. See DG, I, �2, 7.5; also
Jantzen 2003, 1.15.

Exercises

EXERCISE 1-1. Let k be a field of characteristic zero.
(a) Let R be a k-algebra, and let a be a nilpotent element of R. For an element

x of an R-algebra S , let eax D 1CaxC .ax/2=2ŠC�� � (finite sum). Show
that the maps x 7! eax WS ! S� define a homomorphism GaR! GmR,
and that every homomorphism from Ga to Gm over R is of this form for a
unique a.

(b) Deduce that the functor R Hom.GaR;GmR/ is not representable (con-
sider the ring kŒŒt ��D lim

 �
kŒŒt ��=.tn/).

See https://mathoverflow.net/, question 4062.

https://mathoverflow.net/


CHAPTER 2

Examples and Basic Constructions

LetG be an algebraic group over k. Then O.G/ is a k-algebra. IfG is affine, then
G ' Spm.O.G//. At the opposite extreme, an algebraic group G is anti-affine
if O.G/D k. For example, an algebraic group is anti-affine if it is complete as
an algebraic scheme. Later (8.36), we shall show that every algebraic group is
an extension of an affine algebraic group by an anti-affine algebraic group in a
unique way. In this chapter, we give examples of affine and anti-affine algebraic
groups, and we explain some constructions involving algebraic groups.

When G is affine, we call O.G/ the coordinate ring of G. If G is embedded
as a closed subvariety of some affine space An, then O.G/ is the ring of functions
on G generated by the coordinate functions on An, whence the name. For an
affine algebraic group .G;m/, the homomorphism of k-algebras �G WO.G/!
O.G/˝O.G/ corresponding to mWG �G! G is called the comultiplication
map.

Recall (1.4) that to give an algebraic group over k amounts to giving a functor
from k-algebras to groups whose underlying functor F to sets is representable
by an algebraic scheme over k. In the affine case, this means that there is a
k-algebra A and a “universal” element a 2 F.A/ such that, for every k-algebra
R and x 2 F.R/, there exists a unique homomorphism A!R with the property
that F.A/! F.R/ sends a to x.

a. Affine algebraic groups

2.1. The additive group Ga is the functor R .R;C/. It is represented by
O.Ga/D kŒT �, and the universal element in Ga.kŒT �/ is T : for every k-algebra
R and x 2Ga.R/, there is a unique homomorphism kŒT �!R with the property
that Ga.kŒT �/!Ga.R/ sends T to r . The comultiplication map is the k-algebra
homomorphism �WkŒT �! kŒT �˝kŒT � such that

�.T /D T ˝1C1˝T:

39
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2.2. The multiplicative group Gm is the functor R .R�; �/. It is represented
by O.Gm/D kŒT;T �1�� k.T /, and the comultiplication map is the k-algebra
homomorphism � such that

�.T /D T ˝T:

2.3. Let F be a finite group. The constant algebraic group Fk has underlying
scheme a disjoint union of copies of Spm.k/ indexed by the elements of F , i.e.,

Fk D
G

a2F
Sa; Sa D Spm.k/.

Then

Fk �Fk D
G

.a;b/2F�F
S.a;b/; S.a;b/ D Sa�Sb D Spm.k/,

and the multiplication map m sends S.a;b/ to Sab . For a k-algebra R,

Fk.R/D Hom.�0;F / (maps of sets)

where �0 is the set of connected components of spm.R/. In particular, Fk.R/D
F if R has no nontrivial idempotents. The coordinate ring of Fk is a product of
copies of k indexed by the elements of F ,

O.Fk/D
Y

a2F
ka; ka D k;

and � maps the factor kc diagonally into
Q
a;b2F , abDc ka˝kb .

If F is the trivial group e, then Fk is the trivial algebraic group �, which
has coordinate ring O.�/D k and comultiplication map the unique k-algebra
homomorphism k! k˝k.

2.4. For an integer n � 1, �n is the functor R fr 2 R j rn D 1g. It is
represented by O.�n/D kŒT �=.T n�1/, and the comultiplication map is induced
by that of Gm.

2.5. Let k have characteristic p ¤ 0, and let p̨m be the functor R fr 2R j
rp
m
D 0g. Then p̨m.R/ is a subgroup of .R;C/ because .xCy/p

m
D xp

m
C

yp
m

in characteristic p. The functor is represented by O. p̨m/D kŒT �=.T pm/,
and the comultiplication map is induced by that of Ga. Note that

kŒT �=.T p
m

/D kŒT �=..T C1/p
m

�1/D kŒU �=.U p
m

�1/; U D T C1,

and so p̨m and �pm are isomorphic as schemes (but not as algebraic groups).

2.6. For a k-vector space V , we let Va denote the functor R V ˝R.1 Recall
that for a k-vector space W , the symmetric algebra Sym.W / on W has the

1Our notation Va is that of DG, II, �1, 2.1. Many other notations are used, for example, W.V /
(SGA 3, I, 4.6.1) or Va (Jantzen 2003, 2.2).
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following universal property: every k-linear map W ! A from W to a k-algebra
A extends uniquely to a k-algebra homomorphism Sym.W /! A. Assume that
V is finite-dimensional, and let V _ be its dual. Then, for a k-algebra R,

V ˝R' Homk.V
_;R/ (homomorphisms of k-vector spaces)

' Homk.Sym.V _/;R/ (homomorphisms of k-algebras).

Therefore, Va is an algebraic group with O.Va/D Sym.V _/.
Let fe1; : : : ; eng be a basis for V and ff1; : : : ;fng the dual basis for V _. Then

Sym.V _/' kŒf1; : : : ;fn� (polynomial ring).

For this reason, Sym.V _/ is often called the ring of polynomial functions on V .
The choice of a basis for V determines an isomorphism Gna! Va.

2.7. For integers m;n � 1, let Mm;n denote the functor sending R to the ad-
ditive group Mm;n.R/ of m�n matrices with entries in R. It is represented by
kŒT11;T12; : : : ;Tmn�. For a vector space V over k, we define EndV to be the
functor

R End.VR/ (R-linear endomorphisms).

When V has finite dimension n, the choice of a basis for V determines an
isomorphism EndV !Mn;n, and so EndV is an algebraic group.

2.8. The general linear group GLn is the functor R GLn.R/ (multiplicative
group of invertible n�n matrices with entries in R). It is represented by

O.GLn/D
kŒT11;T12; : : : ;Tnn;T �

.det.Tij /T �1/
D kŒT11;T12; : : : ;Tnn;1=det�;

and the universal element in GLn.kŒT11; : : :�/ is the matrix .Tij /1�i;j�n: for every
.aij / 2GLn.R/, there is a unique homomorphism kŒT11; : : :�!R with the prop-
erty that GLn.kŒT11; : : :�/! GLn.R/ sends .Tij / to .aij /. The comultiplication
map is the k-algebra homomorphism

�WkŒT11; : : :�! kŒT11; : : :�˝kŒT11; : : :�

such that
�Tij D

X
1�l�n

Til ˝Tlj : (8)

Symbolically, the matrix .�Tij /D .Til /˝ .Tlj /.
More generally, for any vector space V over k, we define GLV to be the

functor
R Aut.VR/ (R-linear automorphisms).

If V has finite dimension n, then the choice of a basis for V determines an
isomorphism GLV ! GLn, and GLV is an algebraic group.

The algebraic group SLn is a subgroup of GLn, and SLV is defined to be the
similar subgroup of GLV .
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2.9. The following are algebraic subgroups of GLn:

TnWR f.aij / j aij D 0 for i > j g (upper triangular matrices)
UnWR f.aij / j aij D 0 for i > j , aij D 1 for i D j g
DnWR f.aij / j aij D 0 for i ¤ j g (diagonal matrices).

�
� � � � � � �

� � �

: : :
: : :

0 � �

�

��
1 � � � � � �

1 � �

: : :
: : :

0 1 �

1

��
�

� 0
: : :

0 �

�

�

Tn Un Dn
For example, Un is represented by the quotient of kŒT11;T12; : : : ;Tnn� by the
ideal generated by the polynomials

Tij .i > j /; Ti i �1 (all i ):

2.10. Let C 2 GLn.k/, and consider the group-valued functor

GWR fA 2 GLn.R/ j AtCAD C g

(At is the transpose of A). The condition AtCA D C is polynomial on the
entries of A, and so G is represented by a quotient of O.GLn/. Therefore it is
an algebraic group. If C D .cij /, then an element of GLn.R/ lies in G.R/ if
and only if it preserves the form �.Ex; Ey/ D

P
cijxiyj on Rn. The following

examples are especially important (they are the split almost-simple classical
groups).

(a) The subgroup SLn of GLn does not fit this pattern, but we include it here
for reference.

(b) When char.k/ ¤ 2, the orthogonal group O2nC1 is the algebraic group

attached to the matrix C D
�1 0 0
0 0 In
0 In 0

�
. Then, O2nC1.R/ consists of the

elements of GL2nC1.R/ preserving the symmetric bilinear form

�.Ex; Ey/D x0y0C .x1ynC1CxnC1y1/C�� �C .xny2nCxny2n/

on R2nC1. The special orthogonal group SO2nC1 is O2nC1\SL2nC1.

(c) The symplectic group Sp2n is the algebraic group attached to the mat-
rix C D

�
0 In
�In 0

�
. Then Sp2n.R/ consists of the elements of GLn.R/

preserving the skew-symmetric bilinear form

�.Ex; Ey/D .x1ynC1�xnC1y1/C�� �C .xny2n�x2nyn/D Ex
tC Ey

on R2n. More generally, let V be a vector space of dimension 2n over
k and � a nondegenerate alternating form on V . Let Sp.V;�/ be the
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algebraic subgroup of GLV whose elements preserve �. Choose a basis
e1; : : : ; e2n for V such that �.ei ; ej /D˙1 if j D i˙n andD 0 otherwise.
This identifies V with k2n and �.Ex; Ey/ with ExtC Ey, and so it defines an
isomorphism Sp.V;�/! Sp2n;

(d) When char.k/ ¤ 2, the orthogonal group O2n is the algebraic group at-
tached to the matrix C D

�
0 In
In 0

�
. Thus, O2n.R/ consists of the elements

of GL2n.R/ preserving the symmetric bilinear form

�.Ex; Ey/D .x1ynC1CxnC1y1/C�� �C .xny2nCxny2n/

on R2n. The special orthogonal group SO2n is O2n\SL2n.
More generally, we write SO.V;�/ and O.V;�/ for the groups attached to a
bilinear form � on a vector space V . When char.k/D 2, the orthogonal groups
can be defined using quadratic forms instead of bilinear forms (see Section 21j
below).

2.11. An algebraic group G over k is a torus if it becomes isomorphic to a
product of copies of Gm over a finite separable extension of k.

2.12. An algebraic group U over k is a vector group if it is isomorphic to a
product of copies of Ga. For example, the algebraic group Va attached to a
finite-dimensional vector space V over k is a vector group. This vector group
has a natural action of Gm. An action of Gm on a vector group U is said to be
linear if it is defined by an isomorphism U ! Va and the natural action on Va.
In characteristic zero, there is exactly one linear action of Gm on a vector group
U , namely that defined by the canonical isomorphism U ' Lie.U /a (see 10.9).
In characteristic p, a vector group may have more than one linear action, and it
has actions that are not linear, for example, the composite of a linear action with
the pth power map on Gm.

2.13. Let V be a finite-dimensional vector space over k. Then GLV acts on the
vector space T rs

def
D V ˝r ˝ .V _/˝s , and so t 2 T rs defines a natural map

g 7! g � t WG.R/! T rs .R/; R a k-algebra,

and hence a morphism of schemes G!
�
T rs
�
a
. The fibre of this map over t is

an algebraic subgroup over GLV , called the algebraic group fixing the tensor t .
The algebraic group fixing tensors t1; : : : ; tn is defined to be the intersection of
the algebraic groups fixing the ti individually.

For example, a t 2 T 0s can be regarded as a multilinear map

t WV � � � ��V ! k (s copies of V ).

Let G be the algebraic group fixing t . For a k-algebra R, G.R/ consists of the
g 2 GLV .R/ such that

t .gv1; : : : ;gvs/D .v1; : : : ;vs/; all .vi / 2 V s :
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2.14. An algebraic group G over k is finite if it is finite as a scheme over k.
This means that G is affine and O.G/ is a finite k-algebra (see 11.2). The order
o.G/ of G is the dimension of O.G/ as a k-vector space.

A finite algebraic group G is infinitesimal if jGj D e. For example, p̨r and
�pr are infinitesimal when p D char.k/. A finite algebraic group is infinitesimal
if and only if its augmentation ideal is nilpotent.

An algebraic group G over k is finite if and only ifG.K/ is finite for all fields
K containing k, and it is infinitesimal if and only if G.K/D feg for all fields
containing k.

Recall that “algebraic group” is short for “algebraic group scheme”. Thus
“finite algebraic group” is short for “finite algebraic group scheme”; but finite
implies algebraic, and so we usually abbreviate this to “finite group scheme”.

b. Étale group schemes

2.15. An algebraic group over k is said to be étale if it is étale as a scheme over
k (see A.60). Thus, the étale group schemes over k are the group varieties over k
of dimension zero. A finite group scheme is étale if and only if it is smooth or,
equivalently, its tangent space Tgte.G/ at e is zero. The order of an étale group
scheme G over k is the order of the abstract group G.ks/.

2.16. Let � D Gal.ks=k/. A group in the category of finite discrete � -sets is a
finite group together with a continuous action of � by group homomorphisms
(i.e., for each  2 � , the map x 7! x is a group homomorphism). Now (A.62)
implies the following statement.

The functor G  G.ks/ is an equivalence from the category of
étale group schemes over k to the category of discrete finite groups
endowed with a continuous action of � by group homomorphisms.

Let K be a subfield of ks containing k. Then G.K/D G.ks/Gal.ks=K/ for any
étale group scheme G over k.

2.17. A connected étale group scheme G is trivial (because the point e is both
open and closed inG). A finite algebraic group that is both étale and infinitesimal
is trivial. Thus a finite algebraic group G over k is trivial if and only if both
Tgte.G/ and G.ks/ are trivial.

Examples

2.18. The finite constant algebraic groups over k are the étale algebraic groups
G such that � acts trivially on G.ks/.

2.19. Let X be a group of order 1 or 2. Then Aut.X/ D 1, and so there is
exactly one étale group scheme of order 1 and one of order 2 over any field k (up
to isomorphism).
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2.20. Let A be a group of order 3. Such a group is cyclic and Aut.A/D Z=2Z.
Therefore the étale group schemes of order 3 over k correspond to homomorph-
isms � ! Z=2Z factoring through Gal.K=k/ for some finite Galois extension
K of k. A separable quadratic extension K of k defines such a homomorphism,
namely,

� 7! � jKW� ! Gal.K=k/' Z=2Z

and all nontrivial such homomorphisms � ! Z=2Z arise in this way. Thus, up to
isomorphism, there is exactly one nonconstant étale group scheme GK of order 3
over k for each separable quadratic extension K of k. If G0 is the constant étale
group of order 3, then G0.k/ has order 3. On the other hand, GK.k/ has order 1
but GK.K/ has order 3. There are infinitely many distinct quadratic extensions
of Q, for example, QŒ

p
2�, QŒ

p
3�, QŒ

p
5�, : : : and hence infinitely many distinct

étale group schemes of order 3. When char.k/¤ 3, the finite group scheme �3
is the étale group scheme over Q attached to QŒ 3

p
1�.

c. Anti-affine algebraic groups

Recall that an algebraic group G over k is anti-affine if O.G/ D k. Later we
shall show that every anti-affine algebraic group is smooth (8.37).

The simplest anti-affine algebraic groups are the smooth cubic curves in P2
k

.
Such a curve is defined C by a homogeneous equationX

iCjCkD3

aijkX
iY jZk D 0

satisfying a smoothness condition. Fix a point O 2 C.k/, assumed to exist. For
P;Q 2 C.k/, the line PQ through P and Q meets C in a third point R 2 C.k/.
Let P CQ denote the third point of intersection of the line OR with C . There
is regular map mWC �C ! C such that m.P;Q/D P CQ for all P;Q 2 C.k/.
This makes C into an algebraic group, called an elliptic curve.

Clearly, a complete connected group variety G is anti-affine. Such a group
variety is called an abelian variety. Abelian varieties are commutative and pro-
jective (8.45). The abelian varieties of dimension 1 are exactly the elliptic curves.
When equipped with a polarization of fixed degree (roughly, a distinguished class
of projective embeddings), the abelian varieties of dimension d form a family of
dimension d.d C1/=2. Their study is an important part of mathematics, which
we shall ignore here. See, for example, Milne 1986 or Mumford 1970.

Abelian varieties are not the only anti-affine algebraic groups. In nonzero
characteristic, certain extensions of abelian varieties by tori are anti-affine, and in
characteristic zero, certain extensions of abelian varieties by products of tori with
vector groups are anti-affine. See Section 8i.
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d. Homomorphisms of algebraic groups

2.21. For an algebraic scheme X over k,

Hom.X;Ga/' Hom.kŒT �;OX .X//'OX .X/

(see A.13). Under the second isomorphism a homomorphism ' corresponds
to f D '.T /. Let G be an affine algebraic group. The morphism of schemes
G ! Ga corresponding to an element f of O.G/ is a homomorphism if and
only if

�G.f /D f ˝1C1˝f:

Using this, we can compute the endomorphisms of Ga. In characteristic zero,
they are the maps t 7! ct for c 2 k. In characteristic p, they are the maps

t 7! c0tC c1t
p
C c2t

p2
C�� �C cnt

pn ; n 2 N; c0; : : : ; cn 2 k:

See Example 14.40.

2.22. For an algebraic scheme X over k,

Hom.X;Gm/' Hom.kŒT;T �1�;OX .X//'OX .X/�

(see A.13). Let G be an affine algebraic group. The morphism G!Gm corres-
ponding to f 2O.X/� is a homomorphism if and only if

�G.f /D f ˝f:

The only such elements in kŒT;T �1� are the powers T n, n 2 Z, of T , and so the
endomorphisms of Gm are the maps t 7! tn. Thus End.Gm/' Z.

2.23. A homomorphism 'WG!H of connected group varieties is an isogeny
if it is surjective (i.e., j'j is surjective) and its kernel is finite. The order of the
kernel is called the degree of the isogeny. An isogeny is étale if its kernel is étale.
This is equivalent to the map .d'/eWTgteG! TgteH on tangent spaces being
an isomorphism (see 1.63).

The Frobenius homomorphism

2.24. Let k be a field of characteristic p ¤ 0, and let f be the map a 7! ap .
For g 2 kŒT1; : : : ;Tn�, we let g.p/ denote the polynomial obtained by applying f
to the coefficients of g. For a closed subscheme X of An defined by polynomials
g1;g2; : : :, we let X .p/ denote the closed subscheme defined by the polynomials
g
.p/
1 ;g

.p/
2 ; : : :. Then

.a1; : : : ;an/ 7! .a
p
1 ; : : : ;a

p
n /WA

n.k/! An.k/

maps X.k/ into X .p/.k/. We want to realize this map of sets as a morphism of
k-schemes FX WX !X .p/:
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Let ADO.X/D kŒT1; : : : ;Tn�=.g1;g2; : : :/. Then

A.p/
def
DO.X .p//D kŒT1; : : : ;Tn�

.g
.p/
1 ;g

.p/
2 ; : : :/

D A˝k;f k:

We define FX WX !X .p/ to be Spm of the homomorphism of k-algebras

a˝ c 7! capWA˝k;f k! A:

It is the dotted arrow in the diagram at left.

A

A A˝k;f k

k k

a 7! a˝1

c 7! cp

c 7! c c 7! 1˝c

a 7! ap

c 7! c

R

A A˝k;f k

k k
f

i

For a k-algebra k
i
�!R, letfR denote the k-algebra k

f
�! k

i
�!R. There is a

natural one-to-one correspondence

Homk-algebra.A;fR/
1W1
 ! Homk-algebra.A

.p/;R/

(see the diagram at right), and so X .p/ represents the functor R X.fR/. With
this identification, FX WX.R/!X.fR/ is induced by the k-algebra homomorph-
ism a 7! apWR!fR:

We now define FX more abstractly for any algebraic scheme X over k:

2.25. Let X be a scheme over a field k of characteristic p. The absolute
Frobenius morphism �X WX !X acts as the identity map on jX j and as the map

f 7! f pWOX .U /!OX .U /
on the sections of OX over an open subset U of X . For all morphisms 'WX ! Y

of schemes over Fp ,
�Y ı' D ' ı�X ;

i.e., � is an endomorphism of the identity functor.

2.26. For an algebraic scheme X over k, let X  X .p/, '  '.p/ denote
base change with respect to c 7! cpWk! k. The relative Frobenius morphism
FX WX !X .p/ is defined by the diagram

X

X X .p/

Spm.k/ Spm.k/:
�Spm.k/

�X
FX
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As in the affine case, X .p/ represents the functor R X.fR/ and FX WX.R/!
X.fR/ is induced by the homomorphism a 7! apWR!fR. Similarly, we can
define F nWX !X .p

n/ by replacing p with pn in the above discussion. It is the
composite of the maps

X
F
�!X .p/

F
�! �� �

F
�!X .p

n/:

2.27. The assignment X 7! FX has the following properties.
(a) Functoriality: for all morphisms 'WX ! Y of schemes over k, the follow-

ing diagram commutes:

X Y

X .p/ Y .p/:

'

FX FY

'.p/

(b) Compatibility with products: FX�Y is the composite of FX �FY with the
canonical isomorphism X .p/�Y .p/ ' .X �Y /.p/.

(c) Base change: the formation of FX commutes with extension of the base
field.

2.28. Now let G be an algebraic group over k. Then R G.fR/ is a functor to
groups, and so G.p/ is an algebraic group; moreover, FG.R/WG.R/!G.p/.R/

is a homomorphism of groups for all R, and so FG is a homomorphism of
algebraic groups. This can also be deduced directly from the properties (a) and
(b), which give a commutative diagram:

G�G G

G.p/�G.p/ G.p/:

m

FG�G FG

m.p/

The kernel of F nG is a characteristic subgroup of G: if R is a k-algebra and ˛ is
an automorphism of GR, then (by functoriality) there is a commutative diagram

Ker.F n/ GR .G.p
n//R

Ker.F n/ GR .G.p
n//R:

˛

F n

˛.p
n/

F n

If F nG D 0, then the algebraic group G is said to have height � n.

PROPOSITION 2.29. If G is smooth and connected, then G.p/ is smooth and
connected, and the Frobenius map FG WG!G.p/ is an isogeny of degree pdim.G/

(in particular, it is faithfully flat).
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PROOF. Because of 2.27(c), we may suppose that k is algebraically closed.
Then f Wk! k is an isomorphism, and so G.p/ is isomorphic to G as a scheme.
Therefore it is smooth (resp. connected) ifG is smooth (resp. connected). Assume
now that G is smooth and connected. The map FG is obviously dominant, and so
it is surjective and faithfully flat (1.71). 2

e. Products

2.30. Let G1; : : : ;Gn be algebraic groups over k. Then G1 � � � � �Gn is an
algebraic group, called the product of the Gi . It represents the functor

R G1.R/� � � ��Gn.R/.

When the Gi are affine, G1� � � ��Gn is affine, and

O.G1� � � ��Gn/'O.G1/˝�� �˝O.Gn/.

2.31. An algebraic group G is the almost-direct product of its algebraic sub-
groups G1; : : : ;Gn if the multiplication map G1� � � � �Gn! G is a faithfully
flat homomorphism with finite kernel. This means that the subgroups Gi com-
mute in pairs, that G1 � � � � �Gn D G, and that G1\ � � �\Gn is finite. If G is an
almost-direct product of its subgroups Gi , then there is an exact sequence

e!G1\� � �\Gn!G1� � � ��Gn!G! e:

An almost-direct product need not be a direct product. For example, the cokernel
of x 7! .x;x�1/W�2! SL2�SL2 is not a direct product.

2.32. Suppose we have homomorphisms G1!H  G2 of algebraic groups.
Then G1�H G2 is an algebraic group, called the fibred product of G1 and G2
over H . It represents the functor

R G1.R/�H.R/G2.R/:

When G1, G2, and H are affine, G1�H G2 is affine, and

O.G1�H G2/'O.G1/˝O.H/O.G2/.

Directly from the definition, one sees that the formation of fibred products of
algebraic groups commutes with extension of the base field:

.G1�H G2/k0 'G1k0 �Hk0 G2k0 :

If G1 and G2 are algebraic subgroups of an algebraic group H , then G1�H G2
equals their intersection G1\G2 in H . Note that G1�H G2 need not be smooth
even when all three groups are smooth (1.50).



50 2. Examples and Basic Constructions

f. Semidirect products

DEFINITION 2.33. An algebraic group G is said to be a semidirect product of
its algebraic subgroups N and Q, denoted G D N ÌQ, if N is normal in G
and the map .n;q/ 7! nqWN.R/�Q.R/! G.R/ is a bijection of sets for all
k-algebras R.

In other words, G is a semidirect product of N and Q if G.R/ is a semidirect
product of its subgroups N.R/ and Q.R/ for all k-algebras R. For example, the
algebraic group of upper triangular n�n matrices Tn is the semidirect product,
Tn D UnÌDn, of its subgroups Un and Dn.

PROPOSITION 2.34. An algebraic group G is the semidirect product of sub-
groups N and Q if and only if there exists a homomorphism G!Q0 whose
restriction to Q is an isomorphism and whose kernel is N .

PROOF. )W By assumption, the multiplication map is a bijection of functors
N �Q! G. The composite of the inverse of this map with the projection
N �Q!Q has the required properties.
(W Let 'WG!Q0 be the given homomorphism. Then N is certainly normal,

and for every k-algebra R, '.R/ realizes G.R/ as a semidirect product G.R/D
N.R/ÌQ.R/ of its subgroups N.R/ and Q.R/. 2

Let N and Q be algebraic groups, and suppose that there is given an action
of Q on N

.q;n/ 7! �R.q;n/WQ.R/�N.R/!N.R/

such that, for every q, the map n 7! �R.q;n/ is a group homomorphism. Then
the functor

R N.R/Ì�RQ.R/WAlg0k! Grp

is an algebraic group because its underlying functor to sets is N �Q. We denote
this algebraic group by N Ì�Q, and call it the semidirect product of N and Q
defined by � . For n;n0 2N.R/ and q;q0 2Q.R/, we have

.n;q/ � .n0;q0/D .n ��.q/n0;qq0/:

The identity element is .eN ; eQ/ and .n;q/�1 D .�.q�1/n�1;q�1/. Note that

.n;e/ � .e;q/ � .n;e/�1 D .n ��.q/n�1;q/,

and so Q is normal in G if and only if the action of Q on N is trivial.

EXAMPLE 2.35. We give examples of an algebraic group G over a field k of
characteristic p such that Gred is a nonnormal algebraic subgroup of G:

(a) The action .u;a/ 7! uaWGm�Ga!Ga of Gm on Ga stabilizes p̨n , and
so we can form the semidirect product G D p̨n ÌGm. Then Gred DGm,
which is not normal because the action of Gm on p̨n is not trivial.
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(b) Let F D Z=.p � 1/Z, and let G D �p ÌFk with Fk acting on �p by
.n;�/ 7! �n. Then Gred D Fk , which is not normal in G because its action
on �p is not trivial.

EXAMPLE 2.36. Let char.k/D p. In contrast to abstract groups, a finite algeb-
raic group of order p may act nontrivially on another group of order p, and so
there are noncommutative finite algebraic groups of order p2. For example, there
is an action of �p on p̨ ,

.u; t/ 7! ut W�p.R/� p̨.R/! p̨.R/;

and the corresponding semidirect product G D p̨ Ì�p is a noncommutative
finite connected algebraic group of order p2. We have O.G/D kŒt; s� with

tp D 1; sp D 0; �.t/D t˝ t; �.s/D t˝ sC s˝1I

the normal subgroup scheme p̨ corresponds to the quotient of O.G/ obtained
by putting t D 1, and the subgroup scheme �p corresponds to the quotient with
s D 0 (Tate and Oort 1970, p. 6).

g. The group of connected components

Let G be an algebraic group over k. Because Gı is a normal subgroup of G,
the set �0.Gks/ of connected components of Gks has a (unique) group structure
for which the map G.ks/! �0.Gks/ is a homomorphism. This group structure
is respected by the action of Gal.ks=k/, and so it arises from an étale group
�0.X/ over k (see A.62). In this way, we get a homomorphism 'WG! �0.G/ of
algebraic groups over k which, on ks-points, becomes G.ks/! �0.Gks/. This is
the homomorphism corresponding to the inclusion �.X/ ,!O.X/ (see 1.29).

PROPOSITION 2.37. Let G be an algebraic group over k.
(a) The homomorphismG!�0.G/ is universal among homomorphisms from

G to an étale algebraic group.

(b) The kernel of the homomorphism in (a) is Gı; there is an exact sequence

e!Gı!G
'
�! �0.G/! e:

(c) The formation of the exact sequence in (b) commutes with extension of the
base field. In particular, for a field k0 containing k,

�0.Gk0/' �0.G/k0

.Gk0/
ı
' .Gı/k0 :

(d) The fibres of jGj ! j�0.G/j are the connected components of jGj. The
order of the finite algebraic group �0.G/ is the number of connected
components of Gks (and also of Gka ).
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(e) For algebraic groups G and G0,

�0.G�G
0/' �0.G/��0.G

0/

.G�G0/ı 'Gı�G0ı:

PROOF. (a) For an algebraic scheme X over k, the map X! �0.X/ is universal
among regular maps from X to an étale scheme (p. 15).

(b) Certainly Gı is the fibre of ' over e, and we noted in 1.33 that ' is
faithfully flat.

(c) Already noted in Propositions 1.30 and 1.34.
(d) Obvious from the definitions.
(e) Apply (b) of Proposition 1.30. 2

DEFINITION 2.38. Let G be an algebraic group over a field k. The quotient
G! �0.G/ of G is the component group or group of connected components
of G.

REMARK 2.39. (a) An algebraic group G is connected if and only if �0.G/D e,
i.e., G has no nontrivial étale quotient.

(b) Every homomorphism from a connected algebraic group to G factors
through Gı!G (because its composite with G! �0.G/ is trivial).

(c) The set j�0.G/j can be identified with the set of Gal.ks=k/-orbits in the
group �0.G/.ks/.

Examples

2.40. The groups Ga, Gm, GLn, Tn, Un, Dn (see 2.1, 2.2, 2.8, 2.9) are connec-
ted. For this it suffices to prove that O.G/ is an integral domain (1.36), but this
is obvious in each case. For example, O.Tn/ is the quotient of O.GLn/ by the
ideal generated by the symbols Tij , i > j , which is isomorphic to the polynomial
ring in the symbols Tij , 1� i � j � n, with the product T11T22 � � �Tnn inverted.

2.41. A monomial matrix over R is an element of GLn.R/ with exactly one
nonzero element in each row and each column. Let G denote the functor sending
R to the group of monomial matrices over R. Let I.�/ denote the permutation
matrix obtained by applying a permutation � 2 Sn to the rows of the identity
n�n matrix. The matrices I.�/ form a constant algebraic subgroup .Sn/k of
GLn, and G D Dn � .Sn/k . For a diagonal matrix diag.a1; : : : ;an/,

I.�/ �diag.a1; : : : ;an/ �I.�/�1 D diag.a�.1/; : : : ;a�.n//, (9)

and so Dn is normal in G. Clearly D\ .Sn/k D e, and so G is the semidirect
product

G D DnÌ� .Sn/k
where � WSn! Aut.Dn/ sends � to the automorphism in (9). In particular, G
is an algebraic subgroup of GLn. We have �0.G/D .Sn/k and Gı D Dn. An
element of G.R/ permutes the set of lines Rei in Rn, and the map G! �0.G/

sends the element to this permutation.
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2.42. The group SLn is connected. The natural isomorphism of set-valued
functors

.A;r/ 7! A �diag.r;1; : : : ;1/WSLn.R/�Gm.R/! GLn.R/

defines an isomorphism of k-algebras

O.GLn/'O.SLn/˝O.Gm/;

and the algebra on the right contains O.SLn/. In particular, O.SLn/ is a subring
of O.GLn/, and so it is an integral domain.

2.43. A quadratic space over k is a pair .V;q/ consisting of a finite-dimension-
al vector space over k and a quadratic form on V . Assume that char.k/¤ 2. We
define SO.q/ to be SO.�q/, where �q is the associated bilinear form: �q.x;y/D
q.xC y/� q.x/� q.y/. For every nondegenerate quadratic space .V;q/, the
algebraic group SO.q/ is connected. It suffices to prove this after replacing k
with ka, and so we may suppose that q is the diagonal form X21 C�� �CX

2
n , in

which case the group is shown to be connected in Exercise 2-9 below.
The determinant defines a quotient map O.q/! f˙1g with kernel SO.q/.

Therefore O.q/ı D SO.q/ and �0.O.q//D f˙1g (constant algebraic group).

2.44. The symplectic group Sp2n is connected (for some hints on how to prove
this, see Springer 1998, 2.2.9).

ASIDE 2.45. (a) An algebraic group G over C is connected for the Zariski topology if
and only if G.C/ is connected for the complex topology – this is true of any algebraic
variety. We could deduce that GLn over C is a connected algebraic group from knowing
that GLn.C/ is connected for the complex topology. However, it is easier to deduce that
GLn.C/ is connected from knowing that GLn is connected.

(b) An algebraic group G over R may be connected without G.R/ being connected
for the real topology, and conversely. For example, GL2 is connected as an algebraic
group, but GL2.R/ is not connected, whereas �3 is not connected as an algebraic group,
but �3.R/D f1g is connected. Worse, the identity component of GL2.R/ is a Lie group
that is not of the form G.R/ for any algebraic group over R (a similar statement applies to
the semisimple group PGL2).

h. The algebraic subgroup generated by a map

Let 'WX!G be a regular map from an algebraic schemeX to an algebraic group
G. Under some hypotheses on ' we prove that, among the algebraic subgroups
ofG through which ' factors, there is a smallest one. Such an algebraic subgroup
is said to be generated by ' (or X ) and is denoted by hX;'i.
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Affine case

Let 'WX ! G be a regular map over k from an affine algebraic scheme X to
an affine algebraic group G, and assume that there exists an o 2X.k/ such that
'.o/D e. Let In denote the kernel of the homomorphism O.G/!O.Xn/ of
k-algebras defined by the regular map

.x1; : : : ;xn/ 7! '.x1/ � � � � �'.xn/WX
n
!G:

The regular maps

X !X2! �� � !Xn! �� � !G;

.x/ 7! .x;o/ 7! � � �

give inclusions
I1 � I2 � �� � � In � �� � ;

and we let I D
T
In.

PROPOSITION 2.46. There exists a smallest algebraic subgroup H of G such
that 'WX !G factors through H . If '.X.R// is closed under g 7! g�1 for all
small k-algebras R, then H is the subscheme of G defined by I .

PROOF. From the diagram of algebraic schemes

Xn � Xn X2n

G � G G,
mult

we get a diagram of k-algebras

O.Xn/ ˝ O.Xn/ O.X2n/

O.G/ ˝ O.G/ O.G/.�

The homomorphism O.G/! O.Xn/ factors through O.G/=In, and so the
diagram shows that

�WO.G/!O.G/=In˝O.G/=In

factors through O.G/!O.G/=I2n. It follows that

�WO.G/!O.G/=I ˝O.G/=I

factors through O.G/! O.G/=I and defines a multiplication map mH WH �
H !H . The triple .H;mH ; e/ is the smallest algebraic submonoid of G such
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that H.R/ contains '.X.R// for all k-algebras R, i.e., it is the smallest algebraic
submonoid through which ' factors.

If '.X.R// is closed under g 7! g�1 for all small R, then ' factors through
inv.H/, which then has the same property as H . Therefore H D inv.H/, and H
is an algebraic subgroup of G.

When '.X/ is not closed under inversion, we define H to be the smallest
algebraic submonoid through which 't invı'WX tX !G factors. 2

PROPOSITION 2.47. Let k0 be a field containing k. Then hX;'ik0 D hXk0 ;'k0i.

PROOF. The formation of I commutes with extension of the base field. 2

PROPOSITION 2.48. If X is geometrically connected (resp. geometrically re-
duced), then hX;'i is geometrically connected (resp. geometrically reduced).

PROOF. We may suppose that k is algebraically closed. Recall (CA 14.2) that an
an affine schemeX is connected if and only if O.X/ has no nontrivial idempotent.
Assume that X is connected. If O.G/=I had a nontrivial idempotent, then so
would O.G/=In for some n, but (by definition) the homomorphism of k-algebras
O.G/=In!O.Xn/ is injective. AsX is connected and k is algebraically closed,
Xn is connected, and so this is a contradiction. The proof for “reduced” is
similar. 2

Geometrically reduced case

We begin by reviewing some algebraic geometry.

DEFINITION 2.49. A morphism 'WY !X of algebraic schemes over the field
k is schematically dominant if the map OX ! '�OY is injective. Similarly,
a family 'i WYi ! S , i 2 I , is schematically dominant if the family of maps
OX ! '�OYi is injective.

For example, a subset S of X.k/ is schematically dense in X if and only if
the family of maps s!X , s 2 S , is schematically dominant (1.10).

The proofs of 1.10–1.13 extend without difficulty to give the following state-
ments. If the family of maps 'i WYi !X , i 2 I , is schematically dominant, thenS
i 'i .jYi j/ is dense in jX j; conversely if this union is dense in jX j and X is

reduced, then the family .'i /i2I is schematically dominant. A schematically
dominant family of regular maps remains schematically dominant under exten-
sion of the base field. If the family 'i WYi !X is schematically dominant, and
the Yi are geometrically reduced, then so also is X .

PROPOSITION 2.50. Let 'WX !G be a regular map over k from an algebraic
scheme to an algebraic group, and let 'n denote the map

.x1; : : : ;xn/ 7! '.x1/ � � �'.xn/WX
n
!G:
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If X is geometrically reduced, then there exists a smallest algebraic subgroup H
such that ' factors through H , and H is smooth. If, in addition, inv.'.X// �
'.X/, then H is the reduced algebraic subscheme of G with underlying set the
closure of

S
n Im.'n/:

PROOF. As for Proposition 2.46, it suffices to prove the second statement.
Because X is geometrically reduced, so also is Xn (see A.43). The map
'nWXn!H is schematically dominant for n large because it is dominant and
H is reduced. It follows that H is geometrically reduced and that its formation
commutes with extension of the base field. Therefore, in proving that H is an
algebraic subgroup of G, we may suppose that k is algebraically closed. Let Z
be the closure of m.H �H/ in G. The intersection of m�1.ZXH/ with H �H
is an open subset of H �H , which is nonempty if m.H �H/ is not contained in
H . In that case, there exist x1; : : : ;xn;y1; : : : ;yn 2X.k/ such that

.' .x1/ � � �'.xn/;'.y1/ � � �'.yn// 2m
�1.ZXH/

because Im.'n/� Im.'n/ is constructible and therefore contains an open subset
of its closure (A.15). But this is absurd, because

m.' .x1/ � � �'.xn/;'.y1/ � � �'.yn//D '.x1/ � � �'.xn/'.y1/ � � �'.yn/ 2H.k/:

The condition inv.'.X//� '.X/ implies that inv maps H into H , and so H is
an algebraic subgroup of G. It is smooth because it is geometrically reduced. 2

PROPOSITION 2.51. Let .'i WXi ! G/i2I be a family of regular maps from
geometrically reduced algebraic schemes Xi over k to an algebraic group G.
There exists a smallest algebraic group H of G such that all 'i factor through H .
Moreover, H is smooth.

PROOF. When I is finite, we take H to be the algebraic subgroup generated by
the map

F
i2I Xi ! G. When I is infinite,

F
Xi may not be algebraic k, but

Proposition 2.50 holds without that assumption (SGA 3, VIB , �7). Alternatively,
rewrite the previous proof for families. 2

As before, the formation of the algebraic subgroup generated by a map (or
family of maps) commutes with extension of the base field.

EXAMPLE 2.52. Let G be an algebraic group over k, and let S be a closed
subgroup of G.k/. The algebraic subgroup H of G generated by the family of
maps s! G, s 2 S , is the unique reduced algebraic subgroup of G such that
S DH.k/ (see 1.45).

PROPOSITION 2.53. Let 'WX ! G be a regular map from a geometrically re-
duced scheme X over k to an algebraic group G. If X is geometrically connected
and '.X/ contains e, then the algebraic subgroup of G generated by ' is connec-
ted.

PROOF. We may suppose that k is algebraically closed. Let '0 be the map
't invı'WX tX!G: The hypothesis implies that

S
Im.'0n/ is connected, and

so its closure H is connected. 2
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i. Restriction of scalars

In this section, A is a finite k-algebra and all algebraic groups are assumed to be
quasi-projective (in fact, this is automatically true; B.38).

2.54. Let X be a quasi-projective scheme over A. The Weil restriction of X to
k is an algebraic scheme XA=k over k such that

XA=k.R/DX.A˝R/

for all k-algebras R. In other words, XA=k represents the functor

R X.A˝R/WAlgk! Set:

It is easy to prove that An
A=k

and Pn
A=k

exist, and then the existence of XA=k for
X a closed subscheme X of An or Pn follows from Proposition 1.103.

2.55. Let G be an algebraic group over A. The functor .G/A=k ,

R G.A˝R/WAlg0k! Set;

takes values in the category of groups, and so it is an algebraic group. Thus
.G/A=k is the algebraic group over k such that

.G/A=k.R/DG.A˝R/ for all k-algebras R.

We say that .G/A=k has been obtained from G by (Weil) restriction of scalars (or
by restriction of the base ring), and call it the Weil restriction of G. The functor
G .G/A=k is denoted by ˘A=k .2

2.56. Let G be an algebraic group over k. For a k-algebra R, the k-algebra
homomorphism r 7! 1˝ r WR! A˝R defines a homomorphism of groups

G.R/!G.A˝R/
def
D .˘A=kGA/.R/:

This homomorphism is natural in R, and so it arises from a homomorphism

iG WG!˘A=kGA

of algebraic k-groups. The homomorphism iG has the following universal prop-
erty:

for every group H over A and homo-
morphism ˛WG! .H/A=k , there exists
a unique homomorphism ˇWGA ! H

such that .ˇ/A=k ı iG D ˛.

G .GA/A=k GA

.H/A=k H

iG

˛ .ˇ/A=k 9Š ˇ

2Other common notations: RA=k and ResA=k .
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Indeed, for an A-algebra R, ˇ.R/ must be the composite of the maps

GA.R/
def
DG.R0/ H.k0˝kR0/ H.R/

˛.R0/ 

where R0 denotes R regarded as a k-algebra, and  is induced by the homo-
morphism of A-algebras c˝ r 7! cr WA˝kR0!R.

2.57. According to 2.56, for every algebraic group G over k and algebraic
group H over A,

Hom.G;˘A=kH/' Hom.GA;H/:

In other words, ˘A=k is right adjoint to the functor “change of base ring k! A”.
Being a right adjoint, ˘A=k preserves inverse limits (Mac Lane 1971, V, �5).
In particular, it takes products to products, fibred products to fibred products,
equalizers to equalizers, and kernels to kernels. This can also be deduced directly
from the definition of ˘A=k .

2.58. For any sequence of finite homomorphisms k! k0! A with k0 a field,

˘k0=k ı˘A=k0 '˘A=k .

Indeed, for an algebraic group G over A and k-algebra R,

.˘k0=k.˘A=k0.G//.R/D .˘A=k0G/.k
0
˝kR/DG.A˝k0 k

0
˝kR/

'G.A˝kR/D
�
˘A=kG

�
.R/

because A˝k0 k0˝kR' A˝kR. Alternatively, observe that ˘k0=k ı˘A=k0 is
right adjoint to H  HA.

2.59. For any field K containing k and algebraic group G over A,�
˘A=kG

�
K
'˘A˝kK=K.GK/I (10)

in other words, Weil restriction commutes with extension of scalars. Indeed, for
a K-algebra R,�
˘A=kG

�
K
.R/D

�
˘A=kG

�
.R/DG.A˝kR/

'G.A˝kK˝K R/D˘A˝kK=K.GK/.R/

because A˝kR' A˝kK˝K R.

2.60. Let A be a product of finite k-algebras, A D k1 � � � � � kn. To give an
algebraic group G over A is the same as giving an algebraic group Gi over each
ki . In this case,

.G/A=k ' .G1/k1=k � � � �� .Gn/kn=k . (11)

Indeed, for a k-algebra R,

.G/A=k.R/DG.A˝R/DG1.k1˝R/� � � ��Gn.kn˝R/

D .G1/k1=k .R/� � � �� .Gn/kn=k .R/

D
�
.G1/k1=k � � � �� .Gn/kn=k

�
.R/:



i. Restriction of scalars 59

2.61. Let A be an étale k-algebra and K a subfield of ks containing all k-
conjugates of A. Then �

˘A=kG
�
K
'

Y
� WA!K

�G

where �G is obtained from G by extension of scalars by the k-homomorphism
� WA!K. Indeed�

˘A=kG
�
K

(10)
' ˘A˝K=KGK

(11)
'

Y
� WA!K

G�

because A˝K 'KHomk.A;K/.

2.62. Let A and K be as in 2.61, and assume that K is Galois over k with
Galois group � . There is a functor

G G�kK D
Y

� WA!K
G�

sending an algebraic group over A to an algebraic group over K equipped with
an action of � . Statement 2.61 says that this factors into

algebraic groups over K with an action of �

algebraic groups over A

algebraic groups over k

G G�kK

G .G/A=k

G GK

2.63. Let AD kŒ"�, where "2 D 0, and let G be an algebraic group over k. For
each P 2G.k/, the fibre ofG.kŒ"�/!G.k/ over P is (by definition) the tangent
space to G at P . There is an exact sequence

0! Va! .GA/A=k!G! 0

where V is the tangent space to G at e.

2.64. We saw in 2.61 that, if k0 is separable over k, then .G/k0=k becomes
isomorphic to a product of conjugates of G over some field containing k0. This
is far from being true when k0=k is a purely inseparable field extension. For
example, let k be a nonperfect field of characteristic 2 and let k0 D kŒ

p
a�, where

a 2 kXk2. Then

k0˝k k
0
' k0Œ"�; "D a˝1�1˝a; "2 D 0:

For an algebraic group G over k,�
˘k0=kGk0

�
k0

2.59
' ˘k0˝k0=k0Gk0˝k0 '˘k0Œ"�=k0Gk0Œ"�;

which is an extension of Gk0 by a vector group (2.63).
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2.65. If G is smooth, then so is .G/A=k (apply the criterion A.56).

NOTES. The original reference for this section is the notes of Weil’s 1959–1960 lectures,
published as Weil 1982. For a modern treatment, see Bosch et al. 1990, 7.6.

j. Torsors

Let R0 be a k-algebra and G an algebraic group over R0. Let S0 D Spm.R0/.

DEFINITION 2.66. A right G-torsor over S0 is a scheme S faithfully flat over
S0 together with an action S �S0 G! S of G on S such that the map

.s;g/ 7! .s; sg/WS �S0 G! S �S0 S

is an isomorphism of S0-schemes. We also refer to a G-torsor over S0 as a torsor
under G over S0.

If S is a torsor under G over S0 and R is an R0-algebra, then either S.R/ is
empty or it is a principal homogeneous space for G.R/. If S.R0/ is nonempty,
then S is said to be trivial; the choice of an s 2 S.R0/ determines an isomorphism
g 7! sgWS !G.

EXAMPLE 2.67. Let G be an algebraic group over k. To give a torsor under
GS0 over S0 amounts to giving a scheme S faithfully flat over S0 together with
an action S �G! S of G on S such that .s;g/ 7! .s; sg/WS �G! S �S0 S is
an isomorphism (because S �S0 .S0�G/' S �G).

EXAMPLE 2.68. Let G !Q be a faithfully flat homomorphism of algebraic
groups with kernel N . The action G �Q N ! G of N on G induces an iso-
morphism G�QG 'G�N (Exercise 2-1), and so G is a torsor under N over
Q.

PROPOSITION 2.69. Let S ! S0 be a G-torsor over S0. If G is affine (resp.
smooth, resp. . . . ) over S0, then the morphism S ! S0 is affine (resp. smooth,
resp. . . . ).

PROOF. Consider the diagram

S S �S0 S S �S0 G

S0 S S

'

If the map G ! S0 is affine, then S �S0 G ! S is affine, which implies that
S �S0 S ! S is affine. This last map comes by a faithfully flat base change from
the map S ! S0, and so it also is affine (by descent A.80). 2
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COROLLARY 2.70. Let

e!N !G!Q! e;

be an exact sequence of algebraic groups over k. If N and Q are affine, then so
also is G.

PROOF. From 2.68 we see that G is a torsor under N over Q. As N is affine,
the map G!Q is affine, and as Q is affine, this implies that G is affine. 2

PROPOSITION 2.71. Let S and S 0 be G-torsors over S0. Every equivariant
S0-morphism S ! S 0 is an isomorphism.

PROOF. For every R0-algebra R, the map S.R/! S 0.R/ is a bijection. 2

EXAMPLE 2.72. For an algebraic group G over k, we define H 1
flat.S0;G/ to be

the set of isomorphism classes of torsors under G over S0. Let R be a faithfully
flat R0-algebra. The torsors under GR0 over R0 having an R-point are classified
by the cohomology set H 1.R=R0;G/ of the complex

G.R/!G.R˝R0 R/!G.R˝R0 R˝R0 R/

(DG, III, �4). For example, the GaR0-torsors over R0 are all trivial because the
sequence

R!R˝R0 R!R˝R0 R˝R0 R

is exact (CA 11.11). Thus H 1
flat.S0;Ga/ D 0 (DG, III, �4, 6.6). Similarly,

H 1
flat.S0;Gm/DH 1.S0;O�S0/D Pic.S0/ (DG, III, �4, 6.10).

Exercises

EXERCISE 2-1. For a homomorphism G!H of abstract groups with kernel
N , show that the map

.g;n/ 7! .g;gn/WG�N !G�H G (12)

is a bijection. Deduce that, for every homomorphism G ! H of algebraic
k-groups with kernel N , there is an isomorphism of algebraic k-schemes

G�N !G�H G (13)

that becomes (12) when we take points with coordinates in a k-algebra R.

EXERCISE 2-2. Show that for every diagram of abstract groups

G

N H H 0

' (14)
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with N the kernel of H !H 0 and the map G!H 0 surjective, the map

.n;g/ 7! .n �'.g/;g/WN �G!H �H 0 G (15)

is a bijection. Deduce that, for every diagram (14) of algebraic groups, there is
an isomorphism of algebraic k-schemes

N �G!H �H 0 G

that becomes (15) when we take points with coordinates in a k-algebra R.

EXERCISE 2-3. Let X D Spm.k�k0/ with k0=k a separable field extension of
degree 5. Show that there does not exist a multiplication map on X making it
into an étale group scheme.

EXERCISE 2-4. Let k be a nonperfect field of characteristic p, and let a 2 kXkp .
Show that the functor

R G.R/
def
D fx 2R j xp

2

D axpg

becomes a finite commutative algebraic group under addition. Show that G.k/
has only one element but �0.G/ has p. Deduce that G is not isomorphic to the
semidirect product of Gı and �0.G/. (Hence Exercise 11-2 below shows that
O.G/ modulo its nilradical is not a Hopf algebra.)

EXERCISE 2-5. Let G W Y p D X � tXp be the algebraic group over the field
k D k0.t/ in (1.56) (so p > 2). Show that G.k/ is finite.

EXERCISE 2-6. Let k be a field of characteristic p. Show that the isomorphism
classes of extensions

0! �p!G! Z=pZ! 0

with G a finite commutative algebraic group are classified by the elements of
k�=k�p . Show that Gred is not a subgroup of G unless the extension splits.

EXERCISE 2-7. What is the map O.SLn/!O.GLn/ defined in Example 2.42?

EXERCISE 2-8. Let q be the quadratic form x21 C �� � C x
2
n over a field k of

characteristic¤ 2. Prove directly that �.O.O.q///D k�k.

EXERCISE 2-9. Let On be the orthogonal group of the diagonal form x21C�� �C

x2n over a field k of characteristic ¤ 2. For each k-algebra R, let V.R/ denote
the set of skew-symmetric matrices, i.e., the matrices A such that At D�A.

(a) Show that the functor R 7! V.R/ is represented by a finitely generated
k-algebra C , and that C is an integral domain.

(b) Show that A 7! .In�A/.InCA/
�1 defines a bijection from a nonempty

open subset of SOn.ka/ onto an open subset of V.ka/, with partial inverse
B 7! .In�B/.InCB/

�1.
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(c) Deduce that SOn is connected.

(d) Deduce that SOn is rational (in the sense of 12.59).

EXERCISE 2-10. Let G be an algebraic group over a field k, and let A be a
local artinian ring with residue field k. Show that .G/A=k has a filtration whose
quotients are either vector groups or G itself.

EXERCISE 2-11. Let k0 be a finite extension of k, and let 'WG ! H be a
homomorphism of connected affine group varieties over k0. Prove the following
(Pink 2004, 1.6):

(a) if k0=k is separable, then .'/k0=k W.G/k0=k! .H/k0=k is an isogeny if and
only if ' is an isogeny;

(b) if k0=k is not separable, then .'/k0=k W.G/k0=k! .H/k0=k is an isogeny if
and only if ' is an étale isogeny.



CHAPTER 3

Affine Algebraic Groups and Hopf
Algebras

In this chapter, we concentrate on affine algebraic groups. In particular, we
investigate their relation to Hopf algebras.

a. The comultiplication map

Let A be a k-algebra and �WA! A˝A a homomorphism of k-algebras. A pair
of k-algebra homomorphisms f1;f2WA!R defines a homomorphism

.f1;f2/WA˝A!R; .a1;a2/ 7! f1.a1/f2.a2/;

and we set
f1 �f2 D .f1;f2/ı�:

Thus .f1;f2/ 7! f1 �f2 is a binary operation on Hom.A;R/. Because

Spm.A˝A/' Spm.A/�Spm.A/;

we can regard Spm.�/ as a map Spm.A/�Spm.A/! Spm.A/.

PROPOSITION 3.1. The pair .Spm.A/;Spm.�// is an algebraic group over k
if and only if .f1;f2/ 7! f1 � f2 is a group structure on Hom.A;R/ for all k-
algebras R.

PROOF. Let .G;m/D .SpmA;Spm�/. The operation on hA.R/ defined by �
equals that on G.R/ defined by m, and so it is a group structure if .G;m/ is an
algebraic group. Conversely, if � defines a group structure on Hom.A;R/ for all
R, then hA is functor to groups whose underlying functor to sets is representable
by Spm.A/. This implies that .G;m/ is an algebraic group (see 1.4). 2

64
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NOTATION 3.2. Let G be an affine algebraic group. For a k-algebra R,

G.R/' Homk-algebra.O.G/;R/' HomR-algebra.O.G/R;R/.

An f 2O.G/ defines an evaluation map

fRWG.R/!R; g 7! g.f /
def
D fR.g/;

which is natural in R. In this way, we get an isomorphism

O.G/' Nat.G;A1/ (natural transformations)

where A1 is the functor sending a k-algebra R to its underlying set. Similarly,

O.G�G/' Nat.G�G;A1/:

With this interpretation

.�f /R.g1;g2/D fR.g1 �g2/; for f 2O.G/, g1;g2 2G.R/: (16)

b. Hopf algebras

Let .G;m/ be an affine algebraic group over k, and let ADO.G/. We saw in
the preceding section that m corresponds to a homomorphism �WA! A˝A.
The maps e and inv correspond to homomorphisms of k-algebras �WA! k and
S WA! A, and the diagrams (1) and (2), p. 6, correspond to diagrams

A˝A˝A A˝A

A˝A A

id˝�

�˝id �

�

k˝A A˝A A˝k

A

�˝id id˝�

' � '
(17)

A A˝A A

k A k

.id;S/.S;id/

�

�

�

(18)

DEFINITION 3.3. Let R0 be a commutative ring. A pair .A;�/ consisting of a
commutative R0-algebra A and an R0-algebra homomorphism �WA! A˝A is
a Hopf algebra1 over R0 if there exist R0-algebra homomorphisms

�WA!R0; S WA! A

1The general definition of a Hopf algebra does not require A to be commutative. Thus, we are
considering only a special class of Hopf algebras, and not all of our statements hold for general Hopf
algebras.
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such that the diagrams (17, 18) commute:

.id˝�/ı�D .�˝ id/ı�
.id; �/ı�D idD .�; id/ı�
.id;S/ı�D � D .S; id/ı�:

The maps �, �, S are called the comultiplication map, the co-identity map,
and the antipode or inversion respectively. A homomorphism of Hopf algebras
f W.A;�A/! .B;�B/ is a homomorphism f WA! B of R0-algebras such that
.f ˝f /ı�A D�B ıf . A Hopf algebra .A;�/ is said to be finitely generated
if A is finitely generated as an R0-algebra.

3.4. The pair .�;S/ in the definition of a Hopf algebra is uniquely determined
by .A;�/. Moreover, for every homomorphism f W.A;�A/! .B;�B/ of Hopf
algebras, �

�B ıf D �A
f ıSA D SB ıf . (19)

This can be proved in the same way as the similar statement for algebraic groups
by using the Yoneda lemma (see 1.21). We sometimes regard a Hopf algebra as a
quadruple .A;�;S;�/:

3.5. Let f 2 O.G/, and regard it as a natural transformation G! A1 (as in
3.2). Then

.�f /R.g1;g2/D fR.g1 �g2/;

.�f /R.g/D f .e/

.Sf /R.g/D f .g
�1/

for g;g1;g2 2G.R/.

Readers new to Hopf algebras should now do Exercise 3-1.

c. Hopf algebras and algebraic groups

The next proposition shows that to give a structure � of a Hopf algebra on a
k-algebra A is the same as giving a structurem of an algebraic group on Spm.A/.

PROPOSITION 3.6. Let A be a (finitely generated) k-algebra and�WA!A˝A

a homomorphism. The pair .A;�/ is a Hopf algebra if and only if Spm.A;�/ is
an algebraic group.

PROOF. The diagrams (17, 18) are the same as the diagrams (1, 2) except that
the arrows have been reversed. As Spm is a contravariant equivalence from
the category of finitely generated k-algebras to that of affine algebraic schemes
over k, it is clear that one pair of diagrams commutes if and only if the other
does. Alternatively, check that .A;�/ is a Hopf algebra if and only if � makes
Hom.A;R/ into a group for all R, and apply (3.1). 2
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COROLLARY 3.7. The functor Spm is an equivalence from the category of fi-
nitely generated Hopf algebras over k to the category of affine algebraic groups,
with quasi-inverse .G;m/ .O.G/;O.m//.

d. Hopf subalgebras

DEFINITION 3.8. A k-subalgebra B of a Hopf algebra .A;�;S;�/ is a Hopf
subalgebra if �.B/� B˝B and S.B/� B .

Then .B;�AjB/ is itself a Hopf algebra with �B D �AjB and SB D SAjB .

PROPOSITION 3.9. The image of a homomorphism f WA! B of Hopf algebras
is a Hopf subalgebra of B .

PROOF. Immediate from consequence of 3.4. 2

DEFINITION 3.10. A Hopf ideal in a Hopf k-algebra .A;�;S;�/ is an ideal a
in A such that

�.a/� A˝aCa˝A; �.a/D 0; S.a/� a:

PROPOSITION 3.11. The kernel of a homomorphism of Hopf k-algebras is a
Hopf ideal.

PROOF. The proof uses the following elementary fact: for a linear map f WV !
V 0 of k-vector spaces, the kernel of f ˝f is V ˝Ker.f /CKer.f /˝V . To see
this, write V D Ker.f /˚W , and note that the restriction of f ˝f to W ˝W
is injective.

Let a be the kernel of a homomorphism f WA! B of Hopf algebras. Then8<: �A.a/� Ker.f ˝f /D A˝aCa˝A
�A.a/D 0 by (19)
SA.a/� a by (19)

and so a is a Hopf ideal. 2

The next result shows that the Hopf ideals are exactly the kernels of homo-
morphisms of Hopf algebras.

PROPOSITION 3.12. Let a be a Hopf ideal in a Hopf k-algebra A. The vector
space A=a has a unique Hopf k-algebra structure for which A! A=a is a
homomorphism of Hopf k-algebras. Every homomorphism of Hopf k-algebras
A! B whose kernel contains a factors uniquely through A! A=a.

PROOF. Routine verification. 2

PROPOSITION 3.13. A homomorphism f WA! B of Hopf k-algebras induces
an isomorphism of Hopf k-algebras

A=Ker.f /! Im.f /:
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PROOF. Routine verification. 2

PROPOSITION 3.14. Every homomorphism A! B of Hopf algebras factors as

A
q
�! C

i
�! B

with q (resp. i) a surjective (resp. injective) homomorphism of Hopf algebras.
The factorization is unique up to a unique isomorphism.

PROOF. Immediate consequence of Proposition 3.13. 2

e. Hopf subalgebras of O.G/ versus subgroups of G

PROPOSITION 3.15. Let G be an affine algebraic group. In the one-to-one
correspondence between closed subschemes of G and ideals in O.G/, algebraic
subgroups correspond to Hopf ideals.

PROOF. Let H be the closed subscheme of G defined by an ideal a � O.G/.
If H is an algebraic subgroup of G, then a is the kernel of a homomorphism
of Hopf algebras O.G/!O.H/, and so is a Hopf ideal (3.11). Conversely, if
a is a Hopf ideal, then O.G/=a has a unique Hopf algebra structure for which
O.G/! O.G/=a is a homomorphism of Hopf algebras (3.12). But O.H/D
O.G/=a, and so this means that H has a unique algebraic group structure for
which the inclusion H ,!G is a homomorphism of algebraic groups (3.7). 2

f. Subgroups of G.k/ versus algebraic subgroups of G

In this section, we give a direct proof of Theorem 1.45 for affine algebraic groups.

PROPOSITION 3.16. Let G be an affine algebraic group over k and S a closed
subgroup of G.k/. There is a unique reduced algebraic subgroup H of G such
that S DH.k/, and H is geometrically reduced. The algebraic subgroups H of
G that arise in this way are exactly those for which H.k/ is schematically dense
in H .

PROOF. Each f 2 O.G/ defines a function h.f /WS ! k, and, for x;y 2 S ,
.�Gf /.x;y/D f .x �y/ (see (16), p. 65). Therefore, when we let R.S/ denote
the k-algebra of maps S ! k and define �S WR.S/!R.S �S/ as in Exercise
3-1, we obtain a commutative diagram

O.G/ O.G�G/

R.S/ R.S �S/:

�G

h

�S
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The vertical map at right factors into

O.G�G/'O.G/˝O.G/ h˝h�!R.S/˝R.S/!R.S �S/:

Therefore the kernel a of h satisfies

�G.a/� Ker.h˝h/DO.G/˝aCa˝O.G/

(cf. the proof of 3.11). Similarly �G.a/ D 0 and SG.a/ � a, and so a is a
Hopf ideal. Because S is closed in G.k/, the algebraic subgroup H of G with
O.H/D O.G/=a has H.k/D S . Clearly, H is the unique reduced algebraic
subgroup of G with this property.

Obviously, the algebraic subgroups H arising in this way have the property
that H.k/ is dense in H . Conversely, if H.k/ is dense in H , then the group
attached to S DH.k/ is H itself. 2

ASIDE 3.17. What are the algebraic groups H such that H.k/ is schematically dense
in H? Recall (1.10, 1.12) that H.k/ is schematically dense in H if and only if H is
geometrically reduced and H.k/ is dense in jH j. When k is finite, H.k/ cannot be dense
in jH j unless H is finite.

We now assume that H is smooth and k is infinite, and ask whether H.k/ is dense in
jH j. When H is finite (hence étale), H.k/ is dense in jH j if and only if H is constant.
For a general H , H.k/ is dense in jH j if and only if this is true for H ı and �0.H/. If H
is connected and affine and k is perfect, then H.k/ is dense in jH j (see 17.93). On the
other hand, the example of Rosenlicht (1.56) shows that there exist forms H of Ga over
infinite nonperfect fields such that H.k/ is finite and hence not dense in jH j. When H
is nonaffine, there does not seem to be much that one can say. For example, when E is
an elliptic curve over Q, the group E.Q/ may be finite (hence not dense in E) or infinite
(hence dense).

ASIDE 3.18. When k is finite, only the finite subgroup varieties of G arise as the Zariski
closure of a subgroup of G.k/. Nori (1987) has found a more useful way of defining the
“closure” of a subgroup S of GLn.Fp/. Let X D fx 2 S j xp D 1g, and let SC be the
subgroup of S generated by X (it is normal). For each x 2 X , we get a one-parameter
subgroup variety

t 7! xt D exp.t logx/WA1! GLn; where

(
exp.z/D

Pp�1
iD0

zi

iŠ
and

log.z/D�
Pp�1
iD1

.1�z/i

i :

Let G be the algebraic subgroup of GLn generated by these maps. Nori shows that
if p is greater than some constant depending only on n, then SC D G.Fp/C. If G is
semisimple and simply connected, then G.Fp/C D G.Fp/, and so SC is realized as
the group of Fp-points of the connected algebraic group G. The map S 7! G sets up
a one-to-one correspondence between the subgroups S of GLn.Fp/ such that S D SC

and the subgroup varieties of GLnFp generated by one-parameter subgroups t 7! exp.ty/
defined by elements y 2Mn.Fp/ with yp D 0.
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g. Affine algebraic groups in characteristic zero are smooth

In this section, we prove a theorem of Cartier stating that all affine algebraic
groups over a field of characteristic zero are smooth.

LEMMA 3.19. An algebraic group G over an algebraically closed field k is
smooth if dimTgte.G/D dimTgte.Gred/.

PROOF. Recall (1.37) that dimG � dimTgte.G/ with equality if and only if G
is smooth, and that a geometrically reduced group is smooth (1.28). Hence

dimG � dimTgte.G/D dimTgte.Gred/D dimGred:

As dimG D dimGred, this shows that dimG D dimTgte.G/. 2

LEMMA 3.20. An algebraic group G over an algebraically closed field k is
smooth if every nilpotent element of O.G/ is contained in m2e , where me is the
maximal ideal in O.G/ at e.

PROOF. As Tgte.G/ ' Hom.me=m2e ;k/, (A.51), the hypothesis implies that
Tgte.G/' Tgte.Gred/. 2

LEMMA 3.21. Let V and V 0 be vector spaces over a field. Let W be a subspace
of V and y a nonzero element of V 0. An element x of V lies in W if and only if
x˝y lies in W ˝V 0.

PROOF. Write V DW ˚W 0, and note that V ˝V 0 ' .W ˝V 0/˚ .W 0˝V 0/.2

LEMMA 3.22. Let .A;�/ be a Hopf algebra over k, and let I denote the aug-
mentation ideal (kernel of the co-identity map �).

(a) As a k-vector space, AD k˚I .

(b) For all a 2 I ,

�.a/D a˝1C1˝a mod I ˝I .

PROOF. (a) The maps k �! A
�
�! k are k-linear, and compose to the identity.

(b) Let a 2 I . Using the second diagram in (17), p. 65, we find that

.id˝�/.�.a/�a˝1�1˝a/D a˝1�a˝1�1˝0D 0
.�˝ id/.�.a/�a˝1�1˝a/D 1˝a�0˝1�1˝aD 0:

Hence

�.a/�a˝1�1˝a 2 Ker.id˝�/\Ker.�˝ id/
D .A˝I /\ .I ˝A/:

That
.A˝I /\ .I ˝A/D I ˝I
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follows from comparing

A˝AD .k˝k/˚ .k˝I /˚ .I ˝k/˚ .I ˝I /

A˝I D .k˝I /˚ .I ˝I /

I ˝AD .I ˝k/˚ .I ˝I / . 2

THEOREM 3.23 (CARTIER). Every affine algebraic group over a field of char-
acteristic zero is smooth.

PROOF. We may suppose that k is algebraically closed. Thus, let G be an
algebraic group over an algebraically closed field k of characteristic zero, and
let ADO.G/. Let mDme D Ker.�/. According to Lemma 3.20, it suffices to
show that every nilpotent element a of A lies in m2.

If a maps to zero in Am, then it maps to zero in Am=.mAm/
2, and therefore

in A=m2 by (CA 5.8), and so a 2m2. Thus, we may suppose that there exists an
n� 2 such that an D 0 in Am but an�1 ¤ 0 in Am. Now san D 0 in A for some
s …m. On replacing a with sa, we find that an D 0 in A but an�1 ¤ 0 in Am.

Now a 2m (because A=mD k has no nilpotents), and so (see 3.22)

�.a/D a˝1C1˝aCy with y 2m˝m.

Because � is a homomorphism of k-algebras,

0D�.an/D .�a/n D .a˝1C1˝aCy/n. (20)

When expanded, the right-hand side becomes a sum of terms

an˝1; n.an�1˝1/.1˝aCy/; .a˝1/h.1˝a/iyj

.hC iCj D n; iCj � 2/:

As an D 0 and the terms with iCj � 2 lie in A˝m2, equation (20) shows that

nan�1˝aCn.an�1˝1/y 2 A˝m2,

and so
nan�1˝a 2 an�1m˝ACA˝m2 (inside A˝A).

In the quotient A˝
�
A=m2

�
this becomes

nan�1˝ Na 2 an�1m˝A=m2 (inside A˝
�
A=m2

�
). (21)

Note that an�1 … an�1m, because if an�1 D an�1m with m 2 m, then .1�
m/an�1 D 0 and, as 1�m is a unit in Am, this would imply an�1 D 0 in Am,
which is a contradiction. Moreover n is a unit inA because it is a nonzero element
of k (here we use that k has characteristic 0). We conclude that nan�1 … an�1m,
and so (21) implies that NaD 0. In other words, a 2m2, as required. 2
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COROLLARY 3.24. In characteristic zero, all finite algebraic groups are étale.

PROOF. Smooth finite schemes are étale (A.60). 2

COROLLARY 3.25. All surjective homomorphisms of affine algebraic groups in
characteristic zero are smooth.

PROOF. Apply Proposition 1.63. 2

COROLLARY 3.26. Let H and H 0 be affine algebraic subgroups of an algebraic
group G over a field k of characteristic zero. If H.ka/DH 0.ka/, then H DH 0.

PROOF. Apply Corollary 1.44. 2

COROLLARY 3.27. Let G be an affine algebraic group over a field k of charac-
teristic zero and H an algebraic subgroup of G.

(a) The normalizer N of H in G is the unique algebraic subgroup of G such
that N.ka/ is the normalizer of H.ka/ in G.ka/.

(b) The centralizer C of H in G is the unique algebraic subgroup of G such
that C.ka/ is the centralizer of H.ka/ in G.ka/.

PROOF. Apply 1.88 and 1.95. 2

REMARK 3.28. Theorem 3.23 fails for algebraic monoids. For example, the
nonreduced algebraic scheme M D Spm.kŒT �=.T n//, n > 1, admits a monoid
structure – take e to be the unique map � !M and m to be the composite
M �M !�!M .

NOTES. Cartier (1962, Section 15) sketched a proof of Theorem 3.23 in which he em-
bedded O.G/ in the coordinate ring of a formal group OG (the “completion” of G), and
showed that the latter has no nilpotents. Our proof follows Oort 1966. The theorem is true
for all algebraic groups (8.39 below).

h. Smoothness in characteristic p ¤ 0

PROPOSITION 3.29. Let G be an affine algebraic group over a perfect field k of
characteristic p ¤ 0, and let r be a positive integer. The image O.G/pr of the
ring homomorphism

a 7! ap
r

WO.G/!O.G/
is a Hopf subalgebra of O.G/, which is geometrically reduced when r is suffi-
ciently large.

PROOF. Recall (2.24) that the Frobenius map F r WG!G.p
r / corresponds to the

homomorphism of Hopf k-algebras

a˝ c 7! cap
r

WO.G/˝k;f r k!O.G/:
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When k is perfect, this has image O.G/pr , which is therefore a Hopf subalgebra
of O.G/ (see 3.9).

In proving the second part, we may suppose that k is algebraically closed. As
the nilradical N of O.G/ is finitely generated, there exists an exponent n such
that an D 0 for all a 2N. Now O.G/pr is reduced for all r such that pr � n. 2

REMARK 3.30. LetG be an affine algebraic group over a field k of characteristic
p ¤ 0. According to the homomorphism theorem (3.34 below), F r WG!G.p

r /

factors into
G

q
�! I

i
�!G.p

r /

with q faithfully flat and i a closed immersion. Here O.I / is the image of
O.G.pr // in O.G/. The formation of the factorization commutes with extension
of the base field, and so the proposition shows that I is smooth for r sufficiently
large.

i. Faithful flatness for Hopf algebras

In this section, we prove an important technical result. For the properties of
flatness used, see CA 11.2, 11.3, 11.9.

THEOREM 3.31. Let A� B be finitely generated Hopf algebras over a field k.
Then B is faithfully flat over A.

PROOF. The inclusion A ,! B corresponds to a homomorphism of algebraic
groups G!H (so ADO.H/ and B DO.G/), which is dominant, and hence
surjective (1.69). If H is reduced, then G!H is faithfully flat by Proposition
1.70. It remains to prove the theorem when H is nonreduced. After Theorem
3.23, we may suppose that k has characteristic p ¤ 0. We may also suppose that
it is algebraically closed.

We begin with a general remark. Let A be a ring, I a nilpotent ideal in A,
and M an A-module. If M D IM , then M D IM D I 2M D �� � D 0. Similarly,
a submodule N of M such that M DN CIM equals M .

We now prove the theorem in the case that the augmentation ideal IA of A is
nilpotent. Let .ej /j2J be a family of elements in B whose image in B=IAB is a
k-vector space basis. We show that the map

.aj /j2J 7!
P
j aj ej WA

.J /! B

is an isomorphism. Here A.J / is a direct sum of copies of A indexed by J . The
map is surjective by the general remark. Let N denote its kernel. To show that
N D 0, it suffices to show that N D IAN (by the remark again). For this we use
the commutative diagram

IA˝AN IA˝AA
.J / IA˝AB 0 a˝x

0 N A.J / B 0 a

a b c
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Its rows are exact, and the map c is injective because A˝AB! B is injective
and IA is a direct summand of A. The snake lemma gives an exact sequence of
cokernels

0! Coker.a/! Coker.b/! Coker.c/! 0,

but Coker.a/DN=IAN and the map Coker.b/! Coker.c/ is the isomorphism

.aj / 7!
X

aj Nej W.A=IA/
.J /
! B=IAM;

and so N D IAN as required.
We now prove the general case of the theorem. According to Proposition

3.29, there exists an n such that O.H/pn is a reduced Hopf subalgebra of O.H/.
Let H 0 denote the algebraic group such that O.H 0/DO.H/pn , and let M and
N denote the kernels of H !H 0 and its composite with G!H :

e N G H 0

e M H H 0

Consider the diagrams

H �H 0 G G�H 0 G O.H/˝O.H 0/O.G/ O.G/˝O.H 0/O.G/

M �G N �G O.M/˝O.G/ O.N /˝O.G/

a

' '' '

b

The horizontal maps in the diagram at left are obvious from the previous diagram,
and the vertical isomorphisms are those in Exercises 2-1 and 2-2. The diagram
at right is the corresponding diagram of k-algebras. The map O.H 0/!O.G/
is faithfully flat because we have proved the theorem when H 0 is reduced. The
map a is obtained from O.H/ ,! O.G/ by applying �˝O.H 0/O.G/, and so
it is injective. Hence b is also injective, which implies that O.M/!O.N / is
injective (as k!O.G/ is faithfully flat). Now O.M/!O.N / is faithfully flat
because we have proved the theorem when the augmentation ideal of O.M/ is
nilpotent. It follows that b is faithfully flat, and then that a is faithfully flat. This
implies that O.H/!O.G/ is faithfully flat. 2

j. The homomorphism theorem for affine algebraic groups

PROPOSITION 3.32. Let A � B be Hopf algebras with B an integral domain,
and let K � L be the fields of fractions of A and B . Then B \K D A; in
particular, AD B if K D L.

PROOF. Because B is faithfully flat over A (see 3.31), cB \A D cA for all
c 2 A. If a;c are elements of A such that a=c 2 B , then a 2 cB \AD cA, and
so a=c 2 A. 2
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PROPOSITION 3.33. Every birational homomorphism of connected affine group
varieties is an isomorphism.

PROOF. From such a homomorphism, we get a homomorphism ˛WA! B of
Hopf algebras, both integral domains, which induces an isomorphism on the fields
of fractions. Obviously ˛ is injective, and (3.32) shows that it has image B . 2

THEOREM 3.34 (HOMOMORPHISM THEOREM FOR AFFINE GROUPS). Every
homomorphism 'WG ! H of affine algebraic groups factors as a composite
of homomorphisms

G
q
�! I

i
�!H

with q faithfully flat and i a closed immersion.

PROOF. According to Proposition 3.14, the homomorphism O.'/WO.H/!
O.G/ of Hopf k-algebras factors into

O.H/ a
�! C

b
�!O.G/

with C a finitely generated Hopf k-algebra and a (resp. b) a surjective (resp.
injective) homomorphism. On applying Spm, we obtain the required factorization
(because of Theorem 3.31). 2

COROLLARY 3.35. Consider a homomorphism 'WG!H of affine algebraic
groups. If Ker.'/D e, then ' is a closed immersion.

PROOF. Factor ' as in the theorem. After replacing ' with q, we may suppose
that it is faithfully flat. Thus, let 'WG!H be a faithfully flat homomorphism
such that Ker.'/D e. Then '.R/WG.R/!H.R/ is injective for all k-algebras
R, and it remains to show that it is surjective. Let a 2 H.R/. Then a is a
homomorphism of k-algebras O.H/!R. The diagram

O.G/ O.G/˝O.H/R
def
DR0

O.H/ R

b

a

faithfully flat faithfully flat

shows that the image of a in H.R0/ lifts to an element b of G.R0/. As R0 is
faithfully flat over R, the rows in the following diagram are exact (CA 11.12):

G.R/ G.R0/ G.R0˝RR
0/

H.R/ H.R0/ H.R0˝RR
0/

'.R/ '.R0/ '.R0˝RR
0/

A small diagram chase, using that the vertical arrows are injective, now shows
that b lies in G.R/ and maps to a. 2
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k. Forms of algebraic groups

Let G be an algebraic group over k, and let K be a field containing k. A K=k-
form of G is an algebraic group G0 over k that becomes isomorphic to G over
K. We define K=k-forms of modules, algebras, . . . similarly. When G is affine,
we show that the isomorphism classes of K=k-forms of G are classified2 by a
certain cohomology set.

In this section, all vector spaces are finite-dimensional.

Nonabelian cohomology

Let � be a group, and let A be a group with an action of � . A mapping
� 7! a� W� !A is a crossed homomorphism (or 1-cocycle) if a�� D a� ��a� for
all �;� 2 � . Two crossed homomorphisms .a� / and .b� / are equivalent if there
exists a c 2 A such that b� D c�1 �a� ��c for all � 2 � . The cohomology set
H 1.�;A/ is defined to be the set of equivalence classes of crossed homomorph-
isms; its elements are called cohomology classes. It is a set with a distinguished
element, namely, the equivalence class of principal crossed homomorphisms
� 7! c�1 ��c. An exact sequence

1! A
a
�! B

b
�! C ! 1

of � -modules give rise to an exact sequence of pointed sets

1! A�
a0

�! B�
b0

�! C� !H 1.�;A/
a1

�!H 1.�;B/
b1

�!H 1.�;C /:

In particular, this means that the preimage by a1 of the distinguished element in
H 1.�;B/ is the quotient of C� by the action of B� , and the preimage by b1 of
the distinguished element in H 1.�;C / is the image of a1. We refer the reader to
Serre 1997, I, �5 for a detailed treatment of nonabelian cohomology.

Finite Galois extensions

LetK be a finite Galois extension of k with Galois group � . A semilinear action
of � on a K-vector space V is a k-linear action such that

�.cv/D �c ��v all � 2 � , c 2K, v 2 V:

If V DK˝k V0, then there is a semilinear action of � on V for which V � D
1˝ V0 ' V0, namely, �.c˝ v/ D �c˝ v. In A.64 we prove the following
statement:

2Let A be a set with an equivalence relation �. We say that a second set B classifies the
�-equivalence classes of elements of A if there is a canonical surjection A!B whose fibres are
the equivalence classes.
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3.36. The functor V  K ˝k V from k-vector spaces to K-vector spaces
endowed with a semilinear action of � is an equivalence of categories (with
quasi-inverse V 7! V � ).

Let V0 be a k-vector space equipped with a bilinear form �0WV �V ! k. Let
.V0;�0/K denote the pair over K obtained from .V0;�0/ by extension of scalars,
and let A.K/ denote the group of automorphisms of .V0;�0/K .

THEOREM 3.37. The cohomology set H 1.�;A.K// classifies the K=k-forms
of .V0;�0/.

PROOF. Let .V;�/ be a K=k form of .V0;�0/, and choose an isomorphism
f W.V0;�0/K ! .V;�/K . Let a� .f /D f �1 ı�f . Then

a� ��a� D .f
�1
ı�f /ı .�f �1 ı��f /D a�� ;

and so a� .f / is a 1-cocycle. Any other isomorphism f 0W.V0;�0/K ! .V;�/K
differs from f by an element g of A.K/, and

a� .f ıg/D g
�1
�a� .f / ��g:

Therefore, the cohomology class of a� .f / depends only on .V;�/. One sees
easily that it depends only on the isomorphism class of .V;�/ over k, and that two
pairs .V;�/ and .V 0;�0/ giving rise to the same cohomology class are isomorphic.
It remains to show that every cohomology class arises from a pair .V1;�1/. Let
.a� /�2� be a 1-cocycle, and use it to define a new action of � on VK

def
DK˝k V0:

�x D a� ��x; � 2 �; x 2 VK :

This action is semilinear, and so V1
def
D fx 2 VK j

�x D xg is a k-subspace of VK
such that K˝k V1 ' VK (by 3.36). Because �0K arises from a pairing over k
and a� is an automorphism of .V0;�0/K ;

�.�0K.x;y//D �0K.�x;�y/D �0K.
�x;�y/ (22)

for x;y 2 VK and � 2 � . If x;y 2 V1, then (22) shows that �0K.x;y/ lies in
K� D k. Thus �0K induces a k-bilinear pairing �1 on V1. Now .a� /� is the
1-cocycle attached to .V1;�1/ and the given isomorphism K˝k V1! VK . 2

EXAMPLE 3.38. Let V0 be a vector space over k equipped with a tensor t0 2
T rs .V0/, and let G be the algebraic subgroup of GLV0 fixing t (see 2.13). The
cohomology set H 1.�;G.K// classifies the K=k forms of .V0; t0/. The proof is
the same as that of the theorem.

PROPOSITION 3.39. For all n, H 1.�;GLn.K//D 1:

PROOF. Theorem 3.37 applied to .V0;�0/D .kn;0/ shows thatH 1.�;GLn.K//
classifies the isomorphism classes of vector spaces V over k such thatK˝k V �
Kn. But these are exactly the k-vector spaces of dimension n, and they fall into a
single isomorphism class. 2
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PROPOSITION 3.40. For all n, H 1.�;SLn.K//D 1.

PROOF. Because the determinant map detWGLn.K/!K� is surjective,

1! SLn.K/! GLn.K/
det
�!K�! 1

is an exact sequence of � -groups. It gives rise to an exact sequence

GLn.k/
det
�! k�!H 1.�;SLn/!H 1.�;GLn/,

from which the statement follows. 2

PROPOSITION 3.41. Let �0 be a nondegenerate alternating bilinear form on V0,
and let Sp be the associated symplectic group. Then H 1.�;Sp.K//D 1.

PROOF. A pair .V;�/ over k becoming isomorphic to .V0;�0/ overK is a vector
space over k of dimension dim.V0/ equipped with a nondegenerate alternating
form. All such pairs are isomorphic. 2

EXAMPLE 3.42. (a) Let A be a finite-dimensional algebra over k (not neces-
sarily commutative), and let V denote A regarded as a right A-module. Then
H 1.�;A�K/ classifies the K=k-forms of V . If W is such a form, then WK � VK
as right AK-modules. As an A-module, WK is a direct sum of ŒKWk�-copies of
W , and similarly for VK . The Krull–Schmidt theorem now shows that W � V as
A-modules. We deduce that H 1.�;A�K/D 1.

(b) Let �0 be a nondegenerate bilinear symmetric form on V0, and let O be
the associated orthogonal group. Then H 1.�;O.K// classifies the isomorphism
classes of pairs .V;�/ over k that become isomorphic to .V0;�0/ over K. This
can be a very large set (Serre 1970, IV, �3).

(c) In particular, Proposition 3.39 says that H 1.�;Gm/ D 1. When � is
cyclic with generator � , this says that the only elements of K� with norm 1 are
those of the form �c=c.

Let G0 be an affine algebraic group over k, and let A.K/ be the group of
automorphisms of .G0/K . Then � acts on A.K/ in a natural way:

�˛ D � ı˛ ı��1; � 2 �; ˛ 2A.K/:
Let G be a K=k-form of G0. Choose an isomorphism f WG0K !GK , and write
a� D f

�1 ı �f . As before .a� /�2� is a 1-cocycle whose cohomology class
depends only on the isomorphism class of G.

THEOREM 3.43. The cohomology set H 1.�;A.K// classifies the isomorphism
classes of K=k-forms of G0.

PROOF. Let A0 DO.G0/. Then A.K/ is the group of automorphisms of A0˝
K as a Hopf algebra, and we have to show that H 1.�;A.K// classifies the
isomorphism classes of K=k-forms of A0. But a Hopf algebra is a k-vector
space equipped with certain linear maps satisfying certain conditions. The same
argument as in the proof of Theorem 3.37 proves the statement. 2
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Infinite Galois extensions

The above discussion applies also to infinite Galois extensions K=k provided we
endow � with its Krull topology. When we give G.K/ its discrete topology, then
the action of � on G.K/ is continuous, because

G.K/D
[

k0=k
G.k0/D

[
k0=k

G.K/Gal.K=k0/

where k0 runs over the finite Galois extensions of k contained in K. When �
is infinite, we define H 1.�;G.K// using continuous crossed homomorphisms.
Then

H 1.�;G.K//D lim
 �

H 1.�k0=k ;G.k
0//; �k0=k D Gal.k0=k/: (23)

When K D ks, we write H 1.k;G/ for H 1.�;G.K//. As before, a short exact
sequence of � -modules gives rise to a six-term exact cohomology sequence.

LEMMA 3.44 (SHAPIRO’S LEMMA). Let K be a finite extension of k, and let
G be a smooth algebraic group over k. Then

H 1.k; .G/K=k/'H
1.K;G/:

PROOF. This can be proved by a direct calculation (Kneser 1969, 1.3). 2

PROPOSITION 3.45. Let

e!N !G!Q! e

be an exact sequence of algebraic groups. If N is smooth, then there is an exact
sequence

1!N.k/!G.k/!Q.k/!H 1.k;N /!H 1.k;G/!H 1.k;Q/:

PROOF. We have to show that

1!N.ks/!G.ks/!Q.ks/! 1

is exact. Let q 2Q.ks/, and regard it as an element of jQj. The preimage P of q
in G is a subscheme of G that becomes isomorphic to N over ka. Therefore it is
smooth, in particular, an algebraic variety, and so P.ks/ is nonempty (A.48). 2

PROPOSITION 3.46. For all n, H 1.k;GLn/DH 1.k;SLn/DH 1.k;Spn/D 1.

PROOF. These follow from the corresponding statements for finite extensions
using (23). 2

COROLLARY 3.47. For all n, H 1.k; .Gm/n/D 1.

PROOF. As cohomology commutes with finite products and GL1 D Gm, this
follows from the proposition. 2
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REMARK 3.48. Let .V;q/ be a nondegenerate quadratic space over a field k
of characteristic ¤ 2. Then H 1.k;O.q// classifies the isomorphism classes
of nondegenerate quadratic spaces over k with the same dimension dim.V /.
Indeed, all nondegenerate quadratic spaces over k of dimension dim.V / become
isomorphic over ks.

REMARK 3.49. (a) Theorem 3.43 holds also for infinite Galois extensions K=k.
This can be proved by passing to the limit in 3.43 over the finite Galois extensions
k0 of k contained inK. Specifically, letG be aK=k-form ofG0. This means that
there exists an isomorphism f WGK!G0K . When we choose f to be defined over
a finite extension of k inside K, then the cocycle a� D f �1 ı�f is continuous,
and so it defines an element of H 1.�;A.K//.

(b) Theorem 3.43 also holds for nonaffine algebraic groups. The proof of this
uses that all algebraic groups are quasi-projective (B.38).

PROPOSITION 3.50. If G is smooth, then H 1.k;G/ classifies the isomorphism
classes of G-torsors over k.

PROOF. Let S be a G-torsor. As G is smooth and nonempty, S is smooth and
nonempty, and so S.ks/ is nonempty. Let s 2 S.ks/. For � 2 � , we can write
�s D s �a� with a� 2G.ks/. Then � 7! a� is a continuous crossed homomorph-
ism � !G.ks/, and the map sending S to the class of .a� / in H 1.k;G/ gives
the required bijection. 2

Thus, H 1.k;G/'H 1
flat.k;G/ when G is smooth.

Inner and outer forms

3.51. Let G be an algebraic group over k. An automorphism of G is inner
if it becomes of the form inn.g/ over ka. Later (17.63), we shall see that the
group I.k/ of inner automorphisms of G is equal to NG.k/, where NG is the
quotient of G by its centre. For example, for t 2 k�, the automorphism

�
a b
c d

�
7!�

a tb
t�1c d

�
of SL2 is inner because it becomes the inner automorphism defined

by diag.
p
t ;
p
t �1/ over ka. It is also the inner automorphism defined by the

element diag.t;1/ of PGL2.k/.

3.52. Let K=k be a Galois extension with Galois group � , and let I.K/ �
A.K/ be the group of inner automorphisms of G0K . An inner K=k-form of G0
is a pair .G;f /, where G is an algebraic group over k and f is an isomorphism
f WG0K ! GK such that the automorphism a�

def
D f �1 ı�f of G0 is inner for

all � 2 � . Two inner forms .G;f / and .G0;f 0/ are said to be equivalent if
there exists an isomorphism 'WG ! G0 (over k) such that f 0 D 'K ıf . The
equivalence classes of inner forms are classified by H 1.�;I.K//.

More loosely, we say that a K=k-form G over G0 is inner if it is pos-
sible to choose the isomorphism f WG0K ! GK to satisfy the condition in
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the preceding paragraph. Otherwise, we say that the form is outer. A K=k-
form is inner or outer according as its cohomology class lies in the image of
H 1.�;I.K//! H 1.�;A.K// or not. We caution the reader that, with this
definition, the isomorphism classes of inner K=k-forms of G0 are classified, not
by H 1.�;I.K//, but by the image of this set in H 1.�;A.K//.

Exercises

EXERCISE 3-1. For a set X , let R.X/ denote the k-algebra of maps X !
k. For a second set Y , let R.X/˝R.Y / act on X �Y according to the rule
(f ˝g/.x;y/D f .x/g.y/.

(a) Show that the map R.X/˝R.Y /! R.X �Y / just defined is injective.
(Hint: choose a basis fi for R.X/ as a k-vector space, and consider an
element

P
fi ˝gi .)

(b) Let � be a group and define maps

�WR.� /!R.� �� /; .�f /.g;g0/D f .gg0/

�WR.� /! k; �f D f .1/

S WR.� /!R.� /; .Sf /.g/D f .g�1/:

Show that if � maps R.� / into the subring R.� /˝R.� / of R.� �� /,
then �, �, and S define on R.� / the structure of a Hopf algebra.

(c) If � is finite, show that � always maps R.� / into R.� /˝R.� /.

EXERCISE 3-2. We use the notation of Exercise 3-1. Let � be an arbitrary
group. From a homomorphism �W� ! GLn.k/, we obtain a family of functions
g 7! �.g/i;j , 1� i;j � n, on G. Let R0.� / be the k-subspace of R.� / spanned
by the functions arising in this way for varying n. (The elements of R0.� / are
called the representative functions on � .)

(a) Show that R0.� / is a k-subalgebra of R.� /.
(b) Show that � maps R0.� / into R0.� /˝R0.� /.
(c) Deduce that �, �, and S define on R0.� / the structure of a Hopf algebra.

EXERCISE 3-3. Let .A;�;S;�/ be a Hopf algebra. Prove the following state-
ments by interpreting them as statements about algebraic groups.

(a) S ıS D idA.

(b) �ıS D t ı .S˝S/ı� where t .a˝b/D b˝a.

(c) � ıS D �.

(d) The map a˝ b 7! .a˝ 1/�.b/WA˝A! A˝A is a homomorphism of
k-algebras.

EXERCISE 3-4. Let A be a product of copies of k indexed by the elements of a
finite set S . Show that the k-bialgebra structures on A are in natural one-to-one
correspondence with the group structures on S .
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EXERCISE 3-5. Let G be an affine algebraic group over a nonperfect field k.
Show that Gred is an algebraic subgroup of G if G.k/ is dense in G (as a scheme).

EXERCISE 3-6. Let A!B be faithfully flat andM an A-module. If B˝AM is
finitely generated over B , show that M is finitely generated. [Choose generators
1˝m1; : : : ;1˝mn for B˝AM , and let N be the A-submodule of M generated
by the mi . Now B˝AN D B˝AM and so N DM .]

EXERCISE 3-7. Show that a Hopf algebra B is finitely generated as a k-algebra
if its augmentation ideal is finitely generated.

EXERCISE 3-8. Show that every Hopf subalgebra A of a finitely generated Hopf
algebra B is finitely generated. [The ideal IAB in B is finitely generated, and it
equals IA˝AB by flatness. Apply Exercise 3-6.]

EXERCISE 3-9. Let G be an affine group scheme over k (not necessarily of
finite type). If there exists a faithfully flat homomorphism H ! G with H an
affine algebraic group over k, then G is algebraic.



CHAPTER 4

Linear Representations of
Algebraic Groups

Throughout this chapter, G is an affine algebraic group over a field k. We shall
see later (8.36) that every algebraic group G over k has a largest affine algebraic
quotient Gaff. As every linear representation of G factors through Gaff, no extra
generality would result from allowing G to be nonaffine.

a. Representations and comodules

For a vector space V over k, we let GLV denote the functor of k-algebras,

R Aut.VR/ (R-linear automorphisms).

When V is finite-dimensional, GLV is an algebraic group.
A linear representation of G is a homomorphism r WG ! GLV of group-

valued functors. When V is finite-dimensional, r is a homomorphism of algebraic
groups. A linear representation r is faithful if r.R/WG.R/! AutR-linear.VR/ is
injective for all k-algebras R. For finite-dimensional linear representations, this
is equivalent to � being a closed immersion (3.35). A representation is trivial if
r.G/D e. From now on we write “representation” for “linear representation”.1

To give a representation .V;r/ of G on V is the same as giving an action

G�Va! Va

of G on the functor Va such that, for all k-algebras R, the group G.R/ acts on
Va.R/DR˝V through R-linear maps. When viewed in this way, we call .V;r/
a G-module.

1A nonlinear representation would be a homomorphismG! Aut.Va/ (automorphisms of the
k-scheme Va ignoring its linear structure). In the old literature a group variety is identified with its
ka-points, and the representations in our sense are called rational representations to distinguish them
from the representations of the abstract groupG.ka/.

83
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A (right) O.G/-comodule is a k-linear map �WV ! V ˝O.G/ such that�
.idV ˝�/ı�D .�˝ idO.G//ı�
.idV ˝�/ı�D idV :

(24)

The map � is called the co-action. Let .V;�/ be an O.G/-comodule. An O.G/-
subcomodule of V is a k-subspace W such that �.W / � W ˝O.G/. Then
.W;�jW / is again an O.G/-comodule.

REMARK 4.1. Let A D O.G/. A representation r WG ! GLV � EndV of G
maps the universal element a in G.A/ to an A-linear endomorphism r.a/ of
End.V ˝A/, which is uniquely determined by its restriction to a k-linear homo-
morphism �WV ! V ˝A. The map � is an A-comodule structure on V , and in
this way we get a one-to-one correspondence r$ � between the representations
of G on V and the A-comodule structures on V .

To see this, let .ei /i2I be a basis for V and let .aij /i;j2I be a family of
elements of A. When I is infinite, we require that, for each j , only finitely many
aij are nonzero. The map

�WV ! V ˝A; ej 7!
X
i2I

ei ˝aij (finite sum),

is a comodule structure on V if and only if

�.aij /D
P
l2I ail ˝alj

�.aij /D ıij

�
all i;j 2 I . (25)

On the other hand, the maps sending g 2G.R/ to the automorphism of VR with
matrix .aij .g//i;j2I for all k-algebras R constitute a representation r of G on
V if and only if the equalities (25) hold. For example, if the first equality holds,
then

aij .g1g2/
3.5
D .�aij /.g1;g2/D

�X
l
ail ˝alj

�
.g1;g2/D

X
l
ail .g1/ �alj .g2/;

and so r.g1g2/D r.g1/ � r.g2/.
Suppose that I is finite, and let Tij denote the regular function on EndV

sending an endomorphism of V to its .i;j /th coordinate. Then O.EndV / is
a polynomial ring in the symbols Tij , and the homomorphism O.EndV /! A

defined by r sends Tij to aij .

EXAMPLE 4.2. Let G D GLn and let r be the standard representation of G on
V D kn. Then O.G/D kŒT11;T12; : : : ;Tnn;1=det� and, relative to the standard
basis .ei /1�i�n for V , the map r WG.R/! GLn.R/ is (tautologically) g 7!
.Tij .g//1�i;j�n. The corresponding co-action is

�WV ! V ˝O.G/; ej 7!
X
1�i�n

ei ˝Tij :

As �.Tij / D
P
1�l�nTil ˝Tlj and �.Tij / D ıij , this does define a comodule

structure on V .
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b. Stabilizers

PROPOSITION 4.3. Let r WG! GLV be a finite-dimensional representation of
G and W a subspace of V . The functor

R GW .R/D fg 2G.R/ j g.WR/DWRg

is represented by an algebraic subgroup GW of G.

PROOF. Let ADO.G/ and let �WA! V ˝A be the co-action corresponding to
r . Let .ei /i2J be a basis for W , and extend it to a basis .ei /JtI for V . Write

�.ej /D
P
i2JtI ei ˝aij ; aij 2 A:

Let g 2G.R/D Homk-algebra.O.G/;R/. Then

gej D
P
i2JtI ei ˝g.aij /:

Thus, g.W ˝R/ � W ˝R if and only if g.aij / D 0 for j 2 J , i 2 I . As
g.aij /D .aij /R.g/, this shows that the functor is represented by the quotient of
A by the ideal generated by faij j j 2 J; i 2 I g. 2

The subgroup GW of G is called the stabilizer of W in V . It is also denoted
StabG.W /. We say that an algebraic subgroup H of G stabilizes a subspace W
of V if it is contained in the stabilizer of W .

COROLLARY 4.4. Let .V;r/ be a finite-dimensional representation of G, and let
S be a subset of G.k/ that is dense in G (as a scheme). A subspace W of V is
stable under G if and only if it is stable under S .

PROOF. The space W is stable under S if and only if S �GW .k/. But, because
S is schematically dense in G, this is so if and only if GW DG, i.e., W is stable
under G. 2

COROLLARY 4.5. LetH be an algebraic subgroup ofG such thatH.k/ is dense
in H (as a scheme). If hW DW for all h 2H.k/, then W is stable under H .

PROOF. Apply the last corollary with .G;S/D .H;H.k//. 2

PROPOSITION 4.6. Let G act on V and V 0, and let W and W 0 be nonzero
subspaces of V and V 0. Then the stabilizer of W ˝W 0 in V ˝V 0 is GW \GW 0 .

PROOF. Choose a basis for W (resp. W 0) and extend it to a basis for V (resp.
V 0). From these bases, we get a basis for W ˝W 0 and an extension of it to
V ˝V 0. The proof of Proposition 4.3 now gives explicit generators for the ideals
a.W /, a.W 0/, and a.W ˝W 0/ defining O.GW /, O.GW 0/, and O.GW˚W 0/ as
quotients of O.G/, from which one can deduce that

a.W ˝W 0/D a.W /Ca.W 0/. 2
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c. Representations are unions of finite-dimensional
representations

PROPOSITION 4.7. Every O.G/-comodule .V;�/ is a filtered union of its finite-
dimensional subcomodules.

PROOF. A finite sum of finite-dimensional subcomodules is a finite-dimensional
subcomodule, and so it suffices to show that each element v of V is contained in
a finite-dimensional subcomodule. Let .ei /i2I be a basis for O.G/ as a k-vector
space, and let

�.v/D
X

i
vi ˝ ei ; vi 2 V; (finite sum).

Write
�.ei /D

X
j;k
rijk.ej ˝ ek/; rijk 2 k.

We shall show that
�.vk/D

X
i;j
rijk

�
vi ˝ ej

�
(26)

from which it follows that the k-subspace of V spanned by v and the vi is a
subcomodule containing v. Recall from (24), p. 84, that

.idV ˝�/ı�D .�˝ idO.G//ı�:

On applying each side of this equation to v, we find thatX
i;j;k

rijk.vi ˝ ej ˝ ek/D
X

k
�.vk/˝ ek (inside V ˝O.G/˝O.G//:

On comparing the coefficients of 1˝1˝ ek in these two expressions, we obtain
the equality (26). 2

COROLLARY 4.8. Every representation of G is a filtered union of its finite-
dimensional subrepresentations.

PROOF. Let r WG! GLV be a representation of G and �WV ! V ˝O.G/ the
corresponding co-action. A subspace W of V is stable under G if and only if it is
an O.G/-subcomodule of V , and so this follows from the proposition. 2

d. Affine algebraic groups are linear

A right action of an algebraic group G on an algebraic scheme X is a regular map
X �G!X such that, for all k-algebras R, the map X.R/�G.R/!X.R/ is a
right action of the group G.R/ on the set X.R/. Such an action defines a map

�WO.X/!O.X/˝O.G/;
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which makes O.X/ into an O.G/-comodule. This is the comodule corresponding
to the representation of G on O.X/,

.gf /.x/D f .xg/; g 2G.k/, f 2O.X/, x 2X.k/:

The representation of G on O.G/ arising from mWG �G ! G is called the
regular representation.2 It corresponds to the co-action �WO.G/! O.G/˝
O.G/.

THEOREM 4.9. The regular representation has a faithful finite-dimensional sub-
representation. In particular, the regular representation itself is faithful.

PROOF. Let AD O.G/, and let V be a finite-dimensional subcomodule of A
containing a set of generators forA as a k-algebra. Let .ei /1�i�n be a basis for V ,
and write �.ej /D

P
i ei ˝aij . According to (4.1), the image of O.GLV /! A

contains the aij . But, because �WA! k is a co-identity (18),

ej D .�˝ idA/�.ej /D
X

i
�.ei /aij ;

and so the image contains V ; it therefore equals A. We have shown that the map
O.GLV /!A is surjective, which means thatG!GLV is a closed immersion.2

COROLLARY 4.10. Every affine algebraic group is isomorphic to an algebraic
subgroup of GLn for some n.

PROOF. A faithful representation G!GLV of G on a finite-dimensional vector
space V realizes G as an algebraic subgroup of GLV (3.35). Now choose a basis
for V . 2

Thus every affine algebraic group can be realized as a group of matrices, and
every multiplication map is just matrix multiplication in disguise.

REMARK 4.11. An algebraic group G is said to be linear if it admits a faithful
finite-dimensional representation. Such a representation is an isomorphism of G
onto a (closed) algebraic subgroup of GLV (see 3.35), and so an algebraic group
is linear if and only if it can be realized as an algebraic subgroup of GLV for
some finite-dimensional vector space V . Every linear algebraic group is affine
(1.43), and the theorem shows that the converse is true. Therefore, the linear
algebraic groups are exactly the affine algebraic groups.

2For an algebraic monoidG is this is the only possible definition of a regular representation (in
whichG acts on the left). It is called the right regular representation. The left regular representation
is .gf /.x/D f .g�1x/.
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e. Constructing all finite-dimensional representations

Let G be an algebraic group over k and V a finite-dimensional k-vector space.
The k-vector space V ˝O.G/ equipped with the k-linear map

idV ˝�WV ˝O.G/! V ˝O.G/˝O.G/

is an O.G/-comodule, called the free comodule on V . The choice of a basis for
V realizes .V ˝O.G/; idV ˝�/ as a direct sum of copies of .O.G/;�/:

V ˝O.G/ V ˝O.G/˝O.G/

O.G/n .O.G/˝O.G//n:

V˝�

' '

�n

PROPOSITION 4.12. Let .V;�/ be an O.G/-comodule. Let V0 denote V re-
garded as a k-vector space and .V0˝O.G/; idV0˝�/ the free comodule on V0.
Then

�WV ! V0˝O.G/
is an injective homomorphism of O.G/-comodules.

PROOF. The commutative diagram (see (24), p. 84)

V V0˝O.G/

V ˝O.G/ V0˝O.G/˝O.G/

�

� idV0˝�

�˝idO.G/

says exactly that the map �WV ! V0˝O.G/ is a homomorphism of O.G/-
comodules. It is injective because its composite with idV ˝� is idV ((24), p. 84).2

COROLLARY 4.13. A finite-dimensional O.G/-comodule .V;�/ arises as a sub-
comodule of .O.G/;�/n for nD dimV .

PROOF. Immediate consequence of the proposition and preceding remarks. 2

In other words, every finite-dimensional representation of G arises as a
subrepresentation of a direct sum of copies of the regular representation.

THEOREM 4.14. Let .V;r/ be a faithful finite-dimensional representation of G.
Then every finite-dimensional representation W of G can be constructed from V

by forming tensor products, direct sums, duals, and subquotients.

PROOF. After Proposition 4.12, we may assume that W � O.G/n for some
n. Let Wi be the image of W under the i th projection O.G/n! O.G/; then
W ,!

L
iWi , and so we may even assume that W �O.G/.



e. Constructing all finite-dimensional representations 89

We choose a basis .ei /1�i�n for V , and use it to identify G with a subgroup
of GLn. Then there is a surjective homomorphism

O.GLn/D kŒT11;T12; : : : ;Tnn;1=det��O.G/D kŒt11; t12; : : : ; tnn;1=det�.

As W is finite-dimensional, it is contained in a subspace

ff .tij / j degf � sg �det�s
0

of O.G/ for some s;s0 2 N. This subspace is stable under GLn, hence G, and it
suffices to show that it can be constructed from V .

The natural representation of GLn on V has co-action �.ej /D
P
ei ˝Tij

(see 4.2), and so the representation r of G on V has co-action �.ej /D
P
ei˝ tij .

For each i , the map

ej 7! Tij W.V;�/! .O.GLn/;�/

is a homomorphism of O.GLn/-comodules (by (8), p. 41), and so the homogen-
eous polynomials of degree 1 in the Tij form an O.GLn/-comodule isomorphic
to the direct sum of n copies of V . The O.GLn/-comodule

ff 2 kŒT11;T12; : : :� j f homogeneous of degree sg

is a quotient of the s-fold tensor product of

ff 2 kŒT11;T12; : : :� j f homogeneous of degree 1g:

For s D n, this space contains the one-dimensional representation g 7! det.g/,
and its dual contains the dual one-dimensional representation g 7! 1=det.g/.
By summing various of these spaces, we get the space ff j degf � sg, and by
tensoring this s-times with 1=det we get ff .Tij / j degf � sg �det�s . 2

More precisely, the theorem says that W is a subquotient of a direct sum of
representations

Nm
.V ˚V _/, m 2 N. The dual was used only to construct the

representation 1=det, and so it is not needed if r.G/� SLV .
Here is a more abstract statement of the proof of Theorem 4.14. Let .V;r/ be

a faithful representation of G of dimension n and W a second representation. We
may realizeW as a submodule of O.G/m for somem. From r we get a surjective
homomorphism O.GLV /!O.G/. But

O.GLV /D Sym.EndV /Œ1=det�,

and EndV ' V _˝V . The choice of a basis for V _ determines an isomorphism
EndV ' nV of GLV -modules (cf. the above proof). Hence

Sym.nV /m �O.GLV /m�O.G/m:
For some s, W � dets is contained in the image of Sym.nV /m in O.G/m. This
means that W �dets is contained in a quotient of some finite direct sum of tensor
powers of V . We can now use that .V _/˝n contains the representation g 7!
det.g/�1 to complete the proof.
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f. Semisimple representations

DEFINITION 4.15. A representation of an algebraic group is simple if it is¤ 0
and its only subrepresentations are 0 and itself. It is semisimple if it is a sum of
simple subrepresentations.3

PROPOSITION 4.16. Every simple representation of an algebraic group is finite-
dimensional.

PROOF. Every simple representation contains a nonzero finite-dimensional sub-
representation (4.8), and must equal it. 2

PROPOSITION 4.17. Let .V;r/ be a representation of an algebraic group G over
k. If V is a sum of simple subrepresentations, say V D

P
i2I Si (the sum need

not be direct), then for every subrepresentation W of V , there is a subset J of I
such that

V DW ˚
M

i2J
Si :

In particular, V is a direct sum of simple subrepresentations, and W is a direct
summand of V .

PROOF. Let J be maximal among the subsets of I such that the sum SJ DP
j2J Sj is direct and W \SJ D 0. We claim that W CSJ D V (hence V is

the direct sum of W and the Sj with j 2 J ). For this, it suffices to show that
each Si is contained in W CSJ . Because Si is simple, Si \ .W CSJ / equals
Si or 0. In the first case, Si � W CSJ , and in the second SJ \Si D 0 and
W \ .SJ CSi /D 0, contradicting the definition of I . 2

We have seen that if V is semisimple, then every subrepresentation W is
a direct summand. The converse is also true. This can be proved by the same
argument as for modules over a ring (Jacobson 1989, Theorem 3.10, p. 121).

REMARK 4.18. Let .V;r/ be a finite-dimensional representation of an algeb-
raic group G over k. By an endomorphism of .V;r/ we mean a k-linear map
˛WV ! V such that ˛RWVR! VR commutes with the action of G.R/ on VR for
all small k-algebras R. Equivalently, it is an endomorphism of the corresponding
comodule. If .V;r/ is simple, then End.V;r/ is a finite-dimensional division
algebra D over k. If .V;r/ is semisimple and .V;r/D

L
i .Vi ; ri /

si is the decom-
position of V into its isotypic components, then End.V;r/D

Q
iMsi .Di / with

Di D End.Vi ; ri /, which is semisimple.

PROPOSITION 4.19. Let .V;r/ be a finite-dimensional representation of an al-
gebraic group G over k. Let k0 be an extension of k, and let .V 0; r 0/ be the
representation .V;r/˝k0 of Gk0 .

3Traditionally, simple (resp. semisimple) representations ofG are said to be irreducible (resp.
completely reducible) when regarded as representations ofG, and simple (resp. semisimple) when
regarded asG-modules. I find this terminology clumsy and confusing, and so I follow DG, in using
“simple” and “semisimple” for both.
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(a) If .V 0; r 0/ is simple (resp. semisimple), then so also is .V;r/.

(b) If .V;r/ is simple and End.V;r/D k, then .V 0; r 0/ is simple.

(c) If .V;r/ is semisimple and k0 is a separable extension of k or End.V;r/ is
a separable algebra over k (i.e., semisimple with étale centre), then .V 0; r 0/
is semisimple.

PROOF. The proof is similar to that for representations of algebras (Bourbaki
1958, Chap. 8, �13, no. 4). Alternatively, when k is perfect, it can be deduced
from the similar statement for algebras by using the correspondence between
representations of G and its algebra of distributions (Section l of Chapter 10). 2

LEMMA 4.20 (SCHUR’S). Let .V;r/ be a representation of an algebraic group
G. If .V;r/ is simple and k is algebraically closed, then End.V;r/D k.

PROOF. Let ˛WV ! V be an endomorphism of .V;r/. Because k is algebraically
closed, ˛ has an eigenvector, say, ˛.v/ D av, a 2 k. Now ˛�aWV ! V is a
G-homomorphism with nonzero kernel. Because V is simple, the kernel must
equal V . Hence ˛ D a: 2

PROPOSITION 4.21. Let G1 and G2 be algebraic groups over a field k. If
.V1; r1/ and .V2; r2/ are simple representations of G1 and G2 and End.V2; r2/D
k, then V1˝V2 is a simple representation of G1�G2. Moreover, every simple
representation of G1�G2 is of this form if End.V;r/D k for all simple repres-
entations .V;r/ of G2.

PROOF. Suppose that V1 and V2 are simple, and let W be a nonzero G1�G2-
submodule of V1˝V2. The choice of a basis for V1 determines an isomorphism
V1˝ V2 ' V

d
2 of G2-modules. As W ,! V d2 and V2 is simple, W is also

isomorphic to a direct sum of copies of V2 as a G2-module (4.17). Because
End.V2/D k, the inclusion W ,! V1˝V2 is described by a matrix with coeffi-
cients in k, and linear algebra4 now shows that we can choose the basis for V1
so that the isomorphism V1˝V2 ' V

d
2 maps W onto V e2 � V

d
2 for some e � d .

This means that W D V ˝V2 for some nonzero vector subspace V of V1. In
fact, V is necessarily a G1-submodule of V1: any nonzero linear form f on V2
induces a morphism of G1-modules id˝f WV1˝V2! V1, and the composite

W D V ˝V2! V1˝V2! V1

is then a morphism of G1-modules with image V . As V1 is simple, this implies
that V D V1, and so W D V1˝V2.

For the proof of the converse statement (which we do not need), see Steinberg
1967, �12, when k is algebraically closed, and Zibrowius 2015, 4.1, in general.2

4The choice of an isomorphismW ! V e2 and a basis for V1 identifies Hom.W;V1˝V2/ with
Md;e.k/. The given inclusionW ,! V1˝V2 defines an element ofMd;e.k/, which can be put
in row echelon form by changing the basis for V1.
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g. Characters and eigenspaces

A character5 of an algebraic group G over k is a homomorphism G!Gm. As
O.Gm/D kŒT;T �1� and �.T /D T ˝T , to give a character � of G is the same
as giving an invertible element aD a.�/ of O.G/ such that �.a/D a˝a; such
an element is said to be group-like.

A character � of G defines a representation r of G on a vector space V by
the rule

r.g/v D �.g/v; g 2G.R/, v 2 VR:

In this case, we say that G acts on V through the character�. In other words, G
acts on V through the character � if r factors through the centre Gm of GLV as

G
�
�!Gm ,! GLV : (27)

For example, in

g 7!

�
�.g/ 0

: : :

0 �.g/

�

; g 2G.R/;

G acts on kn through the character �. When V is one-dimensional, GLV DGm,
and so G always acts on V through some character.

Let r WG ! GLV be a representation of G and �WV ! V ˝O.G/ the cor-
responding co-action. Let � be a character of G and a.�/ the corresponding
group-like element of O.G/. Then G acts on V through � if and only if

�.v/D v˝a.�/; all v 2 V: (28)

More generally, we say thatG acts on a subspaceW of V through a character
� if W is stable under G and G acts on W through �. Note that this means, in
particular, that the elements of W are common eigenvectors for the g 2G.k/. If
G acts on subspaces W and W 0 through a character �, then it acts on W CW 0

through �. Therefore, there is a largest subspace V� of V on which G acts
through �, called the eigenspace for G with character �.

PROPOSITION 4.22. Let .V;r/ be a representation of G and �WV ! V ˝O.G/
the corresponding co-action. For a character � of G,

V� D fv 2 V j �.v/D v˝a.�/g.

PROOF. The set fv 2 V j �.v/D v˝a.�/g is a subspace of V on which G acts
through � (by (28)), and it clearly contains every such subspace. 2

5In the old literature, a character in our sense is called a rational character to distinguish it from a
character of the abstract groupG.ka/.
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Let A be a Hopf algebra and a a group-like element of A. Then, from the
second diagram in (17), p. 65, we see that

aD ..�; idA/ı�/.a/D �.a/a;

and so �.a/D 1.

PROPOSITION 4.23. The group-like elements in A are linearly independent.

PROOF. If not, it will be possible to express one group-like element e as a linear
combination of group-like elements ei ¤ e:

e D
P
i ciei , ci 2 k:

We may even suppose that the ei occurring in the sum are linearly independent.
Now

�.e/D e˝ e D
P
i;j cicj ei ˝ ej

�.e/D
P
i ci�.ei /D

P
i ciei ˝ ei :

The ei ˝ ej are also linearly independent, and so this implies that�
cici D ci all i
cicj D 0 if i ¤ j:

We also know that
1D �.e/D

P
ci�.ei /D

P
ci :

On combining these statements, we see that the ci form a complete set of ortho-
gonal idempotents in the field k, and so one of them equals 1 and the remainder
are zero, which contradicts our assumption that e is not equal to any of the ei . 2

COROLLARY 4.24. Let G be an algebraic group. Distinct characters �1; : : : ;�n
of G are linearly independent.

PROOF. Suppose that the sum
P
ci�i , ci 2 k, is the zero map G! A1. ThenP

ci �a.�i /D 0, and so each ci D 0. 2

THEOREM 4.25. Let r WG! GL.V / be a representation of an algebraic group
on a vector space V . If V is a sum of eigenspaces, say V D

P
�2� V� with � a

set of characters of G, then it is a direct sum of the eigenspaces

V D
M

�2�
V�:

PROOF. If the sum is not direct, then there exists a finite set f�1; : : : ;�mg,m� 2,
and a relation

v1C�� �Cvm D 0; vi 2 V�i ; vi ¤ 0:
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On applying � to this relation, we find that

0D �.v1/C�� �C�.vm/D v1˝a.�1/C�� �Cvm˝a.�m/.

For every linear map f WV ! k,

0D f .v1/ �a.�1/C�� �Cf .vm/ �a.�m/;

which contradicts the linear independence of the a.�i /. 2

Later (12.12) we shall show that if G is a product of copies of Gm, then every
representation is a sum of the eigenspaces.

Let H be an algebraic subgroup of an algebraic group G and � a character
of H . We say that � occurs in a representation .V;r/ of G if H acts on some
nonzero subspace of V through �.

PROPOSITION 4.26. Let H , G, and � be as above. If � occurs in some repres-
entation of G, then it occurs in the regular representation.

PROOF. After 4.13, � occurs in O.G/n for some n. Under some projection
O.G/n!O.G/, this space maps to a nonzero subspace of O.G/, on which H
acts through �. 2

h. Chevalley’s theorem

THEOREM 4.27 (CHEVALLEY). Let G be an algebraic group. Every algebraic
subgroup H of G arises as the stabilizer of a one-dimensional subspace L in a
finite-dimensional representation .V;r/ of G.

PROOF. Let a be the kernel of O.G/!O.H/. According to Proposition 4.7,
there exists a finite-dimensional k-subspace V of O.G/ containing a generating
set of a as an ideal and such that

�.V /� V ˝O.G/:

Let W D a\V in V . Let .ei /i2J be a basis for W , and extend it to a basis
.ei /JtI for V . Let

�ej D
P
i2JtI ei ˝aij ; aij 2O.G/:

As in the proof of 4.3, O.GW / D O.G/=a0, where a0 is the ideal generated
by faij j j 2 J; i 2 I g. Because O.G/! O.H/ is a homomorphism of Hopf
algebras

�.a/�O.G/˝aCa˝O.G/;
�.a/D 0
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(see 3.11). The first of these applied to ej , j 2 J , shows that a0 � a, and the
second shows that

ej D .�; id/�.ej /D
P
i2I �.ei /aij :

As the ej , j 2 J , generate a (as an ideal), so do the aij , j 2 J , and so a0 D a.
Thus H DGW . The next (elementary) lemma allows us to replace W with the
one-dimensional subspace

Vd
W of

Vd
V . 2

LEMMA 4.28. Let W be a subspace of dimension d in a vector space V and
˛ an automorphism of VR for some k-algebra R. Then D def

D
Vd

W is a one-
dimensional subspace of

Vd
V and ˛WR DWR if and only if .

Vd
˛/DR DDR.

PROOF. Let .ej /1�i�d be a basis for W , and extend it to a basis .ei /1�i�n of V .
Let w D e1^ : : :^ ed . For all k-algebras R,

WR D fv 2 VR j w^v D 0 (in
VdC1

VR)g.

To see this, let v 2 VR and write v D
Pn
iD1 aiei , ai 2R. Then

w^w D
P
dC1�i�n aie1^� � �^ ed ^ ei .

As the elements e1 ^ � � � ^ ed ^ ei , d C 1 � i � n, are linearly independent inVdC1
V , we see that

w^v D 0 ” ai D 0 for all d C1� i � n:

Let ˛ 2 GL.VR/. If ˛WR DWR, then obviously .
Vd

˛/.DR/DDR. Con-
versely, suppose that .

Vd
˛/.DR/ D DR, so that .

Vd
˛/w D cw for some

c 2R�. If v 2WR, then w^v D 0, and so

0D .
VdC1

˛/.w^v/D .
Vd

˛/w^˛v D c .w^ .˛v// ;

which implies that ˛v 2WR. 2

COROLLARY 4.29. Let G be an algebraic group over k, and let H be an algeb-
raic subgroup of G with the following property: whenever a character � of H
occurs in some representation of G, so also does �m� for some m > 0. Then
it is possible to choose the pair .V;L/ in 4.27 so that H acts on L through the
trivial character.

PROOF. Let .V;L/ be as in 4.27 and let � be the character of H acting on L.
Then H is the stabilizer of L˝m in V ˝m (see 4.6). By assumption, there exists a
representation .V 0; r 0/ of G and a subspace W of V 0 such that H stabilizes W
and acts on it through �m�. Now H is the stabilizer of L˝m˝W in V ˝m˝W
(see 4.6), and it acts on it through the character m��m� D 0. Lemma 4.28
allows us to replace L˝m˝W with a one-dimensional subspace of a suitable
exterior power of V ˝m˝W . 2
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REMARK 4.30. Theorem 4.27 is stronger than the usual form of the theorem
(Borel 1991, 5.1; Springer 1998, 5.5.3) even when G and H are both group
varieties because it implies that V and L can be chosen so that H is the stabilizer
of L in the sense of schemes. This means that H.R/ is the stabilizer of LR in VR
for all k-algebras R (see the definition p. 85). On applying this with RD kŒ"�,
"2 D 0, we find that Lie.H/ is the stabilizer of L in Lie.G/ – see 10.32 below.

i. The subspace fixed by a group

Let G be an algebraic group and .V;r/ a representation of G. We let V G denote
the subspace of V fixed by G:

V G
def
D fv 2 V j g �vR D vR (in VR) for all k-algebras R and all g 2G.R/g:

PROPOSITION 4.31. Let R be a k-algebra. The R-module V G˝R consists of
the elements of V ˝R fixed by all elements of G.R0/ with R0 an R-algebra.

PROOF. Let v 2 V ˝R be fixed (in V ˝R0) by all elements of G.R0/ with
R0 an R-algebra. Let .ei / be a basis for R as a k-vector space, and write
v D

P
i vi ˝ ei . It suffices to show that each vi 2 V G . Let g 2 G.S/ for some

k-algebra S , and let g0 be the image of g in G.S˝R/ under the map defined by
s 7! s˝1RWS ! S˝R. By hypothesis,

P
vi ˝1S ˝ ei is fixed by g0:

g0 � .
P
vi ˝1S ˝ ei /D

P
vi ˝1S ˝ ei .

But,
g0 � .

P
vi ˝1S ˝ ei /D

P
g.vi ˝1S /˝ ei

and so g.vi ˝ 1S / D vi ˝ 1S for all i . We have shown that the vi satisfy the
condition to lie in V G . 2

PROPOSITION 4.32. Let k0 be an extension of k such that G.k0/ is dense in G.
Then

V G D V \V.k0/G.k
0/:

PROOF. Certainly, V G �W def
D V \V.k0/G.k

0/. Conversely, the stabilizer GW
of W has the property that GW .k0/DG.k0/, and so equals G. 2

For example, if G is a connected group variety over an infinite perfect field
(3.17), or a group variety over a separably closed field (1.17), then

V G D V.k/G.k/:

PROPOSITION 4.33. Let � be the co-action of .V;r/. Then

V G D fv 2 V j �.v/D v˝1 in V ˝O.G/g:

PROOF. This is the subspace fixed by the universal element id 2G.O.G//. 2



i. The subspace fixed by a group 97

COROLLARY 4.34. The formation of V G commutes with extension of the base
field:

.V ˝k0/Gk0 ' V G˝k0;

for every field k0 containing k.

PROOF. The condition in the proposition is linear. 2

REMARK 4.35. We can regard the action ofG on the vector space V as an action
of G on the algebraic scheme Va (notation as in 2.6). Then 4.31 shows that

.V G/a D .Va/
G .

Exercises

EXERCISE 4-1. Let G be a connected algebraic group over a field k of charac-
teristic zero, and let H be an algebraic subgroup of G. Show that H is normal in
G if and only if, for every representation .V;r/ of G and character � 2 X.H/,
the eigenspace V� is stable under G. [Use 4.27.]

EXERCISE 4-2. Let G be an algebraic group over k and H a normal algebraic
subgroup of G. From a representation .V;r/ of H and a g 2 G.k/, we get a
conjugate representation h 7! r.ghg�1/ ofH . Assume thatG.k/ is schematically
dense in G, and let .V;r/ be a simple representation of G. Show that r jH is
semisimple and that all of its simple constituents are conjugate and have the same
multiplicity (Clifford’s theorem; see Jacobson 1989, Section 5.2).

EXERCISE 4-3. Let .V;r/ be a representation of an algebraic group G over k,
and suppose that �0.G/ has order prime to char.k/. Show that r is semisimple if
its restriction to Gı is semisimple (extension of Maschke’s theorem; see 22.43
below).



CHAPTER 5

Group Theory; the Isomorphism
Theorems

In this chapter, we develop some basic group theory. In particular, we show that
the Noether isomorphism theorems hold for algebraic groups over a field.

a. The isomorphism theorems for abstract groups

For reference, we state the isomorphism theorems for abstract groups.

5.1. (Existence of quotients). The kernel of a homomorphismG!H of groups
is a normal subgroup, and every normal subgroup N of G arises as the kernel of
a surjective homomorphism G!G=N .

5.2. (Homomorphism theorem). Every homomorphism 'WG!H of groups
factors as a composite of homomorphisms

G
q
�! I

i
�!H

with q surjective and i injective.

5.3. (Isomorphism theorem). Let H and N be subgroups of G such that H
normalizes N . Then HN is a subgroup of G, H \N is a normal subgroup of
H , and the map

x.H \N/ 7! xN WH=.H \N/! .HN/=N

is an isomorphism.

5.4. (Correspondence theorem). Let N be a normal subgroup of a group G.
The map H 7!H=N is a bijection from the set of subgroups of G containing N

98
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to the set of subgroups of G=N . A subgroup H containing N is normal in G if
and only if H=N is normal in G=N , in which case the natural map

G=H ! .G=N/=.H=N/

is an isomorphism.

In fact, H 7!H=N is an isomorphism from the lattice of subgroups of G
containing N to the lattice of subgroups of G=N . With this addendum, 5.4 is
often called the lattice theorem.

b. Quotient maps

DEFINITION 5.5. A homomorphism of algebraic groups is a quotient map if it
is faithfully flat.

Thus a homomorphism is a quotient map if it is both flat and surjective. Not
every surjective homomorphism is flat. For example, the homomorphism e! p̨

is surjective but not flat. More generally, if G is a nonreduced algebraic group
such that Gred is an algebraic subgroup, then the homomorphism Gred! G is
surjective but not flat. In these examples, the target group is not reduced – when
H is reduced, every surjective homomorphism G!H is flat (1.70) and hence a
quotient map.

For example, for n¤ 0, the homomorphism t 7! tnWGm!Gm is a quotient
map because it is surjective and Gm is reduced (it is surjective because it is
surjective on ka-points). Note that Gm.R/! Gm.R/ need not be surjective
because the elements of R� need not be nth powers.

DEFINITION 5.6. Let F be a functor from small k-algebras to sets. A subfunctor
D of F is fat if, for every R and x 2 F.R/, there exists a faithfully flat R-algebra
R0 such that the image x0 of x in F.R0/ lies in D.R0/.

For example, the functor R R�n is fat in R R� because an a 2 R�

becomes an nth power in RŒT �=.T n�a/, which is faithfully flat over R.

PROPOSITION 5.7. Let 'WX ! Y be a faithfully flat morphism of algebraic
schemes over k. The subfunctor R '.X.R// of QY is fat.

PROOF. Let R be a k-algebra, and let y 2 Y.R/. Write X �Y Spm.R/ as a finite
union of open affine subschemes Ui . Let Ri DO.Ui /, and let R0 D

Q
i Ri . We

have a diagram

X X �Y Spm.R/
F
i Ui D Spm.R0/

Y Spm.R/

' faithfully flat

y

in which Spm.R0/! Spm.R/ is faithfully flat. The diagram provides a lifting of
the image of y in Y.R0/ to X.R0/. 2
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PROPOSITION 5.8. Let 'WX ! Y be a morphism of algebraic schemes over
k such that the subfunctor R '.X.R// of QY is fat. If the first projection
X �Y X !X is faithfully flat, then so also is '.

PROOF. Let U be an open affine subscheme of Y , and let XU D X �Y U . By
hypothesis, there exists a faithfully flat map U 0! U such that the composite
U 0!U !Y lifts to a mapU 0!X (and henceU 0!U lifts to a mapU 0!XU ).
Consider the diagram with cartesian squares:

XU XU �U XU U 0�U XU

U XU U 0:

'U '0 '00

The map '0 is faithfully flat because it is the pull-back of X �Y X ! X by
U ,! Y . Hence '00 is faithfully flat, and this implies that 'U is faithfully flat
(because U 0 ! U is faithfully flat; apply A.80). As this is true for all U , it
follows that ' is faithfully flat. 2

LEMMA 5.9. Let R!R0 be a faithfully flat homomorphism of k-algebras, and
let X be an algebraic k-scheme. Then the sequence

X.R/ X.R0/ X.R0˝RR
0/

is exact. (The maps in the pair are induced by the maps r 7! 1˝r and r 7! r˝1.)

PROOF. The sequence

R R0 R0˝RR
0

is exact (CA 11.12). Hence, for any k-algebra A, the sequence

Hom.A;R/ Hom.A;R0/ Hom.A;R0˝RR0/

is exact. This implies the lemma when X is affine, and the general case is proved
by covering X with open affine subschemes. 2

PROPOSITION 5.10. Let X and Y be algebraic schemes over k, and let D be a
fat subfunctor of QX . Every map of functors 'WD! QY extends uniquely to a map
of functors QX ! QY (hence to a map of schemes X ! Y by the Yoneda lemma).

PROOF. Let x 2 X.R/, and let R! R0 be a faithfully flat map such that the
image x0 of x in X.R0/ lies in D.R0/. There is a commutative diagram

X.R/ X.R0/ X.R0˝RR
0/

Y.R/ Y.R0/ Y.R0˝RR
0/

' ' '
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with exact rows (the dashed arrows are defined only on the subsetD.�/ ofX.�/).
From the diagram, we see that '.x0/ is the image of a unique element of Y.R/,
which we denote Q'.x/. One checks easily that Q'.x/ is independent of the choice
of R0. Thus we have a map x 7! Q'.x/ extending '.R/ to X.R/. These maps for
varying R form a morphism of functors QX ! QY extending '. 2

COROLLARY 5.11. Let X and X 0 be algebraic schemes over k and D and D0

fat subfunctors of QX and QX 0 respectively. Every isomorphism D!D0 extends
uniquely to an isomorphism X !X 0.

PROOF. Immediate consequence of the proposition. 2

PROPOSITION 5.12. Let X be an algebraic scheme over k and D a fat subfunc-
tor of QX . Every group structure on D extends uniquely to a group structure on
X .

PROOF. Let mWD�D!D be a group structure on D. The subfunctor D�D
of QX � QX is fat, and so m extends uniquely to a map of functors QmW QX � QX ! QX .
By assumption, there exist maps eW�!D and invWD!D making the diagrams
in 1.1 commute for D. These maps extend uniquely to QX and make the similar
diagrams commute. Now QX is a functor to groups, and so .X;m/ is an algebraic
group. 2

THEOREM 5.13. Let qWG!Q be a quotient map of algebraic groups over k,
and let N be the kernel. Every homomorphism 'WG!H whose kernel contains
N factors uniquely through q:

G Q

H:

q

' 9Š

PROOF. LetD denote the functorR G.R/=N.R/. By assumption, the functor
Q'W QG! QH factors through D,

Q' D
�
QG!D

'0
�! QH

�
:

As D is a fat subfunctor of Q, the map '0 arises from a unique morphism
'0WQ ! H . This makes the diagram commute, and it is a homomorphism
because '0 is a homomorphism of group functors. 2

It follows that a quotient map qWG!Q is uniquely determined by its kernel
N up to a unique isomorphism. We denote any such map by qWG!G=N and
call G=N the quotient of G by N .
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NOTES. In DG, III, �1, 1.4, a subfunctorD of a functor F is said to be dodu1 if, for every
small R and x 2 F.R/, there exists a finite faithfully flat family of R-algebras .Ri /i2I
such that the image xi of x in F.Ri / lies in D.Ri / for all i . Clearly a fat subfunctor is
dodu, and a dodu subfunctor of QX is fat if D.

Q
Ri /!

Q
D.Ri / is surjective for all finite

families .Ri / of k-algebras.

c. Existence of quotients

The kernel of a homomorphism of algebraic groups is obviously normal. Less
obvious is that every normal algebraic subgroup is the kernel of a quotient map.

THEOREM 5.14. Every normal algebraic subgroup N of an algebraic group G
arises as the kernel of a quotient map G!Q.

Affine case

LEMMA 5.15. Let N be an algebraic subgroup of an algebraic group G, and let
.V;r/ be a representation of G. If N is normal in G, then V N is stable under G.

PROOF. Let v 2 V N ˝R, let g 2G.R/ for some R, and let n 2N.R0/ for some
R-algebra R0. Then

n.g �v/R0 D .ng/ �vR0 D .gn
0/ �vR0 D g.n

0
�vR0/D g �v

because n0 def
D g�1ng 2N.R0/. According to Proposition 4.31, this implies that

g �v 2 V N ˝R, as required. 2

LEMMA 5.16. Let H be a normal algebraic subgroup of an affine algebraic
group G over an algebraically closed field k. If a character � of H occurs in a
representation of G, then so also does �m� for some m> 0.

PROOF. Let � be a character of H occurring in a representation .V;r/ of G.
It suffices to show that there exists a representation .W;rW / of G and a one-
dimensional subspace L1 in W such that (a) H acts on L1 through m� and (b)
L1 is a direct summand of W as an H -module, because then L_1 is a direct
summand of W _ as an H -module and H acts on it through �m�.

Suppose first that G.k/ is dense in G (as a scheme). By assumption, there
is a line L in V on which H acts through �. Let W be the sum of all one-
dimensional subspaces in V stable under H . If D is such a subspace D, then
gD is stable under gHg�1 DH for all g 2G.k/. Therefore W is stable under
G.k/, and hence under G (see 4.5). As W is a sum of simple representations of
H , Proposition 4.17 shows that L is a direct summand of W as an H -module.

We now prove the general case. We may suppose that G has characteristic
p ¤ 0. There exists an r > 0 such that the image I of F r WG!G.p

r / is smooth
(see 3.30). The group H acts on the line L˝p

r
in V ˝p

r
through pr�, and

1Larousse: dodu adj. Se dit d’un animal gras, bien en chair.
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the functoriality of the Frobenius map implies that pr� factors through the
quotientH .pr / ofH . LetN denote the kernel of F nWG!G.p

r /. Then L˝p
r
�

.V ˝p
r
/N and G acts on .V ˝p

r
/N through its quotient I . The sum of the one-

dimensional subspaces in .V ˝p
r
/N stable under H is stable under I.k/, hence

under I and G, and contains L˝p
r

as a direct summand. 2

LEMMA 5.17. Let G be an affine algebraic group over an algebraically closed
field k. Every normal algebraic subgroup N of G is the kernel of a representation
of G.

PROOF. According to 4.29 and 5.16, it is possible to choose the pair .V;L/
in Chevalley’s theorem (4.27) so that N acts on L through the trivial character.
BecauseN is normal,G stabilizes V N (see 5.15). The kernel of the representation
ofG on V N obviously containsN , but as it stabilizesL, it must also be contained
in N . 2

PROPOSITION 5.18. Every normal algebraic subgroup N of an affine algebraic
group G is the kernel of a quotient map G!Q with Q affine.

PROOF. Lemma 5.17 shows that Nk0 is the kernel of a homomorphism ˛WGk0!

Hk0 for some extension k0 of k, which we may choose to be finite. Let ˇ be the
composite of the homomorphisms

G
iG
�! .G/k0=k

.˛/k0=k
�! .H/k0=k

(notation as in 2.56). On a k-algebra R, these homomorphisms become

G.R/
iG.R/
�! G.R0/

˛.R0/
�! H.R0/; R0 D k0˝R,

where iG.R/ is induced by the natural inclusion R! R0. The map iG.R/ is
injective because R!R0 is faithfully flat, and so

Ker.ˇ.R//DG.R/\N.R0/DN.R/:

Hence N is the kernel of the homomorphism ˇWG! .H/k0=k . Factor ˇ as

in 3.34: ˇ D .G
q
�! I

i
�!H/ with q faithfully flat and i a closed immersion.

Then q is a quotient map with kernel N . 2

This proves Theorem 5.14 for an affine G.

COROLLARY 5.19. Every normal algebraic subgroup N of an affine algebraic
group G is the kernel of a representation of G.

PROOF. Let N be the kernel of a quotient map G !Q with Q affine. Now
choose a faithful representation of Q (which exists by 4.9). 2
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General case

First we need the notion of a quotient with respect to a nonnormal subgroup.

DEFINITION 5.20. Let H be an algebraic subgroup of an algebraic group G
over k. A quotient of G by H is an algebraic scheme X equipped with an action
�WG�X !X of G and a point o 2X.k/ such that, for all small k-algebras R,

(a) the nonempty fibres of the map g 7! goWG.R/!X.R/ are the cosets of
H.R/ in G.R/;

(b) each element of X.R/ lifts to an element of G.R0/ for some faithfully flat
R-algebra R0.

In other words, .X;�;o/ is a quotient of G by H if the orbit map �oWG! X ,
g 7! go, realizes QG= QH as a fat subfunctor of QX .

PROPOSITION 5.21. Let .X;�;o/ be a quotient of G by H ,
and let 'WG!X 0 be a morphism of schemes over k. If '.R/
is constant on the cosets of H.R/ in G.R/ for all small k-
algebras R, then ' factors uniquely through �oWG!X .

G X

X 0:

'

�o

PROOF. By assumption Q'W QG ! QX 0 factors uniquely through QG= QH . Because
QG= QH is fat in QX , the resulting map QG= QH ! QX 0 extends uniquely to a map of

schemes X !X 0 (see 5.10). 2

PROPOSITION 5.22. Let .X;�;o/ be a quotient of G by H .
Let X 0 be a scheme on which G acts, and let o0 be a point
of X 0.k/ fixed by H . There is a unique G-equivariant map
X !X 0 making the diagram at right commute:

G X

X 0:

g 7!go

g 7!go0

PROOF. The orbit map g 7! go0WG! X 0 is constant on the cosets of H in G,
and so this follows from Proposition 5.21. 2

Thus, when it exists, the quotient .X;�;o/ of G byH is uniquely determined
up to a unique isomorphism. We denote X by G=H and (loosely) call it the
quotient of G by H .

PROPOSITION 5.23. Let G=H be the quotient of G by H . Then

dimG D dimH CdimG=H:

PROOF. We may suppose that k is algebraically closed. Then we may pass to
the associated reduced schemes, and apply A.72. 2

PROPOSITION 5.24. Let G=H be the quotient of G by H . The map

.g;h/ 7! .g;gh/WG�H !G�G=H G

is an isomorphism.
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PROOF. For all k-algebras R, the map

.g;h/ 7! .g;gh/WG.R/�H.R/!G.R/�G.R/=H.R/G.R/

is a bijective. As G.R/=H.R/ injects into .G=H/.R/, the map remains bijective
when G.R/=H.R/ is replaced with .G=H/.R/. 2

PROPOSITION 5.25. Let G=H be the quotient of G by H . The canonical map
qWG!G=H is faithfully flat.

PROOF. According to the lemma, the first projection mapG�G=H G!G differs
by an isomorphism from the projection map G�H !G, and so it is faithfully
flat. This implies that the map G!G=H is faithfully flat (5.8). 2

COROLLARY 5.26. If G is smooth, so also is G=H .

PROOF. Because q is faithfully flat, the map OG=H ! q�OG is injective, and
remains so after extension of the base field. Therefore, if G is smooth, then G=H
is geometrically reduced, which implies that it is smooth because it becomes
homogeneous over ka. 2

COROLLARY 5.27. The scheme G is an H -torsor over G=H .

PROOF. Combine Lemma 5.24 and Proposition 5.25. 2

THEOREM 5.28. Let i WH !G be a homomorphism of algebraic groups with
trivial kernel. There exists an algebraic scheme X equipped with an action
�WG �X ! X of G and a point o 2 X.k/ such that the map g 7! goWG! X

realizes QG= QH as a fat subfunctor of QX .

PROOF. This is proved in Appendix B (Theorem B.37). For the case that G is
affine, see Section 7e. 2

In particular, a quotient G=H exists for every algebraic subgroup H of an
algebraic group G.

We now prove Theorem 5.14 for a general algebraic group G. Let N be a
normal algebraic subgroup of G, and let qWG ! X be the faithfully flat map
given by Theorem 5.28. Then DWR G.R/=N.R/ is a fat subfunctor of X
equipped with a group structure. It follows thatX admits a unique group structure
for which q is a homomorphism (5.12). Now q is a quotient map with kernel N .

PROPOSITION 5.29. The quotient G=H (in the sense of 5.20) is affine if G is
affine and H is normal.

PROOF. We just showed that, whenH is normal, G=H is an algebraic group and
qWG! G=H is a quotient map. As its kernel is H , Theorem 5.13 shows that
this is isomorphic to the quotient map G!Q in 5.18. As Q is affine, so also
is G=H . 2
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ASIDE 5.30. Let G be an affine algebraic group. We saw in (5.29) that G=H is affine
if H is normal, but G=H may be affine without H being normal. When G and H are
smooth and G is reductive, Matsushima’s criterion says that G=H is affine if and only
if H ı is reductive. For example, the quotient GLn =H of GLn by a connected subgroup
variety H is affine if and only if H is reductive. See Borel 1985 (whose proof using
étale cohomology works for connected H ) or Richardson 1977 (whose proof works in
characteristic p using the conjecture of Mumford (12.58) proved by Haboush).

d. Monomorphisms of algebraic groups

PROPOSITION 5.31. The following conditions on a homomorphism 'WG!H

of algebraic groups over k are equivalent:
(a) '.R/WG.R/!H.R/ is injective for all (small) k-algebras R;
(b) Ker.'/D e;
(c) ' is a monomorphism in the category of algebraic groups over k;
(d) ' is a monomorphism in the category of algebraic schemes over k.

PROOF. (a),(b): The sequence

e! Ker.'/.R/!G.R/!H.R/

is exact for all R.
(c))(b): There are two homomorphisms Ker.'/! G whose composite

with ' is the trivial homomorphism, namely, the given inclusion and the trivial
homomorphism. The two must be equal, and so Ker.'/ is trivial.

(d))(c): This is obvious.
(a))(d): Let '1;'2WX !G be morphisms such that ' ı'1 D ' ı'2. Then

'.R/ı'1.R/D '.R/ı'2.R/ for all R, and so '1.R/D '2.R/ for all R. This
implies that '1 D '2 (Yoneda lemma A.33). 2

DEFINITION 5.32. A homomorphism of algebraic groups satisfying the equival-
ent conditions of the proposition is called a monomorphism.

PROPOSITION 5.33. If a homomorphism of algebraic groups is both a mono-
morphism and a quotient map, then it is an isomorphism.

PROOF. Let 'WG!H be such a homomorphism. We have to show that '.R/ is
surjective for all k-algebras R. Let h 2H.R/. Because ' is faithfully flat, there
exists a faithfully flat R-algebra R0 and a g 2G.R0/ mapping to h in H.R0/ (see
5.7). In the commutative diagram below, the rows are exact (5.9) and the vertical
maps are injective:

G.R/ G.R0/ G.R0˝RR
0/

H.R/ H.R0/ H.R0˝RR
0/

'.R/ '.R0/ '.R0˝RR
0/
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A diagram chase shows that g 2G.R/, and maps to h in H.R/. 2

THEOREM 5.34. A homomorphism of algebraic groups is a monomorphism if
and only if it is a closed immersion.

PROOF. Certainly, a closed immersion has trivial kernel. For the converse, let
i WH ! G be a monomorphism, and let G ! X be the quotient map in 5.28.
Then H is the fibre over the distinguished point e 2X.k/, i.e., it is the pull-back
of the map e!X . As e is a closed point of X , this is a closed immersion. 2

We sketch a direct proof of Theorem 5.34, not using the results of Appendix B.

DEFINITION 5.35. Let A be a ring (not necessarily a k-algebra). A finitely
generated A-algebra B is said to be quasi-finite over A if the ring B˝A �.p/ is
finite over �.p/ for all prime ideals p of A. (Here �.p/ is the field of fractions of
A=p.)

THEOREM 5.36 (ZARISKI’S MAIN THEOREM). Let B be a finitely generated
A-algebra, quasi-finite over A, and let A0 be the integral closure of A in B . Then

(a) the map SpecB! SpecA0 is a closed immersion, and

(b) there exists an A-subalgebra A00 of A0, finite over A, such that SpecB!
SpecA00 is an open immersion.

PROOF. See CA 17.12. 2

PROPOSITION 5.37. Let 'WX ! Y be a morphism of algebraic schemes over
k. If '.R/ is injective for all small k-algebras R, then there exists a dense open
subset U of Y such that '�1.U / is nonempty and 'j'�1.U / is an immersion.

PROOF. It suffices to prove this with X and Y affine. Certainly X ! Y is quasi-

finite, and so Theorem 5.36 provides a factorization ' D .X
i
,! Y 0

�
�! Y / with

i an open immersion and � finite. The subset �.Y 0X i.X// of Y is proper and
closed, and its complement U has the required properties. 2

We now prove Theorem 5.34. Let 'WG ! H be a monomorphism of al-
gebraic groups. Then j'j is injective with closed image. In proving that it is a
closed immersion, we may suppose that k is algebraically closed. According
to Proposition 5.37, there is a dense open subset U of H such that '�1.U / is
nonempty and 'j'�1.U / is an immersion. Using homogeneity, we deduce that '
is an immersion. As j'.G/j is closed (1.68), ' is a closed immersion.

REMARK 5.38. (a) For a proof of Proposition 5.37 that avoids using Zariski’s
main theorem, see DG, I, �3, no. 4, where one also finds an example of a mono-
morphism of algebraic schemes that is not a local immersion.2

2A morphism 'WX ! Y of algebraic schemes over k is a local immersion if X admits a
covering by open subsets U such that 'jU is an immersion. IfX is irreducible, then every injective
local immersionX! Y is an immersion. A monomorphismX! Y becomes a local immersion
on an open subset ofX .
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(b) As in the affine case (see 3.35), it is possible to deduce Theorem 5.34
easily from the homomorphism theorem. However, we use Theorem 5.34 to
prove the general case of the homomorphism theorem (5.39).

(c) Theorem 5.34 may fail for more general group schemes than those we
consider (SGA 3, VIII, 7).

e. The homomorphism theorem

THEOREM 5.39 (HOMOMORPHISM THEOREM). Every homomorphism of al-
gebraic groups 'WG!H factors into a composite of homomorphisms

G
q
�! I

i
�!H

with q faithfully flat and i a closed immersion.

PROOF. Let N D Ker.'/. Then qWG ! G=N is faithfully flat, and ' factors
through q (see 5.13):

' D i ıq.

The homomorphism i WG=N !H is a monomorphism, and hence is a closed
immersion (5.34). 2

REMARK 5.40. The factorization in 5.39 is essentially unique: if i ıq D i 0 ıq
with q and q0 faithfully flat and i and i 0 embeddings, then there exists a unique
isomorphism j such that j ıq D q0 and i D i 0 ıj :

I

G H

I 0

j

iq

q0 i 0

DEFINITION 5.41. A homomorphism of algebraic groups is an embedding if it
is a closed immersion.

Thus, every homomorphism of algebraic groups is the composite of a quotient
map and an embedding. An embedding ' is injective as a map of schemes (i.e.,
j'j is injective), but an injective homomorphism need not be an embedding. For
example, the trivial homomorphism p̨! e is injective but not an embedding.

REMARK 5.42. Recall (1.73) that the image of a homomorphism 'WG!H is
the algebraic group I in 5.39 regarded as a subgroup ofH . We denote it by '.G/
or Im.'/. Note that '.G/ is the smallest algebraic subgroup of H through which
' factors. The morphism 'WG! '.G/ is surjective, and its fibres are cosets of
Ker.'/ in G, and so

dim.G/D dim.'.G//Cdim.Ker.'//:
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Note that the factorization in 5.39 can be written

G H

G=N Im.'/

'

q

'

i

with N D Ker.'/.

PROPOSITION 5.43. The following conditions on a homomorphism 'WG!Q

of algebraic groups are equivalent:
(a) ' is a quotient map;

(b) the subfunctor R '.G.R// of QQ is fat;

(c) the homomorphism OQ! '�OG is injective.

PROOF. (a))(b). Special case of Proposition 5.7.
(b))(c). Let U be an open affine subset of Q, and let R D OQ.U /. On

applying (b) to the element Spm.R/ ,!Q of Q.R/, we see that there exists a
faithfully flat map R!R0 and a commutative diagram

G Spm.R0/

Q Spm.R/:

'

From this, we get a commutative diagram

OG.'�1U/ R0

OQ.U / R:

As R!R0 is injective, so also is OQ.U /!OG.'
�1U/.

(c))(a). Let ' D i ı q be the factorization in 5.39. By assumption, the
composite of the maps

OQ! i�OI ! '�G

is injective, and so OQ! i�OI is injective, but it is also surjective because i is a
closed immersion. Therefore, i is an isomorphism, and ' is faithfully flat. 2

ASIDE 5.44. Recall that a morphism ' in a category is an epimorphism if ˛ ı' D ˇ ı'
implies ˛ D ˇ. An epimorphism in the category of affine algebraic groups need not be
faithfully flat. Consider, for example,

T2 D
��
� �

0 �

��
,! SL2 :
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The quotient SL2 =T2 ' P1, and so a morphism from SL2 to an affine scheme is constant
if it is constant on the orbits of T2. However, a homomorphism 'WH !G of algebraic
groups is faithfully flat if it is an epimorphism in the category of algebraic schemes. To
see this, factor ' as in Theorem 5.39, and use that the quotient G=I exists (5.28). For a
recent study of epimorphisms in the category of algebraic groups, see Brion 2016.

PROPOSITION 5.45. Let 'WG !Q be a homomorphism of algebraic groups
with kernel N . Then Q is the quotient of G by N if and only if the functor

R G.R/=N.R/

is a fat subfunctor of Q.

PROOF. Because N is the kernel of G!Q, the sequence

e!N.R/!G.R/!Q.R/

is exact for all R, and so G.R/=N.R/�Q.R/. Hence G.R/=N.R/' '.G.R//,
and so the statement follows from Proposition 5.43. 2

PROPOSITION 5.46. Let I be the image of a homomorphism 'WG ! H of
algebraic groups. Then G ! I is a quotient map, and, for all k-algebras R,
I.R/ consists of the elements of H.R/ that lift to G.R0/ for some faithfully flat
R-algebra R0.

PROOF. The homomorphism G ! I is faithfully flat by definition, and this
implies the second part of the statement (5.43). 2

PROPOSITION 5.47. Let 'WG!H be a homomorphism of algebraic groups
over k. If ' is faithfully flat, then G.k0/!H.k0/ is surjective for every algebra-
ically closed field k0 containing k. Conversely, if G.k0/!H.k0/ is surjective
for some separably closed field k0 containing k and H is smooth, then ' is a
quotient map.

PROOF. If ' is faithfully flat, then so also is 'k0 . Let h 2 H.k0/. For some
finitely generated k0-algebra R, the image h0 of h in H.R/ lifts to an element
g of G.R/. Zariski’s lemma (CA 13.1) shows that there exists a k0-algebra
homomorphism R! k0. Under the map H.R/! H.k0/, h0 maps to h, and
under the map G.R/!G.k0/, g maps to an element lifting h.

For the converse statement, let I be the image of '. Then I.k0/DH.k0/, and
so I DH (see 1.17). 2

COROLLARY 5.48. If
e!N !G!Q! e (29)

is exact, then
e!N.ka/!G.ka/!Q.ka/! e (30)

is exact. Conversely, if Q is reduced, (30) is exact, and e! N ! G!Q is
exact, then (29) is exact.
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PROOF. The necessity follows from the proposition. Conversely, if Q is reduced
andG.ka/!Q.ka/ is surjective, thenG!Q is surjective, and so it is faithfully
flat (1.71). 2

EXAMPLE 5.49. The algebraic group PGLn is defined as the quotient GLn =Gm
of GLn (with Gm embedded diagonally). The map GLn.k/! PGLn.k/ is
surjective because H 1.k;Gm/D 1 (see 3.46), and so PGLn.k/D GLn.k/=k�.
The determinant map on GLn.k/ defines a surjective homomorphism PGLn.k/!
k�=k�n. The quotient map GLn! PGLn induces a quotient map SLn! PGLn
with kernel �n. Let A 2 GLn.k/. The element of PGLn.k/ represented by A is
in the image of SLn.k/ if and only if its det.A/ is an nth power in k.

f. The isomorphism theorem

Let H and N be algebraic subgroups of an algebraic group G. We say that H
normalizes N if H.R/ normalizes N.R/ in G.R/ for all k-algebras R. The ac-
tions ofH.R/ onN.R/ define an action � ofH onN by group homomorphisms,
and multiplication on G defines a homomorphism N Ì� H ! G. We define
NH DHN to be the image of this homomorphism. Then

N Ì� H !NH

is a quotient map and an element of G.R/ lies in .HN/.R/ if and only if it lies
in H.R0/N.R0/ for some faithfully flat R-algebra R0 (see 5.46). This means that
HN is the unique algebraic subgroup of G containing R H.R/N.R/ as a fat
subfunctor. If H and N are smooth, then HN is smooth (see 1.62); if H \N is
also smooth, then

.HN/.ks/DH.ks/ �N.ks/

and HN is the unique smooth algebraic subgroup of G with this property.

EXAMPLE 5.50. Consider the algebraic subgroups SLn and Gm (nonzero scalar
matrices) of GLn. Then Gm � SLn D GLn, but Gm.k/ � SLn.k/ ¤ GLn.k/ in
general (an invertible matrix is the product of a scalar matrix with a matrix of
determinant 1 if and only if its determinant is an nth power in k). The functor
R Gm.R/ �SLn.R/ is fat in GLn.

PROPOSITION 5.51. LetH andN be algebraic subgroups of an algebraic group
G with N normal. The canonical map

N Ì� H !G (31)

is an isomorphism if and only if N \H D feg and NH DG.

PROOF. There is an exact sequence

e!N \H !N Ì� H !NH ! e:

Therefore (31) is an embedding if and only if N \H D feg, and it is a quotient
map if and only if NH DG. 2
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THEOREM 5.52 (ISOMORPHISM THEOREM). Let H and N be algebraic sub-
groups of an algebraic group G such that H normalizes N . Then H \N is a
normal algebraic subgroup of H , and the natural map

H=H \N !HN=N

is an isomorphism.

PROOF. For each k-algebra R, H.R/ and N.R/ are subgroups of G.R/, and
H.R/ normalizes N.R/. Moreover H.R/\N.R/D .H \N/.R/, and so the
isomorphism theorem in abstract group theory gives us an isomorphism

H.R/=.H \N/.R/'H.R/ �N.R/=N.R/, (32)

natural inR. NowR H.R/=.H \N/.R/ is a fat subfunctor ofH=H \N and
R H.R/ �N.R/=N.R/ is a fat subfunctor ofHN=N , and so (32), regarded as
an isomorphism of functors, extends uniquely to an isomorphism H=H \N !

HN=N (see 5.11). 2

COROLLARY 5.53. In the situation of the theorem, there is a diagram

e N HN HN=N e

H=H \N

'

in which the row is exact.

PROOF. Restatement of the theorem. 2

g. The correspondence theorem

PROPOSITION 5.54. LetH andN be algebraic subgroups of an algebraic group
G, with N normal. The image of H in G=N is an algebraic subgroup of G=N
whose inverse image in G is HN .

PROOF. Let NH be the image of H in G=N . It is the unique algebraic subgroup
of G=N containing R H.R/N.R/=N.R/ as a fat subfunctor. The inverse
image H 0 of NH in G is the fibred product G�G=N NH regarded as an algebraic
subgroup of G. Recall that�

G�G=N NH
�
.R/DG.R/�.G=N/.R/ NH.R/:

Now R G.R/�.G=N/.R/ NH.R/ contains R H.R/N.R/ as a fat subfunctor,
and so H 0 is the (unique) algebraic subgroup of G containing R H.R/N.R/

as a fat subfunctor. In other words, H 0 DHN (see 5.46). 2
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THEOREM 5.55 (CORRESPONDENCE THEOREM). Let N be a normal algeb-
raic subgroup of an algebraic group G. The map H 7!H=N is a bijection from
the set of algebraic subgroups ofG containingN to the set of algebraic subgroups
of G=N . An algebraic subgroupH of G containing N is normal in G if and only
if H=N is normal in G=N , in which case the natural map

G=H ! .G=N/=.H=N/

is an isomorphism.

PROOF. The first statement follows from Proposition 5.54. For the second
statement, note that the map

G.R/=H.R/! .G.R/=N.R//=.H.R/=N.R//

defined by the quotient map G.R/! G.R/=N.R/ is an isomorphism, natural
in R. The algebraic group G=H (resp. .G=N/=.H=N/) contains the left (resp.
right) functor as a fat subfunctor, and so we can apply 5.11. 2

COROLLARY 5.56. Let H and N be algebraic subgroups of G such that N is
normal. If G=N is smooth and H.ka/N.ka/DG.ka/, then HN DG.

PROOF. The restriction of the quotient map G!G=N to H has kernel H \N ,

and hence factors into H ! H=H \N
i
�! G=N with i a closed immersion

(5.39). The hypothesis implies that i is surjective on ka-points. As .G=N/ka is
reduced, this implies that i is an isomorphism. Thus HN=N 'G=N (by 5.52),
which implies that HN DG (by 5.55). 2

COROLLARY 5.57. For an algebraic group G over a perfect field k,

G DGred �G
ı:

PROOF. Because k is perfect, Gred is an algebraic subgroup of G (see 1.39). The
homomorphism Gred.k

a/D G.ka/! �0.G/.k
a/ is surjective, and so G.ka/D

Gred.k
a/ �Gı.ka/. As �0.G/ is smooth, we can apply the last corollary. 2

NOTES. The Noether isomorphism theorems fail in the category of group varieties. Con-
sider, for example, the algebraic group GLn and its normal subgroups SLn and Gm (scalar
matrices). If nD p D char.k/, then SLp\Gm D e in the category of group varieties, but

SLp =SLp\Gm! SLp �Gm=Gm (33)

is the homomorphism SLp! PGLp , which is not an isomorphism of group varieties (it is
purely inseparable of degree p). In the category of algebraic group schemes, SLp\Gm D
�p , and (33) is the isomorphism

SLp =�p! PGLp :

This failure, of course, causes endless problems, but when Borel, Chevalley, and others
introduced algebraic geometry into the study of algebraic groups they based it on the
algebraic geometry of the day, which did not allow nilpotents.

The isomorphism theorems for algebraic group schemes over a field are widely used
but rarely stated.
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h. The connected-étale exact sequence

PROPOSITION 5.58. Let G be an algebraic group. Then Gı is the unique con-
nected normal algebraic subgroup of G such that G=Gı is étale.

PROOF. Let N be a connected normal algebraic subgroup of G such that G=N
is étale. According to Proposition 2.37(a), the homomorphism G!G=N factors
through G! �0.G/, and so there is a commutative diagram

e Gı G �0G e

e N G G=N e

with exact rows. On applying the snake lemma (Exercise 5-7) to the diagram, we
obtain an exact sequence of algebraic groups:

e!Gı!N ! �0G:

As N is connected, the homomorphism N ! �0G is trivial, and so Gı 'N . 2

Let G be an algebraic group. Proposition 5.58 says that

e!Gı!G! �0.G/! e

is the unique exact sequence with Gı connected and �0.G/ étale. It is called the
connected-étale exact sequence.

PROPOSITION 5.59. Let

e!N !G!Q! e

be an exact sequence of algebraic groups.
(a) If N and Q are connected, then G is connected.

(b) If G is connected, then Q is connected.

PROOF. If N is connected, then it maps to e in �0.G/, and so G ! �0.G/

factors through Q, and hence through �0.Q/, which is trivial if Q is connected.
The surjective homomorphism G!Q! �0.Q/ factors through �0.G/, and so
�0.Q/ is trivial if �0.G/ is. 2

More generally, the sequence �0.N /! �0.G/! �0.Q/! e is exact (Ex-
ercise 5-9). In Proposition 5.59, N need not be connected when G is connec-
ted. For example, Gm is connected, but the kernel �n of the quotient map
x 7! xnWGm! Gm is not connected unless n is a power of the characteristic
exponent of k.
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EXAMPLE 5.60. Let G be finite. When k has characteristic zero, G is étale, and
so G D �0.G/ and Gı D 1. Otherwise, there is an exact sequence

e!Gı!G! �0.G/! e:

When k is perfect, the homomorphism G ! �0.G/ has a section, and G is a
semidirect product G DGıÌ�0.G/ (see 11.3 below).

ASIDE 5.61. In general, the connected-étale sequence does not split, even when k is
perfect. However, there is the following result: let e! N ! G!Q! e be an exact
sequence of algebraic groups with Q finite; then there exists a finite algebraic subgroup
F of G mapping onto Q (so G D N �F ); if Q is étale and k is perfect, then F may be
chosen to be étale (Brion 2015a, 1.1).

i. The category of commutative algebraic groups

THEOREM 5.62. The commutative algebraic groups over k form an abelian
category.

PROOF. The Hom sets are commutative groups, and composition of morphisms
is bilinear. Moreover, the product G1�G2 of two commutative algebraic groups
is both a product and a sum of G1 and G2. Thus the category of commutative
algebraic groups over a field is additive. Every morphism in the category has
both a kernel and cokernel, and the canonical morphism from the coimage of the
morphism to its image is an isomorphism (homomorphism theorem, 5.39, 5.42).
Therefore the category is abelian. 2

COROLLARY 5.63. The affine commutative algebraic groups over k form an
abelian subcategory of the category of all commutative algebraic groups over k.

PROOF. In fact, they form a thick subcategory: they form a full subcategory by
definition; subgroups of affine groups are affine (1.43); quotients of affine groups
are affine (5.29); extensions of affine groups are affine (2.70). 2

COROLLARY 5.64. The finitely generated commutative cocommutative Hopf
algebras over a field form an abelian category.

PROOF. This category is contravariantly equivalent to that in Theorem 5.62. 2

NOTES. Theorem 5.62 is proved in SGA 3, VIA, 5.4.3, p. 327 and DG, III �3, 7.4.
Corollary 5.64 is proved purely in the context of Hopf algebras in Sweedler 1969, Chapter
XVI, for finite-dimensional commutative cocommutative Hopf algebras, and in Takeuchi
1972, 4.16, for finitely generated commutative cocommutative Hopf algebras.
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j. Sheaves

In the remainder of this chapter, we explain how to use sheaves to treat some of
the earlier material more efficiently. All functors are from the category of small
k-algebras to sets or groups.

DEFINITION 5.65. A flat sheaf (better, sheaf for the flat topology) is a functor
F such that

(a) (local) for all small k-algebras R1; : : : ;Rm

F.R1� � � ��Rn/' F.R1/� � � ��F.Rm/I

(b) (descent) for all faithfully flat homomorphismsR!R0 of small k-algebras,
the sequence

F.R/! F.R0/� F.R0˝RR
0/

is exact. The maps F.R0/! F.R0˝RR
0/ are defined by the homomorph-

isms R0!R0˝RR
0 sending r to r˝1 or 1˝ r .

A morphism of flat sheaves is a natural transformation.

EXAMPLE 5.66. Let F D hA def
D Hom.A;�/ for some k-algebra A. Then F is a

sheaf. Condition (a) is obvious, and condition (b) follows from the exactness of

R!R0�R0˝RR
0

for any faithfully flat homomorphism R! R0 (CA 11.12). Similarly, for an
algebraic scheme X over k, the functor hX is a flat sheaf (cf. 5.9).

LEMMA 5.67. LetD be a fat subfunctor of a sheaf S . Every morphismD! S 0

from D to a sheaf S 0 extends uniquely to S .

PROOF. The proof of (5.10) shows this. 2

PROPOSITION 5.68. Let F be a functor. Among the morphisms from F to a flat
sheaf there exists a universal one ˛WF ! aF .

The universality means that every homomorphism ˇ

from F to a sheaf S factors uniquely through ˛:

F aF

S:

˛

ˇ
9Š

The pair .aF;˛/ is called the sheaf associated with F (or the sheafification of
F ). It is unique up to a unique isomorphism.

We prove the proposition in two steps. A family .Ri /i2I of R-algebras is
faithfully flat if the homomorphism R!

Q
i2I Ri is faithfully flat. A functor is

separated if F.R/!
Q
F.Ri / is injective whenever .Ri /i2I is a finite faithfully

flat family of small R-algebras.
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LEMMA 5.69. Let F be a functor. Among the morphisms from F to a separated
functor, there exists a universal one ˛WF ! F 0.

PROOF. For a;b 2F.R/, write a� b if a and b have the same image in
Q
F.Ri /

for some finite faithfully flat family .Ri /i2I of small R-algebras. Define

F 0.R/D F.R/=� :

One checks easily that this is a separated functor, and that the morphism F ! F 0

is universal. 2

LEMMA 5.70. Let F be a separated functor. Among the morphisms from F to
a flat sheaf there exists a universal one ˛WF ! aF .

PROOF. Let

.aF /.R/D lim
�!

Eq
�Y

i2I
F.Ri /�

Y
.i;j /2I�I

F.Ri ˝RRj /
�

where the limit is over finite faithfully flat families .Ri /i2I of small R-algebras.
One checks easily that this is a sheaf, and that the morphism F ! aF is univer-
sal. 2

Now, for a functor F , the composite of the morphisms F ! F 0! aF 0 is
the required universal morphism from F to a sheaf. This completes the proof of
Proposition 5.68.

EXAMPLE 5.71. Let D be a subfunctor of a sheaf S . The pair .S;D ,! S/ is
the sheaf associated with D if and only if, for every small R and x 2 S.R/, there
exists a finite faithfully flat family of R-algebras .Ri /i2I such that the image xi
of x in S.Ri / lies in D.Ri / for all i . For example, if D is fat in S , then S is the
sheaf associated with D.

If F is local (i.e., satisfies (a) of 5.65) and separated, then

.aF /.R/D lim
�!

Eq
�
F.R0/� F.R0˝RR

0/
�

where the limit is over the small faithfully flat R-algebras R0.

5.72. Let F be a flat sheaf. We say that F is representable if there exists an
algebraic k-scheme X such that QX � F . To show that F is representable, it
suffices (by descent theory) to show that it becomes representable over a nonzero
k-algebra R, i.e., that there exists an algebraic R-scheme X and bijections
X.R0/! F.R0/, natural in R0, for every R-algebra R0.
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k. The isomorphism theorems for functors to groups

By a group functor we mean a functor from small k-algebras to groups. A
homomorphism of group functors is a natural transformation. A subgroup functor
of a group functor G is a subfunctor H such that H.R/ is a subgroup of G.R/
for all R; it is normal if H.R/ is normal in G.R/ for all R. When N is a normal
subgroup functor ofG, we defineG=N to be the group functorR G.R/=N.R/.
For subgroup functors H and N of G with N normal, we define HN to be the
subgroup functor R H.R/N.R/ of G.

Let 'WG!H be a homomorphism of group functors. The kernel of ' is
the group functor R Ker.'.R//, and the image 'G of ' is the subfunctor
R '.G.R// of H . A homomorphism 'WG!H is surjective or injective if
'.R/ is surjective or injective for all small k-algebras R.

With these definitions, the isomorphism theorems (5.1–5.4) hold with
“group” replaced by “group functor”. Each statement can be checked for one
k-algebra R at a time, when it becomes the statement for abstract groups.

l. The isomorphism theorems for sheaves of groups

Let P denote the category of functors and S the category of sheaves. Then S is a
full subcategory of P, and Proposition 5.68 says that the functor aWP! S is left
adjoint to the inclusion functor i WS! P:

HomP.F; iS/' HomS.aF;S/:

As a has a right adjoint, it preserves finite direct limits; similarly, i preserves
finite inverse limits (Mac Lane 1971, V, �5). Using this, we can deduce the
isomorphism theorems for sheaves of groups from the previous case, as we now
explain.

5.73. (Existence of quotients). Let 'WG!H be a homomorphism of sheaves
of groups. The kernel of ' is automatically a sheaf, and hence a sheaf of normal
subgroups of G. We say that ' is a quotient map if H is the sheaf associated
with the functor R '.G.R//, for example, if the image 'G of G is fat in H .
Let N be a sheaf of normal subgroups of G. We define G Q=N to be the sheaf
associated with the group functor G=N . The canonical map qWG! G Q=N is a
quotient map of sheaves of groups with kernel N . Let ' be a homomorphism
from G to a sheaf of groups H whose kernel contains N ; then ' factors uniquely
throughG!G=N (previous case), and thenG=N !H factors uniquely through
G=N !G Q=N because H is a sheaf:

G G=N G Q=N

H:

'
9Š

9Š
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5.74. (Homomorphism theorem). Consider a homomorphism 'WG ! H of
sheaves of groups. We define the image Im.'/ of ' to be the sheaf associated
with the group functor 'G. It is the smallest sheaf of subgroups of H through
which ' factors, and 'G is a fat subfunctor of Im.'/. The map ' defines an
isomorphism of group functors

G=N ! 'G

with N D Ker.'/. On passing to the associated sheaves, we obtain an isomorph-
ism of sheaves

G Q=Ker.'/! Im.'/;

and hence a factorization of ':

G H

G Q=N Im.'/:

'

q

'

i

Let G be a sheaf of groups.

5.75. (Isomorphism theorem). Let H and N be subgroup sheaves of G such
that H normalizes N . We define HN to be the sheaf associated with the group
functor R H.R/N.R/. Then HN is a sheaf of subgroups of G, H \N is a
normal subgroup of H , and the map

xH \N 7! xN WH Q=.H \N/! .HN/Q=N

is an isomorphism because it is obtained from an isomorphism of group functors
by passing to the associated sheaves.

5.76. (Correspondence theorem). Let N be a sheaf of normal subgroups of G.
The map H 7!H Q=N is a bijection from the set of sheaves of subgroups of G
containing N to the set of sheaves of subgroups of G Q=N . A sheaf of subgroups
H containing N is normal if and only if H Q=N is normal in G Q=N , in which case
the natural map

G Q=H ! .G Q=N/=.H Q=N/

is an isomorphism. Again, all these statements can be derived easily from the
corresponding statements for group functors.

m. The isomorphism theorems for algebraic groups

Recall that QG is the flat sheaf defined by an algebraic group G; moreover, the
functor G  QG is fully faithful, and so identifies the category of algebraic
groups over k with the category of group functors whose underlying functor is
representable by an algebraic k-scheme. In order to prove (5.1–5.4) for algebraic
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groups, it suffices to show that each of the constructions in the preceding section
takes algebraic groups to algebraic groups.

We shall need to use the following three statements relating algebraic groups
to the functors they define.

5.77. A homomorphism ' of algebraic groups is a closed immersion if '.R/ is
injective for all small k-algebras R (see 5.34).

5.78. A homomorphism 'WG!H of algebraic groups is faithfully flat if the
functor R '.G.R// is fat in QH (see 5.43).

5.79. For an algebraic group G and a normal algebraic subgroup N , the sheaf
G Q=N is represented by an algebraic group (5.14).

THEOREM 5.80 (EXISTENCE OF QUOTIENTS). The kernel of a homomorph-
ismG!H of algebraic groups is a normal algebraic subgroup, and every normal
algebraic subgroup N of G arises as the kernel of a quotient map G!G=N .

PROOF. Let G=N represent G Q=N (see 5.79). As QG!G Q=N has kernel QN , the
homomorphism qWG!G=N has kernel N . The homomorphism G!G=N is
a quotient map because the functor R '.G.R// is fat in G Q=N (see 5.78). 2

THEOREM 5.81 (HOMOMORPHISM THEOREM). Every homomorphism of al-
gebraic groups is the composite of a quotient map with an embedding.

PROOF. Let 'WG!H be a homomorphism of algebraic groups, and let N D
Ker.'/. Then Q' factors into

QG
Qq
�! QG Q= QN

Q{
�! QH (34)

with q a quotient map and i an embedding. Now G Q=N is represented by an
algebraic group G=N (see 5.79), and so (34) arises from a diagram

G
q
�!G=N

i
�!H

in which q is a quotient map (5.78) and i is an embedding (5.77). 2

THEOREM 5.82 (ISOMORPHISM THEOREM). Let H and N be algebraic sub-
groups of G with N normal in G. Then HN is an algebraic subgroup of G,
H \N is a normal algebraic subgroup of H , and the map

xH \N 7! xN WH=H \N !HN=N (35)

is an isomorphism.
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PROOF. As before, we define HN to be the image of the homomorphism H Ì�
N ! G of algebraic groups. It is the sheaf associated with the subfunctor
R H.R/N.R/ of QG. Now (35) is the map of algebraic groups corresponding
by the Yoneda lemma to the isomorphism

QH Q=BH \N ! QH QN Q= QN . 2

We leave the statement and proof of the correspondence theorem as an exer-
cise to the reader.

n. Some category theory

We interpret some of the statements in this chapter in the language of category
theory.

Let A be a category. A morphism ˛WA! B in A is a monomorphism if
˛ ı f D ˛ ı g implies f D g, and an epimorphism if f ı ˛ D g ı ˛ implies
f D g. If ˛WA! B is a monomorphism (resp. epimorphism) then we call A a
subobject of B (resp. we call B a quotient object of A).

Let ˛WA! B a morphism. The subobjects of B through which ˛ factors
form a partially ordered set. A least object in this set (if it exists) is called the
image of ˛. The coimage of ˛ is defined similarly.

A null object of A is an object e such that, for every object A of A, each of the
sets Hom.A;e/ and Hom.e;A/ has exactly one element. A morphism is trivial if
it factors through e.

Assume that A has a null object. Let ˛WA! B be a morphism. We call a
morphism uWK! A a kernel of ˛ if ˛ ıu is trivial and every other morphism
with this property factors uniquely through u. Similarly, we define the notion of
a cokernel.

A subobject uWA0!A is normal if it is the kernel of some morphism A!B .
The notion of a conormal quotient object is defined similarly. A category is
normal (resp. conormal) if every subobject is normal (resp. every quotient object
is conormal). A normal and conormal category with kernels and cokernels is
exact if every morphism ˛WA!B can be written as a composite A

q
�! I

v
�!B

with q an epimorphism and v a monomorphism.
Now let A denote the category of algebraic groups over a field k. A morphism

in A is a monomorphism if and only if it is a closed immersion (5.34). Thus, the
subobjects of G are essentially the algebraic subgroups of G. A quotient map
is an epimorphism, but not every epimorphism is a quotient map (5.44). The
image of a homomorphism ˛WG!H as we defined it is an image in the sense
of categories.

The trivial group e is a null object in A. The kernel of a homomorphism as
we defined it is a kernel in the sense of categories, but not every subobject is
normal. Every homomorphism ˛WA! B can be written as a composite of an
epimorphism and a monomorphism.
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Clearly, A is not an exact category, but some of the results for exact categories
hold for A. However, when we replace A with the category of commutative
algebraic groups, then we do get an exact category (even an abelian category).

Exercises

EXERCISE 5-1. Let A and B be algebraic subgroups of an affine algebraic
group G. If B is normal, show that AB is the algebraic subgroup of G with
O.AB/DO.G/=a, where a is the kernel of homomorphism O.G/!O.A/˝
O.B/ defined by the map a;b 7! abWA�B!G (of set-valued functors).

EXERCISE 5-2. Let A, B , C be algebraic subgroups of an algebraic group G
such that A is a normal subgroup of B and B normalizes C . Show:

(a) C \A is a normal subgroup of C \B;

(b) CA is a normal subgroup of CB (note that CB is defined because B
normalizes C and CA is defined because C is normal in CB).

EXERCISE 5-3 (DEDEKIND’S MODULAR LAWS). Let A � C and B be sub-
groups of a group G. Show:

(a) A\ .BC/D .A\B/C I

(b) if G D BC , then AD .A\B/C .
Deduce that the same statement is true with “algebraic group” for “group” if B is
normal in G.

EXERCISE 5-4. Let N and Q be algebraic subgroups of G with N normal.
Show that G is the semidirect product of N and Q if and only if (a) G DNQ,
(b) N \QD e, and (c) the restriction to Q of the canonical map G!G=N is
an isomorphism.

EXERCISE 5-5. Let H be an algebraic subgroup of an algebraic group G over a
perfect field k.

(a) Show that .G=H/.ka/' .G=Hred/.k
a/, and deduce that G=Hred is finite if

and only if G=H is finite.

(b) Show that .Gı/red DGred\G
ı D .Gred/

ı; denote this algebraic group by
Gıred.

(c) Show that G=Gıred is finite, and that Gıred is the smallest algebraic subgroup
of G with this property.

EXERCISE 5-6. Let N be an algebraic subgroup of a smooth algebraic group
G over an algebraically closed field k. Show that Nred is a normal algebraic
subgroup of G.
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EXERCISE 5-7 (EXTENDED SNAKE LEMMA). A homomorphism uWG!G0 of
algebraic groups is said to be normal if its image is a normal subgroup of G0.
For a normal homomorphism uWG!G0, the quotient map G0!G0=u.G/ is the
cokernel of u in the category of algebraic groups over k. Show that the extended
snake lemma holds for algebraic groups: if in the commutative diagram

e Ker f Ker a Ker b Ker c

A B C e

A′e B′ C ′

Coker a Coker b Coker c Coker g′ e

d

f g

a b c

f ′ g′

the homomorphisms a;b;c are normal and the sequences .f;g/ and .f 0;g0/ are
exact, then the sequence

e! Kerf ! �� � ! Kerc
d
�! Cokera! �� � ! Cokerg0! e

exists and is exact.

EXERCISE 5-8. Show that a pair of normal homomorphisms

G
f
�!G0

g
�!G00

of algebraic groups whose composite is normal gives rise to an exact (kernel–
cokernel) sequence

0!Kerf !Kergıf
f
�!Kerg�!Cokerf

g
�!Cokergıf !Cokerg! 0:

[Use the extended snake lemma.]

EXERCISE 5-9. Let e!N !G!Q! e be an exact sequence. Show that

�0.N /! �0.G/! �0.Q/! e

is exact. Give an example to show that �0.N /! �0.G/ need not be a closed
immersion.

EXERCISE 5-10. Let
1!N !G!Q! 1

be an exact sequence of sheaves. Show that G is algebraic group if N and Q are.



CHAPTER 6

Subnormal Series; Solvable and
Nilpotent Algebraic Groups

Once the isomorphism theorems have been proved, much of the basic theory of
abstract groups carries over to algebraic groups.

a. Subnormal series

Let G be an algebraic group over k.

DEFINITION 6.1. A subnormal series1 of G is a finite sequence .Gi /iD0;:::;s
of algebraic subgroups of G such that G0 D G, Gs D e, and Gi is a normal
subgroup of Gi�1 for i D 1; : : : ; s:

G DG0 BG1 B � � �BGs D e:

A subnormal series .Gi /i is a normal series (resp. characteristic series) if each
Gi is normal (resp. characteristic) in G.

PROPOSITION 6.2. Let H be an algebraic subgroup of an algebraic group G. If

G DG0 �G1 � �� � �Gs D e

is a subnormal series for G, then

H DH \G0 �H \G1 � �� � �H \Gs D e

is a subnormal series for H , and

H \Gi=H \GiC1 ,!Gi=GiC1:

1In French, a subnormal series is called a “suite de composition”. In both English and German,
a composition series (Kompositionsreihe) is a maximal subnormal series. Some of the literature on
algebraic groups in English follows the French convention.

124
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PROOF. As GiC1 is normal in Gi and .H \Gi /\GiC1 DH \GiC1, the iso-
morphism theorem (5.52) gives an isomorphism

H \Gi=H \GiC1 ' .H \Gi / �GiC1=GiC1.

The second group is an algebraic subgroup of Gi=GiC1. 2

Two subnormal series�
G DG0 �G1 � �� � �Gs D e

G DH0 �H1 � �� � �Ht D e
(36)

are said to be equivalent if sD t and there is a permutation � of f1;2; : : : ; sg such
that Gi=GiC1 �H�.i/=H�.i/C1.

THEOREM 6.3. Any two subnormal series (36) in an algebraic group G have
equivalent refinements.

PROOF. Let Gi;j D GiC1.Gi \Hj / and Hj;i DHjC1.Hj \Gi /, and consider
the refinements

� � � �Gi DGi;0 �Gi;1 � �� � �Gi;t DGiC1 � �� �

� � � �Hj DHj;0 �Hj;1 � �� � �Hj;s DHjC1 � �� �

of the original series. According to the next lemma,

Gi;j =Gi;jC1 'Hj;i=Hj;iC1,

and so the refinement .Gi;j / of .Gi / is equivalent to the refinement .Hj;i / of
.Hi /. 2

LEMMA 6.4 (BUTTERFLY LEMMA). Let H1 �N1 and H2 �N2 be algebraic
subgroups of an algebraic group G with N1 and N2 normal in H1 and H2. Then
N1.H1\N2/ andN2.N1\H2/ are normal algebraic subgroups ofN1.H1\H2/
andN2.H2\H1/ respectively, and there is a canonical isomorphism of algebraic
groups

N1.H1\H2/

N1.H1\N2/
'
N2.H1\H2/

N2.H2\N1/
:

PROOF. The algebraic group H1\N2 is normal in H1\H2, and so N1.H1\
N2/ is normal in N1.H1\H2/ (see Exercise 5-2).

Dedekind’s modular law (Exercise 5-3) withGDH1,ADH1\H2,B DN1,
and C DH1\N2 shows that

.H1\H2/\N1.H1\N2/D .H1\H2\N1/.H1\N2/

D .H2\N1/.H1\N2/:
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As H1\H2 normalizes N1.H1\H2/, the isomorphism theorem (5.52) shows
that

H1\H2

.H1\H2/\N1.H1\N2/
'
N1.H1\N2/ � .H1\H2/

N1.H1\N2/
;

which simplifies to

H1\H2

.H2\N1/.H1\N2/
'
N1.H1\H2/

N1.H1\N2/
:

A symmetric argument shows that

H1\H2

.H2\N1/.H1\N2/
'
N2.H1\H2/

N2.H2\N1/
;

and so

N1.H1\H2/

N1.H1\N2/
'
N2.H1\H2/

N2.H2\N1/
:

2

H1

N1.H1\H2/

N1.H1\N2/

N1

H1\H2

.H2\N1/.H1\N2/

H2

N2.H1\H2/

N2.H2\N1/

N2

Similar statements in the category of group varieties hold only up to purely
inseparable isogenies (Rosenlicht 1956).

b. Isogenies

DEFINITION 6.5. An algebraic subgroup H (not necessarily normal) of an al-
gebraic group G has finite index if the quotient scheme G=H is finite.

A subgroup H in G has finite index if and only if dimH D dimG (see 5.23).
If G is smooth, then G=H is smooth, and hence étale if finite. Thus, an algebraic
subgroup of a smooth group G has finite index if and only if it contains Gı.

DEFINITION 6.6. A homomorphism of algebraic groups G!H is an isogeny
if its kernel is finite and its image has finite index in H .

Thus, a homomorphism of smooth algebraic groups G!H is an isogeny
if and only if its kernel is finite and its image contains H ı. This agrees with
Definition 2.23. A composite of isogenies is an isogeny (cf. Exercise 5-8).

DEFINITION 6.7. Two algebraic groups G and H are isogenous, denoted G �
H , if there exist algebraic groups G1; : : : ;Gn such that G DG1, H DGn, and,
for each i D 1; : : : ;n�1, there exists either an isogeny Gi !GiC1 or an isogeny
GiC1!Gi .

In other words, “isogeny” is the equivalence relation generated by the binary
relation “there exists an isogeny from G to H”.

DEFINITION 6.8. An algebraic group is strongly connected if it has no proper
algebraic subgroup of finite index.
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An algebraic group is connected if it is strongly connected. The converse is
true for smooth groups.

DEFINITION 6.9. The strong identity component Gso of an algebraic group G
is the intersection of the algebraic subgroups of finite index.

If G is smooth, then Gso DGı.

PROPOSITION 6.10. The quotient G=Gso is finite (hence Gso is the smallest
algebraic subgroup having the same dimension as G).

PROOF. Because the algebraic subgroups of G satisfy the descending chain
condition (1.42),GsoDH1\� � �\Hr for certain algebraic subgroupsH1; � � � ;Hr
such that G=Hi is finite. The map G! G=H1� � � ��G=Hr realizes G=H as a
subscheme of a finite scheme. 2

6.11. Let G be an algebraic group over a perfect field k. Then

.Gı/red DGred\G
ı
D .Gred/

ı:

We denote this subgroup by Gıred. The quotient scheme G=Gıred is finite, and
Gıred is the smallest algebraic subgroup of G for which this is true (Exercise 5-5).
Thus Gıred DG

so. In general Gıred is not normal in G. However, if Gred is normal
in G, then Gıred is normal in G because .Gred/

ı is a characteristic subgroup of
Gred; in this case, Gso is the smallest normal algebraic subgroup having the same
dimension as G.

c. Composition series for algebraic groups

Let G be an algebraic group over k. A subnormal series

G DG0 �G1 � �� � �Gs D e

is a composition series if

dimG0 > dimG1 > � � �> dimGs

and the series cannot be refined, i.e., for no i does there exist a normal algebraic
subgroup N of Gi containing GiC1 and such that

dimGi > dimN > dimGiC1:

In other words, a composition series is a subnormal series whose terms have
strictly decreasing dimensions and which is maximal among subnormal series
with this property. This disagrees with the usual definition that a composition
series is a maximal subnormal series, but it appears to be the correct definition
for algebraic groups as few algebraic groups have maximal subnormal series –
for example, the infinite chain

�l � �l2 � �l3 � �� � �Gm
shows that Gm does not.
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LEMMA 6.12. Consider a subnormal series

G DG0 �G1 � �� � �Gs D e

for G. If dimG D dimGi=GiC1 for some i , then G �Gi=GiC1.

PROOF. The maps

Gi=GiC1 Gi !Gi�1! �� � !G0 DG

are isogenies. 2

THEOREM 6.13. Let G be an algebraic group over a field k. Then G admits a
composition series. If

G DG0 �G1 � �� � �Gs D e

and
G DH0 �H1 � �� � �Ht D e

are both composition series, then s D t and there exists a permutation � of
f1;2; : : : ; sg such that Gi=GiC1 is isogenous to H�.i/=H�.i/C1 for all i .

PROOF. The existence of a composition series is obvious. For the proof of the
second statement, we use the notation of the proof of Theorem 6.3:

Gi;j
def
DGiC1.Hj \Gi /

Hj;i
def
DHjC1.Gi \Hj /.

Note that, for a fixed i , only one of the quotients Gi;j =Gi;jC1 has dimension > 0,
say, that with j D �.i/. Now

Gi=GiC1 � Gi;�.i/=Gi;�.i/C1 (6.12)
�H�.i/;i=H�.i/;iC1 (butterfly lemma)
�H�.i/=H�.i/C1 (6.12).

As i 7! �.i/ is a bijection, this completes the proof. 2

EXAMPLE 6.14. The algebraic group GLn has composition series

GLn � SLn � e
GLn �Gm � e

with quotients fGm;SLng and fPGLn;Gmg respectively. They have equivalent
refinements

GLn � SLn � �n � e
GLn �Gm � �n � e:

REMARK 6.15. If G is connected, then it admits a composition series in which
all the Gi are connected. Indeed, given a composition series .Gi /i , we may
replace each Gi with Gıi . Then Gıi �G

ı
i�1, and Gıi is normal in Gi�1 because it

is characteristic in Gi (see 1.52). Therefore .Gıi /i is still a composition series.
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d. The derived groups and commutator groups

Let G be an algebraic group over k.

DEFINITION 6.16. The derived group of G is the intersection of the normal
algebraic subgroups N of G such that G=N is commutative. It is denoted DG
(or Gder or ŒG;G�).

PROPOSITION 6.17. The quotient G=DG is commutative (hence DG is the
smallest normal algebraic subgroup with this property).

PROOF. As in the proof of Proposition 6.10, DG is an intersection of normal
subgroupsN1; : : : ;Nr such that each quotientG=Ni is commutative. NowG=DG
is a subgroup of the commutative group G=N1� � � ��G=Nr . 2

We shall need another description of DG, which is analogous to the descrip-
tion of the derived group as the subgroup generated by commutators.

PROPOSITION 6.18. If G is affine or smooth, DG is the algebraic subgroup of
G generated by the commutator map

G�G!G; .g1;g2/ 7! Œg1;g2�D g1g2g
�1
1 g�12 .

PROOF. Let H be the algebraic subgroup of G generated by G2 and the map
.g1;g2/ 7! Œg1;g2� (see 2.46, 2.50). By definition, H is the smallest algebraic
subgroup containing the commutator subgroup of G.R/ for all R. It follows
that H is normal in G and that G.R/=H.R/ is commutative for all R. As the
functor R G.R/=H.R/ is fat in G=H , we see that G=H is commutative. If N
is another normal subgroup ofG such thatG=N is commutative, thenN contains
the image of the commutator map and so N �H . We conclude that H DDG.2

COROLLARY 6.19. Assume that G is affine or smooth.
(a) For every field k0 � k, DGk0 D .DG/k0 .
(b) If G is connected (resp. smooth), then DG is connected (resp. smooth).

(c) For every k-algebra R, the group .DG/.R/ consists of the elements of
G.R/ that lie in the derived group of G.R0/ for some faithfully flat R-
algebra R0.

(d) Let H be a commutative algebraic group over k and R a k-algebra. Every
homomorphism GR!HR is trivial on .DG/R.

(e) DG is a characteristic subgroup of G.

PROOF. (a) The algebraic subgroup generated by a map has this property (Section
2h).

(b) Apply Propositions 2.48, 2.50, and 2.53.
(c) Immediate consequence of the proposition.
(d) Immediate consequence of (c).
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(e) Let R be a k-algebra and R0 an R-algebra. Clearly the derived group of
G.R0/ is preserved by all automorphisms of GR, and it follows from (c) that
.DG/R is preserved by all automorphisms of GR. 2

WhenG is affine, there is an explicit description of the coordinate ring of DG.
Let In denote the kernel of the homomorphism O.G/!O.G2n/ of k-algebras
defined by the regular map

.g1;g2; : : : ;g2n/ 7! Œg1;g2� � Œg3;g4� � � � � WG
2n
!G: (37)

From the regular maps

G2!G4! �� � !G2n! �� � ;

.g1;g2/ 7! .g1;g2; e;e/ 7! � � �

we get inclusions
I1 � I2 � �� � � In � �� � ;

and we let I D
T
In. The coordinate ring of DG is O.G/=I (see 2.46).

PROPOSITION 6.20. Let G be an affine group variety over k.
(a) The coordinate ring of DG equals O.G/=In for some n.
(b) If k is algebraically closed, then .DG/.k/DD.G.k//.

PROOF. (a) We may suppose thatG is connected. AsG is smooth and connected,
so also is G2n (see 3.11). Therefore, each ideal In is prime, and a descending
sequence of prime ideals in a noetherian ring terminates (CA 21.6).

(b) Let Vn be the image of G2n.k/ in G.k/. Its closure in G.k/ is the zero
set of In. Being the image of a regular map, Vn contains a dense open subset U
of its closure (A.15). Choose n as in the first part, so that the zero set of In is
DG.k/. Then

U �U�1 � Vn �Vn � V2n �D.G.k//D
[

m
Vm �DG.k/:

It remains to show that U �U�1 DDG.k/. Let g 2DG.k/. Because U is open
and dense in DG.k/, so is gU�1, which must therefore meet U , forcing g to lie
in U �U�1. 2

PROPOSITION 6.21. The derived group DG of a connected group variety G is
the unique connected subgroup variety of G such that .DG/.ka/DD.G.ka//.

PROOF. The derived group has these properties by Corollary 6.19 and Propos-
ition 6.20, and it is the only algebraic subgroup with these properties because
.DG/.ka/ is dense in DG. 2

EXAMPLE 6.22. Let G D GLn. Then DG D SLn. Certainly, DG � SLn. Con-
versely, every element of SLn.k/ is a commutator, because SLn.k/ is generated
by elementary matrices, and every elementary matrix is a commutator if k has
at least three elements (see 20.24 below for this argument in the case nD 2). It
follows that D.PGLn/D PGLn.
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REMARK 6.23. The (abstract) group G.k/ may have commutative quotients
withoutG having commutative quotients, i.e., we may haveG DDG butG.k/¤
D.G.k//. This is the case forGD PGLn if k�¤ k�n because there is a surjection
detWPGLn.k/! k�=k�n (see 5.49) and commutators have determinant 1.

Commutator groups

We need a modest generalization of the derived group. For subgroups H1 and
H2 of an abstract group G, we let ŒH1;H2� denote the subgroup of G generated
by the commutators Œh1;h2�D h1h2h�11 h

�1
2 with h1 2H1 and h2 2H2.

DEFINITION 6.24. LetH1 andH2 be algebraic subgroups of an algebraic group
G. If H1 and H2 are smooth or G is affine, we define the commutator subgroup
ŒH1;H2� of G to be the algebraic subgroup generated by the commutator map

.h1;h2/ 7! Œh1;h2�WH1�H2!G:

REMARK 6.25. (a) For any k-algebra R, the group ŒH1;H2�.R/ consists of
the elements of G.R/ that lie in ŒH1.R0/;H2.R0/� for some faithfully flat R-
algebra R0.

(b) Let H1 and H2 be connected group subvarieties of a connected group
variety G. Then ŒH1;H2� is the unique connected subgroup variety of G such
that ŒH1;H2�.ka/D ŒH1.k

a/;H2.k
a/�.

e. Solvable algebraic groups

DEFINITION 6.26. An algebraic group G is solvable if there is a subnormal
series

G DG0 �G1 � �� � �Gt D e

such that each quotientGi=GiC1 is commutative (such a series is called a solvable
series for G).

In other words, G is solvable if it can be constructed from commutative
algebraic groups by successive extensions.

PROPOSITION 6.27. Algebraic subgroups, quotients, and extensions of solvable
algebraic groups are solvable.

PROOF. Let G be a solvable algebraic group. The intersection of a solvable
series for G with a subgroup H of G is a solvable series for H (see 6.2), and its
image in a quotient Q of G is a solvable series for Q (correspondence theorem
5.55).

Let G be an algebraic group containing a solvable normal algebraic subgroup
N such that G=N is solvable. The inverse image of a solvable series for G=N
can be combined with a solvable series for N to give a solvable series for G. 2
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EXAMPLE 6.28. The group Tn of upper triangular matrices is solvable (see 6.49
below). For example,

T2 D
��
� �

0 �

��
� U2 D

��
1 �

0 1

��
� e

is a subnormal series for T2 with commutative quotients Gm�Gm, Ga.

EXAMPLE 6.29. A finite abstract group is solvable if and only if it is solvable
when regarded as a constant algebraic group. Thus, the theory of solvable
algebraic groups includes the theory of solvable finite groups, which is already
rather extensive. A constant algebraic group G is solvable if G.k/ does not
contain an element of order 2 (Feit–Thompson theorem).

Let G be an algebraic group. Write D2G for the second derived group
D.DG/ of G, D3G for the third derived group D.D2G/ and so on. The derived
series for G is the normal series

G �DG �D2G � �� � :

If G is smooth, then DnG is a smooth characteristic subgroup of G, and each
quotient DnG=DnC1G is commutative; if G is also connected, then DnG is
connected.

PROPOSITION 6.30. An algebraic group G is solvable if and only if its derived
series terminates with e.

PROOF. If the derived series terminates with e, then it is a solvable series for
G. Conversely, if G � G1 � �� � is a solvable series for G, then G1 � DG,
G2 �D2G, and so on. 2

COROLLARY 6.31. Assume that G is affine or smooth, and let k0 be a field
containing k. Then G is solvable if and only if Gk0 is solvable.

PROOF. The derived series of Gk0 is obtained from that of G by extension of
scalars (6.19a). Hence one series terminates with e if and only if the other does.2

COROLLARY 6.32. Let G be a solvable algebraic group, and assume that G is
affine or smooth. If G is connected (resp. smooth, resp. smooth and connected),
then it admits a solvable series whose terms are connected (resp. smooth, resp.
smooth and connected).

PROOF. The derived series has the required property (6.19). 2

In particular, a group variety is solvable if and only if it admits a solvable
series of group subvarieties.

DEFINITION 6.33. A solvable algebraic group G over k is split if it admits a
subnormal seriesG DG0 �G1 � �� � �GnD e such that each quotientGi=GiC1
is isomorphic to Ga or to Gm.
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Each term Gi in such a subnormal series is smooth, connected, and affine
(1.62, 5.59, 2.70); in particular, G itself is smooth, connected, and affine.

NOTES. In the literature, a split solvable algebraic group over k is said to be k-solvable
(k-résoluble) or k-split. We adopt the second term, but can omit the “k” because of our
convention that statements concerning an algebraic group G over k are always intrinsic to
G over k. With this caveat, our definition agrees with those in the literature (Rosenlicht
1963; Borel 1991, 15.1; Springer 1998, 12.3.5; Conrad et al. 2015, A.1, p. 466).

f. Nilpotent algebraic groups

DEFINITION 6.34. An algebraic group G is nilpotent if it admits a central
subnormal series, i.e., a normal series

G DG0 �G1 � �� � �Gt D e

such that each quotient Gi=GiC1 is contained in the centre of G=GiC1 (such a
series is called a nilpotent series for G).

In other words, G is nilpotent if it can be constructed from commutative
algebraic groups by successive central extensions.

REMARK 6.35. A normal series G D G0 � G1 � �� � is central if and only if
ŒG;Gi ��GiC1 for all i .

EXAMPLE 6.36. The group Un is nilpotent (see 6.49 below), but not Tn – the
subnormal series in Example 6.28 is not central because�

a 0

0 b

��
1 c

0 1

��
a�1 0

0 b�1

�
D

�
1 a

b
c

0 1

�
¤

�
1 c

0 1

�
.

PROPOSITION 6.37. Algebraic subgroups and quotients (but not necessarily
extensions) of nilpotent algebraic groups are nilpotent.

PROOF. The proof for subgroups and quotients is the same as for solvable groups
(6.27). The algebraic group T2 is an extension of nilpotent (even commutative)
groups, but is not itself nilpotent (6.36). 2

Let G be a connected group variety. The descending central series for G is
the subnormal series

G0 DG �G1 D ŒG;G�� �� � �Gi D ŒG;Gi�1�� �� � :

PROPOSITION 6.38. A connected group variety G is nilpotent if and only if its
descending central series terminates with e.

PROOF. If the descending central series terminates with e, then it is a nilpotent
series for G. Conversely, if G � G1 � �� � is a nilpotent series for G, then
G1 �G

1, G2 �G2, and so on. 2
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COROLLARY 6.39. A connected group variety G is nilpotent if and only if it
admits a nilpotent series whose terms are connected group varieties.

PROOF. The descending central series has this property (6.19). 2

In particular, a group variety is nilpotent if and only if it admits a nilpotent
series of subgroup varieties.

COROLLARY 6.40. LetG be a nilpotent connected group variety. IfG ¤ e, then
it contains a nontrivial connected group variety in its centre.

PROOF. As G ¤ e, its descending central series has length at least one, and the
last nontrivial term has the required properties. 2

g. Existence of a largest algebraic subgroup with a given
property

Let P be a property of algebraic groups. We assume the following:
(a) every extension of groups with property P has property P ;

(b) every quotient of a group with property P has property P .
For example, “smooth” and “connected” are properties satisfying (a) and (b)
(1.62, 5.59).

LEMMA 6.41. Let H and N be algebraic subgroups of an algebraic group G
with N normal. If H and N have property P , then so also does HN .

PROOF. Consider the diagram in Corollary 5.53. Because H has property P , so
also does its quotient H=H \N . Hence HN=N has property P , and it follows
that the same is true of HN . 2

We now assume that the trivial group e has property P . An algebraic group
G need not contain a maximal normal algebraic subgroup with property P . For
example, quotients and extensions of finite algebraic groups are finite, but Gm
has no largest finite algebraic subgroup – if N is a finite algebraic subgroup, then
N ��n

`
will be larger for some n.

PROPOSITION 6.42. Every algebraic group G contains a largest smooth con-
nected normal subgroup H with property P . The quotient G=H contains no
nontrivial such subgroup.

PROOF. The group G certainly contains a smooth connected normal subgroup
H with property P (e.g., the trivial group) and hence a maximal one (e.g., any
of greatest dimension). Let H and N be any two such maximal subgroups.
According to Lemma 6.41, HN has the same properties and so H DHN DN .
This proves the first statement. If G=H contained a nontrivial smooth connected
normal algebraic subgroup with property P , then its inverse image in G would
properly contain H and would violate the maximality of H . 2
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Recall (6.8) that an algebraic group G is strongly connected if it has no
algebraic subgroup of finite index. Clearly quotients and extensions of strongly
connected algebraic groups are strongly connected.

PROPOSITION 6.43. Every algebraic group G contains a largest strongly con-
nected normal subgroup H with property P . The quotient G=H contains no
nontrivial such subgroup.

PROOF. The proof is essentially the same as that of Proposition 6.42. 2

For example, every algebraic group contains a largest strongly connected
finite algebraic subgroup, namely e.

h. Semisimple and reductive groups

It is convenient at this point to introduce the groups that will be the main topic of
study for the last third of the book. Throughout this section, all algebraic groups
are affine.

6.44. Let G be a connected group variety over k. Extensions and quotients
of solvable algebraic groups are solvable (6.27), and so G contains a largest
connected solvable normal subgroup variety (6.42). This is called the radical
R.G/ of G. A connected group variety G over an algebraically closed field is
said to be semisimple if R.G/D e. A connected group variety over a field k is
semisimple if Gka is semisimple, i.e., if its geometric radical R.Gka/ is trivial.
If k is algebraically closed, then G=R.G/ is semisimple.

6.45. An algebraic group G is said to be unipotent if every nonzero representa-
tion of G has a nonzero fixed vector.2 Let Q be a quotient of a unipotent group
G. A nonzero representation of Q can be regarded as a representation of G,
and so has a nonzero fixed vector; hence Q is unipotent. Let G be an algebraic
group containing a normal subgroup N such that both N and G=N are unipotent,
and let G! GLV be a nonzero representation of G. The subspace V N is stable
under G (see 5.15), and the representation of G on it factors through G=N . As
V is nonzero, V N is nonzero, and so V G D .V N /G=N is nonzero. Hence G is
unipotent.

6.46. Let G be a connected group variety over k. It follows from 6.45 that
among the connected normal unipotent subgroup varieties of G, there is a largest
one. This is called the unipotent radical Ru.G/ of G. A connected group variety
G over an algebraically closed field is said to be reductive if Ru.G/ D e. A
connected group variety over a field k is said to be reductive if Gka is reductive,
i.e., if its geometric unipotent radical Ru.Gka/ is trivial. If k is algebraically
closed, then G=Ru.G/ is reductive.

2Equivalently, for every finite-dimensional representation rWG! GLV ofG, there is a basis
such that r.G/� Un. For a comparison with other definitions in the literature, see p. 286.
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6.47. A connected group variety G is pseudo-reductive if Ru.G/D e. Every
reductive group is pseudo-reductive, but the following example shows that not all
pseudo-reductive groups are reductive. In particular, a connected group variety
G over k may be pseudo-reductive without Gka being pseudo-reductive.

6.48. Let char.k/D p, and let t 2 kXkp . Let G be the algebraic group over k

R f.x;y/ 2R2 j xp� typ 2R�g

with the multiplication

.x;y/.x0;y0/D .xx0C tyy0;xy0Cx0y/:

Then O.G/D kŒX;Y;Z�=..Xp� tY p/Z�1/, and G is a connected group vari-
ety (the polynomial .Xp � tY p/Z�1 is irreducible over ka). Let 'WG! Gm
be the homomorphism .x;y/ 7! xp � typ . The kernel N of ' is the algebraic
group defined by Xp� tY p D 0, which is reduced but not geometrically reduced
(1.27). We have Ru.G/D e, but Ru.Gka/D .Nka/red 'Ga. Thus G is pseudo-
reductive but not reductive. (This example is from Springer 1998, 12.1.6, where
it is credited to Tamagawa.)

NOTES. Our definitions in this section agree with those in SGA 3 (see XIX 1.2, 1.6, 2.7).
Springer (1998, p. 222) defines the unipotent radical of a group variety G over k to be
that of Gka , and notes that in the example in 6.48, this is “not defined over the ground
field”. For a group variety G over a field k, he calls R.G/ and Ru.G/ the “k-radical” and
“unipotent k-radical” of G. His notions of “reductive” and “k-reductive” coincide with
our notions of “reductive” and “pseudo-reductive” (Springer 1998, p. 251).

i. A standard example

The next example plays a fundamental role in the theory.

6.49. Fix an n 2 N. We number the pairs .i;j /, 1� i < j � n, as follows:

.1;2/ .2;3/ � � � .n�1;n/ .1;3/ � � � .n�2;n/ � � � .1;n/

C1 C2 Cn�1 Cn C2n�3 Cn.n�1/
2

:

For r D 0; : : : ;mD n.n�1/
2

, let U .r/n and P .r/n denote the algebraic subgroups of
Un such that

U .r/n .R/D f.aij / 2 Un.R/ j aij D 0 for .i;j /D Cl , l � rg

P .r/n .R/D f.aij / 2 Un.R/ j aij D 0 for .i;j /D Cl , l ¤ rg
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for all k-algebras R. In particular, U .0/n D Un. For example, when nD 3,

C1 D .1;2/; U
.1/
3 D

8<:
�
1 0 �

0 1 �

0 0 1

�9=; ; P .1/3 D

8<:
�
1 � 0

0 1 0

0 0 1

�9=;' U .0/3 =U
.1/
3

C2 D .2;3/; U
.2/
3 D

8<:
�
1 0 �

0 1 0

0 0 1

�9=; ; P .2/3 D

8<:
�
1 0 0

0 1 �

0 0 1

�9=;' U .1/3 =U
.2/
3

C3 D .1;3/; U
.3/
3 D

8<:
�
1 0 0

0 1 0

0 0 1

�9=; ; P .3/3 D

8<:
�
1 0 �

0 1 0

0 0 1

�9=;' U .2/3 =U
.3/
3 :

Then:
(a) Each U .r/n is a normal algebraic subgroup of Tn, and

Un D U .0/n � �� � � U
.r/
n � U

.rC1/
n � �� � � U .m/n D e: (38)

(b) For r > 0, the maps

Ga
pr
�! P

.r/
n �! U

.r�1/
n =U

.r/
n

c 7! 1C cEi0j0 7!
�
1C cEi0;j0

�
�U

.r/
n ;

are isomorphisms of algebraic groups. Here .i0;j0/D Cr and Ei0j0 is the
matrix with 1 in the .i0;j0/th position and zeros elsewhere.

(c) For r > 0,

A � .1C cEi0j0/ �A
�1
� 1C

�
ai i

ajj
c

�
Ei0j0 .mod U rn .R//

where AD .aij / 2 Tn.R/, c 2Ga.R/DR, and .i0;j0/D Cr .
Therefore

Tn � U .0/n � �� � � U
.r/
n � U

.rC1/
n � �� � � U .m/n D e (39)

is a normal series in Tn, with quotients Tn=U .0/n 'Gnm and U .r/n =U
.rC1/
n 'Ga.

Moreover, the action of Tn on each quotient Ga is linear (i.e., factors through
the natural action of Gm on Ga), and Un acts trivially on each quotient Ga.
Hence, (39) is a solvable series for Tn and (38) is a central series for Un, which
is therefore nilpotent.

The proofs of (a), (b), and (c) are straightforward, and are left as an exercise
to the reader (see SHS, Exp. 12).



CHAPTER 7

Algebraic Groups Acting on
Schemes

All schemes are algebraic over k, and all functors are from the category of small
k-algebras to sets or groups.

a. Group actions

Recall (Section 1f) that an action of a group functor G on a functor X is a natural
transformation �WG�X !X such that �.R/ is an action of G.R/ on X.R/ for
all small k-algebras R, and that an action of an algebraic group G on an algebraic
scheme X is a regular map �WG�X !X such that certain diagrams commute.
Because of the Yoneda lemma, to give an action of G on X is the same as giving
an action of QG on QX . We often write gx or g �x for �.g;x/. An action � is
trivial if it factors through the projection G�X !X .

b. The fixed subscheme

Let �WG�X ! X be an action of a group functor G on a separated algebraic
scheme X over k. The next theorem shows that there exists a largest closed
subscheme XG of X on which G acts trivially.

THEOREM 7.1. The functor QXG ,

R fx 2X.R/ j �.g;xR0/D xR0 for all g 2G.R0/ and all R-algebras R0g

is represented by a closed subscheme XG of X .

PROOF. An x 2X.R/ defines maps

g 7! gxR0 WG.R
0/!X.R0/

g 7! xR0 WG.R
0/!X.R0/;

138
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natural in the R-algebra R0. Thus, we get two maps X.R/!Mor.GR;XR/,
natural in R. These are the components of the map  in the following diagram of
functors:

QXG Mor.G;�X /

QX Mor.G;X �X/

closed



The diagram is cartesian because it is when each functor is evaluated at a k-
algebra R. As X is separated, the diagonal �X is a closed subscheme of X �X ,
and so Mor.G;�X / is a closed subfunctor of Mor.G;X �X/ (see 1.78). Hence
QXG is a closed subfunctor of QX (see 1.77), which implies that it is represented

by a closed subscheme of X (see 1.76). 2

The subscheme XG is called the fixed subscheme for the action. Directly
from its definition, one sees that its formation commutes with extension of the
base field.

REMARK 7.2. Let �WG �X ! X be an action of a group variety G on an
algebraic variety X over k. Then XG.ka/DX.ka/G.k

a/, and so

XG.k/DX.k/\X.ka/G.k
a/:

When k is perfect, .XG/red is the unique closed subvariety of X such that

.XG/red.k
a/DX.ka/G.k

a/:

In general, XG need not be reduced.

c. Orbits and isotropy groups

Let �WG�X !X be an action of an algebraic group G on an algebraic scheme
X . For x 2 X.k/, the image of the orbit map �x WG! X , g 7! gx, is locally
closed in X (see 1.65). We now define the orbit Ox of x to be �x.jGj/ equipped
with its structure of a reduced subscheme of X .

EXAMPLE 7.3. Let G be an algebraic group over an algebraically closed field k.
The orbits of Gı acting on G are the connected components of G.

PROPOSITION 7.4. Let �WG�X !X be an action of an algebraic group G on
an algebraic scheme X , and let x 2X.k/.

(a) If X is reduced and G.ka/ acts transitively on X.ka/, then the orbit map
�x WG!X is faithfully flat and Ox DX .

(b) If G is reduced, then Ox is stable under G and the map �x WG! Ox is
faithfully flat. If G is smooth, then Ox is smooth.
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PROOF. (a) This is a special case of Proposition 1.65(a).
(b) The first statement follows from Proposition 1.65(c) applied to f D �x .

As �x is faithfully flat, the map OOx ! �x�.OG/ is injective, and remains so
after extension of the base field. Therefore Ox is geometrically reduced, and its
smooth locus is nonempty (A.55). By homogeneity (over ka/, the smooth locus
equals Ox . 2

PROPOSITION 7.5. Let �WG�X!X be an action of a smooth algebraic group
G on an algebraic scheme X .

(a) A reduced closed subscheme Y of X is stable under G if and only if Y.ka/

is stable under G.ka/.

(b) Let Y be a subscheme of X , and let j NY j denote the closure of jY j. If Y is
stable under G, then

ˇ̌
NY
ˇ̌
red and .

ˇ̌
NY
ˇ̌
XjY j/red are stable under G.

PROOF. (a) As G is geometrically reduced and Y is reduced, G�Y is reduced
(A.43). It follows that �WG �Y ! X factors through Y if and only if �.ka/

factors through Y.ka/.
(b) When we identify X.ka/ with jXka j, the set

ˇ̌
NY
ˇ̌
red .k

a/ becomes identified
with the closure of Y.ka/ in X.ka/. As G.ka/ acts continuously on X.ka/ and
stabilizes Y.ka/, it stabilizes the closure of Y.ka/. Now (a) shows that

ˇ̌
NY
ˇ̌
red is

stable under the action of G. A similar argument applies to .
ˇ̌
NY
ˇ̌
XjY j/red. 2

For x 2X.k/, the isotropy groupGx at x is defined to be the fibre of the orbit
map �x WG!X over x. It is a closed subscheme of G, and, for all k-algebras R,

Gx.R/D fg 2G.R/ j gxR D xRg.

This is a subgroup of G.R/, and so Gx is an algebraic subgroup of G.

PROPOSITION 7.6. Let G�X ! X be an action of a smooth algebraic group
on an algebraic scheme X over k, and let Y be a nonempty subscheme of X . If
Y has smallest dimension among those stable under G, then it is closed.

PROOF. Let Y be a nonempty stable subscheme of X . Then .
ˇ̌
NY
ˇ̌
X jY j/red is

stable under G (see 7.5), and

dim.Y / > dim.
ˇ̌
NY
ˇ̌
XjY j/red.

If Y has smallest possible dimension, then
ˇ̌
NY
ˇ̌
D jY j. 2

When k is algebraically closed, any nonempty subscheme of smallest dimen-
sion among those stable under G is an orbit, and so the proposition implies the
orbit lemma (1.66).

DEFINITION 7.7. A nonempty algebraic scheme X with an action of G is a
homogeneous space under G if G.ka/ acts transitively on X.ka/ and the orbit
map �x WGka !Xka is faithfully flat for some x 2X.ka/.
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The orbit map �x is then faithfully flat for all x 2X.ka/.

ASIDE 7.8. One can ask whether every algebraic G-scheme X over k is a union of
homogeneous subspaces. A necessary condition for this is that the ka-points of X over a
single point of X lie in a single orbit of Gka . Under this hypothesis, the answer is yes if
G is smooth and connected and the field k is perfect, but not in general otherwise. See
Exercise 7-1.

d. The functor defined by projective space

7.9. Let R be a k-algebra. A submodule M of an R-module N is said to be a
direct summand of N if there exists another submodule M 0 of M (a complement
of M ) such that N DM ˚M 0. If M is a direct summand of a finitely generated
projective R-module N , then M is also finitely generated and projective, and
so Mm is a free Rm-module of finite rank for every maximal ideal m in R (CA
12.6). If Mm is of constant rank r , then we say that M has rank r .

Note that ifM is locally a direct summand ofRnC1 (for the Zariski topology),
then the quotient module RnC1=M is also locally a direct summand of RnC1,
hence projective, and so M is (globally) a direct summand of RnC1.

7.10. Let

P n.R/D fdirect summands of rank 1 of RnC1g.

Then P n is a functor from k-algebras to sets. One can show that P n is local in
the sense of (A.34). Let Hi be the hyperplane Ti D 0 in knC1, and let

P ni .R/D fL 2 P
n.R/ j L˚HiR DR

nC1
g:

The P ni form an open affine cover of P n, and so P n is an algebraic scheme over
k (see A.34). We denote it by Pn. When R is a field, every R-subspace of RnC1

is a direct summand, and so Pn.R/ consists of the lines through the origin in
RnC1.

e. Quotients of affine algebraic groups

This section provides a treatment of the quotients of affine algebraic groups
independent of Appendix B. In particular, we give an explicit construction of
G=H when G is smooth and affine, and we sketch a proof of the existence of
G=H for a general affine G.

PROPOSITION 7.11. Let G �X ! X be an action of an algebraic group on a
separated algebraic scheme X , and let o 2X.k/. Then .X;o/ is the quotient of
G by Go if and only if the orbit map �oWG!X is faithfully flat.
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PROOF. If .X;o/ is the quotient of G by Go, then �o is faithfully flat by Pro-
position 5.25. Conversely, from the definition of Go, we see that Go.R/ is the
stabilizer in G.R/ of o 2 X.R/, and so the condition (a) of Definition 5.20 is
satisfied. If �o is faithfully flat, then Proposition 5.7 shows that the condition (b)
is also satisfied. 2

PROPOSITION 7.12. Let G�X !X be an action of a reduced algebraic group
G on a separated algebraic schemeX , and let o 2X.k/. Assume that the quotient
G=Go exists. Then the orbit map induces an isomorphism G=Go!Oo.

PROOF. Because G is reduced, the orbit map �0 is faithfully flat (7.4). Hence
we can apply Proposition 7.11. 2

COROLLARY 7.13. Let G �X ! X be an action of a group variety G on an
algebraic variety X , and let o 2 X.k/. Assume that the quotient G=Go exists.
Then the orbit map induces an isomorphism G=Go!Oo.

PROOF. Special case of the proposition. 2

REMARK 7.14. In the situation of the corollary, the group Go need not be
smooth – consider, for example, the action in characteristic p of SLp on PGLp
by left translation. In the old literature, the isotropy group Ho is defined to be the
reduced subscheme of .Gka/o, which need not be defined over k. Even when it
is defined over k, the map G=Ho!Oo need not be an isomorphism (it is finite
and purely inseparable).

PROPOSITION 7.15. Let H 0 be an algebraic subgroup of G containing H :

G �H 0 �H:

If G=H 0 and G=H exist, then the canonical map NqWG=H !G=H 0 is faithfully
flat. If the scheme H 0=H is smooth (resp. finite) over k, then the morphism
G=H 0!G=H is smooth (resp. finite and flat). In particular, the map G!G=H

is smooth (resp. finite and flat) if H is smooth (resp. finite).

PROOF. We have a cartesian square of functors

QG� . QH 0= QH/ QG= QH

QG QG= QH 0:

.g;x/7!gx

.g;x/7!g

q0

On passing to the associated sheaves and applying the Yoneda lemma, we get a
cartesian square of algebraic schemes

G� .H 0=H/ G=H

G G=H 0:

�

p1 Nq

q0
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Because q0 is faithfully flat, whatever properties p1 has, so will Nq (see A.80). 2

REMARK 7.16. (a) Let H 0 be an algebraic subgroup of G containing H . Then
H 0 Q=H is a closed subscheme of G=H , and is the quotient of H 0 by H . In fact, it
is the fibre over the special point of the morphism G=H !G=H 0 (see 7.15).

(b) Let H 0 be an algebraic subgroup of G containing H and having the same
dimension as H . Then dim.H 0=H/D 0 (see 5.23), and so H 0=H is finite (2.14).
Therefore the canonical map G=H !G=H 0 is finite and flat (7.15). In particular,
it is proper.

(c) Consider an algebraic group G acting on an algebraic variety X . Assume
that G.ka/ acts transitively on X.ka/. By homogeneity, X is smooth, and, for
any o 2 X.k/, the map g 7! goWG! X defines an isomorphism G=Go! X .
When k is perfect, .Go/red is a smooth algebraic subgroup of G (see 1.39), and
G=.Go/red!X is finite and purely inseparable by (b).

Existence of the quotient for smooth affine G

PROPOSITION 7.17. Let G�X !X be the action of a smooth algebraic group
on a separated algebraic scheme X . For every o 2 X.k/, the quotient G=Go
exists and the canonical map G=Go!X is an immersion.

PROOF. As G is smooth, the orbit Oo is stable under G and �oWG ! Oo is
faithfully flat (7.4), and so the pair .Oo;o/ is a quotient of G by Go by (7.11).
That G=Go!X is an immersion follows from (1.65c). 2

THEOREM 7.18. If G is smooth and affine, then the quotient G=H exists as a
separated algebraic scheme for every algebraic subgroup H of G.

PROOF. According to Chevalley’s theorem (4.27), there exists a representation
of G on a vector space knC1 such that H is the stabilizer of a one-dimensional
subspace L of knC1. Recall that Pn represents the functor

R fdirect summands of rank 1 of RnC1g.

The representation of G on knC1 defines a natural action of G.R/ on the set
Pn.R/, and hence an action of G on Pn (Yoneda lemma). For this action of
G on Pn, H is the isotropy group at L regarded as an element of Pn.k/. Now
Proposition 7.17 completes the proof . 2

EXAMPLE 7.19. The proof of Theorem 7.18 shows that, for every representation
.V;r/ of G and line L, the orbit of L in P.V / is a quotient of G by the stabilizer
of L in G. For example, let G D GL2 and let H D T2 D f.� �0 �/g. Then H is the
subgroup fixing the line LD f.�0 /g in the natural action of G on k2. Hence G=H
is isomorphic to the orbit of L, but G acts transitively on the set of lines, and so
G=H ' P1. In particular, the quotient is a complete variety.
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Existence of the quotient for nonsmooth affine G

To remove the “smooth” from Theorem 7.18, it suffices to remove the “smooth”
from Proposition 7.17.

PROPOSITION 7.20. Let G�X ! X be the action of an algebraic group on a
separated algebraic scheme X . For every o 2 X.k/, the quotient G=Go exists
and the canonical map G=Go!X is an immersion.

PROOF. When G is smooth, this becomes Proposition 7.17. Otherwise, there
exists a finite purely inseparable extension k0 of k and a smooth algebraic sub-
group G0 of Gk0 such that G0

ka D .Gka/red (see 1.59). Let H D Go and let
H 0 D G0o DHk0 \G

0. Then G0=H 0 exists as an algebraic scheme over k0 be-
cause G0 is smooth. Now Gk0=Hk0 exists because this is true for the algebraic
subgroups G0 and H 0, which are defined by nilpotent ideals, and we can apply
Lemma 7.24 below. Therefore G=H exists because .G=H/k0 'Gk0=Hk0 exists
and we can apply Lemma 7.21 below.

In proving that i WG=Go! X is an immersion, we may suppose that k is
algebraically closed. As i is a monomorphism, there exists an open subset U of
X such that i�1U ¤ ; and U !X is an immersion (A.35). Now the open sets
i�1.gU /D gi�1.U /, g 2G.k/, cover G=Go. 2

LEMMA 7.21. Let K=k be a finite purely inseparable extension of fields, and
let F be a sheaf on Algk . If the restriction of F to AlgK is representable by an
algebraic scheme over K, then F is representable by an algebraic scheme over k.

PROOF. See DG, III, 2, 7.4. In the affine case, which is all we need, this follows
from the elementary result Theorem B.18. 2

LEMMA 7.22. Let S be an algebraic scheme and let R� S be an equivalence
relation on S such that the first projection R! S is faithfully flat of finite
presentation. Let S0 be a subscheme of S defined by a nilpotent ideal that is
saturated for the relation R, and let R0 be the induced relation on S0. If S0=R0
exists as a scheme, so also does S=R.

PROOF. See DG, III, 2, 7.1, 7.2. 2

LEMMA 7.23. Let R0 and R be equivalence relations on a scheme S . Assume:
R and S are algebraic; R0 is the subscheme of R defined by a nilpotent ideal; and
the canonical projections R0! S and R! S are flat. If S=R0 is an algebraic
scheme over k, then so also is G=R.

PROOF. See DG, III, �2, 7.3. 2

LEMMA 7.24. LetG be an algebraic groupG0,H , andH0 subgroups ofG with
H0 �G0. Assume that G0 (resp. H0/ is the subgroup of G (resp. H ) defined by
a nilpotent ideal. Then G=H exists if G0=H0 exists.
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PROOF. If G0=H0 exists, then so also does G=H0 (by 7.22). Hence G=H exists
by Lemma 7.23 applied to the equivalence schemes G �G=H G ' G �H and
G�G=H0 G ' G�H0. In particular, as H0=H0 is trivial, we see that H=H0 is
an algebraic scheme such that jH=H0j has only a single point, and so H=H0 is
affine. 2

f. Linear actions on schemes

In this section, G is an affine algebraic group over k.

Affine case

A representation .V;r/ of G is, in particular, an action of G on Va. The left
action of G on V defines right actions of G on V _ and its symmetric powers.
In particular, it defines an action of G on Sym.V _/DO.Va/. This is the action
corresponding to the action of G on Va.

PROPOSITION 7.25. Let G�X ! X be an action of G on an affine algebraic
scheme X over k. There exists a finite-dimensional representation .V;r/ of G
and an equivariant closed immersion X ,! Va.

PROOF. The k-algebra O.X/ is finitely generated, and so some finite-dimen-
sional G-stable subspace V contains a generating set for O.X/ (see 4.8). The
G-equivariant map V ,! O.X/ of k-vector spaces extends to an equivariant
homomorphism Sym.V /!O.X/ of k-algebras. This is surjective, and so the
equivariant map X ! .V _/a of k-schemes it defines is a closed immersion. 2

General case

DEFINITION 7.26. An action ofG on an algebraic schemeX over k is said to be
linear if there exists a representation r WG! GLV of G on a finite-dimensional
vector space V and an equivariant immersion X ,! P.V /.

PROPOSITION 7.27. Let G�X!X be a transitive action of G on an algebraic
variety X over k. If X.k/ is nonempty then the action is linear.

PROOF. Let o 2 X . Then the orbit map �oWG=Go! X is an immersion. As
X is reduced and the action is transitive, the orbit map is an isomorphism. The
proof of Theorem 7.18 shows that the action of G on G=Go is linear. 2

REMARK 7.28. In the situation of the proposition, we can choose the repres-
entation .V;r/ so that the G-equivariant immersion X ,! P.V / does not factor
through P.W / for any subrepresentationW of V . We then say that the embedding
X ,! P.V / is nondegenerate:
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g. Flag varieties

A flag F in finite-dimensional vector space V is a sequence of distinct subspaces
0D V0 � V1 � � � � � Vr D V of V . If r D dimV , then dimVi D i for all i and
F is a maximal flag.

Let F be a flag in V , and let B.F / be the functor sending a k-algebra R to
the set of sequences of R-modules

0D F0 � F1 � �� � � Fr DR˝V

with Fi a direct factor of R˝V of rank dim.Vi /.

PROPOSITION 7.29. Let F be a flag in a finite-dimensional vector space V ,
and let B.F / be the algebraic subgroup of GLV fixing F . Then GLV =B.F /
represents the functor B.F /.

PROOF. The functor R GLV .R/=B.F /.R/ is a fat subfunctor of both B.F /
and R .GLV =B.F //.R/. 2

A variety of the form GLV =B.F / is called a flag variety.

PROPOSITION 7.30. Flag varieties are projective (hence complete).

PROOF. This is a standard basic result in algebraic geometry. We sketch the
proof.

Let V be a vector space of dimension n over a field k, and let Gd .V / be the
set of subspaces W of dimension d . Then

Vd
W is a one-dimensional subspace

of
Vd

V , and the condition that a line in
Vd

V be of this form is a polynomial
condition. Therefore the mapW 7!

Vd
W realizes Gd .V / as a closed subvariety

of P.
Vd

V /, called the Grassmann variety of d -dimensional subspaces of V .
Now let 0 < d1 < � � �< dr D n. Then Gd1.V /� � � ��Gdr .V / parameterizes

families of subspaces .V1; : : : ;Vr / of V with dimVi D di . The condition that Vi
be contained in ViC1 is a polynomial condition. Therefore the variety of flags of
dimensions d1; : : : ;dr is a closed subvariety ofGd1.V /�� � ��Gdr .V /. As closed
subvarieties and products of projective varieties are again projective varieties,
this shows that flag varieties are projective. 2

Exercises

EXERCISE 7-1. Let G be a connected group variety acting on algebraic variety
X . A subscheme ofX is homogeneous if it is a homogeneous space for the action
of G.

(a) Show that a point of x of X lies in a homogeneous subscheme of X if
�.x/ is separable over k and the ka-points of X over x lie in a single Gka -orbit.

(b) Show that (a) may fail if the ka-points of X over x do not lie in a single
orbit (e.g., if G is the trivial group).
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(c) Show that (a) may fail if G is not connected. [Consider the natural action
of �n on X DGm, and let x be such that Œ�.x/Wk� does not divide n.]

(d) Show that (a) may fail without the separability condition. [Let G D
f.u;v/ j vp D u� tupg, t 2 kXkp . Then G is a smooth algebraic group, which
acts on P2 by .u;v/.aWbWc/ D .aC ucWbC vcWc/. The Zariski closure X of
G in P2 has a unique point x on the line at infinity, and �.x/ D k.t/. Then
X Xfxg DG with G acting by translation, and so it is a homogeneous space for
G, but the complement fxg of X Xfxg in X is not a homogeneous space – it is
not even smooth.]

See https://mathoverflow.net/, question 150207.

EXERCISE 7-2. Let G be a group variety acting on irreducible varieties X and
Y , and assume that the actions of G.ka/ on X.ka/ and Y.ka/ are transitive. Let
'WX ! Y be an equivariant quasi-finite dominant morphism. Show that ' is
finite (hence proper).

https://mathoverflow.net/


CHAPTER 8

The Structure of General Algebraic
Groups

In this chapter, we explain the position that affine algebraic groups occupy within
the category of all algebraic groups.

a. Summary

Every smooth connected algebraic group G over a field k contains a largest
smooth connected affine normal algebraic subgroup N (see 8.2). When k is
perfect, the quotient G=N is an abelian variety (Barsotti–Chevalley theorem
8.27); otherwise G=N may be an extension of a unipotent algebraic group by an
abelian variety (8.8).

On the other hand, every connected algebraic group G contains a connected
affine normal algebraic subgroup N (not necessarily smooth) such that G=N is
an abelian variety (8.28). If k is perfect and G is smooth, then N is smooth, and
it agrees with the group in the preceding paragraph.

smooth �
j unipotent
�

j abelian variety
�

j smooth affine
e �

smooth �
j abelian variety
�

j smooth affine
e �
base field perfect

�

j abelian variety
�

j affine
e �

Finally, every algebraic group G has a greatest affine algebraic quotient
G ! Gaff (see 8.36). The algebraic groups arising as the kernel N of such a
quotient map are the anti-affine groups, i.e., those with O.N / D k. The anti-
affine groups are smooth, connected, and commutative (8.14, 8.37). In nonzero
characteristic, they are semi-abelian varieties, i.e., extensions of abelian varieties

148
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by tori, but in characteristic zero they may also be an extension of a semi-abelian
variety by a vector group (Section 8i).

b. Normal affine algebraic subgroups

We include the next statement for reference.

PROPOSITION 8.1. Let

e!N !G!Q! e

be an exact sequence of algebraic groups.
(a) If N and Q are affine (resp. smooth, resp. connected), then G is affine

(resp. smooth, resp. connected).

(b) IfG is affine (resp. smooth, resp. connected), thenQ is affine (resp. smooth,
resp. connected).

PROOF. See 1.62, 2.70, 5.29, and 5.59. 2

In particular, extensions and quotients of connected affine group varieties are
again connected affine group varieties.

PROPOSITION 8.2. Every algebraic group G contains a largest smooth connec-
ted affine normal subgroup N . The quotient G=N contains no nontrivial such
subgroup.

PROOF. Every smooth connected affine normal subgroup of greatest dimension
is such a subgroup N (6.42). 2

c. Pseudo-abelian varieties

DEFINITION 8.3. A pseudo-abelian variety is a smooth connected algebraic
group in which every smooth connected affine normal algebraic subgroup is
trivial.

EXAMPLE 8.4. Abelian varieties are pseudo-abelian: every algebraic subgroup
is closed (1.41), hence complete (A.75a), hence finite if affine (A.75g), and hence
trivial if also smooth and connected (A.75).

PROPOSITION 8.5. Pseudo-abelian varieties remain pseudo-abelian under separ-
able algebraic field extensions.

PROOF. Let G be a pseudo-abelian variety over k. If the statement is false,
then there exists a finite Galois extension k0 of G such that the largest smooth
connected affine normal subgroup N of Gk0 is nontrivial. Because it is unique,
N is stable under the action of the Galois group, and hence is defined over k (see
1.54), which is a contradiction. 2
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PROPOSITION 8.6. Let G be a smooth connected algebraic group. There exists
a unique smooth connected affine normal subgroup N of G such that G=N is a
pseudo-abelian variety.

PROOF. The largest smooth connected affine normal subgroup N of G has
the required property (8.2). If N 0 is a second smooth connected affine normal
subgroup of G such that G=N 0 is pseudo-abelian, then N 0 is maximal among the
smooth connected affine normal subgroups of G, and so equals N . 2

COROLLARY 8.7. The formation of the subgroup N in 8.2 commutes with
separable extensions of the base field.

PROOF. Proposition 8.5 shows that it retains the properties that determine it
uniquely. 2

REMARK 8.8. Later (8.26) we shall show that, over a perfect field, all pseudo-
abelian varieties are abelian varieties. Over an arbitrary base field, Totaro (2013)
shows that every pseudo-abelian variety G is an extension of a connected unipo-
tent group variety U by an abelian variety A in a unique way.

d. Local actions

PROPOSITION 8.9. Let G�X !X be an algebraic group acting on an irredu-
cible algebraic scheme X over k. If the action is faithful and there is a fixed point
P 2X.k/, then G is affine.

PROOF. Because G fixes P , it acts on the local ring OP at P . For n 2 N,
the formation of OP =mnC1P commutes with extension of the base, and so the
action of G defines homomorphisms G.R/! Aut.R˝k

�
OP =mnC1P

�
/ for all

small k-algebras R. These are natural in R, and so arise from a homomorphism
�nWG! GLOP =mnC1P

of algebraic groups. Let Hn D Ker.�n/, and let H denote
the intersection of the descending sequence of algebraic subgroups � � � �Hn �
HnC1 � �� � . Because G is noetherian, there exists an n0 such that H DHn for
all n� n0.

Let I be the sheaf of ideals in OX corresponding to the closed algebraic
subscheme XH of X . Then IOP �mnP for all n� n0, and so IOP �

T
nm

n
P ,

which is zero by the Krull intersection theorem (CA 3.16). It follows that XH

contains an open neighbourhood of P . As XH is closed and X is irreducible,
XH equals X . Therefore H D e, and the representation of G on OP =mnC1P is
faithful for all n� n0. This means that �nWG!GLOP =mnC1P

is a monomorphism,
hence a closed immersion (5.34), and so G is affine. 2

COROLLARY 8.10. Let G be a connected algebraic group and Oe the local ring
at the neutral element e. The action of G on itself by conjugation defines a
representation of G on the k-vector space Oe=m

nC1
e . For all sufficiently large n,

the kernel of this representation is the centre of G.
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PROOF. Apply the above proof to the faithful action G=Z�G!G. 2

COROLLARY 8.11. The quotient of a connected algebraic group by its centre is
affine.

PROOF. The action of G=Z on G by conjugation is faithful with fixed point e.2

e. Anti-affine algebraic groups and abelian varieties

Recall that a group variety G over k is anti-affine if O.G/D k. For example, a
complete connected group variety is anti-affine. Every homomorphism 'WG!H

from an anti-affine group variety to an affine algebraic group is trivial (because
' is the morphism corresponding to the trivial homomorphism O.H/!O.G/;
A.12). In particular, an algebraic group that is both affine and anti-affine is trivial.

PROPOSITION 8.12. Every homomorphism from an anti-affine algebraic group
G to a connected algebraic group H factors through the centre of H .

PROOF. From the homomorphism G ! H and the action of H on itself by
conjugation, we obtain a representation G on the k-vector space OH;e=mnC1e

(n 2 N). Because G is anti-affine, this is trivial, which implies that G ! H

factors through Z.H/ ,!H (see 8.10). 2

COROLLARY 8.13. Let G be a connected algebraic group. Every anti-affine
algebraic subgroup H of G is contained in the centre of G.

PROOF. Apply the proposition to the inclusion map. 2

COROLLARY 8.14. Every anti-affine algebraicG is commutative and connected.

PROOF. Corollary 8.13 shows that G is commutative. The map G! �0.G/ is
surjective, but �0.G/ is affine, and so it is trivial. 2

DEFINITION 8.15. An abelian subvariety of an algebraic group is a complete
connected subgroup variety.

f. Rosenlicht’s decomposition theorem.

Recall that a rational map �WXÜ Y of algebraic varieties is an equivalence
class of pairs .U;�U / with U a dense open subset of X and �U a morphism
U ! Y ; in the equivalence class, there is a pair with largest U (and U is called
“the open subvariety on which � is defined”). We shall need to use the following
results, which are proved, for example, in Milne 1986.

8.16. Every rational map from a normal variety to a complete variety is defined
on an open set whose complement has codimension � 2 (ibid. 3.2).
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8.17. Every rational map from a smooth variety to a connected group variety is
defined on an open set whose complement is either empty or has pure codimension
1 (ibid. 3.3).

8.18. Every rational map from a smooth variety V to an abelian variety A is
defined on the whole of V (combine 8.16 and 8.17).

8.19. Every regular map from a connected group variety to an abelian variety
sending e to e is a homomorphism (ibid. 3.6).

8.20. Every abelian variety is commutative (8.14, or apply 8.19 to x 7! x�1).

8.21. Multiplication by a nonzero integer on an abelian variety is faithfully flat
with finite kernel (ibid. 8.2).

LEMMA 8.22. Let G be a commutative connected group variety over k, and let

.v;g/ 7! vCgWV �G! V

be a G-torsor. There exists a morphism �WV ! G and an integer n such that
�.vCg/D �.v/Cng for all v 2 V , g 2G.

PROOF. Suppose first that V.k/ contains a point P . Then

g 7! gCP WG! V

is an isomorphism. Its inverse �WV !G sends a point v of V to the unique point
.v�P / of G such that P C .v�P / D v. In this case �.vCg/ D �.v/Cng
with nD 1.

In the general case, because V is an algebraic variety, there exists a P 2 V
whose residue field K def

D �.P / is a finite separable extension of k (of degree n,
say). Let P1; : : : ;Pn be the ka-points of V lying over P , and let QK denote the
Galois closure (over k) ofK in ka. Then the Pi lie in V. QK/. Let � DGal. QK=k/.

For each i , we have a morphism

�i WV QK !G QK v 7! .v�Pi /

defined over QK. The sum
P
�i is � -equivariant, and so arises from a morphism

�WV !G over k. For g 2G,

�.vCg/D
Xn

iD1
�i .vCg/D

Xn

iD1
.�i .v/Cg/D �.v/Cng:

2

PROPOSITION 8.23. LetA be an abelian subvariety of a connected group variety
G. There exists a regular map �WG! A and an integer n such that �.gCa/D
�.g/Cna for all g 2G and a 2 A.
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PROOF. Because A is a normal subgroup of G (even central, see 8.13), it is the
kernel of a quotient map � WG!Q (5.14), which is smooth because A is smooth
(1.63). Let K be the field of rational functions on Q, and let V ! Spm.K/ be
the map obtained by pull-back with respect to Spm.K/! Q. Then V is an
AK-torsor over K (see 5.27). The morphism �WV ! AK over K given by the
lemma extends to a rational map GÜQ�A over k. On projecting to A, we
get a rational map GÜ A. This extends to a morphism �WG! A (see 8.18)
satisfying

�.gCa/D �.g/Cna

on a dense open subset of G, and hence on the whole of G. 2

The next theorem says that every abelian subvariety of an algebraic group
has an almost-complement. It is a key ingredient in Rosenlicht’s proof of the
Barsotti–Chevalley theorem.

THEOREM 8.24 (ROSENLICHT DECOMPOSITION THEOREM). Let A be an
abelian subvariety of a connected group variety G. There exists a normal algeb-
raic subgroup N of G such that the map

.a;n/ 7! anWA�N !G (40)

is a faithfully flat homomorphism with finite kernel. When k is perfect, N can be
chosen to be smooth.

PROOF. Let �WG! A be the map given by Proposition 8.23. After we apply
a translation, this will be a homomorphism (8.19) whose restriction to A is
multiplication by n. The kernel of � is a normal algebraic subgroup N of G.

Because A is contained in the centre of G (see 8.13), the map (40) is a
homomorphism. It is surjective, hence faithfully flat (1.71), because its image
contains N and the homomorphism A!G=N ' A it induces is the surjective
map multiplication by n. Its kernel is A\N , which is the finite group scheme
An (see 8.21).

When k is perfect, we can replace N with Nred, which is a smooth algebraic
subgroup of N (1.39). 2

g. Rosenlicht’s dichotomy

The next result is the second key ingredient in Rosenlicht’s proof of the Barsotti–
Chevalley theorem.

PROPOSITION 8.25. Let G be a connected group variety over an algebraically
closed field k. Either G is complete or it contains an affine algebraic subgroup of
dimension > 0.
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Suppose that G is not complete (so dimG > 0), and let X denote G regarded
as a left homogeneous space for G. We may hope1 that X can be embedded as
a dense open subvariety of a complete variety NX in such a way that the action
of G on X extends to NX . The action of G on NX then preserves E def

D NX XX . Let
P 2E, and let H be the isotropy group at P . Then H is an algebraic subgroup
of G and

dim.G/�dim.H/ 5.23
D dim.G=H/� dimE � dimG�1,

and so dim.H/� 1. As H fixes P and acts faithfully on NX , it is affine (8.9).
The above sketch is essentially Rosenlicht’s original proof of the proposition,

except that, lacking an equivariant completion of X , he works with an “action”
of G on NX given by a rational map G� NXÜ NX (Rosenlicht 1956, Lemma 1,
p. 437). We refer the reader to Brion et al. 2013, 2.3, or Milne 2013, 4.1, for the
details.

h. The Barsotti–Chevalley theorem

THEOREM 8.26. Every pseudo-abelian variety over a perfect field is complete
(hence an abelian variety).

PROOF. Let G be a pseudo-abelian variety over perfect field k. Because of
Proposition 8.5, we may suppose that k is algebraically closed. We use induction
on the dimension of G. Let Z DZ.G/.

Suppose first that Z has dimension zero, and hence is affine. For large n, the
sequence

e!Z!G! GLOe=mnC1e

is exact (8.10), and it realizes G as an extension of affine algebraic groups.
Therefore G is affine (8.1a), and, as O.G/ D k, it equals the trivial algebraic
group, which is indeed complete.

Now assume that dim.Z/ > 0. If Zred is complete, then there exists a smooth
almost-complement N to Zred (see 8.24). As G D Zred �N , every connected
affine normal subgroup variety of N is normal in G, and hence trivial. Therefore
N is pseudo-abelian, and so, by the induction hypothesis, it is complete. As G is
a quotient of Zred�N , it also is complete (A.75d).

If Zred is not complete, then it contains a connected affine subgroup variety
N of dimension > 0 (see 8.25). Because N is contained in the centre of G, it is
normal in G, which contradicts the hypothesis on G. 2

THEOREM 8.27 (BARSOTTI 1955; CHEVALLEY 1960). Let G be a connected
group variety G over a perfect field. Then G contains a unique connected affine
normal subgroup variety N such that G=N is an abelian variety.

1Indeed, every homogeneous space X for G can be embedded equivariantly as a dense open
subset of a complete variety (8.44), but the proof uses Proposition 8.25.
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PROOF. According to Proposition 8.6, G contains a unique connected affine
normal subgroup variety N such that G=N is a pseudo-abelian variety, but,
because the ground field is perfect, “pseudo-abelian variety” is the same as
“abelian variety”. 2

On weakening the hypotheses in the theorem, we obtain a weaker statement.

THEOREM 8.28. Let G be a connected algebraic group over a field k. Then G
contains a connected affine normal algebraic subgroup N such that G=N is an
abelian variety.

PROOF. Suppose first that G is smooth. It follows from Proposition 8.26 that
there exists a finite purely inseparable extension k0 of k such that Gk0 acquires a
connected affine normal algebraic subgroup N 0 for which Gk0=N 0 is complete.
Let G0 D Gk0 . By induction on the degree of k0 over k, we may suppose that
k0p � k. Consider the Frobenius map F WG0! G0.p/. Let N be the pull-back
under F of the algebraic subgroup N 0.p/ of G0.p/. If I 0 � OG0 is the sheaf of
ideals defining N 0, then the sheaf of ideals I defining N is generated by the pth
powers of the local sections of I 0. As k0p � k, we see that I is generated by
local sections of OG , and so there is a subgroup N0 of G such that N0k0 D N .
Now N0 is connected, normal, and affine because N is, and G=N0 is complete
because G0=N is complete (it is a quotient of G0=N 0/.

For a general G, we use that the kernel of the Frobenius map F nWG!G.p
n/

is finite (hence affine) and that G.p
n/ is smooth for large enough n (see 2.29). Let

N 0 be a connected affine normal algebraic subgroup ofG.p
n/ such thatG.p

n/=N 0

is complete. Its inverse image in G is the required subgroup. 2

COROLLARY 8.29. Every pseudo-abelian variety is commutative.

PROOF. Let G be a pseudo-abelian variety. Because G is smooth and connected,
so also is its commutator subgroup DG (see 6.19). Let N be as in Theorem 8.28.
As G=N is commutative, DG � N . Therefore DG is affine. As it is a smooth
connected normal subgroup of G, it is trivial. 2

Notes

8.30. The subgroup variety N in Theorem 8.27 is characterized by each of the
following properties: (a) it is the largest connected affine subgroup variety of G;
(b) it is connected, affine, and normal, and the quotient G=N is complete; (c) it
is the smallest connected affine normal subgroup variety of G such that G=N is
complete. From (b) we see that the formation of N commutes with extension of
the base field.

8.31. The algebraic subgroup N in Theorem 8.28 need not be smooth even
when G is smooth.
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8.32. Let G be a connected algebraic group over k. If N1 and N2 are affine
normal algebraic subgroups of G such that G=N1 and G=N2 are complete, then
G=N1\N2 is also complete because there is a closed immersion G=N1\N2 ,!
G=N1 �G=N2. If G=N is complete, then so also is G=N ı. Therefore, the
subgroup N in Theorem 8.28 is the smallest affine normal subgroup of G such
that G=N is complete.

8.33. The map G!G=N DA in Theorem 8.27 is universal among maps from
G to an abelian variety sending e to e. Therefore (by definition)A is the Albanese
variety of G and G! A is the Albanese map. In his proof of Theorem 8.27,
Chevalley begins with the Albanese map G! A of G, and proves that its kernel
is affine. The above proof Theorem 8.27 is that of Rosenlicht 1956. The first
published proof of the theorem is in Barsotti 1955.

i. Anti-affine groups

Let G be an algebraic group over k. We shall show (8.36) that the k-algebra
O.G/ is finitely generated. As in the affine case (Section 3b), the map O.m/ then
defines a Hopf algebra structure on O.G/, and so

Gaff def
D Spm.O.G/;O.m//

is an affine algebraic group over k.
Let A be a k-algebra. To give a morphism G! Spm.A/ of k-schemes is the

same as giving a homomorphism of k-algebras A!O.G/:

Hom.G;Spm.A//' Hom.A;O.G// (41)

(see A.13). When A has a Hopf algebra structure, group homomorphisms cor-
respond under (41) to Hopf algebra homomorphisms. Therefore, for an affine
algebraic group H ,

Hom.G;H/' Hom.Gaff;H/: (42)

Let �WG!Gaff be the homomorphism corresponding in (41) to the identity map
on O.G/. Then (42) shows that � is universal among homomorphisms from G

to affine algebraic groups.

PROPOSITION 8.34. Every Hopf algebra over k is a directed union of finitely
generated Hopf subalgebras over k.

PROOF. Let .A;�/ be a Hopf k-algebra. By Proposition 4.7, every finite subset
of A is contained in a finite-dimensional k-subspace V such that �.V /� V ˝A.
Let .ei / be a basis for V as a k-vector space, and write �.ej / D

P
i ei ˝ aij .

Then �.aij /D
P
k aik˝akj (see (25), p. 84), and the subspace L of A spanned

by the ei and aij satisfies �.L/ � L˝L. The k-subalgebra A0 generated by
L satisfies �.A0/� A0˝A0. It follows that A is a directed union AD

S
A0 of

finitely generated subalgebras A0 such that �.A0/� A0˝A0.
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Let a 2 A. If �.a/ D
P
bi ˝ ci , then �.Sa/ D

P
Sci ˝Sbi (Exercise 3-

3(b)). Therefore, the k-subalgebraA0 generated byL and SL satisfies S.A0/�A0,
and so it is a finitely generated Hopf subalgebra of A. It follows that A is the
directed union of its finitely generated Hopf subalgebras. 2

COROLLARY 8.35. Let B be a Hopf algebra over k. If B is an integral domain,
then it is finitely generated as a k-algebra if and only if its field of fractions is
finitely generated as a field over k.

PROOF. The necessity being obvious, we prove the sufficiency. According to the
proposition, there is a finitely generated Hopf subalgebra A of B containing a
generating set for the field of fractions of B . Then A and B have the same field
of fractions, and so are equal (3.32). 2

PROPOSITION 8.36. Let G be an algebraic group over k.
(a) The k-algebra O.G/ is finitely generated.

(b) The pair Spm.O.G/;O.m// is an algebraic group Gaff over k.

(c) The natural map �WG!Gaff is universal for homomorphisms from G to
affine algebraic groups, and it is faithfully flat.

(d) The kernel N of � is anti-affine.

PROOF. (a) According to Proposition 8.34, O.G/ is a filtered union O.G/ DS
iOi of Hopf algebras with each Oi finitely generated as a k-algebra. Cor-

respondingly, we obtain a family of homomorphisms fi WG! Gi of algebraic
groups over k with Gi D Spm.Oi /. Let N D

T
i Ker.fi /. Then N D Ker.fi0/

for some i0 (see 1.42), and G=N !Gi0 is a closed immersion (5.34). Therefore

G=N is affine. We have morphisms G
a
�! G=N

b
�! Gi0 and corresponding

homomorphisms Oi0
b0

�!O.G=N/ a0

�!O.G/. As b0 is surjective and a0 ıb0 is
injective, we have Oi0 'O.G=N/. Similarly, Oi1 'O.G=N/ if Oi1 �Oi0 , and
so Oi0 D Oi1 as a subalgebra of O.G/. Therefore O.G/DSiOi D O.Gi0/,
which is finitely generated.

(b, c) After the above discussion, it remains to show that � is faithfully flat,
but this follows from the criterion (c) of (5.43).

(d) This follows from the definition of N . 2

Thus every algebraic group is an extension of an affine algebraic group by an
anti-affine algebraic group

e!Gant!G!Gaff
! e;

in a unique way; in fact, it is a central extension (8.13).

PROPOSITION 8.37. Every anti-affine algebraic group is smooth and connected.
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PROOF. Let G be an anti-affine algebraic group over a field k. Then Gka is
anti-affine, and so we may suppose that k is algebraically closed. Then Gıred is
an algebraic subgroup of G (see 1.39). As G ! G=Gıred is faithfully flat, the
map O.G=Gıred/!O.G/ is injective. Therefore O.G=Gıred/D k. As G=Gıred is
finite, in particular, affine, it is trivial, and so G DGıred. 2

COROLLARY 8.38. An algebraic group G is affine if Z.Gı/ is affine.

PROOF. Let N D Ker.G! Gaff/. Because N is anti-affine, it is contained in
Gı, and hence in Z.Gı/ (see 8.13). In particular, it is affine. The square

G�N G

G G=N

affine

faithfully flat

is cartesian (5.24), and so the morphism G!G=N is affine (A.80). As G=N '
Gaff is affine, this implies that G is affine (8.38). 2

COROLLARY 8.39. Every algebraic group over a field of characteristic zero is
smooth.

PROOF. As extensions of smooth algebraic groups are smooth (8.1), this follows
from Propositions 8.36 and 8.37. 2

In the remainder of this section, we describe the classification of anti-affine
algebraic groups in terms of abelian varieties.

Consider an extension

e! T !G! A! e (43)

of an abelian variety A by a torus T . The group of characters X�.T / of T is
defined to be Hom.Tks ;Gm/. By definition, the torus T becomes isomorphic to
Grm (r D dimT ) over ks, and so X�.T /� End.Gm/r ' Zr . From a character �
of T , we obtain, by extension of scalars and pushout from (43), an extension

e!Gm!G�! Aks ! e

over ks, and hence an element c.�/ 2 Ext1.Aks ;Gm/. Let A_ be the dual abelian
variety to A. Then

Ext1.Aks ;Gm/' A_.ksep/

(e.g., Milne 1986, 11.3), and so the extension (43) gives rise to a homomorphism
cWX�.T /! A_.ks/.

PROPOSITION 8.40. The algebraic group G is anti-affine if and only if the
homomorphism c is injective.

PROOF. See Brion 2009, 2.1. 2
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In nonzero characteristic p, all anti-affine algebraic groups are of this form,
but in characteristic zero, extensions of an abelian variety by a vector group may
also be anti-affine.

Let A be an abelian variety over a field k of characteristic zero. In this case,
there is a “universal vector extension” E.A/ of A such that every extension G of
A by a vector group U fits into a unique diagram

e H 1.A;OA/_a E.A/ A e

e U G A e



with  a k-linear map. The algebraic group E.A/ is anti-affine, and G is anti-
affine if and only if  is surjective. Therefore, the anti-affine extensions of
A by vector groups are classified by the quotient spaces of H 1.A;OA/_, or,
equivalently, by the subspaces of H 1.A;OA/.

More generally, we need to consider extensions

e! U �T !G! A! e

of A by the product of a vector group U with a torus T . Such a G is anti-affine if
and only if both G=U and G=T are anti-affine, and every anti-affine group over
A arises in this way. Thus we arrive at the following statement.

THEOREM 8.41. Let A be an abelian variety over a field k:
(a) If k has nonzero characteristic, then the isomorphism classes of anti-affine

groups over A are in one-to-one correspondence with the free abelian
subgroups � of A_.ks/ of finite rank stable under the action of Gal.ks=k/.

(b) If k has characteristic zero, then the isomorphism classes of anti-affine
groups over A are in one-to-one correspondence with the pairs .�;V /
where � is as in (a) and V is a subspace of the k-vector space H 1.A;OA/.

PROOF. See Brion 2009, 2.7; also Sancho de Salas 2001; Sancho de Salas and
Sancho de Salas 2009. 2

j. Extensions of abelian varieties by affine algebraic groups: a
survey

After the Barsotti–Chevalley theorem, the study of smooth algebraic groups over
perfect fields comes down to the study of (a) abelian varieties, (b) affine algebraic
groups, and (c) the extensions of one by the other. Topic (a) is beyond the scope
of this book while topic (b) occupies the rest of it. Here we discuss (c). For
simplicity, we take k to be algebraically closed.

Let A and H be algebraic groups over k. An extension of A by H is an exact
sequence

e H G A e
i p

(44)
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of algebraic groups. Two extensions .G; i;p/ and .G0; i 0;p0/ of A by H are
equivalent if there exists an isomorphism f WG ! G0 such that the following
diagram commutes:

e H G A e

e H G0 A e:

i p

f

i 0 p0

We let Ext.A;H/ denote the set of equivalence classes of extensions of A by H .
For an exact sequence (44), the sequence

e Z.H/ Z.G/ A e
Z.i/ f

(45)

is exact, and the map .44/ 7! .45/ defines a bijection

Ext.A;H/! Ext.A;Z.H//

where Ext.A;Z.H// denotes the set of equivalence classes of extensions of A
by Z.H/ in the (abelian) category of commutative algebraic groups. Hence
Ext.A;H/ has the structure of a commutative group, and every extension of A
by H splits if Z.H/D e. See Wu 1986.

It remains to compute Ext.A;Z/, where Z is a commutative affine algebraic
group. Every connected commutative group variety G over k is a product of
copies of Gm with a unipotent group variety U ; when k has characteristic zero,
U is vector group Va (product of copies of Ga/ (see 16.15 below). There are the
following results:

(a) Ext.A;Gm/'H 1.A;O�A/, which is canonically isomorphic to the group
of divisor classes on A algebraically equivalent to zero (equal to the group
of k-points of the dual abelian variety of A) (Weil, Barsotti; Serre 1959,
VII.16).

(b) It remains to compute Ext.A;U /, where U is unipotent. In characteristic
0, we have

Ext1.A;Va/'H 1.A;OA˝V /' V dim.A/

(Barsotti; Serre 1959, VII.18). In characteristic p, the computation is
more complicated, and involves Ext.N;Zı/, where N is the factor of Apm
which, together with its Cartier dual, is local, and pm is large enough to kill
Z. However, when A is ordinary, it is still true that Ext.A;U /'U.k/dimA.
See Wu 1986.

k. Homogeneous spaces are quasi-projective

All schemes are algebraic over the field k. Recall the following definitions.
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DEFINITION 8.42. Let X be a separated algebraic scheme equipped with an
action of G. We say that X is a homogeneous space under G (resp. a torsor
under G) if the map

.g;x/ 7! .gx;x/WG�X !X �X

is faithfully flat (resp. an isomorphism).

THEOREM 8.43. Let G be an algebraic group over k and X a homogeneous
space under G. Then X is quasi-projective.

Raynaud (1970, VI, 2.6) derives Theorem 8.43 from more general results on
schemes. In the rest of this section, we sketch a more elementary proof.

It suffices to prove Theorem 8.43 after an extension of the base field k. This
allows us to assume that there exists an o 2X , and hence that X 'G=H with H
the isotropy group at o. In this case, we prove a stronger result.

THEOREM 8.44. Let G be an algebraic group and H an algebraic subgroup of
G. There exists a projective scheme X equipped with an action of G and an
equivariant open immersion G=H !X with schematically dense image.

The starting point for the proof is the following theorem.

THEOREM 8.45. Every abelian variety is projective.

This was first proved in Barsotti 1953 and Matsusaka 1953. Weil (1957) gave
a simpler proof, which can be found in Milne 1986.

We now sketch the proof of Theorem 8.44. Let G and H be as in the
statement of the theorem. According to Theorem 8.28, there exists a connected
affine normal algebraic subgroup N of G such that G=N is complete. Lemma
5.24 provides us with an isomorphism

.g;g0/ 7! .g;gg0/WG�HN
'
�!G�G=HN G; (46)

from which we deduce an isomorphism

G� .N=H \N/
5.62
' G�HN=H !G�G=HN G=H:

Now the top square in the following diagram is cartesian, and the rest of the
diagram obviously commutes:

G� .N=H \N/ G=H

G�G=HN G G G=HN

G�HN G G=HN

p1

p2

p1

�

faithfully flat

faithfully flat

'
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Choose a representation .V;r/ ofN containing a lineLwith stabilizerH \N .
Then N acts on P.V / and the isotropy group at ŒL� is H \N . Therefore the
canonical map N=H \N ,! P.V / is an immersion (7.20). Let Y denote the
closure of N=H \N in P.V /.

The top square in the above diagram defines a descent datum on G� .N=H \
N/ relative to the faithfully flat map G!G=HN (see A.81). The isomorphism
(46) allows us to interpret the descent datum on G � .N=H \N/ in terms of
group actions (see the above diagram). This and the fact that the embedding
N=H \N ! Y is equivariant allows us to extend the descent datum on G �
.N=H \N/ to G�Y , and even to G�P.V /. Now descent theory tells us that
G�Y arises from a scheme X over G=NH , i.e., that there is a cartesian square

G�Y X

G G=HN

containing the cartesian square in the previous diagram as a subdiagram. As
G � Y is projective over G, descent theory tells us that X is projective over
G=HN , but G=HN , being a quotient of G=N , is complete, and hence projective
(8.45). Therefore X is a projective scheme over k. The natural inclusion of G=H
into X is the required equivariant projective embedding.

See Brion 2015b, 5.2 for a more detailed proof.

Exercises

EXERCISE 8-1. Let G be an algebraic group. Show that G=Z.G/ is affine if G
is connected or DG is affine.

EXERCISE 8-2. Show that the definitions of homogeneous space in 7.7 and 8.42
are equivalent. [Use A.67.]

We now concentrate on affine algebraic groups. By “algebraic group” we shall mean
“affine algebraic group” and by “group variety” we shall mean “affine group variety”.



CHAPTER 9

Tannaka Duality; Jordan
Decompositions

A character of a topological group is a continuous homomorphism from the group
to the circle group fz 2 C j z Nz D 1g. A locally compact commutative topological
group G can be recovered from its character group G_ because the canonical
homomorphism G!G__ is an isomorphism of topological groups (Pontryagin
duality). As the dual of a compact commutative group is a discrete commutative
group, the study of the former is equivalent to that of the latter.

Clearly, “commutative” is required in the above statements, because every
character is trivial on the derived group. However, Tannaka showed that it is
possible to recover a compact noncommutative group from the category of its
unitary representations. In this chapter, we prove an analogue of this for algebraic
groups. The Tannakian perspective is that an algebraic group G and its category
Rep.G/ of finite-dimensional representations should be considered equal partners.
Recall that all algebraic groups are affine over a base field k.

a. Recovering a group from its representations

Let R0 be a ring and let A be an R0-algebra (not necessarily finitely generated)
equipped with R0-homomorphisms �WA! A˝A and �WA!R0 for which the
diagrams (17), p. 65, commute. Then the functor

GWR HomR0-algebra.A;R/

is an affine monoid over R0. There is a regular representation rA of G on A in
which an element g of G.R/ acts on f 2 A according to the rule

.rA.g/fR/.x/D fR.x �g/ all x 2G.R/: (47)

163
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LEMMA 9.1. With the above notation, let u be an R0-algebra endomorphism of
A. If the diagram

A A˝A

A A˝A

�

u 1˝u

�

(48)

commutes, then there exists a g 2G.R0/ such that uD rA.g/.

PROOF. Let �WG!G be the morphism corresponding to u, so that

.uf /R.x/D fR.�Rx/ all f 2 A, x 2G.R/: (49)

We shall prove that the lemma holds with g D �.e/.
From (48), we obtain a commutative diagram

G G�G

G G�G:

�

m

1��

m

Thus
�R.x �y/D x ��R.y/; all x;y 2G.R/:

On setting y D e in the last equation, we find that �R.x/D x �gR with gR D
�R.e/. Therefore, for f 2 A and x 2G.R/,

.uf /R .x/
.49/
D fR.x �gR/

.47)
D .rA.g/f /R.x/;

and so uD rA.g/. 2

Let G be an algebraic group over a field k. Let R be a k-algebra, and let
g 2G.R/. For every finite-dimensional representation .V;rV / of G over k, we
have an R-linear map �V

def
D rV .g/WVR! VR. These maps satisfy the following

conditions:
(a) for all representations V and W , �V˝W D �V ˝�W I

(b) �11 is the identity map (here 11D k with the trivial action);

(c) for all G-equivariant maps uWV !W , �W ıuR D uR ı�V :

THEOREM 9.2. Let G be an algebraic group over k and R a k-algebra. Suppose
that, for every finite-dimensional representation .V;rV / of G, we are given an
R-linear map �V WVR! VR. If the family .�V / satisfies the conditions (a, b, c),
then there exists a unique g 2G.R/ such that �V D rV .g/ for all V .

PROOF. Let V be a (possibly infinite-dimensional) representation of G. Recall
(4.8) that V is a union of its finite-dimensional subrepresentations, V D

S
i2I Vi .

It follows from (c) that

�Vi jVi \Vj D �Vi\Vj D �Vj jVi \Vj
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for all i;j 2 I . Therefore, there is a unique R-linear endomorphism �V of VR
such that �V jW D �W for every finite-dimensional subrepresentation W � V .
The conditions (a, b, c) will continue to hold for the enlarged family.

In particular, we have an R-linear map �AWA! A, A D O.G/R, corres-
ponding to the regular representation rA of G on A. The map mWA˝A! A

is equivariant1 for the representations rA˝ rA and rA, which means that �A is a
k-algebra homomorphism. Similarly, the map �WA! A˝A is equivariant for
the representations rA on A and 1˝ rA on A˝A, and so the diagram in (9.1)
commutes with u replaced by �A. Now Lemma 9.1, applied to the affine monoid
GR over R, shows that there exists a g 2G.R/ such �A D r.g/.

Let .V;rV / be a finitely generated representation of G, and let V0 denote the
underlying k-vector space. There is an injective homomorphism of representa-
tions �WV ! V0˝O.G/ (see 4.12). By definition � and r.g/ agree on O.G/,
and they agree on V0 by condition (b). Therefore they agree on V0˝O.G/ by
(a), and so they agree on V by (c).

This proves the existence of g. It is uniquely determined by �V for any
faithful representation .V;rV /. 2

Notes

Let G be an algebraic group over k and let Rep.G/ (or Repk.G/) denote the
category of representations of G on finite-dimensional k-vector spaces.

9.3. Let .�V / be a family satisfying the conditions (a, b, c). AsG is an algebraic
group, each �V is an isomorphism and �V_ D .�V /_ because this true of the
maps rV .g/.

9.4. Theorem 9.2 identifies g 2 G.R/ with the collection of families .�V /
satisfying the conditions (a, b, c). Thus, from the category Rep.G/, its tensor
structure, and the forgetful functor, we can recover the functor R G.R/,
and hence the group G itself. For this reason, Theorem 9.2 is often called the
reconstruction theorem.

9.5. Suppose that k is an algebraically closed field, and that G is smooth, so
that O.G/ can be identified with a ring of k-valued functions on G.k/. For each
representation .V;rV / of G over k and u 2 V _, we have a function �u on G.k/,

�u.g/D hu;rV .g/i 2 k:

Then �u 2 O.G/, and every element of O.G/ arises in this way. In this way,
we can recover O.G/ directly as the ring of “representative functions” on G (cf.
Springer 1998, 2.5.5).

1Here are the details. For x 2G.R/,

.r.g/ım/.f ˝f 0/.x/D .r.g/.ff 0//.x/D .ff 0/.xg/D f .xg/ �f 0.xg/

.mır.g/˝r.g//.f ˝f 0/.x/D ..r.g/f / � .r.g/f 0/.x/D f .xg/ �f 0.xg/:
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9.6. In Theorem 9.2, instead of all representations of G, it suffices to choose a
faithful representation V and take all quotients of subrepresentations of a direct
sum of representations of the form˝n.V ˚V _/ (see 4.14). Then Theorem 9.2
can be interpreted as saying that G is the subgroup G0 of GLV fixing all tensors
in subquotients of representations˝n.V ˚V _/ fixed by G.

9.7. In general, we can’t omit “subquotients of” from (9.6). Consider for
example, the subgroup B D f.� �0 �/g of GL2 acting on V D k�k and suppose that
a vector v 2 .V ˚V _/˝n is fixed byB . Then g 7! gv is a regular map GL2 =B!
.V ˚V _/˝n of algebraic varieties. As GL2 =B ' P1 and .V ˚V _/˝n is affine,
the image of the map is a point (A.75g). Therefore, v is fixed by GL2, and so
B 0 D GL2.

9.8. Let ! denote the forgetful functor Repk.G/! Veck , and, for a k-algebra
R, let !R D R˝!. Let End˝.!R/ denote the set of natural transformations
�W!R! !R commuting with tensor products, i.e., such that (a) �V˝W D �V ˝
�W for all representations V andW ofG and (b) �11 is the identity map. Theorem
9.2 says that the canonical map G.R/! End˝.!R/ is an isomorphism. Now let
End˝.!/ denote the functor R End˝.!R/. Then G ' End˝.!/. Because of
(9.3), this can be written G ' Aut˝.!/.

NOTES. The short direct proof of Theorem 9.2 follows Springer 1998, 2.5.3.

b. Jordan decompositions

The Jordan decomposition of a linear map

Recall that an endomorphism ˛ of a vector space V over k is diagonalizable if V
has a basis of eigenvectors for ˛, and that it is semisimple if it becomes diagonal-
izable after an extension of k. For example, the linear map x 7! AxWkn! kn

defined by an n� n matrix A is diagonalizable if and only if there exists an
invertible matrix P with entries in k such that PAP�1 is diagonal, and it is
semisimple if and only if there exists such a matrix P with entries in some field
containing k.

From linear algebra, we know that ˛ is semisimple if and only if no irreducible
factor of its minimum polynomial m˛.T / has a multiple root; in other words, if
and only if the subring kŒ˛� of Endk.V / generated by ˛ is étale.

Recall that an endomorphism ˛ of a vector space V is nilpotent if ˛m D 0
for some m> 0, and that it is unipotent if idV �˛ is nilpotent. If ˛ is nilpotent,
then its minimum polynomial divides Tm for some m, and so the eigenvalues2 of
˛ are all zero. From linear algebra, we know that the converse is also true, and so
˛ is unipotent if and only if its eigenvalues all equal 1.

2We define the eigenvalues of an endomorphism of a vector space to be the family (not the set)
of roots of its characteristic polynomial in some algebraically closed field.
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Let ˛ be an endomorphism of a finite-dimensional vector space V over k. We
say that the eigenvalues of ˛ lie in k if the characteristic polynomial P˛.T / of ˛
splits in kŒX�:

P˛.T /D .T �a1/
n1 � � �.T �ar /

nr ; ai 2 k:

For each eigenvalue a of ˛ in k, the primary space3 is defined to be

V a D fv 2 V j .˛�a/N v D 0 for some N > 0g:

PROPOSITION 9.9. If the eigenvalues of ˛ lie in k, then V is a direct sum of its
primary spaces:

V D
M

i
V ai .

PROOF. Let P.T / be a polynomial in kŒT � such that P.˛/D 0, and suppose that
P.T /DQ.T /R.T /withQ andR relatively prime. Then there exist polynomials
a.T / and b.T / such that

a.T /Q.T /Cb.T /R.T /D 1:

For any v 2 V ,
a.˛/Q.˛/vCb.˛/R.˛/v D v, (50)

and so Ker.Q.˛//\Ker.R.˛//D 0. As

Q.˛/R.˛/D 0DR.˛/Q.˛/;

(50) expresses v as the sum of an element of Ker.R.˛// and an element of
Ker.Q.˛//. Thus, V is the direct sum of Ker.Q.˛// and Ker.P.˛//.

On applying this remark repeatedly to the characteristic polynomial

.T �a1/
n1 � � �.T �ar /

nr

of ˛ and its factors, we find that

V D
M

i
Ker.˛�ai /ni ;

as claimed. 2

COROLLARY 9.10. The eigenvalues of ˛ lie in k if and only if, for some choice
of basis for V , the matrix of ˛ is upper triagonal.

PROOF. The sufficiency is obvious, and the necessity follows from proposition.2

An endomorphism satisfying the equivalent conditions of the corollary is said
to be trigonalizable.4

3This is Bourbaki’s terminology; “generalized eigenspace” is also used.
4The terms “triangulable” and “triagonalizable” are also used; in French “trigonalisable” is

standard.
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THEOREM 9.11. Let V be a finite-dimensional vector space over a perfect field,
and let ˛ be an automorphism of V . There exist unique automorphisms ˛s and
˛u of V such that

(a) ˛ D ˛s ı˛u D ˛u ı˛s , and

(b) ˛s is semisimple and ˛u is unipotent.
Moreover, each of ˛s and ˛u is a polynomial in ˛.

PROOF. Assume first that the eigenvalues of ˛ lie in k, so that V is a direct
sum of the primary spaces of ˛, say, V D

L
1�i�mV

ai , where the ai are the
distinct roots of P˛ . Define ˛s to be the automorphism of V that acts as ai on
V ai for each i . Then ˛s is a semisimple automorphism of V , and ˛u

def
D ˛ ı˛�1s

commutes with ˛s (because it does on each V ai ) and is unipotent (because its
eigenvalues are 1). Thus ˛s and ˛u satisfy (a) and (b).

Let ni denote the multiplicity of ai . Because the polynomials .T � ai /ni
are relatively prime, the Chinese remainder theorem shows that there exists a
Q.T / 2 kŒT � such that

Q.T /� ai mod .T �ai /ni ; i D 1; : : : ;m:

ThenQ.˛/ acts as ai on V ai for each i , and so ˛s DQ.˛/, which is a polynomial
in ˛. Similarly, ˛�1s 2 kŒ˛�, and so ˛u

def
D ˛ ı˛�1s 2 kŒ˛�.

It remains to prove the uniqueness of ˛s and ˛u. Let ˛ D ˇs ıˇu be a second
decomposition satisfying (a) and (b). Then ˇs and ˇu commute with ˛, and
therefore also with ˛s and ˛u (because they are polynomials in ˛). It follows
that ˇ�1s ˛s is semisimple and that ˛uˇ�1u is unipotent. Since they are equal, both
must equal 1. This completes the proof when the ai lie in k.

In the general case, because k is perfect, there exists a finite Galois extension
k0 of k such that ˛ has all of its eigenvalues in k0. Choose a basis for V , and use
it to attach matrices to endomorphisms of V and of k0˝k V . Let A be the matrix
of ˛. The first part of the proof allows us to write AD AsAu D AuAs with As
(resp. Au) a semisimple (resp. unipotent) matrix with entries in k0; moreover,
this decomposition is unique.

Let � 2 Gal.k0=k/, and for a matrix B D .bij /, define �B to be .�bij /.
Because A has entries in k, �A D A. Now A D .�As/.�Au/ is again a de-
composition of A into commuting semisimple and unipotent matrices. By the
uniqueness of the decomposition, �As D As and �Au D Au. Since this is true
for all � 2 Gal.k0=k/, the matrices As and Au have entries in k. Let ˛s and ˛u
be the endomorphisms of V with matrices As and Au. Then ˛ D ˛s ı˛u is a
decomposition of ˛ satisfying (a) and (b).

Finally, the first part of the proof shows that there exist ci 2 k0 such that

As D c0C c1AC�� �C cn�1A
n�1 .nD dimV /:

The ci are unique, and so, on applying � , we find that they lie in k. Therefore,

˛s D c0C c1˛C�� �C cn�1˛
n�1
2 kŒ˛�:
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Similarly, ˛u 2 kŒ˛�. 2

The automorphisms ˛s and ˛u are called the semisimple and unipotent parts
of ˛, and ˛ D ˛s ı˛u D ˛u ı˛s is the (multiplicative) Jordan decomposition of
˛.

EXAMPLE 9.12. The matrix at left has the following Jordan decomposition,
�
1 0 0

0 2 4

0 0 2

�
D

�
1 0 0

0 2 0

0 0 2

��
1 0 0

0 1 2

0 0 1

�
D

�
1 0 0

0 1 2

0 0 1

��
1 0 0

0 2 0

0 0 2

�
:

PROPOSITION 9.13. Let ˛ and ˇ be automorphisms of vector spaces V and W
over a perfect field k, and let 'WV !W be a k-linear map. If ' ı˛ D ˇ ı', then
' ı˛s D ˇs ı' and ' ı˛u D ˇu ı'.

PROOF. It suffices to prove this after an extension of scalars, and so we may
suppose that the eigenvalues of ˛ and ˇ lie in k. Recall that ˛s acts on each
primary space V a, a 2 k, as multiplication by a. As ' obviously maps V a

into W a, it follows that ' ı˛s D ˇs ı'. Similarly, ' ı˛�1s D ˇ
�1
s ı', and so

' ı˛u D ˇu ı'. 2

PROPOSITION 9.14. Let V be a vector space over a perfect field. If a subspace
W of V is stable under ˛, then it is stable under ˛s and ˛u and the Jordan
decomposition of ˛jW is ˛sjW ı˛ujW .

PROOF. The subspaceW is stable under ˛s and ˛u because each is a polynomial
in ˛. Clearly the decomposition ˛jW D ˛sjW ı˛ujW satisfies (a) and (b) of
Theorem 9.11 and so is the Jordan decomposition ˛jW . 2

PROPOSITION 9.15. For any automorphisms ˛ and ˇ of vector spaces V and
W over a perfect field,

.˛˝ˇ/s D ˛s˝ˇs

.˛˝ˇ/u D ˛u˝ˇu:

PROOF. It suffices to prove this after an extension of scalars, and so we may
suppose that the eigenvalues of ˛ and ˇ lie in k. For any a;b 2 k, V a˝W b �

.V ˝W /ab , and so ˛s˝ˇs and .˛˝ˇ/s both act on V a˝W b as multiplication
by ab. This shows that .˛˝ˇ/s D ˛s˝ˇs . Similarly, .˛�1s ˝ˇ

�1
s /D .˛˝ˇ/�1s ,

and so .˛˝ˇ/u D ˛u˝ˇu. 2

EXAMPLE 9.16. Let k be a nonperfect field of characteristic 2, so that there
exists an a 2 kXk2, and let M D

�
0 1
a 0

�
. In the algebraic closure of k, M has the

Jordan decomposition

M D

�p
a 0

0
p
a

��
0 1=

p
a

p
a 0

�
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(the matrix at right is unipotent only because �1D 1). These matrices do not
have coefficients in k, and so, if M had a Jordan decomposition in M2.k/, then
it would have two distinct Jordan decompositions in M2.k

a/, contradicting the
theorem. Thus M has no Jordan decomposition over k.

Infinite-dimensional vector spaces

Let V be a vector space, possibly infinite-dimensional, over a perfect field k.
An endomorphism ˛ of V is locally finite if V is a union of finite-dimensional
subspaces stable under ˛. A locally finite endomorphism is semisimple (resp.
locally nilpotent, locally unipotent) if its restriction to every stable finite-dimen-
sional subspace is semisimple (resp. nilpotent, unipotent).

Let ˛ be a locally finite automorphism of V . By assumption, every v 2 V
is contained in a finite-dimensional subspace W stable under ˛, and we define
˛s.v/ D .˛jW /s.v/. According to Theorem 9.11, this is independent of the
choice of W , and so in this way we get a semisimple automorphism of V .
Similarly, we can define ˛u. Thus:

THEOREM 9.17. Let ˛ be a locally finite automorphism of a vector space V .
There exist unique automorphisms ˛s and ˛u such that

(a) ˛ D ˛s ı˛u D ˛u ı˛s , and

(b) ˛s is semisimple and ˛u is locally unipotent.
For any finite-dimensional subspace W of V stable under ˛,

˛jW D .˛sjW /ı .˛ujW /D .˛ujW /ı .˛sjW /

is the Jordan decomposition of ˛jW .

Jordan decompositions in algebraic groups

After these preliminaries, we can prove the following important theorem.

THEOREM 9.18. Let G be an algebraic group over a perfect field k, and let
g 2 G.k/. Then there exist unique elements gs;gu 2 G.k) such that, for every
representation .V;rV / of G, rV .gs/ D rV .g/s and rV .gu/ D rV .g/u. Further-
more,

g D gsgu D gugs : (51)

PROOF. In view of Propositions 9.13 and 9.15, the first assertion follows im-
mediately from Theorem 9.2 applied to the families .rV .g/s/V and .rV .g/u/V .
Now choose a faithful representation rV . Then the equality (51) follows from

rV .g/D

�
rV .g/srV .g/u D rV .gs/rV .gu/D rV .gsgu/

rV .g/urV .g/s D rV .gu/rV .gs/D rV .gugs/: 2
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The elements gs and gu are called the semisimple and unipotent parts of g,
and gD gsgu is the Jordan decomposition (or Jordan–Chevalley decomposition)
of g.

9.19. Let G be an algebraic group over a perfect field k. An element g of
G.k/ is said to be semisimple (resp. unipotent) if g D gs (resp. g D gu). Thus,
g is semisimple (resp. unipotent) if r.g/ is semisimple (resp. unipotent) for
one faithful representation .V;r/ of G, in which case r.g/ is semisimple (resp.
unipotent) for all representations r of G.

9.20. To check that a decomposition g D gsgu is the Jordan decomposition, it
suffices to check that r.g/D r.gs/r.gu/ is the Jordan decomposition of r.g/ for
a single faithful representation of G.

9.21. Homomorphisms of algebraic groups preserve Jordan decompositions.
To see this, let uWG! G0 be a homomorphism and let g D gsgu be a Jordan
decomposition in G.k/. If r WG0! GLV is a representation of G0, then r ıu is a
representation of G, and so

.r ıu/.g/D ..r ıu/.gs// � ..r ıu/.gu//

is the Jordan decomposition in GL.V /. When we choose r to be faithful, this
implies that u.g/D u.gs/ �u.gu/ is the Jordan decomposition of u.g/.

9.22. Let G be a group variety over an algebraically closed field. In general,
the set G.k/s of semisimple elements in G.k/ is not closed for the Zariski
topology. However, the set G.k/u of unipotent elements is closed. To see
this, embed G in GLn. A matrix A is unipotent if and only if its characteristic
polynomial is .T �1/n. But the coefficients of the characteristic polynomial of
A are polynomials in the entries of A, and so this is a polynomial condition on A.

9.23. We defined Jordan decompositions for arbitrary algebraic groups G, not
necessarily smooth. However, as the base field is perfect, Gred is a smooth
algebraic subgroup of G and Gred.k/DG.k/. Therefore everything comes down
to smooth groups.

NOTES. For vector spaces, the Jordan decomposition can be read off from the Jordan
normal form. It was defined for group varieties by Kolchin and Borel, and was made a
fundamental tool by Chevalley. It is sometimes called the Jordan–Chevalley decomposition.
Our proof of the existence of Jordan decompositions is the standard one, except that we
made Theorem 9.2 explicit.

c. Characterizing categories of representations

Pontryagin duality identifies the topological groups that arise as the dual of a
locally compact commutative group. Similarly, Tannakian theory identifies the
tensor categories that arise as the category of representations of an algebraic
group.
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In this section, k-algebras are not required to be finitely generated, and we
largely ignore set-theoretic questions. An additive category C is said to be k-
linear if the Hom sets are k-vector spaces and composition is k-bilinear. Functors
of k-linear categories are required to be k-linear, i.e., the maps Hom.a;b/!
Hom.Fa;F b/ defined by F are required to be k-linear.

By an affine group over k we mean a functor G from Alg0k to groups whose
underlying functor to sets is represented by a k-algebra O.G/:

G.R/D Homk-algebra.O.G/;R/.

When O.G/ is finitely generated, G is an affine algebraic group. By a representa-
tion of an affine group over k we mean a representation on a finite-dimensional
vector space over k.

Let !WA! B be a faithful functor of categories. We say that a morphism
!X ! !Y lives in A if it lies in Hom.X;Y /� Hom.!X;!Y /.

For k-vector spaces U;V;W , there are canonical isomorphisms

�U;V;W WU ˝ .V ˝W /!.U ˝V /˝W; u˝ .v˝w/ 7! .u˝v/˝w

 U;V WU ˝V ! V ˝U; u˝v 7! v˝u:
(52)

We let Veck denote the category of finite-dimensional vector spaces over k.

THEOREM 9.24. Let C be an essentially small k-linear abelian category and
let ˝WC�C! C be a k-bilinear functor. The pair .C;˝/ is the category of
representations of an affine group G over k if and only if there exists a k-linear
exact faithful functor !WC! Vecksuch that

(a) !.X˝Y /D !.X/˝!.Y / for all X;Y ;

(b) the isomorphisms �!X;!Y;!Z and  !X;!Y live in C for all X;Y;Z;

(c) there exists an (identity) object 11 in C such that !.11/D k and the canonical
isomorphisms

!.11/˝!.X/' !.X/' !.X/˝!.11/

live in C for all X ;

(d) for every object X such that !.X/ has dimension 1, there exists an object
X�1 in C such that X˝X�1 � 11.

PROOF. If .C;˝/D .Rep.G/;˝/ for some affine group scheme G over k, then
the forgetful functor has the required properties, which proves the necessity of the
condition. The sufficiency is proved in Section e below, after some preliminaries
in Section d. 2
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Notes

9.25. The group scheme G depends on the choice of !. Once ! has been
chosen, G has the same description as in 9.2, namely, for a k-algebra R, the
group G.R/ consists of families .�X /X2ob.C/, �X 2 End.X/˝R, such that

(a) for all X;Y in C, �X˝Y D �X ˝�Y ;

(b) �11 is the identity map;

(c) for all morphisms uWX ! Y , �Y ıuR D uR ı�X .
With the terminology of 9.8, G D Aut˝.!/. Therefore 9.2 shows that, when we
start with .C;˝/D .Rep.G/;˝/, we get back the group G.

9.26. Let C be a k-linear abelian category equipped with a k-bilinear functor
˝WC�C! C. The dual of an object X of C is an object X_ equipped with an
“evaluation map” evWX_˝X ! 11 having the property that the map

˛ 7! evı.˛˝ idX / WHom.T;X_/! Hom.T ˝X;11/

is an isomorphism for all objects T of C. If there exists a functor ! as in Theorem
9.24, then duals always exist.

9.27. The affine group G attached to .C;˝;!/ is algebraic if and only if there
exists an object X such that every object of C is isomorphic to a subquotient of a
direct sum of objects

Nm
.X˚X_/. The necessity follows from Theorem 4.14.

9.28. Let .C;˝;!/ and .C0;˝0;!0/ be two triples satisfying the conditions of
Theorem 9.24. Every k-linear exact tensor functor C! C0 compatible with the
tensor structures and the functors ! arises from a unique homomorphismG0!G

of the corresponding affine groups. Indeed, such a functor obviously defines a
homomorphism of group-valued functors QG0! QG (see 9.25), to which we can
apply the Yoneda lemma.

Examples

9.29. LetM be a commutative group. AnM -gradation on a finite-dimensional
vector space V over k is a family .Vm/m2M of subspaces of V such that V DL

m2M Vm. If V is graded by a family of subspaces .Vm/m and W is graded by
.Wm/m, then V ˝W is graded by the family of subspaces

.V ˝W /m D
M

m1Cm2Dm
Vm1˝Wm2 :

For the category of finite-dimensional M -graded vector spaces, the forgetful
functor satisfies the conditions of 9.24, and so the category is the category of
representations of an affine group. When M is finitely generated, this is the
algebraic group D.M/ defined in 12.3 below.
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9.30. Let K be a topological group. The category RepR.K/ of continuous
representations of K on finite-dimensional real vector spaces has a natural tensor
product. The forgetful functor satisfies the conditions of Theorem 9.24, and so
there is an algebraic group QK over R, called the real algebraic envelope of K,
and an equivalence

RepR.K/! RepR. QK/:

This equivalence is induced by a homomorphism K! QK.R/, which is an iso-
morphism when K is compact (Serre 1993, 5.2).

9.31. Let G be a connected complex Lie group or a finitely generated abstract
group and let C be the category of representations of G on finite-dimensional
complex vector spaces. With the obvious functors ˝WC�C! C and !WC!
VecC, this category satisfies the hypotheses of Theorem 9.24, and so it is the
category of representations of an affine group A.G/. Almost by definition,
there exists a homomorphism P WG! A.G/.C/ with the property that, for each
representation .V;�/ of G, there is a unique representation .V; O�/ of A.G/ such
that O�D � ıP .

The group A.G/ was introduced and studied by Hochschild and Mostow in a
series of papers published in the American Journal of Mathematics between 1957
and 1969 – it is called the Hochschild–Mostow group. For a brief exposition of
this work, see Magid 2011.

d. Categories of comodules over a coalgebra

A coalgebra5 over k is a k-vector space C equipped with a pair of k-linear maps

�WC ! C ˝C; �WC ! k

such that the diagrams (17), p. 65, commute. The linear dual C_ of C becomes
an associative algebra over k with the multiplication

C_˝C_
can.
,! .C ˝C/_

�_

�! C_;

and the structure map

k ' k_
�_

�! C_.

We say that C is cocommutative (resp. étale) if C_ is commutative (resp. étale).
Let .C;�;�/ be a coalgebra over k. A C -comodule is a k-linear map �WV !

V ˝C satisfying the conditions (24), p. 84. Let .ei /i2I be a basis for V , and let
�.ej /D

P
ei ˝ cij . Then the conditions become

�.cij / D
P
k2I cik˝ ckj

�.cij / D ıij

�
all i;j 2 I:

5Strictly speaking, this is a co-associative coalgebra over k with co-identity.
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These equations show that the k-subspace spanned by the cij is a subcoalgebra
of C , which we denote CV . Clearly, CV is the smallest subspace of C such that
�.V / � V ˝CV , and so it is independent of the choice of the basis. Alternat-
ively, CV is the image of the map V _˝V ! C defined by � followed by the
evaluation map. When V is finite-dimensional over k, so also is CV . If .V;�/ is
a subcomodule of the C -comodule .C;�/, then V � CV .

If C is k-coalgebra, then Comod.C / is a k-linear abelian category, and the
forgetful functor !WComod.C /! Veck is exact, faithful, and k-linear. The next
theorem provides a converse statement.

THEOREM 9.32. Let C be an essentially small k-linear abelian category, and let
!WC! Veck be an exact faithful k-linear functor. Then there exists a coalgebra
C such that C is equivalent to the category of C -comodules of finite dimension.

The proof will occupy the rest of this section.
Because ! is faithful, !.idX /D !.0/ if and only if idX D 0, and so !.X/ is

the zero object if and only if X is the zero object. It follows that, if !.u/ is a
monomorphism (resp. an epimorphism, resp. an isomorphism), then so also is u.
For objects X , Y of C, Hom.X;Y / is a subspace of Hom.!X;!Y /, and hence
has finite dimension over k.

For monomorphisms X
x
�! Y and X 0

x0

�! Y with the same target, we write
x � x0 if there exists a morphism X ! X 0 (necessarily unique) giving a com-
mutative triangle. The lattice of subobjects of Y is obtained from the collection
of monomorphisms by identifying two monomorphisms x and x0 if x � x0 and
x0 � x. The functor ! maps the lattice of subobjects of Y injectively6 to the
lattice of subspaces of !Y . Hence X has finite length.

Similarly ! maps the lattice of quotient objects of Y injectively to the lattice
of quotient spaces of !Y .

For X in C, we let hXi denote the full subcategory of C whose objects are
the quotients of subobjects of direct sums of copies of X . For example, if C is
the category of finite-dimensional comodules over a coalgebra C , then hXi is the
category of finite-dimensional comodules over CX (see above).

Let X be an object of C and S a subset of !.X/. The intersection of the
subobjects Y ofX such that !.Y /� S is the smallest subobject with this property
– we call it the subobject of X generated by S .

An object Y is monogenic if it is generated by a single element, i.e., there
exists a y 2 !.Y / such that

Y 0 � Y , y 2 !.Y 0/ H) Y 0 D Y:

Proof of Theorem 9.32 in the case that C is generated by a single object

In the next three lemmas, we assume that CD hXi for some X .

6If !.X/D !.X 0/, then the kernel of
�
x
x0

�
WX �X 0! Y projects isomorphically onto each

ofX andX 0 (because it does after ! has been applied).
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LEMMA 9.33. For every monogenic object Y of C,

dimk!.Y /� .dimk!.X//
2 :

PROOF. By hypothesis, there are maps Y
onto
 �� Y1 ,!Xm. Let y1 be an element

of !.Y1/ whose image y in !.Y / generates Y , and let Z be the subobject of Y1
generated by y1. The image of Z in Y contains y and so equals Y . Hence it
suffices to prove the lemma for Z, i.e., we may suppose that Y �Xm for some
m. We shall deduce that Y ,!Xm

0

for some m0 � dimk!.X/, from which the
lemma follows.

Suppose thatm> dimk!.X/. The generator y of Y lies in !.Y /�!.Xm/D
!.X/m. Let y D .y1; : : : ;ym/ in !.X/m. Since m > dimk!.X/, there exist
ai 2 k, not all zero, such that

P
aiyi D 0. The ai define a surjective morphism

Xm ! X whose kernel N is isomorphic to Xm�1.7 As y 2 !.N/, we have
Y � N , and so Y embeds into Xm�1. Continue in this fashion until Y � Xm

0

with m0 � dimk!.X/. 2

As dimk!.Y / can take only finitely many values when Y is monogenic, there
exists a monogenic P for which dimk!.P / has its largest possible value. Let
p 2 !.P / generate P .

LEMMA 9.34. (a) The pair .P;p/ represents the functor !.

(b) The object P is a projective generator for C, i.e., the functor Hom.P;�/ is
exact and faithful.

PROOF. (a) Let X be an object of C, and let x 2 !.X/; we have to prove that
there exists a unique morphism f WP ! X such that !.f / sends p to x. The
uniqueness follows from the fact p generates P (the equalizer E of two f is
a subobject of P such that !.E/ contains p). To prove the existence, let Q be
the smallest subobject of P �X such that !.Q/ contains .p;x/. The morphism
Q! P defined by the projection map is surjective because P is generated by p.
Therefore,

dimk!.Q/� dimk!.P /;

but because dimk.!.P // is maximal, equality must hold, and so Q! P is an
isomorphism. The composite of its inverse with the second projection Q!X is
a morphism P !X sending p to x.

(b) The object P is projective because ! is exact, and it is a generator because
! is faithful. 2

Let AD End.P / – it is a k-algebra of finite dimension as a k-vector space
(not necessarily commutative) – and let hP be the functor X Hom.P;X/.

7Extend .a1; : : : ;am/ to an invertible matrix
�
a1; : : : ;am

A

�
; then AWXm!Xm�1 defines

an isomorphism ofN ontoXm�1 because !.A/ is an isomorphism !.N/! !.X/m�1.
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LEMMA 9.35. The functor hP is an equivalence from C to the category of right
A-modules of finite dimension over k. Its composite with the forgetful functor is
canonically isomorphic to !.

PROOF. Because P is a projective generator, hP is exact and faithful. It remains
to prove that it is essentially surjective and full.

Let M be a right A-module of finite dimension over k, and choose a finite
presentation for M ,

Am
u
�! An!M ! 0

where u is anm�nmatrix with coefficients inA. This matrix defines a morphism
Pm! P n whose cokernel X has the property that hP .X/'M . Therefore hP

is essentially surjective.
We have just shown that every object X in C occurs in an exact sequence

Pm
u
�! P n!X ! 0.

Let Y be a second object of C. Then

Hom.Pm;Y /' hP .Y /m ' Hom.Am;hP .Y //' Hom.hP .Pm/;hP .Y //;

and the composite of these maps is that defined by hP . From the diagram

0 Hom.X;Y / Hom.P n;Y / Hom.Pm;Y /

0 Hom.hP .X/;hP .Y // Hom.An;hP .Y // Hom.Am;hP .Y //

' '

we see that Hom.X;Y /! Hom.hP .X/;hP .Y // is an isomorphism, and so hP

is full.
For the second statement, !.X/' Hom.P;X/' Hom.hP .P /;hP .X//D

Hom.A;hP .X//' hP .X/: 2

As A is a finite k-algebra, its linear dual C D A_ is a k-coalgebra, and to
give a right A-module structure on a k-vector space is the same as giving a left
C -comodule structure. Together with Lemma 9.35, this completes the proof of
Theorem 9.32 in the case that CD hXi. Note that

A
def
D End.P /' End.hP /' End.!/;

and so
C ' End.!/_,

i.e., the coalgebra C is the k-linear dual of the algebra End.!/.
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EXAMPLE 9.36. Let A be a finite k-algebra (not necessarily commutative). Be-
cause A is finite, its dual A_ is a coalgebra, and the left A-module structures on
k-vector space correspond to right A_-comodule structures. If we take C to be
Mod.A/, ! to be the forgetful functor, andX to be A regarded as a left A-module,
then

End.!jhXi/_ ' A_,

and the equivalence of categories C! Comod.A_/ in Theorem 9.37 below
simply sends an A-module V to V with its canonical A_-comodule structure.
This is explained in detail in 9.41 and 9.42.

Proof of Theorem 9.32 in the general case

We now consider the general case. For an object X of C, let AX D End.!jhXi/,
and let CX D A_X . For each Y in hXi, AX acts on !.Y / on the left, and so !.Y /
is a right CX -comodule; moreover, Y  !.Y / is an equivalence of categories

hXi ! Comod.CX /:

Define a partial ordering on the set of isomorphism classes of objects in C by the
rule

ŒX�� ŒY � if hXi � hY i.

Note that ŒX�; ŒY �� ŒX˚Y �, so that we get a directed set, and that if ŒX�� ŒY �,
then restriction defines a homomorphism AY ! AX . When we pass to the limit
over the isomorphism classes, we obtain the following more precise form of the
theorem.

THEOREM 9.37. Let C be an essentially small k-linear abelian category and let
!WC! Veck be a k-linear exact faithful functor. Let C.!/ be the k-coalgebra
lim
�!ŒX�

End.!jhXi/_. For each object Y in C, the vector space !.Y / has a natural
structure of a right C.!/-comodule, and the functor Y  !.Y / is an equivalence
of categories C! Comod.C.!//.

ASIDE 9.38. It is essential in Theorems 9.24 and 9.37 that C be essentially small, because
otherwise the underlying “set” of C.!/ may be a proper class. For example, let S be a
proper class and let C be the category of finite-dimensional vector spaces graded by S . In
this case C.!/ contains an idempotent for each element of S , and so cannot be a set.

NOTES. The proof of Theorem 9.37 follows Serre 1993, 2.5.

e. Proof of Theorem 9.24

Bialgebras

When we drop the requirement of an antipode from the definition of a Hopf
algebra, we get the notion of a bialgebra, which is self-dual.
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DEFINITION 9.39. A bialgebra over k is a k-module with compatible structures
of an associative algebra with identity and of a co-associative coalgebra with
co-identity. Specifically, a bialgebra over k is a quintuple .A;m;e;�;�/, where

(a) .A;m;e/ is an associative algebra over k with identity e;

(b) .A;�;�/ is a co-associative coalgebra over k with co-identity �;

(c) �WA! A˝A is a homomorphism of algebras;

(d) �WA! k is a homomorphism of algebras.
A homomorphism of bialgebras .A;m; : : :/! .A0;m0; : : :/ is a k-linear map
A! A0 that is both a homomorphism of k-algebras and a homomorphism of
k-coalgebras.

PROPOSITION 9.40. For a quintuple .A;m;e;�;�/ satisfying (a) and (b) of 9.39,
the following conditions are equivalent:

(a) � and � are algebra homomorphisms;

(b) m and e are coalgebra homomorphisms.

PROOF. Consider the diagrams

A˝A A A˝A

A˝A˝A˝A A˝A˝A˝A

m

�˝�

�

A˝ t˝A

a˝b˝c˝d 7! a˝c˝b˝d

m˝m

A˝A A A˝A A

k˝k k k˝k k

� m

e˝e e �˝� �

' '

A

k k

e

id

�

The first and second diagrams commute if and only if� is an algebra homomorph-
ism, and the third and fourth diagrams commute if and only if � is an algebra
homomorphism. On the other hand, the first and third diagrams commute if and
only if m is a coalgebra homomorphism, and the second and fourth commute if
and only if e is a coalgebra homomorphism. Therefore, each of (a) and (b) is
equivalent to the commutativity of all four diagrams. 2

Categories of comodules over a bialgebra

9.41. Let A be a finite k-algebra (not necessarily commutative), and let R be a
commutative k-algebra. Consider the functors

Mod.A/ Vec.k/ Mod.R/:!

forget

�R

V R˝kV
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ForM 2 ob.Mod.A//, letM0D!.M/. An element � of End.�R ı!/ is a family
of R-linear maps

�M WR˝kM0!R˝kM0,

functorial in M . An element of R˝k A defines such a family, and so we have a
map

uWR˝k A! End.�R ı!/;

which we shall show to be an isomorphism by defining an inverse ˇ. Let ˇ.�/D
�A.1˝1/. Clearly ˇ ıuD id, and so we need only show that uıˇ D id. The
A-module A˝kM0 is a direct sum of copies of A, and the additivity of � implies
that �A˝M0 D �A˝ idM0 . The map a˝m 7! amWA˝kM0!M is A-linear,
and hence

R˝k A˝kM0 R˝kM

R˝k A˝kM0 R˝kM

�A˝idM0 �M

commutes. Therefore

�M .1˝m/D �A.1/˝mD .uıˇ.�//M .1˝m/ for 1˝m 2R˝M;

i.e., uıˇ D id.

9.42. Let C be a k-coalgebra and ! the forgetful functor on Comod.C /. When
C is finite over k, to give an object of Comod.C / is essentially the same as giving
a finitely generated module over the k-algebra AD C_, and so 9.41 shows that

C ' End.!/_:

In the general case,

C ' lim
�!
ŒX�

CX ' lim
�!
ŒX�

End.!C jhXi/_:

Let uWC !C 0 be a homomorphism of k-coalgebras. A co-action V !V ˝C

of C on V defines a co-action V ! V ˝C 0 of C 0 on V by composition with
idV ˝u. Thus, u defines a functor F WComod.C /! Comod.C 0/ such that

!C 0 ıF D !C . (53)

LEMMA 9.43. Every functor F WComod.C /! Comod.C 0/ satisfying the con-
dition (53) arises, as above, from a unique homomorphism of k-coalgebras
C ! C 0.

PROOF. The functor F defines a homomorphism

lim
�!ŒX�

End.!C 0 jhFXi/! lim
�!ŒX�

End.!C jhXi/;
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and lim
�!ŒX�

End.!C 0 jhFXi/ is a quotient of lim
�!ŒY �

End.!C 0 jhY i/. On passing to
the duals, we get a homomorphism

lim
�!

End.!C jhXi/_! lim
�!

End.!C 0 jhY i/_

and hence a homomorphism C ! C 0. This has the required property. 2

Let C be a coalgebra over k. Then .C ˝C;�C ˝�C ; �C ˝ �C / is again
a coalgebra over k, and a coalgebra homomorphism mWC ˝C ! C defines a
functor

�mWComod.C /�Comod.C /! Comod.C /

sending .V;W / to V ˝W with the co-action

V ˝W
�V˝�W
�! V ˝C ˝W ˝C ' V ˝W ˝C ˝C

V˝W˝m
�! V ˝W ˝C .

PROPOSITION 9.44. The map m 7! �m defines a one-to-one correspondence
between the set of k-coalgebra homomorphisms mWC ˝C ! C and the set of
k-bilinear functors

�WComod.C /�Comod.C /! Comod.C /

such that �.V;W /D V ˝W as k-vector spaces.
(a) The homomorphism m is associative if and only if the canonical isomorph-

isms of vector spaces

u˝ .v˝w/ 7! .u˝v/˝wWU ˝ .V ˝W /! .U ˝V /˝W

are isomorphisms of C -comodules for all C -comodules U , V , W .
(b) The homomorphism m is commutative (i.e., m.a;b/ D m.b;a/ for all

a;b 2 C ) if and only if the canonical isomorphisms of vector spaces

v˝w 7! w˝vWV ˝W !W ˝V

are isomorphisms of C -comodules for all C -comodules W;V .
(c) There is an identity map eWk! C if and only if there exists a C -comodule

U with underlying vector space k such that the canonical isomorphisms of
vector spaces

U ˝V ' V ' V ˝U

are isomorphisms of C -comodules for all C -comodules V .

PROOF. The pair .Comod.C /�Comod.C /;!˝!/, with

.!˝!/.X;Y /D !.X/˝!.Y / (as a k-vector space),

satisfies the conditions of (9.37), and lim
�!

End.!˝!jh.X;Y /i/_ D C ˝C . Thus

.Comod.C /�Comod.C /;!C ˝!C /' .Comod.C ˝C/;!C˝C /;

and so the first statement of the proposition follows from Lemma 9.43. The
remaining statements involve only routine checking. 2
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THEOREM 9.45. Let C be an essentially small k-linear abelian category and
˝WC�C! C a k-bilinear functor. Let !WC! Veck be a k-linear exact faithful
functor satisfying (a), (b), and (c) of 9.24. Let C.!/ D lim

�!
End.!jhXi/_, so

that ! defines an equivalence of categories C! Comod.C.!// (Theorem 9.37).
Then C.!/ has a unique structure .m;e/ of a commutative k-bialgebra such that
˝D �m and !.11/D .k

e
�! C.!/' k˝C.!//.

PROOF. To give a bialgebra structure on a coalgebra .A;�;�/, one has to give
coalgebra homomorphisms .m;e/ such that m is commutative and associative
and e is an identity map. Thus, the statement is an immediate consequence of
Proposition 9.44. 2

Categories of representations of affine groups

We now prove a more precise version of Theorem 9.24.

THEOREM 9.46. Let C be an essentially small k-linear abelian category, let
˝WC�C! C be a k-bilinear functor. Let ! be an exact faithful k-linear functor
C! Veck satisfying the conditions (a), (b), and (c) of 9.24. For each k-algebra
R, let G.R/ be the set of families

.�V /V 2ob.C/; �V 2 EndR-linear.!.V /R/;

such that
˘ �V˝W D �V ˝�W for all V;W 2 ob.C/,

˘ �11 D id!.11/ for every identity object of 11 of C, and

˘ �W ı!.u/R D !.u/R ı�V for all arrows u in C.
Then G is an affine monoid over k, and ! defines an equivalence of tensor
categories,

C! Rep.G/:

When ! satisfies the following condition, G is an affine group:
(d) for every object X such that !.X/ has dimension 1, there exists an object

X�1 in C such that X˝X�1 � 11.

PROOF. Theorem 9.45 allows us to assume that C D Comod.C / for C a k-
bialgebra, and that˝ and ! are the natural tensor product structure and forgetful
functor. Let G be the affine monoid corresponding to C . Using 9.41 we find that,
for every k-algebra R,

End.!/.R/ def
D End.�R ı!/D lim

 �
Homk-linear.CX ;R/D Homk-linear.C;R/.

An element � 2 Homk-linear.CX ;R/ corresponds to an element of End.!/.R/
commuting with the tensor structure if and only if � is a k-algebra homomorph-
ism; thus

End˝.!/.R/D Homk-algebra.C;R/DG.R/:
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We have shown that End˝.!/ is representable by the affine monoidGDSpec.C /
and that ! defines an equivalence of tensor categories

C! Comod.C /! Repk.G/.

On applying (d) to the highest exterior power of an object of C, we find that
End˝.!/D Aut˝.!/, which completes the proof. 2

NOTES. The proof of Theorem 9.46 follows Deligne and Milne 1982, �2. There are
shorter but less elementary proofs.

f. Tannakian categories

In this section, we sketch a little of the abstract theory of Tannakian categories.
For more, see Saavedra Rivano 1972 or Deligne and Milne 1982.

A k-linear tensor category is a system .C;˝;�; / in which C is a k-linear
category, ˝WC�C! C is a k-bilinear functor, and � and  are functorial
isomorphisms

�X;Y;Z WX˝ .Y ˝Z/! .X˝Y /˝Z

 X;Y WX˝Y ! Y ˝X

satisfying certain natural conditions which ensure that the tensor product of every
(unordered) finite family of objects of C is well-defined up to a well-defined
isomorphism. In particular, there is an identity object 11 (tensor product of the
empty family) such that X 11˝X WC! C is an equivalence of categories.

For example, the category of representations of an affine monoid G over k
on finite-dimensional k-vector spaces becomes a k-linear tensor category when
equipped with the usual tensor product and the isomorphisms (52), p. 172.

A k-linear tensor category is rigid if every object has a dual (in the sense of
9.26). For example, the category of representations of G is rigid if G is an affine
group. A rigid abelian k-linear tensor category (C;˝/ is a Tannakian category
over k if End.11/D k and there exists a k-algebra R and an exact faithful k-linear
functor !W.C;˝/! .VecR;˝/ preserving the tensor structure. Such a functor is
said to be an R-valued fibre functor for C.

A Tannakian category over k is said to be neutral if there exists a k-valued
fibre functor. The first main theorem in the theory of neutral Tannakian categories
is the following (Deligne and Milne 1982, Theorem 2.11).

THEOREM 9.47. Let .C;˝/ be a neutral Tannakian category over k and ! a
k-valued fibre functor. Then,

(a) the functor Aut˝.!/ (see 9.8) of k-algebras is represented by an affine
group scheme G;

(b) the functor C! Rep.G/ defined by ! is an equivalence of tensor categor-
ies.
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PROOF. The functor ! satisfies the conditions of Theorem 9.24. For (a), (b), and
(c), this is obvious; for (d) one has to note that if !.X/ has dimension 1, then the
map evWX_˝X ! 11 is an isomorphism. 2

For an affine group scheme G over k, the pair .Rep.G/;˝/ is a neutral
Tannakian category over k, and the forgetful functor is a fibre functor; moreover
the obvious morphism of functors G! Aut˝.!forget/ is an isomorphism. Thus,
the theorem gives a dictionary between the neutralized Tannakian categories over
k and the affine group schemes over k. To complete the theory in the neutral case,
it remains to describe the fibre functors for C with values in a k-algebra R.

THEOREM 9.48. Let C,˝, !, G be as in Theorem 9.47 and R a k-algebra.
(a) For every R-valued fibre functor � on C, the functor

R Isom˝.!˝R;�/

is represented by an affine scheme Isom˝.!R;�/ over R which, when
endowed with the obvious right action of GR, becomes a GR-torsor for the
flat (fpqc) topology.

(b) The functor � Isom˝.!R;�/ establishes an equivalence between the
category of R-valued fibre functors on C and the category of right GR-
torsors on Spec.R/ for the flat (fpqc) topology.

PROOF. The proof is an extension of that of Theorems 9.24 and 9.47 – see
Deligne and Milne 1982, Theorem 3.2. 2

The theory of nonneutral Tannakian categories is more difficult, and the
fundamental classification theorems were proved only in Deligne 1990.

g. Properties of G versus those of Rep.G/

Since the study of G is equivalent to the study of Rep.G/, the properties of
one should be reflected in the properties of the other. Here we provide a brief
dictionary.

9.49. An algebraic group G is finite if and only if there exists a representation
.V;r/ such that every representation of G is a subquotient of V n for some n� 0.

If G is finite, then the regular representation X of G is finite-dimensional,
and has the required property. Conversely if Rep.G/D hXi, then G D Spec.B/,
where B is the linear dual of the finite k-algebra AX D End.!/. See Section e.

9.50. An algebraic group G has no finite quotients if and only if, for every
representation V on which G acts nontrivially, the full subcategory of Rep.G/
of subquotients of V n, n � 0, is not stable under ˝. In characteristic zero, an
algebraic group has no finite quotients if and only if it is connected.
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Consequence of 9.49.

9.51. By definition, an algebraic group is unipotent if the only simple represent-
ations are one-dimensional spaces with the trivial action. These are the groups
isomorphic to an algebraic subgroup of Un for some n (see 14.5).

9.52. By definition, an algebraic group is trigonalizable if every simple rep-
resentation has dimension 1. These are the groups isomorphic to an algebraic
subgroup of Tn for some n (see 16.2).

9.53. A connected group variety G over an algebraically closed field is solvable
if and only if it is trigonalizable (Lie–Kolchin theorem 16.30).

9.54. A connected group variety over a perfect field is reductive if it has a
faithful semisimple representation (19.17). A connected group variety G over
a field of characteristic zero is reductive if and only if Rep.G/ is semisimple
(22.42).

9.55. Let 'WG!G0 be a homomorphism of algebraic groups over k, and let
!' be the corresponding functor Rep.G0/! Rep.G/.

(a) ' is faithfully flat if and only if !' is fully faithful and every subobject of
!'.X 0/, for X 0 2 ob.Rep.G0//, is isomorphic to the image of a subobject
of X 0.

(b) ' is a closed immersion if and only if every object of Rep.G/ is isomorphic
to a subquotient of an object of the form of !'.X 0/, where X 0 is an object
of Rep.G0/.

See Deligne and Milne 1982, 2.21.



CHAPTER 10

The Lie Algebra of an Algebraic
Group

Recall that all algebraic groups are affine over a base field k. In this chapter, an
algebra A over k is (as in Bourbaki) a k-vector space equipped with a bilinear
map A�A! A (not necessarily associative or commutative).

a. Definition

DEFINITION 10.1. A Lie algebra over a field k is a vector space g over k
together with a k-bilinear map

Œ ; �Wg�g! g

(called the bracket) such that
(a) Œx;x�D 0 for all x 2 g, and

(b) Œx; Œy;z��C Œy; Œz;x��C Œz; Œx;y��D 0 for all x;y;z 2 g.
A homomorphism of Lie algebras is a k-linear map uWg! g0 such that

u.Œx;y�/D Œu.x/;u.y/� for all x;y 2 g:

A Lie subalgebra of a Lie algebra g is a k-subspace s such that Œx;y�2 s whenever
x;y 2 s (i.e., such that Œs;s�� s).

Condition (b) is called the Jacobi identity. Note that condition (a) applied to
ŒxCy;xCy� shows that the Lie bracket is skew-symmetric,

Œx;y�D�Œy;x�, for all x;y 2 g; (54)

and that (54) allows us to rewrite the Jacobi identity as

Œx; Œy;z��D ŒŒx;y�;z�C Œy; Œx;z�� (55)

186
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or
ŒŒx;y�;z�D Œx; Œy;z��� Œy; Œx;z��

We shall be mainly concerned with finite-dimensional Lie algebras.

EXAMPLE 10.2. The Lie algebra sl2 is the k-vector space of 2�2 matrices of
trace 0 equipped with the bracket Œx;y�D xy�yx. The elements

X D

�
0 1

0 0

�
; H D

�
1 0

0 �1

�
; Y D

�
0 0

1 0

�
;

form a basis for sl2 and ŒX;Y �DH , ŒH;X�D 2X , ŒH;Y �D�2Y .

EXAMPLE 10.3. Let A be an associative algebra over k. The bracket Œa;b�D
ab�ba is k-bilinear, and it makesA into a Lie algebra because Œa;a� is obviously
0 and the Jacobi identity can be proved by a direct calculation. In fact, on
expanding out the left side of the Jacobi identity for a;b;c one obtains a sum
of 12 terms, 6 with plus signs and 6 with minus signs; by symmetry, each
permutation of a;b;c must occur exactly once with a plus sign and exactly once
with a minus sign. When A is the endomorphism ring Endk-linear.V / of a k-vector
space V , this Lie algebra is denoted glV , and when ADMn.k/, it is denoted
gln. Let Eij denote the matrix with 1 in the ij th position and 0 elsewhere. These
matrices form a basis for gln, and

ŒEij ;Ei 0j 0 �D ıj i 0Eij 0 � ıj 0iEi 0j (ıij D Kronecker delta).

EXAMPLE 10.4. Let A be an algebra over k. A k-linear map DWA! A is a
derivation of A if

D.ab/DD.a/bCaD.b/ for all a;b 2 A:

The composite of two derivations need not be a derivation, but their bracket

ŒD;E�DD ıE�E ıD

is, and so the set of k-derivations A! A is a Lie subalgebra Derk.A/ of glA.

DEFINITION 10.5. Let g be a Lie algebra over k. For a fixed x in g, the k-linear
map

y 7! Œx;y�Wg! g

is called the adjoint map of x, and is denoted adg.x/ or ad.x/. The Jacobi
identity (specifically (55)) says that adg.x/ is a derivation of g:

ad.x/.Œy;z�/D Œad.x/.y/;z�C Œy;ad.x/.z/�:

Directly from the definitions, one sees that

.Œad.x/;ad.y/�/.z/D ad.Œx;y�/.z/;

and so
adgWg! Derk.g/

is a homomorphism of Lie algebras. It is called the adjoint representation.
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b. The Lie algebra of an algebraic group

10.6. Let G be an algebraic group over k. The tangent space of G at the neutral
element e is

L.G/D Ker.G.kŒ"�/!G.k//; "2 D 0:

Thus, an element of L.G/ is a homomorphism 'WO.G/! kŒ"� whose composite
with " 7! 0WkŒ"�! k is the co-identity map �WO.G/! k. In particular, ' maps
the augmentation ideal IG D Ker.�/ into ."/. As "2 D 0, ' factors through
O.G/=I 2G . Now O.G/=I 2G ' k˚

�
IG=I

2
G

�
(see 3.22), and ' sends .a;b/ 2

k˚IG=I
2
G to aCD.b/" with D.b/ 2 k. The map ' 7!D is a bijection, and so

L.G/' Homk-linear.IG=I
2
G ;k/. (56)

We define the Lie algebra of G to be

Lie.G/D Homk-linear.IG=I
2
G ;k/.

Note that Lie.G/ is a k-vector space.
Following a standard convention, we write g for Lie.G/, h for Lie.H/, and

so on.

10.7. Let G D GLn, and let In D diag.1; : : : ;1/. Then

L.G/D fInCA" j A 2Mn.k/g:

On the other hand, O.G/ is the k-algebra of polynomials in the symbols T11,
T12, : : :, Tnn with det.Tij / inverted. The co-identity map sends Ti i to 1 and Tij
to 0 if i ¤ j , and so the ideal IG is generated by the polynomials Tij � ıij with
ıij the Kronecker delta. It follows that the k-vector space IG=I

2
G has basis

.T11� ı11/CI
2
G ; .T12� ı12/CI

2
G ; : : : ; .Tnn� ınn/CI

2
G ;

and so
Homk-linear.IG=I

2
G ;k/'Mn.k/:

The isomorphism Lie.GLn/! L.GLn/ is A 7! InCA".
We define the bracket on Lie.GLn/ to be

ŒA;B�D AB �BA: (57)

Thus Lie.GLn/ ' gln. Regard InCA" and InCB" as elements of G.kŒ"�/
where now kŒ"�D kŒT �=.T 3/. Then the commutator of InCA" and InCB" in
G.kŒ"�/ is

.InCA"/.InCB"/.InCA"/
�1.InCB"/

�1

D .InCA"/.InCB"/.In�A"CA
2"2/.In�B"CB

2"2/

D InC2.AB �BA/"
2
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and so the bracket measures the failure of commutativity in GLn.kŒ"�/modulo "3.
Shortly, we shall see that there is a unique functorial way of defining a bracket

on the Lie algebras of all algebraic groups that gives (57) in the case of GLn.

10.8. We have

L.Un/D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�
1 "c12 � � � "c1n�1 "c1n
0 1 � � � "c2n�1 "c2 n
:::

:::
: : :

:::
:::

0 0 � � � 1 "cn�1n
0 0 � � � 0 1

�9>>>>>>=>>>>>>;
;

and
Lie.Un/' nn

def
D f.cij / j cij D 0 if i � j g.

10.9. Let Va be the algebraic group defined by a finite-dimensional k-vector
space V (see 2.6). Then O.Va/D Sym.V _/D

L
n�0.V

_/˝n, the augmentation
ideal I D

L
n�1.V

_/˝n, and I=I 2 ' .V _/˝1 D V _. Therefore

Lie.Va/' Homk-linear.V
_;k/' V;

and so Va ' .Lie.Va//a. In fact, U ' Lie.U /a for any vector group U .

10.10. Let t WV �� � ��V ! k be an r tensor, and letG be the algebraic subgroup
of GLV fixing t (see 2.13). Then

Lie.G/' fg 2 End.V / j
P
j t .v1; : : : ;gvj ; : : : ;vr /D 0 all .vi /g:

Indeed, L.G/ consists of the endomorphisms 1Cg" of V.kŒ"�/ such that

t ..1Cg"/v1; .1Cg"/v2; : : :/D t .v1;v2; : : :/:

On expanding this and cancelling, we obtain the assertion.

10.11. We write e"X for the element of L.G/�G.kŒ"�/ corresponding to an
elementX of Lie.G/ under the isomorphism (56): L.G/' Lie.G/. For example,
if G D GLn, so Lie.G/D gln, then

e"X D I C "X .X 2Mn.k/, e"X 2 GLn.kŒ"�//:

We have

e".XCX
0/
D e"X � e"X

0

; X;X 0 2 Lie.G/;

e".cX/ D e.c"/X ; c 2 k; X 2 Lie.G/:

The first equality expresses that X 7! e"X WLie.G/! L.G/ is a homomorphism
of abelian groups, and the second that multiplication by c on Lie.G/ corresponds
to the multiplication of c on L.G/ induced by the action aCb" 7! aCbc" of c
on kŒ"� (Exercise 10-1).
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10.12. An action of an algebraic group G on an algebraic group U defines
a linear representation of G on the vector space Lie.U /. When U is a vector
group, there is a canonical isomorphism U ! Lie.U /a (see 10.9), and we say
that the action of G on U is linear if this isomorphism is G-equivariant. For a
finite-dimensional vector space V , the linear actions of G on Va correspond to
the linear representation of G on V .

ASIDE 10.13. In characteristic zero, every action of an algebraic group G on a vector
group U is linear (because it commutes with the exponential map 14.32). This is no longer
true in characteristic p ¤ 0 (2.12; see also McNinch 2014b).

c. Basic properties of the Lie algebra

10.14. Let .Gi ;'ij / be an inverse system of algebraic groups indexed by a finite
set I . For each i , the sequence 0! L.Gi /! Gi .kŒ"�/! Gi .k/ is exact. On
passing to the inverse limit, we obtain an exact sequence

0! lim
 �
.L.Gi //! .lim

 �
Gi /.kŒ"�/! .lim

 �
Gi /.k/;

and so lim
 �
.L.Gi /' L.lim

 �
Gi /. Hence

lim
 �
.Lie.Gi //' Lie.lim

 �
Gi /:

For example, an exact sequence of groups e! G0! G! G00 gives an exact
sequence of Lie algebras

0! Lie.G0/! Lie.G/! Lie.G00/;

and the functor Lie commutes with fibred products:

Lie.H1�GH2/' Lie.H1/�Lie.G/ Lie.H2/:

In particular, if H1 and H2 are algebraic subgroups of G, then Lie.H1/ and
Lie.H2/ are subspaces of Lie.G/ and

Lie.H1\H2/D Lie.H1/\Lie.H2/:

Consider, for example, the subgroups SL2 and Gm (scalar matrices) in GL2 over
a field k of characteristic 2. Then SL2\Gm D �2, and

Lie.SL2/\Lie.Gm/D f
�
a 0
0 a

�
j a 2 kg D Lie.�2/

(because aCaD 0 in k). Note that, in a world without nilpotents, SL2\Gm D e
and Lie.SL2\Gm/¤ Lie.SL2/\Lie.Gm/.

PROPOSITION 10.15. Let H � G be algebraic groups such that Lie.H/ D
Lie.G/. If H is smooth and G is connected, then H DG.
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PROOF. Recall that dim.g/� dim.G/, with equality if and only if G is smooth
(1.37). From

dim.H/D dim.h/D dim.g/� dim.G/� dim.H/;

we see that dim.g/D dim.G/, and so G is smooth, and that dim.G/D dim.H/,
and so G DH (because G is smooth and connected). 2

COROLLARY 10.16. LetH1 andH2 be smooth connected subgroups of G such
that Lie.H1/D Lie.H2/. If H1\H2 is smooth, then H1 DH2.

PROOF. From

Lie.H1\H2/D Lie.H1/\Lie.H2/D Lie.H1/;

we see that H1\H2 DH1. Similarly it equals H2. 2

COROLLARY 10.17. Let H1; : : : ;Hn be smooth algebraic subgroups of a con-
nected algebraic group G. If the Lie algebras of the Hi generate Lie.G/ as a Lie
algebra, then the Hi generate G as an algebraic group.

PROOF. By definition, the algebraic subgroup generated by theHi is the smallest
algebraic subgroup H of G such that all inclusion maps Hi ,!G factor through
H – it exists, and is smooth (2.51). We have Lie.Hi /� Lie.H/� Lie.G/ for all
i , and so Lie.H/D Lie.G/. Therefore H DG. 2

The examples Lie. p̨/D Lie.Ga/ and Lie.Gı/D Lie.G/ show that we need
H to be smooth and G to be connected in Proposition 10.15.

d. The adjoint representation; definition of the bracket

10.18. Let G be an algebraic group over k with Lie algebra g. For a k-algebra
R (commutative and finitely generated), we define g.R/ by the exact sequence

0! g.R/!G.RŒ"�/
" 7!0
�!G.R/! 0:

Thus g.k/DL.G/' g. For example, let V be a k-vector space, and letGDGLV .
Let V."/DRŒ"�˝V . Then V."/D VR˚ "VR as an R-module, and

g.R/D fidC"˛ j ˛ 2 End.VR/g

where idC"˛ acts on V."/ by

.idC"˛/.xC "y/D xC "yC "˛.x/: (58)
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10.19. Recall (3.22) that we have a split-exact sequence of k-vector spaces

0! I !O.G/ �
�! k! 0

where I is the augmentation ideal (maximal ideal at e in O.G/). On tensoring
this with R, we get an exact sequence of R-modules

0! IR!O.G/R
�R
�!R! 0:

By definition, an element of g.R/ is a homomorphism 'WO.G/R!RŒ"� whose
composite with " 7! 0WRŒ"�!R is �R. As in 10.6, ' factors through

O.G/R=I 2R 'R˚IR=I 2R;
and corresponds to an R-linear homomorphism IR=I

2
R!R. Hence

g.R/' HomR-linear.IR=I
2
R;R/' Homk-linear.I=I

2;k/˝RD g˝R:

As in (10.11), we write e"X for the element of g.R/ corresponding to an element
X of g˝R under this isomorphism. For a homomorphism f WG!H ,

f .e"X /D e"Lie.f /.X/; for X 2 g˝R: (59)

This expresses that the isomorphism g˝R' g.R/ is functorial.

10.20. The group G.RŒ"�/ acts on g.R/ by inner automorphisms. As G.R/ is
a subgroup of G.RŒ"�/, it also acts. In this way, we get a homomorphism

G.R/! Autk-linear.g.R//,

which is natural in R, and so defines a representation

AdWG! GLg .

This is called the adjoint representation (or action) of G.
For example, from

.A;I CX"/ 7! I CAXA�1"WGLn.R/�gln.R/! gln.R/;

we deduce that the adjoint action of GLn on gln is conjugation: Ad.A/.X/D
AXA�1.

10.21. By definition,

x � e"X �x�1 D e"Ad.x/X for x 2G.R/, X 2 g˝R. (60)

For a homomorphism f WG!H ,

G�g g

H �h h

.x;X/ 7!Ad.x/X

f �Lie.f / Lie.f /

.y;Y /7!Ad.y/Y

(61)
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commutes, i.e.,

Lie.f /.Ad.x/X/D Ad.f .x//Lie.f /.X/ for x 2G.R/, X 2 g˝R.

Indeed,
e"LHS (59)

D f .e"Ad.x/X /
(60)
D f .x � e"X �x�1/

and
e"RHS (60)

D f .x/ � e"Lie.f /.X/
�f .x/�1,

which agree because of (59).

10.22. On applying the functor Lie to Ad, we get a homomorphism of k-vector
spaces adWg! End.g/. For x;y 2 g, define

Œx;y�D ad.x/.y/: (62)

This is the promised bracket. From (61), we obtain a commutative diagram

g�g g

h�h h

.x;X/ 7!ad.x/X

Lie.f /�Lie.f / Lie.f /

.y;Y /7!ad.y/Y

which shows that Lie.f / preserves the bracket.

THEOREM 10.23. There is a unique functor Lie from the category of algebraic
groups over k to the category of Lie algebras with the following properties:

(a) Lie.G/D Homk-linear.IG=I
2
G ;k/ as a k-vector space;

(b) the bracket on Lie.GLn/D gln is ŒX;Y �DXY �YX .
The action of G on itself by conjugation defines a representation AdWG! GLg

of G on g (as a k-vector space), whose differential is the adjoint representation
adgWg! Der.g/ of g.

PROOF. The uniqueness follows from the fact that every algebraic group admits
a faithful representation G! GLn (see 4.9), which induces an injection g! gln
(see 10.14). It remains to show that the bracket (62) has the property (b). An
element I C "A 2 L.GLn/ acts on Mn.kŒ"�/ as

XC "Y 7! .I C "A/.XC "Y /.I � "A/DXC "Y C ".AX �XA/: (63)

On taking V to be Mn.k/ in (10.18), and comparing (63) with (58), we see that
ad.A/ acts as idC"u with u.X/D AX �XA, as required. This completes the
proof of the first statement.

The second statement is immediate from our definition of the bracket. 2
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REMARK 10.24. We saw in 10.19 and 10.20 that gln.R/'Mn.R/ and that

Ad.A/.X/D AXA�1; A 2 GLn.R/; X 2 gln.R/:

Let G be an algebraic subgroup of GLn. Then g � gln, and the adjoint map
on GLn restricts to the adjoint map on G (see 10.21). This gives an explicit
description of the adjoint map on G.

REMARK 10.25. Even in characteristic zero, infinitely many nonisomorphic
connected algebraic groups can have the same Lie algebra. For example, for each
integer n > 0, let Gn be the semidirect product Ga ÌGm defined by the action
.t;a/ 7! tna of Gm on Ga. No two Gn are isomorphic, but their Lie algebras
equal the two-dimensional Lie algebra hx;y j Œx;y�D yi.

EXAMPLE 10.26. Let G be the orthogonal group R fX 2Mn.R/ jX
t �X D

Ing over k, and assume that char.k/¤ 2. The Lie algebra of G is

gD fInC "Y 2Mn.k/ j Y
t
CY D 0g;

which can be identified with the set of skew-symmetric matrices. We saw in
Exercise 2-9 that the map X 7! .In�X/.InCX/

�1 defines a birational map
�WGÜ g. This map is equivariant for the action of G on G by conjugation and
the adjoint action of G on g, i.e.,

�.gXg�1/D Ad.g/.�.X//

for all g and X such that both sides are defined.1

e. Description of the Lie algebra in terms of derivations

DEFINITION 10.27. LetA be an algebra over k andM anA-module. A k-linear
map DWA!M is a k-derivation of A into M if

D.fg/D f �D.g/Cg �D.f / (Leibniz rule).

For example, D.1/DD.1�1/DD.1/CD.1/, and so D.1/D 0. By linear-
ity, this implies that

D.c/D 0 for all c 2 k:

Conversely, every additive map A!M zero on k and satisfying the Leibniz rule
is a k-derivation.

1LetG be a connected group variety with Lie algebra g over a field k of characteristic zero. A
rational map �WGÜ g is called a Cayley map if it is birational andG-equivariant. The Cayley map
for the orthogonal group (as above) was found by Cayley (1846). It is known that Cayley maps exist
for SL2, SL3, SOn, Spn, and PGLn, and that they do not exist for SLn, n� 4, orG2. See Lemire
et al. 2006. The Cayley map, when it exists, gives an explicit realization of the group as a rational
variety.
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Let uWA! kŒ"� be a k-linear map, and write

u.f /D u0.f /C "u1.f /:

Then

u.fg/D u.f /u.g/ ”

�
u0.fg/D u0.f /u0.g/

u1.fg/D u0.f /u1.g/Cu0.g/u1.f /:

The first condition says that u0 is a homomorphism A! k and, when we use u0
to make k into an A-module, the second condition says that u1 is a k-derivation
A! k.

Recall that O.G/ has a coalgebra structure .�;�/. By definition, the elements
of L.G/ are the k-algebra homomorphisms uWO.G/! kŒ"� whose composite
with " 7! 0WkŒ"�! k is �, i.e., such that u0 D �. Thus, we have proved the
following statement.

PROPOSITION 10.28. Let O.G/ act on k through �. There is a natural one-
to-one correspondence between the elements of L.G/ and the k-derivations
O.G/! k, i.e.,

L.G/' Derk;�.O.G/;k/:
The correspondence is �C "D$D, and the Leibniz condition is

D.fg/D �.f / �D.g/C �.g/ �D.f /:

Let ADO.G/, and consider the space Derk.A;A/ of k-derivations of A into
A. As noted (10.4), Derk.A;A/ becomes a Lie algebra with the bracket

ŒD;D0�DD ıD0�D0 ıD.

A derivation DWA! A is left invariant if

�ıD D .id˝D/ı�:

If D and D0 are left invariant, then

�ı ŒD;D0�D�ı .D ıD0�D0 ıD/

D .id˝D/ı�ıD0� .id˝D0/ı�ıD
D .id˝.D ıD0//ı�� .id˝.D0 ıD//ı�
D .id˝ŒD;D0�/ı�

and so ŒD;D0] is also left invariant.

PROPOSITION 10.29. The map

D 7! � ıDWDerk.A;A/! Derk;�.A;k/

defines an isomorphism from the subspace of Derk.A;A/ consisting of left
invariant derivations onto Derk;�.A;k/.
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PROOF. If D is a left invariant derivation A! A, then

D D .id˝�/ı�ıD D .id˝�/ı .id˝D/ı�D .id˝.� ıD//ı�;

and so D is determined by � ıD. Conversely, if d WA! k is a derivation, the
D D .id˝d/ı� is a left invariant derivation A! A. 2

Thus L.G/ is isomorphic (as a k-vector space) to the space of left invariant
derivations A! A, which is a Lie subalgebra of Derk.A;A/. In this way, L.G/
acquires a Lie algebra structure, which is clearly natural in G. We leave it as an
exercise to the reader to check that this agrees with the previously defined Lie
algebra structure for G D GLn, and hence for all G.

f. Stabilizers

Let .V;r/ be a representation of an algebraic group G and W a subspace of V .
Recall (4.3) that the stabilizer GW D StabG.W / of W is the algebraic subgroup
of G such that

GW .R/D f˛ 2G.R/ j ˛.WR/DWRg

for all k-algebras R.

DEFINITION 10.30. Let g! gl.V / be a representation of the Lie algebra g and
W a subspace of V . The stabilizer of W in g is

Stabg.W /D fx 2 g j xW �W g:

On applying the functor Lie to a representation r WG! GLV of G, we obtain
a representation dr Wg! glV of g (see 10.31).

PROPOSITION 10.31. Let .V;r/ be a representation of G and W a subspace of
V . Then

Lie.StabG.W //D Stabg.W /:

PROOF. It suffices to prove this with G D GLV . Let ˛ 2 glV . Then

idC˛" 2 L.GW / ” idC˛" 2GW .kŒ"�/ ” .idC˛"/W Œ"��W Œ"�:

But
.idC˛"/.w0Cw1"/D w0C .w1C˛w0/",

which lies in W Œ"� if and only if ˛w0 2W . Thus e"˛ 2 L.GW / if and only if ˛
stabilizes W . 2

Therefore, dimStabG.W //� dimStabg.W /, and equality holds if and only
if StabG.W / is smooth.

EXAMPLE 10.32. In the situation of Chevalley’s theorem (4.27), the group
H D StabG.L/, and so hD Stabg.L/:
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g. Centres

The centre z.g/ of a Lie algebra is the kernel of the adjoint map:

z.g/D fx 2 g j Œx;g�D 0g:

PROPOSITION 10.33. Let G be a smooth connected algebraic group. Then

dimz.g/� dimZ.G/.

If equality holds, then Z.G/ is smooth and Lie.Z.G//D z.g/.

PROOF. There are maps

AdWG! Aut.g/; Ker.Ad/�Z.G/ (64)
adWg! Der.g/; Ker.ad/D z.g/: (65)

The second map is obtained by applying Lie to the first (see 10.23), and so (see
10.14) Ker.ad/D Lie.Ker.Ad//� Lie.Z.G//: Therefore

dimz.g/D dimKer.ad/D dimLie.Ker.Ad//
.1.37)
� dimKer.Ad/

(64)
� dimZ.G/;

(66)
which proves the first part of the statement.

If dimz.g/D dimZ.G/, then equality holds throughout, and so

dimLie.Ker.Ad//D dimKer.Ad/D dimZ.G/.

The first equality implies that KerAd is smooth (1.37), and the second equality
then implies that Z.G/ı D .KerAd/ı. Hence Z.G/ı is smooth, which implies
that Z.G/ is smooth. Finally, Lie.Z.G//� z.g/, and so they are equal if they
have the same dimension. 2

h. Centralizers

PROPOSITION 10.34. LetG be an algebraic group andH an algebraic subgroup
of G. The action of H on G by conjugation defines an action of H on Lie.G/,
and

Lie.CG.H//D Lie.G/H

Lie.NG.H//=Lie.H//D .Lie.G/=Lie.H//H .

PROOF. We prove the first statement. Let C D CG.H/ and cD Lie.C /. Clearly,

cD fX 2 g j e"X 2 C.kŒ"�/g:

Let X 2 g. The condition that X 2 c is that

x � .e"X /S �x
�1
D .e"X /S for all kŒ"�-algebras S and x 2H.S/; (67)
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where .e"X /S is the image of e"X in C.S/. On the other hand, the condition that
X 2 gH is that

y � e"
0XR �y�1 D e"

0XR for all k-algebras R and y 2H.R/; (68)

where XR is the image of X in g˝R.
We show that (67) H) (68). Let y 2 H.R/ for some k-algebra R. Take

S D RŒ"�. Then y 2 H.R/ � H.S/, and (67) for y 2 H.S/ implies (68) for
y 2H.R/.

We show that (68)H) (67). Let x 2H.S/ for some kŒ"�-algebra S ; there is
a kŒ"�-homomorphism 'WSŒ"0�! S acting as the identity on S and sending "0 to
"1S . On taking RD S in (68), and applying ', we obtain (67).

The proof of the second statement uses similar arguments (SHS, Exposé 4,
3.4). 2

Therefore, dimCG.H/� dimgH , and equality holds if and only if CG.H/
is smooth.

i. An example of Chevalley

The following example of Chevalley shows that the Lie algebra of a noncommutat-
ive algebraic group may be commutative. It also shows that the centre of a smooth
algebraic group need not be smooth, and the homomorphism AdWG! GLg need
not be smooth.

10.35. Let k be an algebraically closed field of characteristic p ¤ 0, and let G
be the algebraic group over k such that G.R/ consists of the matrices

A.a;b/D

�
a 0 0

0 ap b

0 0 1

�
; a;b 2R; a 2R�:

Define regular functions on G by

X WA.a;b/ 7! a

Y WA.a;b/ 7! b.

Then O.G/D kŒX;Y;X�1�, which is an integral domain, and so G is connected
and smooth. Note that
�
a 0 0

0 ap b

0 0 1

��
a0 0 0

0 a0p b0

0 0 1

��
a 0 0

0 ap b

0 0 1

��1
D

�
a0 0 0

0 a0p b�a0pbCapb0

0 0 1

�
:

Therefore G is not commutative, and its centre consists of the elements A.a;b/
with ap D 1 and b D 0. It follows that

O.Z.G//DO.G/=.Xp�1;Y /' kŒX�=.Xp�1/;
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which is not reduced; in fact, Z.G/D �p .
On the other hand,

L.G/D

8<:
�
1Ca" 0 0

0 1 b"

0 0 1

� ˇ̌̌̌
ˇ̌a;b 2 k

9=;� L.GL3/;

and so

Lie.G/D

8<:
�
a 0 0

0 0 b

0 0 0

� ˇ̌̌̌
ˇ̌a;b 2 k

9=;� gl3 DM3.k/;

which is obviously commutative. Moreover,

�
a 0 0

0 ap b

0 0 1

��
1Ca0" 0 0

0 1 b0"

0 0 1

��
a 0 0

0 ap b

0 0 1

��1
D

�
1Ca0" 0 0

0 1 apb0"

0 0 1

�
;

and so the kernel of AdWG! GLg consists of the elements A.a;b/ with ap D 1.
Thus

Ker.Ad/D Spm.O.G/=.Xp�1//D Spm.kŒX;Y �=.Xp�1//;

which is not reduced, and so Ad is not smooth. Note that,

dimz.g/D 2 > dim.Ker.Ad//D 1 > dim.Z.G//D 0;

and so all of the inequalities in (66) are strict.

j. The universal enveloping algebra

Recall (10.3) that an associative algebra A over k becomes a Lie algebra ŒA� with
the bracket Œa;b�D ab�ba. Let g be a Lie algebra. Among the pairs consisting
of an associative k-algebra A and a Lie algebra homomorphism g! ŒA�, there is
one, .U.g/; g

�
�! ŒU.g/�/, that is universal:

g U.g/

A

Lie

�

Lie 9Š associative

�
Hom.g; ŒA�/ ' Hom.U.g/;A/:

˛ ı�$ ˛

In other words, every Lie algebra homomorphism g! ŒA� extends uniquely to a
homomorphism of associative algebras U.g/! A. The pair .U.g/;�/ is called
the universal enveloping algebra of g. The functor g U.g/ is a left adjoint to
A ŒA�.
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The algebra U.g/ can be constructed as follows. The tensor algebra T .V / of
a k-vector space V is

T .V /D k˚V ˚V ˝2˚V ˝3˚�� � ; V ˝n D V ˝�� �˝V (n copies),

with the algebra structure defined by juxtaposition:

.x1˝�� �˝xm/ � .y1˝�� �˝yn/D x1˝�� �˝xm˝y1˝�� �˝yn:

It has the property that every k-linear map V ! A from V to an associative
algebra over k extends uniquely to a homomorphism T .V /!A of algebras over
k. We define U.g/ to be the quotient of T .g/ by the two-sided ideal generated by
the tensors

x˝y�y˝x� Œx;y�; x;y 2 g: (69)

The composite g! T .g/! U.g/ is then a Lie algebra homomorphism g!
ŒU.g/�, and the extension of a k-linear map ˛Wg! A to T .g/! A factors
through U.g/ if and only if ˛ is a Lie algebra homomorphism g! ŒA�. Therefore
U.g/ and the map g! ŒU.g/� have the required universal property.

When g is commutative, (69) becomes x˝y �y˝ x, and so U.g/ is the
symmetric algebra on g; in particular, U.g/ is commutative.

The choice of a basis e1; e2; : : : for the vector space g realizes T .g/ as the
algebra over k of noncommuting polynomials in the ei and U.g/ as a quotient of
this algebra. In particular, U.g/ is finitely generated as an algebra over k if g is
finite-dimensional.

THEOREM 10.36 (POINCARÉ, BIRKHOFF, WITT). Let .ei /i2I be an ordered2

basis for g as a k-vector space, and let "i D �.ei /. Then the ordered monomials

"i1"i2 � � �"in ; i1 � i2 � � � � � in, (70)

form a basis for U.g/ as a k-vector space.

For example, if g is finite-dimensional with basis fe1; : : : ; erg as a k-vector
space, then the monomials

"
m1
1 "

m2
2 � � �"

mr
r ; m1;m2; : : : ;mr 2 N;

form a basis for U.g/ as a k-vector space. If g is commutative, then U.g/ is the
polynomial algebra in the symbols "1; : : : ; "r .

The family ."i /i2I generates U.g/ as an algebra over k, and so the monomials
"i1"i2 � � �"im , m 2 N, generate U.g/ as a k-vector space. The relations implied by
(69),

xy D yxC Œx;y�;

allow us to “reorder” the factors in such a monomial, and deduce that the ordered
monomials (70) span U.g/. The import of the theorem is that the set of ordered
monomials is linearly independent. The proof of this makes use of the Jacobi
identity.

2By ordered we mean totally ordered.



j. The universal enveloping algebra 201

Proof of the PBW theorem

Choose a basis B for g as a k-vector space and a total ordering of B. The
monomials

x1˝x2˝�� �˝xm; xi 2 B; m 2 N;
form a basis for T .g/ as a k-vector space. We say that such a monomial is
ordered if x1 � x2 � � � � � xm. We have to show that the images of the ordered
monomials in U.g/ form a basis for U.g/ regarded as a k-vector space.

From now on “monomial” means a monomial S D x1˝�� �˝xm with the
xi 2 B. The degree of S is m. An inversion in S is a pair .i;j / with i < j but
xi > xj . We say that a monomial “occurs” in a tensor if it occurs with nonzero
coefficient.

By definition, U.g/ is the quotient of T .g/ by the two-sided ideal I.g/ gener-
ated by the elements (69). As a k-vector space, I.g/ is spanned by elements

A˝x˝y˝B �A˝y˝x˝B �A˝ Œx;y�˝B

with x;y 2B andA;B monomials. In fact, because Œx;y�D�Œy;x�, the elements
of this form with x < y already span I.g/.

Let T 2 T .g/. We say that T is reduced if all the monomials occurring in it
are ordered. We define a partial ordering on the elements of T .g/ by requiring
that T < T 0 if

(a) the greatest degree of an unordered monomial occurring in T is less than
the similar number for T 0, or

(b) both T and T 0 contain unordered monomials of the same largest degree n,
but the total number of inversions in monomials of degree n occurring in
T is less than the similar number for T 0:

For example, if x < y < z, then

y˝xCz˝xC z˝y < y˝x˝ zCx˝ z˝y < z˝y˝x:

The ordering measures how nonreduced a tensor is.
For r;s � 0, we define a k-linear map �r;s WT .g/! T .g/ by requiring that

�r;s fix all monomials except those of the form

A˝x˝y˝B; deg.A/D r; deg.B/D s; x > y;

and that it maps this monomial to

A˝y˝x˝BCA˝ Œx;y�˝B:

Note that �r;s fixes all reduced tensors.
Let T;T 0 2 T .g/. We write T ! T 0 if T 0 is obtained from T by a single map

�r;s , and T
�
�! T 0 if T 0 is obtained from T by zero or more such maps: In the

first case, we call T 0 a simple reduction of T , and in the second case, a reduction
of T . Note that if T

�
�! T 0 and T is reduced, then T D T 0.

After these preliminaries, we are ready to prove the theorem.
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STEP 1. Let T 2 T .g/:Then �r;s.T /�T 2 I.g/ and �r;s.T /� T for all r;s 2N;
moreover, T < �r;s.T / for some r;s unless T is reduced.

PROOF. The first part of the assertion is obvious from the definitions. Let T
be nonreduced and S a nonreduced monomial of highest degree occurring in T .
Then �r;s.S/ < S for some r;s 2 N. As �r;s.S 0/� S 0 for all monomials S 0 ¤ S
occurring in T , we have �r;s.T / < T . 2

STEP 2. Let T 2 T .g/. Then there exists a reduction T
�
�! T 0 with T 0 reduced.

Therefore the images of the ordered monomials span U.g/.

PROOF. Let T 2 T .g/. According to Step 1, there exists a sequence of simple
reductions T ! T1! T2! �� � with T > T1 > T2 > � � � . Clearly, the sequence
stops with a reduced tensor T 0 after a finite number of steps. Moreover, T �
T1 � T2 � �� � � T

0 modulo I.g/, and so T 0 represents the image of T in U.g/.2

STEP 3. No nonzero element of I.g/ is reduced.

PROOF. The elements

x˝y�y˝x� Œx;y�; x;y 2 B; x > y

of T .g/ are linearly independent over k. Let T be a nonzero element of I.g/.
Then T is a linear combination of distinct terms

A˝x˝y˝B �A˝y˝x˝B �A˝ Œx;y�˝B;

with x;y 2B, x > y, andA;B monomials. By considering the terms with deg.A/
a maximum, one sees that T cannot be reduced. 2

STEP 4. (PBW confluence) Let A
�
�! B1 and A

�
�! B2 be reductions of a

monomial A. Then there exist reductions B1
�
�! C1 and B2

�
�! C2 with C1�

C2 2 I.g/.

PROOF. First suppose that the reductions A
�
�! B1 and A

�
�! B2 are simple. If

the pairs x˝y and x0˝y0 involved in the reductions to B1 and B2 don’t overlap,
the statement is obvious, because

�r;s ı�r 0;s0 D �r 0;s0 ı�r;s

if r 0 ¤ r �1, rC1. Otherwise, A has the form

AD A0˝x˝y˝ z˝B 0; x > y > z,

and the reductions A! B1 and A! B2 have the form

x˝y˝ z! y˝x˝zC Œx;y�˝z

x˝y˝ z! x˝z˝yCx˝ Œy;z�:
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But,

y˝x˝zC Œx;y�˝z! y˝ z˝xCy˝ Œx;z�C Œx;y�˝ z

! z˝y˝xC Œy;z�˝xCy˝ Œx;z�C Œx;y�˝z

and

x˝z˝yCx˝ Œy;z�! z˝x˝yC Œx;z�˝yCx˝ Œy;z�

! z˝y˝xCz˝ Œx;y�C Œx;z�˝yCx˝ Œy;z�:

The terms on the right differ by

ŒŒy;z�;x�C Œy; Œx;z��C ŒŒx;y�;z�;

which, because of the Jacobi identity (10.1b), lies in I.g/.
Next suppose only that A

�
�! B1 is simple. This case can be proved by

repeatedly applying the simple case:

A B1 � �

B2 B3

The deduction of the general case is similar. 2

Let T 2 T .g/. In Step 2 we showed that there exists a reduction T
�
�! T 0

with T 0 reduced. If T 0 is unique, then we say that T is uniquely reducible, and
we set red.T /D T 0:

STEP 5. Every monomial A is uniquely reducible.

PROOF. Suppose A
�
�! B1 and A

�
�! B2 with B1 and B2 reduced. According

to Step 4, B1�B2 2 I.g/, and hence is zero (Step 3). 2

STEP 6. If S and T are uniquely reducible, so also is SCT , and red.SCT /D
red.S/C red.T /.

PROOF. LetW D �.SCT / be a reduced reduction of SCT . It suffices to show
that

W D red.S/C red.T /.

There exists a reduction � 0 such that � 0.�.S//D red.S/. Now

� 0.�.SCT //D � 0.W /DW

because W is reduced, and

� 0.�.SCT //D � 0.�.S//C� 0.�.T //D red.S/C .� 0�/.T /:

Let � 00 be such that � 00.� 0�/.T /D red.T /. Then

W D � 00.W /D � 00.red.S//C� 00.� 0�.T //D red.S/C red.T /: 2
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An induction argument now shows that every T in T .g/ is uniquely reducible.

STEP 7. The map T 7! red.T /WT .g/! T .g/ is k-linear and has the following
properties:

(a) T � red.T / 2 I.g/I

(b) red.T /D T if T is reduced;

(c) red.T /D 0 if T 2 I.g/.

PROOF. The map is additive by definition, and it obviously commutes with
multiplication by elements of k; hence it is k-linear. Both (a) and (b) follow from
the fact that red.T / is a reduction of T (see Step 1). For (c), if T 2 I.g/ then
red.T / is reduced and lies in I.g/, and so is zero (Step 3). 2

STEP 8. Completion of the proof.

PROOF. Let T .g/.red/ denote the k-subspace of T .g/ consisting of reduced
tensors. The map red is a k-linear projection onto T .g/.red/ with kernel I.g/:

T .g/' I.g/˚T .g/.red/ (as k-vector spaces).

Thus, T .g/=I.g/' T .g/.red/ as required. 2

REMARK 10.37. The proof shows that the universal enveloping algebra U.g/
of g can be identified with the k-vector subspace T .g/red equipped with the
multiplication

T �T 0 D red.T ˝T 0/:

NOTES. The above proof of the PBW theorem follows notes of Casselman (Introduction
to Lie Algebras) and Bergman 1978. The latter writes

[This proof] is quite close to Birkhoff’s original proof ... Birkhoff 1937.
Witt’s proof looks rather different. He considers a certain action of the
permutation group Sn upon the space spanned by monomials of degree
� n. The Jacobi identity turns out to correspond to the defining relations
..i; iC1/.iC1; iC2//3 D 1 in a presentation of Sn in terms of generators
.i; iC1/. Poincaré’s 1899 proof is more or less by “brute force”, and appears
to have a serious gap, but it is a surprisingly early example of the idea of
constructing a ring as the [quotient] algebra of a free associative algebra by
(in effect) the ideal generated by a system of relations.

k. The universal enveloping p-algebra

In this section, k has characteristic p ¤ 0. Let x0 and x1 be elements of a Lie
algebra g over k. For 0 < r < p, let

sr .x0;x1/D�
1

r

X
u

adxu.1/adxu.2/ � � �adxu.p�1/.x1/
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where u runs over the maps f1;2; : : : ;p� 1g ! f0;1g taking r times the value
0. For example, s1.a;b/ equals Œa;b� if p D 2, and s1.a;b/ D ŒŒa;b�;b� and
2s2.a;b/D ŒŒa;b�;a� if p D 3.

PROPOSITION 10.38. Let A be an associative algebra over k (not necessarily
commutative). For a;b 2 A, write

ad.a/b D Œa;b�D ab�ba:

Then the Jacobson formulas hold for a;b 2 A:
(a) ad.a/p D ad.ap/

(b) .aCb/p D apCbpC
P

0<r<p

sr .a;b/.

PROOF. When we put La.b/D ab DRb.a/, we find that

ad.ap/.b/D .Lpa �R
p
a /.b/D .La�Ra/

p.b/D ad.a/p.b/;

which proves (a).
Let Sp denote the symmetric group on p symbols. We claim that, for

a1; : : : ;ap 2 A,X
s2Sp

as.1/ � � �as.p/ D
X

t2Sp�1

ad.at.1// � � �ad.at.p�1//.ap/: (71)

The right-hand side equalsX
i;j

X
t2Sp�1

.�1/p�1�rat.i1/ � � �at.ir /apat.jp�1�r / � � �at.j1/;

where i D .i1; : : : ; ir / runs over the strictly increasing sequences of integers in
f1; : : : ;p � 1g and where j D .j1; : : : ;jp�1�r / denotes the strictly increasing
sequence whose values are the integers in f1; : : : ;p�1g distinct from i1; : : : ; ir .
This sum equalsX

r

.�1/p�1�r
�

p�1

p�1� r

� X
v2Sp�1

av.1/ � � �av.r/apav.rC1/ � � �av.p�1/:

But the identity

.T �1/p�1 D
T p�1

T �1
D T p�1CT p�2C�� �C1

in kŒT � shows that

.�1/p�1�r
�

p�1

p�1� r

�
D 1;

which proves (71).
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We now prove (b). If x0;x1 2 A, then

.x0Cx1/
p
D x

p
0 Cx

p
1 C

X
0<r<p

X
w2F.r/

xw.1/ � � �xw.p/;

where F.r/ is the set of maps from f1; : : : ;pg to f0;1g taking r times the value 0.
For s 2 Sp , let ws 2 F.r/ denote the map such that

w�1s .0/D fs�1.1/; : : : ; s�1.r/g:

Then s 7! ws is a surjective map such that the inverse image of each w 2 F.r/
contains rŠ.p� r/Š elements. Putting

a1 D �� � D ar D x0

arC1 D �� � D ap D x1

we therefore have
xws.1/ � � �xws.p/ D as.1/ � � �as.p/

and X
w2F.r/

xw.1/ � � �xw.p/ D
1

rŠ.p� r/Š

X
s2Sp

as.1/ � � �as.p/:

Similarly, we may prove that

sr .x0;x1/D

�
�
1

r

�
1

rŠ.p� r �1/Š

X
t2Sp�1

ad.at.1// � � �ad.at.p�1//.ap/:

The required formula now follows from (71). 2

DEFINITION 10.39. A p-Lie algebra is a Lie algebra g equipped with a map

x 7! xŒp�Wg! g

such that
(a) .cx/Œp� D cpxŒp�, all c 2 k, x 2 g;

(b) ad.xŒp�/D .ad.x//p , all x 2 gI

(c) .xCy/Œp� D xŒp�CyŒp�C
P

0<r<p�1

sr .x;y/, all x;y 2 g.

Note that Proposition 10.38 says that ŒA� becomes a p-Lie algebra when we set
aŒp� D ap .

Let g be a p-Lie algebra and�Wg! U.g/ the universal map. The elements
�.x/Œp� � �.xŒp�/ lie in the centre of U.g/, and we define U Œp�.g/ to be the
quotient of U.g/ by the ideal they generate. Regard U Œp�.g/ as a p-Lie algebra,
and let j denote the composite g!U.g/!U Œp�.g/. Then j is a homomorphism
of p-Lie algebras, and the pair .U Œp�.g/;j / is universal: every k-linear map
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˛Wg! A with A associative extends uniquely to a homomorphism T .g/! A of
algebras over k, which factors through U Œp�.g/ if and only if it is a p-Lie algebra
homomorphism,

g U Œp�.g/

A

p-Lie

j

p-Lie 9Š associative

�
Hom.g; ŒA�/ ' Hom.U Œp�.g/;A/:

˛ ıj $ ˛

The functor g U Œp�.g/ is left adjoint to the functor sending an associative
algebra over k to its associated p-Lie algebra.

THEOREM 10.40. Let .ei /i2I be an ordered basis for g as a k-vector space, and
let "i D j.ei /. Then the set consisting of 1 and the monomials

"
ni1
i1
� � �"

nir
ir
; i1 < � � �< ir ; 0 < nij < p

forms a basis for U Œp�.g/ as a k-vector space.

PROOF. Identify g with its image in U.g/, and let ci D e
p
i � e

Œp�
i . The ci lie in

the centre of U.g/, and generate the kernel of the map U.g/! U Œp�.g/. Let
Up�1 denote the subspace of U.g/ generated by the monomials

Q
e
mi
i withP

mi � p�1. As ci � e
p
i modulo Up�1, the PBW theorem (10.36) implies that

the monomials Y
e
ni
i

Y
c
mi
i ; 0� ni < p; mi � 0

form a basis for U.g/, from which the statement follows. 2

COROLLARY 10.41. If g is finite-dimensional as a k-vector space, so also is
U Œp�.g/, and the map j Wg! U Œp�.g/ is injective.

PROOF. Obvious from the theorem. 2

NOTES. This section follows DG, II, �7, no. 3. See also Jacobson 1962, V.7.

l. The algebra of distributions (hyperalgebra) of an algebraic
group

In characteristic zero, the Lie algebra of a connected algebraic group G captures
much of the information of G. For example, the connected algebraic subgroups
of G are in natural one-to-one correspondence with the Lie subalgebras of g, and,
if G is semisimple and simply connected, then Rep.G/' Rep.g/ (see 23.70).
To obtain similar statements in characteristic p ¤ 0, it is necessary to replace
the Lie algebra of G with its algebra of distributions Dist.G/ (also called its
hyperalgebra).
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Let X be an affine scheme over k. Let x 2X.k/, and let Ix �O.X/ be the
ideal of functions zero at x. A distribution on X of order � n with support on x
is a k-linear map �WO.X/! k such that �.I nC1x /D 0. These distributions form
a k-vector space Distn.X;x/. Clearly, Dist0.X;x/' k_ ' k, and

Distn.X;x/' k˚ .Ix=I nC1x /_; n > 0.

In particular, Dist1.X;x/' k˚Tgtx.X/. We let Dist.X;x/ denote the k-vector
space of all linear maps �WO.X/! k such that �.I nC1x /D 0 for some n � 0.
Thus Dist.X;x/D

S
nDistn.X;x/:

For an algebraic group G over k, we write Dist.G/ for Dist.G;e/. When
�;�0 2 Dist.G/, we define � ��0 to be the composite

O.G/ �
�!O.G/˝O.G/ .�;�

0/
�! k:

In this way, Dist.G/ becomes a filtered associative algebra over k whose as-
sociated graded algebra is commutative, and Dist1.G/ ' k˚ g. When k has
characteristic zero, the natural inclusion g! Dist.G/ extends to an isomorph-
ism U.g/! Dist.G/ of algebras over k (apply 11.27 below), and so Dist.G/
contributes nothing new. When k has characteristic p ¤ 0, the natural inclu-
sion g! Dist.G/ extends to an injective homomorphism U Œp�.g/! Dist.G/,
but this is not an isomorphism. The k-algebra Dist.G/ acts on every finite-
dimensional representation of G, and the resulting functor from G-modules to
Dist.G/-modules is fully faithful when k is perfect and G is connected, but it is
not essentially surjective. Under the same hypotheses on G and k, a subspace of
a representation of G is stable under G if and only if it is stable under Dist.G/.
See DG, II, �4, 5–6, and Jantzen 1997, I, Chapter 7.

Exercises

EXERCISE 10-1. A nonzero element c of k defines an endomorphism of kŒ"�
sending " to c", and hence an endomorphism of L.G/ for any algebraic group G.
Show that this agrees with the action of c on L.G/ arising from the isomorphism
L.G/' Hom.I=I 2;k/D Lie.G/.



CHAPTER 11

Finite Group Schemes

In this chapter we study finite group schemes, i.e., finite algebraic groups. They
are automatically affine. A finite algebraic group is étale unless the base field has
characteristic p ¤ 0 and p divides the order of the group (11.31), and so this is
largely a study of p-phenomena in characteristic p.

a. Generalities

PROPOSITION 11.1. The following conditions on a finitely generated k-algebra
A are equivalent: (a) A is artinian; (b) A has Krull dimension zero; (c) A is a
finite k-algebra; (d) spm.A/ is discrete (in which case it is finite).

PROOF. (a),(b). A noetherian ring is artinian if and only if it has dimension
zero (CA 16.6).

(b))(c). According to the Noether normalization theorem (CA 8.1), there
exist algebraically independent elements x1; : : : ;xr in A such that A is finite
over kŒx1; : : : ;xr �. As kŒx1; : : : ;xr � has Krull dimension r (CA 18.16) and
dimkŒx1; : : : ;xr � � dimA (CA 7.7), we see that (b) implies that r D 0 and that
A is finite over k:

(c))(a). This is obvious.
(d))(b). Let m be a maximal ideal in A. As fmg is open in spm.A/, there

exists an f 2 A such that spm.Af /D fmg. Now Af is again a finitely generated
k-algebra, and so every prime ideal in Af is an intersection of maximal ideals
(CA 13.11). But Af has only one maximal ideal m, and so Af has no prime
ideals except m. It follows that no prime ideal of A is properly contained in m.
As this is true of all maximal ideals in A, the ring A has dimension zero.

(a))(d). Because A is artinian, it has only finitely many maximal ideals
m1; : : : ;mr , and some product, say, mn11 � � �m

nr
r , equals 0 (CA �16). Now the

Chinese remainder theorem (CA 2.13) shows that

A' A=mn11 � � � ��A=m
nr
r

209
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and so spm.A/D
F

spm.A=mnii /D
F
fmig (disjoint union of open one-point

sets). Therefore, spm.A/ is finite and discrete. 2

PROPOSITION 11.2. The following conditions on an algebraic scheme X over k
are equivalent: (a)X is affine and O.X/ is a finite k-algebra; (b)X has dimension
zero; (c) the morphism X ! Spmk is finite; (d) jX j is discrete (in which case it
is finite).

PROOF. The implications (a))(b))(c))(d) follow immediately from 11.1.
It remains to prove (d))(a). Assume that jX j is discrete, and write X as a
finite union of open affine subschemes, X D

S
i Ui . Then Ui is discrete, and so

Ui D Spm.Ai / with Ai artinian (11.1). It follows that jX j is a finite union of
open-closed one-point subsets uj , and that OX .uj / is a local artinian ring Aj .
Now X D

F
j Spm.Aj /, which is affine with coordinate ring the artinian ringQ

Aj . 2

An algebraic scheme over k is finite if it satisfies the equivalent conditions
of 11.2, and an algebraic group over k is finite if it is finite as a scheme over k
(2.14).

PROPOSITION 11.3. Let G be a finite group scheme over k. If k is perfect, then
the connected-étale exact sequence

e!Gı!G! �0.G/! e

splits and realizes G as a semidirect product GıÌ�0.G/.

PROOF. AsGı.ka/D e, the sequence gives an isomorphismG.ka/!�0.G/.k
a/

(see 5.48). If k is perfect, then Gred is an algebraic subgroup of G (1.39), and the
map G! �0.G/ induces an isomorphism Gred! �0.G/ because both groups
are étale and the homomorphism becomes an isomorphism on ka-points:

Gred.k
a/DG.ka/

'
�! �0.G/.k

a/:

Now Proposition 2.34 applied to the homomorphism G ! �0.G/ shows that
G 'GıÌ�0.G/. 2

The automorphism group of p̨ is Gm, and so there is a natural action of
Z=nZ on p̨ if k contains a primitive nth root of 1. Therefore the semidirect
product in the proposition need not be a direct product.

The following are examples of finite group schemes whose connected-étale
exact sequence does not split.

EXAMPLE 11.4. Let k be a nonperfect field of characteristic p, and let c 2
kXkp . Let

G D
Gp�1

iD0
Gi ; Gi D Spm.kŒT �=.T p� ci //:
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For a 2Gi .R/ and b 2Gj .R/, define

ab D

�
ab 2GiCj .R/ if iCj < p
ab=c 2GiCj�p.R/ if iCj � p:

This makes G.R/ into a group, and G into a finite algebraic group. Its identity
component is G0 D �p , and there is an exact sequence

0! �p!G! .Z=pZ/k! 0

such that the fibre over i 2 .Z=pZ/k is Gi . This is nonsplit because Gi '
Spm.kŒ p

p
ci �/ and kŒ p

p
ci � is a field¤ k if i is not divisible by p.

EXAMPLE 11.5. Let k and c be as in 11.4. Let

G D
Gp�1

iD0
Gi ; Gi D Spm.kŒT �=.T p� ic//:

For a 2Gi .R/ and b 2Gj .R/, define

ab D

�
aCb 2GiCj .R/ if iCj < p
aCb 2GiCj�p.R/ if iCj � p:

This makes G.R/ into a group, and G into a finite algebraic group. Its identity
component is G0 D p̨ , and there is a nonsplit exact sequence

0! p̨!G! .Z=pZ/k! 0:

b. Locally free finite group schemes over a base ring

The most important finite group schemes over a ring (or base scheme) are those
that are locally free. We now review the definitions.

11.6. Let R0 be a commutative ring and M an R0-module. Then M is said to
be locally free of finite rank if there exists a finite family .fi /i2I of elements
of R0 generating the unit ideal R0 and such that, for all i 2 I , the R0fi -module
Mfi is free of finite rank. This is equivalent to M being finitely presented and
flat (CA 12.6). Therefore, when R0 is noetherian, an R0-module is locally free
of finite rank if and only if it is finitely generated and flat.

An R0-algebra is said to be locally free of finite rank if it is so as an R0-
module. When R0 is noetherian, an R0-algebra is locally free of finite rank if
and only if it is finite and flat.

11.7. Let S D Spec.R0/. A morphism of schemes 'WX! S is said to be finite
if X is affine and O.X/ is a finite R0-algebra. Such a morphism is said to be
locally free if O.X/ is a locally free R0-algebra. A group scheme G over S is
finite (resp. locally free and finite) if it is so as a scheme over S .
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11.8. A finite group scheme G over S D Spec.R0/ is said to be locally free of
finite order r over S if O.G/ is locally free of constant rank r as an R0-algebra.
When S is noetherian and connected, G is locally free of finite order over S (for
some r) if and only if it is finite and flat.

11.9. Let R0 be a noetherian ring. To give a locally free finite group scheme
over R0 is the same as giving a flat finite R0-algebra A together with an R0-
homomorphism �WA! A˝R0 A such that .A;�/ is a Hopf algebra over R0,
i.e., there exist R0-algebra homomorphisms �WA! R0 and S WA! A making
the diagrams (17) and (18), p. 65, commute.

PROPOSITION 11.10. Let G be a locally free finite group scheme of rank o.G/
over a ring R0 and H a locally free finite subgroup scheme of G of rank o.H/.
Then

o.G/D o.H/ � rank.G=H/:

In particular, the order of H divides the order of G. If H is normal, then

o.G/D o.H/ �o.G=H/:

PROOF. The morphism G!G=H is locally free of rank o.H/ (see A.67), and
the ranks in G!G=H ! Spm.R0/ multiply. 2

c. Cartier duality

We show that the category of commutative finite group schemes over a field k is
self-dual.

For a k-vector space V , we let V 0 denote the dual vector space. If V and
W are finite-dimensional, then there are canonical isomorphisms V ! V 00 and
V 0˝W 0! .V ˝W /0. Moreover, k0 D k.

Let G be a finite group scheme, and let ADO.G/. We have k-linear maps�
mWA˝A! A

eWk! A

�
�WA! A˝A

�WA! k

defining the algebra and coalgebra structures respectively. On passing to the
linear duals, we obtain k-linear maps�

m0WA0! A0˝A0

e0WA0! k

�
�0WA0˝A0! A0

�0Wk! A0

The duals of the diagrams (17), p. 65, show that .�0; �0/ defines an algebra
structure on A0 (not necessarily commutative), and dually .m0; e0/ defines a
coalgebra structure on A0. The algebra .A0;�0; �0/ is commutative if and only if
G is commutative.

LEMMA 11.11. If G is commutative, then the system .A0;�0; �0;m0; e0/ is a
Hopf algebra.
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PROOF. The system is obviously a bialgebra (9.39), and we shall show that, if
S is an antipode for O.G/, then S 0 is an antipode for .A0;�0; : : :/. It suffices to
show that S 0 is an algebra homomorphism, and for this we have to check that�0 ı
.S 0˝S 0/D S 0 ı�0, or, equivalently, that �ıS D .S˝S/ı�. In other words,
we have to check that the diagram at left below commutes. This corresponds
(under a category equivalence) to the diagram at right, which commutes precisely
becauseG is commutative (the inverse of a product of two elements is the product
of the inverses of the elements):

O.G/ O.G/˝O.G/ G G�G

O.G/ O.G/˝O.G/ G G�G:

S

�

S˝S

m

�

inv

m

inv�inv

2

Thus, the category of commutative finite group schemes has an autoduality:

O.G/D .A;m;e;�;�/$ .A0;�0; �0;m0; e0/DO.G0/:

The group scheme G0 is called the Cartier dual of G. The functor G G0 is a
contravariant equivalence from the category of commutative finite group schemes
over k to itself, and .G0/0 'G.

We now describe the functor of points R G0.R/ of the Cartier dual of G.
For a k-algebra R, let GR denote the functor of R-algebras R0 G.R0/, and
let Hom.G;Gm/.R/ denote the set of natural transformations uWGR!GmR of
group-valued functors. This becomes a group under the multiplication

.u1 �u2/.g/D u1.g/ �u2.g/; g 2G.R0/; R0 an R-algebra.

In this way, R Hom.G;Gm/.R/ becomes a functor from k-algebras to groups.

THEOREM 11.12. There is a canonical isomorphism

G0 ' Hom.G;Gm/

of functors from k-algebras to groups.

PROOF. Let R be a k-algebra. We have

G.R/D HomR-algebra.O.G/;R/ ,! HomR-linear.O.G/;R/DO.G0/R: (72)

The multiplication in O.G/ corresponds to comultiplication in O.G0/, from
which it follows that the image of the map (72) consists of the group-like elements
in O.G0/R. On the other hand, we know that Hom.G0R;Gm/ also consists of the
group-like elements in O.G0/R (p. 92). Thus,

G.R/' Hom.G0;Gm/.R/:

This isomorphism is natural in R, and so G ' Hom.G0;Gm/. Replace G with
G0 and use that .G0/0 'G to obtain the required isomorphism. 2
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Theorem 11.12 gives a natural bimultiplicative morphism of schemes

G�G0!Gm

inducing isomorphisms �
G! Hom.G0;Gm/
G0! Hom.G;Gm/:

This is called the Cartier pairing.

EXAMPLE 11.13. The action

.i;�/ 7! �i W.Z=nZ/k ��n!Gm

defines isomorphisms of algebraic groups�
.Z=nZ/k! Hom.�n;Gm/
�n! Hom..Z=nZ/k ;Gm/:

EXAMPLE 11.14. Let G D p̨ , so that O.G/D kŒX�=.Xp/D kŒx�. Let 1;y;
y2; : : : ;yp�1 be the basis of O.G0/DO.G/0 dual to 1;x; : : : ;xp�1. Then yi D
i Šyi ; in particular, yp D 0. In fact, G0 ' p̨ , and the pairing p̨ � p̨!Gm is

a;b 7! exp.ab/W p̨.R/� p̨.R/!R�

where

exp.ab/D 1C
ab

1Š
C
.ab/2

2Š
C�� �C

.ab/p�1

.p�1/Š
.

REMARK 11.15. Let G be a commutative finite group scheme of p-power order
over a perfect field k of characteristic p ¤ 0. The examples show that, if G is
connected, then G0 may be connected or étale (or neither). However, if G is étale,
then G0 is connected. In proving this, we may suppose that k is algebraically
closed, and then that G D .Z=pmZ/k , in which case its dual is �pm .

THEOREM 11.16. Let G be a commutative finite group scheme of p-power
order over a perfect field k of characteristic p ¤ 0. Then G has a unique decom-
position

G DGec �Gcc �Gce

where Gec (resp. Gcc , resp. Gce) is étale with connected dual (resp. connected
with connected dual, resp. connected with étale dual).

PROOF. We know (11.3) that G can be written uniquely as G DGc �Ge with
Gc connected and Ge étale. Now .Gc/

0 D .Gc/
0
c � .Gc/

0
e , and so Gc D .Gc/00 D

Gcc �Gce . On the other hand, .Ge/0 is connected, and so .Ge/0 DGec : 2

ASIDE 11.17. Everything in this section extends to locally free finite group schemes over
a ring (or scheme).
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d. Finite group schemes of order p

LEMMA 11.18. Let .A;�/ be a finite bialgebra algebra over k, and let .A0;�0/
be its dual. Let d WA! k be a derivation regarded as an element of A0. Then

�0.d/D d ˝1C1˝d:

PROOF. By definition, �0.d/D d ım, and so, for x;y 2 A,

�0.d/.x˝y/D d.xy/D xd.y/Cyd.x/D .d ˝1C1˝d/.x˝y/: 2

PROPOSITION 11.19. Let G be a finite group scheme of prime order p over an
algebraically closed field k. If char.k/¤ p, then G is isomorphic to .Z=pZ/k ,
and if char.k/D p, then G is isomorphic to .Z=pZ/k , �p , or p̨ . In particular,
G is commutative.

PROOF. From the connected-étale sequence

e!Gı!G! �0.G/! e

and the equality o.G/D o.Gı/ �o.�0.G//, we find that G is either connected or
étale.

If G is étale, then it is constant because k is algebraically closed, and so G is
isomorphic to .Z=pZ/k .

IfG is connected, thenADO.G/ is a local artinian ring and its augmentation
ideal I � A is nilpotent and nonzero. By Nakayama’s lemma I ¤ I 2 and so
there exists a non-zero k-derivation d WA! k. Regard d as an element of A0.
Then �A0.d/D d ˝1C1˝d (see 11.18), and kŒd � is a sub k-bialgebra of A0.
As kŒd � is commutative, the dual is a surjective k-bialgebra homomorphism
A00 ' A! .kŒd �/0. Because o.G/ is a prime p, it follows that the rank of kŒd �
is p, and so kŒd � D A0. In particular, .A0;�0; �0/ is commutative, and so G is
commutative.

Now G0 D Spm.A0/ is either connected or étale. If G0 is étale, then G0 �
.Z=pZ/k and G � �p . As G is connected this implies that char.k/D p. If G0 is
connected, then d is nilpotent; in fact, dp D 0 but dp�1 ¤ 0 because kŒd � has
rank p. As �A0.d/D d ˝1C1˝d and �A0 is a ring homomorphism, k must
have characteristic p and G0 � p̨ . Hence G � p̨ , which completes the proof.2

REMARK 11.20. (a) The proof of Proposition 11.19 follows Tate and Oort 1970,
p. 6. The proposition can also be proved using the correspondence between
algebraic groups of height 1 and p-Lie algebras (11.37).

(b) There exist noncommutative finite group schemes of order p2 (see 2.36).
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e. Derivations of Hopf algebras

In preparation for the next section, we determine the derivations from a Hopf
algebra. Let R0 be a commutative ring.

11.21. Let A be an R0-algebra and M an A-module. Recall (10.27) that an
R0-derivation DWA!M is an R0-linear map such that

D.ab/D aD.b/CbD.a/:

We say that an R0-derivation d WA! ˝ is universal if every R0-derivation
DWA!M is of the form �ıd for a unique A-linear map �W˝!M :

�$ �ıd WHomA-linear.˝;M/' DerR0.A;M/:

Such a pair .˝;d/ is uniquely determined up to a unique isomorphism.

11.22. Let B be an R0-algebra and N a B-module. We can make the direct
sum B˚N into a commutative B-algebra with N 2 D 0 by setting

.b;n/.b0;n0/D .bb0;bn0Cb0n/:

Let A be an R0-algebra. A homomorphism A! B˚N is a pair .';D/ with '
a homomorphism A! B and D an R0-derivation for the A-module structure on
N defined by '.

11.23. More generally, consider a diagram

C

A BD C=J



'

of R0-algebras with J an ideal in C such that J 2 D 0. The action of C on J
factors through B . Write J' for J regarded as an A-module by means of '.
Suppose that there exists an R0-algebra homomorphism 0WA! C making the
diagram commute. Let  be another R0-linear map A! C lifting '. Then  D
0CD withD anR0-linear map A! J , and  is anR0-algebra homomorphism
if and only if D is an R0-derivation A! J' . Thus, the set of liftings of ' is
either empty or a principal homogeneous space under DerR0.A;J'/.

11.24. Let A be an R0-algebra and let �WA! R0 be an R0-algebra homo-
morphism with kernel I (so that A' R0˚ I ). Let M be an R0-module, and
let M� denote M endowed with the A-module structure defined by �. Every
derivationDWA!M� is zero on R0 and I 2, and hence defines an R0-linear map
I=I 2!M . Every R0-linear map I=I 2!M arises from a unique derivation,
and so

DerR0.A;M�/' HomR0-linear.I=I
2;M/:
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Let .A;�/ be a Hopf algebra over R0. Thus, A ' R0˚ I , and we let
� WA! I=I 2 denote the map aD .a0;b/ 7! b mod I 2.

THEOREM 11.25. Let .A;�/ be a Hopf algebra over R0. Then

.1˝�/ı�WA! A˝R0 I=I
2

is the universal R0-derivation for A.

We shall deduce this from a more explicit statement. Let M be an A-module.
For an R0-linear map �WI=I 2!M , we define D� D .id;�ı�/ı�:

A
�
�! A˝A

id˝�
���! A˝I=I 2

id˝�
���! A˝M

a˝m7!am
�������!M:

Explicitly, if �.a/D
P
ai ˝a

0
i , then D�.a/D

P
ai ���.a

0
i /.

PROPOSITION 11.26. The map � 7!D� is an R0-linear isomorphism

HomR0-linear.I=I
2;M/! DerR0.A;M/:

PROOF. Let B be an R0-algebra and N an R0-module. Make B˚N into a B-
algebra with N 2 D 0 (see 11.22). Then G.B˚N/ def

D Hom.A;B˚N/ acquires
a group structure from the Hopf algebra structure on A. This can be described as
follows:

.';D/.'0;D0/D .' �'0;' �D0C'0 �D/

with 8̂̂<̂
:̂
' �'0 D .';'0/ı� (product in G.B/D Hom.A;B//

' �D0 D .';D0/ı�D

�
A

�
�! A˝A

a˝a0 7!'.a/�D0.a0/
������������!N

�
'0 �D D .'0;D/ı�:

Let j WB ˚N ! B be the projection map. Then j�WG.B ˚N/! G.B/

projects G.B˚N/ onto its subgroup G.B/, and so

G.B˚N/DH ÌG.B/; H D Ker.j�/:

Let 'WA! B be an element of G.B/, and write N' for N regarded as an A-
module by means of '. According to (11.22), the fibre j�1� .'/ over ' consists of
the pairs .';D/ with D an R0-derivation A!N' :

j�1� .'/D f.';D/ 2G.B˚N/g ' DerR0.A;N'/:

Let �B WA
�
�!R0! B be the neutral element in G.B/. Then

x 7! .';0/ �xWj�1� .�B/! j�1� .'/
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is a bijection. Explicitly, this is the map .�B ;D/ 7! .';' �D/, and so we have a
bijection

D 7! .';D/ı�WDerR0.A;N�B /! Der'.A;N'/:

On the other hand (11.24), we have a bijection

� 7! �ı� WHomR-linear.I=I
2;N /! DerR0.A;N�B /:

On composing these maps, and taking B D A, N DM , and ' D idA, we obtain
the required isomorphism. 2

To prove Theorem 11.25, we have to show that the map

HomA-linear.A˝R0 I=I
2;M/! DerR0.A;M/

“composition with .1˝�/ı�” is an isomorphism. But its composite with the
obvious isomorphism

HomR0-linear.I=I
2;M/! HomA-linear.A˝I=I

2;M/

is the isomorphism in Proposition 11.26.

f. Structure of the underlying scheme of a finite group scheme

LEMMA 11.27. Let .A;�/ be a finitely generated Hopf algebra over k, and let
I be its augmentation ideal. Let n � 0 be such that nŠ is nonzero in k. Let
x1; : : : ;xr be elements of I forming a basis for the k-vector space I=I 2. Then
the monomials

x
m1
1 � � �x

mr
r ; m1C�� �Cmr D n

form a basis for the k-vector space I n=I nC1.

PROOF. Clearly the monomials generate I n=I nC1, and so it remains to prove
that they are linearly independent modulo I nC1.

Let � be the projection AD k˚ I ! I=I 2 killing k. Let di WI=I 2! k be
the k-linear map such that di .xj /D ıij (Kronecker delta). According to (11.25),
there exists a (unique) derivation Di WA! k such that

Di .a/D
X
j

aj �di .�.bj // if �.a/D
X

aj ˝bj :

A direct calculation using (3.22b) shows that Di .xj /D ıij . More generally,

Dmr
r D

mr�1
r�1 � � �D

m1
1 .x

m1
1 � � �x

mr
r /Dm1Š � � �mr Š;

while Dmr
r D

mr�1
r�1 � � �D

m1
1 is zero on any other monomial of total degree m1C

�� �Cmr D n. Because of our hypothesis on n, the integer on the right is not zero
in k. Therefore, on applying the operatorsDmr

r D
mr�1
r�1 � � �D

m1
1 to a linear relation

among the monomials of total degree n, we find that the relation is trivial. 2
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Recall (2.24) that an algebraic group G is said to have height � 1 if the
Frobenius map FG WG!G.p/ is trivial. This means that ap D 0 for all a 2 I .

PROPOSITION 11.28. Let G be a connected finite group scheme of height 1
over a field k of characteristic p. Then

O.G/� kŒT1; : : : ;Tr �=.T p1 ; : : : ;T pr / (73)

for some r � 1:

PROOF. Let t1; : : : ; tr be elements of I D IG forming a basis for the k-vector
space I=I 2. The monomials tm11 � � � t

mr
r , m1C �� � Cmr � p� 1 clearly span

O.G/, but the lemma (applied with nD 0; : : : ;p�1) implies that they are linearly
independent. 2

THEOREM 11.29. Let G be a connected finite group scheme over a perfect field
k of characteristic p. Then

O.G/� kŒT1; : : : ;Tr �=.T p
e1

1 ; : : : ;T p
er

r /

for some integers e1; : : : ; er � 1:

PROOF. Let ADO.G/, and let I D IA denote its augmentation ideal. Because
G is connected, I is nilpotent. If xp D 0 for all x 2 I , then G has height 1, and
the statement was proved in Proposition 11.28. In the general case, we argue by
induction on the order of G. Because k is perfect,

B
def
D Ap D fap j a 2 Ag

is a Hopf subalgebra of A (see 3.29). By the induction hypothesis,

B D kŒt1; : : : ; tr �' kŒT1; : : : ;Tr �=.T
q1
1 ; : : : ;T qrr /; qi D power of p:

For each i , choose a yi 2 A with ypi D ti , and choose a set fzj g in A that is
maximal with respect to the requirement that zpj D 0 for all j and that the zj
be linearly independent in I=I 2. We prove the statement by showing that the
homomorphism�

Yi 7! yi
Zj 7! zj

C
def
D

kŒ: : : ;Yi ; : : : ;Zj ; : : :�

.: : : ;Y
pqi
i ; : : : ;Z

p
j ; : : :/

! A

is an isomorphism.
Embed B in C by ti 7! Y

p
i . Then C is a free B-module. By Theorem 3.31,

A is faithfully flat (hence free) over the local ring B . As in the proof of that
theorem, it suffices to show that the map C=IBC ! A=IBA is an isomorphism.
Clearly,

C=IBC ' kŒ: : : ;Yi ; : : : ;Zj ; : : :�=.: : : ;Y
p
i ; : : : ;Z

p
j ; : : :/:
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The kernel of Spm.A;�/! Spm.B;�/ has height 1, and so its coordinate ring
A=IBA also has the form (73). A homomorphism between two k-algebras of
the form (73) is an isomorphism if it is an isomorphism modulo the squares of
the maximal ideals, because it is surjective by Nakayama’s lemma and the two
algebras have the same dimension as k-vector spaces. As IBA� I 2, it remains
to show that the elements yi and zj form a basis for I=I 2.

Let a be an element of I , and write ap in IB as a polynomial in the ti
with coefficients in k. As k is perfect, we can take a pth root of this to get a
polynomial u in the yi such that up D ap . Then .a�u/p D 0, and it follows from
the definition of the set fzj g that a�umodulo I 2 is a linear combination of the zj .
Hence the elements yi and zj span I=I 2. Suppose that

P
aiyi C

P
bj zj lies in

I 2. On raising this to the pth power, we find that the element
P
a
p
i y

p
i D

P
a
p
i ti

is in I 2B . But the ti form a basis for IB=I 2B , and so this implies that all ai are
zero. Now

P
bj zj lies in I 2, which by definition of the set fzj g implies that all

bj are zero. This completes the proof that the elements yj and zj form a basis
for I=I 2. 2

COROLLARY 11.30. Every connected finite group scheme has order a power of
the characteristic exponent of the base field.

PROOF. A connected finite group scheme remains connected under extension of
the base field, and so this follows from the theorem. 2

The theorem allows us to reprove Cartier’s theorem (3.23).

COROLLARY 11.31. Let G be an algebraic group over a field k.
(a) If k has characteristic zero, then G is smooth.

(b) If k has characteristic p ¤ 0 and G is finite of order not divisible by p,
then G is étale.

PROOF. (a) We may suppose that k is algebraically closed. Let x be a nilpotent
element of AD O.G/. Certainly x 2 I . Suppose x … I 2. Then x is part of a
basis for the k-vector space I=I 2, and so, for all n � 0, xn is nonzero modulo
I nC1 (see 11.27). Hence x is not nilpotent. Therefore x 2 I 2. Now Lemma 3.20
shows that G is smooth.

(b) If p − o.G/, then Gı D e, and so G D �0.G/. 2

Theorem 11.29 fails when k is not perfect (Exercise 11-3).

g. Finite group schemes of order n are killed by n

Consider the algebraic group G D GLn over a field k of characteristic p ¤ 0;
and let

O.GLn/D kŒT11; : : : ;Tnn;1=det�:

Let U D .Tij / (n�n matrix with coefficients in O.G/). The augmentation ideal
IG of G is generated by the entries of the matrix U � In D .Tij � ıij /. Let



g. Finite group schemes of order n are killed by n 221

Œp�WO.G/!O.G/ denote the homomorphism corresponding to the pth power
map x 7! xpWG.R/!G.R/. Then Œp�U D U p , and so

Œp�.U �In/D U
p
�In D .U �In/

p

– this matrix has .i;j /th entry .Tij � ıij /p . Therefore

Œp�IGLn � I
p
GLn . (74)

PROPOSITION 11.32. Let G be a finite group scheme over k of order n. Then,
for all k-algebras R, the order of every element of G.R/ divides n. In other
words, the nth power map nG WG!G is trivial.

PROOF. The statement is true for étale group schemes because it is true for
abstract groups (apply 2.16). Also, it is true for an extension G of Q by N if it is
true for Q and N because o.G/D o.N / �o.Q/ and the sequence

e!N.R/!G.R/!Q.R/

is exact. Thus, we may suppose that G is connected, and hence that nD pm for
some m (see 11.30).

The regular representation realizes G as a closed subgroup scheme of GLn
(see 4.9). Therefore we have a surjective homomorphism of Hopf algebras,
O.GLn/!O.G/. This maps the augmentation ideal of GLn onto that of O.G/,
and (74) implies that Œp�IG � I

p
G , where Œp� now denotes the homomorph-

ism O.G/! O.G/ corresponding to pG WG ! G. On iterating, we find that
Œpm�IG � I

pm

G . But in an artinian local ring of length pm with maximal ideal
I , one has Ip

m
D 0. Hence Œpm�IG D 0, and so Œpm�f D f .1/ D Œ1�f , all

f 2O.G/, as claimed. 2

COROLLARY 11.33. Let G be a locally free finite group scheme of order n over
a reduced ring R0. Then nG D 0G .

PROOF. The equalizer of the homomorphisms nG ; 1G WG�G is a closed sub-
scheme Z of G. As R0 is reduced, R0p is reduced (hence a field) if p is
minimal; moreover, the map R0!

Q
p minimalR0p is injective (because R0!Q

p minimalR0=p is injective). Consider the diagram

O.G/
Y

p
O.G/p

O.Z/
Y

p
O.Z/p

a

b (products over the minimal primes of R0).

The map a is injective because O.G/ is flat over R0, and Proposition 11.32
applied to GR0p shows that b is an isomorphism. It follows that O.G/!O.Z/
is injective, hence an isomorphism. 2

NOTES. The proof of Theorem 11.32 follows Tate 1997, p. 142. The theorem is also true
for commutative locally free finite group schemes over arbitrary base schemes (Deligne;
see Tate and Oort 1970, p. 4).
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h. Finite group schemes of height at most one

Let k be a field of characteristic p ¤ 0 and g a p-Lie algebra over k. Recall
that the universal enveloping p-Lie algebra j Wg! U Œp�.g/ has the following
property: every p-Lie algebra homomorphism g! ŒA� with A an associative
algebra over k extends uniquely to a homomorphism U Œp�.g/! A of associative
algebras over k. From this universality we deduce that there is:

(a) a unique homomorphism of associative algebras over k

�WU Œp�.g/! U Œp�.g/�U Œp�.g/

such that �.j.x//D 1˝j.x/Cj.x/˝1 for x 2 g;

(b) a unique homomorphism �WU Œp�.g/! k such that � ıj D 0I

(c) a unique anti-homomorphism S WU Œp�.g/! U Œp�.g/ such that S.j.x//D
�j.x/ for x 2 g.

Let u 2 U Œp�.g/, and write �uD
P
ui ˝vi . ThenX

ui ˝vi D
X

vi ˝ui ;
X

ui ˝�vi D
X

�ui ˝vi ;X
�.ui /vi D u;

X
S.ui /vi D ".u/:

It suffices to check these equalities when uD 1 or j.x/, x 2 g, in which case
they are obvious.

PROPOSITION 11.34. When g is commutative, the pair (U Œp�.g/;�/ is a Hopf
algebra with � and S as co-identity and inversion.

PROOF. This is exactly what the above identities say. 2

We now consider a general finite-dimensional p-Lie algebra g over k. Let
U D U Œp�.g/. For a k-algebra R, we let �R and �R denote the maps

U ˝R
�˝R
�! U ˝U ˝R

'
�! .U ˝R/˝R .U ˝R/

U ˝R
�˝R
�! k˝R'R:

PROPOSITION 11.35. Let g be a p-Lie algebra. The functor

R G.g/.R/
def
D

n
x 2

�
U Œp�.g/˝R

�� ˇ̌̌
�Rx D x˝x; �Rx D 1

o
is a finite group scheme of height � 1.

PROOF. By definition, G.g/.R/ is a monoid; it is a group because x 2G.g/.R/
implies that S.x/x D �.x/D 1. Let

AD Homk-linear.U
Œp�.g/;k/:
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When equipped with the multiplication

A˝A' .U ˝U/_
�_

�! U_ D A;

it becomes an associative commutative k-algebra with � as its identity element.
Moreover, as U Œp�.g/ is finite-dimensional (10.40), there is a canonical isomorph-
ism

i WU Œp�.g/˝R' Homk-linear.A;R/:

For x 2 U Œp�.g/˝R, one checks that i.x/ is a homomorphism of k-algebras
if and only if x 2 G.g/.R/. Consequently, i induces an isomorphism G.g/!
Spm.A/, and so G.g/ is a finite scheme over k. Finally, the coproduct �AWA!
A˝A defined by the group structure on G.g/ is the dual of the multiplication
map U ˝U ! U (apply (16), p. 65). For more details, see DG, II, �7, 3.9. 2

For an algebraic group G over k, the pth power operation on the space
Derk.O.G/;O.G// preserves the left invariant derivations, and makes Lie.G/
into a p-Lie algebra.

PROPOSITION 11.36. Let g be a p-Lie algebra andG an algebraic group over k.
For every homomorphism of p-Lie algebras ˛Wg! Lie.G/, there exists a unique
homomorphism 'WG.g/!G such that ˛ D Lie.'/ıLie.'/.

PROOF. Let ˇ be the composite map

g
'
�! Lie.G/ �! Der.OG ;OG/.

and �WG.g/opp ! Aut.G/ the corresponding homomorphism. Then f Wa 7!
�.a/.1/ is the required homomorphism. For more details, see DG, II, �7, 3.11.2

In particular, for p-Lie algebras g and g0, Hom.g;g0/' Hom.G.g/;G.g0//.

PROPOSITION 11.37. The functor g G.g/ is an equivalence from the cat-
egory of finite-dimensional p-Lie algebras over k to the category of algebraic
groups over k of height � 1.

PROOF. Proposition 11.36 shows that the functor is fully faithful, and the functor
sending G to its p-Lie algebra is a quasi-inverse. For the details, see DG, II, �7,
4.1. 2

In particular, every algebraic group G of height � 1 is isomorphic to G.g/
for some p-Lie algebra g.

COROLLARY 11.38. Let G be a smooth connected algebraic group and h a p-
Lie subalgebra of Lie.G/ stable under the adjoint action of G. Then there exists
an isogeny 'WG!G0 with infinitesimal kernel such that Ker.d'/D h; moreover,
' is universal among isogenies  such that Ker.d /� h.

PROOF. The inclusion h! Lie.G/ arises from an embedding H !G with H
of height 1. Because h is stable under G, the image of H is normal in G. Now
the isogeny G!G=H has the required properties. (For a more direct proof, see
Springer 1998, 12.2.5.) 2
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i. The Verschiebung morphism

Let k be a field of characteristic p. Recall (2.28) that, for every algebraic group
G over k, we have a Frobenius homomorphism FG WG! G.p/. When G is a
commutative finite group scheme, FG induces a homomorphism VG W.G

.p//0 '

.G0/.p/!G
0

on the Cartier dual. This is the Verschiebung morphism. We shall
need another description of VG , but first we give another description of FG .

Let V be a vector space over k. The symmetric group Sp acts on
Np

V by

�.v1˝�� �˝vp/D v�.1/˝�� �˝v�.p/;

and Symp V is defined to be the greatest quotient of
Np

V on which Sp acts
trivially: Symp V D .V ˝p/Sp . Now let G be an algebraic group over k (not
necessarily finite), and let ADO.G/. The action of FG on A is the composite of
the k-linear maps on the top row of the following diagram:

x �ap Œx.a˝�� �˝a/� a˝x

A Symp.A/ A˝k;f k

A˝p

quotientmultiplication

.f .a/D ap/

If A is finite, then we can form this diagram for the dual A0 of A, and take its
dual, to get a diagram

A .A˝p/Sp A˝k;f k

A˝p

�A

inclusioncomultiplication

with �A the unique k-linear map sending x � .a˝�� �˝a/ to a˝x. In fact, this
diagram exists for every Hopf algebra A.

DEFINITION 11.39. For an algebraic groupG (not necessarily finite) over a field
k, the Verschiebung morphism1 is the morphism VG WG

.p/!G corresponding
to the homomorphism A˝k;f k! A in the above diagram.

The assignment G 7! VG has the following properties.
(a) Functoriality: for all homomorphisms 'WG!H of schemes over k,

VH ı'
.p/
D ' ıVG :

1“Verschiebung” means “shift”. Its name is perhaps explained by (75), p. 227. The French term
is “décalage”. The notation VG is universal.
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(b) Compatibility with products: VG�H is the composite of VG �VH with the
canonical isomorphism G.p/�H .p/ ' .G�H/.p/.

(c) Base change: the formation of VG commutes with extension of the base
field.

PROPOSITION 11.40. Let G be a commutative group scheme over k. Then:
(a) VG ıFG D p � idG ,

(b) FG ıVG D p � idG.p/ :

PROOF. (a) Let ADO.G/. By construction, FG and VG correspond to the maps
fA and vA in the following diagram:

A .A˝p/Sp A˝k;� k

A˝p A.

�A

inclusion fA

multiplication

comultiplication

vA

The square at right commutes. In terms of the group schemes, the diagram
becomes

G G.p/

G� � � ��G G.

FG

diagonal

multiplication

VG

Hence
VG ıFG D .multiplication/ı .diagonal/D p � idG :

(b) Because of the functoriality of FG ;

FG ıVG D .VG/
.p/
ıFG.p/ :

But .VG/.p/ D VG.p/ because VG commutes with base change, and so the right-
hand side equals VG.p/ ıFG.p/ , which (a) shows to equal p � idG.p/ : 2

COROLLARY 11.41. A smooth commutative group scheme G has exponent p
if and only if VG D 0.

PROOF. If VG D 0, then p � idG D 0 because p � idG D VG ıFG . Conversely, if
G is smooth and p � idG D 0, then VG D 0 because FG is faithfully flat (2.29).2
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j. The Witt schemes Wn

Fix a prime number p. Let T0;T1; : : : be a sequence of symbols, and define (Witt)
polynomials

w0 D T0

w1 D T
p
0 CpT1

� � �

wn D T
pn

0 CpT
pn�1

1 C�� �CpnTn

� � �

These are polynomials with coefficients in Z. If we invert p, then we can express
the Ti as polynomials in the wi , namely, T0 D w0, T1 D p�1w1�w

p
0 , . . . . Let

U0;U1; : : : be a second sequence of symbols.

PROPOSITION 11.42. There exist unique polynomials

Si ;Pi 2 ZŒT0;T1; : : : ;U0;U1; : : :�; i D 0;1; : : : ;

such that, for all n� 0;

wn.S0; : : :/D wn.T0; : : :/Cwn.U0; : : :/

wn.P0; : : :/D wn.T0; : : :/ �wn.U0; : : :/:

PROOF. It is obvious that there exist unique such polynomials with coefficients
in ZŒ1=p�, and so the point of the proof is to show that p does not occur in the
denominators. For this, see Serre 1962, II, �6, Thm 6. 2

For example,

S0.a;b/D a0Cb0 S1.a;b/D a1Cb1C
a
p
0 Cb

p
0 � .a0Cb0/

p

p

P0.a;b/D a0 �b0 P1.a;b/D b
p
0 a1Cb1a

p
0 Cpa1b1:

PROPOSITION 11.43. Let R be a commutative ring. For n� 0, the rules

aCb D .S0.a;b/; : : : ;Sn.a;b//

a �b D .P0.a;b/; : : : ;Pn.a;b//

define the structure of a commutative ring on RnC1 (we denote this ring by
Wn.R/).

PROOF. From the definition of the polynomials Si and Pi , one sees that the map

a 7! .w0.a/; : : : ;wn.a//WWn.R/!RnC1
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is a homomorphism. If p is invertible in R, then the map is a bijection, which
proves the proposition for such R.

Because Wn is a functor, it suffices to prove the proposition for the ring
R D ZŒT0; : : :�, and hence for any ring containing ZŒT0; : : :�. But ZŒT0; : : :� can
be embedded into C, and we know the proposition for RD C. 2

The ringWn.R/ is called the ring of Witt vectors of length n with coefficients
in R. For example,

Wn.Fp/' Z=pnC1Z.

Clearly, R .Wn.R/;C/ is an algebraic group scheme over Z. For example,
W0 DGa.

We now fix a base field k of characteristic p ¤ 0, and regard Wn as an
algebraic group over k. The map

V WWn.R/!WnC1.R/; .a0; : : : ;an/ 7! .0;a0; : : : ;an/ (75)

is additive. This can be proved by the same argument as Proposition 11.43. Thus,
we obtain a homomorphism of algebraic groups

V WWn!WnC1.

PROPOSITION 11.44. For all n;r � 0, there is an exact sequence

0!Wn
V r

�!WnCr
truncate
�! Wr ! 0.

PROOF. In fact, for all k-algebras R, the sequence

0!Wn.R/
V r

�!WnCr .R/
truncate
�! Wr .R/! 0

is obviously exact. 2

As Wn is defined over Fp � k, we have W .p/
n 'Wn. The Frobenius morph-

ism Wn! W
.p/
n ' Wn acts on Wn.R/ as .a0; : : : ;an/ 7! .a

p
0 ; : : : ;a

p
n / and the

Verschiebung morphism is the composite of the morphisms

Wn
V
�!WnC1

truncate
�! Wn.

In this case, it is easy to verify directly that VF D p D FV . In particular,
VGa D 0.

k. Commutative group schemes over a perfect field

In this section, k is a perfect field of characteristic p ¤ 0.
Finite group schemes over k of order prime to p are étale (11.31), and so are

classified in terms of the Galois group of k (see 2.16). In this section, we explain
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the classification of commutative finite group schemes over k of order a power of
p (which we call finite algebraic p-groups).

Let W D W.k/ be the ring of Witt vectors with entries in k, i.e., W.k/D
lim
 �

Wn.k/. Then W is a complete discrete valuation ring with maximal ideal
generated by pDp1W and residue field k. For example, if kD Fp , thenW DZp .
The Frobenius automorphism � of W is the unique automorphism such that
�a � ap .mod p/. The Dieudonné ring D D W� ŒF;V � is defined to be the
W -algebra of noncommutative polynomials in F and V over W , subject to the
following relations (c 2W ):

F � c D �c �F I

�c �V D V � cI

FV D p D VF:

Thus, to give a left D-module is the same as giving a W -module M together
with endomorphisms F and V of M satisfying the following relations (c 2W ,
m 2M ):

F.c �m/D �c �FmI

V.�c �m/D c �VmI

FV D p � idM D VF:

Such a module is called a Dieudonné module. We say thatM is finitely generated
(resp. of finite length) if it is so as a W -module.

For an algebraic group G over k, we define

M.G/D lim
�!
n

Hom.G;Wn/ .homomorphisms of algebraic groups).

THEOREM 11.45. The functor M is a contravariant equivalence from the cat-
egory of commutative unipotent algebraic groups over k to the category of finitely
generated Dieudonné modules killed by a power of V . The group G is finite if
and only if M.G/ is of finite length, in which case the order of G is the length of
M.G/ as a W -module.

PROOF. See DG, V, �1, 4.3. 2

For algebraic groups killed by V , the theorem is a special case of (11.37).
Recall (11.41) that a commutative finite group scheme G of p-power order

is a product G DGec �Gcc �Gce , where Gec is étale with connected dual, Gcc
is connected with connected dual, and Gce is connected with étale dual. The
functorM is defined forG DGec�Gcc , and we define it forG DGce by setting

M.G/DM.G0/0

where the inner 0 denotes the Cartier dual, and the outer 0 denotes dual as a Dieud-
onné module (i.e., .M;F;V /0 D .M 0;F 0;V 0/ with M 0 D HomW -linear.M;W /

and F 0 and V 0 the maps induced by V and F ).
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THEOREM 11.46. The functionG M.G/ is a contravariant equivalence from
the category of commutative finite algebraic p-groups to the category of Dieud-
onné modules of finite length. The order of G is plength.M.G//. For every perfect
field k0 containing k, there is functorial isomorphism

M.Gk0/'W.k
0/˝W.k/M.G/:

PROOF. This can be deduced from Theorem 11.45 (Demazure 1972, III, 6). 2

For example:

M.Z=pZ/DW=pW; F D �; V D 0I

M.�p/DW=pW; F D 0; V D ��1I

M. p̨/DW=pW; F D 0; V D 0:

The theorem reduces the study of commutative algebraic p-groups over
perfect fields to semilinear algebra. There are important generalizations of the
theorem to Dedekind domains, and other rings.

Exercises

EXERCISE 11-1. Show that an étale algebra over a field k is diagonalizable over
k if it becomes diagonalizable over a purely inseparable extension of k.

EXERCISE 11-2. Let G be a finite (hence affine) algebraic group. Show that the
following conditions are equivalent:

(a) the k-algebra O.Gred/ is étale;

(b) O.Gred/˝O.Gred/ is reduced;

(c) Gred is an algebraic subgroup of GI

(d) G is isomorphic to the semidirect product of Gı and �0G.

EXERCISE 11-3. (Waterhouse 1979, Chapter 14, Exercise 1). Let k be a nonper-
fect field of characteristic p, let c 2 kXkp , and let G be the subgroup scheme of
Ga�Ga such that

G.R/D f.x;y/ j xp
2

D 0; yp D cxpg all k-algebras R:

Show that G is finite and connected, but that its coordinate ring is not a truncated
k-algebra kŒT1; : : : ;Tr �=.T

pe1

1 ; : : : ;T
per
r /. [Compute the dimension of fa 2 A j

ap D 0g.]



CHAPTER 12

Groups of Multiplicative Type;
Linearly Reductive Groups

Recall that all algebraic groups are affine over a base field k.

a. The characters of an algebraic group

Recall (p. 92) that a character of an algebraic group G is a homomorphism
�WG!Gm. As O.Gm/D kŒT;T �1� and �Gm.T /D T ˝T , to give a character
� of G is the same as giving an invertible element aD a.�/ of O.G/ such that
�.a/D a˝a. Such elements are said to be group-like, and so there is a one-to-
one correspondence �$ a.�/ between the characters of G and the group-like
elements of O.G/.

The sum �C�0 of characters � and �0 of G is defined by

.�C�0/.g/D �.g/ ��0.g/; g 2G.R/; R a k-algebra.

Then �C�0 is again a character, and the set of characters is a commutative group,
denoted X.G/. The correspondence �$ a.�/ has the property that

a.�C�0/D a.�/ �a.�0/:

A cocharacter of G is a homomorphism �WGm!G. In the literature, this is
often called a one-parameter subgroup of G.

b. The algebraic group D.M/

Let M be a finitely generated commutative abstract group (written multiplicat-
ively), and let kŒM� be the k-vector space with basis M . Thus, the elements of
kŒM� are finite sums P

i aimi ; ai 2 k; mi 2M:

230



b. The algebraic group D.M/ 231

When we endow kŒM� with the multiplication extending that on M ,�P
i aimi

��P
j bjnj

�
D
P
i;j aibjminj ;

then kŒM� becomes a k-algebra, called the group algebra of M . It becomes a
Hopf algebra when we set

�.m/Dm˝m; �.m/D 1; S.m/Dm�1 .m 2M/

because, for m an element of the basis M ,

.id˝�/.�.m//Dm˝ .m˝m/D .m˝m/˝mD .�˝ id/.�.m//,
.�˝ id/.�.m//D 1˝m; .id˝�/.�.m//Dm˝1;
.S; id/.m˝m/D �.m/D .id;S/.m˝m/;

as required ((17), (18), p. 65). Note that kŒM� is generated as a k-algebra by any
set of generators for M as an abelian group, and so it is finitely generated.

EXAMPLE 12.1. Let M be a cyclic group, generated by e.
(a) Case e of infinite order. The elements of kŒM� are finite sums

P
i2Z aie

i

with the obvious addition and multiplication, and �.e/D e˝ e, �.e/D 1,
S.e/D e�1. Therefore, kŒM�'O.Gm/ as a Hopf algebra.

(b) Case e of order n. The elements of kŒM� are sums a0C a1eC �� � C
an�1e

n�1 with the obvious addition and multiplication (using en D 1), and
�.e/D e˝ e, �.e/D 1, and S.e/D en�1. Therefore, kŒM�'O.�n/ as
a Hopf algebra.

EXAMPLE 12.2. If V and W are vector spaces with bases .ei /i2I and .fj /j2J ,
then V ˝W is a vector space with basis .ei˝fj /.i;j /2I�J . Therefore, ifM1 and
M2 are commutative groups, then

.m1;m2/$m1˝m2WkŒM1�M2�$ kŒM1�˝kŒM2�

is an isomorphism of k-vector spaces, which respects the Hopf k-algebra struc-
tures.

PROPOSITION 12.3. For every finitely generated commutative group M , the
functor D.M/

R Hom.M;R�/ (homomorphisms of groups)

is represented by the algebraic group Spm.kŒM�/. The choice of a basis for M
determines an isomorphism of D.M/ with a finite product of copies of Gm and
various �n.
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PROOF. To give a k-linear map kŒM�!R is the same as giving a map of sets
M !R, and the first is a k-algebra homomorphism if and only if the second is a
homomorphism of groups M ! R�. This shows that D.M/ is represented by
kŒM�, and is therefore an algebraic group.

The choice of a basis for M as a Z-module determines a decomposition

M ' Z˚�� �˚Z˚Z=n1Z˚�� �˚Z=nrZ;

and hence a decomposition of k-bialgebras (12.1, 12.2)

kŒM�'O.Gm/˝�� �˝O.Gm/˝O.�n1/˝�� �˝O.�nr /. 2

LEMMA 12.4. The group-like elements of kŒM� are exactly the elements of M .

PROOF. Let e 2 kŒM� be group-like. Then e D
P
ciei for some ci 2 k and

ei 2M . The argument in the proof of Lemma 4.23 shows that, if the ei are
chosen to be linearly independent, then the ci form a complete set of orthogonal
idempotents in k, and so one equals 1 and the remainder are zero. Therefore
e D ei for some i . 2

Thus X.D.M//'M . The character of D.M/ corresponding to m 2M is

D.M/.R/D Hom.M;R�/
f 7!f .m/
������!R� DGm.R/:

REMARK 12.5. Let p be the characteristic exponent of k. Then:

D.M/ is connected ” the only torsion in M is p-torsion
D.M/ is smooth ” M has no p-torsion
D.M/ is smooth and connected ” M is free.

For example, D.Z/ D Gm, which is connected and smooth, and D.Z=nZ/ D
�n, which is connected and nonsmooth if n is a power of p, and is étale and
nonconnected if n is relatively prime to p. Moreover,

D.M=fprime-to-p torsiong/DD.M/ı (identity component of D.M/)
D.M=fp-torsiong/DD.M/red (reduced algebraic subgroup)
D.M=ftorsiong/DD.M/ıred (reduced identity component).

REMARK 12.6. When the binary operation on M is denoted by C, it is more
natural to describe kŒM� as the vector space with basis the set of symbols fem j
m 2M g. The multiplication is then em � en D emCn and the comultiplication is
�.em/D em˝ em.
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c. Diagonalizable groups

DEFINITION 12.7. An algebraic group G is diagonalizable if the group-like
elements in O.G/ span it as a k-vector space.

THEOREM 12.8. An algebraic group G is diagonalizable if and only if it is
isomorphic to D.M/ for some commutative group M .

PROOF. The group-like elements of kŒM� span it by definition. Conversely,
suppose that the group-like elementsM span O.G/. Lemma 4.23 shows that they
form a k-linear basis for O.G/, and so the inclusion M ,!O.G/ extends to an
isomorphism kŒM�!O.G/ of vector spaces. This isomorphism is compatible
with the comultiplication maps because it is on the basis elements m 2M . 2

THEOREM 12.9. (a) The functor M  D.M/ is a contravariant equivalence
from the category of finitely generated commutative groups to the category of
diagonalizable algebraic groups (with quasi-inverse G X.G/).
(b) A sequence

0!M 0!M !M 00! 0

of commutative groups is exact if and only if the corresponding sequence of
algebraic groups

e!D.M 00/!D.M/!D.M 0/! e

is exact (i.e., both of the functors D and X are exact).
(c) Algebraic subgroups and quotient groups of diagonalizable algebraic groups
are diagonalizable.

PROOF. (a) Certainly, D is a contravariant functor from the category of finitely
generated commutative groups to that of diagonalizable algebraic groups. The-
orem 12.8 shows that it is essentially surjective, and so it remains to show that it
is fully faithful, i.e., that the map

Hom.M;M 0/! Hom.D.M 0/;D.M// (76)

is an isomorphism for all M;M 0. As D sends finite direct sums to finite products,
it suffices to prove that the map (76) is an isomorphism when M and M 0 are
cyclic. If, for example, M D ZDM 0, then

Hom.M;M 0/D End.Z/' Z;
Hom.D.M 0/;D.M//D End.Gm;Gm/D fT i j i 2 Zg ' Z;

and (76) becomes the identity map. The remaining cases are similarly easy.
(b) The map kŒM 0�! kŒM� is injective, and soD.M/!D.M 0/ is a quotient

map (5.43). Its kernel is represented by kŒM�=IkŒM 0�, where IkŒM 0� is the aug-
mentation ideal of kŒM 0�. But IkŒM 0� is the ideal generated the elementsm�1 for
m2M 0, and so kŒM�=IkŒM 0� is the quotient ring obtained by settingmD 1 for all
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m 2M 0. Therefore M !M 00 defines an isomorphism kŒM�=IkŒM 0�! kŒM 00�.
This shows that D is exact, and the proof that X is exact is equally easy.

(c) Let H be an algebraic subgroup of a diagonalizable group G. The map
O.G/! O.H/ is surjective and it sends group-like elements to group-like
elements (being a homomorphism of Hopf algebras). As the group-like elements
of O.G/ span it, the same is true of O.H/.

Let D.M/!Q be a quotient map. Its kernel equals D.M 00/ for some quo-
tient M 00 of M . Let M 0 be the kernel of M !M 00. Then D.M/!D.M 0/ and
D.M/!Q are quotient maps with the same kernel, and so they are isomorphic
(5.13). 2

EXAMPLE 12.10. Extensions of diagonalizable groups need not be diagonaliz-
able. For example, the algebraic group G of monomial 2�2 matrices (2.41) is an
extension

e! D2!G! S2! e

of diagonalizable groups without itself being diagonalizable (because it is not
commutative). Later (12.22, 15.39) we shall see that an extension of diagonaliz-
able groups is diagonalizable if it is commutative, which is always the case if the
quotient is connected.

d. Diagonalizable representations

DEFINITION 12.11. A representation of an algebraic group is diagonalizable if
it is a sum of one-dimensional representations (according to Theorem 4.25, it is
then a direct sum of one-dimensional representations).

Recall that Dn is the group of invertible diagonal n�n matrices; thus

Dn 'Gm� � � ��Gm„ ƒ‚ …
n copies

'D.Zn/:

A finite-dimensional representation .V;r/ of an algebraic group G is diagonal-
izable if and only if there exists a basis for V such that r.G/ � Dn. In more
down-to-earth terms, the representation defined by an inclusion G � GLn is
diagonalizable if and only if there exists a matrix P in GLn.k/ such that, for all
k-algebras R and g 2G.R/,

PgP�1 2

8̂<̂
:
�
� 0

: : :

0 �

�9>=>; :
THEOREM 12.12. The following conditions on an algebraic group G are equi-
valent:

(a) G is diagonalizable;
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(b) every representation of G is diagonalizable;

(c) every finite-dimensional representation of G is diagonalizable;

(d) for every representation .V;r/ of G, V D
L
�2X.G/V� (here V� is the

eigenspace with character �, p. 92).

PROOF. (a))(b): Let .V;r/ be a representation of a diagonalizable group G,
and let �WV ! V ˝O.G/ be the corresponding comodule. We have to show that
V is a sum of one-dimensional representations or, equivalently, that V is spanned
by vectors u such that �.u/ 2 hui˝O.G/.

Let v 2 V . As the group-like elements form a basis .ei /i2I for O.G/, we can
write

�.v/D
P
i2I ui ˝ ei ; ui 2 V:

On applying the identities (24), p. 84, to this equality, we find thatX
i
ui ˝ ei ˝ ei D

X
i
�.ui /˝ ei

v D
P
ui :

The first equality shows that

�.ui /D ui ˝ ei 2 hui i˝kO.G/;

and the second shows that the set of ui arising in this way span V .
(b))(a): In particular, the regular representation of G is diagonalizable, and

so O.G/ is spanned by its eigenvectors. Let f 2O.G/ be an eigenvector for the
regular representation, and let � be the corresponding character. Then

f .hg/D f .h/�.g/ for h;g 2G.R/, R a k-algebra.

In particular, f .g/D f .e/�.g/, and so f is a scalar multiple of �. Hence O.G/
is spanned by its characters.

(b))(c): Trivial.
(c))(b): As every representation is a union of finite-dimensional subrepres-

entations (4.8), (b) implies that every representation is a sum (not necessarily
direct) of one-dimensional subrepresentations.

(b))(d): Certainly, (c) implies that V D
P
�2X.G/V�, and Theorem 4.25

implies that the sum is direct.
(d))(b): Clearly each space V� is a sum of one-dimensional representa-

tions. 2

REMARK 12.13. Let M be a finitely generated commutative group. Recall
(9.29) that an M -gradation on a finite-dimensional k-vector space V is a family
of subspaces .Vm/m2M such that V D

L
m2M Vm. To give a representation of

D.M/ on V is the same as giving an M -gradation of V – the subspace Vm is the
eigenspace for the character m of D.M/.
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e. Tori

DEFINITION 12.14. An algebraic group over k is a torus if it becomes iso-
morphic to a finite product of copies of Gm over some field containing k. A torus
over k is split if it is isomorphic to a product of copies of Gm over k.

The split tori are the smooth connected diagonalizable algebraic groups.
Under the equivalence of categories M  D.M/, the split tori correspond to
free Z-modules M of finite rank. A quotient of a split torus is again a split torus.
The algebraic subgroups of split tori are exactly the diagonalizable groups.

It follows that a quotient of a torus is a torus. An algebraic subgroup of a
torus is a torus if and only if it is smooth and connected.

EXAMPLE 12.15. Let T be the split torus Gm �Gm. Each pair .m1;m2/ in
Z�Z defines a character

.t1; t2/ 7! t
m1
1 t

m2
2 WT .R/!Gm.R/

of T . In this way, we get an isomorphism X.T /' Z�Z. Each representation V
of T decomposes into a direct sum

V D
M

.m1;m2/2Z�Z
V.m1;m2/

with V.m1;m2/ the subspace on which T acts through the character .t1; t2/ 7!
t
m1
1 t

m2
2 . In this way, the category Rep.T / acquires a gradation by the group

Z�Z.

DEFINITION 12.16. Let .V;r/ be a representation of a torus T . The characters
� of T such that the eigenspace V� ¤ 0 are called the weights of T on V (and
the nonzero eigenspaces are called the weight spaces/:

f. Groups of multiplicative type

DEFINITION 12.17. An algebraic group over k is of multiplicative type if it
becomes diagonalizable over some field containing k.

The tori are the smooth connected algebraic groups of multiplicative type.
Subgroups and quotient groups (but not necessarily extensions) of groups of
multiplicative type are of multiplicative type because this is true of diagonalizable
groups (12.9, 12.10).

The terminology “of multiplicative type” is clumsy. Following DG, IV, �1, 2.1,
p. 474, we sometimes say that such a group is multiplicative (so the multiplicative
group Gm is a multiplicative group).

Recall (p. 174) that a coalgebra over k is a k-vector space C equipped with a
pair of k-linear maps

�WC ! C ˝C; �WC ! k
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such that the diagrams (17), p. 65, commute. The linear dual C_ of C becomes
an associative algebra over k with the multiplication

C_˝C_
can.
,! .C ˝C/_

�_

�! C_; (77)

and the structure map

k ' k_
�_

�! C_.

We say that C is coétale if it is finite-dimensional and C_ is commutative and
étale. More generally, we say that a coalgebra is coétale if it is a directed union
of finite-dimensional coétale subcoalgebras.

Let .C;�;�/ be a coalgebra over k. A C -comodule is a k-linear map �WV !
V ˝C satisfying the conditions (24), p. 84. Let CV be the image of the map
V _˝V ! C defined by �. Then CV is a subcoalgebra of V , and it is finite-
dimensional if V is (see p. 175).

THEOREM 12.18. The following conditions on an algebraic group G over k are
equivalent:

(a) G is of multiplicative type;

(b) G is commutative and Hom.G;Ga/D 0;

(c) G is commutative and O.G/ is coétale;

(d) G becomes diagonalizable over ks.

PROOF. First note that

Hom.G;Ga/' ff 2O.G/ j�.f /D f ˝1C1˝f g:

The condition on f is linear, and so Hom.G;Ga/ is a subspace of O.G/ such
that

Hom.Gk0 ;Gak0/' Hom.G;Ga/˝k0

for all fields k0 containing k.
(a))(b). We may replace k with an extension field k0, and so suppose

that G is diagonalizable. If uWG ! Ga is a nontrivial homomorphism, then
g 7!

�
1 u.g/
0 1

�
is a nonsemisimple representation of G, which contradicts Theorem

12.12.
(b))(c). We may suppose that k is algebraically closed. Let C be a finite-

dimensional subcoalgebra of O.G/, i.e., a finite-dimensional k-subspace such
that �.C/ � C ˝C . Let A D C_ and let h ; i denote the pairing .f;a/ 7!
f .a/WC_�C ! k. Then A is a finite product of local artinian rings with residue
field k (CA 16.7). If one of these local rings is not a field, then there exists a
surjective homomorphism of k-algebras A! kŒ"�, where "2 D 0. This can be
written x 7! hx;aiChx;bi" with a;b 2 C and b ¤ 0. For x;y 2 A,

hxy;aiChxy;bi"D hx˝y;�aiChx˝y;�bi"
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(definition (77) of the product in A) and

.hx;aiChx;bi"/.hy;aiChy;bi"/D hx˝y;a˝aiChx˝y;a˝bCb˝ai":

On equating these expressions, we find that

�aD a˝a

�b D a˝bCb˝a.

On the other hand, the structure map k! A is .�jC/_, and so �.a/D 1. Now

1D .e ı �/.a/D ..S; idA/ı�/.a/D S.a/a

and so a is a unit in A. Finally,

�.ba�1/D�b ��a�1 D .a˝bCb˝a/.a�1˝a�1/

D 1˝ba�1Cba�1˝1;

and so ba�1 is a nonzero element of Hom.G;Ga/ ¤ 0, which contradicts (b).
Therefore A is a product of fields.

(c))(d). We may suppose that k is separably closed. Let C be a finite-
dimensional subcoalgebra of O.G/, and let A D C_. By assumption, A is a
product of copies of k. Let a1; : : : ;an be elements of C such that

x 7! .hx;a1i; : : : ;hx;ani/WA! kn

is an isomorphism. Then the set fa1; : : : ;ang spans C and, on using that the map
is a homomorphism, one finds as in the above step that each ai is a group-like
element of C . This implies that O.G/ is spanned by its group-like elements
because O.G/ is a union of finite-dimensional subcoalgebras (specifically, of the
coalgebras CV defined on p. 175).

(d))(a). This is obvious from the definitions. 2

COROLLARY 12.19. If an algebraic group over k becomes diagonalizable over
some extension of k, then it becomes diagonalizable over a finite separable
extension of k.

PROOF. It is of multiplicative type. Therefore it splits over ks, and hence over a
finite subextension of ks. 2

COROLLARY 12.20. If a group of multiplicative type splits over a purely insep-
arable extension of k, then it is already split over k.

PROOF. This is a consequence of Exercise 11-1 when the group is finite, and the
general case follows. 2

COROLLARY 12.21. A smooth commutative algebraic group G is of multiplic-
ative type if and only if G.ka/ consists of semisimple elements.
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PROOF. We may suppose that k is algebraically closed. Choose a faithful finite-
dimensional representation .V;r/ of G, and identify G with r.G/.

If G is of multiplicative type, then there exists a basis of V for which G �
Dn, from which it follows that the elements of G.k/ are diagonalizable (hence
semisimple). Conversely, if the elements of G.k/ are semisimple, they form a
commuting set of diagonalizable endomorphisms of V , and we know from linear
algebra that there exists a basis for V such that G.k/ � Dn.k/. Because G is
smooth, this implies that G � Dn. 2

Later (17.25), we shall show that every smooth connected algebraic group
such that G.ka/ consists of semisimple elements is a torus.

COROLLARY 12.22. An extension of algebraic groups of multiplicative type is
of multiplicative type if and only if it is commutative.

PROOF. The condition is certainly necessary. On the other hand, an exact se-
quence

e!G0!G!G00! e

with G commutative gives rise to an exact sequence

0! Hom.G00;Ga/! Hom.G;Ga/! Hom.G0;Ga/

of abelian groups, and we can apply the criterion (12.18c). 2

NOTES. The proof of Theorem 12.18 follows the exercises in Waterhouse 1979.

g. Classification of groups of multiplicative type

Let � denote the Galois group of ks=k endowed with the Krull topology. An
action of � on a commutative group M is continuous for the discrete topology
on M if every element of M is fixed by an open subgroup of � , i.e.,

M D
[

K
MGal.ks=K/

where K runs through the finite extensions of k contained in ks.
For an algebraic group G, we let X�.G/DX.Gks/. In other words, X�.G/

consists of the characters of G defined over ks. The group � acts on X�.G/, and,
because every homomorphism Gks ! Gmks is defined over a finite extension
of K, the action is continuous. Now G X�.G/ is a contravariant functor
from algebraic groups over k to finitely generated Z-modules equipped with a
continuous action of � . Note that

X�.G1�G2/'X
�.G1/˚X

�.G2/:

Moreover,

X�.G/� DX.G/ (characters defined over k, p. 230).
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The tori are the groups G of multiplicative type such that X�.G/ is torsion-free.
Let M be a finitely generated Z-module equipped with a continuous action

of � . Let D.M0/ be the diagonalizable group over ks attached to the Z-module
M . The coordinate ring of D.M0/ is ksŒM �, and the continuous action of � on
M extends to a semilinear action on ksŒM �. We define D.M/ to be the algebraic
group over k with coordinate ring kŒM�� . It becomes isomorphic to D.M0/

over ks, and so is of multiplicative type.

THEOREM 12.23. The functor X� is a contravariant equivalence from the cat-
egory of algebraic groups of multiplicative type over k to the category of finitely
generated Z-modules equipped with a continuous action of � (with quasi-inverse
M  D.M/). Under the equivalence, short exact sequences correspond to short
exact sequences.

PROOF. The statement follows easily from the similar statement over ks (The-
orem 12.9) and Galois descent (A.64, A.66). 2

COROLLARY 12.24. Every algebraic group G of multiplicative type is an exten-
sion

e!G0!G!G00! e

of a finite group G00 of multiplicative type by a torus G0.

PROOF. Let M DX�.G/; then the sequence corresponds to

0!Mtors!M !M=Mtors! 0: 2

COROLLARY 12.25. Let G and H be groups of multiplicative type over a field
k, and let k0 be a purely inseparable extension of k. Then

Hom.G;H/' Hom.Gk0 ;Hk0/:

PROOF. If G and H are split, this is certainly true, because then

Hom.G;H/' Hom.X.H/;X.G//;

which does not change with extension of the base field. In general, there is a finite
Galois extensionK of k splittingG andH . ThenKk0 is a finite Galois extension
of k0 with the same Galois group � . Now Hom.G;H/' Hom.GK ;HK/� '
Hom.GKk0 ;HKk0/� ' Hom.Gk0 ;Hk0/. 2

REMARK 12.26. Let G be a group of multiplicative type over k. For every
K � ks,

G.K/D Hom.X�.G/;.ks/�/�K

where �K is the subgroup of � of elements fixingK, and the notation means that
G.K/ equals the group of homomorphisms X�.G/! .ks/� commuting with the
actions of �K .
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EXAMPLE 12.27. Let k D R, so that � is cyclic of order 2, and let M D Z.
Then Aut.Z/ D Z� D f˙1g, and so there are two possible actions of � on
X�.G/.

(a) Trivial action. Then D.M/.R/D R�, and D.M/'Gm.

(b) The element � ¤ 1 of � acts on Z as m 7! �m. Then D.M/.R/ D
Hom.Z;C�/� , which consists of the elements of C� fixed under the fol-
lowing action of �:

�z D Nz�1:

Thus G.R/D fz 2 C� j z Nz D 1g, which is compact.

EXAMPLE 12.28. The algebraic group �n is of multiplicative type for all n. The
constant algebraic group .Z=nZ/k is of multiplicative type if k has characteristic
0 or it has characteristic p not dividing n. When k has characteristic p ¤ 0, the
group .Z=pZ/k is unipotent and not of multiplicative type. More generally, an
étale group scheme over k is of multiplicative type if and only if its order is prime
to the characteristic exponent of k.

NOTATION 12.29. Let H be an algebraic group of multiplicative type over k.
Then H DD.M/ with M DX�.H/. We define

Ht
def
DD.M=Mtors/.

It is the largest subtorus of H . It is also the unique subtorus T of H such that
H=T is finite, which shows that its formation commutes with extension of the
base field. Note that Ht D .H/

ı
red. If H is a normal algebraic subgroup of a

smooth algebraic group G, then Ht is normal in G (by 1.52 and 1.87).

h. Representations of a group of multiplicative type

An abelian category is semisimple if every object is a finite sum of simple objects
(then every object is a finite direct sum of simple objects; cf. 4.17). When G is a
diagonalizable algebraic group, Rep.G/ is a semisimple abelian category and the
isomorphism classes of simple objects in Rep.G/ are classified by the characters
of G (see 12.12). When G is of multiplicative type, the description of Rep.G/ is
only a little more complicated.

Let ks be a separable closure of k and � D Gal.ks=k/.

THEOREM 12.30. Let G be an algebraic group of multiplicative type over k.
Then Rep.G/ is a semisimple abelian category, and the isomorphism classes of
simple objects in Rep.G/ are classified by the orbits of � acting on X�.G/. Let
.V;r/ be the representation corresponding to an orbit � , and let � 2 � ; then
End.V;r/' k� where k� is the subfield of ks fixed by the subgroup of Gal.ks=k/

fixing �.
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PROOF. The group G is split by a finite Galois extension K of k – let N� D
Gal.K=k/. Then N� acts on O.GK/'K˝O.G/ through its action on K. Let
.V;r/ be a representation of GK , and let � be the corresponding co-action. By a
semilinear action of N� on .V;r/, we mean a semilinear action of N� on V fixing �.
It follows from descent theory (A.64, A.65, A.66) that the functor V  VK from
Repk.G/ to the category of objects of RepK.GK/ equipped with a semilinear
action of N� is an equivalence of categories.

Let V be a representation of G over k. ThenK˝V is a representation ofGK
equipped with a semilinear action of N� . As a representation ofGK it decomposes
into a direct sum

K˝V D
M

�2X.GK /
V�:

An element  of N� acts on K˝V by mapping V� isomorphically onto V�.
Thus, we see that the set of � occurring in the sum is stable under the action of
N� . Conversely, if � is an orbit of N� in X.GK/, then

L
�2� V� has a natural

semilinear action of GK , and so arises from a (simple) representation of G over
k. From this the statement follows easily. 2

ASIDE 12.31. Let A be a semisimple abelian category such that the Hom sets are finite-
dimensional k-vector spaces and composition is k-bilinear. To describe such a semisimple
abelian category up to equivalence, it suffices to list the isomorphism classes of simple
objects in A and, for each class, describe the isomorphism class of the endomorphism
algebra of an object in the class (these are finite-dimensional division algebras over k).

i. Density and rigidity

For a commutative algebraic group G and integer n � 1, we let Gn denote the
kernel of multiplication by n on G.

Density theorem

The density theorems say that the family of subschemes Gn is schematically
dense in an algebraic group G of multiplicative type. When G is smooth, it
suffices to take the Gn with n prime to the characteristic.

THEOREM 12.32 (SMOOTH CASE). Let G be a smooth algebraic group of mul-
tiplicative type. The only closed subscheme of G containing every Gn with n
prime to the characteristic of k is G itself.

PROOF. We may suppose that k is algebraically closed. Let X be a closed
subscheme of G containing the Gn. Then X contains every étale subgroup of
H . Moreover, X.k/ contains an infinite subset of H.k/ for every copy H of
Gm contained in G, and therefore contains H.k/. As G is a product of an étale
group with some copies of Gm (12.3), this implies that X.ka/DG.ka/. As G is
reduced, X DG. 2
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THEOREM 12.33. Let G be an algebraic group of multiplicative type over k.
The only closed subscheme of G containing every Gn is G itself.

PROOF. We may suppose that k is algebraically closed. We have to show that
an element of O.G/ is zero if its image in O.Gn/ is zero for all n � 1: Write
G DGrm�N , where N is finite of order d (see 12.3). Then

O.G/D kŒt1; : : : ; tr ; t�11 ; : : : ; t�1r �˝O.N /;

and, if d jn,

O.Gn/D
�
kŒt1; : : : ; tr �=.t

n
1 �1; : : : ; t

n
r �1/

�
˝O.N /:

The family of maps kŒt1; : : : ; tr �! kŒt1; : : : ; tr �=.t
n
1 �1; : : : ; t

n
r �1/ is obviously

injective, and it remains injective when tensored over kŒt1; : : : ; tr � with the ring
kŒt1; : : : ; t

�1
r �. It follows that the family of maps O.G/!O.Gn/ is injective. 2

COROLLARY 12.34. Let G be an algebraic group of multiplicative type. If two
homomorphisms from G to an algebraic group H coincide on Gn for all n� 1,
then they are equal.

PROOF. The difference kernel is a closed subscheme of G (as H is separated
1.22). 2

Rigidity theorem

LEMMA 12.35. Let G and H be algebraic groups of multiplicative type over k
with G finite. Then Hom.G;H/ is a finite étale group scheme over k.

PROOF. We may suppose that k is algebraically closed. Then H is an algebraic
subgroup of a split torus, and so we may suppose thatH DGm. Now Hom.G;H/
is the Cartier dual of G, which is an étale group scheme (see Section 11c). 2

The next theorem says that diagonalizable groups are rigid in the sense that a
family of homomorphisms from one to a second parameterized by a connected
algebraic scheme is constant.

THEOREM 12.36. Let G and H be diagonalizable groups over k, and let X be
a connected algebraic scheme over k. Let �WX �G!H be a morphism such
that, for all k-algebras R and x 2 X.R/, the map g 7! �.x;g/WG.R/!H.R/

is a homomorphism. For any x0 2 X.k/, we have �.x;g/ D �.x0;g/ for all
k-algebras R and .x;g/ 2X.R/�G.R/.

PROOF. The map � defines a morphism X ! Hom.G;H/. If G is finite, then
Hom.G;H/ is étale over k, and so the morphism is constant, as required.

In proving the general case, we may suppose that k is algebraically closed
and X is affine. Let Z be the closed subscheme of X �G on which the two
maps .x;g/ 7! �.x;g/ and .x;g/ 7! �.x0;g/ coincide. Then Z � X �Gn
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for all n by the first case, and so it remains to show that the family of maps
O.X �G/!O.X �Gn/ is injective. But O.X �G/!O.X �Gn/ is obtained
from O.G/!O.Gn/ by tensoring with O.X/ over k, and we saw in the proof
of Theorem 12.33 that the family of maps O.G/!O.Gn/ is injective. 2

COROLLARY 12.37. Every action �WG �H !H by group homomorphisms
of a connected algebraic group G on a group H of multiplicative type is trivial.

PROOF. The hypothesis says that, for a fixed g 2 G.R/, the map h 7! �.g;h/

is a homomorphism H.R/! H.R/. Therefore Theorem 12.36 shows that
�.g;h/D �.e;h/D h for all g;h. 2

COROLLARY 12.38. Every normal multiplicative subgroup N of a connected
algebraic group G is contained in the centre of G.

PROOF. The action G on N by inner automorphisms is trivial. 2

REMARK 12.39. (a) Similarly, every normal étale subgroup of a connected
algebraic group is central (the automorphism group scheme of an étale group is
étale; for example, Aut.Nk/D .Aut.N //k).

(b) It is essential in 12.37 that G act by group homomorphisms. For example,
the multiplication map of Gm is a nontrivial action of Gm on Gm as a scheme.

COROLLARY 12.40. Let H be a subgroup of multiplicative type of an algeb-
raic group G. Then NG.H/ı D CG.H/ı, i.e., CG.H/ is an open subgroup of
NG.H/.

PROOF. Theorem 12.36 applied to

�WNG.H/
ı
�H !H; .g;h/ 7! ghg�1

shows that ghg�1 D ehe�1 D h for all g;h, and so NG.H/ı � CG.H/. 2

COROLLARY 12.41. Let N be a normal subgroup of an algebraic groupH such
thatN andH=N are of multiplicative type. Every action of a connected algebraic
group G on H by group homomorphisms preserving N is trivial.

PROOF. Corollary 12.37 shows that the action of G on H factors through an
action G�H=N !H , and then through an action G�H=N !N . Theorem
12.36 now shows that this action is trivial. 2

COROLLARY 12.42. An extension of algebraic groups of multiplicative type is
of multiplicative type if it is connected.

PROOF. Let G be an algebraic group with a normal subgroup N such that N
and G=N are of multiplicative type. Then the action of G on itself by inner
automorphisms is trivial (12.41). Therefore G is commutative, and so it is of
multiplicative type (12.22). 2
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REMARK 12.43. For a set M , define Mk to be the scheme over k (not necessar-
ily of finite type) equal to the disjoint union of copies of Spm.k/ indexed by the
elements of M . For an algebraic scheme X over k,

Mk.X/D Hom.�0.X/;M/.

When M is a group, Mk becomes a group scheme over k.
Let R be a k-algebra R with no idempotents except 0 and 1. Then

Hom.GmR;GmR/.R/' Z:

To prove this, let ei D T i , and argue as in the proof of Proposition 4.23. It follows
that the obvious map

Zk! Hom.Gm;Gm/

is an isomorphism. More generally, for finitely generated Z-modules M , M 0,

Hom.M 0;M/k ' Hom.D.M/;D.M 0//.

Hence,

Hom.X;Hom.D.M/;D.M 0//' Hom.�0.X/;Hom.M 0;M//

for an algebraic k-scheme X . This provides a more geometric proof of Theorem
12.36.

j. Central tori as almost-factors

DEFINITION 12.44. An algebraic subgroup of an algebraic group G is central
if it is contained in the centre of G.

For example, every normal torus in a connected algebraic group is central (12.38).

DEFINITION 12.45. An algebraic group G is perfect if it equals its derived
group.

In other words, G is perfect if it has no nontrivial commutative quotient. A
smooth connected algebraic group is perfect if it has no commutative quotient of
nonzero dimension. Quotients of perfect algebraic groups are obviously perfect.
We shall see later (21.50) that semisimple algebraic groups are perfect.

PROPOSITION 12.46. Let T be a central torus in a connected group variety G
over k.

(a) The algebraic subgroup T \DG is finite.

(b) If G=T is perfect, then the sequence

e! T \D.G/! T �D.G/!G! e (78)

is exact. In particular, G=D.G/ is a torus.
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PROOF. We may suppose that k is algebraically closed.
(a) An algebraic group N is finite if N.k/ is finite (because k D ka). Note

that
.T \DG/.k/D T .k/\ .DG/.k/.

Choose a faithful representation G ! GLV of G (which exists by 4.9), and
identify G with its image. Because T is diagonalizable, V is a direct sum

V D V�1˚�� �˚V�r ; �i ¤ �j ; �i 2X
�.T /;

of eigenspaces for the action of T (see 12.12). When we choose bases for the
V�i , the group T .k/ consists of the matrices

�
A1 0 0

0
: : : 0

0 0 Ar

�

with Ai of the form diag.�i .t/; : : : ;�i .t//, t 2 k. As �i ¤ �j for i ¤ j , we
see that the centralizer of T .k/ in GL.V / consists of the matrices of this shape
but with the Ai arbitrary. Because .DG/.k/ is generated by commutators, its
elements have determinant 1 on each summand V�i . But SL.V�i / contains only
finitely many scalar matrices diag.ai ; : : : ;ai /, and so T .k/\ .DG/.k/ is finite.

(b) The subgroup T �D.G/ of G is normal (because it contains the derived
group). The algebraic group G=.T �D.G// is a quotient both of G=D.G/ and of
G=T , and so it is both commutative and perfect, hence trivial. Therefore,

G D T �D.G/:

As T is central, the multiplication map T �D.G/!G is a homomorphism. Its
kernel is T \D.G/ and its image is G. 2

EXAMPLE 12.47. The centre of GLn is Gm (nonzero scalar matrices), its derived
group is SLn, and the quotient GLn =Gm D PGLn is perfect (because simple and
noncommutative). The sequence (78) is

1! �n!Gm�SLn! GLn! 1:

k. Maps to tori

For the notion of a (Weil) divisor on a normal algebraic variety, we refer the
reader to A.78.

PROPOSITION 12.48. Let X and Y be irreducible algebraic varieties over an
algebraically closed field k. Every regular map uWX �Y !Gm is of the form
uD u1 �u2 with u1 (resp. u2) a regular map X !Gm (resp. Y !Gm/.
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PROOF. Let x0 and y0 be normal points on X and Y , and let v be the regular
function on X �Y such that

v.x;y/D u.x;y0/ �u.x0;y/ �u.x0;y0/
�1: (79)

We shall show that uD v. It suffices to prove this on an open neighbourhood of
.x0;y0/, and so we may suppose that X and Y are both affine and normal.

Let NX and NY be normal projective varieties containing X and Y as dense
open subsets. We regard u and v as rational functions on NX � NY . As the functions
u and v take values in k� on X �Y , the divisor .u=v/ of u=v on NX � NY has
support in �

. NX XX/[ NY
�
[ . NX � . NY XY //:

Therefore it is a sum of divisors of the form D� NY and NX �E, where D and E
are irreducible components of NX XX and NY XY of codimension one. If u=v is
zero on D� NY , then u=v is regular on U and zero on U \ .D�fy0g/ for some
open subset U of X �Y meeting D�fy0g. But u.x;y0/D v.x;y0/ for x 2X ,
which gives a contradiction. Similarly, v=u does not have a zero on D� NY , and
so no divisor of the formD� NY occurs in .u=v/. Similarly, no divisor of the form
NX �E occurs in .u=v/, and so u=v is a constant. On taking .x;y/D .x0;y0/,

we see that the constant is 1. 2

PROPOSITION 12.49. Let G be a connected group variety, and let T be a group
of multiplicative type. Every regular map 'WG ! T such that '.e/ D e is a
homomorphism of algebraic groups.

PROOF. We may suppose that k is algebraically closed, and then that T DGm.
According to Proposition 12.48, there exist regular maps '1;'2WG!Gm such
that ' ımD '1 �'2, i.e., such that

'.g1g2/D '1.g1/'2.g2/ for g1;g2 2G: (80)

In particular, '1.e/'2.e/ D e, and so we can scale '1 and '2 so that '1.e/ D
e D '2.e/. On taking g1 (resp. g2) to be e in (80), we find that ' D '2 (resp.
' D '1), and so '.g1g2/D '.g1/'.g2/ for all g1;g2 2G. 2

REMARK 12.50. For a variety X over a field k, let U.X/ D � .X;O�X /=k�.
Proposition 12.48 shows that

U.X/˚U.Y /' U.X �Y /

when k is algebraically closed. In fact, this is true over more general fields (cf.
Grothendieck 1972, VIII, 4.1): it suffices to prove that the identity

u.x;y/D u.x;y0/ �u.x0;y/ �u.x0;y0/
�1

holds for some x0 2 X.k/ and y0 2 Y.k/, and for this we may extend the base
field and then normalize.
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ASIDE 12.51. Note the similarity of the statements 8.19 and 12.49. Rosenlicht (1961)
defines a connected group variety G (not necessarily affine) over an algebraically closed
field k to be toroidal if it satisfies the following equivalent conditions:

(a) every maximal connected affine subgroup variety of G is a torus;

(b) G contains no algebraic subgroup isomorphic to Ga;

(c) for every connected subgroup variety H of G, the points of H.k/ of finite order
prime to char.k/ are dense in H .

Tori and abelian varieties are toroidal; connected subgroup varieties, quotients, and
extensions of toroidal groups are toroidal; all toroidal groups are commutative (and hence
of multiplicative type if affine). In the same article, Rosenlicht proves Proposition 12.48
for all toroidal algebraic groups, and deduces Proposition 12.49 for such groups.

l. Linearly reductive groups

DEFINITION 12.52. An algebraic group is linearly reductive if every finite-
dimensional representation is semisimple.

REMARK 12.53. (a) If G is linearly reductive, then every representation is
a sum of simple representations (because it is a union of finite-dimensional
subrepresentations). This implies that it is a direct sum of simple representations
(4.17).

(b) An algebraic group G over k is linearly reductive if and only if the endo-
morphism algebra of every finite-dimensional representation of G is semisimple.
The necessity is obvious (4.18), and we prove the sufficiency. If ˛WV !W is a
nonzero homomorphism of finite-dimensional representations of G, then there
exists a ˇWW ! V such that ˛ ıˇ ¤ 0 because otherwise

�
0 0
˛ 0

�
End.V ˚W /

would be a nonzero nilpotent right ideal in End.V ˚W /. Now let V be a finite-
dimensional representation of G, and let W be a maximal subrepresentation. The
quotient map ˛WV ! V=W is nonzero, and so there exists a map ˇWV=W ! V

such that ˛ ıˇ ¤ 0. As V=W is simple, ˛ ıˇ is an isomorphism, and we may
suppose that it equals idV=W . Now V D Im.ˇ/˚W . Repeating the argument for
W , we eventually obtain V as a sum of simple representations.

(c) Let G be an algebraic group over k, and let k0 be a field containing k. If
Gk0 is linearly reductive, then so is G (apply 4.19a). Conversely, if G is linearly
reductive and k0 is separable over k, then Gk0 is linearly reductive. Indeed,
the representations of the form .V;r/˝ k0 are semisimple (4.19c), and every
representation of Gk0 is a subquotient of such a representation (this follows from
4.14).1

PROPOSITION 12.54. A commutative algebraic group is linearly reductive if
and only if it is of multiplicative type.

1In fact, it follows from the classification (12.56) thatG is linearly reductive if and only ifGk0
is linearly reductive (no condition on k0=k).
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PROOF. We saw in (12.30) that Rep.G/ is semisimple if G is of multiplicative
type. Conversely, if Rep.G/ is semisimple, then Hom.G;U2/D 0. But U2'Ga,
and so G is of multiplicative type by (12.18). 2

EXAMPLE 12.55. Over a field of characteristic 2, the representation

�
a b

c d

�
7!

0@a ac bd

0 a2 b2

0 c2 d2

1A WSL2! GL3

is not semisimple because ac and bd are not linear polynomials in a2, b2, c2, d2

(Exercise 12-9).

REMARK 12.56. Later (22.43) we shall prove that an algebraic group G over a
field of characteristic zero is linearly reductive if and only if Gı is reductive. An
algebraic group G over a field of characteristic p ¤ 0 is linearly reductive if and
only if Gı is a torus and p does not divide the index .GWGı/. This was proved
by Nagata (1961/1962) for group varieties, and is often referred to as Nagata’s
theorem. See DG, IV, �3, 3.6, or Kohls 2011.

Let G be a linearly reductive group and .V;r/ a representation of G. Then V
has a unique decomposition V D V G˚V 0 with V 0 equal to the sum of all simple
subrepresentations on which G acts nontrivially. The Reynolds operator is the
unique linear map �WV ! V G with �jV G D id and �.V 0/D 0:

The group GLn.k/ acts linearly on kŒT1; : : : ;Tn� as follows: let g D .aij / 2
GLn.k/ and let f 2 kŒT1; : : : ;Tn�; then .gf /.T1; : : : ;Tn/D f .T 01; : : : ;T

0
n/ with

T 0j D
P
i aijTj :

THEOREM 12.57 (HILBERT). Let G be a linearly reductive subgroup of GLn,
and let AD kŒT1; : : : ;Tn�. Then AG is finitely generated as a k-algebra.

PROOF. Let a be the ideal of AG generated by the invariant polynomials of
degree > 0. According to the Hilbert basis theorem (CA 3.7), the ideal aA is
finitely generated, say,

aAD .g1; : : : ;gm/,

where we have chosen the gi to be homogeneous elements of a. Let f 2 AG

be homogeneous of degree d > 0: We shall prove by induction on d that f 2
kŒg1; : : : ;gm�. Let

f D r1g1C�� �C rmgm; ai 2 A; deg.ri / < deg.f /.

On applying �, we find that

f D �.f /D �.r1/g1C�� �C�.rm/gm.

By the induction hypothesis, the �.ri / lie in kŒg1; : : : ;gm�, and so f lies in
kŒg1; : : : ;gm�. 2
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ASIDE 12.58. A similar argument shows, more generally, that for any linear representa-
tion .V;r/ of a linearly reductive group G, the ring Sym.V /G of invariant polynomials
is finitely generated as a k-algebra. As noted above, reductive groups are not necessarily
linearly reductive in characteristic p. This was a problem for geometric invariant theory in
characteristic p, which was resolved by the proof of the next statement.

The following conditions on a group variety G are equivalent: (a) G is
reductive; (b) for every representation .V;r/ of G and nonzero vector v
fixed by G, there is a nonzero G-invariant polynomial f without constant
term such that f .v/ ¤ 0; (c) for every finitely generated k-algebra A on
which G acts linearly, the ring of invariants AG is finitely generated as a
k-algebra.

The key implication (a))(b) was conjectured by Mumford and proved by Haboush (see
Mumford et al. 1994).

In the fourteenth of his famous problems, Hilbert asked whether Sym.V /G is finitely
generated for all group varieties G. Nagata (1960) gave the first counterexample to this,
with G a product of thirteen copies of Ga. Since then, many more counterexamples have
been found. For a recent paper on the topic, see Totaro 2008.

m. Unirationality

DEFINITION 12.59. An irreducible variety X is said to be rational (resp. uni-
rational) if its field of rational functions k.X/ is a purely transcendental extension
of k (resp. contained in a purely transcendental extension of k).

Equivalently, X is rational (resp. unirational) if there exists an isomorphism
(resp. a surjective regular map) from an open subset of some affine space An to
an open subset of X . If X is unirational and k is infinite, then X.k/ is dense in
X because this is true of an open subset of An.

PROPOSITION 12.60. Let k0 be a finite extension of k. The Weil restriction
.Gm/k0=k of Gm is rational.

PROOF. Let
�
A1
�
�

denote the Weil restriction of A1, so
�
A1
�
�
.R/ D k0˝R0

for all k-algebras R. Let .ei /1�i�n be a basis for k0 as a k-vector space. For a
k-algebra R,

k0˝RDRe1˚�� �˚Ren;

and the map sending ˛ D a1e1C�� �Canen 2 k0˝R to .a1; : : : ;an/ 2Rn;�
A1
�
�
.R/! An.R/;

is a bijection natural in R. From this we get an isomorphism of algebraic varieties�
A1
�
�
! An. An element ˛ of

�
A1
�
�
.R/ lies in .Gm/k0=k.R/ if and only if its

norm Nmk0˝R=R.˛/ is nonzero. There exists a polynomial P 2 kŒX1; : : : ;Xn�
such that Nmk0˝R=R.˛/ D P.a1; : : : ;an/, and the isomorphism

�
A1
�
�
! An

maps .Gm/k0=k isomorphically onto the complement of the zero set of P in An.2
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LEMMA 12.61. Let k0 be a finite separable extension of k. Then

X�..Gm/k0=k/' ZHomk.k0;ks/ .isomorphism of Gal.ks=k/-modules/:

PROOF. Here ZHomk.k0;ks/ is the free abelian group on the set of k-homomorph-
isms k0! ks. An element

P
n�� of this group corresponds to the character of

.Gm/k0=k that acts on ks-points as

c˝a 7! .
Q
��.c/

n� /aW
�
k0˝ks��

! .ks/�: 2

DEFINITION 12.62. A torus is said to be induced (or quasi-split or quasi-trivial)
if it is of the form .Gm/A=k for an étale k-algebra A.

In other words, T is induced if it is a finite product of tori of the form
.Gm/k0=k with k0 a finite separable extension of k.

PROPOSITION 12.63. Every torus T is a quotient of an induced torus.

PROOF. Let � DGal.ks=k/, and letM be a continuous � -module that is finitely
generated (as a Z-module). The stabilizer � of an element e of M is an open
subgroup of � , and there is a homomorphism ZŒ� =��!M sending 1 to e.
On applying this remark to the elements of a finite generating set for M , we
get a surjective homomorphism

Q
i ZŒ� =�i �!M of continuous � -modules

(finite product; each �i open). On applying this remark to the dual of X�.T /,
and using that the dual of ZŒ� =�� has the same form, we obtain an injective
homomorphism

X�.T /!
M

i
ZŒ� =�i � (81)

of � -modules. Let ki D .ks/�i . Then ZŒ� =�i �' X�..Gm/ki=k/ (see 12.61),
and so the map (81) arises from a surjective homomorphismY

i
.Gm/ki=k! T

of tori. 2

PROPOSITION 12.64. Every torus is unirational, and every induced torus is
rational.

PROOF. Combine 12.60 with 12.63. 2

COROLLARY 12.65. If T is a torus over an infinite field k, then T .k/ is dense
in jT j.

PROOF. Combine 12.64 with the remark following 12.59. 2

There exist tori, even over fields of characteristic zero, that are not rational.
Later (17.93) we shall use 12.64 to show that every connected group variety over
a perfect field is unirational.
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Exercises

EXERCISE 12-1. Let D be a diagonalizable group over a field k with charac-
teristic exponent p, and let X D X.D/. For an algebraic subgroup D1 of D,
let

D?1 D f� 2X j �jD D 1g:

Similarly, for a submodule of X1 of X , let

X?1 D
\
fKer.�/ j � 2X1g:

(a) Show that the maps D1 7!D?1 and X1 7! X?1 are reciprocal bijections
between the set of algebraic subgroups of D and the set of Z-submodules
of X .

(b) Show that X.D1/DX=D?1 ; hence D1 is connected (resp. smooth) if and
only if X=D?1 has no prime-to-p torsion (resp. X=D?1 has no p torsion).

(c) Show that X.D=D1/DD?1 .

EXERCISE 12-2. Let T be a torus, and let S be a subtorus of T . Show that there
exists a subtorus S 0 of T such that S \S 0 is finite and S �S 0 D T . When T is
split show that S 0 can be chosen so that S \S 0 D e.

EXERCISE 12-3. Show that every algebraic group of multiplicative type is a
subgroup of a torus.

EXERCISE 12-4. Let k0=k be a cyclic Galois extension of degree n with Galois
group � generated by � , and let G D .Gm/k0=k .

(a) Show that X�.G/' ZŒ� � (group algebra ZCZ�C�� �CZ�n�1 of � ).

(b) Show that

End� .X�.G//D

8̂̂̂<̂
ˆ̂:
˙
a1 a2 : : : an
an a1 : : : an�1
:::

:::
:::

a2 a3 � � � a1

� ˇ̌̌̌
ˇ̌̌̌
ˇ ai 2 Z

9>>>=>>>; :
EXERCISE 12-5. A torus T is said to be anistropic if X.T /D 0; otherwise it is
said to be isotropic.

(a) Show that T is anistropic if and only if every morphism A1Xf0g ! T is
constant (i.e., has image a point).

(b) Show that T a def
D
T
�2X.T /Ker.�/ is the largest anisotropic subtorus of a

torus T .

EXERCISE 12-6. Let T be a torus over k. Show that there are unique subtori T a

and T s of T such that T a is anisotropic, T s is split, and T is the almost-direct
product of T a and T s (i.e., T a\T s is finite and T a �T s D T ).
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EXERCISE 12-7. Let T be a torus over R. Show that T .R/ is compact if and
only if T is anisotropic.

EXERCISE 12-8. Show that an extension of linearly reductive algebraic groups
is linearly reductive.

EXERCISE 12-9. Verify that the map in Example 12.55 is a representation of
SL2, and that the representation is not semisimple.

EXERCISE 12-10. Let k0 be a finite extension of an infinite field k, and let
G D .Gm/k0=k . Show that G.k/ is dense in jGj. (In fact, this is true whenever G
is the Weil restriction of a reductive group; Pink 2004, 1.7.)



CHAPTER 13

Tori Acting on Schemes

Schemes with an action of a torus arise frequently in the theory of algebraic
groups. In this chapter, we prove the basic theorems concerning such actions.
In particular, we prove the Białynicki-Birula decomposition (13.47), which will
allow us to show that the Bruhat decomposition exists on the level of schemes.

Throughout, all schemes are algebraic over the field k. Recall that all algeb-
raic groups are affine.

a. The smoothness of the fixed subscheme

Recall that tori are linearly reductive.

THEOREM 13.1. Let G be a linearly reductive group variety acting on a smooth
variety X over k. Then the fixed-point scheme XG is smooth.

We shall need to use some basic results on regular local rings.

13.2. Let A be a local ring with maximal ideal m and residue field � D A=m.
Let d denote the Krull dimension of A. Every set of generators for m has at least
d elements. If there exists a set with d elements, then A is said to be regular,
and a set of generators with d elements is called a regular system of parameters
for A (Matsumura 1986, p. 105).

(a) A local ring A is regular if and only if the canonical map

Sym�.m=m
2/! gr.A/ def

D

M
n�0

mn=mnC1

is an isomorphism (Matsumura 1986, 14.4).

(b) Assume that A is regular. Let t1; : : : ; td be a regular system of parameters
for A, and let aD .t1; : : : ; ts/ for some s � d . Then A=a is local of dimen-
sion d � s; its maximal ideal m=a is generated by ftsC1C a; : : : ; td C ag,
and so A=a is regular. Every regular quotient of A is of this form (Mat-
sumura 1986, 14.2).

254
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We require several lemmas.

LEMMA 13.3. Let A be a regular local ring of dimension d and m the maximal
ideal in A. Let a be an ideal in A, and let s 2N. If, for every n 2N, there exists a
regular system of parameters t1; : : : ; td for A such that

a� .t1; : : : ; ts/ mod mnC1, (82)

then A=a is regular (of dimension d � s).

PROOF. Let B D A=a, and let n denote the maximal ideal m=a of B . We shall
prove that B is regular by showing that, for every n� 1, the canonical map

Symn
B=n.n=n

2/! nn=nnC1 (83)

is an isomorphism. Fix an n, and let t1; : : : ; td be a regular system of parameters
for A such that (82) holds. Let bD .t1; : : : ; ts/. By assumption,

aCmiC1 D bCmiC1

holds for i D n, and therefore also for i D 1. Hence,

.bCm/=
�
bCm2

�
' .aCm/=

�
aCm2

�
' n=n2;

.bCmn/=
�
bCmnC1

�
' .aCmn/=

�
aCmnC1

�
' nn=nnC1:

The quotient ring A=b is regular (13.2b), and so the canonical map

Symn
B=n..bCm/=

�
bCm2

�
/! .bCmn/=

�
bCmnC1

�
is an isomorphism (13.2a). It follows that the map (83) is an isomorphism. As n
was arbitrary, this completes the proof. 2

Let S be a set of automorphisms of a separated algebraic k-scheme X . The
functor

R fx 2X.R/ j sx D x for all s 2 Sg

is represented by a closed subscheme XS of X , namely, by the intersection of the
equalizers of the pairs of maps s; idWX�X for s 2 S . When S is a subgroup of
Aut.X/, this is the fixed subscheme of the constant group functor R S .

LEMMA 13.4. Let S be a set of automorphisms of a smooth variety X and
x 2X.k/ a fixed point of S . Then OXS ;x DOX;x=a, where

aD ff �f ı s j f 2m, s 2 Sg:

PROOF. Let R be a local k-algebra. Obviously, a local homomorphism OX;x!
R is fixed by the automorphisms in S if and only if it factors through OX;x=a.
Thus

Hom.OX;x=a;R/' Hom.OX;x ;R/S D� Hom.OXS ;x ;R/:
From this the statement follows. 2
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LEMMA 13.5. LetG be a group variety acting on an algebraic variety X , and let
S be a subset of G.k/ that is dense in jGj. If XS is smooth, then XG is smooth
and equals XS .

PROOF. Assume that XS is smooth. Clearly, XG �XS , and it remains to show
that XS �XG . By assumption S is schematically dense in G, hence also in Gka

(see 1.11), and so S is Zariski-dense in G.ka/. Therefore the isotropy group at
an x 2XS .ka/ equals Gka , and so XS .ka/DX.ka/G.k

a/ DXG.ka/. As XS is
reduced and XG is closed, this implies that XS DXG . 2

LEMMA 13.6. Let G be a linearly reductive group variety acting on a smooth
variety X , and let S be a subset of G.k/ that is dense in jGj. Then XS is smooth.

PROOF. As S is Zariski-dense in G.ka/ (see the preceding proof), we may
suppose that k is algebraically closed. Let x 2X.k/S , and let m be the maximal
ideal in OX;x . As in the preceding proof, G.k/ fixes x, and so it acts on OX;x by
k-algebra automorphisms leaving m invariant. For all n� 0, the action of G.k/
on OX;x=mn arises from a representation of G on the k-vector space OX;x=mn
(cf. the proof of 8.9).

Decompose V def
Dm=m2 into a direct sum V D V0˚V1˚�� �˚Vr with V0 a

trivial representation of G and the remaining Vi nontrivial simple representations
of G (here we use that G is linearly reductive). Choose any basis .v0j /j for V0,
and choose a basis .vij /j for Vi (i ¤ 0) from the set ff �f ı s j f 2 Vi , s 2 Sg –
this set spans Vi because the representation of S on Vi is nontrivial and simple
(by 4.4). We shall apply Lemma 13.3 to the ideal

aD ff �f ı s j f 2m; s 2G.k/g

in OX;x .
Fix an n 2 N. For i D 0;1; : : : ; r , choose a G-stable subspace Wi of m=mnC1

mapping isomorphically onto Vi . Lift each vij to a wij 2Wi , and then lift wij to
an element uij 2m. Thus

uij 7! wij ! vij under m!m=mnC1!m=m2:

Now fuij j i � 0, j arbitraryg is a regular system of parameters for OX;x , and its
subset fuij j i > 0, j arbitraryg generates a modulo mnC1. As nwas arbitrary, this
shows that OX;x=a is regular (13.3), and we know (13.4) that OXS ;x DOX;x=a.2

On combining the last two lemmas, we obtain the following theorem.

THEOREM 13.7. Let G be a linearly reductive group variety acting on a smooth
variety X , and let S � G.k/ be dense in jGj. Then XS is smooth and equals
XG .

This implies Theorem 13.1 because we may suppose k to be separably closed
and take S to be G.k/.



a. The smoothness of the fixed subscheme 257

COROLLARY 13.8. Let G be an algebraic group acting on a smooth variety X .
Let s 2G.k/ be semisimple, and let G0 be the closure of the subgroup of G.k/
generated by s. Then X s is smooth, and XG

0

DX s .

PROOF. Let .V;r/ be a representation of G0. A subspace of V is stable under G0

if and only if it is stable under s. It follows that .V;r/ is semisimple, and that G0

is linearly reductive. Now the theorem applies. 2

THEOREM 13.9 (SMOOTHNESS OF CENTRALIZERS). Let H be a linearly re-
ductive group variety acting on a smooth algebraic group G. Then GH is smooth.

PROOF. Special case of Theorem 13.1. 2

COROLLARY 13.10. Let H be a subgroup variety of a group variety G. If H is
a multiplicative type, then CG.H/ and NG.H/ are smooth.

PROOF. Recall (12.30) that multiplicative groups are linearly reductive. Let
H act on G by inner automorphisms. Then GH D CG.H/, and so CG.H/ is
smooth. As CG.H/ı DNG.H/ı (see 12.40), NG.H/ is also smooth. 2

COROLLARY 13.11. Let H be a subgroup variety of multiplicative type of a
group variety G.

(a) NG.H/ is the unique subgroup variety of G such that NG.H/.ka/ is the
normalizer of H.ka/ in G.ka/.

(b) CG.H/ is the unique subgroup variety of G such that CG.H/.ka/ is the
centralizer of H.ka/ in G.ka/.

PROOF. Combine 13.10 with 1.88 and 1.95. 2

Notes

13.12. The proof of (13.1) follows Iversen 1972. Similar arguments can be used
to prove more general statements. For example, let Cx.X/ denote the tangent
cone at a point x on an algebraic scheme X over k. If x is fixed by an action of
a smooth linearly reductive group G on X , then Cx.XG/D Cx.X/G (Fogarty
1973, 5.2).

13.13. In each of the following examples (from Fogarty 1973, �6) the fixed
scheme for the action is not reduced (hence not smooth):

(a) Ga acts on P1 by t .xWy/D .xC tyWy/.

(b) SLp acts on SLp by conjugation (p D char.k/); indeed, SLSLp
p D �p .

(c) Gm acts suitably on the factorial scheme X20 CX1X2 � � �CX2n�1X2n D 0,
n� 2.

Note that (b) shows that SLp is not linearly reductive in characteristic p.
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13.14. Theorem 13.1 characterizes linearly reductive group varieties: a group
variety G is linearly reductive if XG is smooth whenever X is smooth (Fogarty
and Norman 1977).

13.15. Theorem 13.9 holds also for nonsmooth linearly reductive groups H .
See Theorem 15.20 below.

13.16. Let G be a reductive group over a field k of characteristic p ¤ 0. It is
known that the centralizers of all algebraic subgroups of G are smooth provided
p is not in a specific small set of primes depending only on the root datum of G
(Bate et al. 2010, Herpel 2013). For example, this is true for GLV and all p, and
it is true for SLV and all p not dividing the dimension of V .

b. Limits in schemes
Let R� act continuously on Rn, and let a 2Rn. If limt!0 ta exists, then it is a fixed
point of the action because t 0.limt!0 ta/D limt!0 t 0taD limt!0 ta. Similarly,
if limt!1 ta exists, then it is fixed by the action. We prove similar statements in an
algebraic setting.

Let X be a separated algebraic scheme over k and 'WA1X0!X a regular
map. If ' extends to a regular map Q'WA1!X , then the extension is unique, and
we say that limt!0'.t/ exists and set it equal to Q'.0/. Similarly, if ' extends to
Q'WP1X0!X , then we let limt!1'.g/D Q'.1/.

When X is affine, ' corresponds to a homomorphism of k-algebras

f 7! f ı'WO.X/! kŒT;T �1�;

and limt!0' exists if and only if f ı' 2 kŒT � for all f 2 O.X/. Similarly,
limt!1' exists if and only if f ı' 2 kŒT �1� for all f 2O.X/.

More generally, let R be a k-algebra and 'W.A1X 0/R! XR a morphism
of R-schemes. If ' extends to a morphism Q'WA1R ! XR, then we say that
limt!0'.t/ exists and we set it equal to the restriction of Q' to

0R D Spm.RŒT �=.T //� A1R:

Thus, when it exists, limt!0'.t/ is an R-point of X .
In the following, 0 is the closed subscheme Spm.kŒT �=.T // of the affine line

A1 D Spm.kŒT �/, and we identify the underlying scheme of Gm with A1X0.

EXAMPLE 13.17. Let Gm act on An according to the rule

t .x1; : : : ;xn/D .t
m1x1; : : : ; t

mnxn/; t 2Gm.k/; xi 2 k; mi 2 Z:

Assume that the mi are not all 0. Let v D .a1; : : : ;an/ 2 An.k/, and let

bi D

�
ai if mi D 0
0 otherwise.
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The orbit map

�vWGm! An; t 7! .tm1a1; : : : ; t
mnan/

corresponds to the homomorphism of k-algebras

kŒT1; : : : ;Tn�! kŒT;T �1�; Ti 7! aiT
mi : (84)

Suppose first thatmi � 0 for all i . Then the homomorphism (84) takes values
in kŒT �, and so �v extends uniquely to a regular map Q�vWA1! An, namely, to

t 7! .tm1a1; : : : ; t
mnan/WA1! An;

where we have set 00 D limt!0 t
0 D 1. Note that

lim
t!0

�v.t/
def
D Q�v.0/D .b1; : : : ;bn/,

which is certainly fixed by the action of Gm on An.
On the other hand, ifmi � 0 for all i , then the homomorphism (84) maps into

kŒT �1�, and so Q�v extends uniquely to a regular map Q�vWP1Xf0g ! An with

lim
t!1

�v.t/
def
D Q�v.1/D .b1; : : : ;bn/:

Let .V;r/ be a finite-dimensional representation of Gm. Then r defines an
action of Gm on the scheme Va. Let V D

L
i2ZVi denote the decomposition of

V into its eigenspaces (so t 2Gm.k/ acts on Vi as t i ). Note that V0 D V Gm , and
that the vector .b1; : : : ;bn/ in the above example is the component of .a1; : : : ;an/
in V0. The i for which Vi ¤ 0 are the weights of Gm on V .

PROPOSITION 13.18. Let v 2 V , and let v D
P
i vi with vi 2 Vi .

(a) If the weights of Gm on V are � 0, then limt!0 tv exists and equals v0.

(b) If the weights of Gm on V are � 0, then limt!1 tv exists and equals v0.

(c) The subscheme of Va on which limt!0 tv exists is .
L
i�0Vi /a, the fixed

subscheme is .V0/a, and the map v 7! limt!0 tvW.
L
i�0Vi /a! .V0/a is

the natural projection.

PROOF. Choose a basis of eigenvectors for V , and apply Example 13.17. 2

EXAMPLE 13.19. If the weights of Gm on V are > 0, then 0 is the unique fixed
point for the action, and limt!0 tv D 0 for all v 2 V . If the weights are all < 0,
then 0 is again the unique fixed point, but limt!0 tv exists only if v D 0.

Similarly, a finite-dimensional representation .V;r/ of Gm defines an action
of Gm on the scheme P.V /:

t; Œv� 7! Œtv�WGm�P.V /! P.V /:

Here Œv� denotes the image in P.V / of a nonzero v 2 V . Obviously, a point Œv�
of P.V / is fixed by Gm if and only if v is an eigenvector.
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PROPOSITION 13.20. Let v 2 V . The orbit map

�Œv�WGm! P.V /; t 7! t Œv�;

extends uniquely to a regular map Q�Œv�WP1! P.V /. Either Œv� is a fixed point or
the closure of its orbit in P.V / has exactly two fixed points, namely, limt!0 t �

Œv�D Q�Œv�.0/ and limt!1 t � Œv�D Q�Œv�.1/.

PROOF. Write V as a sum of eigenspaces, V D
L
i2ZVi , and let

v D vr CvrC1C�� �Cvs , vi 2 Vi :

If Œv� is fixed, then there is nothing to prove, and so we assume that it is moved.
Then r < s and e D vr is a nonzero vector in Vr . Extend e to a basis fe; : : :g

of eigenvectors of V , and let fe_; : : :g be the dual basis (of V _). Then Gm acts
on the affine space

D.e_/
def
D fŒv� 2 P.V / j e_.v/¤ 0g � An

with nonnegative weights 0; : : : ; s� r . According to Proposition 13.18, the orbit
map �Œv� extends to a regular map Q�WA1!D.e_/ with Q�.0/D Œvr � and Œvr � is
a fixed point. Similarly, �Œv� extends to a regular map Q�WP1X 0! P.V / with
Q�.1/D Œvs� and Œvs� is a fixed point.

It is now obvious that the closure of the orbit of Œv� has exactly two boundary
points, namely, Œvr � and Œvs�, and that these are exactly the fixed points in the
closure of the orbit. 2

c. The concentrator scheme in the affine case

Let �WGm�X !X be an action of Gm on an affine scheme X over k. Such an
action defines a Z-gradation

O.X/D
M

n2Z
O.X/n

on the coordinate ring O.X/, with O.X/n the subspace of O.X/ on which Gm
acts through the character t 7! tn.1 Note that O.X/m �O.X/n �O.X/mCn for
allm;n 2 Z, and so this is a gradation of O.X/ as a k-algebra. For x 2X.k/, the
orbit map �x WGm!X corresponds to the homomorphism of coordinate ringsP

nfn 7!
P
nfn.x/T

nWO.X/! kŒT;T �1�:

It follows that limt!0 tx exists if and only if fn.x/D 0 for all n< 0. If limt!0 tx

exists, then
f . lim

t!0
tx/D f0.x/; all f 2O.X/: (85)

1We are letting Gm act on O.X/ on the right: f t .x/D f .tx/. When an algebraic monoidG
acts on a schemeX on the left, there is only a right action ofG on O.X/.
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Now let Z be a closed subscheme of X stable under the action of Gm. The
restriction map O.X/!O.Z/ is a homomorphism of graded k-algebras, and so
its kernel is a graded ideal aD

L
n2Z an. From (85) we see that limt!0 tx 2Z.k/

if and only if f0.x/D 0 for all f 2 a.

DEFINITION 13.21. LetX be an affine scheme over k with an action of Gm, and
let Z be a closed subscheme of X stable under Gm. The concentrator scheme
of Z in X , denoted X.Z/, is the closed subscheme of X defined by the ideal
generated by LD a0C

P
n<0O.X/n.

It follows from the above discussion that X.Z/.k/ consists of the x in X.k/
such that limt!0 tx exists and lies in Z.k/. Let A D O.X.Z//. Then A is
a graded k-algebra, A D

L
n2NAn. From the homomorphisms A0 ! A!

A=
L
n>0An ' A0, we obtain morphisms ZGm ! X.Z/! ZGm . The first is

the natural inclusion and the second sends x to limt!0 tx.

PROPOSITION 13.22. Let x 2 X.Z/.k/. If x is a regular point on X and
limt!0 tx is a regular point on Z, then x is a regular point on X.Z/.

The proof is an exercise in commutative algebra which we defer until later in
this section.

PROPOSITION 13.23. When X and Z are smooth, X.Z/ is the unique smooth
closed subscheme of X such that

X.Z/.ka/D fx 2X.ka/ j lim
t!0

tx exists and lies in Z.ka/g.

PROOF. The definition of X.Z/ commutes with extension of the base field,
which shows that X.Z/.ka/ has the given description. Now Proposition 13.22
applied to Xka shows that all x 2X.Z/.ka/ are regular, which implies that X.Z/
is smooth (A.54). The uniqueness is a consequence of the smoothness. 2

We shall need a description of X.Z/.R/ for all k-algebras R.
Let X be a scheme over k with an action � of an algebraic group G. Let R

be a k-algebra and let x 2 X.R/. The orbit map �x WGR! X is defined to be
the composite of the maps

G�Spm.R/
id�x
�! G�X

�
�!X:

It is a morphism of k-schemes GR!X , but we sometimes regard it as a morph-
ism of R-schemes GR!XR:

GR XR X

Spm.R/ Spm.k/:

�x
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For an R-algebra R0, the map �x.R0/ is

g 7! gxR0 WG.R
0/!X.R0/:

When X is affine, the orbit map corresponds to a k-algebra homomorphism
O.X/!O.G/˝R, and hence to an R-algebra homomorphism O.X/˝R!
O.G/˝R.

Now let X be an affine scheme over k with an action � of Gm, and let
x 2 X.R/. Then �x is a morphism GmR ! XR of R-schemes. Write tx for
�x.t/. When it exists, limt!0 tx is an R-point of X (see p. 258).

PROPOSITION 13.24. In the situation of Definition 13.21, an element x ofX.R/
lies in X.Z/.R/ if and only if limt!0 tx exists and lies in Z.R/.

PROOF. Let O.X/DLnO.X/n be the gradation defined by the action of Gm
on X , and regard x 2X.R/ as a homomorphism of k-algebras O.X/!R. Then
�x corresponds to the homomorphism of k-algebrasP

nfn 7!
P
nx.fn/T

nWO.X/!RŒT;T �1�:

Now the same argument as in the case RD k applies. 2

More formally, we can say that the diagram

X.Z/.R/ X.R/

X.RŒT �/ X.RŒT;T �1�/

b

a

(86)

is cartesian. Here a is defined by the inclusion RŒT � ,!RŒT;T �1� and b sends
an element of X.R/ to its orbit map.

Proof of Proposition 13.22

In the following lemmas, A is a noetherian commutative ring with a Z-gradation
AD

L
n2ZAn, the subring A0 is a local ring with maximal ideal m0, and m is

the maximal ideal m0C
L
n¤0An in A. We let � D A0=m0 ' A=m.

LEMMA 13.25. Let M be a finitely generated Z-graded A-module. The follow-
ing are equivalent: (a) M DmM ; (b) Mm D 0; (c) M D 0.

PROOF. IfM DmM , thenMmDmMm, and soMmD 0 by Nakayama’s lemma.
Suppose thatMmD 0, and let x be a homogeneous element ofM . By assumption,
there exists an a 2AXm such that ax D 0. Write aD

P
an with an 2An. Then

anx D 0 for all n, but a0 is invertible, and so x D 0. Thus M D 0. Finally, if
M D 0, then certainly M DmM . 2

LEMMA 13.26. Let M � N be finitely generated Z-graded A-modules. The
following are equivalent: (a) M DN CmM ; (b) Mm DNm; (c) M DN:
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PROOF. Apply Lemma 13.25 to M=N . 2

LEMMA 13.27 (HESSELINK 1981, 5.6). Let a¤A be a graded ideal in A, and
let b be the ideal in A generated by LD a0C

P
n<0An. If the local rings Am

and .A=a/m are regular, then so also is .A=b/m.

PROOF. Since a is graded, it is contained in m. Let n denote the maximal ideal
.aCm/=a of A=a, and let d and d � r denote the Krull dimensions of Am and
.A=a/n respectively. From the exact sequence

0! .aCm2/=m2!m=m2! n=n2! 0

we see that .aCm2/=m2 has dimension r as a �-vector space. Both .aCm2/=m2

and m=m2 are spanned by homogeneous elements. Therefore there are homogen-
eous elements x1; : : : ;xd in m such that the images of x1; : : : ;xr in .aCm2/=m
form a �-basis, and the images of x1; : : : ;xd in m=m2 form a �-basis.

Let a0 denote the ideal .x1; : : : ;xr / in A. The local ring .A=a0/m is regular of
dimension d�r (see 13.2b). It is a quotient of .A=a/m, which is also regular of di-
mension d � r , and so it equals .A=a/m. Hence aAm D a0Am, which implies that
aD a0 (see 13.26). Similarly, mD .x1; : : : ;xd / because mAmD .x1; : : : ;xd /Am.

Let b0 be the ideal in A generated by those xi that lie in L, i.e., by the set

fxi j deg.xi / < 0 or i � r and deg.xi /� 0g :

Because b0m is generated by a subset of a regular system of parameters, the local
ring .A=b0/m is regular (13.2b). It remains to prove that b0 D b. From Lemma
13.26 we see that it suffices to show that b� b0Cmb. For this it suffices to show
that every element b of L lies in b0Cmb.

Let b 2 An with n < 0. Then b 2m, and so b D
Pd
iD1 aixi with deg.ai /C

deg.xi /D n. For every i , we have deg.xi / < 0 or deg.bi / < 0, so that xibi 2
b0[mb. This proves that b 2 b0Cmb.

Let b 2 an with n � 0. We may write b D
Pr
iD1xibi with deg.xi /C

deg.bi / D n. For every i � r , we have deg.xi / � 0 or deg.bi / < 0, so that
xibi 2 b

0
[mb. This proves that b 2 b0Cmb. 2

To deduce Proposition 13.22, apply Lemma 13.27 with ADO.X/ and a the
ideal of Z in O.X/, both localized with respect to the set A0Xm0, where m0 is
the ideal of the point limt!0 tx in A0.

d. Limits in algebraic groups

Let G be an algebraic group and �WGm!G a cocharacter of G. Then � defines
an action of Gm on G:

.t;g/ 7! �.t/g�.t/�1WGm�G!G:

We write t �g for inn.�.t//.g/D �.t/g�.t/�1.
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We define PG.�/ to be the concentrator subscheme of G in G. Thus PG.�/
is the closed subscheme of G such that

PG.�/.R/D fg 2G.R/ j lim
t!0

t �g existsg

for all k-algebras R. We let ZG.�/D CG.�Gm/.

PROPOSITION 13.28. The subscheme PG.�/ is an algebraic subgroup of G,
and

PG.�/\PG.��/DZG.�/:

PROOF. For the first assertion it remains to show that PG.�/.R/ is a subgroup
of G.R/ for all small R, but the maps a and b in diagram (86), p. 262, are group
homomorphisms, and so this is obvious. It follows from the definitions of PG.�/
and PG.��/ that PG.�/\PG.��/ is the zero set of

L
n¤0O.X/n, but this

equals GGm def
DZG.�/. 2

PROPOSITION 13.29. The subfunctor

R fg 2G.R/ j lim
t!0

t �g exists and equals eg

of G is represented by a normal algebraic subgroup UG.�/ of PG.�/.

PROOF. For eachR, we have maps PG.�/.R/!G.RŒT �/
T 7!0
�! G.R/ and hence

a morphism of schemes PG.�/!G sending g to limt!0 t �g. The scheme UG
is the fibre of this morphism over e. Obviously UG.R/ is a normal algebraic
subgroup of PG.�/.R/ for all R. 2

Note that UG.�/ is the concentrator scheme of e in G.

PROPOSITION 13.30. Let G be a smooth algebraic group over k and � a cochar-
acter of G.

(a) PG.�/ is the unique smooth algebraic subgroup of G such that

PG.�/.k
a/D fg 2G.ka/ j lim

t!0
t �g exists (in G.ka//g:

(b) UG.�/ is the unique smooth algebraic subgroup of P.�/ such that

UG.�/.k
a/D fg 2 PG.�/.k

a/ j lim
t!0

t �g exists and equals eg:

PROOF. Apply Theorem 13.23. 2

EXAMPLE 13.31. Let G D SL2, and let � be the homomorphism sending t to
diag.t; t�1/. Then�

t 0

0 t�1

��
a b

c d

��
t 0

0 t�1

��1
D

�
a bt2
c
t2

d

�
,
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and so lim
t!0

�
a bt2
c
t2

d

�
exists, and equals

�
a 0

0 d

�
, if and only if c D 0. There-

fore,

P.�/D

��
a b

0 a�1

��
; U.�/D

��
1 b

0 1

��
; Z.�/D

��
a 0

0 a�1

��
P.��/D

��
a 0

b a�1

��
; U.��/D

��
1 0

b 1

��
; Z.��/D

��
a 0

0 a�1

��
:

EXAMPLE 13.32. Let G D GL3, and let � be the homomorphism sending t to
diag.tm1 ; tm2 ; tm3/ with m1 �m2 �m3. Then0@a b c

d e f

g h i

1A conjugate by

diag.tm1 ;tm2 ;tm3 /

0@ a tm1�m2b tm1�m3c

tm2�m1d e tm2�m3f

tm3�m1g tm3�m2h i

1A :
If m1 >m2 >m3, then

P.�/D

8<:
0@� � �

0 � �

0 0 �

1A9=; ; U.�/D
8<:
0@1 � �

0 1 �

0 0 1

1A9=; ; Z.�/D
8<:
0@� 0 0

0 � 0

0 0 �

1A9=; :
If m1 Dm2 >m3, then

P.�/D

8<:
0@� � �

� � �

0 0 �

1A9=; ; U.�/D
8<:
0@1 0 �

0 1 �

0 0 1

1A9=; ; Z.�/D
8<:
0@� � 0

� � 0

0 0 �

1A9=; :
Let G be an algebraic group over k and �WGm ! G a cocharacter of G.

Then Gm acts on the Lie algebra g of G through Adı�. We let gn.�/ denote the
subspace of g on which Gm acts through the character t 7! tn, and we let

g�.�/D
M
n<0

gn; gC.�/D
M
n>0

gn.

Thus
gD g�.�/˚g0.�/˚gC.�/:

THEOREM 13.33. LetG be a smooth algebraic group over k, and let �WGm!G

be a cocharacter of G.
(a) The groups P.�/, Z.�/, and U.�/ are smooth algebraic subgroups of G,

and U.�/ is a normal subgroup of P.�/.

(b) The multiplication map U.�/ÌZ.�/! P.�/ is an isomorphism of algeb-
raic groups.

(c) Lie.Z.�//D g0.�/; Lie.U.˙�//D g˙.�/; Lie.P.�//D g0.�/˚gC.�/.

(d) The multiplication map U.��/�P.�/! G is an open immersion of
algebraic varieties.
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(e) If G is connected, then so are P.�/, Z.�/, and U.�/.

PROOF. Theorem 13.1 shows that Z.�/ is smooth, and Theorem 13.23 shows
that P.�/ and U.�/ are smooth. We already know that U.�/ is normal in P.�/.

We first consider the case G D GLV . According to Theorem 12.12, there
exists a basis for V such that �.Gm/� Dn, say,

�.t/D diag.tm1 ; : : : ; tmn/; m1 � � � � �mn:

Then P.�/ is defined as a subscheme of GLn by the vanishing of the coordinate
functions Tij for which mi �mj < 0. Obviously, it is smooth and connected.
Similarly, U.�/ is smooth and connected because it is defined by the equations
Ti i D 0 (all i ) and Tij D 0 (mi �mj � 0, i ¤ j ). The map P.�/!Z.�/ sending
g to limt!0 tg is a homomorphism that is the identity on Z.�/ and has kernel
U.�/. This proves (b). Statement (c) can be proved by a direct calculation using
the description of the Lie algebra in terms of dual numbers. From (c) we deduce
that the multiplication map U.��/�P.�/!G induces an isomorphism on the
tangent spaces at the identity elements; in particular it is dominant. It is also
injective because U.��/\P.�/D e (intersection as functors, and hence also as
schemes). Finally, U.��/�P.�/! U.��/ �P.�/ is an orbit map for an action
of U.��/�P.�/ onG, and hence it is an isomorphism from U.��/�P.�/ onto
an open subset of the closure G of its image (1.65).

We now consider the general case. Embed G in H DGLV for some V . Then
� is also a cocharacter of H , and, with the obvious notation,

PG.�/D PH .�/\G; UG.�/D UH .�/\G; ZG.�/DZH .�/\G;

because this is true for the functors they define. Therefore (see 10.14)

Lie.PG.�//D Lie.PH .�//\gD g0.�/CgC.�/; (87)
Lie.UG.˙�//D Lie.UH .˙�//\gD g˙; (88)

Lie.ZG.�//D Lie.ZH .�//\gD g0 (89)

because we know (c) for H . This proves (c) for G. The map

g 7! lim
t!0

tgWG!ZG.�/

is the restriction to G of the similar map for H , and therefore is the identity
on ZG.�/DZH .�/\G and has kernel UH .�/\G D UG.�/. This proves (b)
for G. Statement (c) for G implies (d) as in the case of GLn, and statement (d)
obviously implies (e). 2

PROPOSITION 13.34. Let 'WG!G0 be a surjective homomorphism of connec-
ted group varieties. Let � be a cocharacter of G, and let �0 D ' ı�. Then

'.PG.�//D PG0.�
0/; '.UG.�//D UG0.�

0/:
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PROOF. From the definitions of the groups, we see that ' maps PG.�/ into
PG0.�

0/ and UG.��/ into UG0.��0/. It follows from Theorem 13.33(d) that the
product of the homomorphisms PG.�/! PG0.�

0/ and UG.��/! UG0.��
0/ is

dominant, and hence surjective (1.71). Therefore each map is surjective. 2

NOTES. Modulo nilpotents, Theorem 13.33 was announced in Borel and Tits 1978. Our
proof is adapted from that in Springer 1998, 13.4.2. For an extension to nonsmooth
algebraic groups G, see Conrad et al. 2015, 2.1.8.

e. Luna maps

Luna maps

The Zariski topology is too coarse for many purposes. For example, the implicit
function theorem fails, and smooth varieties of the same dimension need not be
locally isomorphic. However, these statements become true when the Zariski
topology is replaced by the étale topology.

Let Y and X be varieties over k, and let P 2 Y.k/. When Y and X are
smooth, a regular map 'WY ! X is said to be étale at P 2 Y.k/ if the map
.d'/P WTgtP .Y /! Tgt'.P /.X/ on tangent spaces is an isomorphism. In general,
we say ' is étale at P if the map OOX;'.P /! OOY;P on the completions of the
local rings is an isomorphism.

LEMMA 13.35. Let x 2X.k/ be a smooth point on a connected affine algebraic
variety X of dimension d over k. Then there exists a regular map 'WX ! Ad
étale at x.

PROOF. Let m�O.X/ be the maximal ideal at x. Recall that m=m2' Tgtx.X/
_.

Because x is smooth, there exist regular functions f1; : : : ;fd 2m whose images
in m=m2 span it as a k-vector space. This means that .df1/x ; : : : ; .dfd /x form
a basis for Tgtx.V /

_. The map .f1; : : : ;fd /WU ! Ad is étale at x because
Tgtx.U /! Tgt.0;:::;0/.Ad / is dual to the map .dTi /.0;:::;0/ 7! .dfi /x . 2

The proof of the lemma can be stated more abstractly as follows: let W be
a finite-dimensional k-subspace of m mapping isomorphically onto m=m2 D
Tgtx.X/

_, and let ˛W.TgtxX/
_!W be the inverse isomorphism; the inclusion

ofW into O.X/ extends uniquely to a homomorphism of k-algebras Sym.W /!
O.X/, and the composite of this with Sym.˛/ is a homomorphism of k-algebras

Sym..TgtxX/
_/!O.X/;

which defines a regular map 'WX ! .TgtxX/a. This map sends x to 0 and is
étale at x.

LEMMA 13.36. Let G �X ! X be an action of an algebraic group G on an
affine algebraic scheme X over k. Let x 2 X.k/ be a smooth point of X such
that the isotropy group Gx is linearly reductive. Then there exists a regular map
'WX ! .TgtxX/a such that



268 13. Tori Acting on Schemes

(a) ' commutes with the actions of Gx ,

(b) ' is étale at x, and

(c) '.x/D 0.

PROOF. Let m be the maximal ideal at x in O.X/. The quotient map m!m=m2

commutes with the actions of Gx . As Gx is linearly reductive, it has a section.
This means that there exists a k-subspace W of m, stable under Gx , mapping
isomorphically onto m=m2. The map 'WX! .TgtxX/a defined byW (as above)
has the required properties. 2

The map ' in the lemma depends on the choice of a Gx-stable complement
W to m2 in m. A map 'WX ! .TgtxX/a arising in this way is called a Luna
map. Note that Gx is of multiplicative type, hence linearly reductive, if G is of
multiplicative type.

EXAMPLE 13.37. Let Gm act on X D An according to the rule

t .x1; : : : ;xn/D .t
m1x1; : : : ; t

mnxn/; mi > 0.

The only fixed point is o D .0; : : : ;0/. The maximal ideal at o in O.X/ D
kŒT1; : : : ;Tn� is m D .T1; : : : ;Tn/, and the weights of Gm acting on m=m2 are
m1, . . . , mn. The k-vector space W spanned by the symbols Ti is a Gm-stable
complement to m2 in m, and the corresponding Luna map X ! Sym.W / is the
identity map An!An. Note that the weights of Gm on Tgto.X/ are m1; : : : ;mn.

Monoids and gradations by monoids

LEMMA 13.38. The following conditions on a finitely generated submonoid S
of a free Z-module M of finite rank are equivalent:

(a) the set S Xf0g is a semigroup;

(b) a sum m1s1C�� �Cmnsn, si 2 S Xf0g, mi 2 N, is zero only if all mi are
zero;

(c) there exists a basis e1; : : : ; en for M such that S �
˚P

imiei jmi 2 N
	
:

PROOF. The implications (c))(b))(a) are obvious. An elementary proof of
the implication (a))(c) can be found in Kambayashi and Russell 1982, 1.6. 2

LEMMA 13.39 (NAKAYAMA’S LEMMA, GRADED CASE). Let A D
L
s2S As

be a k-algebra graded by S , where S is a monoid satisfying the equivalent
conditions of 13.38. Let I D

L
s¤0As . For any graded A0-submodule E of A

such that I DE˚I 2, the canonical map SymA0.E/! A is surjective.

PROOF. Because S Xf0g is a semigroup, I is an ideal. We identify S with a
submonoid of

P
Nei �Zr . For an element sD

P
miei of S , let t .s/D

P
imi 2

N. The image of SymA0.E/! A is the A0-subalgebra A0ŒE� generated by E.
Let a 2 As . We shall prove by induction on t .s/ that a 2 kŒE�. Certainly this
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is true if s D 0, and so we may suppose that a 2 I . There exists an e 2 E such
that a� e 2 I 2, and so we may suppose that a 2 I 2. Write aD

P
i bici with bi

and ci homogeneous elements of I . The equality still holds when we omit any
terms bici with deg.bi /Cdeg.ci /¤ s. For the remaining terms, t .bi / < t.s/ and
t .ci / < t.s/, and so bi , ci 2 kŒE�. 2

Varieties with a strictly definite torus action

DEFINITION 13.40. Let T be a torus over k. An action of T on a vector space
V (possibly infinite-dimensional) is definite if there exists a basis e1; : : : ; en for
X�.T / such that the set S of weights of Tks on Vks is contained in

P
Nei ; it is

strictly definite if in addition 0 … S . An action of T on an affine algebraic scheme
X is definite if the action of T on O.X/ is definite.

THEOREM 13.41. Let X be a geometrically connected affine algebraic variety
over k equipped with an action of a torus T , and let x 2X.k/ be a smooth point
fixed by T . If the action of T on TgtxX is strictly definite, then XT D fxg and
every Luna map 'WX ! .TgtxX/a is an isomorphism.

PROOF. We may suppose that k is algebraically closed. We assume first that X
is irreducible. Let AD O.X/ and let m � A be the maximal ideal at x. Then
AD

L
s2X.T /As and mD

L
s2X.T /ms where t 2 T .k/ acts on As and ms as

multiplication by s.t/. As A=m D k, we have As D ms for all s ¤ 0. Let '
be the Luna map defined by a Gm-stable complement W to m2 in m. We have
W D

L
s>SWs . The canonical map

Symj .W /!mj =mjC1

is surjective, and so .mj =mjC1/s D 0 for s … S .
Because X is irreducible, A is an integral domain; hence it embeds into Am,

and the Krull intersection theorem for Am (CA 3.16) implies that
T
j�0m

j D 0.
Therefore a nonzero element of m of weight s gives a nonzero element of weight
s in mj =mjC1 for some j . It follows that ms D 0 for s … S: Now

A0 D k; As D 0 for s … S , mD
M

s2S
As;

and so the graded Nakayama lemma (13.39) shows that the canonical map

Symk.W /! A

is surjective, which means that the Luna map

'WX ! Spm.Symk.W //' .TgtxX/a

is a closed immersion. As dim.X/D dimTgtx.X/, it is an isomorphism.
Let �WGm! T be a homomorphism such that hs;�i> 0 for all s 2 S . Then

the weights of Gm on TgtxX are strictly positive and so limt!0 tz D 0 for all
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z 2 TgtxX (see 13.37). It follows that limt!0 tz D x for all z 2X , and so x is
the unique fixed point in X . This completes the proof when X is irreducible.

We now assume only that X is connected. Because T is connected, every irre-
ducible component of X is stable under T . Let X1 be an irreducible component
of X containing x. Then x D limt!0 tz for all z 2X1 (see above). Let X 0 be a
second irreducible component ofX . ThenX1\X 0 is a nonempty closed subset of
X1 stable under T . Let z 2X1\X 0; then xD limt!0 tz 2X1\X

0. Therefore x
lies in X 0, and in every other irreducible component of X . Let X1; : : : ;Xn be the
irreducible components of X . Then Xi corresponds to a (minimal) prime ideal
pi �mx in A, and

T
i pi D 0 (because X is reduced). From the Krull intersection

theorem applied to the rings A=pi , we find that
T
j�0m

j � pi for all i , and soT
j�0m

j D 0. Now the same argument as in the irreducible case applies. 2

COROLLARY 13.42. Let 'WX! Y be a morphism of connected affine varieties
over k, equivariant with respect to actions of a torus T . If there is a smooth fixed
point x 2X.k/ such that ' is étale at x and the action of T on Tgtx.X/ is strictly
definite, then ' is an isomorphism.

PROOF. Because ' is étale at x, the image '.x/ of x in Y is smooth and the map
on tangent spaces d'WTgtx.X/! Tgt'.x/.Y / is an equivariant isomorphism. It
follows that there is a commutative diagram

X Y

Tgtx.X/ Tgt'.x/.Y /

'

d'

in which the vertical arrows are Luna maps, and hence isomorphisms. 2

Varieties with a definite torus action

Before proving the next theorem, we need a result from algebraic geometry.

LEMMA 13.43. Let Z be the closed subscheme of an affine scheme X defined
by an ideal I � O.X/. If X and Z are both smooth, then I=I 2 is a finitely
generated projective O.Z/-module.

PROOF. As O.X/ is noetherian, I is finitely generated as an O.X/-module, and
so its quotient I=I 2 is finitely generated as an O.X/=I -module. Let z 2Z. Let
mz be the ideal at z in O.X/ and nz the ideal at z in O.Z/. There is an exact
sequence

0! .I=I 2/˝O.Z/ �.z/!mz=m
2
z! nz=n

2
z! 0;

and so dim�.z/..I=I
2/˝O.Z/ �.z//D dimX �dimZ. In particular, the dimen-

sion of .I=I 2/˝O.Z/ �.z/ as a �.z/-vector space is independent of z. This
implies that I=I 2 is projective (CA 12.6). See also Hartshorne 1977, II, 8.17. 2
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Let X be a geometrically integral affine algebraic scheme over k with an
action of a split torus T . Then O.X/DLs2SO.X/s with S a submonoid of
X.T /. If the action of T on X is definite, then I def

D
L
s¤0O.X/s is an ideal

in O.X/ and Spm.O.X/=I / is the closed subscheme XT of X . Moreover, the
composite of the maps

O.X/0!O.X/!O.X/=I

is an isomorphism. In particular, we have a “retraction” map X ! XT . When
T is nonsplit, we still have a decomposition O.X/DO.X/0˚ I , and hence a
retraction map.

THEOREM 13.44. Let X be a smooth geometrically connected affine scheme
over k with an action of a split torus T . If the action of T onX is definite, then the
retraction map  WX!XT realizesX as a vector bundle overXT . More precisely,
every point x0 2XT has an open neighbourhood U such that the restriction of 
to �1.U / is isomorphic to the projection map U � .Tgtx0X/a! U :

X XU U � .Tgtx0X/a Xx0 .Tgtx0X/a

XG U x0

�

project

Luna

PROOF. Let ADO.X/, so that I D
L
s¤0As . According to Theorem 13.1, the

fixed scheme XT D Spm.A=I / is smooth. Therefore, the A0-module I=I 2 is
finitely generated and projective, and its rank is dimX �dimXT . The quotient
map I ! I /I 2 is a homomorphism of graded A-modules. Hence, As maps onto
.I=I 2/s for every nonzero s 2 S . The A0-module .I=I 2/s is projective because
it is a direct summand of I /I 2, and so the surjection As ! .I /I 2/s admits a
section s W.I /I 2/s! As . Let Es denote the image of s , and let E D

L
s¤0Es .

Then E is a graded A0-submodule of I such that I DE˚I 2. Now the graded
Nakayama lemma (13.39) shows that the map SymA0.E/! A defined by the
inclusion i WE ,! A is surjective. On the other hand, SymA0.E/ is an integral
domain over k of transcendence degree equal to

tr:deg:.A0/C rankA0.I=I
2/D dimXT C .dimX �dimXT /D dimX:

Therefore the map SymA0.E/ ! A is an isomorphism. We now have A0-
isomorphisms

SymA0.I=I
2/' SymA0.E/' A (90)

realizing X D Spm.A/ as a vector bundle over XT D Spm.A0/. As T acts as
a group of A0-linear automorphisms on the projective module I /I 2 and since
I /I 2!A is T -equivariant (because it preserves weights), the isomorphisms (90)
are T -equivariant, which proves the last assertion of the theorem.
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When we replace A0 with a suitable ring of fractions, then I=I 2 becomes
free, and in fact I=I 2 ' A0˝Tgtx0.X/

_. From this we obtain an isomorphism
SymA0.I=I

2/' A0˝�.x0/ Sym�.x0/
.Tgt

0
.X/_/. 2

NOTES. The terminology in 13.40 was suggested by Białynicki-Birula 1973, p. 482.
Theorem 13.44 is from Kambayashi and Russell 1982.

f. The Białynicki-Birula decomposition

DEFINITION 13.45. An action of a torus T on a scheme X over k is locally
affine if X admits a covering by T -invariant open affine subschemes.

Recall (7.26) that an action of a torus T on a scheme X is linear if there exists
a representation .V;r/ of G and a G-equivariant immersion X ! P.V /. The
next lemma shows that linear actions of split tori are locally affine.

LEMMA 13.46. Let .V;r/ be a finite-dimensional representation of a split torus
T . Then P.V / admits a covering by T -stable open affine subsets.

PROOF. Let fe1; : : : ; eng be a basis of eigenvectors for the action of T on V
and fe_1 ; : : : ; e

_
n g the dual basis (of V _). Then the sets D.e_i /

def
D fŒv� 2 P.V / j

e_i .v/¤ 0g form a covering with the required properties. 2

Let X be a scheme equipped with an action of Gm, and let x 2 X.k/. If
x is fixed by Gm, then Gm acts on the tangent space TgtxX , which therefore
decomposes into a direct sum

TgtxX D
M
i2Z

Tgtx.X/i

of eigenspaces (so t 2 T .k/ acts on Tgtx.X/i as multiplication by t i ). Let

TgtCx X D
M
i>0

.TgtxX/i (contracting subspace)

Tgt�x X D
M
i<0

.TgtxX/i .

THEOREM 13.47 (BIAŁYNICKI-BIRULA DECOMPOSITION). LetX be a smooth
algebraic variety over k equipped with a locally affine action of Gm.

(a) Let Z be a connected component of XGm . There exist a unique smooth
subvariety X.Z/ of X such that

X.Z/.ka/D fy 2X.ka/ j lim
t!0

ty exists and lies in Z.ka/g

and a unique regular map Z WX.Z/! Z sending y 2 X.Z/.ka/ to the
limit limt!0 ty 2Z.k

a/.



f. The Białynicki-Birula decomposition 273

(b) The map Z realizes X.Z/ as a fibre bundle over Z. More precisely, every
point z 2Z.k/ has an open neighbourhoodU such that the restriction of Z
to �1Z .U / is isomorphic over U to the projection U � .TgtCz .X/a! U .

(c) The topological space jX j is a disjoint union of the locally closed subsets
jX.Z/j as Z runs over the connected components of XGm .

PROOF. We prove this in the next section. 2

COROLLARY 13.48. Let X be a smooth algebraic variety over k with an action
of Gm, and let z 2 X.k/ be a fixed point for the action. There exists a unique
smooth closed subscheme X.z/ of X such that

X.z/.ka/D fx 2X.ka/ j lim
t!0

tx D zg:

Moreover, Tgtz.X.z// D TgtCz .X/, the fixed subscheme X.z/Gm D fzg, and
every Luna map X.z/! TgtCz .X/a is an isomorphism.

PROOF. Let Z be a connected component of XGm containing z. Then the fibre
X.z/ of X.Z/!Z over z has the required properties. 2

The following diagram illustrates the theorem and corollary:

X.Z/ X.Z/U U � .TgtCz X/a X.Z/z .TgtCz X/a

Z U z

�

project

Luna

We say that XGm is finite and constant if XGm is finite as a scheme over k
and XGm.k/DXGm.ka/. When X is smooth, this means that XGm is a constant
étale scheme.

COROLLARY 13.49. LetX be a smooth connected scheme over k with a locally
affine action of Gm such that XGm is finite and constant.

(a) For each x 2 XGm.k/, there is a unique smooth subscheme X.x/ of X
such that

X.x/.ka/D fy 2X.ka/ j lim
t!0

ty exists and equals xg.

The tangent space to X.x/ at x is the subspace TgtCx .X/ of Tgtx.X/, and
every Luna map X.x/! TgtCx .X/ is an isomorphism.

(b) The topological space jX j is a disjoint union of locally closed subsets
jX.x/j for x 2XG.k/.

(c) There is a unique x� 2 XGm.k/ (called the attracting point) such that
X.x�/ is open and dense in X , and a unique xC 2 XGm.k/ (called the
repelling point) such that X.xC/D fxCg.
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PROOF. Statement (a) is a special case of the theorem. The union in (b) is finite,
and each set X.x/ is open in its closure, and so there is a unique point x� such
that X.x�/ is dense in X . Note that, for x 2XGm ,

X.x/ is dense in X ” X.x/ is open in X

” Tgtx.X/D TgtCx .X/
” dim.X.x//D dim.X/:

By considering the reciprocal action (i.e., composing with t 7! t�1), we see
that there is a unique point xC such that TgtxC.X/D Tgt�x .X/. Note that, for
x 2X ,

Tgtx.X/D Tgt�x .X/ ” dim.X.xC//D 0 ” X.xC/D fx
C
g: 2

EXAMPLE 13.50. Let Gm act on X D Pn according to the rule

t .x0W � � � Wxi W � � � Wxn/D .t
r0x0W � � � W t

rixi W � � � W t
rnxn/.

If r0 > r1 > � � �> rn, then the fixed points are P0; : : : ;Pn with

Pi D .0W � � � W0W
i

1W0W � � � W0/:

We can write the action as

t .x0W � � � W1W � � � Wxn/D .t
r0�rix0W � � � W1W � � � W t

rn�rixn/,

on an affine open neighbourhood of Pi , and so

X.Pi /D f.x0W � � � Wxi�1W1W0W � � � W0/g ' Ai :

The Białynicki-Birula decomposition is

X DX.Pn/t � � �tX.P0/' Ant � � �tA0:

Here Pn is the attracting point and P0 is the repelling point.

LEMMA 13.51. Let T be a split torus and .V;r/ a finite-dimensional representa-
tion of T . There exists a cocharacter �WGm! T such that P.V /�.Gm/ D P.V /T .

PROOF. Write V as a sum of eigenspaces, V D
Lm
iD1V�i , with the �i distinct.

Let � be an element of X�.T / not lying on any of the finitely many hyperplanes
h�i ��j i

?, i ¤ j , in X�.T /Q. Then the integers h�;�i i, 1� i �m, are distinct,
and so �.Gm/ and T have the same eigenvectors in V , and hence the same fixed
points in P.V /. 2
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Let .V;r/ be a finite-dimensional representation of a split torus T . Let X be
a smooth connected closed subscheme of P.V / stable under T . Let � be as in the
lemma. On applying Theorem 13.47 to the action of �.Gm/ on X , we obtain for
each x 2XT .k/ a smooth subscheme X.x;�/ of X such that

X.x;�/.k0/D fy 2X.k0/ j lim
t!0

�.t/y exists and equals xg

for all fields k0 containing k; moreover, X.x;�/ is an affine space, isomorphic
to the contracting subspace of TgtxX for the action of �.Gm/. If XT is finite
and XT .k/DXT .ks/, then there exists a unique attracting fixed point x� and a
unique repelling point xC.

PROPOSITION 13.52. If XT is finite and constant, then, for every � as in 13.51,
there exists an x 2XT .k/ and a smooth open affine subscheme U.x/ of X such
that

U.x/.ka/D fy 2X.ka/ j x 2 T �yg.

Moreover, U.x/� Adim.X/.

PROOF. Let � be as in 13.51, so P.V /�.Gm/ D P.V /T . On applying 13.49, we
see that there exists a unique point x� 2 XT such that X.x�;�/ is open in X ;
moreover, Tgtx�.X/D TgtCx�.X/. We shall show that X.x�;�/ has the required
properties. We may suppose that k is algebraically closed.

Let y 2 X.k/. If limt!0�.t/y D x�, then x� 2 T �y, and so X.x�;�/ �
fy 2 X.k/ j x 2 T �yg. Conversely, let y 2 X.k/ be such that x 2 T �y. The
intersection X.x�;�/\T �y is then a nonempty open subset of T �y. We deduce
that X.x�;�/\Ty ¤ ;. As �.Gm/ commutes with T , the action of T leaves
X.x�;�/ stable, and so Ty �X.x�;�/. Therefore y 2X.x�;�/. 2

Recall (7.28) that a closed immersion X ,! P.V / is nondegenerate if X is
not contained in P.W / for any subrepresentation W of V .

PROPOSITION 13.53. Let .V;r/ be a finite-dimensional representation of a split
torus T , and letX be a smooth connected closed subscheme of P.V / stable under
T . Assume that the embedding X ! P.V / is nondegenerate and XT is finite
and constant. Let 	 be the set of characters of T occurring in V . Let � be a
cocharacter of T such that the integers h�;�i, � 2 	 , are distinct.

(a) Let �� 2 	 be such that h��;�i is minimum. Then V�� has dimension 1,
and the line V�� belongs to X . It is the unique attracting point of �.Gm/
in X .

(b) Let �C 2 	 be such that h�C;�i is maximum. Then V�C has dimension 1,
and the line V�C belongs to X . It is the unique repelling point of �.Gm/
in X .

PROOF. (a) Since the projective embedding X ! P.V / is nondegenerate, there
exists a line Œv� 2X with v D

P
�2	 v�, v� 2 V�, v�� ¤ 0. Then

lim
t!0

Œ�.t/v�D Œv�� �I
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in particular, x� D Œv�� � is a fixed point of X . The action of �.Gm/ on the
tangent space Tgtx�.P.V // has no dilating vectors. We deduce that x� is an
attracting fixed point of X because we know that X has only isolated fixed
points. Moreover, as X is irreducible, it is the unique attracting fixed point in
X . We deduce that, if Œv0�, v D

P
v0�, lies in X , then v0� 2 Œv��. Again, because

X ! P.V / is nondegenerate, dim.V��/D 2. We have also shown that the line
V�� belongs to X , and that it is the unique attracting fixed point of �.Gm/ in X .

(b) Apply (a) to ��. 2

PROPOSITION 13.54. Let T �X !X be an action of a split torus on a scheme
X , and let �WGm! T be a nontrivial homomorphism. Then X.x;�/DX.x;�ı
n/ for all n > 0.

PROOF. Clearly, limt!0�.t/y exists and equals x if and only if limt!0�.t
n/y

exists and equals x. 2

ASIDE 13.55. On combining the above results with Białynicki-Birula 1976, one obtains
the following variant of the decomposition theorem (Brosnan 2005, 3.2). Let X be a
smooth projective variety over k equipped with an action of Gm. Then there is a numbering
XGm D

Fn
iD1Zi of the set of connected components of the (smooth closed) fixed point

scheme, a filtration

X DXn �Xn�1 � �� � �X0 �X�1 D ;;

and affine fibrations 'i WXi XXi�1!Zi . The relative dimension ai of the affine fibration
'i is the dimension of TgtCz .X/ for any z inZi , and the dimension ofZi is the dimension
of TgtzX

Gm .

NOTES. Theorem 13.47 was proved in the context of varieties over algebraically closed
fields in Białynicki-Birula 1973 and extended to schemes in Hesselink 1981.

g. Proof of the Białynicki-Birula decomposition

Let X be a separated algebraic scheme over k equipped with an action � of Gm,
and let Z be a Gm-stable closed subscheme Z of X . The concentrator functor
˚ sends an affine k-scheme U to the set ˚.U / of morphisms 'WA1�U !X of
k-schemes such that

(a) the restriction of ' to Gm�U is Gm-equivariant, i.e.,

'.a;u/D a �'.1;u/, all a 2Gm.R/, u 2 U.R/I

(b) the restriction of ' to 0�U factors through Z.
We say that ˚ is representable if there exists a universal pair .Y;'/ satisfying (a)
and (b). This means that Y is a scheme over k (not necessarily affine) and ' is a
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morphism A1�Y !X satisfying (a) and (b) and such that, for every h 2 ˚.U /,
there is a unique morphism ˛WU ! Y such that hD .id�˛/ı':

U A1�U

Y A1�Y X

9Š˛ id�˛ h

f

Then Y is called the concentrator scheme, and the maps

i WY !X equal to Y ' 1�Y
'
�!X

pWY !Z equal to Y ' 0�Y
'
�!Z

are called the realization morphisms. For y 2 Y.k/, p.y/D limt!0 t � i.y/:

EXAMPLE 13.56. Let X D P1 with Gm acting by t .x0Wx1/D .x0W tx1/, and let
Z be the subscheme P1. The fixed points are 0D .1W0/ and1D .0W1/. The
concentrator scheme is A1tf1g with i the obvious morphism to P1 and p the
morphism sending A1 to 0 and1 to1. Note that i tpWA1t1! P1 is not an
immersion, and i is not a closed immersion.

REMARK 13.57. A ' 2 ˚.U / is determined by its restriction 'j to Gm �U
because Gm is schematically dense in A1, and 'j is determined by the element
'j1�U of X.U /. Using this, one sees that ˚ is isomorphic to the functor ˚ 0

sending a k-algebra R to the set of points x 2 X.R/ such that �x WGmR! XR
extends to an R-morphism A1R ! XR mapping 0R into ZR. In other words,
x 2X.R/ if limt!0 t �x exists and lies in Z.R/. In particular, if X is affine, then
˚ is represented by concentrator scheme X.Z/ in the sense of Definition 13.21.

PROPOSITION 13.58. Let X be a separated scheme over k equipped with an
action of Gm, and let Z be a Gm-stable closed subscheme Z of X . If .X;�/ is
locally affine, then the concentrator functor ˚ is representable by a scheme X.Z/
with an action of A1; moreover, the morphism i WX.Z/!X is a local immersion
and the morphism pWX.Z/!Z is affine.

PROOF. To prove that a functor is representable, we must show (a) that it is local
and (b) that it admits a finite covering by open subfunctors each of which is
representable by an affine scheme (A.34). That ˚ is local follows easily from its
definition. Let X D

S
Xi be an open covering of X by G-invariant open affine

subschemes, and let Zi DZ\Xi . The concentrator functor ˚i of .Xi ;Zi / is an
open subfunctor of ˚i , and is representable by an affine schemeX.Z/i DXi .Zi /
(see 13.57). Therefore ˚ is represented by a scheme X.Z/. The X.Z/i form
an open affine covering of X.Z/, and the restriction of i to X.Z/i is a closed
immersion into Xi . Therefore i is locally an immersion. The schemes Zi form
an open affine covering of Z, and p�1.Zi / is the affine scheme Yi . Therefore p
is affine. 2
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We now prove Theorem 13.47. Let .X;�/ be as in the statement of the
theorem and let Z be a connected component of XGm . As in the proof of
Proposition 13.58, we let X D

S
Xi be an open covering of X by G-invariant

open affine subschemes, and we let Zi D Z\Xi . Part (a) of the theorem was
proved in Proposition 13.58. Moreover, it is clear from its proof that, for (b), we
may suppose that X is affine. Now X.Z/ is the concentrator scheme in the sense
of Definition 13.21, but we also know from Remark 13.57 that it represents the
functor ˚ . In particular, it has an action of A1 extending the action of Gm that
it acquires as a subscheme of X . This implies that the action of Gm on X.Z/
is definite, i.e., O.X.Z//DLn2NO.X.Z//n. Thus (b) of the theorem follows
from Theorem 13.44. Finally, (c) of the theorem is obvious.

Exercises

EXERCISE 13-1. Consider the action

t .x0Wx1Wx2Wx3/D .t
r0x0W t

r1x1W t
r2x2W t

r3x3/

of Gm on P2. Compute the Białynicki-Birula decomposition of P2 in each of the
following cases:

(a) r0 D r1 > r2 > r3; (b) r0 > r1 D r2 > r3; (c) r0 > r1 > r2 D r3.



CHAPTER 14

Unipotent Algebraic Groups

Recall that all algebraic groups are affine over a base field k.

a. Preliminaries from linear algebra

Recall that an element r of a ring is unipotent if r � 1 is nilpotent. An endo-
morphism of a finite-dimensional vector space V is unipotent if and only if its
characteristic polynomial is .T �1/dimV . These are exactly the endomorphisms
of V whose matrix relative to some basis of V lies in

Un.k/
def
D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�
1 � � : : : �

0 1 � : : : �

0 0 1 : : : �
:::

:::
: : :

:::

0 0 0 � � � 1

�9>>>>>>=>>>>>>;
:

PROPOSITION 14.1. Whenever an abstract group G acts on a nonzero finite-
dimensional vector space V by unipotent endomorphisms, there is a nonzero
vector fixed by G.

PROOF. We use the double centralizer theorem (Lang 2002, XVII, 3.5):
Let M be a faithful left module over a ring A (not necessarily com-
mutative), and let C D EndA.M/. If M is simple as an A-module
and finitely generated as a C -module, then EndC .M/D A.

Being fixed by G is a linear condition, and so we may replace k with its algebraic
closure.1 We may also replace V with a simple submodule. We now have to
show that V D V G . Let A be the k-subalgebra of Endk.V / generated by G.

1For any representation .V;r/ of an abstract groupG, the subspace VG of V is the intersection
of the kernels of the linear maps v 7! gv�vWV ! V (g 2G). It follows that .V ˝ka/Gka '

VG˝ka, and so .V ˝ka/Gka ¤ 0) VG ¤ 0:

279
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As V is simple as an A-module and k is algebraically closed, EndA.V / D k
(cf. 4.20). Therefore, A D Endk.V /. The k-subspace J of A spanned by the
elements g� idV , g 2G, is a two-sided ideal in A. Because A is a simple algebra
over k (it is isomorphic to Mn.k/), either J D 0, and the proposition is proved,
or J D A. But every element of J has trace zero because G acts by unipotent
endomorphisms, and so J ¤ A. 2

COROLLARY 14.2. In the situation of the proposition, there exists a basis of V
for which G acts through Un.k/.

PROOF. Let e1 be a nonzero element of V fixed by G. Then G acts on V=he1i
by unipotent endomorphisms, and so there is an element e2 of V whose image in
V=he1i is nonzero and fixed by G. Continuing in this fashion, we obtain a basis
fe1; e2; ; : : : ; eng for V with the required property. 2

b. Unipotent algebraic groups

Recall (6.45) that an algebraic group G is unipotent if every nonzero represent-
ation of G has a nonzero fixed vector. Equivalently, G is unipotent if its only
simple representations are one-dimensional spaces with the trivial action. In
terms of the associated comodule .V;�/, the condition V G ¤ 0 means that there
exists a nonzero vector v 2 V such that �.v/D v˝1 (see 4.33).

As every representation is a union of finite-dimensional representations (4.8),
it suffices to check the conditions for finite-dimensional representations.

A finite-dimensional representation .V;r/ of an algebraic group G is said
to be unipotent if there exists a basis of V for which r.G/� Un. Equivalently,
.V;r/ is unipotent if there exists a flag V D Vm � �� � � V1 � 0 stable under G
and such that G acts trivially on each quotient ViC1=Vi .

PROPOSITION 14.3. An algebraic group G is unipotent if and only if every
finite-dimensional representation .V;r/ of G is unipotent.

PROOF. Let .V;r/ be a finite-dimensional representation of G with V ¤ 0.
Suppose thatG is unipotent, and let V D Vm � �� � � V1 � 0 be a composition

series for V , i.e., a maximal subnormal series for V as aG-module. Each quotient
ViC1=Vi is simple, and so G acts trivially on it. Therefore .V;r/ is unipotent.

Suppose that .V;r/ is unipotent, and let V D Vm � �� � � V1 � 0 be as in the
definition. In particular, G acts trivially on V1, which we may suppose to be
nonzero. Now V G � V1 ¤ 0. Therefore G is unipotent. 2

We next prove that every algebraic subgroup of Un is unipotent. In particular,
Ga is unipotent and, in characteristic p, its subgroups p̨ and Z=pZ are unipotent.



b. Unipotent algebraic groups 281

DEFINITION 14.4. A Hopf algebra .A;�/ over k is coconnected if there exists
a filtration C0 � C1 � C2 � �� � of A by subspaces Ci such that28̂̂<̂

:̂
C0 D k,S
r�0Cr D A,

�.Cr /�
Xr

iD0
Ci ˝Cr�i :

(91)

THEOREM 14.5. The following conditions on an algebraic group G are equival-
ent:

(a) G is unipotent;

(b) G is isomorphic to an algebraic subgroup of Un for some n;

(c) the Hopf algebra O.G/ is coconnected.

PROOF. (a))(b). Apply Proposition 14.3 to a faithful finite-dimensional repres-
entation of G (which exists by 4.9).

(b))(c): Every quotient of a coconnected Hopf algebra is coconnected
because the image of a filtration satisfying (91) will still satisfy (91), and so it
suffices to show that O.Un/ is coconnected. Recall that O.Un/' kŒXij j i < j �,
and that

�.Xij /DXij ˝1C1˝Xij C
X
i<l<j

Xil ˝Xlj : (92)

Assign a weight of j � i toXij , so that a monomial
Q
X
nij
ij has weight

P
nij .j �

i/, and let Cr be the subspace spanned by the monomials of weight � r . Clearly,
C0D k,

S
r�0Cr DA, and CiCj �CiCj . It remains to check the third condition

in (91), and it suffices to do this for the monomials in Cr . For the Xij the
condition can be read off from (92). We proceed by induction on the weight of
a monomial. If the condition holds for monomials P , Q of weights r , s, then
�.PQ/D�.P /�.Q/ lies in�X

i
Ci ˝Cr�i

��X
j
Cj ˝Cs�j

�
�

X
i;j

�
CiCj ˝Cr�iCs�j

�
�

X
i;j
CiCj ˝CrCs�i�j ,

as required.
(c))(a). Assume that ADO.G/ is coconnected, say, AD

S
r�0Cr , and let

�WV ! V ˝A be an A-comodule. Then V is a union of the subspaces

Vr
def
D fv 2 V j �.v/ 2 V ˝Crg.

2This definition is probably as mysterious to the reader as it is to the author. Basically, it is the
condition that you arrive at when looking at Hopf algebras with only one group-like element (so the
corresponding affine group has only the trivial character). See Sweedler 1967.
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If V0 contains a nonzero vector v, then �.v/ D v0˝ 1 for some vector v0; on
applying �, we find that v D v0, and so v is a fixed vector. To complete the proof,
it suffices to show that

Vr D 0 H) VrC1 D 0;

because then V0 D 0 H) V D 0. By definition, �.VrC1/� V ˝CrC1, and so

..id˝�/ı�/.VrC1/� V ˝
X

i
Ci ˝CrC1�i :

Hence .id˝�/ı� maps VrC1 to zero in V ˝A=Cr ˝A=Cr . We now use that
.id˝�/ı�D .�˝ id/ı�. If Vr D 0, then the map V ! V ˝A=Cr defined by �
is injective, and also the map V ! .V ˝A=Cr /˝A=Cr defined by .�˝ id/ı�
is injective; hence VrC1 D 0. 2

COROLLARY 14.6. An algebraic group is unipotent if and only if it admits a
faithful unipotent representation.

PROOF. Restatement of the equivalence of (a) and (b). 2

COROLLARY 14.7. Subgroups, quotients, and extensions of unipotent algebraic
groups are unipotent.

PROOF. For quotients and extensions, this was proved in 6.45. As a unipo-
tent group admits a faithful unipotent representation, so does every algebraic
subgroup. 2

COROLLARY 14.8. Every algebraic group contains a largest smooth connected
normal unipotent subgroup.

PROOF. Apply Proposition 6.42. 2

The unipotent subgroup in the corollary may not stay “largest” with extension
of the base field (6.48).

COROLLARY 14.9. Let G be an algebraic group over k, and let k0 be an ex-
tension of k. Then G is unipotent over k if and only if Gk0 is unipotent over
k0.

PROOF. IfG is unipotent, then O.G/ is coconnected (14.9). But then O.G/˝k0
is obviously coconnected, and so Gk0 is unipotent. Conversely, suppose that Gk0
is unipotent, and let .V;r/ be a representation ofG. Then .V ˝k0/Gk0 ' V G˝k0

(see 4.34), and so V G is nonzero if .V ˝k0/Gk0 is nonzero. 2

COROLLARY 14.10. Let G be an algebraic group over a perfect field k. If G is
unipotent, then all elements of G.k/ are unipotent, and the converse is true when
G.k/ is dense in G (as a scheme).
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PROOF. Let .V;r/ be a faithful finite-dimensional representationG (which exists
by 4.9). If G is unipotent, then r.G/� Un for some basis of V (see 14.3), and
so r.g/ is unipotent for every g 2 G.k/; this implies that g is unipotent (9.19).
Conversely, if the elements of G.k/ are unipotent, then they act unipotently on V ,
and so there exists a basis of V for which r.G.k//� Un.k/ (see 14.2). Because
G.k/ is dense in G, this implies that r.G/� Un. 2

COROLLARY 14.11. An algebraic subgroup G of GLV is unipotent if there
exists a subgroup of G.k/ that is dense in G (as a scheme) and consists of
unipotent endomorphisms.

PROOF. Let S be such a subgroup. There exists a basis of V for which S �Un.k/
(see 14.2). Then S � .Un\G/.k/, and so Un\G DG. Therefore G � Un. 2

COROLLARY 14.12. A smooth algebraic group G is unipotent if and only if the
elements of G.ka/ are unipotent.

PROOF. As G is smooth, G.ka/ is dense in G. If its elements are unipotent,
then Gka is unipotent (14.10), and so G is unipotent (14.9). Conversely, if G
is unipotent, then Gka is unipotent (14.9), and so the elements of G.ka/ are
unipotent (14.10). 2

The last corollary fails for nonsmooth G. For example, �p is not unipotent
even though �p.ka/ consists of unipotent elements if char.k/D p.

EXAMPLE 14.13. Let G be a smooth algebraic group and � a cocharacter of G.
The subgroup U.�/ of G (see 13.29) is unipotent because, as we saw in the proof
of Theorem 13.33, it can be realized as an algebraic subgroup of Un.

The proof of Theorem 14.5 follows Waterhouse 1979, 8.3.

PROPOSITION 14.14. A finite étale algebraic group G is unipotent if and only
if its order is a power of the characteristic exponent of k.

PROOF. We may suppose that k is algebraically closed (14.9), and hence that G
is constant. Let p be the characteristic exponent of k. If G is not a p-group, then
it contains a nontrivial subgroup H of order prime to p. According to Maschke’s
theorem, every nonzero finite-dimensional representation of H is semisimple,
and so there exist nontrivial simple representations. Hence H is not unipotent,
and it follows that G is not unipotent (14.7). Conversely, a finite p-group over
a field of characteristic p has no nontrivial simple representations (Lang 2002,
XVIII, Exercise 13), and so such a group is unipotent. 2

COROLLARY 14.15. LetG be an algebraic group over k. IfG is unipotent, then
�0.G/ has order a power of the characteristic exponent of k; in particular, G is
connected if k has characteristic zero.

PROOF. As �0.G/ is a quotient of G, it is unipotent, and so we can apply the
proposition. 2
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PROPOSITION 14.16. An algebraic group that is both multiplicative and unipo-
tent is trivial.

PROOF. Let G be an algebraic group, and let .V;r/ be a faithful finite-dimen-
sional representation ofG. IfG is multiplicative, then V is a direct sum of simple
representations (12.30); if G is also unipotent, then the action of G on each of
the simple representations is trivial; and so G is trivial. 2

COROLLARY 14.17. The intersection of a unipotent algebraic subgroup of an
algebraic group with an algebraic subgroup of multiplicative type is trivial.

PROOF. Both properties are inherited by subgroups (12.9, 14.7). 2

COROLLARY 14.18. There are no nontrivial homomorphisms over k
(a) from a unipotent algebraic group to an algebraic group of multiplicative

type, or

(b) from an algebraic group of multiplicative type to a unipotent algebraic
group.

PROOF. In both cases, the image is both unipotent and multiplicative (12.9,
14.7). 2

We saw in Exercise 1-1 that (a) fails over rings with nilpotents. In Proposition
15.18 below, we shall show that (b) remains true over all k-algebras R.

EXAMPLE 14.19. The map a 7!
�
1 a
0 1

�
realizes Ga as an algebraic subgroup

of U2, and so Ga is unipotent. Therefore all algebraic subgroups of Ga are
unipotent; for example, in characteristic p ¤ 0, the groups p̨ and .Z=pZ/k are
unipotent. These examples show that a unipotent algebraic group need not be
smooth or connected in nonzero characteristic.

EXAMPLE 14.20. Let k be a nonperfect field of characteristic p ¤ 0, and let
t 2 kXkp . The algebraic subgroup G of Ga�Ga defined by the equation

Y p DX � tXp

becomes isomorphic to Ga over kŒt
1
p �, but it is not isomorphic to Ga over k.

To see this, we use that G is canonically an open subscheme of the complete
regular curve C with function field the field of fractions of O.G/ (see 20.2 below).
The complement of G in C consists of a single point with residue field kŒt

1
p �.

For G D Ga, the same construction realizes G as an open subset of P1 whose
complement consists of a single point with residue field k (see 14.57).

PROPOSITION 14.21. Every unipotent algebraic group admits a central normal
series whose quotients are isomorphic to algebraic subgroups of Ga. In particular,
every unipotent algebraic group is nilpotent (a fortiori solvable).
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PROOF. Embed the unipotent algebraic group G in Un. Recall (6.49) that Un
has a central series

Un D U .0/n � �� � � U
.r/
n � U

.rC1/
n � �� � � U .m/n D e; mD

n.n�1/

2
;

whose quotients are canonically isomorphic to Ga. The intersection of such a
series with G has the required properties (see 6.2). 2

For example, every form of Ga is an extension of Ga by a finite subgroup of
Ga (see 14.57).

PROPOSITION 14.22. An algebraic group G is unipotent if and only if every
nontrivial algebraic subgroup of it admits a nontrivial homomorphism to Ga.

PROOF. Let G be a unipotent algebraic group. Every algebraic subgroup of G
is unipotent (14.7), and Proposition 14.21 shows that every nontrivial unipotent
algebraic group admits a nontrivial homomorphism to Ga.

Conversely, suppose that all algebraic subgroups of G admit homomorphisms
to Ga. In particular, G admits a nontrivial homomorphism to Ga, whose kernel
we denote by G1. If G1 ¤ 1, then (by hypothesis) it admits a nontrivial homo-
morphism to Ga, whose kernel we denote by G2. Continuing in this fashion, we
obtain a subnormal series whose quotients are algebraic subgroups of Ga. The
series terminates in e because the algebraic subgroups ofG satisfy the descending
chain condition (1.42). Now Corollary 14.7 shows that G is unipotent. 2

PROPOSITION 14.23. Let G be a connected algebraic group, and let N be the
kernel of the adjoint representation AdWG! GLg (see 10.23). Then N=Z.G/ is
unipotent.

PROOF. We may suppose that k is algebraically closed (14.9). Let Oe DO.G/e
(the local ring at the identity element), and let me be its maximal ideal. The action
of G on itself by conjugation defines a representation of G on the k-vector space
Oe=m

nC1
e for all n (see 8.10). The representation on me=m

2
e is the contragredient

of the adjoint representation (10.20), and soN acts trivially on me=m
2
e . It follows

that N acts trivially on each of the quotients mie=m
iC1
e . For n sufficiently large,

the representation rn of N=Z.G/ on Oe=m
nC1 is faithful (8.10). As N=Z.G/

acts trivially on the quotients mie=m
iC1
e of the flag

Oe=m
nC1
�me=m

nC1
�m2e=m

nC1
� �� � ;

it is unipotent (14.6). 2

REMARK 14.24. (a) In characteristic zero, the only algebraic subgroups of Ga
are e and Ga itself. To see this, note that a proper algebraic subgroup of Ga must
have dimension 0; hence it is étale (3.24), and hence is trivial (14.14).

(b) We saw in Proposition 14.21 that every unipotent algebraic group is
nilpotent. Conversely, every connected nilpotent algebraic group G contains a
largest subgroup Gs of multiplicative type; the group Gs is characteristic and
central, and the quotient G=Gs is unipotent (16.47 below).
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PROPOSITION 14.25. Every connected group variety of dimension one is com-
mutative.

PROOF. We may suppose that k is algebraically closed. Let G be a connected
group variety of dimension one. IfG.k/�Z.G/.k/, thenG �Z.G/, as claimed.
Otherwise, there exists a noncentral element g in G.k/, and we consider the
morphism x 7! xgx�1WG!G. The image I of this map is connected and¤ e,
and so I.k/ is infinite and dense. Therefore I contains an open subset of G (see
A.15), and so G.k/X I.k/ is finite. Embed G into GLV , and consider the map
G.k/! kdimV sending an element ofG.k/ to the coefficients of its characteristic
polynomial. This map is constant on I.k/, and so it takes only finitely many
values as x runs over G.k/. As G.k/ is connected and the map is continuous,
the characteristic polynomials are constant, and equal det.T � e/D .T �1/dimV .
Hence G is unipotent (14.12) and solvable (14.21). In particular the derived
group DG of G is a proper subgroup of G. As DG is a connected group variety
(6.19), this implies that DG D e, which contradicts the existence of a noncentral
g. 2

PROPOSITION 14.26. Let U be a unipotent subgroup (not necessarily normal)
of an algebraic group G. Then G=U is isomorphic to a subscheme of an affine
space (i.e., it is quasi-affine).

PROOF. According to Chevalley’s theorem (4.27), there exists a representation
.V;r/ of G such that U is the stabilizer of a one-dimensional subspace L of V .
As U is unipotent, it acts trivially on L, and so V U D L. When we regard r as
an action of G on Va, the isotropy group at any nonzero element of L is U , and
so the map g 7! gx is an immersion G=U ! Va (see 7.17). 2

NOTES. Traditionally, a group variety G is said to be unipotent if its elements in some
(large) algebraically closed field are unipotent (Springer 1998, p. 36). This agrees with
our definition (by 14.12).

Demazure and Gabriel (1970, IV, �2, 2.1) define a group scheme G over k to be
unipotent if it is affine and if, for all closed subgroupsH ¤ e ofG, there exists a nontrivial
homomorphism H !Ga. For algebraic group schemes, this agrees with our definition
(by 14.22).

SGA 3 (XVII, 1.1, 1.4) defines an algebraic group over k to be unipotent if it admits a
subnormal series over ka whose quotients are isomorphic to algebraic subgroups of Ga.
This is agrees with our definition (by 14.7, 14.9, 14.21).

c. Unipotent elements in algebraic groups

All representations (and vector spaces) in this section are finite-dimensional.

DEFINITION 14.27. Let G be an algebraic group over k. An element u of G.k/
is unipotent if r.u/ is unipotent for all finite-dimensional representations r of G.



c. Unipotent elements in algebraic groups 287

When k is perfect, this agrees with the definition in 9.19. If G is unipotent,
then all elements of G.k/ are unipotent because all representations of G are
unipotent (14.3). Conversely, if G is smooth and all elements of G.ka/ are
unipotent, then G is unipotent (14.12).

14.28. Let V be a vector space over a field k of characteristic zero, and let R
be a k-algebra. For a nilpotent endomorphism N of the R-module VR, we define

exp.N /D I CN CN 2=2ŠCN 3=3ŠC�� � .

It is an automorphism of VR with inverse exp.�N/. For a unipotent endomorph-
ism u of VR, we define

log.u�1/D .u�1/� .u�1/2=2C .u�1/3=3�� � � :

It is a nilpotent endomorphism of VR, and exp and log are inverse maps.

14.29. Let V be a vector space over a field k of characteristic zero. If r is a
representation of Ga on V , then uD r.1/ is a unipotent endomorphism of V and
N D log.u/ is a nilpotent endomorphism. The representation r can be recovered
from N because

r.t/D exp.tN /:

In this way, we obtain one-to-one correspondences between (a) representations r
of Ga on V , (b) unipotent endomorphisms u of V , and (c) nilpotent endomorph-
isms N of V .

14.30. Let G be an algebraic group over a field k of characteristic zero, and let
'WGa!G be a homomorphism. Then uD '.1/ is a unipotent element of G.k/.
Conversely, let u be a unipotent element of G.k/. Let R be a k-algebra, and let
t 2R. For a representation .V;rV / of G, define

�V .t/D exp.t log.rV .u/�1//:

The family .�V .t//V satisfies the conditions of Theorem 9.2, and so there exists
a unique g 2G.R/ such that �V .t/D rV .g/ for all representations V . The map
t 7! gWR! G.R/ is a homomorphism natural in R, and so it arises from a
homomorphism of algebraic groups 'WGa!G. In this way, we get a one-to-one
correspondence between homomorphisms 'WGa! G and unipotent elements
u of G.k/: to ', we attach the unipotent element uD '.1/; to u, we attach the
homomorphism ' such that

rV .'.t//D exp.t log.rV .u/�1//

for all t 2Ga.R/ and representations .V;rV / of G.
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d. Unipotent algebraic groups in characteristic zero

In this section, k is a field of characteristic zero.
Recall (2.6) that, for a finite-dimensional vector space V , Va is the algebraic

group representing the functor R R˝V . Recall also that Lie.GLV /D glV ,
that Lie.GLn/D gln, and that Lie.Un/ is the Lie subalgebra

nn
def
D f.cij / j cij D 0 if i � j g

of gln (see 10.8).

14.31. Let G be a unipotent algebraic group over k. A finite-dimensional
representation .V;rV / of G defines a representation drV Wg! glV of g. For a
suitable choice of a basis for V , the image of rV is contained in Un (see 14.3);
then the image of drV is contained in Lie.Un/D nn, and so consists of nilpotent
endomorphisms. Let X 2 R˝ g for some k-algebra R. Then drV .X/ is a
nilpotent endomorphism of R˝V , and so there is a well-defined endomorphism
exp.drV .X// of R˝V . For a fixed X 2 R˝g, these maps have the following
properties:

(a) for all representations .V;rV / and .W;rW / of G,

exp.drV˝W .X//D exp.drV .X//˝ exp.drW .X//I

(b) if G acts trivially on V , then exp.drk.X// is the identity map;

(c) for all G-equivariant maps uW.V;rV /! .W;rW /,

exp.drW .X//ıuR D uR ı exp.drV .X//:

According to Theorem 9.2, there is a (unique) element exp.X/ 2G.R/ such that

rV .exp.X//D exp..drV /.X//

for all .V;rV /. On varying X , we obtain a map expWR˝g!G.R/ for each R.
These maps are natural in R, and hence (by the Yoneda lemma) they define a
morphism of schemes

expWga!G.

One checks directly that, for X 2R˝g and g 2G.R/;

g � exp.X/ �g�1 D exp.Ad.g/.X//

Ad.exp.X//D 1C ad.X/C ad.X/2=2ŠC ad.X/3=3ŠC�� � :

Moreover, if X;Y 2 gR are such that ŒX;Y �D 0, then

exp.XCY /D exp.X/ � exp.Y /. (93)

For X 2R˝g,
exp."X/D e"X 2G.RŒ"�/.
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For a homomorphism 'WG!H of algebraic groups, the diagram

ga G

ha H

d'

exp

'

exp

commutes.

PROPOSITION 14.32. For all unipotent algebraic groupsG, the exponential map

expWLie.G/a!G

is an isomorphism of schemes. When G is commutative, it is an isomorphism of
algebraic groups.

PROOF. For G DGa, both statements can be checked directly from the defini-
tions.

In general, G admits a central normal series whose quotients are subgroups
of Ga (see 14.21), and hence equal Ga (14.24). In particular G contains a copy
of Ga in its centre if dimG > 0. We assume (inductively) that the first statement
of the proposition holds for G=Ga, and deduce it for G.

Consider the diagram

Lie.G/a G

.Lie.G/=Lie.Ga//a G=Ga:

exp

exp

The vertical maps are faithfully flat. Moreover, Lie.G/a is a Lie.Ga/a-torsor
over the base, andG is a Ga-torsor overG=Ga. As the bottom horizontal arrow is
an isomorphism (induction) and the top arrow is equivariant for the isomorphism
expWLie.Ga/a!Ga, this shows that the top arrow is an isomorphism (2.71).

For the second statement, if G is commutative, then so also is g, and (93)
shows that exp is an isomorphism. 2

COROLLARY 14.33. The functor G Lie.G/ is an equivalence from the cat-
egory of commutative unipotent algebraic groups to that of finite-dimensional
k-vector spaces, with quasi-inverse V  Va:

PROOF. The two functors are quasi-inverse because, for each commutative unipo-
tent algebraic groupG, Lie.G/a'G (see 14.32), and for each finite-dimensional
vector space V , Lie.Va/' V (10.9). 2

In particular, every commutative unipotent group over k is isomorphic to Gra
for some r , and the only algebraic subgroups of Ga are e and Ga itself.

It remains to describe the group structure on ga 'G when G is not commut-
ative. For this, we shall need some preliminaries.
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14.34. A finite-dimensional Lie algebra g is said to be nilpotent if it admits a
filtration

gD a0 � a1 � �� � � ar�1 � ar D 0

by ideals such that Œg;ai �� aiC1 for all i . Note that then

Œx1; Œx2; : : : Œxr ;y� : : :��D 0

for all x1; : : : ;xr ;y 2 g; in other words,

ad.x1/ı � � � ı ad.xr /D 0

for all x1; : : : ;xr 2 g. We shall need the following two statements:
(a) let �Wg! glV be a representation of a Lie algebra g; if �.g/ consists

of nilpotent endomorphisms, then there exists a basis of V for which
�.V /� nn (Engel’s theorem; Jacobson 1962, II, 3);

(b) every finite-dimensional Lie algebra admits a finite-dimensional faithful
representation; when g is nilpotent, .V;�/ can be chosen so that �.g/
consists of nilpotent endomorphisms (Ado–Iwasawa theorem; Jacobson
1962, VI).

14.35. Let

exp.U /D 1CU CU 2=2CU 3=3ŠC�� � 2QŒŒU ��:

The Campbell–Hausdorff series3 is a formal power series H.U;V / in the non-
commuting symbols U and V with coefficients in Q such that

exp.U / � exp.V /D exp.H.U;V //:

It can be defined as
log.exp.U / � exp.V //;

where

log.T /D log.1� .1�T //D�
�
1�T

1
C
.1�T /2

2
C
.1�T /3

3
C�� �

�
.

Write
H.U;V /D

X
m�0

Hm.U;V /

with Hm.U;V / a homogeneous polynomial of degree m. Then

H 0.U;V /D 0

H 1.U;V /D U CV

H 2.U;V /D
1

2
ŒU;V �D

1

2
.adU/.V /

3Bourbaki writes “Hausdorff”, Demazure and Gabriel write “Campbell–Hausdorff”, and others
write “Baker–Campbell–Hausdorff”.
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and Hm.U;V /, m� 3, is a sum of terms each of which is a scalar multiple of

ad.U /rad.V /s.V /; rC s Dm;

or
ad.U /rad.V /s.U /; rC s Dm�1;

(Bourbaki 1972, II, �6, no. 4, Thm 2). Here

ad.V /.U / def
D ŒV;U �

def
D V U �UV:

For a nilpotent matrix X in Mn.k/,

exp.X/ def
D 1CXCX2=2CX3=3ŠC�� �

is a well-defined element of GLn.k/. If X;Y 2 nn, then ad.X/n D 0D ad.Y /n,
and so Hm.X;Y /D 0 for all m sufficiently large; therefore H.X;Y / is a well-
defined element of nn, and

exp.X/ � exp.Y /D exp.H.X;Y //:

PROPOSITION 14.36. Let G be a unipotent algebraic group. Then

exp.x/ � exp.y/D exp.H.x;y// (94)

for all k-algebras R and x;y 2 gR.

PROOF. We may identify G with an algebraic subgroup of GLV (V a finite-
dimensional k-vector space). Then g� nn for a suitable basis of V (see 14.31),
and so, for x;y 2 gR,

H.x;y/
def
D

X
Hm.x;y/

is a well-defined element of g, and (94) holds because it holds in nn. 2

THEOREM 14.37. (a) Let g be a finite-dimensional nilpotent Lie algebra g over
k. The maps

.x;y/ 7!H.x;y/Wg.R/�g.R/! g.R/ (R a k-algebra)

make ga into a unipotent algebraic group over k.
(b) The functor g ga defined in (a) is an equivalence from the category

of finite-dimensional nilpotent Lie algebras over k to the category of unipotent
algebraic groups, with quasi-inverse G Lie.G/.

PROOF. (a) For the Lie algebra nn, Proposition 14.36 shows that the maps make
.nn/a into the algebraic group Un. It follows that the maps make every Lie
subalgebra of g into an algebraic subgroup of Un. Now the theorems of Ado and
Engel show that every nilpotent Lie algebra arises as a subalgebra of nn for some
n.

(b) The two functors are quasi-inverse: Lie.ga/' g and Lie.G/a 'G. 2
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COROLLARY 14.38. Every Lie subalgebra g of glV consisting of nilpotent en-
domorphisms is the Lie algebra of an algebraic group (V finite-dimensional).

PROOF. According to Engel’s theorem, g is nilpotent, and so gD Lie.ga/. 2

ASIDE 14.39. (a) Theorem 14.37 reduces the problem of classifying unipotent algebraic
groups in characteristic zero to that of classifying nilpotent Lie algebras. In dimensions
greater than 6, there are families of nilpotent Lie algebras depending on parameters, and
so the classification becomes a question of studying the moduli schemes. Up to dimension
6, there are complete lists (see, for example, de Graaf 2007).

(b) Some of the above theory holds also in characteristic p for “large p”. Moreover,
under some hypotheses on G and k, there are Springer isomorphisms of algebraic varieties
Gu! gn, where Gu (resp. gn) is the reduced subscheme of G (resp. ga) whose points
are the unipotent (resp. nilpotent) elements. See the discussions in Balaji et al. 2016, 2.2,
and McNinch 2005, �4,

NOTES. This section follows DG, IV, �2, no. 4.

e. Unipotent algebraic groups in nonzero characteristic

In this section, k is a field of characteristic p ¤ 0. We let � denote the endo-
morphism x 7! xp of k, and we let k� ŒF � denote the ring of polynomials

c0C c1F C�� �C cmF
m; ci 2 k;

with multiplication defined by

Fc D c�F; c 2 k:

When we set xŒp� D Fx, a k� ŒF �-module becomes a p-Lie algebra with trivial
bracket (see 10.39).

Recall (2.1) that O.Ga/D kŒT � with �.T /D T ˝1C1˝T . Therefore, to
give a homomorphism G!Ga amounts to giving an element f 2O.G/ such
that

�G.f /D f ˝1C1˝f: (95)

Such an f is said to be primitive, and we write P.G/ for the set of primitive
elements in G; thus

Hom.G;Ga/' P.G/: (96)

EXAMPLE 14.40. Let f D
P
ciT

i 2O.Ga/. The condition (95) becomes

ci .T ˝1C1˝T /
i
D ci .T

i
˝1C1˝T i /

for all i . Let T1 D T ˝1 and T2 D 1˝T ; then the condition becomes that

ci .T1CT2/
i
D ci .T

i
1 CT

i
2 / .equality in kŒT1;T2�/:
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In particular, c0 D 0. For i � 1, write i Dmpj with m prime to p; then

.T1CT2/
i
D .T

pj

1 CT
pj

2 /m,

which equals Tmp
j

1 CT
mpj

2 if and only ifmD 1. Thus ci D 0 unlessmD 1, and
so the primitive elements in O.Ga/ are the polynomialsX

j�0

bjT
pj
D b0T Cb1T

p
C�� �CbnT

pn ; bj 2 k:

For c 2 k, let c (resp. F ) denote the endomorphism of Ga acting on R-points as
x 7! cx (resp. x 7! xp). Then Fc D c�F , and so we have a homomorphism

k� ŒF �! End.Ga/' P.Ga/:

This sends
P
bjF

j to the primitive element
P
bjT

pj , and so it is an isomorph-
ism:

k� ŒF �' End.Ga/' P.Ga/: (97)

Note that
P
bjF

j acts on Ga.R/DR as c 7!
P
bj c

pj .

Let G be an algebraic group. From the isomorphism k� ŒF �' End.Ga/, we
get an action of k� ŒF � on P.G/' Hom.G;Ga/. Explicitly, for f 2O.G/ and
c 2 k, cf D c ıf and Ff D f p . The reader should check directly that these
actions preserve the primitive elements. Now P is a contravariant functor from
algebraic groups to k� ŒF �-modules.

PROPOSITION 14.41. Let M be a finitely generated k� ŒF �-module. Among the
pairs consisting of an algebraic group G and a k� ŒF �-module homomorphism
uWM ! P.G/ there is one .U.M/;uM / that is universal: for each pair .G;u/,
there exists a unique homomorphism ˛WG! U.M/ such that P.˛/ıuM D u:

U.M/

G

9Š˛

M P.U.M//

P.G/:

uM

u P.˛/

PROOF. Let M be a finitely generated k� ŒF �-module. Regard M as a p-Lie
algebra with trivial bracket. The universal enveloping p-algebra U Œp�.M/ is a
Hopf algebra, and we define

U.M/D Spm.U Œp�.M/;�/:

Let uM WM ! P.U.M// denote the map defined by j WM !U Œp�.M/. The pair
.U.M/;uM / is universal, because

Hom.G;U.M//' Hom..U Œp�.M/;�/;.O.G/;�G//
' Homk� ŒF �.M;P.G//:

The second isomorphism states the universal property of j WM ! U Œp�.M/ (see
p. 207). 2
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The proposition says that the functor P has an adjoint functor U :

Homk� ŒF �.M;P.G//' Hom.G;U.M//: (98)

Hence P and U map direct limits to inverse limits (in particular, they map right
exact sequences to left exact sequences).

REMARK 14.42. From the bijections

Hom.G;U.k� ŒF �//' Homk� ŒF �.k� ŒF �;P.G// (see (98))
' P.G/ (obvious)
' Hom.G;Ga/ (see (96))

we see that U.k� ŒF �/'Ga. Every finitely generated k� ŒF �-module M is a quo-
tient of a free k� ŒF �-module of finite rank, and so U.M/ is an algebraic subgroup
of Gra for some r . In particular, it is algebraic, unipotent, and commutative.

LEMMA 14.43. For a finitely generated k� ŒF �-module M , the canonical map
uM WM ! P.U.M// is bijective.

PROOF. We have to show that the canonical map j WM ! U Œp�.M/ induces a
bijection from M onto the set of primitive elements of U Œp�.M/. Let .ei /i2I be
a basis for M as a k-vector space. The PBW Theorem 10.36 shows that the finite
products

un D
Y
i2I

j.ei /
ni

ni Š
; nD .ni /i2I ; 0� ni < p;

form a basis for U Œp�.M/ as a k-vector space (see 10.40). As the j.ei / are
primitive,

�un D
X
rCsDn

ur ˝us ,

which shows that the only primitive elements of U Œp�.M/ are the linear combina-
tions of the un with

P
ni D 1. 2

For a commutative algebraic group G, let vG WG ! U.P.G// denote the
adjunction map; by definition, P.vG/ıuP.G/ D idP.G/. As uP.G/ is bijective,
so also is P.vG/.

LEMMA 14.44. For a commutative algebraic group G over k, the homomorph-
ism vG WG! U.P.G// is a quotient map.

PROOF. On applying P to the right exact sequence

G
vG
�! U.P.G//!Q! 0; Q

def
D Coker.vG/;

we get a left exact sequence

0! P.Q/! P.U.P.G//
P.vG/
�! P.G/.

As P.v/ is bijective, P.Q/D 0, and so Q is multiplicative (12.18). As it is also
the quotient of a unipotent algebraic group, it is trivial (14.18). 2
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DEFINITION 14.45. An algebraic group is elementary unipotent4 if it embeds
into a vector group Va.

Equivalently, G is elementary unipotent if and only if O.G/ is generated by
the homomorphisms G!Ga. Note that an algebraic group is unipotent if and
only if it has a normal series whose quotients are elementary unipotent algebraic
groups (14.21).

THEOREM 14.46. The functor G P.G/ defines a contravariant equivalence
from the category of elementary unipotent algebraic groups to the category of
finitely generated k� ŒF �-modules, with quasi-inverse M  U.M/.

PROOF. Because of Lemma 14.43, the adjoint functors P and U define an
equivalence of the essential image of U with the category of finitely generated
k� ŒM �-modules. We have seen (14.42) that every algebraic group in the essential
image of U is elementary unipotent. Conversely, let i WG!Gra be an algebraic
subgroup of Gra. In the commutative diagram

G Gra

U.P.G// U.P.Gra//;

i

vG v

the map i is an embedding and v is an isomorphism. Therefore vG is an embed-
ding. As it is also a quotient map (14.44), it must be an isomorphism (5.33), and
so G is in the essential image of the functor U . 2

COROLLARY 14.47. Let G be an elementary unipotent group. Every algebraic
subgroup of G isomorphic to Ga is a direct factor of G.

PROOF. An exact sequence

e!Ga!G!Q! e

corresponds to an exact sequence

0! P.Q/! P.G/! k� ŒF �! 0

of k� ŒF �-modules, which obviously splits (choose a p 2 P.G/ mapping to
1 2 k� ŒF �, and send a 2 k� ŒF � to ap). 2

PROPOSITION 14.48. A commutative algebraic group G is elementary unipo-
tent if and only if VG D 0.

4Springer 1998, 3.4.1, 3.4.8, and others use this terminology for group varieties. For Demazure
and Gabriel, they are the “groupes annulés par décalage”, i.e., killed by the Verschiebung (DG, IV �3,
6.6, p. 521).
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PROOF. The necessity follows from 11.41. For the sufficiency, let G be a com-
mutative algebraic group G such that VG D 0. To show that G is elementary
unipotent, it suffices to show that the homomorphism vG WG! U.P.G// is an
isomorphism, and it suffices to do this after an extension of k. Therefore, we may
suppose that k is perfect. We shall need to use that, for an algebraic subgroup Q
of Ga, every nontrivial commutative extension of Q by Ga comes by pull-back
from the extension

0!Ga
V
�!W2!Ga! 0 (99)

(15.27 below). Arguing by induction on the length of a subnormal series for G,
we may suppose that G contains a subgroup N such that QDG=N embeds into
Ga and N embeds into Gra. If we show that every homomorphism N ! Ga
extends to G, then the homomorphism N ,! Gra extends to G (because its
components do), and we will have an embedding of G into Gra�Ga, as required.
Let 'WN !Ga be a homomorphism, and form the diagram

0 N G Q 0

0 Ga G0 Q 0

'

with the bottom row the pushout of the top row. If the extension in the lower row
splits, then ' extends to G. Otherwise, the lower row comes by pull-back from
(99). But VG0 D 0 because G0 is a quotient of G�Ga, and so the homomorphism
G0 ! W2 factors through Ga � W2, and so again ' extends to G. For more
details, see DG, IV, �3, 6.6. 2

PROPOSITION 14.49. Every smooth commutative algebraic group G of expo-
nent p is elementary unipotent.

PROOF. Because G is smooth, VG D 0 (see 11.41), and so G is elementary
unipotent by 14.48. 2

The ring k� ŒF � behaves somewhat like the usual polynomial ring kŒT �. In
particular, the right division algorithm holds: given f and g in k� ŒF � with
g ¤ 0, there exist unique elements q;r with r D 0 or deg.r/ < deg.g/ such that
f D qgC r . The proof is the same as for the usual division algorithm.

PROPOSITION 14.50. The left ideals in k� ŒF � are principal. Every submodule
of a free finitely generated left k� ŒF �-module is free.

PROOF. The proofs are similar to those for kŒT �. See Berrick and Keating 2000,
Theorem 3.2.10 and Lemma 3.3.5. 2

When k is perfect, the map � Wk! k is an automorphism, and the left division
algorithm also holds: given f and g in k� ŒF � with g ¤ 0, there exist unique
elements q;r with r D 0 or deg.r/ < deg.g/ such that f D gqC r:
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PROPOSITION 14.51. When k is perfect, every finitely generated left k� ŒF �-
module M is a direct sum of cyclic modules k� ŒF �=k� ŒF �g with g D 0 or
irreducible; if, moreover, M has no torsion, then it is free.

PROOF. The proof is similar to that for kŒT �. See Berrick and Keating 2000,
Theorem 3.3.6. 2

PROPOSITION 14.52. When k is perfect, every elementary unipotent algebraic
group G over k is a product of algebraic groups of the form Ga, p̨r for some r ,
or an étale group of order a power of p.

PROOF. Let AD k� ŒF �. According to Proposition 14.51, P.G/ is a finite direct
sum of cyclic modulesA=Ag, g 2A. Correspondingly,G is a product of algebraic
groups G0 such that P.G0/ is cyclic. Let G0 be the algebraic group with P.G/D
A=Ag. If gD 0, then G �Ga; if gD F r , then G � p̨r ; and if g is not divisible
by F , then G is étale. 2

COROLLARY 14.53. When k is perfect, every smooth connected elementary
unipotent group is isomorphic to .Ga/d for some d . The proper connected
subgroups of Ga are the groups p̨r , r � 0.

PROOF. Immediate consequence of Proposition 14.52. 2

PROPOSITION 14.54. When k is perfect, every smooth connected commutative
group G of exponent p over a perfect field k is isomorphic to Gra.

PROOF. Such a group G is elementary unipotent (14.48). Therefore it corres-
ponds in Theorem 14.46 to the k� ŒF �-module P.G/' Hom.G;Ga/, which is
torsion-free because G is connected and smooth. Because k is perfect, this
implies that P.G/ is free, of rank r say, and so G is isomorphic to Gra. 2

COROLLARY 14.55. When k is perfect, every nontrivial connected unipotent
group variety U over k contains a central subgroup variety isomorphic to Ga.

PROOF. As U is nilpotent (14.21), it contains a nontrivial connected group
variety U 0 in its centre (6.40). Now apply (14.54) to .U 00/ıred where U 00 is the
kernel of pWU 0! U 0. 2

COROLLARY 14.56. Every smooth connected commutative algebraic group of
exponent p is a form of Gra for some r .

PROOF. It becomes isomorphic to Gra over a perfect closure of the base field. 2

EXAMPLE 14.57. Let k be a nonperfect field of characteristic p. For every
finite sequence a0; : : : ;am of elements of k with a0 ¤ 0 and m� 1, the algebraic
subgroup G of Ga�Ga defined by the equation

Y p
n

D a0XCa1X
p
C�� �CamX

pm



298 14. Unipotent Algebraic Groups

is a form of Ga, and every form of Ga arises in this way (Russell 1970, 2.1).
Rosenlicht’s group (1.56) can be expressed in this form. Note that G is the fibred
product

G Ga

Ga Ga:
a0FC���CamF

pm

F n

In particular, G is an extension of Ga by a finite subgroup of Ga (so it does
satisfy 14.21). There is a criterion for when two forms are isomorphic (Russell
1970, 2.3). In the case a0 D 1, G becomes isomorphic to Ga over an extension
K of k if and only if K contains a pnth root of each ai .

For a classification of the forms of Gra, in which the elements ai are replaced
by matrices, see Kambayashi et al. 1974, 2.6.

NOTES. This section follows DG, IV, �3, no. 6. See also Springer 1998, 3.3, 3.4.

f. Algebraic groups isomorphic to Ga

14.58. Let G be an algebraic group over k. If G is isomorphic to Ga, then G
is smooth, connected, unipotent, and one-dimensional, and the converse is true
when k is perfect (14.53). Every nontrivial quotient of a group isomorphic to Ga
is isomorphic to Ga (Exercise 14-3a).

14.59. Every regular map A1
k
! A1

k
is of the form c 7! f .c/ for a unique

polynomial f 2 kŒT �. An elementary calculation shows that the map is an
isomorphism if and only if f .T / D a0C a1T with a1 invertible. Let R be a
k-algebra. Every map A1R! A1R of R-schemes is of the form c 7! f .c/ for a
unique polynomial f .T /D

P
i�0 aiT

i , ai 2R. If the map is an automorphism,
then, for all maximal ideals m in R, we have a1 …m and ai 2m for i > 1; hence
a1 2R

� and ai is nilpotent for i > 1. In particular, if R is reduced, then the only
automorphisms of A1R are the maps c 7! f .c/ with f .T /D a0Ca1T , a0 2 R,
a1 2 R

�. It follows that, if R is reduced, then the only automorphisms of the
group scheme GaR over R are the maps c 7! ac, a 2R�.

14.60. Let X be an algebraic variety over k. In this paragraph we let QX denote
the functor R X.R/ of reduced small k-algebras. The Yoneda lemma in
this context says that the functor X QX is fully faithful. Let Aut.Ga/ denote
the functor R AutR.GaR/ of reduced small k-algebras. We saw in the last
paragraph that Aut.Ga/'Gm. Let U be an algebraic group over k isomorphic
to Ga. The choice of an isomorphism i WGa! U determines an isomorphism
Aut.U /'Gm which is independent of the choice of i (because the automorphism
group is commutative). Therefore, to give an action of a group variety G on Ga
by group homomorphisms is the same as giving a homomorphism G!Gm.
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g. Split and wound unipotent groups

Recall (14.21) that unipotent groups are solvable, and so the next definition is a
special case of Definition 6.33.

DEFINITION 14.61. A unipotent algebraic group G over k is split if it admits a
subnormal series each of whose quotients is isomorphic to Ga.

14.62. A split unipotent algebraic group is automatically smooth and connected
(8.1). If G is split over k, then Gk0 is split over k0 for all fields k0 containing k.

14.63. Recall (14.21) that every unipotent algebraic group admits a normal
series whose quotients are subgroups of Ga. In characteristic zero, Ga has no
proper subgroups (14.24), and so all connected unipotent algebraic groups are
split. In characteristic p, a connected unipotent group variety need not be split,
but it is if the ground field is perfect – this follows by induction from 14.55. Hence
every connected unipotent group variety splits over a finite purely inseparable
extension of the ground field.

14.64. An elementary unipotent group G over k is split if and only if it iso-
morphic to Gra for some r . This follows by induction from 14.47.

14.65. A unipotent group G over k is split if it splits over a separable field
extension k0 of k. In proving this, we may suppose that G is elementary and that
k0 is finite over k. If fx1; : : : ;xng is a basis for k0 as a k-vector space, then so also
is fxp

r

1 ; : : : ;x
pr

n g for all r (here we use that k0 is separable over k), and it follows
that fx1; : : : ;xng is a basis for k0� ŒF � as a k� ŒF �-module. We know that P.Gk0/
is a free k0� ŒF �-module, and so P.G/ is a submodule of a free k� ŒF �-module.
This implies that it is free (14.50).

14.66. Let G be a split unipotent algebraic group of dimension n. Then the
underlying scheme of U is isomorphic to An. Indeed, inductively, G is a Ga-
torsor over An�1 (2.68), and such a torsor is trivial (2.72).

14.67. A form of Gra over k is split if and only if it is trivial (i.e., isomorphic to
Gra over k). This follows from 14.64. In particular, every nontrivial form of Ga,
e.g., Rosenlicht’s group Y p�Y D tXp (see 1.56), is nonsplit. Moreover, every
split smooth connected commutative algebraic group of exponent p is isomorphic
to Gra for some r (see 14.56).

14.68. The algebraic group Un is split (6.49). Every connected group variety
admitting an action by a split torus with only nonzero weights is a split unipotent
group (16.63 below). For example, the unipotent radical of a parabolic subgroup
of a reductive algebraic groups is split.

DEFINITION 14.69. A connected unipotent group variety G is wound if every
morphism from the affine line to G is constant.
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Just as split unipotent groups are the additive analogue of split tori, wound
unipotent groups are the additive analogue of anisotropic tori (compare the
definition with Exercise 12-5). This rest of this section is only a brief summary.

14.70. In characteristic zero, the only wound unipotent group is the trivial
group. Over a perfect field of characteristic p, the wound unipotent groups are
those that are finite.

14.71. A unipotent group variety G is wound if and only if G does not contain
a subgroup variety isomorphic to Ga. Hence every nontrivial (hence nonsplit)
form of Ga is wound.

14.72. If G is wound, then it admits a subnormal series formed of wound
characteristic subgroups whose quotients are wound commutative and killed by
p. Proofs of this are complicated by the fact that quotients of wound unipotent
groups by smooth connected proper subgroups can be split. See Conrad et al.
2015, B.2.3, B.3.2, and B.3.3.

14.73. Subgroups and extensions of wound group varieties are wound, but not
necessarily quotients – for example, every form of Ga admits Ga as a quotient.

14.74. Every unipotent group variety G is isomorphic to a subgroup variety
of a split unipotent group variety H (see 14.3). If G is commutative, H can be
chosen commutative. If G is commutative of exponent p, then it is elementary
unipotent (14.48; see also Tits 1968, 3.3.1). In general, it is not possible to choose
H so that G is a normal subgroup.

14.75. (Structure theorem). Let G be a connected unipotent group variety.
Then G contains a unique normal connected split subgroup variety Gsplit such
that W DG=Gsplit is wound:

e!Gsplit!G!W ! e:

The subgroup variety Gsplit contains all connected split subgroup varieties of
G, and its formation commutes with separable (not necessarily inseparable)
extensions (Tits 1968, 4.2).

14.76. Tits (1968, p. 3) remarks that he knows of no connected wound group
that is not commutative and of exponent p. An example of a noncommutative
such group was found by Gabber (Conrad et al. 2015, B.2.9).

NOTES. (a) In the literature, one usually finds “k-split” and “k-wound” for “split” and
“wound” (e.g., Tits 1968, 4.1). We can omit the “k” because of our convention that
statements concerning an algebraic group G over k are intrinsic to G over k. Oesterlé
(1984, 3.1) writes “déployé” and “totalement ployé” for “split” and “wound”.

(b) To paraphrase Oesterlé (1984), the paternity of the results in this section is not
always easy to attribute. Most of the questions were considered for the first time by
Rosenlicht (1963), reconsidered and developed in detail by Tits (1968), and extended to
group schemes by Demazure and Gabriel (1970).

(c) For a modern exposition of the material in this section, see Conrad et al. 2015,
Appendix B.
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Exercises

EXERCISE 14-1. Prove or disprove the following statement: every algebraic
group contains a largest connected unipotent normal algebraic subgroup.

EXERCISE 14-2. Use Theorem 14.46 to prove Russell’s theorem, 14.57.

EXERCISE 14-3 (DG, IV, �2, 1.1). LetH be an algebraic subgroup of Ga over
k such that H ¤ Ga. If char.k/ D 0, then H D e, and so we suppose that
char.k/D p ¤ 0 and we let F denote the endomorphism a 7! ap of Ga. Prove
the following statements.

(a) There exists an endomorphism ' of Ga such that the sequence

e!H !Ga
'
�!Ga! e

is exact.

(b) Write
' D arF

r
CarC1F

rC1
C�� �CasF

s

with r;s 2N, ar ; : : : ;as 2 k, and ar ¤ 0¤ as (cf. 14.40). ThenH ı � p̨r ,

�0.H/D Ker.ar idCarC1F C�� �CasF s�r /;

and �0.H/.ks/� .Z=pZ/s�r .
(c) If H is stable under the natural action of Gm on Ga, then it is connected.

EXERCISE 14-4. Prove directly that there is no nontrivial homomorphism �`!

Ga. Deduce another proof of Proposition 14.16.

EXERCISE 14-5. Let G be a connected group variety over a finite extension k0

of k. Show that if G is unipotent (resp. split unipotent), then so is .G/k0=k .



CHAPTER 15

Cohomology and Extensions

All schemes are algebraic over a base field k unless indicated otherwise. All
functors are from the category of small k-algebras to sets or groups. By an action
of a group on a group we mean an action by group homomorphisms. Recall that
all algebraic groups are affine over the base field k.

a. Crossed homomorphisms

Let G �M !M be an action of a group functor G on a group functor M by
group homomorphisms. Such an action corresponds to a homomorphism G!

Aut.M/, where Aut.M/ is the functor sending R to the group of automorphisms
of MR (as a group functor of R-algebras). A map of functors f WG!M is a
crossed homomorphism if

f .gg0/D f .g/ �gf .g0/

for all small k-algebras R and g;g0 2 G.R/. When G is a smooth algebraic
group and M is representable, it suffices to check the condition for g;g0 2G.ks/

(see 1.17, 1.22). For m 2M.k/, the map

g 7!m�1 �gmWG!M

is a crossed homomorphism. The crossed homomorphisms of this form are said
to be principal.

EXAMPLE 15.1. Let G�M !M be an action of a group functor G on a group
functor M , and let � WG! Aut.M/ be the corresponding homomorphism. Let
M Ì� G denote the semidirect product defined by � . There is an exact sequence

e!M !M Ì� G!G! e;

and the group sections to the homomorphism M Ì� G!G are the maps g 7!
.f .g/;g/ with f a crossed homomorphism. For example, there is always a
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group section g 7! .e;g/. The sections of the form g 7! .m;e/�1 � .e;g/ � .m;e/

correspond to principal crossed homomorphisms.

LEMMA 15.2. Let U be a unipotent algebraic group, and let e be an integer not
divisible by the characteristic of k. Then the map x 7! xeWU.ka/! U.ka/ is
bijective.

PROOF. This is obviously true for Ga. A proper algebraic subgroup N of Ga is
finite, and the map on N.ka/ is injective, and so it is bijective. As every unipotent
group admits a filtration whose quotients are subgroups of Ga (see 14.21), and
the functor U  U.ka/ is exact (5.48), the general case follows. 2

PROPOSITION 15.3. Let G be a diagonalizable group variety over an algebra-
ically closed field k and M a commutative unipotent group variety on which it
acts. Then every crossed homomorphism f WG!M is principal.

PROOF. Let n > 1 be an integer not divisible by the characteristic of k, and let
Gn denote the kernel of multiplication by n on G. Then Gn.k/ is finite, of order
en not divisible by the characteristic of k.

Let f WG!M be a crossed homomorphism, so that

f .x/D f .xy/�x �f .y/

for all x;y 2G.k/. When we sum this identity over all y 2Gn.k/, we find that

enf .x/D s�x � s; s D
X

f .y/.

Since we can divide by en in M , this shows that the restriction of f to Gn is
principal. In other words, the set

M.n/D fm 2M.k/ j f .x/D x �m�m for all x 2Gn.k/g

is nonempty. The set M.n/ is closed in M DM.k/, and so the descending
sequence

� � � �M.n/�M.nC1/� �� �

eventually becomes constant (and nonempty). This implies that there exists an
m 2M.k/ such that

f .x/D x �m�m

for all x 2
S
Gn.k/. It follows from Theorem 12.32 that f agrees with the

principal crossed homomorphism x 7! x �m�m on G. 2
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b. Hochschild cohomology

Let G be a group functor. A G-module is a commutative group functor M
equipped with an action of G by group homomorphisms. Thus M.R/ is a G.R/-
module in the usual sense for each k-algebra R. Much of the basic formalism
of group cohomology carries over to this setting. We first define the standard
complex.

Let M be a G-module. Define

C n.G;M/DMap.Gn;M/

(maps of set-valued functors). By definition, G0 D e, and so C 0.G;M/DM.k/.
The set C n.G;M/ acquires a commutative group structure from that on M . If G
is an algebraic group with coordinate ring A, then C n.G;M/DM.A˝n/.

An element f of C n.G;M/ defines an n-cochain f .R/ forG.R/ with values
in M.R/ for each k-algebra R. The coboundary map

@nWC n.G;M/! C nC1.G;M/

is defined by the usual formula: let g1; : : : ;gnC1 2G.R/; then

.@nf /.g1; : : : ;gnC1/D g1f .g2; : : : ;gnC1/

C

Xn

jD1
.�1/jf .g1; : : : ;gjgjC1; : : : ;gnC1/

C .�1/nC1f .g1; : : : ;gn/:

Define

Zn.G;M/D Ker.@n/ (group of n-cocycles)
Bn.G;M/D Im.@n�1/ (group of n-coboundaries)
Hn
0 .G;M/DZn.G;M/=Bn.G;M/:

For example,

H 0
0 .G;M/DM.k/G

H 1
0 .G;M/D

crossed homomorphisms G!M

principal crossed homomorphisms
:

If G acts trivially on M , then

H 0
0 .G;M/DM.k/

H 1
0 .G;M/D Hom.G;M/ (homomorphisms of group functors).

The group Hn
0 .G;M/ is called the nth Hochschild cohomology group of G in

M .
Let

0!M 0!M !M 00! 0
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be an exact sequence of G-modules. By this we mean that

0!M 0.R/!M.R/!M 00.R/! 0 (100)

is exact for all small k-algebras R. Then

0! C �.G;M 0/! C �.G;M/! C �.G;M 00/! 0 (101)

is an exact sequence of complexes. For example, if G is an algebraic group, then
the degree n part of (101) is obtained from (100) by replacing R with O.G/˝n.
By a standard argument, (101) gives rise to a long exact sequence of cohomology
groups

0!H 0
0 .G;M

0/!�� �!Hn
0 .G;M

00/!HnC1
0 .G;M 0/!HnC1

0 .G;M/!�� � :

More generally, even when M and M 00 are not assumed to be commutative, there
is an exact sequence (DG, II, �3, 1.4)

0!M 0G.k/!MG.k/!M 00G.k/!H 1
0 .G;M

0/: (102)

Let M be a commutative group functor, and let IndG.M/ denote the functor
R Map.GR;MR/ (maps of set-valued functors). Then IndG.M/ becomes a
G-module when we set

.gf /.h/D f .hg/; g;h 2G; f 2 IndG.M/:

PROPOSITION 15.4 (SHAPIRO’S LEMMA). LetM be a functor to commutative
groups. For all n > 0,

Hn
0 .G; IndG.M//D 0:

PROOF. Note that

C n.G; IndG.M//'Map.G�Gn;M/D C nC1.G;M/.

Define
snWMap.GnC2;M/!Map.GnC1;M/

by
.snf /.g;g1; : : : ;gn/D f .e;g;g1; : : : ;gn/:

When we regard sn as a map C nC1.G; IndG.M//! C n.G; IndG.M//, we find
(by direct calculation) that

sn@nC@n�1sn�1 D id for n > 0:

Therefore .sn/n is a homotopy operator, and the cohomology groups vanish. 2
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REMARK 15.5. In the above discussion, we did not use that k is a field. Let R0
be a k-algebra. From an algebraic group G over R0 and a G-module M over R0
we obtain, as above, cohomology groups Hn

0 .G;M/.
Now let G be an algebraic group over k with coordinate ring A, and let

M D Va be the G-module defined by a linear representation .V;r/ of G over k.
From the description C n.G;M/DM.A˝n/D V ˝A˝n, we see that

C �.GR0 ;MR0/'R0˝C
�.G;M/:

As k!R0 is flat, it follows that

Hn
0 .GR0 ;MR0/'R0˝H

n
0 .G;M/:

Examples.

PROPOSITION 15.6. Let �k be the constant algebraic group defined by a finite
abstract group � . For all �k-modules M ,

Hn
0 .�k ;M/'Hn.�;M.k// (usual group cohomology).

PROOF. The standard complexes C �.�k ;M/ and C �.�;M.k// are equal. 2

PROPOSITION 15.7. Every action of Ga on Gm is trivial, and

Hn
0 .Ga;Gm/D

(
k� if nD 0
0 if n > 0:

PROOF. The first assertion follows from Corollary 12.37. We have

C n.Ga;Gm/
def
DMap.Gna;Gm/'Gm.kŒT �˝n/' kŒT1; : : : ;Tn�� D k�

and @n D
PnC1
0 .�1/j id. Therefore,

@n D

(
id if n is odd
0 if n is even,

from which the statement follows. 2

PROPOSITION 15.8. Let r be an integer � 0. Every action of Grm on Gm is
trivial, and

H i
0.G

r
m;Gm/D 0 for i � 2.

PROOF. The first assertion follows from Corollary 12.37. The Hochschild com-
plex has

C n.Grm;Gm/D kŒT11;T
�1
11 ; : : : ;T1n;T

�1
1;n ; : : : ;Trn;T

�1
rn �
�
' k��Znr .

When the boundary maps are made explicit, one finds that C �.Grm;Gm/ is a
direct sum of a complex � � � ! k�! k�! �� � and r copies of a complex � � � !
Zn! ZnC1! �� � . A direct calculation now gives the required statement (DG,
III, �6, 6.1). 2
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PROPOSITION 15.9. Let �WG�H !H be an action of an algebraic group G
of height � n on a commutative algebraic group H , and let Hn denote the kernel
of F nH WH !H .pn/. Then the induced action of G on H=Hn is trivial, and the
canonical map

H i
0.G;Hn/!H i

0.G;H/

is bijective for all i � 2:

PROOF. From the functoriality of the Frobenius map (2.27), we obtain a com-
mutative diagram

G�H H

G.p
n/�H .pn/ H .pn/

F n
G
�F n
H

�

F n
H

�.p
n/

As F nG is the trivial homomorphism, this shows that the induced action of G on
H .pn/, hence on H=Hn, is trivial.

For the second assertion, we define a functor X  X.n/ of schemes as
follows. The underlying set of the schemeX.n/ isX.k/ endowed with its discrete
topology. For x 2X.k/, set OX.n/;x DOX;x=mp

n

x . Then X.n/ is a subfunctor of
X ; moreover, .X �Y /.n/' X.n/�Y.n/ and G.n/D G. It follows that H.n/
is stable under G. As Map.Gi ;H.n//'Map.Gi ;H/ (maps of schemes) for all
i , we deduce that H i

0.G;H.n//'H
i
0.G;H/ for all i � 0. Now note that there

is a canonical exact sequence of G-modules

0!Hn!H.n/!H.k/k! 0: (103)

Here H.k/k is the constant algebraic group equipped with the trivial G-action.
As Map.Gi ;H.k/k/DH.k/ for all i , we see that H i

0.G;H.k/k/D 0 for i � 1,
and so the required statement follows from the cohomology sequence of (103).2

For example, H i
0. p̨;�p/'H

i
0. p̨;Gm/ for all i � 2.

c. Hochschild extensions

Let G be a group functor. Let M be a commutative group functor, and let

0!M
i
�!E

�
�!G (104)

be an exact sequence of group functors, i.e.,

0!M.R/
i.R/
�!E.R/

�.R/
�! G.R/
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is exact for all (small) k-algebras R. A sequence (104) is a Hochschild extension
if there exists a map of set-valued functors sWG!E such that � ı s D idG . For
a Hochschild extension, the sequence

0!M.R/
i.R/
�!E.R/

�.R/
�! G.R/! 0

is exact for all k-algebras R. Conversely, if �.R/ is surjective with RDO.G/,
then (104) is a Hochschild extension. Two Hochschild extensions .E; i;�/ and
.E 0; i 0;� 0/ ofG byM are equivalent if there exists a homomorphism f WE!E 0

making the following diagram commute

0 M E G 0

0 M E 0 G 0:

i �

f

i 0 � 0

Let .E; i;�/ be a Hochschild extension of G by M . In the action of E on M
by conjugation,M acts trivially, and so .E; i;�/ defines a G-module structure on
M . Equivalent extensions define the same G-module structure on M . For a G-
moduleM , we defineE.G;M/ to be the set of equivalence classes of Hochschild
extensions of G by M inducing the given action of G on M .

A Hochschild extension .E; i;�/ is trivial if there exists a homomorphism of
group functors sWG!E such that � ı s D idG . This means that E is isomorphic
to the semidirect product M Ì� G for the action � of G on M defined by the
extension.

PROPOSITION 15.10. Let M be a G-module. There is a canonical bijection

E.G;M/'H 2
0 .G;M/. (105)

PROOF. Let .E; i;�/ be a Hochschild extension of G by M , and let sWG! E

be a section to � . Define f WG2!M by the formula

s.g/s.g0/D i.f .g;g0// � s.gg0/; g;g0 2G.R/:

Then f is a 2-cocycle, whose cohomology class is independent of the choice of
s. In this way, we get a map from the set of equivalence classes of Hochschild
extensions to H 2

0 .G;M/. On the other hand, a 2-cocycle defines an extension, as
for abstract groups. One checks without difficulty that the two maps obtained are
inverse (DG, II, �3, 2.3). 2

A Hochschild extension .E; i;�/ of G by M is central if i.M/ is contained
in the centre of E, or, in other words, if the action of G on M is trivial.

Let G act trivially on M . A 2-cocycle f is symmetric if f .g;g0/D f .g0;g/
for all g;g0 2G.R/. Let Z2s .G;M/ denote the group of symmetric 2-cocycles,
and define

H 2
s .G;M/DZ2s .G;M/=B2.G;M/:
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COROLLARY 15.11. Let G and M be commutative group functors and regard
M as a G-module with trivial action. There is a canonical one-to-one correspond-
ence between the equivalence classes of Hochschild extensions M ! E! G

with E commutative and the elements of H 2
s .G;M/.

PROOF. This follows without difficulty from Proposition 15.10. 2

Higher Hochschild extensions

We wish to define a connected sequence of functors E0.G;�/; E1.G;�/; . . .
such that E1.G;�/D E.G;�/. We examine this question first for an abstract

group G. Consider the group ring ZŒG� of G and let J D Ker.ZŒG�
g 7!1
���! Z/ be

its augmentation ideal; thus ZŒG�' Z˚J . The map

ıWG! J; ı.g/D g�1

is a crossed homomorphism, and it is universal, i.e.,

'$ ' ı ıWHomG-module.J;M/'Z1.G;M/ for all G-modules M .

From an exact sequence of G-modules,

E W 0!M
i
�!E

�
�! J ! 0;

we can construct a diagram

0 M E.E/ G e

0 M M ÌG J ÌG 0

g 7!.g�1;g/

m7!.i.m/;1/ ��id

by taking the top row to be the pull-back by G ! J ÌG of the bottom row.
Let F.E/ denote the top row. Then the map E 7! F.E/ defines a bijection from
Ext1G-module.J;M/ onto the set E.G;M/ of equivalence classes of extensions of
G by M (DG, III, �6, no. 1). We define

En.G;M/D ExtnG-module.J;M/: (106)

Then E0.G;M/DZ1.G;M/ and E1.G;M/DE.G;M/.
A similar discussion applies to group functors. Let G be a group functor.

The G-modules form an abelian category and, for a G-module M , we define
En.G;M/ by (106). Then E0.G;�/; E1.G;�/; : : : is a connected sequence of
functors of G-modules such that�

E0.G;M/'Z1.G;M/ set of crossed homomorphisms
E1.G;M/'E.G;M/ set of Hochschild extensions (107)

(see DG, III, �6, 1.4). Moreover, when G is an algebraic group, En.G;M/'

HnC1
0 .G;M/ for n� 1 (DG, III, �6, 2.1).
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d. The cohomology of linear representations

Let G be an algebraic group over k, and let .V;r/ be a linear representation of G.
Then r defines an action of G on the group functor VaWR V ˝R, and we set

Hn.G;V /DHn
0 .G;Va/:

Let ADO.G/, and let �WV ! V ˝A be the corresponding co-action. Then

C n.G;Va/
def
DMap.Gn;V /' V.A˝n/D V ˝A˝n.

Thus, C �.G;Va/ is a complex

0! V ! V ˝A! �� � ! V ˝A˝n
@n

�! V ˝A˝.nC1/! �� � :

The map @n has the following description (DG, II, �3, 3.1): let v 2 V and
a1; : : : ;an 2 A; then

@n.v˝a1˝�� �˝an/D �.v/˝a1˝�� �˝an

C

nX
jD1

.�1/j v˝a1˝�� �˝�.aj /˝�� �˝an

C .�1/nC1v˝a1˝�� �˝an˝1:

An exact sequence of representations

0! V 0! V ! V 00! 0

gives an exact sequence of complexes

0! C �.G;V 0a/! C �.G;Va/! C �.G;V 00a /! 0,

and so there is a long exact sequence of cohomology groups

0!H 0.G;V 0/! �� � !Hn.G;V 00/!HnC1.G;V 0/!HnC1.G;V /! �� � :

PROPOSITION 15.12. Let V be a k-vector space, and let V ˝A be the free
comodule on V (see p. 88). Then

Hn.G;V ˝A/D 0 for n > 0:

PROOF. For a (small) k-algebra R,

.V ˝A/a.R/D V ˝A˝R (definition)
' .V ˝R/˝R .A˝R/ (linear algebra)
D .Va/R.AR/ (change of notation)
' Nat.hAR ; .Va/R/ (Yoneda lemma A.32)
D IndG.Va/.R/ (definition).

As these isomorphisms are natural in R, they form an isomorphism of functors

.V ˝A/a ' IndG.Va/:

Therefore the statement follows from Shapiro’s lemma (15.4). 2



e. Linearly reductive groups 311

REMARK 15.13. The functors Hn.G; �/ are the derived functors of the functor
H 0.G; �/ on the category of all linear representations of G (not necessarily finite-
dimensional). To prove this, it remains to show that the functors Hn.G; �/ are
effaceable, i.e., for each V , there exists an injective homomorphism V ! W

such that Hn.G;W / D 0 for n > 0, but the homomorphism V ! V0˝A in
Proposition 4.12 has this property because of Proposition 15.12.

As the category of representations of G is isomorphic to the category of A-
comodules, and H 0.G;V /D HomA.k;V / (homomorphisms of A-comodules),
we see that, for all n, Hn.G;V / ' ExtnA.k;V / (Exts in the category of A-
comodules):

e. Linearly reductive groups

Let G be an algebraic group over k, and let .V;r/ be a linear representation of G
on a k-vector space V . Then .V;r/ is a directed union of its finite-dimensional
subrepresentations, .V;r/D

S
dim.W /<1.W;r jW / (see 4.8). Correspondingly,

Hn.G;V /D lim
�!

Hn.G;W / (108)

because direct limits are exact in the category of abelian groups.

LEMMA 15.14. Let x 2Hn.G;V /, n > 0. Then x maps to zero in Hn.G;W /

for some finite-dimensional representation W containing V .

PROOF. Recall (4.12) that the co-action �WV ! V0˝A is an injective homo-
morphism of A-comodules. According to Proposition 15.12, the element x maps
to zero in Hn.G;V0˝A/, and it follows from (108) that x maps to zero in
Hn.G;W / for some finite-dimensional G-submodule W of V0˝A containing
�.V /. 2

PROPOSITION 15.15. An algebraic group G is linearly reductive if and only if
H 1.G;V /D 0 for all finite-dimensional representations .V;r/ of G.

PROOF. ): Let x 2 H 1.G;V /. According to the lemma, x maps to zero in
H i .G;W / for some finite-dimensional representation W of G containing V .
Hence x lifts to an element of .W=V /G in the cohomology sequence

0! V G !W G
! .W=V /G !H 1.G;V /!H 1.G;W /:

But, because G is linearly reductive, the sequence 0! V ! W ! W=V !

0 splits as a sequence of G-modules, and so W G ! .W=V /G is surjective.
Therefore x D 0.
(: When .V;r/ and .W;s/ are finite-dimensional representations of G, we

let Hom.V;W / denote the space of k-linear maps V ! W equipped with the
G-action given by the rule

.gf /.v/D g.f .g�1v//:
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We have to show that every exact sequence

0! V 0! V ! V 00! 0 (109)

of finite-dimensional representations of G splits. From (109), we get an exact
sequence of G-modules

0! Hom.V 00;V 0/! Hom.V 00;V /! Hom.V 00;V 00/! 0;

and hence an exact cohomology sequence

� � � ! Hom.V 00;V /G ! Hom.V 00;V 00/G !H 1.G;Hom.V 00;V 0//.

By assumption, the last group is zero, and so idV 00 lifts to an element of the space
Hom.V 00;V /G . This element splits the original sequence (109). 2

PROPOSITION 15.16. If G is linearly reductive, then Hn.G;V / D 0 for all
n > 0 and all representations V of G.

PROOF. Because of (108), it suffices to prove this for finite-dimensional rep-
resentations. We use induction on n. We know the statement for n D 1, and
so we may suppose that n > 1 and that H i .G;W / D 0 for 1 � i < n and all
finite-dimensional representations W . Let x 2Hn.G;V /. Then x maps to zero
inHn.G;W / for some finite-dimensionalW containing V (15.14), and so x lifts
to an element of Hn�1.G;V=W / in the cohomology sequence

Hn�1.G;V=W /!Hn.G;V /!Hn.G;W /:

But Hn�1.G;V=W /D 0 (induction), and so x D 0. 2

REMARK 15.17. In particular, Hn.G;V / D 0 (n > 0) for groups G of multi-
plicative type (12.30).

f. Applications to homomorphisms

We can now prove a stronger form of Corollary 14.18(b).

PROPOSITION 15.18. Let G and U be algebraic groups over k with G of multi-
plicative type and U unipotent, and let R be a k-algebra. Every homomorphism
GR! UR is trivial.

PROOF. Let ˛ be such a homomorphism, and let H be minimal among the
algebraic subgroups of U such that ˛.GR/ �HR. If H ¤ e, then there exists
a nontrivial homomorphism ˇWH ! Ga (see 14.22), and the composite map
ˇR ı˛WGR! .Ga/R is nontrivial because otherwise ˛.GR/ would be contained
in the kernel of ˇR and H would not be minimal. But when we endow GaR with
the trivial action of GR, so that crossed homomorphisms are homomorphisms,
we find that

HomR.GR;GaR/DH 1
0 .GR;GaR/

15.5
' R˝H 1

0 .G;Ga/
15.15
D 0;

giving a contradiction. Therefore H D e and ˛ is trivial. 2
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REMARK 15.19. We saw in Exercise 1-1 that there may exist nontrivial homo-
morphisms UR!GR even in characteristic zero. In characteristic p ¤ 0,

Hom..Z=pZ/k ;Gm/' �p Hom. p̨;Gm/' p̨

(11.13), and so

Hom..Z=pZ/R;GmR/¤ 0¤ Hom. p̨R;GmR/

if R contains a nonzero element whose pth power is 0.

g. Applications to centralizers

The traditional approach to the smoothness of centralizers uses cohomology and
Lie algebras. An action of an algebraic group H on an algebraic group G defines
a representation of H on the Lie algebra g of G, and hence cohomology groups
Hn.G;g/.

THEOREM 15.20 (SMOOTHNESS OF CENTRALIZERS). Let H be an algebraic
group acting on a smooth algebraic group G by group homomorphisms. If
H 1.H;g/D 0, then GH is smooth.

PROOF. See DG, II, �5, 2.8. 2

Linearly reductive groups H (not necessarily smooth) satisfy the hypothesis
(15.15),

h. Calculation of some extensions

We compute (following DG, III, �6) some extension groups. Throughout, p
denotes the characteristic exponent of k.

Preliminaries

Let G be an algebraic group over k. Recall that a G-module is a commutative
group functorM on which G acts by group homomorphisms. A G-module sheaf
is a G-module whose underlying functor is a sheaf for the flat topology.

Let M be a sheaf of commutative groups. A sheaf extension of G by M is a
sequence

e!M
i
�!E

�
�!G! e (110)

that is exact as a sequence of sheaves of groups. This means that the sequence

e!M.R/!E.R/!G.R/

is exact for all small k-algebras and � is a quotient map of sheaves (see 5.73).
Equivalence of sheaf extensions is defined as for Hochschild extensions. An
extension of G by M defines an action of G on M , and equivalent extensions
define the same action.
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DEFINITION 15.21. For a G-module sheaf M , Ext.G;M/ denotes the set of
equivalence classes of sheaf extensions of G by M inducing the given action of
G on M .

When M is an algebraic group, Ext.G;M/ is equal to the set of equivalence
classes of extensions (110) with E an algebraic group (Exercise 5-10).

Let M be a G-module sheaf, and let .E; i:�/ be a Hochschild extension of G
by M . Then E is a sheaf, and .E; i;�/ is a sheaf extension of G by M . In this
way, we get an injective map

E.G;M/! Ext.G;M/

whose image consists of the classes of extensions (110) such that � has a section
as a map of functors. One strategy for computing Ext.G;M/ is to show that every
extension is a Hochschild extension, and then use the description of E.G;M/ in
terms of Hochschild cohomology (see 15.10). Let

e!N !E!G! e (111)

be an extension of algebraic groups. Then E is an N -torsor over G (see 2.68),
and (111) is a Hochschild extension if this torsor is trivial.

More generally, we define Exti .G;�/ to be the i th right derived functor of

M  Hom.G;M/ .functor of G-module sheaves/:

Then (DG, III, �6, no. 2)�
Ext0.G;M/DZ1.G;M/ group of crossed homomorphisms
Ext1.G;M/' Ext.G;M/ group of sheaf extensions.

NOTES. Demazure and Gabriel (1970, III, �6, no. 2) write Exi and EQxi where we write
Ei and Exti .

Extensions with étale quotient

PROPOSITION 15.22. Suppose that k is algebraically closed. Let �k be the
constant algebraic group over k defined by a finite group � , and let M be a
�k-module sheaf. For all i � 1,

Exti .�k ;M/'H iC1.�;M.k// (usual group cohomology):

PROOF. Because k is algebraically closed, the functor M  M.k/ is exact
(5.48). Hence the functor M  C �.�;M.k// is exact, and so an exact sequence

0!M 0!M !M 00! 0

of sheaves of commutative groups gives rise to an exact sequence

0!Z1.�;M 0.k//!Z1.�;M.k//!Z1.�;M 00.k//!H 2.�;M 0.k//! �� �
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of commutative groups. As

Ext0.�k ;M/DZ1.�k ;M/'Z1.�;M.k//,

it remains to show that H iC1.�;M.k//D 0 for i > 0 when M is injective. But
the functor M  M.k/ is right adjoint to the functor N  Nk , i.e.,

Hom.N;M.k//' Hom.Nk ;M/:

IfM is injective, then the functorN  Hom.Nk ;M/'Hom.N;M.k// is exact,
and so M.k/ is injective. 2

COROLLARY 15.23. Let k, � , and M be as in the proposition. If � is of finite
order n and x 7! nxWM.k/!M.k/ is an isomorphism, then

Exti .�k ;M/D 0 for all i � 0:

PROOF. Let N be a � -module. If � has order n, then the cohomology group
H i .�;N / is killed by n for all i > 0 (Serre 1962, VIII, �2). If x 7! nxWN !N is
bijective, then n acts bijectively onH i .�;N /. If both are true, thenH i .�;N /D 0

for i > 0, and so the statement follows from (15.22). 2

COROLLARY 15.24. Let D be a diagonalizable algebraic group over k. If k is
algebraically closed, then Exti .Z=pZ;D/D 0 for all i > 0.

PROOF. It suffices to show that pWD.k/! D.k/ is an isomorphism. This is
obviously true if D DGm, D D �pr , or D D �n with gcd.p;n/D 1, and every
diagonalizable group is a product of such groups (12.3). 2

Extensions with additive quotient

PROPOSITION 15.25. Let D be a diagonalizable group. Every action of Ga on
D is trivial, and

Ext0.Ga;D/D 0D Ext1.Ga;D/:

PROOF. The first assertion follows from Corollary 12.37. For the second as-
sertion, we first consider the case D D D.Z/ D Gm. Because the action is
trivial, Ext0.Ga;Gm/D Hom.Ga;Gm/, which is 0 (see 14.18). Consider a sheaf
extension

0!Gm!E!Ga! 0: (112)

Then E is a Gm-torsor over A1 (see 2.68), and hence corresponds to an element
of Pic.A1/, which is zero (A.79). Therefore (112) is a Hochschild extension, and

E.Ga;Gm/
15.10
' H 2

0 .Ga;Gm/
15.7
D 0.

In the general case, D DD.M/, and there exists an exact sequence

0! Zs! Zr !M ! 0
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for some r;s 2 N, which gives an exact sequence of algebraic groups

0!D.M/!Grm!Gsm! 0

(12.9b). This is exact as a sequence of sheaves of commutative groups, and so
there is a long exact sequence

0! Ext0.Ga;D.M//! Ext0.Ga;Gm/r ! Ext0.Ga;Gm/s! �� � :

Thus the statement follows from the case D DGm. 2

Define f1WGa�Ga!Ga by

f1.x;y/D
xpCyp� .xCy/p

p

D�xp�1y� p�1
2
xp�2y2�� � ��xyp�1:

It is a symmetric 2-cocycle for the trivial action of Ga on Ga.

LEMMA 15.26. Every element of H 2
s .Ga;Ga/ has a unique representative of

the form f D
P
i�0 aif

pi

1 (ai 2 k). Therefore H 2
s .Ga;Ga/ is a free k� ŒF �-

module with basis f1.

PROOF. When we substitute f .x;y/D
P
i;j ai;jx

iyj into

f .y;z/�f .xCy;z/Cf .x;yC z/�f .x;y/D 0

we obtain the identities that the aij must satisfy in order for f to be a 2-cocyle.
From these identities, it is possible to deduce the statement of the lemma (Lazard
1955, Lemme 3; DG, II, �2, 4.6). 2

PROPOSITION 15.27. Let H be an algebraic subgroup of Ga. Every extension
Ga!E!H with E commutative comes by pull-back from the extension

0!Ga!W2!Ga! 0: (113)

PROOF. Let
0!Ga!E!H ! 0

be an extension of H by Ga with E commutative. The extension is Hochschild
because E is a Ga-torsor over H (see 2.68) and hence is trivial (2.72). Thus the
extension corresponds to an element of H 2

s .H;Ga/ (see 15.11). The extension
(113) corresponds to the 2-cocycle f1 2Z2s .Ga;Ga/. Thus, the proposition for
H DGa follows from the lemma using the isomorphism End.Ga/' k� ŒF � in
14.40. For anH ¤Ga, it remains to show that the canonical mapH 2

s .Ga;Ga/!
H 2
s .H;Ga/ is surjective. Let O.Ga/ D kŒT � and let O.H/ D kŒT �=I with I

generated by a polynomial of degree n. Let U be the subspace of kŒT � spanned
by 1; : : : ;T n�1. Every f 2 Z2s .H;Ga/ � .kŒT �=I /˝2 lifts to an f 0 2 U˝2 �
kŒT �˝2. This f 0 is a symmetric 2-cocycle whose class in H 2

s .Ga;Ga/ maps to
the class of f in H 2

s .H;Ga/ (DG, II, �3, 4.7). 2
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Extensions with multiplicative quotient

PROPOSITION 15.28. Let D D D.M/ be a diagonalizable algebraic group.
Every action of Grm on D.M/ is trivial, and the functor D induces isomorphisms

Exti .M;Zr /' Exti .Grm;D.M//

for i D 0;1:

PROOF. The first assertion follows from Corollary 12.37. The contravariant
equivalence in Theorem 12.9 gives isomorphisms

HomZ-modules.M;Zr /' Hom.Grm;D.M//

Ext1Z-modules.M;Z
r /' Ex1.Grm;D.M//

where Ex1.Grm;D.M// denotes extensions in the category of commutative algeb-
raic groups (equivalently commutative group functors). Because the action of
Grm on D.M/ is trivial,

Ext0.Grm;D.M//D Hom.Grm;D.M//:

The map
Ex1.Grm;D.M//! Ext1.Grm;D.M//

is injective, and it remains to show that it is surjective. By a five-lemma argument,
it suffices to do this with M D Z (so D.M/DGm).

Consider an extension

0!Gm!E!Grm! 0:

Then E is a Gm-torsor over Grm, and so corresponds to an element of Pic.Grm/,
which is zero. Therefore, the extension is a Hochschild extension, and so

Ext1.Grm;Gm/DE.G
r
m;Gm/

15.10
D H 2

0 .G
r
m;Gm/

15.8
D 0: 2

Recall (10.12) that an action of an algebraic group G on Ga is said to be
linear if it arises from a linear representation of G on a one-dimensional vector
space.

PROPOSITION 15.29. Let G be of multiplicative type, and let N be an algebraic
subgroup of Ga such that G acts on N through a linear action on Ga. Then

H 1
0 .G;N /D 0DH

2
0 .G;N /.

PROOF. Let V be such that Va DGa. Then H i .G;V /DH i
0.G;Ga/ by defini-

tion, and H i .G;V /D 0 for i > 0 by 15.16. Consider the exact sequence

0!N !Ga!Ga=N ! 0: (114)
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Either Ga=N D 0 or it is isomorphic to Ga (Exercise 14-3). In the first case,
N 'Ga and so H i

0.G;N /D 0 for i > 0. In the second case, (114) becomes an
exact sequence

0!N !Ga!Ga! 0;

whose exact cohomology sequence gives the result. 2

COROLLARY 15.30. Let G be of multiplicative type. Then H i
0.G; p̨/D 0 for

i > 0.

PROOF. The automorphism group of p̨ is Gm, and so every action of G on p̨

extends to a linear action on Ga. Thus, we can regard

0! p̨!Ga
F
�!Ga! 0

as an exact sequence of G-modules. Its cohomology sequence gives the result.2

PROPOSITION 15.31. Let G be an algebraic group of multiplicative type, and
let .V;r/ be a finite-dimensional representation of G. Then E0.G;Va/' V=V G

and Exti .G;Va/D 0 all i > 0:

PROOF. By definition, H i .G;V / D H i
0.G;Va/, and H i .G;V / D 0 for i > 0

(see 15.17). 2

PROPOSITION 15.32. Let G be an algebraic group of multiplicative type, acting
trivially on a commutative unipotent group U . Then Exti .G;U /D 0 for all i � 0.

PROOF. For U DGa, this follows from (15.31). Every algebraic subgroup of Ga
is the kernel of an epimorphism Ga!Ga (Exercise 14-3), and so the statement
is true for such groups. Now use that U has a filtration whose quotients are of
these types (14.21). 2

COROLLARY 15.33. LetG be of multiplicative type, and let 'WG!Aut. p̨/'
Gm be a nontrivial homomorphism. Then Exti .G; p̨/D 0 for i � 2. If ' factors
through �p �Gm, then�

Ext0.G; p̨/' k

Ext1.G; p̨/D 0I
otherwise

�
Ext0.G; p̨/D 0

Ext1.G; p̨/' k=k
p:

PROOF. As Aut. p̨/'Gm, every action of D on p̨ extends to a linear action
of D on Ga. We have an exact sequence

0! p̨!G0a
F
�!G00a! 0

in which G0a DGa DG00a as algebraic groups but may have different G-module
structures. In the corresponding long exact sequence,

Exti .G;G0a/D 0D Exti .G;G00a/; i � 1:
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Now the exact sequence

Hom.D;Ga/! Ext1.D; p̨/! Ext1.D;Ga/

and (15.31) show that Ext1.D; p̨/D 0. 2

THEOREM 15.34. Let U be an algebraic subgroup of Ga, and let G be an
algebraic group of multiplicative type acting on U by group homomorphisms.
Then Ext1.G;U /D 0 in each of the following cases:

(a) U DGa and the action of G on U is linear (for example, trivial);

(b) k is perfect and U D p̨r ;

(c) U is étale and G is connected;

(d) k is algebraically closed and the action of G on U is the restriction of a
linear action on Ga;

(e) G acts trivially on U .

PROOF. (a) This was proved in Proposition 15.31.
(b) This follows from Proposition 15.32 using the exact sequences

0! p̨! p̨r ! p̨r�1 ! 0:

(c) The action of G on U is trivial, and so we have an exact sequence of
G-modules with trivial action,

0! U !Ga!Ga! 0

(see Exercise 14-3). In the exact sequence

Ext0.G;Ga/! Ext1.G;U /! Ext1.G;Ga/;

the two end terms are zero (15.29).
(d, e) If U D Ga, then this is proved in (a). Otherwise, there is an exact

sequence
0! U !Ga

˛
�!Ga! 0;

(see Exercise 14-3), and hence an exact sequence

Ext0.G;Ga/! Ext0.G;Ga/! Ext1.G;U /! Ext1.G;Ga/:

But Ext1.G;Ga/D 0, and Hom.G;Ga/ equals 0 if the action is trivial (12.18)
and k otherwise. Therefore Ext1.G;U /D 0 or Ext1.G;U /D k=kp , from which
the statements (d) and (e) follow. 2
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Extensions of unipotent groups by diagonalizable groups

PROPOSITION 15.35. We have

H 2
0 . p̨;�p/'H

2
0 . p̨;Gm/' Ext1. p̨;Gm/:

PROOF. The first isomorphism is a special case of Proposition 15.9. For the
second isomorphism, it suffices (after 15.10) to show that every extension

0!Gm
i
�!E

�
�! p̨! 0

is a Hochschild extension, i.e., there exists a map sW p̨!E of schemes such that
� ı s D id. But E is a Gm-torsor over p̨ , and hence corresponds to an element
of Pic. p̨/, which is zero because p̨ is the spectrum of a local ring. 2

PROPOSITION 15.36. Every action of p̨ on a diagonalizable group D is trivial,
and

Ext1. p̨;�p/' Ext1. p̨;Gm/' k=kp:

If k is perfect, then Ext1. p̨;D/D 0.

PROOF. The first assertion follows from Corollary 12.37. We now prove the
second assertion. As Hom. p̨;Gm/D 0, from the Ext-sequence of

0! �p!Gm
x 7!xp

�! Gm! 0;

we find that
Ext1. p̨;�p/! Ext1. p̨;Gm/

is injective. From Proposition 15.35, we find that

Ext1. p̨;�p/' Ext1. p̨;Gm/'H 2
0 . p̨;�p/' Ext1.Lie. p̨/;Lie.�p//:

The p-Lie algebra of p̨ is kf with f Œp� D 0, and the p-Lie algebra of �p D ke
with eŒp� D e. Every extension of Lie. p̨/ by Lie(�p/ splits as an extension of
vector spaces, and so it is equivalent to an extension

L�W 0! ke
j
�! ke˚kf�

q
�! kf ! 0

where j.e/ D e, q.e/ D 0, q.f�/ D f and ke˚ kf� is a p-Lie algebra with
eŒp� D e and f Œp�

�
D �f�. A homomorphism of extensions of p-Lie algebras

L�W 0 ke ke˚kf� kf 0

L�W 0 ke ke˚kf� kf 0

j

u

q

j q
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maps e to e and f� onto ˛eCf� with ˛ 2 k. The equality

�e D u.f
Œp�

�
/D .˛eCf�/

Œp�
D ˛peC�e

shows that the extensions L� and L� are equivalent if and only if ��� 2 kp .
Finally, let � 0 be the quotient of � by the prime-to-p torsion in � . Then

D.� /ı DD.� 0/. As � 0 has a normal series whose quotients are isomorphic to
Z or Z=pZ, the final assertion follows from the second. 2

NOTES. See DG, III, �6, 7.2; 8.6; 8.7 for more details.

THEOREM 15.37. LetD and U be algebraic groups over an algebraically closed
field k with D diagonalizable and U unipotent. Then Ext1.U;D/D 0.

PROOF. Consider an exact sequence

e!D
i
�!G

�
�! U ! e

where D is diagonalizable and U is unipotent. We shall show that i admits a
retraction r . This assertion is trivial if U D e. Otherwise, U contains a normal
algebraic subgroup U1 such that U=U1 is isomorphic to Ga (p D 1) or Ga, p̨ ,
or .Z=pZ/k (p ¤ 1/ (see 14.22, 14.52). Consider the commutative diagram

e e

e D ��1.U1/ U1 e

e D G U e

H U=U1

e e:

i1 �1

i �

'

Arguing by induction on the length of a subnormal series for U , we may suppose
that i1 admits a retraction r1W��1.U1/!D. We form the pushout of the middle
column of the diagram by r1:

e ��1.U1/ G H e

e D K H e:

r1 u

i2

On combining Corollary 15.24 with the Propositions 15.25 and 15.36, we find
that Ext1.H;D/D 0, and so i2 admits a retraction r2. Now r D r2 ıuWG!D

is a retraction of i , which completes the proof. 2
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Extensions of multiplicative groups by multiplicative groups

PROPOSITION 15.38. Every action of �p on Gm or �p is trivial, and

Ext1.�p;Gm/' k=}.k/; where }.x/D xp�x

Ext1.�p;�p/' Z=pZ˚k=}.k/:

PROOF. The proof is similar to that of Proposition 15.36. 2

THEOREM 15.39. Every extension of a connected algebraic group of multi-
plicative type by an algebraic group of multiplicative type is of multiplicative
type.

PROOF. We may suppose that k is algebraically closed. Let A.G00;G0/ denote
the following statement: for every exact sequence

e!G0!G!G00! e; (115)

the algebraic group G is diagonalizable. We prove that A.G00;G0/ holds for all
connected groups G00 and G0 of multiplicative type by using induction on the
dimension of G00. We may suppose G00 ¤ e.

Consider an extension (115) with G0 and G00 connected of multiplicative type.
To show that G is diagonalizable, it suffices to show that every finite-dimensional
representation .V;r/ of G is diagonalizable (12.12). As G0 is diagonalizable,

.V;r jG0/D
M

�2X�.G0/

V�:

Moreover, G0 is contained in the centre of G (see 12.38), and so each V� is stable
under G. Therefore, we may replace V with V� and assume that G0 acts through
�. We now have a diagram

e G0 G G00 e

e Gm GLV GLV =Gm e;

� r Nr

q

and it suffices to show that the representation of q�1. Nr.G00// on V is diagonal-
izable. This will be true if q�1. Nr.G00// is diagonalizable. But q�1. Nr.G00// is an
extension of Nr.G00/ by Gm. Therefore, in order to prove A.G00;G0/, it suffices to
prove A.H;Gm/ where H runs over the quotients of G00.

For the case G00 D Gm or �p , where p is the characteristic exponent of
k, it suffices to prove A.Gm;Gm/ and A.�p;Gm/. In Proposition 15.28 (resp.
Proposition 15.38) we prove that every extension of Gm by Gm (resp. �p by Gm)
is commutative, and hence of multiplicative type .12.12).
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IfG00 is neither Gm or �p , then it contains one or the other as a proper normal
algebraic subgroup N (this is obvious from 12.9). Let G1 denote the inverse
image of N in G, and consider the diagram

e e

e G0 G1 N e

e G0 G G00 e

G=G1 G00=N

e e:

'

The group G1 is diagonalizable by the last case, and so G, being an extension of
G00=N by G1, is diagonalizable by the induction hypothesis. 2

COROLLARY 15.40. Let G and G0 be algebraic groups of multiplicative type
with G connected. The map

Ext1.G;G0/! Ext1Z� -modules.X
�.G0/;X�.G//; � D Gal.ks=k/;

defined by the functor X� is a bijection.

Exercises

EXERCISE 15-1. Proposition 15.36 shows that there are no noncommutative
extensions of p̨ by Gm over k (because this is true over ka). Can you prove this
without using p-Lie algebras? See https://mathoverflow.net/, question
183139.

https://mathoverflow.net/


CHAPTER 16

The Structure of Solvable Algebraic
Groups

In this chapter, we study solvable algebraic groups. Of special interest are the
groups G satisfying the following condition:

(*) there exists a normal unipotent algebraic subgroup Gu such that
G=Gu is of multiplicative type.

When it exists, Gu contains every unipotent algebraic subgroup, and so it is
unique (see 16.6). Algebraic groups satisfying (*) are solvable, and conversely
smooth connected solvable groups over a perfect field satisfy (*) (see 16.33). An
algebraic group G satisfies (*) if and only if it becomes diagonalizable over a
separable field extension (see 16.6).

As usual, R is a (variable) k-algebra. Recall that all algebraic groups are
affine over a base field k.

a. Trigonalizable algebraic groups

DEFINITION 16.1. An algebraic group G is trigonalizable if every simple rep-
resentation has dimension one.

In other words, G is trigonalizable if every nonzero representation of G
contains an eigenvector. In terms of the associated comodule .V;�/, the condition
means that there exists a nonzero vector v 2 V such that �.v/D v˝a for some
a 2O.G/. Both unipotent and diagonalizable algebraic groups are trigonalizable
(6.45, 12.12).

A finite-dimensional representation .V;r/ of an algebraic group G is said to
be trigonalizable if there exists a basis of V for which r.G/� Tn. Equivalently,
.V;r/ is trigonalizable if G stabilizes a maximal flag in V .

PROPOSITION 16.2. The following conditions on an algebraic group G are
equivalent:

324
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(a) G is trigonalizable;

(b) every finite-dimensional representation .V;r/ of G is trigonalizable;

(c) G is isomorphic to an algebraic subgroup of Tn for some n;

(d) there exists a normal unipotent algebraic subgroup U of G such that G=U
is diagonalizable.

PROOF. (a))(b). We use induction on the dimension of V , assumed nonzero.
By hypothesis, V contains a one-dimensional subspace V1 stable under G. From
the induction hypothesis, V=V1 contains a maximal flag V=V1 � Vn�1=V1 �
�� � � V1=V1 D 0 stable under G. Now V � Vn�1 � �� � � V1 � 0 is a maximal
flag in V stable under G.

(b))(c). Apply (b) to a faithful finite-dimensional representation ofG (which
exists by 4.9), and use that every monomorphism is a closed immersion (3.35).

(c))(d). Embed G into Tn, and let U D Un\G. Then U is normal because
Un is normal in Tn, and it is unipotent because it is isomorphic to a subgroup
of Un (see 14.5). Finally, G=U embeds into the split torus Tn=Un, and so it is
diagonalizable (12.9c).

(d))(a). Let U be as in (d), and let .V;r/ be a representation of G on a
nonzero vector space. Then V U is nonzero because U is unipotent, and it is
stable under G because U is normal (5.15). Now G acts on V U through G=U ,
and so V U is a sum of one-dimensional subrepresentations (12.12). In particular,
it contains a one-dimensional subrepresentation. 2

COROLLARY 16.3. Subgroups and quotients of trigonalizable algebraic groups
are trigonalizable.

PROOF. Let G be a trigonalizable algebraic group. As G admits a faithful
trigonalizable representation, so does every algebraic subgroup. Let Q be a
quotient of G. A nonzero representation of Q can be regarded as a representation
of G, and so it has a one-dimensional subrepresentation. 2

COROLLARY 16.4. Let G be an algebraic group over k, and let k0 be a field
containing k. If G is trigonalizable, then so also is Gk0 .

PROOF. An embedding G ,! Tn gives an embedding Gk0 ,! Tnk0 by extension
of scalars. 2

REMARK 16.5. Extensions of trigonalizable groups need not be trigonalizable.
For example, commutative algebraic groups over algebraically closed fields are
trigonalizable (16.14), but solvable algebraic groups need not be (16.36, 16.37).

THEOREM 16.6. The following conditions on an algebraic group G over k are
equivalent:

(a) G becomes trigonalizable over a separable field extension of k;

(b) G contains a normal unipotent algebraic subgroup Gu such that G=Gu is
of multiplicative type.
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When these conditions hold, Gu is unique and contains every unipotent algebraic
subgroup of G.

PROOF. Let G be an algebraic group over k. A normal unipotent subgroup U
of G such that G=U is multiplicative contains every unipotent subgroup V of
G, because the composite V !G!G=U is trivial (14.18); in particular, there
exists at most one such U .

(a))(b). Let k0 be a finite Galois extension of k such that Gk0 is trigonaliz-
able. According to Proposition 16.2(d), Gk0 contains a U as in the first paragraph,
which, being unique, is stable under Gal.k0=k/, and therefore arises from an
algebraic subgroup Gu of G (see 1.54). Now Gu is unipotent because it becomes
so over k0, and G=Gu is of multiplicative type because it becomes diagonalizable
over k0.

(b))(a). The quotient G=Gu becomes diagonalizable over some finite separ-
able extension k0 of k (see 12.18). As Gu remains unipotent over k0 (see 14.9), it
follows that G becomes trigonalizable over k0 (see 16.2d). 2

NOTATION 16.7. When G is an algebraic group, we use Gu exclusively to
denote a normal algebraic subgroup such that Gu is unipotent and G=Gu is of
multiplicative type.

Notes

Let G be an algebraic group over k satisfying the equivalent conditions of
Theorem 16.6.

16.8. The algebraic subgroup Gu is characterized by each of the following
properties: (a) it is the largest unipotent algebraic subgroup of G; (b) it is a
normal unipotent algebraic subgroup U of G such that G=U is of multiplicative
type; (c) it is the smallest normal algebraic subgroup U such that G=U is of
multiplicative type. From (b), it follows that the formation of Gu commutes with
extension of the base field.

16.9. Assume that k is perfect. Let .V;r/ be a faithful representation of G. By
assumption, there exists a basis of Vka for which r.G/ka � Tn, and then

r .Gu/ka D Un\ r.G/ka .

As Un.ka/ consists of the unipotent elements of Tn.ka/, it follows that Gu(ka/

consists of the unipotent elements of G.ka/:

Gu.k
a/DG.ka/u:

If Gu is smooth, this equality characterizes Gu (1.18).

16.10. If G is smooth (resp. connected), then Gu is smooth (resp. connected)
because it becomes a quotient of G over ka (see 16.26a below).
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NOTES. In DG, IV, �2, 3.1, a group scheme G over a field is defined to be trigonalizable
if it is affine and has a normal unipotent algebraic subgroup U such that G=U is diagonal-
izable. In Springer 1998, 14.1, a group variety over k is defined to be trigonalizable over
k if it is isomorphic to a subgroup variety of Tn for some n. According to Theorem 16.2,
these agree with our definition.

b. Commutative algebraic groups

Let u be an endomorphism of a finite-dimensional vector space V over k. If the
eigenvalues of u lie in k, then there exists a basis of V for which the matrix of u
lies in

Tn.k/D

8̂̂̂<̂
ˆ̂:
˙
� � : : : �

0 � : : : �
:::

:::
: : :

:::

0 0 � � � �

�9>>>=>>>;
(9.10). We extend this elementary statement to sets of commuting endomorph-
isms, and then to connected solvable group varieties over algebraically closed
fields.

LEMMA 16.11. Let V be a finite-dimensional vector space over an algebraically
closed field k, and let S be a set of commuting endomorphisms of V . Then there
exists a basis of V such that all elements of S are represented by upper triangular
matrices.

PROOF. By a standard argument (see the proof of 16.2), it suffices to show that
there exists a one-dimensional subspace of V stable under S . We prove this
by induction on the dimension of V . If every u 2 S is a scalar multiple of the
identity map, then there is nothing to prove. Otherwise, there exists a u 2 S and
an eigenvalue a for u such that the eigenspace Va ¤ V . As every element of
S commutes with u, the space Va is stable under the action of the elements of
S . By the induction hypothesis, Va contains a one-dimensional subspace stable
under S . 2

PROPOSITION 16.12. Let V be a finite-dimensional vector space over an algeb-
raically closed field k, and let G be a smooth commutative algebraic subgroup of
GLV . Then there exists a basis of V for which G is contained in Tn.

PROOF. According to the lemma, there exists a basis of V for which G.k/ �
Tn.k/. NowG\Tn is an algebraic subgroup ofG such that .G\Tn/.k/DG.k/.
AsG.k/ is dense inG (see 1.17), this implies thatG\TnDG, and soG �Tn.2

LetG be an algebraic group over a perfect field k, and letG.k/s (resp.G.k/u)
denote the set of semisimple (resp. unipotent) elements of G.k/. Theorem 9.18
shows that

G.k/DG.k/s �G.k/u (product of sets). (116)
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This is not usually a decomposition of groups because products do not generally
respect Jordan decompositions. When G is commutative, the multiplication map
mWG�G!G is a homomorphism of algebraic groups, and so it does respect
the Jordan decompositions (9.21):

.gg0/s D gsg
0
s .gg0/u D gug

0
u

(this can also be proved directly). Thus, in this case (116) realizes G.k/ as a
product of abstract subgroups. We can do better.

THEOREM 16.13. Let G be a commutative algebraic group over k.
(a) There exists a largest algebraic subgroup Gs of G of multiplicative type;

this is a characteristic subgroup of G, and the quotient G=Gs is unipotent.
(b) If k is perfect, then there also exists a largest unipotent algebraic subgroup

Gu of G, and
G 'Gu�Gs

(unique decomposition of G into a product of a unipotent subgroup and a
subgroup of multiplicative type).

PROOF. (a) Let Gs denote the intersection of the algebraic subgroups H of G
such that G=H is unipotent. Then G=Gs !

Q
G=H is an embedding, and so

G=Gs is unipotent (14.7). Clearly, Gs is the smallest algebraic subgroup with
this property.

To prove that Gs is of multiplicative type it suffices to show that every
homomorphism Gs!Ga is trivial (12.18). Let ' be such a homomorphism, and
let N be its kernel. Then G=N is an extension of unipotent groups,

0!Gs=N !G=N !G=Gs! 0;

and hence is unipotent (14.7). It follows that N DGs , and so ' D 0.
Let H be another algebraic subgroup of G of multiplicative type. The

composite H !G!G=Gs is trivial (14.18), and so H �Gs .
Let ˛ be an endomorphism of GR for some k-algebra R. The composite

.Gs/R!GR
˛
�!GR! .G=Gs/R

is trivial (15.18), and so ˛.GsR/�GsR. Hence Gs is characteristic (1.53).
(b) If G D U �M with U unipotent and M multiplicative, then the decom-

position is unique (and M D Gs). Indeed, if U 0 is a unipotent subgroup of G,
then the map U 0!G!G=U 'M is trivial (14.18), and so U 0 � U . Similarly,
M contains every subgroup of multiplicative type.

Because ka is Galois over k, the uniqueness shows that any such decomposi-
tion over ka arises from a decomposition over k. Thus we may suppose that k is
algebraically closed. Now the extension

e!Gs!G!G=Gs! e

splits (15.37), and so G D U �Gs with U 'G=Gs unipotent. 2
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Because Gs and Gu become quotients of G over ka, they are smooth or
connected if G is smooth or connected.

COROLLARY 16.14. Every commutative algebraic group over an algebraically
closed field is trigonalizable.

PROOF. The group satisfies condition (b) of Theorem 16.6. 2

COROLLARY 16.15. A connected commutative group variety G over a perfect
field k is a product of a torus and a connected commutative unipotent group
variety. When k has characteristic zero, every commutative unipotent algebraic
group is a vector group.

PROOF. Write G DGu�Gs (as in 16.13). A smooth connected algebraic group
of multiplicative type is a torus, and a connected commutative unipotent algebraic
group in characteristic zero is a vector group (14.33). 2

COROLLARY 16.16. LetG be a smooth connected algebraic group of dimension
1 over a field k. Either G becomes isomorphic to Gm over a finite separable
extension of k or it becomes isomorphic to Ga over a finite purely inseparable
extension of k. Over an algebraically closed field, Ga and Gm are the only
connected group varieties of dimension 1.

PROOF. The group G is commutative (14.25), and so it contains a multiplicative
subgroup Gs such that G=Gs is unipotent. Either G DGs , which gives the first
case, or G DGu, which gives the second case (14.53). 2

Notes

16.17. LetG be a commutative algebraic group over k. The algebraic subgroup
Gs of G in Theorem 16.13 is characterized by each of the following properties:
(a) it is the largest algebraic subgroup of G of multiplicative type; (b) it is an
algebraic subgroup H of G of multiplicative type such that G=H is unipotent;
(c) it is the smallest algebraic subgroup H of G such that G=H is unipotent. It
follows from (b) that the formation of Gs commutes with extension of the base
field.

16.18. If G is a commutative group variety over a perfect field k, then Gs
and Gu are the unique subgroup varieties of G such that Gs.ka/DG.ka/s and
Gu.k

a/DG.ka/u. Thus, we have realized the decomposition (116) on the level
of group varieties.

16.19. The subgroup Gu of G in Theorem 16.13(b) is weakly characteristic in
G but in general it is not a characteristic subgroup. The argument in the proof
of the theorem for Gs fails because there may exist nontrivial homomorphisms
GuR!GsR (see 15.19).
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16.20. Statement (b) of Theorem 16.13 fails when k is nonperfect. For example,
the group in 11.4 is a commutative nonsplit extension of .Z=pZ/k by �p . As
another example, let c 2 kXkp , and let G be the restriction of scalars of Gm
from kŒc1=p� to k. Then G is smooth, connected, and commutative and there
is a natural inclusion Gm ,! G with smooth unipotent quotient G=Gm. If G
contained a nontrivial smooth unipotent subgroup, then G.k/ would contain an
element of order p becauseG.k/ is dense inG (Exercise 12-10), butG.k/D k0�,
which has no such elements.

NOTES. The first published proof that the only connected group varieties of dimension
1 over an algebraically closed field are Ga and Gm is that given by Grothendieck in
Chevalley 1956–58.

c. Structure of trigonalizable algebraic groups

THEOREM 16.21. LetG be a trigonalizable algebraic group over a field k. There
exists a normal series,

G �G0 �G1 � �� � �Gr D e

with the following properties:
(a) G0 DGu;
(b) for each i � 0, the action ofG onGi=GiC1 by inner automorphisms factors

through G=Gu, and there exists an embedding

Gi=GiC1 ,!Ga
which is equivariant for some linear action of G=Gu on Ga.

PROOF. Choose an embedding of G in Tn. From the exact sequence

e! Un! Tn
q
�! Dn! e;

we obtain an exact sequence

e!G\Un!G! q.G/! e:

Let U be a unipotent subgroup of G. Then q.U / is unipotent and diagonalizable,
hence trivial. Therefore U � G \Un, and so G \Un is the largest unipotent
subgroup Gu of G.

The group Un has a normal series

Un D U .0/ � �� � � U .i/ � U .iC1/ � �� � � U .
n.n�1/
2 /
D 0

such that each quotient U .i/=U .iC1/ is canonically isomorphic to Ga; moreover,
Tn acts linearly on U .i/=U .iC1/ through the quotient Tn=Un (see 6.49).

Let G.i/ D U .i/\G. Then G.i/ is a normal subgroup of G and G.i/=G.iC1/

is an algebraic subgroup of U .i/=U .iC1/ 'Ga. Therefore, we obtain an embed-
ding ofG.i/=G.iC1/ into Ga, the groupG acts onG.i/=G.iC1/ through an action
that extends to a linear action on Ga, and the action of Gu �G is trivial. 2
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COROLLARY 16.22. If G is smooth, Gu is smooth and connected, and k is
perfect, then the sequence in the theorem can be chosen so that each Gi is smooth
and connected and each embedding Gi=GiC1!Ga is an isomorphism.

PROOF. Let G.i/ be as in the proof of the theorem. Then .G.i//ıred is a smooth
connected unipotent subgroup of Gu (see 1.39). Moreover, .G.i//ı is normal
in G (see 1.52), and so .G.i//ıred is normal in G (see 1.87). The quotient group
.G.i//ıred=.G

.iC1//ıred is a smooth connected subgroup of U .i/=U .iC1/, which
is canonically isomorphic to Ga (see the proof of the theorem). Therefore
either .G.i//ıred=.G

.iC1//ıred is trivial or it maps isomorphically onto U .i/=U .iC1/

(Exercise 14-3). When we omit duplicates from the sequence Gu D .G.0//ıred �

.G.1//ıred � �� � , we obtain a sequence with the required properties. 2

In fact, Gu is automatically smooth and connected if G is (16.10).

COROLLARY 16.23. Let U be a smooth connected unipotent group over a per-
fect field, and let T be a split torus acting on U . If U ¤ e, then there exists a
central subgroup N of U that is stable under T and equivariantly isomorphic to
Ga for some linear action of T on Ga.

PROOF. Form the trigonalizable group U ÌT . The last nontrivial group in the
sequence in Corollary 16.22 has the required properties. 2

COROLLARY 16.24. Every smooth connected unipotent algebraic group U over
a perfect field k has a central normal series with quotients isomorphic to Ga.
Moreover, if a split torus T acts on U , then it is possible to choose the normal
series to be stable under T and such that the action of T on the quotients is linear.

PROOF. This follows by induction from Corollary 16.23. 2

COROLLARY 16.25. Let U be a connected unipotent algebraic group acted on
by a torus T . Every algebraic subgroup H of U stable under T and containing
U T is connected. In particular, U T is connected.

PROOF. It suffices to show that Hka is connnected, and so we may suppose
that k is algebraically closed. As Hred.k/ D H.k/, it is stable under T .k/.
Let N D NUÌT .Hred/. Then N.k/ consists of the elements of .U Ì T /.k/
normalizing Hred.k/ (see 1.84), and so N.k/� T .k/, which implies that N � T
because T is smooth. We have shown that Hred is stable under T . In particular,
Ured is stable under T . As H � .Ured/

T and .Ured/
T is smooth (13.1), Hred �

.Ured/
T . Therefore, we may replace U and H with Ured and Hred, and so assume

that both are smooth.
We argue by induction on the dimension of U . We may suppose that U ¤ e.

Let N be as in Corollary 16.23. The sequences

0!N.R/! U.R/! .U=N/.R/! 0
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are exact because H 1.R;Ga/D 0 (see 2.72), and so there is an exact sequence
((102), p. 305),

� � � ! U T .k/! .U=N/T .k/!H 1
0 .T;N /

15.3
D 0:

Hence U T ! .U=N/T is surjective, and so it is a quotient map (1.71). It follows
that HN=N contains .U=N/T , and so HN=N is connected by the induction
hypothesis. As HN=N 'H=H \N (see 5.52), it remains (by 5.59) to prove
that H \N is connected. Now T acts on N through a character �WT ! Gm.
If �D 0, then N � U T �H , and H \N D N is connected. Otherwise � is a
quotient map, and H \N is stable under the natural action of Gm on N ; this
implies that it is connected (Exercise 14-3c). 2

THEOREM 16.26. Let G be a trigonalizable algebraic group over a field k. The
extension

e!Gu �!G
�
�!D! e

splits in each of the following cases:
(a) the field k is algebraically closed;

(b) the field k is perfect and Gu is smooth and connected;

(c) the field k is perfect and D is connected.

PROOF. IfGDD, there is nothing to prove, and so we may suppose thatGu¤ e.
Let N be the last nontrivial group in the normal series for Gu defined in Theorem
16.21. Then G=N is trigonalizable, and we have an exact sequence

e!Gu=N !G=N !D! e (117)

with .Gu=N/D .G=N/u. By induction on the length of the normal series, we
may suppose that the theorem holds for G=N .

By construction, N admits a D-equivariant embedding in Ga for some linear
action of D on Ga, and so there is an exact sequence

e!N !Ga!Ga=N ! e

on which D acts linearly. The quotient Ga=N is either trivial or isomorphic to
Ga (Exercise 14-3a).

We now prove the theorem. Let NsWD! G=N be a section of (117). In the
following exact commutative diagram, the top row is the pull-back of the bottom
row by Ns:

e N G�G=N D D e

e N G G=N e:

h Ns

p

(118)
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It remains to show that the top extension splits, because, if d 7! .s.d/;g/ is a
section of G�G=N D!D, then d 7! s.d/ is a section of G!D.

In case (a), the top extension splits because of Theorem 15.34(d).
In case (b), we choose N as in Corollary 16.23, and then the top extension

splits because of 15.34(a).
In case (c), the top extension splits if N �Ga by 15.34(a). If N is finite, then

we apply 15.34(c) to �0.N / and then 15.34(b) to N ı. 2

THEOREM 16.27. Let G be a trigonalizable algebraic group over an algebraic-
ally closed field k, and let qWG!D be the quotient of G by Gu.

(a) Let s1; s2WD ! G be sections of q (as a homomorphism of algebraic
groups). Then there exists a u 2Gu.k/ such that s2 D inn.u/ı s1.

(b) The maximal diagonalizable subgroups of G are those of the form s.D/

with s a section of q; any two are conjugate by an element of Gu.k/.

PROOF. We begin with an observation. Let sWD! G be a section to G!D.
When we use s to write G as a semidirect product G D U ÌD, the remaining
sections to G!D are of the form d 7! .f .d/;d/ with f WD! U a crossed
homomorphism. Such a section is of the form inn.u/ı s if and only if the crossed
homomorphism f is principal (see 15.1).

Let s and s1 be two sections to G!D. Let N be the last nontrivial term in
the normal series Theorem 16.21 for G, and let Ns be the composite of s with the
quotient map pWG!G=N . Form the diagram (118) as above. Now Ns and p ı s1
are two sections of G=N !D. By induction on the length of the normal series
of G, there exists a Nu 2 .U=N/.k/ such that inn. Nu/ıp ı s1 D Ns. Let u 2 U.k/
lift Nu; then

p ı inn.u/ı s1 D Ns;

and, by replacing s1 with inn.u/ı s1, we may suppose that p ı s1 D Ns. From the
construction of G0 as a pull-back, we see that there exist sections �;�1WD!G0

such that s D hı� and s1 D hı�1. As H 1.D;N /D 0 (see 15.3), there exists
a u 2 N.k/ such that inn.u/ ı � D �1, and therefore inn.u/ ı s D s1, which
completes the proof.

(b) Let s be a section of qWG!D and let S be a diagonalizable subgroup of
G. Then S \Gu D e (see 14.17), and so q induces an isomorphism of S onto
q.S/. Let G0 D q�1.q.S// and q0 D qjG0. The sequence

e!Gu!G0
q0

�! q.S/! e

is split by s0 D sjq.S/. As S gives a section of q0, there exists by Theorem 16.26
a u 2Gu.k/ such that S D inn.u/s0q.S/. We deduce that S � inn.u/s.D/. As
S was arbitrary, it follows that s.D/ is a maximal diagonalizable subgroup of G,
and that any two such subgroups are conjugate by an element of Gu.k/. 2

PROPOSITION 16.28. Let

e!D!G! U ! e (119)
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be an exact sequence of algebraic groups over a perfect field. If D is diagonaliz-
able and U is smooth, connected, and unipotent, then the sequence has a unique
splitting: G 'D�U:

PROOF. Because U is connected, it acts trivially on D (see 12.37). If sWU !G

is a section, then s.U /DGu, and s is uniquely determined. To prove the existence
of a section, we use induction on the dimension of U . If dim.U / > 0, then U
contains a central subgroup N isomorphic to Ga (16.23). The pull-back of (119)
by the map N ! U splits (15.25), and so (119) comes by pull-back from an
extension of U=N by D, which splits by the induction hypothesis. 2

SUMMARY 16.29. Similar arguments to those in the proofs Theorems 16.26 and
16.27 suffice to prove the following statement (SGA 3, XVII, 5.2.3, 5.3.1). Let

e!Gu!G
q
�!D! e

be an exact sequence of algebraic groups with Gu unipotent and D a smooth
group of multiplicative type. The sequence splits in each of the following cases:

(a) Gu is commutative and q admits a section as a map of schemes;

(b) k is algebraically closed;

(c) k is perfect and Gu is connected;

(d) Gu is split (as a unipotent group).
Moreover, in each of these cases, any two sections s1; s2WD ! G of q as a
homomorphism of algebraic groups are conjugate by an element of Gu.k/; the
maximal subgroups of multiplicative type in G are those of the form s.D/ with s
a section of q (and so any two such subgroups are conjugate by an element of
Gu.k/).

d. Solvable algebraic groups

THEOREM 16.30 (LIE–KOLCHIN). Let G be a smooth connected solvable al-
gebraic group over k. If k is algebraically closed, then G is trigonalizable.

PROOF. Let .V;r/ be a simple representation of G. We shall use induction on
the dimension of G to show that dim.V /D 1. We already know this when G is
commutative (16.14), and so we may suppose that G is not commutative.

Because G is solvable, it contains a smooth connected normal algebraic
subgroup N such that dim.N / < dim.G/ (see 6.19). The induction hypothesis
applied to N shows that, for some character � of N , the eigenspace V� for
N is nonzero. Let W denote the sum of the nonzero eigenspaces for N in V .
According to Theorem 4.25, the sum is direct, W D

L
V�, and so the set S of

characters � of N such that V� ¤ 0 is finite.
Let x be a nonzero element of V� for some �, and let g 2G.k/. For n 2N.k/,

ngx D g.g�1ng/x D g ��.g�1ng/x D �.g�1ng/ �gx:
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The middle equality used that N is normal in G. Thus, gx lies in the eigenspace
for the character �g def

D .n 7! �.g�1ng// of N . This shows that G.k/ permutes
the finite set S .

Choose a � such that V� ¤ 0, and let H �G.k/ be the stabilizer of V�. Then
H consists of the g 2G.k/ such that �g D �, i.e., such that

�.n/D �.g�1ng/ for all n 2N.k/: (120)

Clearly H is a subgroup of finite index in G.k/, and it is closed for the Zariski
topology on G.k/ because (120) is a polynomial condition on g for each n.
Therefore H DG.k/ because otherwise its cosets would disconnect G.k/. This
shows that G.k/ (hence G) stabilizes V�.

As V is simple, V D V�, and so each n 2 N.k/ acts on V as a homothety
x 7! �.n/x, �.n/ 2 k. But each element n of N.k/ is a product of commutators
Œx;y� of elements of G.k/ (see 6.20), and so n acts on V as an automorphism of
determinant 1. The determinant of x 7! �.n/x is �.n/d , d D dim.V /, and so the
image of �WN ! Gm is contained in �d . As N is smooth and connected, this
implies that �.N/D e (see 6.8), and so G acts on V through the quotient G=N .
Now V is a simple representation of the commutative algebraic group G=N , and
so it has dimension 1 (see 16.14). 2

Thus, every smooth connected solvable algebraic group over k becomes
trigonalizable over a finite extension of k.

COROLLARY 16.31. A smooth connected solvable algebraic group G over k
becomes trigonalizable over a separable field extension of k if and only if .Gka/u
is defined over k.

PROOF. Because Gka is trigonalizable, it contains a normal unipotent subgroup
.Gka/u such that G=.Gka/u is of multiplicative type. If .Gka/u is defined over
k, say, .Gka/u D .Gu/ka with Gu an algebraic subgroup of G, then Gu is uni-
potent and G=Gu is of multiplicative type. Now Theorem 16.6 shows that G
becomes trigonalizable over a separable extension of k. Conversely, if G be-
comes trigonalizable over a separable extension of k, then it contains a normal
unipotent subgroup Gu such that G=Gu is of multiplicative type (16.6). Then
.Gu/ka D .Gka/u because both are normal unipotent subgroups of G with quo-
tient of multiplicative type. 2

COROLLARY 16.32. Let G be a solvable algebraic group over an algebraically
closed field k, and let .V;r/ be a finite-dimensional representation of G. Then
there exists a basis of V for which r.Gı.k//� Tn.k/.

PROOF. The subgroup Gıred smooth, connected, and solvable, hence trigonaliz-
able, and Gıred.k/DG

ı.k/. 2

THEOREM 16.33. Let G be a smooth connected solvable algebraic group over
a perfect field k.
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(a) There exists a normal unipotent subgroup Gu of G such that G=Gu is of
multiplicative type.

(b) The subgroup Gu in (a) contains all unipotent algebraic subgroups of G,
and its formation commutes with extension of the base field.

(c) The subgroup Gu in (a) is smooth and connected, and G=Gu is a torus;
moreover, Gu is the unique smooth algebraic subgroup of G such that Gu.ka/D

G.ka/u:

(d) Suppose that k is algebraically closed, and let T be a maximal torus in G.
Then

G DGuÌT ,

and every algebraic subgroup of multiplicative type in G is conjugate by an
element of Gu.k/ to a subgroup of T .

PROOF. Theorem 16.30 shows that G becomes trigonalizable over a finite exten-
sion of k, which is separable because k is perfect. Now (a), (b), and (c) follow
from 16.6, 16.8, 16.9, and 16.10. When k is algebraically closed, Theorem 16.27
implies that the quotient map G!G=Gu induces an isomorphism from T onto
G=Gu, and so G 'GuÌT (see 2.34). Theorem 16.27 also implies the second
part of (d). 2

PROPOSITION 16.34. Let G be an algebraic group over an algebraically closed
field k. The following conditions are equivalent:

(a) G is smooth, connected, and trigonalizable;

(b) G is a split solvable algebraic group;

(c) G is smooth and connected, and the abstract group G.k/ is solvable;

(d) G is smooth, connected, and solvable.

PROOF. (a))(b). As G is smooth and connected, so also is Gu, and so this
follows from Corollary 16.22.

(b))(c). We are given that G admits a subnormal series G �G1 � �� � such
that each quotient Gi=GiC1 is isomorphic to Ga or Gm. It follows that G is
smooth and connected, and G.k/ is solvable because G.k/ � G1.k/ � �� � is a
subnormal series for G.k/ with commutative quotients.

(c))(d). Recall (p. 132) that the derived series for G is the normal series

G �DG �D2G � �� � :

Each group DiG is smooth and connected (6.19), and DiC1.G/.k/ is the derived
group of Di .G/.k/ (6.20). Therefore Di .G/.k/D e for i large, which implies
that Di .G/D e for i large. Hence the derived series terminates with e, and so G
is solvable.

(d))(a). This is the Lie–Kolchin theorem (16.30). 2
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PROPOSITION 16.35. Let G be a smooth connected solvable algebraic group
over k, and let UG.�/ and PG.�/ be the subgroup varieties of G attached to a
cocharacter � of G (see 13.30). Then the multiplication map

UG.��/�PG.�/!G

is an isomorphism of algebraic varieties.

PROOF. We may suppose that k is algebraically closed. The map is an open
immersion (13.33d), and so it suffices to show that

G D U.��/ �Z.�/ �U.�/

as a set. Fix a maximal torus T containing the image of �. We may suppose
that G ¤ T . As G is trigonalizable (16.30), Corollary 16.22 and the following
comment show that there exists a normal subgroup N of G, isomorphic to Ga,
contained in the centre of Gu. By induction on dim.G/, we may suppose that
the proposition holds for G0 DG=N and the cocharacter �0 induced by �. Then
Proposition 13.34 implies that G D U.��/ �PG.�/ �N . On applying Theorem
13.33(c) to the group N �T and the cocharacter �, we see that N is a subgroup of
one of the groups Z.�/, U.�/, U.��/, which completes the proof. 2

NOTES. The proof of Theorem 16.30 is essentially Kolchin’s original proof (Kolchin
1948, �7, Theorem 1). For a shorter proof, see 17.4 below. Lie proved the analogous result
for Lie algebras in 1876. The implication (c))(a) in Proposition 16.34 is sometimes
called the Lie–Kolchin theorem.

Examples

The following examples illustrate the various ways that a solvable algebraic group
G over a field k can fail to be trigonalizable.

16.36. Nonconnected. The algebraic group of monomial n� n matrices is
smooth, and it is solvable if n� 4 (see 2.41), but it is not trigonalizable if n� 2.
Indeed, let G be the group of monomial 2� 2 matrices. The eigenvectors of
D2.k/ � G.k/ in k2 are e1 D

�
1
0

�
and e2 D

�
0
1

�
and their multiples, but the

monomial matrix
�
0 1
1 0

�
interchanges e1 and e2, and so the elements of G.k/ have

no common eigenvector in k2.

16.37. Nonsmooth. Let k have characteristic 2, and let G be the algebraic
subgroup of SL2 such that

G.R/D
˚�
a b
c d

�
2 SL2.R/

ˇ̌
a2 D 1D d2; b2 D 0D c2

	
for all k-algebras R. Then G is a connected finite algebraic group, and

e ����! �2

a 7!
�
a 0
0 a

�
������!G

�
a b
c d

�
7!.ab;cd/

�����������! ˛2�˛2 ����! e
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is an exact sequence of homomorphisms. Moreover, �2 DZ.G/¤G and so G
is solvable but not commutative. It is even nilpotent. In the natural action of G
on k2, no line through the origin is fixed by G, and so G is not trigonalizable.
Note that G.k/D e.

16.38. Base field not algebraically closed. If k is perfect, then a smooth con-
nected solvable group G contains a normal unipotent subgroup Gu such that
G=Gu is of multiplicative type, but G=Gu need not be split. For example, the
matrices

�
a b
�b a

�
such that a2Cb2 D 1 form a connected commutative algebraic

subgroup G of SL2;R but have no common eigenvector in R2. Therefore, G is
not trigonalizable over R.

If k is not perfect, then G need not contain a normal unipotent subgroup Gu
such that G=Gu is of multiplicative type, even when G is smooth, connected,
and commutative. The group G D .Gm/k0=k with k0 purely inseparable over k
provides such an example (16.20).

e. Connectedness

In this section, we prove that centralizers of semisimple elements in solvable
groups are connected. Throughout, G is a connected group variety and k is
algebraically closed.

LEMMA 16.39. Let N be a connected normal subgroup variety of G, and let
s 2G.k/. If s is semisimple and N is commutative and unipotent, then CN .s/ is
connected; moreover, the map N �CN .s/!N , u;v 7! Œs;u� �v is surjective.

PROOF. As N is commutative, the regular map u 7! Œs;u�WN ! N is a homo-
morphism of algebraic groups. Its kernel is CN .s/, and we let M denote its
image; thus

dimN D dimM CdimCN .s/ (121)

(by 5.23). If x 2 .M \CN .s//.k/, then x D sus�1u�1 for some u 2 N , and
sx�1 D x�1s D usu�1. As usu�1 is semisimple and x is unipotent, the unique-
ness of Jordan decompositions implies that x D e. Hence the multiplication
map

�WM �CN .s/!N

has finite connected kernel, and so (121) implies that it is surjective. Now CN .s/

is connected because both the kernel of � and its image are connected (apply
5.59). As� is surjective, so is its composite with .u 7! Œs;u�WN !M/�CN .s/.2

THEOREM 16.40. Let G be a connected solvable group variety, and let s be a
semisimple element of G.k/. Then CG.s/ is connected and G D U �CG.s/ with
U a unipotent subgroup of G.
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PROOF. We use induction on dimG. If G is commutative, then there is nothing
to prove. Otherwise, we let N denote the last nontrivial term in the derived series
of G. The Lie–Kolchin theorem implies that the derived group of G is unipotent,
and so N is unipotent; it is also connected, normal, and commutative.

Write x 7! Nx for the quotient map G ! G=N . Let z 2 G.k/ be such that
Nz 2C NG.Ns/. Then Œs;z�2N , and so Œs;z�D Œs;u� �v for some u2N and v 2CN .s/
(see 16.39). In other words,

szs�1z�1 D sus�1u�1 �v,

and so
zs�1z�1 D us�1u�1 �v.

As v is unipotent and commutes with u and s, this implies that v D e because of
the uniqueness of the Jordan decomposition. Thus u�1z 2CG.s/. We have shown
that CG.s/.k/! C NG.Ns/.k/ is surjective, which implies that CG.s/! C NG.Ns/ a
quotient map because C NG.Ns/ is smooth (1.71, 13.8) Therefore, the sequence

e! CN .s/! CG.s/! C NG.Ns/! e

is exact. By the induction hypothesis, C NG.Ns/ is connected; as CN .s/ is connected,
so also is CG.s/ (apply 5.59).

By the induction hypothesis, NG D U �C NG.Ns/ with U unipotent. Let QU denote
the inverse image of U in G. Then G D QU �CG.s/, and QU is unipotent because it
is the extension of a unipotent group U by a unipotent group N . 2

THEOREM 16.41. Let S be a torus in a connected solvable group variety G.
Then CG.S/ is connected and G D U �CG.S/ with U unipotent subgroup of G.

PROOF. As S is diagonalizable, every element of S.k/ is semisimple. Therefore,
the theorem follows from Theorem 16.40 and the next lemma. 2

LEMMA 16.42. Let S be a torus in a connected group variety G. There exists
an s 2 S.k/ such that CG.s/D CG.S/.

PROOF. Choose a faithful finite-dimensional representation .V;r/ of G, and
write V as a sum of eigenspaces V D

L
V�i of S (see 12.12). For each pair

.i;j /with i ¤ j , let Sij Dfs 2S.k/ j�i .s/D�j .s/g. Then Sij is a proper closed
subset of S.k/, and so there exists an s 2 S.k/X

S
i¤j Sij . It is semisimple, and

so CG.s/ is smooth (13.8). An element of G.k/ commutes with s if and only
if it stabilizes each V�i , in which case it centralizes S . Therefore CG.s/.k/ �
CG.S/.k/. As CG.S/� CG.s/, the smoothness of CG.s/ now implies that the
two are equal. 2

NOTES. The short elementary proof of Theorem 16.41 follows Doković 1988. The
standard proof deduces it from Corollary 16.25.
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f. Nilpotent algebraic groups

We extend earlier results from commutative algebraic groups to nilpotent algeb-
raic groups.

Recall (6.34) that an algebraic group is nilpotent if it has a central normal
series. The last nontrivial term in such a series is contained in the centre of the
group. Therefore, a nontrivial nilpotent algebraic group G has nontrivial centre.
If G is smooth and connected, then so are the terms in its descending central
series, and so Z.G/ contains a connected group variety of dimension > 0.

LEMMA 16.43. Let H 0 � H be normal algebraic subgroups of a connected
algebraic group G. If H 0 and H=H 0 are both of multiplicative type, then H is
central and of multiplicative type.

PROOF. It follows from Corollary 12.41 that the action of G on H by inner
automorphisms is trivial. Therefore H is central, in particular, commutative, and
so it is multiplicative (12.22). 2

LEMMA 16.44. Let G be an algebraic group, and let T and U be normal algeb-
raic subgroups of G. If T is of multiplicative type and G=T is unipotent, while
U is unipotent and G=U is of multiplicative type, then the map

.t;u/ 7! t uWT �U !G (122)

is an isomorphism

PROOF. Note that T \U D e (see 14.17). Elements t 2 T .R/ and u 2 U.R/
commute because tut�1u�1 2 .T \U/.R/D e, and so the map (122) is a homo-
morphism. Its kernel is T \U D e, and its cokernel is a quotient of both G=T
and G=U . Hence it is both unipotent and multiplicative, which implies that it is
trivial (14.17). 2

LEMMA 16.45. Let G be a connected nilpotent algebraic group, and let Z.G/s
be the largest multiplicative subgroup of its centre (16.13). Then the centre of
G=Z.G/s is unipotent.

PROOF. Let G0 D G=Z.G/s , and let N be the inverse image of Z.G0/s in G.
ThenN andZ.G/s are normal subgroups ofG (recall thatZ.G/s is characteristic
in Z.G/), and N=Z.G/s 'Z.G0/s is of multiplicative type, and so N is central
and of multiplicative type (16.43). Therefore N �Z.G/s , and so Z.G0/s D e.2

LEMMA 16.46. A connected nilpotent algebraic group is unipotent if its centre
is.

PROOF. Let G be a connected nilpotent algebraic group over k with unipotent
centre Z.G/. It suffices to show that Gka is unipotent (14.9). This allows us to
assume that k is algebraically closed. We prove that G is unipotent by induction
on its dimension.
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Because G is nilpotent, Z.G/¤ e, and we may suppose that Z.G/¤G. Let
G0 D G=Z.G/, and let N be the inverse image of Z.G0/s in G. It suffices so
show that (a) G=N is unipotent, and (b) N is unipotent.

(a) The group G=N 'G0=Z.G0/s , which has unipotent centre (16.45), and
so is unipotent by the induction hypothesis.

(b) In the exact sequences

e!Z.N/s!N !N=Z.N/s! e

e!Z.G/!N !Z.G0/s! e;

Z.N /s and Z.G0/s are of multiplicative type and Z.G/ and N=Z.N/s are
unipotent. Therefore N ' Z.N/s �Z.G/ (see 16.44), which is commutative.
As Z.N/s is characteristic in N (16.13), it is normal in G, and hence central in
G (see 12.37). But Z.G/ is unipotent, and so Z.N/s D 0. We have shown that
Z.N/ is unipotent, and so N is unipotent (by induction). 2

THEOREM 16.47. Let G be a connected nilpotent algebraic group over k.
(a) Z.G/s is the largest algebraic subgroup of G of multiplicative type; it is

characteristic and central, and the quotient G=Z.G/s is unipotent.
(b) If G becomes trigonalizable over a separable extension of k, then it has a

unique decomposition into a product G D Gu�Z.G/s with Gu unipotent and
Z.G/s of multiplicative type.

(c) If G is smooth, then Z.G/s is a torus.

PROOF. (a) The quotient G=Z.G/s has unipotent centre (16.45), and so it is
unipotent (16.46). Therefore, every multiplicative algebraic subgroup of G
maps to e in the quotient G=Z.G/s (see 14.18), and so is contained in Z.G/s .
Therefore Z.G/s is the largest algebraic subgroup of G of multiplicative type. It
is obviously central. The same argument as in the proof of Theorem 16.13 shows
that it is characteristic.

(b) Because G becomes trigonalizable over ks, it contains a normal unipotent
subgroup Gu such that G=Gu is of multiplicative type (16.6). Therefore the
statement follows from (16.44) applied to Gu and Z.G/s .

(c) The formation of Z.G/s commutes with extension of the base field, and
so we may suppose that k is perfect. Then G becomes trigonalizable over ks

by the Lie–Kolchin theorem, and so G DGu�Z.G/s . It follows that Z.G/s is
smooth and connected. 2

COROLLARY 16.48. The connected nilpotent group varieties over a perfect field
k are exactly those of the form U �T with U a connected unipotent group variety
and T a torus.

PROOF. Certainly, a group of this form is nilpotent (14.21). Conversely, if
G is smooth, connected, and nilpotent, then it becomes trigonalizable over a
finite extension of k (see 16.30), which is separable if k is perfect. In this case,
G D U �D with U unipotent and D of multiplicative type (16.47b). As G is
smooth and connected, so are U and D. 2
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PROPOSITION 16.49. Let G be an algebraic group over an algebraically closed
field k. The following conditions are equivalent:

(a) G is smooth, connected, and nilpotent;

(b) G admits a normal series with quotients Ga or Gm on which the action of
G by inner automorphisms is trivial;

(c) G is smooth and connected, and the abstract group G.k/ is nilpotent.

PROOF. (a))(b). In fact, G D U �T with U smooth, connected, and unipotent
and T a torus. Now (b) follows from Corollary 16.24 and the fact that T is a split
torus.

(b))(c). The group G is smooth and connected because it is obtained from
smooth connected groups by successive extension. The group G.k/ has a normal
series with quotients Ga.k/ or Gm.k/ on which the action of G.k/ is trivial, and
so it is nilpotent.

(c))(a). According to Proposition 16.34, G is trigonalizable. As it is smooth
and connected, so also isGu. After Corollary 16.22, it remains to show that action
of the torusD DG=Gu on Gu is trivial. We argue by induction on the dimension
of Gu. From Corollary 16.22 again, we see that there exists a normal subgroup
U of G, contained in Gu and isomorphic to Ga, on which G acts linearly. We
claim that D acts trivially on U . By assumption, it acts through a character �,
and so, for t 2D.k/ and x 2 U.k/� k,

txt�1x�1 D .�.t/�1/x:

As G.k/ is nilpotent, there exists an n such that .�.t/�1/n D 0 for all t 2D.k/.
As D is smooth, this implies that �.t/D 1 for all t 2D.k/, and so �D 1. Thus
D acts trivially on U . It acts trivially on G=U by the induction hypothesis, and
so the statement follows from the next lemma. 2

LEMMA 16.50. Let D be a diagonalizable group acting on an exact sequence of
smooth unipotent groups

e!Ga! U ! V ! e:

If D acts trivially on Ga and V , then it acts trivially on U .

PROOF. There is an exact sequence

1!Ga.k/! UD.k/! V.k/!H 1
0 .D;Ga/

((102), p. 305). Now H 1
0 .D;Ga/D 0 (see 15.34), and so UD.k/D U.k/. As U

is reduced, this implies that UD D U . 2
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g. Split solvable groups

Recall (6.33) that a solvable algebraic group is said to be split if it admits a
subnormal series with quotients isomorphic to Ga or Gm. Every split solvable
algebraic group is smooth and connected. Quotients of split solvable groups
are split because nontrivial quotients of Ga and Gm are isomorphic to Ga or
Gm (Exercise 14-3). Extensions of split solvable groups are obviously split, but
subgroups of split solvable groups, even normal subgroups, need not be split. For
example, there are many nonsplit subgroups of Ga�Ga (see 14.57).

THEOREM 16.51 (FIXED POINT THEOREM). Let G be a split solvable algeb-
raic group acting on a complete algebraic scheme X . If X.k/ is nonempty, then
XG.k/ is nonempty.

PROOF. Suppose first that G is Ga, and identify Ga with the complement of
1 in P1. Let x 2 X.k/. If x is not fixed by G, then the map g 7! gxWG! X

extends uniquely to P1 (because X is complete). Let limt!1 t �x denote the
image of1. Then limt!1 t �x 2X.k/, and, for every t 0 2 T .ka/,

t 0. lim
t!1

t �x/D lim
t!1

t 0t �x D lim
t!1

t �x,

and so limt!1 t �x is the required fixed point. A similar argument applies if
G DGm. In the general case, G has a subnormal series G BG1 B � � �BGr B e
with quotients Ga or Gm, and

X.k/¤ ;)XGr .k/¤ ;) �� � )XG.k/¤ ;. 2

PROPOSITION 16.52. Let G be a smooth connected algebraic group over k. If
G is split solvable, then it is trigonalizable, and the converse is true when k is
perfect.

PROOF. Suppose that G is split solvable. Choose a faithful representation of G,
and let G act on the algebraic variety of maximal flags (7.29). Then G fixes a flag
(16.51), and so the representation is trigonalizable. Conversely, if k is perfect and
G is trigonalizable, then we can apply Corollary 16.24 to the split torus G=Gu
acting on Gu. 2

In particular, smooth connected unipotent groups over perfect fields are split
solvable groups.

COROLLARY 16.53. Every smooth connected solvable algebraic group over an
algebraically closed field is split.

PROOF. According to the Lie–Kolchin theorem (16.30), G is trigonalizable. 2
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PROPOSITION 16.54. Let G be a split solvable algebraic group over a field k.
The canonical extension

e!Gu �!G
q
�!D! e

splits, and any two sections s1; s2WD!G of q are conjugate by an element of
Gu.k/. The maximal split tori in G are those of the form s.D/ with s a section
of q (and so any two such tori are conjugate by an element of Gu.k/).

PROOF. As G is trigonalizable (16.52), there does exist such an exact sequence.
The unipotent subgroup Gu is split and the quotient D is smooth, and so the rest
of the statement follows from 16.29(d). 2

PROPOSITION 16.55. Let G be a split solvable algebraic group over a field k.
(a) If X is an affine algebraic scheme over k such that Pic.X/D 0, then every

G-torsor over X is trivial.

(b) If X is an affine algebraic scheme over k and G is unipotent, then every
G-torsor over X is trivial.

(c) Every G-torsor is locally split for the Zariski topology.

PROOF. According to Example 2.72, statements (a) and (c) are true for Gm and
Ga and (b) is true for Ga. It follows that they are true for G. 2

COROLLARY 16.56. Let G be a split solvable algebraic group over k. The
underlying scheme of G is isomorphic to Ar � .A1X0/n�r , where nD dimG
and r D dimGu. Hence Pic.G/D 0.

PROOF. The schemeG is aGu-torsor overG=Gu (see 2.68). This torsor is trivial
by (b) of the proposition, and so G � Gu�G=Gu as algebraic schemes. Here
G=Gu is a split torus, and so it is isomorphic to Gn�rm . On the other hand, Gu
has a subnormal series with quotients isomorphic to Ga. An induction argument
using (b) of the proposition shows that Gu � Ar (as a scheme). The second
statement follows from the fact that the polynomial ring kŒT1; : : : ;Tn� is a unique
factorization domain (see A.79 and CA 4.10). 2

For example, the underlying scheme of a smooth connected unipotent group
U over a perfect field is isomorphic to Adim.U /.

COROLLARY 16.57. Every connected nilpotent group variety over a perfect
field is unirational.

PROOF. Such a group variety is a product of a torus and a connected unipotent
group variety (16.48). The first is unirational (12.64) and the second is rational
(16.56). 2

In particular, if a solvable algebraic group G is split, then there exists a
dominant map .A1X0/n!G for some integer n. We prove a converse.
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THEOREM 16.58 (ROSENLICHT). A solvable group variety G is split if there
exists a dominant map of schemes 'W.A1X0/n!G for some integer n.

PROOF. We first prove this in three special cases.
Case G is of multiplicative type. After composing ' with a translation, we

may suppose that '.e/D e. Now ' is a surjective homomorphism Gnm!G (see
12.49), and so G is a split torus.

Case G is commutative and unipotent and char.k/D 0. Without any hypo-
theses, G is isomorphic to Gdim.G/

a (see 14.33).
Case G is elementary unipotent and char.k/D p. It suffices to show that

P.G/
def
D ff 2O.G/ j�.f /D f ˝1C1˝f g

is a free k� ŒF �-module because then G will be a product of copies of Ga (see
14.46). Let X D .A1X0/n, and endow O.X/ with the structure of a left k� ŒF �-
module by setting FaD ap . Then

O.X/D kŒT1; : : : ;Tn;T �11 ; : : : ;T �1n �

is a direct sum of k and a free k� ŒF �-module with basis the set of monomials
T
r1
1 � � �T

rn
n for which the exponents ri are integers such that ZpCZr1C�� �C

Zrn D Z. Now the maps

P.G/ ,!O.G/=k ,!O.X/=k

realize P.G/ as a k� ŒF �-submodule of a free k� ŒF �-module, and so it is free
(14.50).

General case. We use induction on dim.G/. First observe that if G contains
a normal subgroup variety N satisfying the hypothesis of the theorem and such
that dim.G/ > dim.N / > 0, then each of G=N and N is split (induction), and so
G is split. The derived group of G satisfies the hypothesis of the theorem because
the map G2n!D.G/ is dominant for some n (6.20a), and so we may suppose
that G is commutative. If char.k/D 0, then G is a product of a multiplicative
group and unipotent group (16.13), and so this case follows from the special
cases proved above. If char.k/D p ¤ 0, then the image of the homomorphism
pWG ! G satisfies the hypothesis of the theorem. From the exact sequence
0! pG ! G ! G=pG ! 0 we see that we need consider only the cases
G D pG and pG D e. If G D pG, then G is multiplicative because otherwise
p will not be surjective on the unipotent quotient G=Gs in (16.13). If pG D e,
then VG D 0 because FG is surjective (2.29), and so G is elementary unipotent
(14.48). This completes the proof. 2

Concretely, this says that G is split if and only if there exists an injective
homomorphism of k-algebras

O.G/! kŒT1; : : : ;Tn;T
�1
1 ; : : : ;T �1n �:
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THEOREM 16.59 (LAZARD). Let G be an algebraic group over k. The follow-
ing conditions on G are equivalent:

(a) there exists an isomorphism of k-schemes G! Adim.G/;

(b) G is a split unipotent group;

(c) G is reduced and solvable, and there exists a dominant map of k-schemes
AN !G for some integer N .

PROOF. See DG, IV, �4, 4.1. 2

NOTES. This section follows DG, IV, �4, no. 3.

h. Complements on unipotent algebraic groups

PROPOSITION 16.60. A connected group varietyG over an algebraically closed
field is unipotent if it contains no nontrivial torus.

PROOF. Let .V;r/ be a finite-dimensional faithful representation of G, and let B
be the algebraic variety of maximal flags in V (see 7.29). Then G acts on B, and
there exists a closed orbit (1.66), say O 'G=U . The variety G=U is complete,
and the map G=U !G=U ıred is finite (7.15), and so G=U ıred is complete (A.75).
The group U ıred is smooth, connected, and solvable, and so it is the semidirect
product of a unipotent group and a torus (16.33d). The torus is trivial because of
the hypothesis on G. Therefore U ıred is unipotent. Now G=U ıred is a subscheme
of an affine scheme (14.26). As it is also complete and connected, it is a point.
Hence G D U ıred is unipotent. 2

COROLLARY 16.61. Let G be a connected group variety. The following condi-
tions are equivalent:

(a) G is unipotent;

(b) The centre of G is unipotent and g is nilpotent;

(c) For every representation .V;r/ ofG, dr maps the elements of g to nilpotent
endomorphisms of V ;

(d) The condition in (c) holds for one faithful representation .V;r/ of G.

PROOF. (a))(b). Every algebraic subgroup, in particular, the centre, of a unipo-
tent algebraic group is unipotent (14.7). An embedding of G into Un (see 14.5)
defines an embedding of g into nn.

(b))(a). We may suppose that k is algebraically closed (14.9). If the centre
of G is unipotent, then the kernel of the adjoint representation is an extension
of unipotent algebraic groups (14.23), and so it is unipotent (14.7). Therefore,
if G contains a subgroup H isomorphic to Gm, then H acts faithfully on g. Let
gD

L
n2Z gn where h 2H.k/ acts on gn as hn. A nonzero element x of h acts

on each gn as multiplication by nx, and so it acts semisimply on g, contradicting
the nilpotence of g.
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(a))(c). There exists a basis for V such that G maps into Un (see 14.3).
(c))(d). Trivial.
(d))(a). We may suppose that k is algebraically closed (14.9). Let .V;r/ be

a faithful representation as in (d). If G contains a subgroup H isomorphic to Gm,
then V D

L
n2ZVn where h 2H.k/ acts on Vn as hn. A nonzero element x of h

acts on each Vn as multiplication by nx, contradicting the hypothesis. 2

i. Tori acting on algebraic groups

Unipotent groups

Let G be a smooth connected algebraic group over an algebraically closed field,
and let T be a maximal torus of G. When G is solvable, we showed in Theorem
16.33(d) that every subtorus ofG of multiplicative type is conjugate by an element
of G to a subgroup of T . In Theorem 17.10 below we show, as a consequence
of the Borel fixed point theorem, that any two maximal solvable subgroups of G
are conjugate by an element of G.k/, from which it follows that the preceding
statement holds also for nonsolvable G. In the next proposition, we assume
this as it strengthens the statement and the proof of 17.10 is independent of the
proposition.

PROPOSITION 16.62. Let G be a smooth connected algebraic group with an
action of a torus T . If gT D 0, then G is unipotent and the action of T on g is
strictly definite (13.40).

PROOF. We may suppose that k is algebraically closed.
If G is not unipotent, then it contains a nontrivial torus S (see 16.60). Let

T 0 be a maximal torus of G ÌT containing S . Some conjugate gT 0g�1 of T 0

contains T (see above). Now both gSg�1 and T are contained in the torus
gT 0g�1, and so T normalizes gSg�1 and acts trivially on it and its Lie algebra.
As gSg�1 �G, this contradicts the hypothesis.

Thus G is unipotent. Therefore there exists an embedding of GÌT into Tn
for some n such that G maps into Un and T maps into Dn. The action of Dn on
un is definite, and it follows that the action of T on g is definite. As gT D 0, it is
strictly definite. 2

PROPOSITION 16.63. Let G be a smooth connected algebraic group with an
action of a split torus T . If gT D 0, then GT D e and every Luna map G !
Tgte.G/a is an equivariant isomorphism of schemes over k; moreover, G is a
split unipotent group.

PROOF. According to Proposition 16.62, the action of T on g is strictly definite,
and so the first part of the statement follows from Theorem 13.41. Again 16.62
implies that G is unipotent, and it is split because of Rosenlicht’s theorem
(16.58). 2
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The algebraic subgroup attached to a semigroup of characters

Let G be a connected group variety with an action of a split torus T , and let
˚ D ˚.G;T / denote the set of nonzero weights of T on Lie.G/, so

gD gT ˚
M
fgˇ j ˇ 2 ˚g:

Let ˛ be a nonzero character of T , and let T˛ DKer.˛/t . Then T˛ is the subtorus
of T such that X.T˛/ D .X.T /=Z˛/=torsion. Let G˛ D G

T˛
˛ . Then G˛ is a

connected group variety (17.38), with Lie algebra

Lie.G˛/
10.34
D gT˛ D gT ˚

M
fgˇ j ˇ 2Q˛\˚g: (123)

Let .˛/ denote the set of the strictly positive rational multiples of ˛ in X.T /.
Then .˛/ is a cyclic subsemigroup of X.T /. Let � be a cocharacter of T such
that h˛;�i> 0, and let

U.˛/ D UG˛ .�/:

Thus U.˛/ is the unique subgroup variety of G such that

U.˛/.k
a/D fg 2G.ka/ j g centralizes T˛.ka/ and lim

t!0
�.t/g D eg (124)

(see 13.30). Clearly, T˛ , G˛ , and U.˛/ depend only on the semigroup .˛/.

PROPOSITION 16.64. The subgroup variety U.˛/ of G is stable under T and has
Lie algebra

Lie.U.˛//D
M
fgˇ j ˇ 2 .˛/\˚.G;T /g: (125)

(a) Every T -stable subgroup variety of G whose Lie algebra contains the Lie
algebra of U.˛/ contains U.˛/.

(b) Every T -stable subgroup variety of G whose Lie algebra is contained in
the Lie algebra of U.˛/ is contained in U.˛/.

PROOF. That U.˛/ is stable under T follows from the description (124). To
determine its Lie algebra, apply Theorem 13.33(c) to (123).

(a) Let H be a T -stable subgroup variety of G such that Lie.H/� Lie.U.˛//.
Let H˛ D .HT /T˛ , and let U D UH˛ .�˛/. Then U is the subgroup variety of
HT such that

U.ks/D fh 2 .HT /.ks/ j h centralizes T˛.ks/ and lim
t!0

�˛.t/hD eg

Lie.U /D
M
fgˇ j ˇ 2 .˛/\˚.H;T /g D Lie.U.˛//:

Hence U.ks/ � U.˛/.k
s/, and so U � U.˛/. As they have the same dimension,

they are equal. Thus U.˛/ D U �H . Finally, G is generated by CG.T / and the
U.˛/ because its Lie algebra is generated by their Lie algebras.

(b) LetH be a T -stable subgroup variety of G such that Lie.H/� Lie.U.˛//.
Then the algebraic subgroup H 0 generated by H and U.˛/ has Lie algebra
Lie.U.˛//. As H 0 is smooth, it equals U.˛/ (see 10.15). Therefore H � U.˛/. 2
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Thus U.˛/ is the unique connected T -stable subgroup variety of G satisfying
(125).

Let G be a connected group variety with an action of a split torus T , and let
	 D 	.G;T / denote the set of weights of T on g, so gD

L
fg˛ j ˛ 2 	g:

THEOREM 16.65. Let G be a connected group variety with an action of a split
torus T , and let A be a subsemigroup of X.T /. There is a unique connected
T -stable subgroup variety HA of G such that

Lie.HA/D
M
fg˛ j ˛ 2 A\	.G;T /g:

A T -stable subgroup variety H of G is contained in HA if and only if 	.H;T /
is contained in A.

We first need a lemma. For a subset A of X.T /, we let hAi denote the
subsemigroup generated by A. For example, if A is empty, then hAi is the empty
semigroup.

LEMMA 16.66. Let G be a connected group variety with an action of a split
torus T . Let H1 and H2 be connected subgroup varieties of G stable under T ,
and let H be the algebraic subgroup of G generated by H1 and H2. Then H is
smooth and connected and h	.H;T /i is the semigroup generated by 	.H1;T /
and 	.H2;T /i:

PROOF. That H is smooth and connected follows from Propositions 2.51 and
2.53).

Obviously 	.H;T / contains 	.H1;T / and 	.H2;T /, and so h	.H;T /i
contains the semigroup generated by 	.H1;T / and 	.H2;T /i.

We let T act on O.H/ by .tf /.h/D f .th/. If IH �O.H/ is the augment-
ation ideal of H , then Lie.H/D Hom.IH=I 2H ;k/ and so 	.H;T / is the set of
weights of T acting on IH=I 2H . It follows that h	.H;T /i is the set of weights of
T acting on IH .

LetH1 �H2 be the closure of the image of the multiplication mapH1�H2!
G. From the dominant map H1 �H2 ! H we get an inclusion O.H/ ,!
O.H1/˝O.H2/, and hence a T -equivariant embedding

IH1�H2 ,! IH1˚IH2˚ .IH1˝IH2/:

Therefore the weights of T on IH1�H2 are contained in h	.H1;T /[	.H2;T /i.
On repeating this with Hn

1 and Hn
2 for H1 and H2, we find that the weights

of T on IHn
1
�Hn
2

are contained in h	.H1;T /[	.H2;T /i. For large enough
n, H DHn

1 �H
n
2 (see 2.46) and so h	.H;T /i � h	.H1;T /[	.H2;T /i (see

Conrad et al. 2015, 3.3.5). 2

We now prove Theorem 16.65. When A is empty, we let HA D e. When
AD .˛/, we let HA D U.˛/ (see 16.64). In the general case, we let HA be the
algebraic subgroup generated by the U.˛/ as ˛ runs over a set of generators for
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A\	.G;T /. This is smooth and connected (2.51, 2.53), obviously T -stable,
and (16.66) shows that its Lie algebra is as described.

Let H be a T -stable connected subgroup variety of G. If 	.H;T / � A,
then the subgroup variety H 0 generated by H and HA is a T -stable connected
subgroup variety with 	.H 0;T /� A. Now HA �H

0 and Lie.HA/D Lie.H 0/,
and so HA D H 0. This shows that H � HA. Conversely, if H � HA, then
obviously 	.H;T /� A.

The uniqueness of HA follows from the second statement.

REMARK 16.67. If 0 … A, then HA is a split unipotent group, HT
A D e, and

every Luna map G! Tgte.HA/a is a T -equivariant isomorphism of algebraic
varieties (16.63). We often denote it by UA in this case.

The decomposition of a solvable group variety under the action of a torus

THEOREM 16.68. Let G be a connected solvable group variety over k equipped
with an action of a split torus T , and let A1; : : : ;An be subsemigroups of X.T /.
If 	 is the disjoint union of the sets Ai \	 , then the multiplication map

HA1 � � � ��HAn !G

is an isomorphism of algebraic varieties.

PROOF. We may suppose that k is algebraically closed. Suppose first that all the
Ai are definite. In this case, we get a commutative diagram

HA1 � � � ��HAn G

Tgte.HA1/a� � � ��Tgte.HAn/a Tgte.G/a

m

Tgte.m/

in which the vertical maps are isomorphisms – the first is a product of Luna
maps and the second is a Luna map. As Tgte.m/ is an isomorphism of algebraic
varieties, so also is m.

If 0 lies in some Ai , then it lies in exactly one, say An. By replacing G with
G ÌT , we may suppose that T �G and then that G DGuÌT . For i ¤ n, the
group HAi .G/ is unipotent and HAi .G/DHAi .Gu/. Clearly, T �HAn.G/ and
so inside G DGuÌT we have

HAn.G/D .Gu\HAn.G//ÌT DHAn.Gu/ÌT:

Now

G 'GuÌT 'HA1.Gu/� � � ��HAn.Gu/ÌT
'HA1.G/� � � ��HAn.G/: 2

NOTES. Theorem 16.68 is Theorem 3.3.11 of Conrad et al. 2015. It generalizes earlier
statements of Borel, Chevalley, and Tits.
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Exercises

EXERCISE 16-1. (Waterhouse 1979, Chapter 10, Exercise 3). Verify the state-
ments in Example 16.37.

EXERCISE 16-2. (Waterhouse 1979, Chapter 9, Exercise 5). Show that an
algebraic group G is trigonalizable if and only if there exists a filtration C0 �
C1 � C2 � �� � of O.G/ by subspaces Ci such that8̂̂<̂

:̂
C0 is spanned by group-like elements,S
r�0Cr DO.G/,

�Cr �
P
0�i�r Ci ˝Cr�i :

EXERCISE 16-3. Let G be an algebraic group over a field k, and let k0 be a
finite field extension of k. Show that .Gk0/k0=k is solvable if G is solvable. [By
Corollary 6.31 we may suppose that k is algebraically closed. Now use Exercise
2-10.]

EXERCISE 16-4. Show that a connected solvable group variety G over an algeb-
raically closed field k is nilpotent if and only if one (hence every) maximal torus
in G is contained in Z.G/.

EXERCISE 16-5. (Conrad et al. 2015, 3.3, p. 107). Let G D Ga �Ga over a
field of k of characteristic p ¤ 0, and let T D Gm�Gm act on G by the rule
.t1; t2/.x1;x2/D .t1x1; t2x2/. Let H be the subgroup Ga � e of G and H 0 the
graph of the relative Frobenius map FGa=k , so H 0.k/D f.x;xp/g.

(a) Show that H is T -stable and Lie.H/ D Lie.H 0/, but that H 0 is not T -
stable.

(b) Show that H and H 0 generate G, but their Lie algebras do not generate
Lie.G/.



CHAPTER 17

Borel Subgroups and Applications

In this chapter, we introduce Borel subgroups. Recall that, when k is algebraically
closed, we can identify the underlying topological space jGj of an algebraic group
G with G.k/. Recall also that all algebraic groups are affine over a base field k:

a. The Borel fixed point theorem

Let H be an algebraic subgroup of an algebraic group G. If G is commutative,
then H is normal, and so G=H is affine (5.18). When G is solvable, we have
only the following weaker result.

THEOREM 17.1. Let H be an algebraic subgroup of a smooth connected algeb-
raic group G over k. If G is solvable, then G=H does not contain a complete
subscheme of dimension > 0. In particular, H DG if G=H is complete.

PROOF. We may suppose that k is algebraically closed, and then that H is
smooth because the map G=Hred!G=H is finite (7.15). We prove the statement
by induction on the dimension of G. We may suppose that dim.G=H/ > 0.

The derived group G0 of G is a smooth connected algebraic subgroup of G
(see 6.19), which is distinct from G because G is solvable. If G DG0 �H , then
G=H 'G0=.G0\H/ (see 5.52), and so the statement follows from the induction
hypothesis applied to G0.

In the contrary case, N def
DG0 �H is a proper normal algebraic subgroup of G,

which is smooth and connected (6.41).
Let Z be a complete subscheme of G=H – we have to show that dim.Z/D 0.

We may suppose thatZ is connected. Consider the quotient map qWG=H!G=N .
Because N is normal, G=N is affine, and so the image of Z in G=N is a point
(A.75g). Therefore Z is contained in one of the fibres of the map q, but these
are all isomorphic to N=H , and so we can conclude again from the induction
hypothesis. 2

352



b. Borel subgroups and maximal tori 353

In the next two corollaries, G is a smooth connected algebraic group acting
on a separated algebraic scheme X over k.

COROLLARY 17.2. If G is solvable, then no orbit in X contains a complete
subscheme of dimension > 0.

PROOF. Let x 2 X.k/, and let Ox be its orbit under G. Because G is reduced,
the orbit map defines an isomorphism G=Gx!Ox , and so the statement follows
from the theorem. 2

COROLLARY 17.3 (BOREL FIXED POINT THEOREM). If G is solvable and X
is complete and nonempty, then XG is nonempty; hence there is a fixed point in
X.ka/.

PROOF. The formation of XG commutes with extension of the base field, and
so we may suppose that k is algebraically closed and that X is reduced. Every
orbit of minimum dimension is closed (1.66), hence complete (A.75a), and hence
consists of a single fixed point (17.2). 2

The Borel fixed point theorem gives an alternative proof of the Lie–Kolchin
theorem.

THEOREM 17.4. Let G be a smooth connected solvable algebraic group over k.
If k is algebraically closed, then G is trigonalizable.

PROOF. Let .V;r/ be a faithful finite-dimensional representation of G, and let
X denote the collection of maximal flags in V . This has a natural structure of
a projective variety on which G acts (7.29). According to Corollary 17.3, there
is a fixed point in X.ka/. This is a maximal flag in V stabilized by G. Hence
the representation .V;r/ is trigonalizable, which implies that G is trigonalizable
(16.2). 2

REMARK 17.5. Readers tempted to drop the smoothness condition on G in the
above statements should note that it is possible for a connected solvable algebraic
group to act on P1 without fixed points (16.37).

NOTES. Borel’s original theorem (Borel 1956, 15.5, 16.4) is Corollary 17.3. The general-
ization to noncomplete X (see 17.1, 17.2) is from Allcock 2009.

b. Borel subgroups and maximal tori

In this section, G is a connected group variety over an algebraically closed field
k.

DEFINITION 17.6. A Borel subgroup of G is a maximal connected solvable
subgroup variety of G.
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For example, every connected solvable subgroup variety of largest possible
dimension is a Borel subgroup.

EXAMPLE 17.7. Let V be a finite-dimensional vector space over k, and let B
be a Borel subgroup in GLV . Because B is solvable, there exists a basis of V
for which B � Tn (see 16.30), and because B is maximal, B D Tn. Thus, we
see that the Borel subgroups of GLV are exactly the subgroup varieties B such
that B D Tn relative to some basis of V . More canonically, the Borel subgroups
of GLV are exactly the stabilizers of maximal flags in V . Because GLV .k/
acts transitively on the set of bases for V , any two Borel subgroups of GLV are
conjugate by an element of GLV .k).

EXAMPLE 17.8. Suppose that char.k/ ¤ 2, and let � be a bilinear form on a
vector space V over k. A subspace of V is totally isotropic if the restriction of �
to it is zero, and a flag in V is totally isotropic if each of its subspaces is totally
isotropic. The Borel subgroups in each of the algebraic groups SO2nC1, Sp2n,
SO2n (see 2.10) are the stabilizers of the maximal totally isotropic flags in V
(and each such flag has length n). See Exercise 17-1.

THEOREM 17.9. (a) If B is a Borel subgroup of G, then G=B is complete.

(b) Any two Borel subgroups of G are conjugate by an element of G.k/.

PROOF. We first prove that G=B is complete when B is a Borel subgroup of
maximum dimension. According to Chevalley’s theorem (4.27), there exists
a representation .V;r/ of G such that B is the stabilizer of a one-dimensional
subspace L in V . Now the Lie–Kolchin theorem 16.30 shows that B stabilizes
some maximal flag in V=L, which we pull back to a maximal flag,

F0W V D Vn � Vn�1 � �� � � V1 D L� 0,

in V . Not only does B stabilize F0, but, because of our choice of V1, it equals its
stabilizer.

In general, the stabilizer inG of a maximal flag F in V is a solvable subgroup
GF of G, and the orbit of F in the space of maximal flags has dimension
dimG�dimGF . As B has the maximum possible dimension, the orbit G �F0
has minimum possible dimension, and so it is a closed (1.66) subvariety of the
variety of maximal flags in V . As flag varieties are complete (7.30), this shows
that G �F0 is complete, and as G=B is isomorphic to G �F0, it also is complete.

To complete the proof of the theorem, it remains to show that for any Borel
subgroups B and B 0 with B of maximum dimension, B 0 � gBg�1 for some
g 2 G.k/ (the maximality of B 0 will then imply that B 0 D gBg�1). Let B 0 act
on G=B by left multiplication .b0;gB/ 7! b0gB . According to (17.3), there is
a fixed point, i.e., for some g 2 G.k/, B 0gB � gB . Then B 0g � gB , and so
B 0 � gBg�1 as required. 2

THEOREM 17.10. Any two maximal tori in G are conjugate by an element of
G.k/.
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PROOF. WhenG is solvable, this was proved in Theorem 16.33(d). Let T and T 0

be maximal tori in G. Being smooth, connected, and solvable, they are contained
in Borel subgroups, say, T � B and T 0 � B 0. For some g 2G.k/, gB 0g�1 D B
(see 17.9), and so gT 0g�1 � B . Now T and gT 0g�1 are maximal tori in B , and
so T D bgT 0g�1b�1 for some b 2 B.k/. 2

COROLLARY 17.11. Let T be a maximal torus in G, and let H be a subgroup
variety of G containing T . Then NG.T /.k/ acts transitively on the set of conjug-
ates of H containing T , and the number of such conjugates is

.NG.T /.k/WNG.T /.k/\H.k//

.NG.H/.k/WH.k//
.

In particular, NG.T / acts transitively on the set of Borel subgroups of G contain-
ing T .

PROOF. Let gHg�1, g 2G.k/, be a conjugate ofH containing T . Then gTg�1

and T are maximal tori in gHg�1, and so there exists an h 2 gH.k/g�1such that
hgTg�1h�1D T (see 17.10). Now hg 2NG.T /.k/ and gHg�1D hgHg�1h�1,
and so this shows that NG.T /.k/ acts transitively on the set of conjugates of H
containing T .

We now write N.�/ for NG.�/.k/. The number of conjugates of H contain-
ing T is

.N.T /W.N.T /\N.H///D
.N.T /W.N.T /\H.k///

.N.T /\N.H/WN.T /\H.k//
:

Let g 2 N.H/; then T and gTg�1 are maximal tori in H , and so there exists
an h 2H.k/ such that hgTg�1h�1 D T (see 17.10), i.e., such that hg 2N.T /.
As hg 2 N.H/, this shows that N.H/ D H.k/ � .N.T /\N.H//, and so the
canonical injection

N.T /\N.H/

N.T /\H.k/
!
N.H/

H.k/

is a bijection. Therefore

.N.T /\N.H/WN.T /\H.k//D .N.H/WH.k// ,

which completes the proof of the formula. 2

DEFINITION 17.12. A pair .B;T / with T a maximal torus of G and B a Borel
subgroup of G containing T is called a Borel pair.1

Every maximal torus T of G, being connected and solvable, is contained in a
Borel subgroup B and so is part of a Borel pair. As one Borel subgroup is part of
a Borel pair, and any two Borel subgroups are conjugate, every Borel subgroup is
part of a Borel pair.

1In SGA 3, XXII, 5.3.13, such a pair is called a Killing pair (couple de Killing).
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PROPOSITION 17.13. Any two Borel pairs of G are conjugate by an element of
G.k/.

PROOF. Let .B;T / and .B 0;T 0/ be Borel pairs in G. Then gB 0g�1 D B for
some g 2G.k/ and bgT 0g�1b�1 D T for some b 2 B.k/, and so

bg � .B 0;T 0/ � .bg/�1 D .B;T /: 2

Recall (16.33) that a connected solvable group variety H over a perfect field
contains a unique normal unipotent algebraic subgroup such that H=Hu is of
multiplicative type. Moreover, Hu is smooth and connected, and it is the largest
unipotent algebraic subgroup of H .

PROPOSITION 17.14. The maximal connected unipotent subgroup varieties of
G are those of the form Bu with B a Borel subgroup ofG. Any two are conjugate
by an element of G.k/.

PROOF. Let U be a maximal connected unipotent subgroup variety of G. It is
solvable (14.21), and so it is contained in a Borel subgroup B . By maximality,
it equals Bu. Let U 0 D B 0u be a second such subgroup. Then B 0 D gBg�1 for
some g 2G.k/, and so B 0u D .gBg

�1/u D gBug
�1. 2

DEFINITION 17.15. Let G be a connected group variety over a field k (not
necessarily algebraically closed). A subgroup variety P of G is parabolic if
G=P is complete.

THEOREM 17.16. A subgroup variety P of G is parabolic if and only if it
contains a Borel subgroup.

PROOF. If P contains the Borel subgroup B , then the quotient map G!G=P

factors throughG=B (see 5.22). NowG=P is complete becauseG=B is complete
and G=B!G=P is surjective (A.75d).

Conversely, suppose that G=P is complete, and let B be a Borel subgroup of
G. According to 17.3, B fixes a point xP in G=P . In other words, BxP D xP ,
which implies that P contains the Borel subgroup x�1Bx of G. 2

COROLLARY 17.17. A connected group variety contains a proper parabolic
subgroup if and only if it is not solvable.

PROOF. Let H be a connected group variety. If H is solvable, the only Borel
subgroup of H is H itself, and so H contains no proper parabolic subgroup. If is
not solvable, then the Borel subgroups of H are proper parabolic subgroups. 2

EXAMPLE 17.18. Borel subgroups are parabolic (17.9). Let V be a finite-
dimensional k-vector space, and let F be a flag in V , not necessarily maximal.
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The stabilizer PF of F in GLV is a parabolic subgroup of GLV because it con-
tains the Borel subgroup stabilizing a maximal flag containing F . For example,

P D

8̂̂<̂
:̂
�
� � � �

� � � �

0 0 � �

0 0 � �

˘9>>=>>;
is a parabolic subgroup of GL4.

PROPOSITION 17.19. LetH be a connected subgroup variety of G. The follow-
ing conditions on H are equivalent:

(a) H is a Borel subgroup;

(b) H is solvable and G=H is complete;

(c) H is minimal parabolic.

PROOF. (a))(b). A Borel subgroup H is solvable by definition and G=H is
complete by Theorem 17.9.

(b))(c). If H satisfies (b), then certainly it is parabolic. Let P �H be a
parabolic subgroup P of G. Then H contains a Borel subgroup B of G (see
17.16) which, being maximal connected solvable, must equal H . Hence P DH ,
and so H is minimal.

(c))(a). Suppose that H is minimal parabolic. Then H contains a Borel
subgroup B (see 17.16), which being parabolic, must equal H . 2

PROPOSITION 17.20. Let qWG ! Q be a quotient map of connected group
varieties, and let H be a subgroup variety of G. If H is parabolic (resp. Borel,
resp. a maximal unipotent subgroup variety, resp. a maximal torus), then so also
is q.H/; moreover, every such subgroup of Q arises in this way.

PROOF. From the universal property of quotients, the mapG!Q=q.H/ factors
through G=H , and so we get a surjective map G=H !Q=q.H/:

If H is parabolic, then G=H is complete. As G=H !Q=q.H/ is surjective,
this implies that Q=q.H/ is complete (A.75d), and so q.H/ is parabolic.

If H is a Borel subgroup, then q.H/ is connected (5.59) and solvable (6.27),
and Q=q.H/ is complete, and so H is a Borel subgroup (17.19).

If H is a maximal unipotent subgroup variety, then H D Bu for some Borel
subgroup B (see 17.14). Now q.Bu/ is a normal subgroup of the Borel subgroup
q.B/ in Q. It is unipotent and q.B/=q.Bu/ is of multiplicative type (because
quotients of unipotent and multiplicative groups have the same property), and
so q.Bu/D q.B/u, which is a maximal unipotent subgroup variety of G (see
17.14).

If H is a maximal torus, then H is contained in a Borel subgroup B and
B D Bu �H (see 16.33). Now

q.B/D q.Bu/ �q.H/D q.B/u �q.H/,
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which implies that q.H/ is a maximal torus in the Borel subgroup q.B/, and
hence in Q.

Let B 0 be a Borel subgroup of Q, and let B be a Borel subgroup of G. Then
q.B/ is a Borel subgroup of Q, and so there exists a g 2G.k/ such that

B 0 D q.g/q.B/q.g/�1 D q.gBg�1/

by Theorem 17.9. This exhibits B 0 as the image of a Borel subgroup of G. The
same argument applies to maximal unipotent subgroup varieties and maximal
tori of Q.

Let H 0 be a parabolic subgroup of Q. Then H 0 contains a Borel subgroup
B 0, which we can write B 0 D q.B/ with B a Borel subgroup of G. Now H

def
D

q�1.H 0/red contains B , and so it is parabolic, but q.H/DH 0. 2

PROPOSITION 17.21. Let G and G0 be connected group varieties over k, let R
be a k-algebra, and let '1;'2WGR!G0R be homomorphisms. If '1 and '2 agree
on BR for some Borel subgroup B of G, then they agree on GR.

PROOF. We prove this first in the case R D k. The regular map ıWG ! G0

sending x to '1.x/ �'2.x/�1 is constant on the cosets of B , and so it factors
through a regular map ıB WG=B!G (see 5.21). As G=B is complete and G0 is
affine, ıB is constant (A.75g), with value e. This shows that '1 and '2 agree on
G.

In proving the general case, we use that, for an algebraic scheme X over k
and a k-algebra R,

OXR.XR/'R˝OX .X/:
When X is affine, this is obvious, and the general case can be proved by covering
X with open affine subschemes and applying the sheaf condition.

Let ıWGR!G0R be the morphism such that ı.R0/WG.R0/!G0.R0/ sends x
to '1.x/ �'2.x/�1 for every R-algebra R0. Then ı.R0/ is constant on each coset
of BR.R0/, and so we have a map of functors QGR= QBR! QG0R. As QG= QB is fat in
QG Q= QB D eG=B , this extends to a regular map

.G=B/R 'GR=BR
ıB

�!G0R.

LetX DG=B . AsG0 is affine, we can embed it in An for some n. The composite
of the maps

XR
ıB

�!G0R �! AnR
pi
�! AR (pi is the i th projection)

is an element of OXR.XR/'R˝OX .X/. Because X is complete, OX .X/D k,
and so the composite map is constant. Hence ıB is constant, with value e. This
shows that '1 and '2 agree on G.R0/ for all R-algebras R0, and hence on GR
(Yoneda lemma A.33). 2
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In particular, an automorphism of GR is the identity map if it agrees with the
identity map on BR for some Borel subgroup B of G.

PROPOSITION 17.22. Let B be a Borel subgroup of G. Then

Z.B/� CG.B/DZ.G/:

PROOF. The inclusions Z.B/� CG.B/ and Z.G/� CG.B/ are obvious. Let
g 2 CG.B/.R/ for some k-algebra R. Then inn.g/ acts as the identity map on
BR, and so it is the identity map on GR (17.21). Thus CG.B/.R/�Z.G/.R/.
As this is true for all k-algebras R, CG.B/�Z.G/: 2

PROPOSITION 17.23. The following conditions on G are equivalent:
(a) G has only one maximal torus;

(b) some Borel subgroup of G is nilpotent;

(c) G is nilpotent;

(d) every maximal torus T of G is contained in the centre of G.

PROOF. (a))(b). Let .B;T / be a Borel pair in G. Then T is normal in B ,
because otherwise gTg�1¤T for some g 2B.k/ (see 1.85) andG would contain
a second maximal torus. Because T is maximal, the quotient B=T contains no
copy of Gm (see 15.39), and so it is unipotent (16.60). Now B ' T �U with U
unipotent (16.28), and both T and U are nilpotent (14.21).

(b))(c). We use induction on the dimension of a nilpotent Borel subgroup B
to show that G D B . If dim.B/D 0, then G DG=B is both affine and complete,
hence trivial (A.75g). Thus, we may suppose that dim.B/ > 0, and hence that
dim.Z.B// > 0 (see 6.40). But Z.B/ � Z.G/ (see 17.22), and so Z.B/ is
normal in G. The quotient B=Z.B/ is a Borel subgroup of G=Z.B/ (17.20). By
the induction hypothesis, G=Z.B/D B=Z.B/, and so G D B .

(c))(d). The centre of a connected nilpotent group variety contains every
algebraic subgroup of multiplicative type (16.47a).

(d))(a). Any two would be conjugate by an element of G.k/ (17.10). 2

EXAMPLE 17.24. In particular, a connected solvable group variety is nilpotent
if and only it has exactly one maximal torus. For n > 1, the group Tn is solvable
but not nilpotent because the maximal torus of diagonal matrices is not normal:�

1 1

0 1

��
a 0

0 b

��
1 �1

0 1

�
D

�
a b�a

0 b

�
:

COROLLARY 17.25. If G contains no nontrivial connected unipotent subgroup
variety, then it is a torus. This is true, for example, if all elements of G.k/ are
semisimple.

PROOF. Let .B;T / be a Borel pair in G. Then B D Bu �T (see 16.33), and the
hypothesis implies that Bu D e. Hence B is nilpotent, and so G D B D T . 2
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COROLLARY 17.26. (a) A maximal torus of G is contained in only finitely
many Borel subgroups.

(b) For a Borel subgroup B of G, B DNG.B/ıred.

PROOF. (a) Let T be a maximal torus in G, and let B be a Borel subgroup
containing T . The Borel subgroups containing T are conjugates of B , and so
(17.11) shows that NG.T /.k/ acts transitively on the Borel subgroups containing
T . As NG.T /ı is smooth (13.10) and contains the maximal torus T in its centre
(12.38), it is nilpotent (17.23), and so it lies in some Borel subgroupB 0 containing
T . As B D gB 0g�1 with g 2NG.T /.k/, we see that NG.T /ı lies in B , and so
the number of Borel subgroups containing T is at most

.NG.T /.k/WNG.T /.k/\B.k//� .NG.T /.k/WNG.T /
ı.k// <1:

(b) Let B be a Borel subgroup of G, and let T be a maximal torus of G
contained in B . According to (17.11), .NG.B/.k/WB.k// divides

.NG.T /.k/WNG.T /.k/\B.k//;

which is finite. This implies that NG.B/ıred D B . 2

COROLLARY 17.27. If dimG � 2, then G is solvable.

PROOF. Let B be a Borel subgroup of G – we have to show that G D B . If
dimB D 0, then B is nilpotent, and so G D B D e (see 17.23). If dimB D 1,
then, in the decomposition B D Bu �T (see 16.33), either B D Bu or B D T . In
each case, B is nilpotent, and so G D B (see 17.23). Finally, if dimB D 2, then
certainly G D B . 2

Note that SL3 has dimension 3 and is not solvable.

PROPOSITION 17.28. Let T be a maximal torus of G. Then CG.T /ı is smooth,
nilpotent, and equals NG.C /ı.

PROOF. Let C D CG.T /ı. Then C is smooth (13.10), and, as C contains T
in its centre, it is nilpotent (17.23). Therefore C has a unique decomposition
C DU �T with U unipotent (16.47), which is preserved by every automorphism
of C . In particular, the action ofNG.C /ı on C by inner automorphisms preserves
T . By rigidity (12.37), NG.C /ı acts trivially on T , and so it centralizes T .
Therefore C �NG.C /ı � CG.T /ı D C . 2

COROLLARY 17.29. Let T be a maximal torus ofG. Then CG.T /ı is contained
in every Borel subgroup of G containing T .

PROOF. Let B be a Borel subgroup containing T . As CG.T /ı is connected and
nilpotent, it is contained in some Borel subgroup B 0 of G. According to (17.11),
B D gB 0g�1 for some g 2NG.T /.k/, and so

CG.T /
ı
D CG.gTg

�1/ı D g.CG.T /
ı/g�1 � gB 0g�1 D B: 2
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REMARK 17.30. In the above, G was assumed to be connected. For a noncon-
nected group variety G, the definition of Borel and parabolic subgroups is the
same. In particular, Borel subgroups are connected, and so the Borel subgroups
of G are just the Borel subgroups of Gı. A subgroup variety P of G is parabolic
in G if and only if P ı is parabolic in Gı (i.e., G=P is complete if and only
if Gı=P ı is complete). Parabolic subgroups of connected group varieties are
automatically connected (17.49 below).

REMARK 17.31. Let I denote the reduced identity component of the intersec-
tion of the Borel subgroups of G. Thus I is a connected subgroup variety of G.
It is solvable because it is contained in a solvable group, and it is normal because
the collection of Borel subgroups is closed under conjugation. Every connected
solvable subgroup variety is contained in a Borel subgroup, and, if it is normal,
then it is contained in all Borel subgroups (17.9), and so it is contained in I .
Therefore I is the largest connected solvable normal subgroup variety of G, i.e.,

R.G/D
�\

B�G Borel
B
�ı

red
:

This is sometimes adopted as the definition of R.G/ (e.g., in Chevalley 1956–58,
9.4).

c. The density theorem

In this section, G is a connected group variety over k algebraically closed.

LEMMA 17.32. Let H be a connected subgroup variety of G.
(a) If G=H is complete, then

S
g2G.k/gjH jg

�1 is a closed subset of jGj.

(b) If there exists an element of H.k/ fixing only finitely many elements of
.G=H/.k/, then

S
g2G.k/g jH jg

�1 contains a nonempty open subset of
jGj.

PROOF. Consider the composite of the maps

G�G
�
�! G�G

q�id
�! G=H �G

.g;h/ 7! .g;ghg�1/

where q is the quotient map. We claim that the image S of G�H in G=H �G
is closed. As q� id is open (5.25), it suffices to show that .q� id/�1.S/ is closed
in G�G. But this set coincides with �.G�H/, which is closed because � is an
automorphism of G�G and H is closed in G (see 1.41).

(a) Now assume that G=H is complete. Then (by definition) the projection
map p2WG=H �G!G is closed. In particular, the image of S under this map is
closed, but this image is exactly

S
g2G.k/gHg

�1.
(b) Now suppose that there exists an h0 2H.k/ whose fixed points in jG=H j

are finite in number. The preimage of h0 with respect p2WS ! G is the set of
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pairs . Ng;ghg�1/ with Ng fixed by h0 and ghg�1 D h0. This set is finite, which
implies that the dimension of S is the same as the dimension of the closure of its
image in G (see A.72). As S has dimension dim.G/, it follows that the regular
map S !G is dominant, and this implies the second statement (A.15). 2

For G D GLn, the next theorem says that the set of diagonalizable matrices
in GLn.k/ contains an open subset that every matrix is trigonalizable.

THEOREM 17.33. (a) Let T be a maximal torus in G, and let C D CG.T /ı.
Then

S
g2G.k/g jC jg

�1 contains a nonempty open subset of jGj.

(b) Let B be a Borel subgroup of G. Then jGj D
S
g2G.k/g jBjg

�1:

PROOF. (a) As C is smooth, connected, and nilpotent (17.28) and T is a maximal
torus in C ,

C D Cu�T

(see 16.47). Let t 2 T .k/ be as in (16.42). We shall show that t fixes only finitely
many elements of G=C ; then (17.32) will imply (a).

Let x be an element of G.k/ such that txC D xC . As x�1tx is a semisimple
element of C , it lies in T . Hence, every element of T commutes with x�1tx
or, equivalently, every element of xT x�1commutes with t . By the choice of t ,
this implies that xT x�1 � C , whence xT x�1 D T . As conjugation by x on G
stabilizes T , it also stabilizes C , and so x 2 NG.C /. From (17.28), we know
that NG.C /ı D C . Therefore the map xC 7! xNG.C /

ı is an injection from the
fixed point set of t in G=C to the finite set NG.C /=NG.C /ı.

(b) Let T be a maximal torus of G contained in B , and let C D CG.T /ı.
Then C � B (see 17.29), and so

S
g2G.k/gBg

�1 contains a nonempty open
subset of G. As G=B is complete,

S
g2G.k/gBg

�1 is closed in G (see 17.32),
and so it equals G. 2

COROLLARY 17.34. Every element of G.k/ is contained in a Borel subgroup
of G. Every normal Borel subgroup of G equals G.

PROOF. Let B be a Borel subgroup of G. Conjugates of B are Borel and the
theorem says that G.k/D

S
g2G.k/.gBg

�1/.k/. If B is normal, then G.k/D
B.k/, which implies that G D B because G is reduced. 2

As B is a normal Borel subgroup of NG.B/ıred, we see again that B D
NG.B/

ı
red.

COROLLARY 17.35. Let B be a Borel subgroup of G. Then B is the only Borel
subgroup of G contained in NG.B/.

PROOF. Suppose B 0 �NG.B/. Then B 0 �NG.B/ıred D B , and so B 0 D B . 2

Later (17.48) we shall see that B DNG.B/.
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COROLLARY 17.36. Every semisimple element s of G.k/ lies in a maximal
torus.

PROOF. Let B be a Borel subgroup of G containing s, and let T be a maximal
torus of G in B . The Zariski closure S of the subgroup of G.k/ generated by s is
diagonalizable (because every representation of S is diagonalizable). Therefore,
s is contained in a conjugate of T (by 16.33d). 2

d. Centralizers of tori

In this section, we prove that the centralizer of a torus in a connected group
variety is connected (hence smooth and connected, 13.10). The base field k need
not be algebraically closed. An algebraic subgroup of a connected group variety
G over k is Borel if it becomes Borel over ka. In this section we define a maximal
torus in G to be a torus T such that Tka is maximal in Gka . Later (17.82) we shall
see that this agrees with the obvious definition.

LEMMA 17.37. Let T be a torus in a connected group variety G over an algeb-
raically closed field k. Then

CG.T /�
[

B�T
B

(finite union over the Borel subgroups of G containing T ).

PROOF. Let c 2 CG.T /.k/. It suffices to show that c lies in a Borel subgroup
containing T . Let B be a Borel subgroup of G. Then G acts on the scheme
G=B , and we let .G=B/c denote the subscheme fixed by c. As c is contained in a
Borel subgroup of G (see 17.33), the Borel fixed point theorem (17.3) shows that
.G=B/c is nonempty. It is also closed, being the subset where the regular maps
gB 7! cgB and gB 7! gB agree. As T commutes with c, it stabilizes .G=B/c ,
and the Borel fixed point theorem shows that it has a fixed point in .G=B/c . This
means that there exists a g 2G such that

cgB D gB (hence cg 2 gB)
TgB D gB (hence Tg � gB).

Thus c lies in the Borel subgroup gBg�1, which contains T . 2

THEOREM 17.38. Let T be a torus in a connected group varietyG. ThenCG.T /
is connected.

PROOF. We may suppose that k is algebraically closed. From the lemma, we
deduce that

CG.T /D
[

T�B
CB.T /:

As each CB.T / is connected (16.41) and contains T , their union is connected.2
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COROLLARY 17.39. Let T be a maximal torus in a connected group variety G
over k. Then

(a) CG.T /DNG.T /ı;

(b) CG.T / is contained in every Borel subgroup containing T ;

(c) CG.T /D CG.T /u�T if k is perfect.

PROOF. In proving (a) and (b), we may suppose k to be algebraically closed.
Then the statements follow from Corollaries 12.40 and 17.29. As CG.T / is
nilpotent (17.28) and connected, (c) follows from Theorem 16.47(b). 2

REMARK 17.40. (a) More generally, if T is a torus acting on a connected group
variety G, then GT is connected. This follows from Lemma 17.38 applied to
GÌT .

(b) Centralizers of tori in nonsmooth algebraic groups are also connected.
This can be deduced from the smooth case (SHS, Exposé 13, �4, p. 358).

(c) Theorem 17.38 fails for subgroups of multiplicative type (see 17.51).

DEFINITION 17.41. Let T be a maximal torus in a connected group variety
G. The Weyl group W.G;T / of G with respect to T is the étale group scheme
�0.NG.T //.

Thus
W.G;T /

def
DNG.T /=NG.T /

ı 17.39
D NG.T /=CG.T /:

By definition, W.G;T / acts faithfully on T , and hence on X�.T / and X�.T /.

EXAMPLE 17.42. Let G D GLV and let T be a split maximal torus in G. Then
V decomposes into a direct sum V D

L
i2I Vi of one-dimensional eigenspaces

for the action of T , and T is the algebraic subgroup ofG of automorphisms ˛ of V
preserving the decomposition including the ordering, i.e., such that ˛.Vi /� Vi for
all i . Let g 2G.k/. The algebraic subgroup of G preserving the decomposition
V D

L
i2I gVi (including the ordering) is gTg�1. Therefore g normalizes

T if and only if it preserves the decomposition V D
L
i2I Vi except for the

ordering, i.e., g.Vi /D V�.i/ for some permutation � of I . When we choose a
basis for V consisting of an element from each Vi , we find that NG.T / consists
of the monomial matrices (see 2.41). Therefore NG.T /D CG.T / � .Sn/k , and
so W.G;T /' .Sn/k (finite constant algebraic group attached to the symmetric
group on n symbols).

DEFINITION 17.43. A Cartan subgroup of a connected group variety is the
centralizer of a maximal torus.

PROPOSITION 17.44. Let G be a connected group variety over k. Every Cartan
subgroup of G is smooth, connected, and nilpotent. If k is algebraically closed,
then any two are conjugate by an element of G.k/, and the union of the Cartan
subgroups of G contains a dense open subset of G.
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PROOF. We may suppose that k is algebraically closed. Let C D CG.T / be
a Cartan subgroup of G. Then C is smooth (13.10), connected (17.38), and
nilpotent (17.28). Let C 0 D CG.T 0/ be a second Cartan subgroup of G. Then
T 0 D gTg�1 for some g 2G.k/ (see 17.10), and so

C 0 D CG.gTg
�1/D g �CG.T / �g

�1
D g �C �g�1:

Finally, every conjugate of C is a Cartan subgroup of G, and we showed in
Theorem 17.33 that

S
g2G.k/gjC jg

�1 contains a nonempty open subset of G.2

PROPOSITION 17.45. Let B be a Borel subgroup in a connected group variety
G. Then Z.G/DZ.B/.

PROOF. We may suppose that k is algebraically closed. As Z.G/ D CG.B/
(17.22) and Z.B/D CG.B/\B , it suffices to show that Z.G/� B . Let T be a
maximal torus of G contained in B . Then Z.G/� CG.T /, which is contained
in B (17.39b). 2

THEOREM 17.46. Let G be a connected group variety over k. Let S be a torus
inG and B a Borel subgroup containing S . Then CG.S/\B is a Borel subgroup
of CG.S/. If k is algebraically closed, then every Borel subgroup of CG.S/ is of
this form.

PROOF. We may suppose that k is algebraically closed. Let C D CG.S/. Then
C \B D CB.S/, which is smooth (13.10), connected (17.38), and solvable
(because it is a subgroup of B). To show that it is a Borel subgroup of C , it
remains to show that C=C \B is complete (17.19). Let qWG! G=B denote
the quotient map. Then C=C \B ' q.C /, and so it suffices to show that q.C /
complete. AsG=B is complete, it suffices to show that q.C / is closed, and as q is
open, it suffices to show that CB is closed inG. Let CB denote the closure of CB
in G. It is connected because CB is the image of C �B under the multiplication
map. We regard it as a closed subvariety of G.

Let y D cb 2 CB (by this we mean that y 2 .CB/.k/). Then

y�1Sy D b�1c�1Scb D b�1Sb � B

because S � B , and so (by continuity2)

y 2 CB H) y�1Sy � B: (126)

Let 'WB ! B=Bu denote the quotient map, and consider the regular map
.y;s/ 7! '.y�1sy/WCB�S!B=Bu. As CB is connected and B=Bu is diagon-
alizable, the rigidity theorem (12.36) shows that '.y�1sy/ is independent of y.
Hence

'.y�1sy/D '.s/ for all y 2 CB and s 2 S: (127)

2More formally, in the action of G on itself by conjugation, the transporter of S into B is a
closed subscheme ofG (1.79) containing CB and hence CB .
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Let y 2 CB , and let T be a maximal torus of B containing S . Then y�1Sy �
B (by (126)), and so there exists a u2Bu such that u�1y�1Syu�T (see 16.33d).
As CB �B � CB , we have CB �B � CB (by continuity). Therefore yu 2 CB ,
and so

'..yu/�1 s.yu//D '.s/ for all s 2 S

(by (127)). But .yu/�1 s.yu/ and s both lie in T and ' is injective on T , and so

.yu/�1 s.yu/D s for all s 2 S:

Therefore yu 2 C (see 1.93), and so y 2 CB . We have shown that CB is closed.
For the second part of the statement, let B0 be a Borel subgroup of C ,

and let B be a Borel subgroup of G containing S . Because B \C is a Borel
subgroup of C , there exists c 2C.k/ such thatB0D c.B\C/c�1 (see 17.9). But
c.B \C/c�1 D cBc�1\ cCc�1 D cBc�1\C , which proves the assertion. 2

e. The normalizer of a Borel subgroup

In this section, we prove the normalizer theorem: every Borel subgroup is equal
to its own normalizer.3 Throughout, G is a connected group variety over a field k
(not necessarily algebraically closed field).

LEMMA 17.47. Let H be a subgroup variety of G. If H contains a Cartan
subgroup of G, then NG.H/ı DH ı (and so NG.H/ is smooth).

PROOF. We may suppose that k is algebraically closed. Let N DNG.H/. Then
N �H and

dimhD dimH � dimN � dimn

(see 1.37). If nD h, then N is smooth and H ı DN ı.
Let H contain the Cartan subgroup C D CG.T /. Recall (10.34) that cD gT

and n=h D .g=h/H . Because H contains C , its Lie algebra h contains c, and
there is an exact sequence

0! h=gT ! g=gT ! g=h! 0:

As T is diagonalizable, it is linearly reductive (12.54), and so the map .g=gT /T !
.g=h/T is surjective and .g=gT /T D 0. Therefore .g=h/T D 0. But

.g=h/T � .g=h/H D n=h;

and so nD h. 2

3Chevalley always said that, once the normalizer theorem had been proved, it was all downhill
(Cartier 2005, 25.7).
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THEOREM 17.48 (NORMALIZER THEOREM). Let B be a Borel subgroup of G.
Then

B DNG.B/:

PROOF. We may suppose that k is algebraically closed. We use induction on the
dimension of G. If dim.G/ � 2, then G is solvable (17.27), and so G D B D
NG.B/.

Every Borel subgroup contains a maximal torus and therefore a Cartan sub-
group (17.39), and so the lemma shows that NG.B/ is smooth. Therefore it
suffices to show that NG.B/.k/� B.k/.

Let x 2NG.B/.k/, which we wish to prove lies in B.k/. Let T be a maximal
torus in B . Then xT x�1 is also a maximal torus in B and hence is conjugate
to T by an element b of B.k/ (see 17.9). After replacing x with bx, we may
suppose that T D xT x�1. The map

'WT ! T; t 7! Œx; t �D xtx�1t�1

is a homomorphism because '.t1/'.t2/D tx1 t
�1
1 � t

x
2 t
�1
2 D t

x
1 t
x
2 t
�1
2 t�11 D '.t1t2/.

If '.T / ¤ T , then the kernel of ' contains a nontrivial torus S such that
x 2 CG.S/. Note that x normalizes CG.S/\B , which is a Borel subgroup of C
(see 17.46). If CG.S/¤G, then x 2 B.k/ by the induction hypothesis applied
to CG.S/. On the other hand, if CG.S/DG, then S �Z.G/, and x 2 B.k/ by
the induction hypothesis applied to G=S .

If '.T /D T , then T acts trivially on any one-dimensional representation of
G. Let .V;r/ be a representation of G such that NG.B/ is the stabilizer of a line
LD hvi in V (see 4.27). Then T fixes v, and Bu fixes v because it is unipotent.
Therefore B D Bu �T fixes v, and the map g 7! r.g/ �vWG! V factors through
G=B . As G=B is complete and connected, the map has image fvg (see A.75g),
and so G fixes v. Hence G DNG.B/, which implies that G D B (17.33b). 2

COROLLARY 17.49. Let P be a subgroup variety of G. If P contains a Borel
subgroup of G, then P is connected and P DNG.P /.

PROOF. We may suppose that k is algebraically closed. As P contains a Borel
subgroup of G, it contains a Cartan subgroup (17.39), and so NG.P / is smooth
(17.47). As P ı � P �NG.P /, it suffices to show that P ı.k/DNG.P /.k/.

Let x 2 NG.P /.k/, and let B � P be a Borel subgroup of G. Then B and
xBx�1 are Borel subgroups of P ı, and so there exists a p 2 P ı.k/ such that

B D p.xBx�1/p�1 D .px/B.px/�1

(17.10). As px normalizes B , it lies in B.k/ (see 17.48), and so

x D p�1 �px 2 P ı.k/ �B.k/D P ı.k/;

as required. 2
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COROLLARY 17.50. Let B be a Borel subgroup of G and assume that B con-
tains a subgroup Bu as in 16.7. Then B DNG.Bu/.

PROOF. We may suppose that k is algebraically closed. Let P D NG.Bu/red.
Then P contains B , and so it is connected (17.49). From the conjugacy of
Borel subgroups, it follows that Bu is maximal among the connected unipotent
subgroup varieties of G. Hence P=Bu has no nontrivial connected unipotent
subgroup variety, and so it is a torus (17.25). Therefore P is solvable, and so
P D B . Now,

B DNG.Bu/red �NG.Bu/�NG.B/D B;

and so NG.Bu/D B . 2

Recall (16.33) that B contains a subgroup Bu if k is perfect.

REMARK 17.51. It follows from Corollary 17.49 that the Borel subgroups of G
are maximal among the solvable subgroup varieties (not necessarily connected)
of G.4 However, not every solvable subgroup variety is contained in a Borel
subgroup of G. For example, the diagonal in SOn is a commutative subgroup
variety not contained in any Borel subgroup (we assume that n > 2 and that
the characteristic¤ 2). Indeed, it is a product of copies of .Z=2Z/k , and equals
it own centralizer. If it were contained in a Borel subgroup of G, it would be
contained in a torus (16.33), which would centralize it.

f. The variety of Borel subgroups

In this section, G is a connected group variety over an algebraically closed field k.
Let B denote the set of Borel subgroups in G. The group G.k/ acts transitively
on B by conjugation,

.g;B/ 7! gBg�1WG.k/�B! B
(see 17.9). Let B be a Borel subgroup of G. As B DNG.B/ (17.47), the orbit
map g 7! gBg�1 induces a bijection

�B W.G=B/.k/! B.

We endow B with the structure of an algebraic variety for which �B is an iso-
morphism. Then the action of G on B is regular and B is a smooth connected
projective variety.

Let B 0 D gBg�1 be a second Borel subgroup of G. The map G
inn.g/
�! G �!

G=B 0 factors through G=B , and gives top map in the following diagram:

G=B G=B 0

B B.

inn.g/

�B �B0

B00 7!gB00

4In fact, B.k/ is a maximal solvable (abstract) subgroup ofG.k/.
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The diagram commutes, and all maps except possibly �B0 are regular isomorph-
isms, and so �B0 is also a regular isomorphism. In particular, the structure of an
algebraic variety on B does not depend on the choice of B .

The variety B D B.G/, equipped with its G-action, is called the flag variety
of G. For example, the flag variety of GLV is the set of maximal flags in V
equipped with its natural structure of an algebraic variety (Section 7g).

LEMMA 17.52. Let S be a subset of G.ka/, and let BS D fB 2 B j s �B D B
for all s 2 Sg. Then BS is a closed subset of B, equal to fB 2 B j B � Sg.

PROOF. We have BS DTsBs , where Bs is the subset of B on which the maps
x 7! x and x 7! sx agree. As Bs is closed, so also is BS . By definition, s �B D
sBs�1. Hence s �B D B ” s 2NG.B/

17.48
D B , from which the second part

of the statement follows. 2

For example, if T is a torus in G, then BT consists of the Borel subgroups of
G containing T .

PROPOSITION 17.53. Let T be a maximal torus ofG. The Weyl groupW.G;T /
acts simply transitively on the set BT of Borel subgroups of G containing T .

PROOF. The set BT is finite by 17.11. As CG.T / is connected (17.38), it acts
trivially on the corresponding finite subset .G=B/T of G=B , and so the action
factors through W.G;T /. Let x be an element of NG.T / such that xBx�1 D B .
Then x 2 B by (17.48). Thus x 2NB.T /. Hence, for every t 2 T , we have

xtx�1t�1 2 T \Bder
� T \Bu D e;

so that x 2 CG.T /. 2

The essence of the proof was to show that NG.T /\B DNG.T /ı; cf. 17.11.

PROPOSITION 17.54. Let �WG ! G0 be a quotient map of connected group
varieties.

(a) The map B 7! �.B/ is a surjective regular map

�BWB �! B0

of flag varieties. If Ker.�/ is contained in some Borel subgroup of G, then �B is
bijective.

(b) Let T be a maximal torus of G, and let T 0 D �.T /. Then � induces a
surjective homomorphism W.�/WW.G;T /!W.G0;T 0/. If Ker.�/ is contained
in some Borel subgroup of G, then W.�/ is an isomorphism.

PROOF. (a) That � induces a surjective map of sets is proved in 17.20. The
regularity of �B follows from the definition of the algebraic structure on the flag
varieties. If Ker.�/ is contained in a Borel subgroup, then, since it is normal, it
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is contained in every Borel subgroup, and so B D ��1.�.B// for every B 2 B.
This proves the injectivity.

(b) Recall (17.20) that T 0 def
D �.T / is a maximal torus in G0. Let n 2NG.T /.

Then
�.n/�.T /�.n/�1 D �.nT n�1/D �.T /

and so �.n/ 2 NG0.T 0/. If n 2 CG.T /, then a similar computation shows that
�.n/ 2 CG0.T

0/, and so the map sending n to �.n/ induces a homomorphism
W.G;T /!W.G0;T 0/.

If B � T , then �.B/� �.T / def
D T 0, and so �B maps BT into B0T 0 . For any

B 2 BT , we get a commutative diagram

W.G;T / W.G0;T 0/

BT B0T 0
n7!n�B1W1

W.�/

n7!n��.B/1W1

�B

Therefore W.�/WW.G;T /!W.G0;T 0/ is surjective (resp. bijective) if and only
if �BWBT ! B0T 0 is surjective (resp. bijective).

Let B 00 2 B0T
0

. There exists a B0 2 B such that �.B0/ 2 B0T 0 . Then �.T / 2
�.B0/, and so T 2 ��1.�.B0//D P , which is a parabolic subgroup of G con-
taining B0. Now T is a maximal torus of P , and so it is contained in a Borel
subgroup B of P . But B0 is also a Borel subgroup of P , and so B and B0 are
conjugate in P , which implies that B is a Borel subgroup of G. This proves the
surjectivity.

Finally, if Ker.�/ is contained in a Borel subgroup, then �BWB ! B0 is
injective, which implies that its restriction to BT ! B0T 0 is injective. 2

In the course of proving (17.54), we showed that, if B is a Borel subgroup of
a parabolic subgroup of G, then it is a Borel subgroup of G.

REMARK 17.55. Let G be a connected group variety, and let X be a projective
variety of maximum dimension on which G acts transitively. Let o 2X , and let
Go be the isotropy group at o. Then G=Go 'X . As X is projective of maximum
dimension,Go is parabolic of minimum dimension, and hence is a Borel subgroup
of G (see 17.19). The map x 7!Gx is a G-equivariant isomorphism of algebraic
varieties X ! B.

If X is not of maximum dimension, then its points correspond to the elements
of a conjugacy class of parabolic subgroups of G (see 17.49).

g. Chevalley’s description of the unipotent radical

In this section, G is a connected group variety over k. Recall (17.31) that, when
k is algebraically closed, the radical of G is the reduced identity component of
the intersection of the Borel subgroups of G. Chevalley proved a more precise
statement.
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THEOREM 17.56 (CHEVALLEY’S THEOREM). Assume that k is algebraically
closed, and let T be a maximal torus in G. Then

Ru.G/ �T D
�\

B2BT
B
�ı

red

Ru.G/D
�\

B2BT
Bu

�ı
red

.

The intersection is over the (finite set of) Borel subgroups of G containing T .

Before proving the theorem, we list some consequences.

COROLLARY 17.57. Assume that k is algebraically closed, and let S be a torus
in G. Then

Ru.CG.S//DRu.G/\CG.S/:

PROOF. Let S act on G by conjugation. Then CG.S/D GS , and so Ru.G/\
CG.S/DRu.G/

S , which is smooth and connected (13.9, 17.40). As it is unipo-
tent (14.7) and normal in CG.S/, it is contained in Ru.CG.S//.

For the reverse inclusion, it suffices to prove that Ru.CG.S//�Ru.G/. Let
T be a maximal torus of G containing S . The intersection with CG.S/ of a Borel
subgroup B of G containing T is a Borel subgroup of CG.S/ (see 17.46), and so
B �Ru.CG.S//. Therefore

Ru.CG.S//�
�\

B2BT
B
�ı

red

17.56
D Ru.G/ �T;

and so
Ru.CG.S//� .Ru.G/ �T /u DRu.G/: 2

COROLLARY 17.58. Assume that k is algebraically closed, and let S be a torus
acting on G. Then

Ru.G
S /DRu.G/

S :

PROOF. Let G0 DGÌS . Then CG0.S/DGS and Ru.G0/DRu.G/, and so

Ru.G
S /DRu.CG0.S//

17.57
D Ru.G

0/\CG0.S/DRu.G/
S : 2

COROLLARY 17.59. Let S be a torus acting onG. IfG is reductive, then so also
is GS . In particular, the centralizer of a torus in a reductive group is reductive.

PROOF. The group GS is smooth and connected (13.9, 17.40), and Corollary
17.57 applied to Gka shows that Ru.GSka/DRu.G/

S
ka D e. 2

More generally, the identity component of GS is reductive if G is reductive
and Ska is linearly reductive (Conrad et al. 2015, A.8.12). The proof uses
Matsushima’s criterion (5.30).
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PROPOSITION 17.60. Let � be a cocharacter of G. The unipotent group U.�/
is split. If G is reductive, then the quotient P.�/=U.�/ is reductive and

Ru.P.�//D U.�/; Ru.P.�/ka/D U.�/ka .

PROOF. Recall (13.33) that U.�/ and P.�/ are smooth and connected, and that
U.�/ is unipotent. According to (13.33c), Lie.U.�//Gm D 0 and so U.�/ is split
by (16.63). The quotient P.�/=U.�/ is isomorphic to CG.�Gm/ (see 13.33b),
which is reductive if G is reductive (17.59). The remaining statements follow
from the definitions. 2

PROPOSITION 17.61. Let G be a reductive group.
(a) Let T be a torus in G such that Tka is maximal in Gka . Then CG.T /D T .

(b) The centre Z.G/ of G is contained in all maximal tori T in G, and
Z.G/.ka/D

T
T maximalT .k

a/.

PROOF. (a) We may suppose that k is algebraically closed. Every Borel subgroup
containing T contains CG.T / (see 17.39), and CG.T / is smooth and connected
(13.10, 17.38), and so

CG.T /�
�\

B2BT
B
�ı

red

17.56
D Ru.G/ �T D T:

(b) Certainly, Z.G/�
T
T maximalCG.T /D

T
T maximalT . Conversely, if g 2

G.ka/ lies in
T
T maximalT .k

a/, then it commutes with all elements of all Cartan
subgroups, but these elements contain a dense open subset of G (see 17.44), and
so g 2Z.G/.k/. 2

Later (17.82) we show that if T is a maximal torus in a group variety G, then
Tka is maximal in Gka . Therefore (a) holds for all maximal tori in G.

COROLLARY 17.62. Let G be a reductive group.
(a) The centre Z.G/ of G is of multiplicative type.

(b) R.G/DZ.G/t (largest subtorus of Z.G/).

(c) The formation of R.G/ commutes with extension of the base field.

(d) The quotient G=R.G/ is semisimple.

(e) The quotient G=Z.G/ has trivial centre.

PROOF. (a) Let T be a maximal torus in G; then Z.G/� CG.T /D T , and so
Z.G/ is of multiplicative type.

(b) The subgroup variety Z.G/t is normal in G (see 12.29). It is also con-
nected and commutative (by definition), and so Z.G/t � R.G/. Conversely,
R.G/ka �R.Gka/, which is a torus because Ru.Gka/D e. Therefore R.G/ is a
torus. Rigidity (12.37) implies that the action of G on R.G/ by inner automorph-
isms is trivial, and so R.G/�Z.G/. Hence R.G/�Z.G/t :
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(c) The formation of the centre, and the largest subtorus, commute with
extension of the base field, and so this follows from (b).

(d) We have

.G=R.G//ka 'Gka=R.G/ka
(c)
'Gka=R.Gka/;

which is semisimple (6.44). By definition, this means thatG=R.G/ is semisimple.
(e) Let Z0 be the inverse image of the centre of G=Z.G/ in G. Then Z0 is

a normal subgroup of G, and the action of G on it by conjugation is trivial by
(12.41). Therefore Z0 DZ.G/. 2

REMARK 17.63. Let G be an algebraic group over k. The action of G on itself
by inner automorphisms

.x;y/ 7! xyx�1WG�G!G

is invariant under Z.G/� e acting by translation, and so it factors through
G=Z.G/. The automorphisms ofG defined by elements of .G=Z/.k/ are exactly
the inner automorphisms of G, i.e., over ka they become of the form inn.g/ with
g 2 G.ka/ (see 3.51). An inner automorphism need not be of the form inn.g/
with g 2G.k/. For example, the automorphism�

a b

c d

�
7!

�
a tb

t�1c d

�
; t 2 k�;

of SL2 is inner (it is conjugation by the matrix diag.t;1/ regarded as an element
of PGL2.k/), but it need not be of the form inn.g/ with g 2 SL2.k/ (see 20.29).

We write inn.g/ for the inner automorphism of G defined by an element
g 2Gad.k/.

An adjoint group is a semisimple group with trivial centre. The quotient of a
reductive group G by its centre is an adjoint group (17.62e), called the adjoint
group Gad of G.

h. Proof of Chevalley’s theorem

Chevalley’s theorem is important for the description of algebraic groups in terms
of root data. The traditional proof (Chevalley 1956–58, Exp. 12; Springer 1998,
7.6.3) also uses root data. We give a proof (due to Luna) that avoids using root
data. The field k is algebraically closed.

THEOREM 17.64 (KOSTANT–ROSENLICHT). Let G be a unipotent group vari-
ety acting on an affine algebraic scheme X over k. Every orbit of G in X is
closed.

PROOF. Let O be an orbit of G in X . After replacing X with the closure of O ,
we may suppose that O is dense in X . Let Z D .X XO/red. Then Z is stable
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under G (see 7.5), and so its ideal I.Z/ in O.X/ is stable under G. The scheme
Z is not dense in X because its complement contains a nonempty open subset of
X , and so I.Z/¤ 0. As G is unipotent, there is a nonzero f in I.Z/ fixed by G.
Now f is constant on O , and hence also on X . Thus I.Z/ contains a nonzero
scalar, which implies that Z is empty. 2

For example, the orbits of U2 acting on k2 are the horizontal lines, which are
closed.

THEOREM 17.65. Let G be a connected group variety, and let .B;T / be a Borel
pair in G. The set

B.B/D fB 0 2 B j B 2 T �B 0g
is open and affine in B, and it is stable under Iu.T /.

PROOF. According to Theorem 4.27, there exists a representation .V;r/ of G
such that B is the stabilizer of a line Œv�. There is then a projective embedding
G=B! P.V /, which we may suppose to be nondegenerate. The image of B in
P.V / is a closed irreducible subvariety X stable under G. Let x denote the image
of B in X . Then x is fixed by T , and B.B/ maps onto the set

U.x/D fy 2X j x 2 T �yg:

According to Proposition 13.52, for each cocharacter � of G satisfying certain
conditions, there is an x� 2 BT .k/ such that U.x�/ is an open affine subset of B.
There exists an n 2NG.T / such that n.x�/D x (see 17.53), and the point x is
the “x�” for n.�/. Therefore U.x/ is an open affine subset of X , and it remains
to show that it is stable under Iu.T /.

Let V D
L
�2� V� be the decomposition of V into eigenspaces for the action

of T , and let �WGm ! T be a cocharacter of T such that the integers h�;�i,
� 2� , are distinct.

Let �� 2 � be such that h�;��i is minimum. Then V�� has dimension 1
and V� is the unique attracting point x� of X (see 13.53). Moreover, U.x�/ is
the open cell X.x�;�/. It is the set of Œv� 2X such that v D

P
v� with v�� ¤ 0.

Let .V _; r_/ be the contragredient of r . Let V ?� be the hyperplane in V _

orthogonal to v� 2 V . If there exists a vector v_ such that the orbit Gv_ is
entirely contained in this hyperplane, then hgv�;v_i D 0 for all g, which implies
that v_ D 0 because the vectors gv� generated V . It follows that every orbit
GŒv_� in P.V _/ meets the affine complement P.V _/XV ?� . But the action of
��1.z/, z 2Gm, contracts this affine space to Œv_��, which shows that the orbit
GŒv_�� is closed. Let P denote the stabilizer of v_�. It is a parabolic subgroup of
G containing T . It contains a Borel subgroup B such that T �B �P . Therefore
Iu.T / � P . Therefore, it fixes the line Œv_� and dually it leaves invariant the
open Xx�.�/. 2

We now prove Chevalley’s Theorem 17.56. It suffices to show that Iu.T /
acts trivially on B, i.e., that B D BIu.T /, because then Iu.T / is contained in all
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Borel subgroups of G, and so

Iu.T /�
�\

B�G Borel
B
�ı

red

17.31
D R.G/I

as Iu.T / is unipotent, this implies that

Iu.T /�R.G/u DRu.G/:

We now show that Iu.T / acts trivially on B. Any nonempty closed orbit of
T acting on B is complete, and so contains a fixed point (17.3), and so the orbit
itself is a fixed point.

Note that the (open affine) varieties B.B/, B 2 BT , cover B . Indeed, for
any B 0 2 B, the closure of its T -orbit T �B 0 contains a closed T -orbit and hence
T -fixed point; i.e., there exists a B 2 BT such that B 2 T �B 0. This means that
B 0 2 B.B/.

Let B 0 2 B; we have to show that the orbit Iu.T / �B 0 consists of a single
point. Because Iu.T / is solvable and connected, there is an Iu.T /-fixed point B 00

in Iu.T / �B 0 (see 17.3). This point is contained in some B.B/ for B 2 BT . The
set BXB.B/ is closed and Iu.T /-stable and so, if it meets the orbit Iu.T / �B 0,
then it has to contain Iu.T / �B 0 and hence also B 00, which is a contradiction.
Thus Iu.T / �B 0 is contained in B.B/. As Iu.T / is unipotent and B.B/ is affine,
the Kostant–Rosenlicht theorem shows that Iu.T / �B 0 is closed in B.B/. But B 00

lies in the closure of Iu.T / �B 0 and in B.B/, and so B 00 lies in the Iu.T / �B 0. As
it was a fixed point, the orbit Iu.T / �B 0 is trivial.

i. Borel and parabolic subgroups over an arbitrary base field

In this section, we explain how to extend some of the above material to an
arbitrary base field k.

17.66. A Borel subgroup of a connected group variety G over k is a connected
solvable subgroup variety B such that G=B is complete. According to (17.19),
this definition agrees with the earlier definition (17.6) when k is algebraically
closed. Let k0 be a field containing k; then a subgroup variety B of G is Borel if
and only if Bk0 is a Borel subgroup of Gk0 (see 1.34, 6.31). Therefore the Borel
subgroups of G are exactly those algebraic subgroups that become Borel in the
sense of (17.6) over an algebraic closure of k. A Borel pair of G is a pair that
becomes a Borel pair over ka in the sense of (17.12).

17.67. A connected group variety G over k need not contain a Borel subgroup.
In other words, it is possible that no Borel subgroup of Gka is defined over k. A
connected group variety containing a Borel subgroup is said to be quasi-split. A
connected group variety is quasi-split if and only if some maximal connected
solvable subgroup variety H has a complete quotient G=H or, equivalently, if
and only if some parabolic subgroup is solvable.
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17.68. A parabolic subgroup of a connected group variety G need not contain
a Borel subgroup. A Borel subgroup of G (if it exists) is a minimal parabolic
subgroup (17.19). For reductive groups without Borel subgroups, the minimal
parabolic subgroups play the role that Borel subgroups otherwise play.

17.69. Let qWG!Q be a quotient map of connected group varieties, and let
H be a subgroup variety of G. If H is parabolic (resp. Borel), then so also is
q.H/. This follows from Proposition 17.20.

Let G be a connected group variety over k. Because the formation of central-
izers and normalizers commutes with extension of the base field, the following
statements can be deduced from the algebraically closed case.

17.70. Let B be a Borel subgroup of G. Then Z.B/D CG.B/DZ.G/ (17.22,
17.45).

17.71. Let P be a subgroup variety of G. If P contains a Borel subgroup of G,
then P is connected and P DNG.P /; in particular, B DNG.B/ (see 17.49).

17.72. Let S be a torus acting on G. Then GS is smooth and connected (13.9,
17.40). In particular, the centralizer of a torus in G is a smooth connected
subgroup of G. If S is contained in a Borel subgroup B of G, then CG.S/\B
is a Borel subgroup of CG.S/ (17.46).

ASIDE 17.73. Let G be a reductive group over an arbitrary field k. Any two minimal
parabolic subgroups of G are conjugate by an element of G.k/ (25.8 below). If G has
a Borel subgroup, then the minimal parabolic subgroups of G coincide with the Borel
subgroups, and so any two Borel subgroups are conjugate by an element of G.k/. A Borel
subgroup B in G defines a k-structure on the flag variety B of Gka ,

.G=B/ka
'
�!Gka=Bka ' B;

which the preceding statement shows to be independent of B .

j. Maximal tori and Cartan subgroups over an arbitrary base
field

Preliminaries

Every endomorphism ˛ of a finite-dimensional vector space V over a perfect
field k has a unique additive Jordan decomposition ˛ D ˛sC˛n with ˛s and ˛n
commuting semisimple and nilpotent endomorphisms respectively. Indeed, when
the eigenvalues of ˛ lie in k, we can define ˛s as in the proof of Theorem 9.11
and take ˛n D ˛�˛s . The rest of the proof is the same as that of 9.11. When
˛ lies in a Lie subalgebra g of glV , its semisimple and nilpotent parts ˛s and
˛n need not lie in g. However, this is true if g is the Lie algebra of an algebraic
group. More precisely, the following is true.
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PROPOSITION 17.74. Let k be a perfect field.
(a) LetG be an algebraic group over k, and letX 2 g. ThenX has a unique de-

composition X DXsCXn such that �.Xs/D �.X/s and �.Xn/D �.X/n
for every representation � of g.

(b) Let 'WG!G0 be a homomorphism of algebraic groups. Then .d'/.Xs/D
.d'/.X/s and .d'/.Xn/D .d'/.X/n for all X 2 g.

PROOF. Exercise (cf. Springer 1998, 4.4.20). 2

EXAMPLE 17.75. If G is unipotent, then all element of g are nilpotent because
an embedding of G into Un defines an embedding of u into nn (strictly up-
per triangular matrices). Similarly, if G is a torus, then all elements of g are
semisimple.

Let g be a Lie algebra over a field k (not necessarily perfect). We say that an
element X of g is semisimple if �.X/ is semisimple for all representations � of g.
When k is perfect, X is semisimple if and only if X DXs .

Let G be a connected group variety over a field k, and let X 2 g. Then G acts
on g through the adjoint representation, and we let CG.X/ denote the subgroup
of G fixing X .

PROPOSITION 17.76. If X is semisimple, then CG.X/ is a smooth algebraic
subgroup of G, and

Lie.CG.X//D zg.X/
def
D fY 2 g j ŒY;X�D 0g:

PROOF. The smoothness can be proved by a modification of the proof of 13.6
(decompose m=m2 into a sum of simple representations for the action of X). It
suffices to prove the remaining statement with G D GLn. Let A 2 gln. Then

I CA" 2 L.CG.X// ” I CA" 2 CG.X/.kŒ"�/

” .I CA"/X.I �A"/DX

” AX �XAD 0: 2

COROLLARY 17.77. A semisimple element X of g is central if and only if
CG.X/DG.

PROOF. By definition, X is central if and only if zg.X/ D g. As CG.X/ is
smooth and G is connected, CG.X/D G if and only if Lie.CG.X//D Lie.G/
(see 10.15), i.e., if and only if zg.X/D g. 2

PROPOSITION 17.78. Let G be a group variety over an algebraically closed
field k. The elements of g with noncentral semisimple part form an open subset
of g (for the Zariski topology).
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PROOF. ForX 2 g, let P.T;X/ denote the characteristic polynomial of the linear
map ad.X/Wg! g, and write

P.T;X/D T d Cf1.X/T
d�1
C�� �Cfd ; d D dimG; fi .X/ 2 k:

When we vary X , the fi become regular functions on ga. From the definition of
the semisimple part of an element of g, we see that P.T;X/D P.T;Xs/. The
element Xs is central if and only if fi .X/D 0 for all i . Thus, the elements of g
with noncentral semisimple part are those in the open sets D.fi /, i D 1; : : : ;d .
For more details, see Springer 1998, 13.3.4. 2

PROPOSITION 17.79. Let G be a group variety over an infinite field k. If gka

contains a noncentral semisimple element, then so does g, and the centralizers of
these elements in g span g.

PROOF. As gka contains a noncentral semisimple element, the elements of gka

with noncentral semisimple part form a nonempty open subset U of gka (see
17.78). Because k is infinite, g is dense in gka (because ga � Adim.g/), and so
U \g is dense in gka . Therefore, there exists a noncentral semisimple element in
g. The set spanned by the centralizers of such elements is a closed subset of g
containing U \g, and so equals g. 2

Let G be a group variety over a field k. If G is nilpotent, then all semisimple
elements of G.ka/ are contained in its centre (16.47). For certain “bad” nonnilpo-
tent groups this may still be true. These groups cause problems, which the next
result allows us to avoid.

PROPOSITION 17.80. Let G be a group variety over a field k. Then there exists
an isogeny 'WG!G0 such that

(a) either G0 is nilpotent or g0
ka contains a noncentral semisimple element;

(b) every torus T 0 in G0 is the image of a torus in G.

PROOF. IfG satisfies (a), there is nothing to prove. Otherwise, G is not nilpotent
and all semisimple elements of gka are central. Then k has nonzero characteristic
p, and the set of semisimple elements of g form a p-Lie subalgebra h of g stable
under Ad.G/. There exists an infinitesimal isogeny 'WG!G1 such that d' has
kernel h (see 11.38). If G1 also fails (a), then we repeat the process. Eventually
we arrive at an algebraic group Gr and an isogeny G!Gr satisfying (a) and (b).
For more details, see Springer 1998, 13.3.5. 2

Maximal tori

We first generalize Proposition 16.60 to an arbitrary base field.

PROPOSITION 17.81. A connected group variety is unipotent if it contains no
nontrivial torus.
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PROOF. Let G be a nonunipotent group over k. We shall show by induction on
dim.G/ that G contains a nontrivial torus. We first assume that k is infinite.

Suppose G is nilpotent. Then Z.G/s is a central torus such that G=Z.G/s is
unipotent (16.47). As G is not unipotent, Z.G/s is not trivial.

Suppose gka contains a noncentral semisimple element. As k is infinite, g
contains a noncentral semisimple element (17.79). Then CG.X/¤ G and it is
nonunipotent (because its Lie algebra contains the semisimple element X). By
the induction hypothesis, CG.X/ contains a nontrivial torus.

If neither condition holds, then we choose an isogeny G!G0 as in (17.80).
Then G0 is not unipotent, and the previous argument shows that it contains a
nontrivial torus. It follows that G contains a nontrivial torus.

The proof of the proposition when k is finite requires a different argument.
In (17.99) below, we show that a connected group variety G over a finite field k
contains a torus T such that Tka is maximal in Gka . If G is not unipotent, then
neither is Gka , and Tka is nontrivial by (16.60). Therefore T is nontrivial. 2

THEOREM 17.82. LetG be a group variety over k and let k0 be a field containing
k. A torus T in G is maximal if and only if Tk0 is maximal in Gk0 .

PROOF. After replacing G with its identity component, we may suppose it to be
connected. Clearly T is maximal inG if and only if it is maximal in its centralizer
CG.T /, which is again a connected group variety (17.72), and T is maximal in
CG.T / if and only if CG.T /=T contains no nontrivial torus (16.43). Therefore,

T is maximal in G
17.81
” CG.T /=T is unipotent.

The statement on the right holds over k if and only if it holds over k0 (see 14.9).2

COROLLARY 17.83. There exists a maximal torus in Gka defined over k.

PROOF. If T is any maximal torus in G, then Tka is such a torus in Gka . 2

COROLLARY 17.84. A torus T in a reductive group G is maximal if and only if
CG.T /D T .

PROOF. If T is maximal in G, then Tka is maximal in Gka , and so CGka .Tka/D

Tka by Proposition 17.61. But the formation of centralizers commutes with
extension of the base field, and so this implies that CG.T /D T . The converse is
obvious. 2

Recall (12.29) that Dt denotes the reduced connected component (largest
subtorus) of a multiplicative group D.

COROLLARY 17.85. Let G be a connected group variety and N a normal sub-
group variety. If T is a maximal torus in G, then .T \N/t is a maximal torus in
N , and every maximal torus in N is of this form.
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PROOF. Let T be a maximal torus in G. Let T 0 be a maximal torus in N and T 00

a maximal torus in G containing T 0. Then T 00
ka is maximal in Gka (17.82), and so

Tka D gT 00
kag
�1 for some g 2G.ka/ (see 17.10). Now

..T \N/t /ka D .Tka \Nka/t D g.T
00
ka \Nka/tg

�1
D gT 0kag

�1,

which is maximal in Nka . Therefore .T \N/t is maximal in N . For the second
part of the statement, note that T 0 D .T 00\N/t . 2

COROLLARY 17.86. Let G be a connected group variety over a field k. If
G is an almost-direct product of connected subgroup varieties, G D G1 � � �Gn,
then every maximal torus T in G is an almost-direct product T D T1 � � �Tn with
Ti D .T \Gi /t a maximal torus in Gi .

PROOF. Let Ti D .T \Gi /t . Then Ti is a maximal torus inGi and T1 � � �Tn � T .
Certainly, T1 � � � � �Tn is a maximal torus in G1 � � � � �Gn, and so its image
T1 � � �Tn in G is maximal (17.20). Therefore, T1 � � �Tn equals T . 2

THEOREM 17.87. Let G be a group variety over a field k, and let T1 and T2 be
maximal tori in G. Then T1 and T2 are conjugate by an element of G.k0/ for
some finite separable field extension k0 of k, i.e., .T2/k0 D g � .T1/k0 �g�1 for
some g 2G.k0/.

PROOF. Consider the functor

X WR fg 2G.R/ j gT1Rg�1 D T2Rg:

When we let G act on itself by inner automorphisms, X is represented by a
closed subscheme of G (see 1.80). According to Theorem 17.10, there exists a
g 2 X.ka/. The map h 7! ghWNG.T1/ka ! Xka is an isomorphism of functors
of ka-algebras, and hence of ka-schemes. Therefore X is smooth and nonempty,
and so X.k0/¤ ; for some finite separable field extension k0 of k (see A.48). 2

In particular, any two maximal tori in a group variety G over a separably
closed field k are conjugate by an element of G.k/.

EXAMPLE 17.88. The torus Dn is maximal in GLn because Dn is its own cent-
ralizer in GLn. To see this, let Eij denote the matrix with a 1 in the ij th position
and zeros elsewhere, and let A 2Mn.R/ for some k-algebra R. If

.I CEi i /AD A.I CEi i /

then aij D 0D aj i for all j ¤ i , and so A must be diagonal if it commutes with
the matrices I CEi i .

EXAMPLE 17.89. Let V be a vector space of dimension n over k. The conjugacy
classes of maximal tori in GLn are in natural one-to-one correspondence with the
isomorphism classes of étale k-algebras of degree n.
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To see this, let T be a maximal torus in GLV . As a T -module, V decomposes
into a direct sum of simple T -modules, V D

L
i Vi , and the endomorphism ring

of Vi (as a T -module) is a separable extension ki of k such that dimki Vi D 1

(12.30). Now
Q
i ki is an étale k-algebra of degree n, and T .k/D

Q
i k
�
i .

Conversely, let A D
Q
i ki be an étale k-algebra of degree n. The choice

of a nonzero element of V defines on V the structure of a free A-module of
rank 1. Then V D

L
i Vi with Vi a one-dimensional ki -vector space. The

automorphisms of V preserving this gradation and commuting with the action of
A form a maximal subtorus T of GLV such that T .k/D A� D

Q
i k
�
i :

In particular, the split maximal tori in GLV are in natural one-to-one corres-
pondence with the decompositions V D V1˚�� �˚Vn of V into a direct sum of
one-dimensional subspaces. From this it follows that they are all conjugate. The
(unique) conjugacy class of split maximal tori corresponds to the étale k-algebra
k� � � ��k (n copies).

Cartan subgroups

Let G be a connected group variety. Recall (17.43, 17.44) that the Cartan
subgroups of G are the centralizers of maximal tori of G, and that they are
smooth, connected, and nilpotent.

PROPOSITION 17.90. LetX be a semisimple element of g. Then every maximal
torus of CG.X/ is maximal in G.

PROOF. Let H D CG.X/ı – it is a smooth connected group variety (17.76). Its
Lie algebra contains X , and so H is not unipotent (17.75). Therefore H contains
nontrivial maximal tori (17.81) – let T be one. The centralizer C D CH .T / of T
in H is a Cartan subgroup of H , and its Lie algebra c contains X (10.31). As C
is smooth, connected, and nilpotent, Z.C/s is the only maximal torus in C and
the quotient C=Z.C/s is unipotent (16.47). Therefore T DZ.C/s and C=T is
unipotent, which implies that X 2 t (see 17.75). Let T 0 be a maximal torus T 0 of
G containing T . Then T 0 centralizes X , and so T 0 �H . Thus T D T 0. 2

THEOREM 17.91. Every connected group variety G is generated by its Cartan
subgroups.

PROOF. If G is nilpotent, then Z.G/s is a maximal torus (16.47), and so G itself
is a Cartan subgroup. We prove the general case by induction on dim.G/. Sup-
pose first that k is infinite. If gka contains a noncentral semisimple element, then
G is generated by the groups CG.X/ı as X runs over the noncentral semisimple
elements of g because Lie.G/ is spanned by their Lie algebras (17.79). Each
CG.X/

ı is a proper algebraic subgroup of G whose maximal tori are maximal
in G (see 17.90). The induction hypothesis allows us to assume that each group
CG.X/

ı is generated by its Cartan subgroups, and it follows that the same is true
of G. The proof of the theorem when k is finite requires a different argument,
which we omit (Borel and Springer 1968, 2.9). 2
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COROLLARY 17.92. Let G be a connected group variety over an infinite field.
If the Cartan subgroups of the maximal tori in G are unirational over k, then G is
unirational over k (and G.k/ is dense in G if k is infinite).

PROOF. The hypothesis implies that there exists a dominant morphism C1�� � ��

Cm!G with the Ci unirational, and so G is unirational. 2

THEOREM 17.93. Let G be a connected group variety over k. Then G is unira-
tional over k (and G.k/ is dense in G if k is infinite) under each of the following
hypotheses:

(a) k is perfect;

(b) G is reductive.

PROOF. (a) The Cartan subgroups are smooth, connected, and nilpotent. As k is
perfect, they are products of tori with connected unipotent groups (16.48). All
tori are unirational (12.64), and all connected unipotent groups over perfect fields
are unirational (14.66).

(b) According to (17.84), the Cartan subgroups of a reductive group are tori,
which are unirational over k (see 12.64). 2

REMARK 17.94. (a) Let k be a perfect field. Then the formation of Ru.G/
commutes with extension of the base field, and so there is an exact sequence

e!Ru.G/!G!G=Ru.G/! e

with G=Ru.G/ reductive. Using the exact sequence, it possible to deduce the
unirationality of G from that of G=Ru.G/.

(b) There exist tori, even over fields of characteristic zero, that are not rational.
However, a connected group variety over a perfect field is rational if its “generic
torus” is rational (Voskresenskiı̆ 1998, p. 42).

k. Algebraic groups over finite fields

Let X be an affine scheme over Fq . The Fq-algebra homomorphism f 7!

f q WO.X/!O.X/ defines a Frobenius morphism � WX !X . If X � An, then
� acts on X.F/ as .a1; : : :/ 7! .a

q
1 ; : : :/:

DEFINITION 17.95. Let G be a connected group variety over F (an algebraic
closure of Fp). A Steinberg endomorphism of G is an endomorphism F such
that some power of F is equal to the Frobenius endomorphism of G defined by a
model of G over a finite subfield of F.

In other words, relative to some model G0 of G over Fq � F and embedding
G0 ,! GLn, a power Fm of F acts as .a1; : : :/ 7! .a

q
1 ; : : :/. Let F be a Steinberg

endomorphism ofG. Then the setGF of fixed points ofF acting onG.F/ is finite,
and G.F/D

S
m�1G

Fm (because this is true of a Frobenius endomorphism).



k. Algebraic groups over finite fields 383

THEOREM 17.96. Let F WG!G be a Steinberg endomorphism of a connected
group varietyG over F. Then the morphism g 7! g �F.g�1/WG!G is surjective.

PROOF. Let G act on itself (on the right) by .x;g/ 7! g�1 � x �F.g/. There
exists an x 2 G.F/ such that the orbit Ox through x is closed (1.66). If we
can show that dim.Ox/ D dim.G/, then Ox D G (because G is smooth and
connected); then e 2Ox , and so G DOe , which is the required statement. For
this, it suffices to show that the fibre of the orbit map �x WG!Ox over x is finite
(A.72), and even that the equation g�1xF.g/D x has only finitely many solutions
with g in G.F/. Rewrite this equation as f .g/D g, where f .g/D xF.g/x�1.
Because F is a Steinberg endomorphism, some multiple Fm of it is a Frobenius
endomorphism fixing x. A direct calculation shows that f m.g/D yFm.g/y�1

with y D xF.x/ � � �Fm�1.x/, and then that f mm
0

.g/D ym
0

Fmm
0

.g/y�m
0

for
every m0 2N. Take m0 to be the order of y in G.F/. Then f mm

0

.g/D Fmm
0

.g/,
and so f mm

0

.g/D g has only finitely many solutions in G.F/; a fortiori, f .g/D
g has only finitely many solutions in G.F/. 2

COROLLARY 17.97. Let G be a connected group variety over a finite field k,
and let F WG ! G be the Frobenius map relative to k. Then the morphism
g 7! g �F.g�1/WG!G is surjective.

PROOF. The proposition shows that the morphism becomes surjective after pas-
sage to F, and hence is surjective. 2

The corollary fails for nonconnected groups. For example, let G D �n with
nD q�1. Then g �F.g�1/D g �g�q D e for all x 2 �.ka/.

COROLLARY 17.98. For a connected group variety G over a finite field k, the
cohomology group H 1.k;G/D 1.

PROOF. Let � D Gal.ks=k/. Then � is generated (as a topological group) by
the element � Wa 7! aq , q D jkj. Let f W� !G.F/ be a crossed homomorphism.
Then � acts on G.F/ as F , and so there exists a g 2G.F/ such that g�1 ��g D
f .�/. Thus f agrees on � with the principal crossed homomorphism defined by
g. It follows that the two crossed homomorphisms agree on all powers of � , and
hence on Gal.ks=k/ (by continuity). 2

The corollary fails already for the disconnected group G D Z=nZ, n > 1,
because

H 1.k;Z=nZ/D Hom.�;Z=nZ/ (continuous homomorphisms)
' Z=nZ:

PROPOSITION 17.99. Let G be a connected group variety over k. There exists
a Borel pair .B;T / in G, and any two Borel pairs are conjugate by an element of
G.k/.
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PROOF. Let B be a Borel subgroup of Gka . Then �B D hBh�1 for some h 2
G.ka/. According to (17.96), hD g�1 ��g for some g 2G.ka/. Now gBg�1 is
fixed by � , and so it arises from a subgroup B0 of G. This is a Borel subgroup in
G. The existence of a maximal torus in B is proved similarly.

Let .B;T / and .B1;T1/ be Borel pairs inG. Then .B1;T1/ka Dg.B;T /kag�1

for some g 2G.ka/. Now g�1 ��g 2 T .ka/, and so g�1 ��g D t ��t�1 for some
t 2 T .ka/. Then gt 2G.k/ and .B1;T1/D gt.B;T /t�1g�1. 2

In particular, every reductive group over a finite field is quasi-split.

ASIDE 17.100. Let F WG ! G be a Steinberg endomorphism of a connected group
variety G over F. Then the set GF of fixed points of F acting on G.F/ is a finite group.
A group arising in this way from a semisimple G is called a finite group of Lie type. If
the group variety G is almost-simple and simply connected, then the finite group GF

is simple modulo its centre except in exactly eight cases (Malle and Testerman 2011,
24.17). Every nonabelian finite simple group is a quotient of a finite group of Lie type, an
alternating group, the Tits group, or one of 26 sporadic groups.

NOTES. Corollary 17.97 was first proved in Lang 1956. Each of the three statements
17.96, 17.97, 17.98 is referred to as Lang’s theorem. The above proof of Theorem 17.96 is
from Müller 2003.

l. Split algebraic groups

Recall (6.33) that a solvable algebraic groupG over k is split if it has a subnormal
series such that each quotient is isomorphic either to Ga or to Gm. Extensions of
split solvable groups are obviously split, and quotients of split solvable groups
are split because nontrivial quotients of Ga and Gm are isomorphic to Ga or
Gm (Exercise 14-3). A split solvable group G is trigonalizable (16.52), and the
canonical exact sequence e!Gu!G!D! e splits (16.26, 16.29).

DEFINITION 17.101. A group variety over k is split if it has a Borel subgroup
that is split (as a solvable group).

17.102. A split group variety is quasi-split, but there exist quasi-split groups
that are not split, for example, the special orthogonal group of x21Cx

2
2Cx

2
3 �x

2
4

over k D R.

17.103. Every quotient of a split group variety is split because the image of a
Borel subgroup is Borel (17.69) and a quotient of a split solvable group is split.

17.104. Clearly, a solvable group variety is split as a group variety if and only
if it is split as a solvable algebraic group. For example, a torus is split as a group
variety if and only if it is split as a torus. We shall see that a reductive algebraic
group over k is split if and only if it has a split maximal torus (21.64).

THEOREM 17.105. Let G be a group variety over a field k.
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(a) IfH is a split solvable subgroup of G and B is a split Borel subgroup, then
H � gBg�1 for some g 2G.k/.

(b) Any two split Borel subgroups of G are conjugate by an element of G.k/.

(c) If G is split, then any two split maximal tori are conjugate by an element
of G.k/.

PROOF. (a) As H is split solvable and G=B is complete, when we let H act on
G=B by left multiplication, there is a fixed point P 2 .G=B/.k/ (16.51). The
inverse image of P in G is a B-torsor over k, which is trivial because B is split
(16.55). Therefore HgB � gB for some g 2G.k/, and so H � gBg�1.

(b) This follows from (a) because all Borel subgroups of G have the same
dimension (they do over ka).

(c) Let T and T 0 be split maximal tori in G, and let B be a split Borel
subgroup of G. According to (a), gTg�1 � B and g0T 0g0�1 � B for some
g;g0 2 G.k/, and so we may suppose that T and T 0 are both contained in B .
Now we can apply (16.29d) to the extension

e! Bu! B! B=Bu! e: 2

NOTES. The original source for most of the rationality theorems in the last four sections
is Borel and Springer 1966, 1968.

Exercises

Except for 17-7, the exercises are from Springer 1998, Chapter 6.

EXERCISE 17-1. Prove the statements in Example 17.8 (this may require using
results on quadratic and alternating forms from Jacobson 1985, Chapter 6).

In the remaining exercises, G is a connected group variety over an algebraic-
ally closed field.

EXERCISE 17-2. Let H be a subgroup variety of G containing a maximal torus
T . Show that NG.H/�H ı �NG.T /.

EXERCISE 17-3. Call an s 2 G.k/ regular if the multiplicity of 1 as a root of
the characteristic polynomial of the linear map Ad.s/Wg! g is a minimum.

(a) Show that the regular elements form a nonempty open subset of G.k/.

(b) Show that an element s is regular if and only if its semisimple part is
regular.

(c) Show that a semisimple element s is regular if and only if its centralizer
has minimum dimension (use that Lie.Gs/D Lie.G/s).

(d) Show that a semisimple element s is regular if and only if CG.s/ı is a
Cartan subgroup (use 16.42 and 17.36).
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EXERCISE 17-4. (a) Show that a maximal nilpotent subgroup variety C of G
such that C DNG.C /ı is a Cartan subgroup.

(b) Let A be a maximal nilpotent abstract subgroup of G.k/ such that every
subgroup of finite index in A has finite index in its normalizer. Show that
AD C.k/ for a Cartan subgroup C . [This is the group-theoretic characterization
of Cartan subgroups; Chevalley 1956–58, 7.1. For the proof, show that the Zariski
closure of an abstract nilpotent subgroup of G.k/ is nilpotent, and deduce that A
is closed and satisfies the condition in (a).]

EXERCISE 17-5. Let xD xsxu be the Jordan decomposition of x 2G.k/. Show
that x 2 CG.xs/ı.k/.

EXERCISE 17-6. Assume that char.k/¤ 2, and let G D SOn with n� 3. Show
that there exist semisimple elements in G.k/ whose centralizer is not connected
(consider elements of order 2; cf. 17.51). (By contrast, Steinberg showed that the
centralizers of semisimple elements in simply connected semisimple algebraic
groups are connected; see Humphreys 1995, 2.11.)

EXERCISE 17-7. (Steinberg 1968, 7.2). Let .B;T / be a Borel pair in G, and let
C D CG.T / (so C � B 17.39). Let ˛WG! G be a surjective homomorphism
such that ˛.B/D B .

(a) Consider the regular map

�b WG�B!G; �b.x;c/D .˛x/b
�1cx�1b:

Show that �b.e;e/D e, and that the image of .d�b/.e;e/ in g contains both
b and .Ad.b/d˛�1/g.

(b) Show that there exists a b 2 B such that ˛.T / D b�1T b, and that the
linear endomorphism of g=b induced by Ad.b/d˛ does not have 1 as an
eigenvalue (first choose b to satisfy the first condition and then modify it
by an element of T ).

(c) Show that, if b is as in (b), then �b is dominant.

(d) Show that �e is surjective.

(e) Deduce from (c) that every surjective endomorphism of G fixes a Borel
subgroup.



CHAPTER 18

The Geometry of Algebraic Groups

In this chapter, following Iversen 1976, we show that, by using a little algebraic
geometry, it is possible to prove results about algebraic groups that are normally
deduced only from the classification theorems. Those unfamiliar with the theory
of line bundles may skip the details. Recall that all algebraic groups are affine
over a base field k.

a. Central and multiplicative isogenies

In this section, G0 and G are connected group varieties. Recall (2.23, 6.6) that an
isogeny 'WG0!G is a surjective homomorphism with finite kernel. The degree
of ' is the order of its kernel.

DEFINITION 18.1. An isogeny is central (resp. multiplicative1) if its kernel is
central (resp. of multiplicative type).

A multiplicative isogeny is central by rigidity (12.38). Conversely, if G0 is
reductive, then a central isogeny 'WG0!G is multiplicative because the centre
of a reductive group is of multiplicative type (17.62).

An isogeny of degree prime to the characteristic has étale kernel (11.31), and
so it is central (12.39). In nonzero characteristic, there exist noncentral isogenies,
for example, the Frobenius map (2.24). The isogenies in nonzero characteristic
that behave as the isogenies in characteristic zero are the multiplicative isogenies.

PROPOSITION 18.2. A composite of multiplicative isogenies is multiplicative.

PROOF. Let '1 and '2 be composable multiplicative isogenies. Then

e! Ker.'1/! Ker.'2 ı'1/
'1
�! Ker.'2/! e

is exact (Exercise 5-8). Corollary 12.41 shows that Ker.'2 ı'1/ is central, and
hence of multiplicative type (12.22). 2

1Iversen 1976 says central.

387
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EXAMPLE 18.3. Let k be a field of characteristic 2. Let G D SO2nC1 be the
group variety attached to the quadratic form x20C

Pn
iD1xixnCi on k2nC1 and

G0 D Sp2n that attached to the skew-symmetric form
Pn
iD1.xix

0
nCi �xnCix

0
i /

on k2n. These are semisimple algebraic groups, and the diagonal tori in each
are split maximal tori. The group G fixes the basis vector e0 in k2nC1 (only
because the characteristic is 2) and hence acts on k2nC1=ke0 ' k2n. From this
isomorphism, we get an isogeny from G to G0 that restricts to an isomorphism
on the diagonal maximal tori. It is not central because the centre of a reductive
group is contained in every maximal torus (because of 17.84).

REMARK 18.4. Borel and Tits (1972) call a homomorphism 'WG!G0 of group
varieties quasi-central if the kernel of '.ka/ is central. This amounts to requiring
that the commutator map G.ka/�G.ka/! G.ka/ factor through '.G.ka//�

'.G.ka//. If this factorization takes place on the level of group varieties, then
they say that ' is central (same article 2.2). This agrees with our definition
(12.44). A homomorphism ' of group varieties is central if and only if it is
quasi-central and the kernel of Lie.'/ is contained in the centre of Lie.G/, i.e., if
and only if '.ka/ and Lie.'/ are both central (Borel and Tits 1972, 2.15).

b. The universal covering

DEFINITION 18.5. A connected group variety G is simply connected if every
multiplicative isogeny G0!G of connected group varieties is an isomorphism.

PROPOSITION 18.6. Let G be a simply connected connected group variety over
k, and let 'WG0!G be a surjective homomorphism with finite kernel of multi-
plicative type (G0 not necessarily smooth or connected). Then ' admits a section
in each of the following two cases:

(a) k is perfect, i.e., k D kp;

(b) G is perfect, i.e., G DDG.

PROOF. (a) Suppose that k is perfect. Then .G0/ıred is a connected subgroup

variety of G0, and .G0/ıred
'
�! G is a multiplicative isogeny, and hence an iso-

morphism. The inverse of this isomorphism is the required section.
(b)2 We may suppose that G0 is connected, and hence that the kernel N of

' is central (12.38). Any two sections of 'R over a k-algebra R differ by a
homomorphism GR!NR, which is trivial because G is perfect (6.19d). Hence
the sections are equal. We know from (a) that ' has a section over a purely
inseparable extension k0 of k, which we may take to be finite. The two inverse
images of s over k0˝k k0 are both sections of 'k0˝kk0 , and hence are equal. By
flat descent (A.81), this implies that s arises from a section over k. 2

2I thank Brian Conrad for this argument.
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DEFINITION 18.7. A universal covering of a connected group variety G is a
multiplicative isogeny QG ! G with QG a simply connected connected group
variety. We also call it the simply connected covering. When the universal
covering exists, its kernel is called the fundamental group �1.G/ of G.

PROPOSITION 18.8. Let � W QG!G be a universal covering of a connected
group variety G over k. Assume that either k or G is
perfect, and let 'WG0!G be a multiplicative isogeny
of connected group varieties. Then there exists a unique
homomorphism ˛W QG!G such that � D ' ı˛.

QG

G0 G:

�
˛

'

In particular, . QG;�/ is uniquely determined up to a unique isomorphism.

PROOF. As QG is smooth and connected, it has no nontrivial finite quotient. It
follows that if G is perfect, i.e., has no nontrivial commutative quotient, then the
same is true of QG.

The map G0�G QG! QG is surjective with finite kernel of multiplicative type.
Therefore it has a section (18.6). The composite ˛ of this section with the map
G0�G QG!G0 is such that � D ' ı˛.

If ˇW QG ! G0 is a second homomorphism such that � D ' ıˇ, then g 7!
˛.g/=ˇ.g/ maps QG to Ker.'/, and is therefore trivial (because QG is smooth and
connected). Hence ˛ D ˇ. 2

c. Line bundles and characters

In this section, G is a connected group variety over k and X.G/D Hom.G;Gm/.
We begin with some definitions from Iversen 1976.

18.9. A principal Gm-bundle on an algebraic variety is a right Gm-torsor for the
Zariski topology. From a line bundle, we get a principal Gm-bundle by removing
the zero section, and every Gm-bundle arises in this way from an essentially
unique line bundle. The isomorphism classes of line bundles on a variety X form
a group, called the Picard group Pic.X/ of X (see A.77).

18.10. Let G �X ! X be an action of G on a variety X over k. A G-
homogeneous principal Gm-bundle on X is a principal Gm-bundle E ! X

together with a left action of G on E commuting with the action of Gm and such
that E! X is G-equivariant. A line bundle arising from such a Gm-bundle is
said to be G-homogeneous.

18.11. Let � WX ! S be a G-torsor for the Zariski topology. The functor
L ��1L is an equivalence from the category of line bundles on S to the
category of G-homogeneous line bundles on X .3

3IfX is only locally trivial for the flat topology, then the line bundle on S corresponding to a
G-homogeneous line bundle onX is only locally trivial for the flat topology on S , but this implies
that it is locally trivial for the Zariski topology by descent theory.
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18.12. Let V be a finite-dimensional vector space over k. The natural projection
V _X 0! P.V / is a principal Gm-bundle on P.V / with a natural structure of
an SLV -homogeneous bundle (Iversen 1976, 1.2). The associated line bundle is
denoted Luniv.

18.13. A homomorphism f WG! PGLV defines an action of G on P.V /. A
lifting of f to GLV defines the structure of a G-homogeneous line bundle on
Luniv. In this way, we get a one-to-one correspondence between the liftings of f
to GLV and such structures on Luniv (Iversen 1976, 1.3).

We now assume that G is split. Recall (17.101) that this means that G
contains a Borel subgroup B that is split as a solvable algebraic group, which
is automatically so if k is algebraically closed. In particular, B is trigonalizable
(16.52). We let T D B=Bu. It is a split torus.

The map � WG!G=B is a B-torsor. Let � be a character of B , and let B act
on G�A1 according to the rule

.g;x/b D .gb;�.b�1/x/; g 2G; x 2 A1; b 2 B:

This is a B-homogeneous line bundle on G, and we let L.�/ denote the corres-
ponding line bundle on G=B (see 18.11). It is G-homogeneous for the natural
action of G on G=B .

PROPOSITION 18.14. The map � 7! L.�/ defines a bijection from X.B/ to the
set of isomorphism classes of G-homogeneous line bundles on G=B .

PROOF. Let L be a G-homogeneous line bundle on G=B . The point �.e/ is
fixed for the action of B on G=B , and so B acts on the fibre of L at �.e/. This
action defines a character �L of B , which depends only on the isomorphism class
of L. The map L 7! �L is inverse to the map sending � to the isomorphism class
of L.�/. 2

Every character of B factors uniquely through T , and so X.B/ ' X.T /.
Therefore, we have a linear map

� 7! L.�/WX.T /! Pic.G=B/:

This is called the characteristic map for G.
The basic fact we need is the following.

THEOREM 18.15. With the above assumptions, the following sequence is exact:

0!X.G/!X.T /! Pic.G=B/! Pic.G/! 0: (128)

The proof, being mainly algebraic geometry, is deferred to the last section of
this chapter.

REMARK 18.16. From (18.14) we see that the image of X.T / in Pic.G=B/
consists of the line bundles that admit a G-homogeneous structure.
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EXAMPLE 18.17. Let T be the diagonal maximal torus in G D SL2, and let B
be the standard (upper triangular) Borel subgroup. The natural action of G on A2
defines an action of G on P1, and B is the stabilizer of the point .1W0/ in P1. The
canonical line bundle Luniv on SL2 =B ' P1 is equipped with an SL2-action, and
B acts on the fibre over .1W0/ through the character�

z x

0 z�1

�
7! z�1:

In this case the characteristic map X.T /! Pic.SL2 =B/ is an isomorphism
and X.SL2/ D 0 D Pic.SL2/ (see 20.24 and 20.25 for direct proofs of these
equalities).

PROPOSITION 18.18. Let 'WG0! G be a surjective homomorphism of split
connected group varieties with kernel of multiplicative type. Then there is an
exact sequence

0!X.G/!X.G0/!X.Ker.'//! Pic.G/! Pic.G0/! 0: (129)

PROOF. Let B be a Borel subgroup of G, and let B 0 be its inverse image in G0.
Then B 0 is solvable, and G=B ' G0=B 0, and so B 0 is a Borel subgroup of G0.
The columns in the following commutative diagram are the exact sequences in
(18.15) for .G;B/ and .G0;B 0/:

0 0

X.G/ X.G0/

0 X.T / X.T 0/ X.Ker'/ 0

0 Pic.G=B/ Pic.G0=B 0/ 0 0

Pic.G/ Pic.G0/

0 0

'

Now the snake lemma gives the required exact sequence. 2

PROPOSITION 18.19. Let G be a split connected group variety. If X.G/D 0
and Pic.G/D 0, then G is simply connected.
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PROOF. Let 'WG0!G be a multiplicative isogeny of connected group varieties.
In the exact sequence in (129)

X.G/!X.G0/!X.Ker'/! Pic.G/;

the groups X.G/ and Pic.G/ are zero, the group X.Ker'/ is finite, and the
group X.G0/ is torsion-free (because G0 is smooth and connected). Therefore
X.Ker'/D 0, which implies that Ker.'/D e. 2

EXAMPLE 18.20. The algebraic group SL2 is simply connected (18.17).

d. Existence of a universal covering

The existence of a universal covering QG!G for a semisimple groupG is usually
deduced from the classification theorems (including the existence and isogeny
theorems) for reductive groups. But the proof of such a basic fact should not
require knowing the whole theory. In the rest of this section we sketch the proof
in Iversen 1976.

Throughout this section, G is a split connected group variety and B is a Borel
subgroup of G that is split as a solvable algebraic group.

LEMMA 18.21. The group Pic.G=B/ is finitely generated, and its generators
can be chosen to be line bundles L with � .G=B;L/¤ 0.

PROOF. For a smooth algebraic variety, the Picard group can also be defined
as the group of Weil divisors modulo principal divisors (A.78). It follows from
Proposition 13.52 thatG=B contains an open subvariety U isomorphic to An (see
the proof of 17.65). Because kŒT1; : : : ;Tn� is a unique factorization domain (CA
4.10), the Picard group of An is zero. It follows that the group of Weil divisor
classes onG=B is generated by those with support on the boundary NU XU , which
is a finite union of proper closed subvarieties. This implies the statement. 2

See Iversen 1976 for an explicit description of Pic.G=B/.

PROPOSITION 18.22 (IVERSEN 1976, 2.7). There exists a multiplicative iso-
geny QG!G with QG a connected group variety such that Pic. QG/D 0.

PROOF. Let 'WG0!G be a multiplicative isogeny. Because Pic.G/! Pic.G0/
is surjective (18.18), it suffices to find a ' such that Pic.'/ is zero. Let B 0 be the
inverse image of B in G0, and consider the diagram

Pic.G=B/ Pic.G/ 0

X.B 0/ Pic.G0=B 0/ Pic.G0/:

After 18.21 and 18.16, it suffices to prove the following statement:
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Let L be a line bundle on G=B with � .G=B;L/ ¤ 0; then there
exists a ' such that the pull-back of L to G0=B 0 admits a G0-
homogeneous structure.

Let V D � .G=B;L/. In the setting of 18.13, we have canonical maps f WG!
PGLV and t WG=B ! P.V / such that t�Luniv D L. Let 'WG0! G denote the
pull-back of the multiplicative isogeny SLV ! PGLV along f . Because Luniv is
an SLV -homogeneous line bundle, its pull-back to G0=B 0 is a G0-homogeneous
line bundle, as required. 2

COROLLARY 18.23. The group Pic.G/ is finite.

PROOF. Let 'W QG!G be as in Proposition 18.22. Then the exact sequence

X.Ker.'//! Pic.G/! Pic. QG/D 0

(see 18.18) shows that Pic.G/ is finite. 2

COROLLARY 18.24. If G is simply connected, then Pic.G/D 0.

PROOF. If G is simply connected, then the isogeny in Proposition 18.22 is an
isomorphism, and so Pic.G/' Pic. QG/D 0. 2

THEOREM 18.25. If X.G/D 0, then G admits a universal covering.

PROOF. Let 'W QG! G be as in Proposition 18.22. Because QG is smooth and
connected, X. QG/ is torsion-free. Now the exact sequence in 18.18 shows that
X. QG/D 0D Pic. QG/, and so QG is simply connected (18.19). 2

COROLLARY 18.26. If X.G/D 0, then Pic.G/'X.�1G/:

PROOF. For the universal covering QG!G, the exact sequence in Proposition
18.18 becomes 0!X.�1G/! Pic.G/! 0: 2

REMARK 18.27. Let G be a connected group variety (not necessarily split) over
k. If G splits over a separable extension of k and X�.G/D 0, then G admits
a universal covering. Indeed, Theorem 18.25 shows that G admits a universal
covering over some finite Galois extension of k, and the uniqueness property of
the universal covering shows that it descends to k. In particular, all semisimple
algebraic groups admit universal coverings.

e. Applications

PROPOSITION 18.28. An extension of algebraic groups

e!D!G0!G! e

splits if (a) D is of multiplicative type and (b) G is smooth, connected, and
perfect, and Gka is simply connected.
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PROOF. Suppose first that D is a torus. From Proposition 18.18 applied to
G0
ka !Gka , we have an exact sequence

X�.G/!X�.G0/!X�.D/! Pic.Gka/:

As Gka is simply connected, Pic.Gka/ D 0 (see 18.24), and as G is perfect,
X�.G/D 0. Therefore the restriction mapX�.G0/!X�.D/ is an isomorphism.
As D is a central torus in G0 and G0=D is perfect, the quotient T DG0=DG0 is a
torus (12.46). Consider the maps

D!G0! T:

The maps on the character groups

X�.T /!X�.G0/!X�.D/

are isomorphisms and so the homomorphism D! T is an isomorphism. This
shows that the complex splits.

In the general case, there is an exact sequence

e!D0!D!D00! e

with D0 a torus and D00 finite (12.24). This gives an exact sequence

Ext1.G;D00/! Ext1.G;D/! Ext1.G;D0/;

and so it suffices to prove the proposition in the two cases (a) D is finite, and (b)
D is a torus. The first case was proved in 18.6 and the second was proved in the
above paragraph. 2

REMARK 18.29. The proposition applies to extensions of simply connected
semisimple algebraic groups by groups of multiplicative type (21.50).

PROPOSITION 18.30. Let G be a reductive algebraic group. If there exists a
multiplicative isogeny H !G=RG with H perfect and Hka simply connected,
then there is a multiplicative isogeny RG�H !G.

PROOF. On pulling back the extension

e!RG!G!G=RG! e

by the map H !G=RG, we get an exact sequence

e!RG!G0!H ! e

and a multiplicative isogeny G0!G. According to (18.28), the extension splits,
and so G0 �RG�H: 2
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PROPOSITION 18.31. Let G be a semisimple algebraic group. Assume that
there exists a multiplicative isogeny QG ! G with QG perfect and QGka simply
connected. For any torus D,

Hom.�1.G/;D/' Ext1.G;D/:

PROOF. Let f W�1.G/!D be a homomorphism. Define E.f / to be the coker-
nel of the homomorphism

x 7! .x;f .x�1//W�1.G/! QG�D.

Then E.f / is an extension of G by D. On the other hand, let hWG0!G be an
extension of G by D. Then � W QG!G factors through h, say,

QG
f
�!G0

h
�!G,

and the factorization is unique (cf. 18.7). Then f restricts to a map �1.G/!D.
These operations are inverse. 2

f. Proof of theorem 18.15

Recall (12.50) that we let U.X/D � .X;O�X /=k� for X an algebraic variety over
k. If G is a connected group variety, then U.G/'X.G/ (see 12.49).

Let H be a smooth connected algebraic group, let X be a smooth algebraic
variety, and let f WY ! X be a right H -torsor over X for the Zariski topology.
Fix a y0 2 Y.k/ (assumed to exist), and let i WH ! Y denote the map h 7! hy0.
A character � of H defines an action of H on Y �Gm:

.y0;g/hD .y0h;�.h
�1/g/; y0 2 Y , g 2Gm, h 2H:

Then X D Y=H and L.�/ def
D Y �Gm=H is a principal Gm-bundle on X .

THEOREM 18.32. The following sequence is exact:

U.X/! U.Y /
U.i/
�!X.H/

�7!L.�/
�! Pic.X/

Pic.f /
�! Pic.Y /

Pic.iy/
�! Pic.H/:

PROOF (FOSSUM AND IVERSEN 1973, 3.1). Exactness at X.H/. An exten-
sion of � to all of Y gives a global section of L.�/, and so the composite of
the two maps is 0. Conversely, suppose that L.�/ admits a global section over
X . The corresponding section over Y of the pull-back of L.�/ along f (which
we may identify with Y �Gm) has the form y 7! .y; t.y//, where t WY ! Gm
satisfies t .yh/D t .y/�.h�1/. Substitute y D y0 to obtain the desired extension
of �.

Exactness at Pic.X/. Let L be a principal Gm-bundle on X . If LD L.�/
for some � 2 X.H/, it obviously has a section over Y . Conversely, suppose
that f �L has a section s. Interpret s as a map from Y to L, and consider the
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map aWY �H ! Gm defined by s.yh/ D s.y/a.y;h/. According to (12.50),
a has the form a.y;h/ D b.y/�.h/ with b 2 U.Y / and � 2 X.H/. In sum,
s.yh/D s.y/b.y/�.h/. Substituting hD e, one sees that b is the constant 1. The
map .y;z/ 7! s.y/�.z/ now induces an isomorphism L! L.�/.

The proof of the exactness at U.Y / and Pic.Y / is similarly straightforward.2

Now let G be a split connected group variety over k, and let B be a Borel
subgroup of G. Then G is a B-torsor over G=B , which is locally split for the
Zariski topology because B is split solvable (16.55). Hence we can apply (18.32)
to the map G! G=B . As Pic.B/D 0 (16.56), in this case the exact sequence
becomes

0!X.G/!X.B/! Pic.G=B/! Pic.G/! 0:

Because B is split solvable, it is trigonalizable (16.52). Let T D B=Bu. Then
X.B/DX.T /, and the sequence becomes (128).

More generally, let P be a parabolic subgroup of G. In this case the exact
sequence in (18.32) becomes

0!X.G/!X.P /! Pic.G=P /! Pic.G/! Pic.P /! 0

(Fossum and Iversen 1973, p. 276).

Exercises

EXERCISE 18-1. Let 'WG!G0 be a homomorphism of connected group vari-
eties. Show that the following conditions on ' are equivalent:

(a) ' is central4;

(b) '.ka/ and Lie.'/ are both central;

(c) there exists a morphism �W'.G/�'.G/!G0 such that

�.'.x/;'.y//D xyx�1y�1 all x;y 2G.ka/:

4A homomorphism is central if its kernel is central.



CHAPTER 19

Semisimple and Reductive Groups

This chapter contains generalities on semisimple and reductive groups. In partic-
ular, we explain how reductive groups are constructed from semisimple groups
and groups of multiplicative type.

a. Semisimple groups

The radical

Let G be a connected group variety over k. Recall (6.44) that, among the connec-
ted normal solvable subgroup varieties of G there is a largest one, containing all
others. This is the radicalR.G/ ofG. For example, ifG is the algebraic subgroup
of GLmCn consisting of the invertible matrices

�
A B
0 C

�
with A of size m�m and

C of size n�n, then R.G/ consists of the matrices of the form
�
aIm B
0 cIn

�
with

aIm and cIn nonzero scalar matrices. The quotient G=RG is the semisimple
group PGLm�PGLn.

PROPOSITION 19.1. The formation ofR.G/ commutes with separable algebraic
field extensions.

PROOF. Let k0=k be a finite separable extension. As R.G/k0 is connected,
normal, and solvable it is contained in R.Gk0/. It suffices to prove they are equal
when k0 is Galois over k. By uniqueness, R.Gk0/ is stable under the action of
Gal.k0=k/ on Gk0 , and therefore arises from a subgroup variety H of G (see
1.54). Now R.G/k0 � R.Gk0/DHk0 , and so R.G/�H . But H is connected,
normal, and solvable (1.36, 6.31), and so R.G/DH by maximality. 2

Semisimple algebraic groups

Recall (6.44) that an algebraic group over a field k is said to be semisimple if it
is smooth and connected and Gka has trivial radical.

397
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PROPOSITION 19.2. Let G be a connected group variety over a perfect field k.
(a) If R.G/D e, then G is semisimple.

(b) The quotient G=R.G/ is semisimple.

PROOF. (a) If R.G/D e, then R.Gka/
19.1
D R.G/ka D e.

(b) Let N be the inverse image of R.G=RG/ in G. Then N is a normal
algebraic subgroup of G, and it is an extension

e!RG!N !R.G=RG/! e

of smooth connected solvable algebraic groups. Therefore it is smooth, connected,
and solvable (1.62, 5.59, 6.27), and so RG D N . Hence R.G=RG/ D e, and
G=RG is semisimple. 2

PROPOSITION 19.3. Let G be a connected group variety over field k. If G is
semisimple, then every smooth connected normal commutative algebraic sub-
group is trivial; the converse is true if k is perfect.

PROOF. Suppose that G is semisimple, and let H be a connected normal com-
mutative subgroup variety of G. Then Hka �R.Gka/D e, and so H D e.

For the converse, suppose that k is perfect and thatG is not semisimple. Then
R.G/¤ e, and the last nontrivial term in the derived series for R.G/ is smooth,
connected, and commutative (6.19b). It is normal in G because it is characteristic
in R.G/ (see 6.19e). Hence G contains a nontrivial smooth connected normal
commutative algebraic subgroup. 2

REMARK 19.4. If one of the conditions on the subgroup in Proposition 19.3 is
dropped, then a semisimple group may have such an algebraic subgroup. Let
p D char.k/.

(a) The subgroup Z=2Z D f˙I g of SL2 (p ¤ 2/ is smooth, normal, and
commutative, but not connected.

(b) The subgroup �2 of SL2 (p D 2) is connected, normal, and commutative,
but not smooth.

(c) The subgroup U2 D
˚�
1 �
0 1

�	
of SL2 is smooth, connected, and commutat-

ive, but not normal.

(d) The subgroup e�SL2 of SL2�SL2 is smooth, connected, and normal, but
not commutative.

PROPOSITION 19.5. Let G be an algebraic group over k, and let k0 be a field
containing k. Then G is semisimple if and only if Gk0 is semisimple.

PROOF. Certainly G is smooth and connected if and only if Gk0 is, and so we
may suppose that G is a connected group variety. By definition, G is semisimple
if and only if Gka is semisimple, and so it suffices to prove the statement with k
and k0 both algebraically closed. The sufficiency is obvious because R.G/k0 �
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R.Gk0/. The necessity follows from a standard “spreading” argument. Let N be
a nontrivial smooth connected normal commutative algebraic subgroup of Gk0 .
There exists a subfield k00 of k0 finitely generated over k, say, k00 D k.t1; : : : ; tn/,
such that N is defined (as an algebraic subgroup of G) over k00. Now G and N
extend to smooth group schemes G and N over an open subscheme U D Spm.A/
of Spm.kŒt1; : : : ; tm�/. For some maximal ideal m in A, the specialization Nm D

N ˝A �.m/ of N to �.m/ D k will be a nontrivial smooth connected normal
commutative algebraic subgroup of G�.m/ DG. 2

EXAMPLE 19.6. Let G D SLn, and let nDmpr with p the characteristic expo-
nent of k and m prime to p. Then Z.G/D �n; Z.G/ı D �pr ; Z.G/red D �m,
and R.G/DZ.G/ıred D e.

DEFINITION 19.7. An algebraic group over k is simple (resp. almost-simple)
if it is semisimple and noncommutative, and every proper normal algebraic
subgroup is trivial (resp. finite). It is geometrically simple (resp. almost-simple)
if it is almost-simple (resp. simple) and remains so over ka.

For example, SLn is almost-simple and PSLn D SLn =�n is simple for n > 1.
In Chapter 23 below, we show that every almost-simple algebraic group over
a separably closed field is isogenous to one of the algebraic groups in the four
families 2.10(a), 2.10(b), 2.10(c), 2.10(d), or to one of five exceptional algebraic
groups.

DEFINITION 19.8. An algebraic group is pseudo-simple (resp. almost pseudo-
simple) if it is smooth, connected, and noncommutative, and every proper normal
algebraic subgroup is trivial (resp. finite).

NOTES. There is considerable disagreement in the literature concerning these terms.
While Borel 1991, IV, 14.10, writes “almost simple” for our “almost-simple”, Springer
1998, 8.1.12, writes “quasi-simple”, and Conrad et al. 2015 write “simple”. A geometric-
ally almost-simple group is often said to be absolutely almost-simple. Definition 19.8 is
from Tits 1993, II; that in Conrad et al. 2015, 3.1.1, differs.

b. Reductive groups

The unipotent radical

Let G be a connected group variety over k. Recall (6.46) that, among the connec-
ted normal unipotent subgroup varieties of G there is a largest one, containing
all others. This is the unipotent radical Ru.G/ of G. For example, if G is the
algebraic subgroup of GLmCn consisting of the invertible matrices

�
A B
0 C

�
with

A of size m�m and C of size n�n, then Ru.G/ consists of the matrices of the
form

�
Im B
0 In

�
. The quotient G=Ru.G/ is the reductive group GLm�GLn.

PROPOSITION 19.9. The formation of Ru.G/ commutes with separable algeb-
raic field extensions.
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PROOF. The proof is the same as for R.G/ (see 19.1). 2

Reductive algebraic groups

Recall (6.46) that an algebraic group G over a field k is said to be reductive if it
is smooth and connected and the unipotent radical of Gka is trivial. The centre
Z.G/ of a reductive group G is of multiplicative type, and R.G/ is the largest
subtorus of Z.G/; the formation of R.G/ commutes with all extensions of the
base field, and G=R.G/ is semisimple (17.62). Note that the centre of a reductive
group need be neither smooth nor connected (19.6).

PROPOSITION 19.10. The following conditions on a reductive algebraic group
G are equivalent: (a) G is semisimple; (b) R.G/D e; (c) Z.G/ is finite.

PROOF. (a),(b). As the formation of R.G/ commutes with extension of the
base field, R.G/D e if and only if R.Gka/D e.

(b),(c). As R.G/ is the largest subtorus of the multiplicative group Z.G/,
the quotientZ.G/=R.G/ is finite, and soZ.G/ is finite ifR.G/D e. Conversely,
if Z.G/ is finite, then R.G/D e because it is a torus. 2

PROPOSITION 19.11. Let G be a connected group variety over a perfect field k.
(a) If Ru.G/D e, then G is reductive.

(b) The quotient G=Ru.G/ is reductive.

PROOF. The proof is the same as that of Proposition 19.2. 2

PROPOSITION 19.12. Let G be a connected group variety over a field k. If G is
reductive, then every smooth connected normal commutative algebraic subgroup
is a torus; the converse is true if k is perfect.

PROOF. The proof is the same as that of Proposition 19.3. 2

PROPOSITION 19.13. Let G be an algebraic group variety over k, and let k0 be
a field containing k. Then G is reductive if and only if Gk0 is reductive.

PROOF. The proof is similar to that of Proposition 19.5. 2

LEMMA 19.14. Let 'WG0!G be an isogeny of connected group varieties. If
G is reductive or semisimple, then so is G0.

PROOF. We may suppose that k is algebraically closed. Suppose that G is
reductive, and let U be a smooth connected normal unipotent subgroup of G0.
Then '.U / is smooth, connected, and unipotent, and it is normal because ' is
surjective. Therefore '.U / is trivial, which implies that U is finite, and hence
trivial. The proof for “semisimple” is similar. 2

PROPOSITION 19.15. A semisimple group G is simply connected if and only if
every central isogeny G0!G from a semisimple group G0 to G is an isomorph-
ism.
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PROOF. When G is semisimple, to say that an isogeny G0!G is central with
G0 semisimple is the same as saying that it is multiplicative with G0 a connected
group variety. Therefore the conditions coincide. 2

The second condition is the usual definition of “simply connected” for semi-
simple groups (see, for example, Conrad et al. 2015, p. 500).

LEMMA 19.16. A normal unipotent algebraic subgroup U of an algebraic group
G acts trivially on every semisimple representation of G.

PROOF. Let V be a semisimple representation of G, and let W be a simple
subrepresentation of V . Because U is normal, W U is stable under G (see 5.15),
and because U is unipotent, W U ¤ 0. Therefore W U DW . As V is a sum of its
simple subrepresentations, it follows that U acts trivially on V . 2

PROPOSITION 19.17. If a connected group variety G admits a faithful semi-
simple representation, then its unipotent radical is trivial.

PROOF. Let .V;r/ be a faithful semisimple representation of G. According to
the lemma, r.Ru.G//D e, and so Ru.G/D e. 2

COROLLARY 19.18. A connected group variety G is reductive if it admits a
faithful semisimple representation that remains semisimple over ka.

PROOF. The hypothesis implies that the unipotent radical of Gka is trivial. 2

Lemma 19.16 shows that, for a connected group variety G,

Ru.G/�
\

.V;r/ simple

Ker.r/:

When k has characteristic zero, equality holds because G=Ru.G/ has a faithful
semisimple representation (19.11, 22.42).

EXAMPLE 19.19. The group varieties SLn, SOn, Sp2n, and GLn are reductive
because they are connected and their standard representations are simple and
faithful. The first three are semisimple because their centres are finite.

c. The rank of a group variety

DEFINITION 19.20. The rank of a group variety G over a field k is the dimen-
sion of a maximal torus in Gka , and the semisimple rank of G is the rank of
Gka=R.Gka/. The k-rank of G is the dimension of a maximal split torus in G,
and the semisimple k-rank of a reductive groupG is the k-rank of the semisimple
group G=R.G/.
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Since any two maximal tori in Gka are conjugate (17.10), the rank is well-
defined. It is also equal to the dimension of a maximal torus in G (17.82). The
semisimple rank of a reductive group G is the rank of its semisimple quotient
G=R.G/ because the formation of R.G/ commutes with extension of the base
field (17.62). The k-rank is well defined but changes with extension of the base
field.

PROPOSITION 19.21. Let G be a reductive group.
(a) The semisimple rank of G is rank.G/�dimZ.G/.

(b) The algebraic group Z.G/\Gder is finite.

(c) The algebraic group Gder is semisimple of rank at most the semisimple
rank of G.

PROOF. (a) Let T be a maximal torus of G. Then T contains Z.G/ (see 17.61),
and the semisimple rank of G is dim.T=Z.G//D dim.T /�dimZ.G/:

(b) It follows from Proposition 12.46 that Z.G/t \Gder is finite, and this
implies that Z.G/\Gder is finite because Z.G/t has finite index in Z.G/.

(c) We may suppose that k is algebraically closed. The radical R.Gder/

of Gder is weakly characteristic in Gder, and so it is normal in G (see 1.90).
Therefore R.Gder/ � R.G/ D Z.G/t . Now (b) implies that R.Gder/ is finite,
and hence trivial (being smooth and connected). Therefore Gder is semisimple,
and the restriction of the quotient map G!G=R.G/ to Gder has finite kernel. It
follows that rank.Gder/� rank.G=R.G//. 2

In fact, the map Gder!Gad def
DG=Z.G/ is an isogeny (12.46, 21.50) and so

the rank of Gder equals the semisimple rank of G.

DEFINITION 19.22. A reductive group is splittable if it contains a split maximal
torus. A split reductive group over k is a pair .G;T / consisting of a reductive
group G over k and a split maximal torus T in G. A homomorphism of split
reductive groups .G;T /! .G0;T 0/ is a homomorphism 'WG! G0 such that
'.T /� T 0.

We often loosely refer to a splittable reductive group as a split reductive
group. When the base field k is separably closed, all reductive groups are
splittable because all tori are split (12.20). Therefore every reductive group splits
over a finite separable extension of the base field.1

1It may also split over a purely inseparable extension. For example, a quaternion algebra over
the local field Fp..T // splits over every quadratic extension of Fp..T //, even a purely inseparable
quadratic extension (Serre 1962, XIII, �3), and the same is true of the algebraic groups attached to
the algebra (Section 20i).



d. Deconstructing reductive groups 403

d. Deconstructing reductive groups

We begin with an ugly lemma.

LEMMA 19.23. Let
A B

C D

˛

ˇ 

ı

be a commutative diagram of algebraic groups satisfying the following conditions:
(a) the images of ˛ and ˇ are central subgroups of B and C I

(b) the images of  and ı are commuting normal subgroups of D;

(c) the sequence

A
a 7!.˛.a/;ˇ.a�1/
�����������! B �C

.b;c/ 7!.b/ı.c/
����������!D ����! e (130)

is exact.
Then the maps B=A!D=C and C=A!D=B defined by  and ı are isomorph-
isms. (Strictly, we should write B=˛.A/ for B=A and so on.)

PROOF. To obtain the first isomorphism, apply the snake lemma (Exercise 5-7)
to the diagram

A A�C C e

e NA B �C D e

a 7! .a;ˇ.a�1// .a;c/ 7! ˇ.a/c

˛� id ı

.b;c/ 7! .b/ı.c/

in which the bottom row is obtained from the sequence (130) by replacing A with
its image in B �C . The second isomorphism is obtained similarly. 2

Note that, in the situation of the lemma, there are exact sequences

C
ı
�!D! B=A! e

B

�!D! C=A! e:

EXAMPLE 19.24. Consider the commutative diagram

�n Gm

SLn GLn
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in which the horizontal maps are the obvious inclusions and the vertical maps
send x to diag.x;x; : : :/. Then

e! �n!Gm�SLn! GLn! e

is exact, and the diagram satisfies the hypotheses of the lemma. Let T D
GLn =SLn and PGLn D GLn =Gm. According to the lemma, the homomorph-
isms Gm! T and SLn! PGLn given by the diagram are isogenies with kernel
�n.

EXAMPLE 19.25. Let G be a reductive group such that the semisimple group
Gad is perfect.2 Then G=.Z.G/ �Gder/ is a quotient of Gad (which is perfect)
and G=Gder (which is commutative), and so it is trivial, i.e., G DZ.G/ �Gder. It
follows that Z.G/\Gder DZ.Gder/ and that the sequence

e!Z.Gder/!Z.G/�Gder
!G! e

is exact. Therefore the diagram of natural inclusions

Z.Gder/ Z.G/

Gder G

satisfies the hypotheses of the lemma. Let T D G=Gder and Gad D G=Z.G/.
According to the lemma, the homomorphisms Z.G/! T and Gder!Gad given
by the diagram are isogenies with kernel Z.Gder/.

DEFINITION 19.26. Consider a triple .H;D;'/ with H a perfect semisimple
algebraic group, D an algebraic group of multiplicative type, and 'WZ.H/!D

a homomorphism whose cokernel is a torus. The homomorphism

z 7! .z;'.z/�1/WZ.H/!H �D

is normal, and we define G.'/ to be its cokernel.

PROPOSITION 19.27. The algebraic group G DG.'/ is reductive with

Z.G/'D; Gder
'H=Ker.'/; Gad

'H ad; G=Gder
'D= Im.'/:

PROOF. Let Z D Ker.'/ (a finite group scheme) and T D Coker.'/ (a torus).
The commutative diagram

Z.H/ D

H=Z G.'/

'

d 7!Œe;d�

h7!Œh;e�

2In fact, all semisimple algebraic groups are perfect (21.50), and so this condition, here and
elsewhere in this section, is superfluous.
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satisfies the hypotheses of the lemma. Moreover, both homomorphisms with
target G.'/ are injective, and so the lemma gives exact sequences

e!Z!H !G.'/! T ! e

e!D!G.'/!H=Z.H/! e:

The first sequence realizes G.'/ as an extension of smooth connected groups,
and so G.'/ is smooth and connected (8.1). From the first sequence, we see that
G.'/der �H=Z, and so .H=Z/der � G.'/der �H=Z. But H=Z D .H=Z/der

because H is perfect, and so G.'/der ' H=Z and G.'/=G.'/der ' T . As
H=Z.H/ has trivial centre (17.62e), the second sequence shows thatZ.G.'//'
D and G.'/ad 'H ad. 2

EXAMPLE 19.28. From the triple .SLn;Gm;�n ,!Gm/ we recover the group
G D GLn.

PROPOSITION 19.29. Let G be a reductive algebraic group such that the semi-
simple group Gad is perfect. Then G DG.'/ for a triple .H;D;'/ as (19.26).

PROOF. In fact, we showed in Example 19.25 that Gder is semi simple and that
G is the reductive group attached to the triple .Gder;Z.G/;Z.Gder/ ,!Z.G//.2

Thus, to give a reductive group G amounts to giving a triple .H;D;'/ with
H semisimple, D of multiplicative type, and the cokernel of 'WZ.H/!D a
torus. (Without the last condition, G.'/ need not be connected.)

REMARK 19.30. In fact, every reductive group G arises from a triple .G0;D;'/
with G0 ! Gad the simply connected covering group of Gad and D D Z.G/.
Indeed, the homomorphism Gder!Gad is a multiplicative isogeny, and so G0!
Gad lifts to a homomorphism G0!Gder �G (see 18.8). The restriction ' of this
homomorphism to Z.G0/ maps into D, and G.'/'G. In more detail, there is
an exact commutative diagram

e Z Z.G0/ Z.G/ Z.G=G0/ e

e Z G0 G G=G0 e:

' '

ASIDE 19.31. Semisimple algebraic groups obviously form an important class. Reduct-
ive (and even pseudo-reductive) groups arise in inductive arguments involving parabolic
subgroups of semisimple groups. They are also important in their own right – for example,
they play a fundamental role in the work of Langlands. Most of the theory of semisimple
groups extends without serious difficulty to reductive groups. In characteristic zero, re-
ductive groups are those whose representations are “completely reducible” to simple
representations (22.42), which perhaps justifies the name. The name was popularized in
the foundational paper Borel and Tits 1965.
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Exercises

EXERCISE 19-1. Show that a semisimple algebraic groupG is simply connected
if and only if every homomorphism G! PGLV lifts to a homomorphism G!

GLV (Borel 1975, p. 362).

EXERCISE 19-2. Show that an isogeny 'WG!G0 of reductive groups is central
if and only if the kernel of Lie.'/WLie.G/! Lie.G0/ is central.

EXERCISE 19-3. Let G be a reductive group over a field k, and let k0 be a finite
Galois extension of k splitting some maximal torus in G. Let G0! Gder be a
central isogeny. Show that there exists a central extension

e!N !G1!G! e

such that G1 is a reductive group, N is a product of copies of .Gm/k0=k , and
Gder
1 !Gder is the given isogeny G0!Gder (Milne and Shih 1982, 3.1).



CHAPTER 20

Algebraic Groups of Semisimple
Rank One

This chapter contains preliminaries for the general study of reductive groups
in the next chapter. In particular, we show that every split reductive group of
semisimple rank 1 is isomorphic to exactly one of the following groups:

Grm�SL2; Grm�PGL2; Gr�1m �GL2; r 2 N:

a. Group varieties of semisimple rank 0

Recall (19.20) that the rank of a group variety is the dimension of a maximal torus,
and that this does not change under extension of the base field. The semisimple
rank of G is the rank of the largest semisimple quotient of Gka .

THEOREM 20.1. Let G be a connected group variety over a field k.
(a) G has rank 0 if and only if it is unipotent.

(b) G has semisimple rank 0 if and only if it is solvable.

(c) G is reductive of semisimple rank 0 if and only if it is a torus.

PROOF. We may suppose that k is algebraically closed.
(a) This is a restatement of Proposition 16.60.
(b) If G is solvable, then G DR.G/, and so it has semisimple rank 0. Con-

versely, if G has semisimple rank 0, then G=R.G/ is unipotent (by (a)) and
semisimple (19.2), and hence trivial. Thus G DR.G/, and so G is solvable.

(c) A torus is certainly reductive of semisimple rank 0. Conversely, if G is
reductive of semisimple rank 0, then it is solvable. As Ru.G/D e, this implies
that G is a torus (16.33d). 2

407



408 20. Algebraic Groups of Semisimple Rank One

b. Homogeneous curves

20.2. Let C be a regular complete algebraic curve over k. The local ring OP at
a point P 2 jC j is a discrete valuation ring containing k with field of fractions
k.C /, and every such discrete valuation ring arises from a unique P . Therefore,
we can identify jC j with the set of such discrete valuation rings in k.C / endowed
with the topology for which the proper closed subsets are the finite sets. For an
open subset U , the ring OC .U /D

T
P2U OP . Thus, we can recover C from its

function field k.C /. In particular, two regular complete connected curves over k
are isomorphic if they have isomorphic function fields. (Cf. Hartshorne 1977, I,
�6, and II, 6.7.)

20.3. According to the last remark, a regular complete algebraic curve C over
k is isomorphic to P1 if and only if k.C / is the field k.T / of rational functions
in a single symbol T . Lüroth’s theorem states that every subfield of k.T / prop-
erly containing k is of the form k.u/ for some u 2 k.T / transcendental over k
(Jacobson 1989, Section 8.14).

20.4. Let C be an algebraic curve over k. If C becomes isomorphic to P1 over
ka and C.k/¤ ;, then C is isomorphic to P1 over k. To see this, note that C is a
smooth complete curve over k of genus 0 because it becomes so over ka. Embed
C in a projective space. Repeatedly projecting from a point P 2 C.k/ onto a
hyperplane will eventually give a birational map from C onto P1.

PROPOSITION 20.5. Let C be a smooth complete algebraic curve over an algeb-
raically closed field. If C admits a nontrivial action by a connected group variety
G, then it is isomorphic to P1.

PROOF. Suppose first that C admits a nontrivial action by a solvable G. As G
is split (16.53), C admits a nontrivial action by Ga or Gm (see 16.34). If Ga
acts nontrivially on C , then, for some x 2 C.k/, the orbit map �x WGa! C is
nonconstant, and hence dominant. Now

k.C / ,! k.Ga/D k.T /;

and so k.C /� k.P1/ by Lüroth’s theorem (20.3). Hence C � P1 (see 20.2). The
same argument applies with Gm for Ga.

We now prove the general case. If all the Borel subgroups B of G act trivially
on C , then G.k/ acts trivially on C because G.k/ D

S
B.k/ (see 17.33). As

G is reduced, this implies that G acts trivially on C , contrary to the hypothesis.
Therefore some Borel subgroup acts nontrivially on C , and we have seen that
this implies that C is isomorphic to P1. 2

REMARK 20.6. There are several different proofs of the proposition, none com-
pletely elementary. If the genus of C is nonzero, then a nontrivial action of G
on C defines a nontrivial action of G on the jacobian variety of C fixing 0, but
abelian varieties are “rigid” (Borel 1991, 10.7). In fact, the automorphism group
of a curve of genus g > 1 is finite (and even of order � 84.g�1/ in characteristic
zero).
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c. The automorphism group of the projective line

The projective line represents the functor

R P1.R/D fP �R2 j P is a direct summand of R2 of rank 1g:

Each P 2 P1.R/ is a projective R-module, and hence is locally free for the
Zariski topology on spm.R/ (CA �12). Given x;y 2 R, we write .xWy/ for the
submoduleR

�
x
y

�
ofR2 when this is an element of P1.R/. Locally for the Zariski

topology on spm.R/, every point of P1.R/ is of the form .xWy/. For example,
0D .0W1/, 1D .1W1/, and1D .1W0/.

We let Aut.P1/ denote the functor R AutR.P1R/. For a k-algebra R, the
natural action of GL2.R/ on R2 defines an action of GL2.R/ on P1.R/, and
hence a homomorphism GL2! Aut.P1/. This factors through PGL2.

PROPOSITION 20.7. The homomorphism PGL2! Aut.P1/ just defined is an
isomorphism.

We need two lemmas.

LEMMA 20.8. Let ˛ 2 Aut.P1/.R/ D Aut.P1R/. If ˛.0R/ D 0R, ˛.1R/ D 1R,
and ˛.1R/D1R, then ˛ is the identity map.

PROOF. Let U0 (resp. U1) denote the complement of 0 (resp.1) in P1
k
. Then

P1R DU0R[U1R with U0R D SpecRŒT � and U1R D SpecRŒT �1�. The diagram

U0R - U0R\U1R ,! U1R

corresponds to
RŒT � ,!RŒT;T �1� - RŒT �1�:

The automorphism ˛ preserves U0R and U1R, and its restrictions to U0R and
U1R correspond to R-algebra homomorphisms

T 7! P.T /D a0Ca1T CP2.T /T
2

T �1 7!Q.T �1/D b0Cb1T
�1
CQ2.T

�1/T �2

such that P.T /Q.T �1/ D 1 (equality in RŒT;T �1�). The coefficient a0 D 0
because ˛ fixes 0R, and b0 D 0 because ˛ fixes 1R. The equality PQ D 1
expands to

a1b1CP2.T /Q2.T
�1/Cb1P2.T /T Ca1Q2.T /T

�1
D 1.

This implies thatP2.T /D 0 because otherwise the degree of b1P2.T /T is greater
than that of P2.T /Q2.T �1/. Similarly, Q2.T �1/ D 0. Finally, a1 D 1 D b1
because ˛ fixes 1R, and so ˛ is the identity map. 2
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LEMMA 20.9. Let P0; P1; P1 be distinct points on P1 with coordinates in R.
If P0; P1; P1 remain distinct in P1.R=m/ for all maximal ideals m in R, then
there exists a unique  2 PGL2.R/ such that  � 0R D P0,  � 1R D P1, and
 �1R D P1.

PROOF. One sees easily that the only elements of GL2.R/ fixing 0R, 1R, and
1R are the scalar matrices. Therefore  is unique if it exists, and it follows
that it suffices to prove the existence of  locally. Thus we may suppose that
P0 D .x0Wy0/, P1 D .x1Wy1/, and P1 D .x1Wy1/. Let m be a maximal ideal
in R. Because P0 and P1 are distinct modulo m, .x1y0�x0y1/¤ 1 modulo
m. As this is true for all m, the matrix AD

�
x1 x0
y1 y0

�
lies in GL2.R/. Note that

A � 0R D P0 and A �1R D P1. Let A�1
�
1
1

�
D
�
x
y

�
. Then x;y 2 R� because

.xWy/ is distinct from .0W1/ and .1W0/ modulo every maximal ideal in R. The
matrix B D

�
x 0
0 y

�
fixes 0R and1R and maps .1W1/ to .xWy/. The image of AB

in PGL2.R/ is the required element. 2

We now prove the proposition. Let ˛ 2 Aut.P1R/. The points ˛.0/, ˛.1/,
and ˛.1/ satisfy the hypothesis of Lemma 20.9, and so there is a unique  2
PGL2.R/ such that  �0D ˛.0/,  �1D ˛.1/, and  �1 D ˛.1/. Lemma 20.8
now shows that  acts as ˛ on the whole of P1R.

d. A fixed point theorem for actions of tori

According to the Borel fixed point theorem, a torus acting on a complete varietyX
has at least one fixed point. We shall need to know that it has at least dim.X/C1
fixed points.

LEMMA 20.10. Let X be an irreducible closed subvariety of Pn of dimension
� 1, and let H be a hyperplane in Pn. Then X \H is nonempty, and either
X �H or the irreducible components of X \H all have dimension dim.X/�1.

PROOF. If X \H were empty, then X would be a complete subvariety of the
affine variety X XH , and hence of dimension 0 (see A.75), contradicting the
hypothesis. The rest of the statement is a special case of Krull’s principal ideal
theorem (CA 21.3). 2

PROPOSITION 20.11. Let .V;r/ be a finite-dimensional representation of a torus
T over k, and let X be a closed subvariety of P.V / stable under the action of T
on P.V /. In X.ka/ there are at least dim.X/C1 points fixed by T .

PROOF. We may suppose that k is algebraically closed. As T is connected, it
leaves stable each irreducible component of X , and so we may suppose that X
is irreducible. Lemma 13.51 allows us to replace T with Gm. We prove the
statement by induction on d D dimX .

Let fe0; : : : ; eng be a basis of V consisting of eigenvectors for Gm, say,

�.t/ei D t
mi ei ; mi 2 Z; t 2Gm.k/;
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numbered so that m0 D mini .mi /. Let W be the subspace of V spanned by
fe1; : : : ; eng. If X � P.W /, we replace V with W and start over. If not, we
apply the induction hypothesis to deduce that Gm has at least d fixed points in
X \P.W /. Let Œv� 2X XP.W /, and write

v D e0Ca1e1C�� �Canen; a0 ¤ 0:

If Œv� is fixed by the action of Gm, then we have at least d C 1 fixed points.
Otherwise, Gm acts on the affine spaceD.e_0 /D P.V /XP.W / with nonnegative
weights 0; : : : ;mn�m0, and so there exists a fixed point limt!0 t Œv� inD.e_0 /\X
(see 13.17). Again we have at least d C1 fixed points. 2

COROLLARY 20.12. Let P be an algebraic subgroup of a smooth connected
algebraic group G such that G=P is complete, and let T be a torus in G. In
.G=P /.ka/ there are at least dim.G=P /C1 points fixed by T .

PROOF. There exists a representation G!GLV of V and an o 2 P.V / such that
the map g 7! goWG! P.V / defines a G-equivariant isomorphism of G=P onto
the orbit G �o (see the proof of 7.18). Now G �o is a complete subvariety of P.V /
to which we can apply the proposition. 2

EXAMPLE 20.13. The bound dim.X/C 1 in Proposition 20.11 cannot be im-
proved. When Gm acts on Pn according to the rule

t .x0W � � � Wxi W � � � Wxn/D .t
0x0W � � � W t

ixi W � � � W t
nxn/,

the fixed points are P0; : : : ;Pn with Pi D .0W � � � W0W
i

1W0W � � � W0/.

ASIDE 20.14. There is an alternative explanation of the proposition using étale cohomo-
logy. Consider a torus T acting linearly on a projective variety X over an algebraically
closed field. For some t 2 T .k/, XT is the set of fixed points of t , and so

#XT D
2dimXX
iD0

.�1/i Tr.t jH i .X//

(Lefschetz trace formula). On letting t ! 1, we find that Tr.t jH i .X//D dimH i .X/. It
follows from the Białynicki-Birula decomposition (13.47) that the cohomology groups of
X can be expressed in terms of the cohomology groups of the connected components of
XT with an even shift in degree. Therefore, the odd-degree groups vanish when XT is
finite. On the other hand H2i .X/ has dimension at least 1 because it contains the class of
an intersection of hyperplane sections. Therefore,

#XT D
dimXX
iD0

dimH2i .X/� dim.X/C1:
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e. Group varieties of semisimple rank 1.

In this section, k is algebraically closed.
Let G be a connected group variety over k and � a cocharacter of G. In

Section 13d we defined connected subgroup varieties U.�/, Z.�/, and P.�/ of
G. Recall that U.�/ is a normal unipotent subgroup of P.�/ and

U.�/ÌZ.�/' P.�/

(13.33, 14.13). Let T be a maximal torus containing �Gm. A Borel subgroup of
G containing T is said to be positive if it contains U.�/ and negative if it contains
U.��/.

LEMMA 20.15. Let G be a connected nonsolvable group variety of rank 1, and
let �WGm! T be an isomorphism from Gm onto a maximal torus T in G.

(a) There are both positive and negative Borel subgroups containing T .

(b) No Borel subgroup containing T is both positive and negative.

(c) The normalizer of T in G contains an element acting on T as t 7! t�1.

PROOF. (a) By definition, Z.�/D CG.T /, which equals T (see 17.61), and so
P.�/ is solvable. As it is connected, P.�/ is contained in a Borel subgroup,
which is positive (by definition). Similarly, P.��/ is contained in a negative
Borel subgroup.

(b) The subgroups U.��/, Z.�/, and U.�/ generate G because their Lie
algebras generate g. A Borel subgroup containing them would equal G, but G is
not solvable.

(c) The normalizer of T in G acts transitively on the set of Borel subgroups
containing T (see 17.11), and an element of the normalizer mapping a positive
Borel subgroup to a negative Borel subgroup acts as t 7! t�1 on T (this is the
only nontrivial automorphism of T ). 2

THEOREM 20.16. Let G be a connected nonsolvable group variety G over k,
and let T be a maximal torus in G. The following are equivalent:

(a) the semisimple rank of G is 1;

(b) T lies in exactly two Borel subgroups;

(c) dim.G=B/D 1 if B is a Borel subgroup containing T ;

(d) there exists an isogeny G=R.G/! PGL2.

PROOF. Proposition 17.20 allows us to replace G with G=R.G/. Then G is
semisimple.

(a))(b). The Weyl group of T acts faithfully on T (by definition) and
transitively on the set of Borel groups containing T (see 17.11). As T �Gm and
Aut.Gm/D f˙1g, we see that there are most two such Borel groups. As G has
rank 1, the lemma shows that there are exactly two.
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(b))(c). Let B denote the variety of Borel subgroups in G (Section 17f).
Then B 'G=B and the Borel subgroups containing T are the fixed points for T
acting on B. According to (20.12), there are at least dim.G=B/C1 fixed points,
and so dim.G=B/D 1.

(c))(d). The variety G=B is smooth and complete with a nontrivial action of
G. If it has dimension 1, then it is isomorphic to P1 (see 20.5). On choosing an
isomorphism G=B! P1, we get an action of G on P1, and hence a homomorph-
ism G! Aut.P1/. On composing this with the isomorphism Aut.P1/' PGL2
in Proposition 20.7, we get a homomorphism 'WG! PGL2 whose kernel is the
intersection of the Borel subgroups containing T . This kernel is finite (17.56),
and ' is surjective because every proper subgroup of PGL2 is solvable (17.27).

(d))(a). As PGL2 is the quotient of GL2 by its radical, it is semisimple
(Section 19b). The diagonal torus in PGL2 is maximal and has dimension 1. Now
apply Lemma 19.14. 2

Let G be a connected reductive group over k of semisimple rank 1. Let T be
a maximal torus in G, and let BC and B� be the two Borel subgroups containing
T . Choose the isomorphism G=BC! P1 so that BC fixes 0 and B� fixes1,
and let ' denote the resulting homomorphism 'WG! Aut.P1/' PGL2.

AsG is not solvable, BC is not nilpotent (17.23), and so its unipotent partBCu
is nonzero. The kernel of ' contains the torus R.G/ as a subgroup of finite index,
and so the restriction of ' to BCu has finite kernel. Therefore ' is an isogeny
from BCu onto the unipotent part of the stabilizer of 0 in PGL2, and so BCu is a
smooth connected unipotent group of dimension 1. Hence BCu is isomorphic to
Ga, and the action of T on BCu by inner automorphisms determines a character
˛C of T such that, for every isomorphism i WGa! BCu ,

i.˛C.t/ �x/D t � i.x/ � t�1; t 2 T .R/; x 2Ga.R/DR

(see 14.58, 14.69). Similarly, T acts on B�u through a character ˛�.

LEMMA 20.17. Let n 2G.k/ normalize T and map B� onto BC. Then
(a) ˛C ı inn.n/jT D ˛�;

(b) Ker.˛C/DZ.BC/DZ.G/;

(c) ˛C ı inn.n/jT D�˛C:

PROOF. (a) Fix an isomorphism i WGa ! BCu , and let i�WGa ! B�u be the
composite of i with inn.n�1/. For x 2 BCu .R/ and t 2 T .R/ (R a k-algebra),

i.˛C.ntn�1/ �x/ D ntn�1 � i.x/ �nt�1n�1 (definition of ˛C)
D nt � i�.x/ � t�1n�1 (definition of i�)
D n � i�.˛�.t/ �x/ �n�1 (definition of ˛�)
D i.˛�.t/ �x/ (definition of i�),

and so ˛C.ntn�1/D ˛�.t/, as required.
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(b) Note that BC D BCu Ì˛C T . As BC is not nilpotent, ˛C is nonzero, and
it follows that Z.BC/D Ker˛C. The equality Z.BC/D Z.G/ was proved in
Proposition 17.45.

(c) Conjugation by n restricts to the identity map on Z.G/D Ker.˛C/, and
so inn.n/jT induces an automorphism � of Gm:

e Ker.˛C/ T Gm e

e Ker.˛C/ T Gm e

id

˛C

inn.n/ �

˛C

If � D id, then ntn�1 D t ��.t/ with � a homomorphism T ! Ker.˛C/. As
inn.n/2 D id, we have �2 D id. But Hom.T;Ker.˛C// is torsion-free, and so this
implies that inn.n/jT D id, which contradicts the definition of n. Therefore � D
� id, and so (c) holds. 2

PROPOSITION 20.18. With the above notation, the intersection

BCu \B
�
u D e:

PROOF. Clearly BCu \B
�
u is stable under the action of T on G by inner auto-

morphisms. The torus T acts on BCu through the character ˛C. As ˛C is
surjective, BCu \B

�
u is a finite subscheme of BCu stable under Gm. If we identify

BCu with Ga, then BCu \B
�
u is identified with the finite group scheme p̨r

for some r 2 N (Exercise 14-3). If r ¤ 0, then T acts on p̨ � p̨r through
˛CWT !Gm D Aut. p̨/ and also through ˛� D�˛C, which is impossible. 2

REMARK 20.19. The proof of (a))(b) in Theorem 20.16 uses (i) that CG.T / is
connected (so the Weyl group acts on BT ), and the proof of (a))(b))(c) uses (ii)
that NG.B/D B (so we can identify B with G=B). In fact, Theorem 20.16 can
be proved without either (i) or (ii) by using Corollary 17.2 to prove (a))(b) and
by using the following weaker statement to prove (b))(c): NG.B/red contains
B as a subgroup of finite index and is equal to its own normalizer. After this
more elementary proof of Theorem 20.16, it is possible to prove the Bruhat
decomposition and then go back and prove (i) and (ii). See Allcock 2009. We did
not follow this path because we found it convenient to be able to identify B with
G=B at an early stage.

f. Split reductive groups of semisimple rank 1.

In this section, G is a reductive group of semisimple rank 1 over a field k (not
necessarily algebraically closed) with a split maximal torus T .

LEMMA 20.20. The torus T is contained in exactly two Borel subgroups, namely,
in BC D P.�/ and B� D P.��/ for any cocharacter � of T mapping Gm iso-
morphically onto .T \Gder/t .
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PROOF. Suppose first that G is semisimple. Over ka, the radical of G is trivial
and so there exists an isogeny from G onto PGL2 (see 20.16). Hence G has
dimension 3 and every Borel subgroup has dimension 2. Choose an isomorphism
�WGm! T . Then P.�/D U.�/ �T is a connected solvable algebraic subgroup
of G of maximum dimension, and hence is a Borel subgroup containing T (and
P.��/ is the only other Borel subgroup of G containing T ).

We now consider the general case. The derived group G0 of G is semisimple
of rank � 1 (see 19.21). If G0 had rank 0, then it would be trivial, and G would
be solvable, contradicting the hypothesis. Thus, G0 is a split semisimple group of
rank 1. Let T 0 be a maximal torus of G0 contained in T (which exists by 17.85),
and choose an isomorphism �WGm! T 0. Then U.�/ �T and U.��/ �T are Borel
subgroups of G containing T . 2

LEMMA 20.21. We have

BCu \B
�
u D e

BC\B� D T:

PROOF. We may suppose that k is algebraically closed. Then the first equality
was proved in Proposition 20.18, and the second follows because BC D BCu �T
and B� D B�u �T . 2

THEOREM 20.22. Let B be a Borel subgroup of G. Then G=B is isomorphic to
P1, and the homomorphism

'WG! Aut.G=B/� PGL2

is surjective with kernel Z.G/.

PROOF. The algebraic group Gka is reductive of semisimple rank 1, and Bka is a
Borel subgroup ofGka . Moreover, .G=B/ka 'Gka=Bka � P1, and soG=B � P1
because it has a k-point (20.4). The map G! Aut.G=B/ is surjective because
this is true after a base change to ka. It remains to prove that the kernel of
G! Aut.G=B/ is Z.G/.

The kernel of ' is contained in BC\B� D T , and is therefore a diagonal-
izable normal subgroup of a connected group G. Hence the kernel is contained
in the centre of G (see 12.38). On the other hand, because ' is surjective, Z.G/
maps into Z.PGL2/D e, and so Z.G/� Ker.'/. 2

g. Properties of SL2

We use the following notation: T is the diagonal torus in SL2; n is the element�
0 1
�1 0

�
of the normalizer of T ; UC and U� are the algebraic subgroups

˚�
1 �
0 1

�	
and

˚�
1 0
� 1

�	
of SL2.

PROPOSITION 20.23. The algebraic group SL2 is generated by its subgroups
UC and U�.
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PROOF. Its Lie algebra is generated by the Lie algebras of UC and U� (10.2).2

PROPOSITION 20.24. The algebraic groups SL2 and PGL2 are perfect.

PROOF. It suffices to show that SL2 is perfect. As SL2 is smooth, it suffices to
show that the abstract group SL2.ka/ is perfect (6.21). In fact, we shall show that
SL2.k/ is perfect whenever k has at least three elements. For a 2 k�, let

E1;2.a/D

�
1 a

0 1

�
; E2;1.a/D

�
1 0

a 1

�
:

An algorithm in elementary linear algebra shows that SL2.k/ is generated by
these matrices. On the other hand, the commutator��

b 0

0 b�1

�
;

�
1 c

0 1

��
D

�
1 .b2�1/c

0 1

�
.

Take b ¤˙1, and then c can be chosen so that .b2�1/c D a. Thus E1;2.a/ is a
commutator. On taking transposes, we find that E2;1.a/ is also a commutator.2

For t 2 k�, the inner automorphism�
a b

c d

�
7!

�
a tb

t�1c d

�
D

�
t 0

0 1

��
a b

c d

��
t�1 0

0 1

�
of GL2 induces an automorphism t of SL2 with the property that t .T /D T .
Recall that End.Gm/' Z and Aut.Gm/' f˙1g.

PROPOSITION 20.25. Let  be an automorphism of .SL2;T /. Then  maps UC

isomorphically onto UC or U� according as  acts as C1 or �1 on T . In the
first case,  D t for a unique t 2 k�, and in the second case  D inn.n/ıt for
a unique t 2 k�.

PROOF. Let � be the cocharacter t 7! diag.t; t�1/ of SL2. Then U.˙�/D U˙

(see 13.31) and  maps U.�/ isomorphically onto U. ı �/ (see 13.34). As
 ı� equals C� or �� according as  jT equals C1 or �1, this proves the first
statement. Suppose that  jT DC1. As UC is isomorphic to Ga, the restriction
of  to UC is multiplication by some t 2 k� (see 14.59). Now t�1 ı acts as
the identity map on BC D T �UC, and hence on G (see 17.21). This shows that
 D t . If  jT D�1, then inn.n/ı jT D 1, and so inn.n/ı D t . 2

COROLLARY 20.26. Let  be an automorphism of .SL2;T /. If  jT D id and 
fixes some nonzero element of UC, then  is the identity map.

PROOF. We know that  D t for some t 2 k�, and t acts on UC as multiplica-
tion by t . 2

The action of GL2 on SL2 by inner automorphisms defines an action of PGL2
on SL2.
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THEOREM 20.27. The action of PGL2 on SL2 by inner automorphisms defines
isomorphisms

PGL2.k/! Aut.SL2/;
.N=�2/.k/! Aut.SL2;T / where N DNSL2.T /;

.T=�2/.k/! Aut.SL2;T;UC/:

PROOF. The centralizer of SL2 in GL2 is D2, and so the first map is injective.
Let  be an automorphism of SL2. If T 0 and T 00 are split maximal tori in SL2,
then T 0 �Gm and T 00 �Gm are split maximal tori in GL2, and so they are conjugate
by an element of GL2.k/ (see 17.89). Hence T 0 and T 00 are conjugate by an
element of PGL2.k/. Therefore, after possibly composing  with conjugation
by an element of PGL2.k/, we may suppose that .T /D T . Now Proposition
20.25 shows that the first map is surjective because t is the automorphism of
SL2 defined by the element Œdiag.t;1/� of PGL2.k/.

We saw in Proposition 20.25 that the automorphisms of SL2 mapping T
into T and UC into UC are exactly the automorphisms t for t 2 k�. The map
diag.t; t�1/! t2 defines an isomorphism T=�2!Gm, and hence an isomorph-
ism .T=�2/.k/! k�. If a 2 .T=�2/.k/ maps to t 2 k�, then inn.a/ acts on
SL2 as t . This proves that the second map is an isomorphism, and the third
follows using that N D T tT n (see 17.42). 2

REMARK 20.28. Similar arguments show that the natural homomorphisms

PGL2.k/! Aut.GL2/; PGL2.k/! Aut.PGL2/

are isomorphisms. In fact,

PGL2 ' Aut.SL2/' Aut.GL2/' Aut.PGL2/;

i.e., the functors R Aut.GR/ are representable by PGL2 for G D SL2, GL2,
or PGL2. See Remark 23.50 below.

REMARK 20.29. Theorem 20.27 says that every automorphism of SL2 is inner
in the sense that it arises from an element of the adjoint group. For t 2 k�Xk�2,�p

t 0

0
p
t�1

��
a b

c d

��p
t�1 0

0
p
t

�
D

�
a tb

t�1c d

�
; (131)

and so t is conjugation by an element of SL2.ka/, but not of SL2.k/. In other
words, it is an inner automorphism of SL2 but an outer automorphism of SL2.k/.
This reflects the fact that the map SL2.k/! PGL2.k/ is not surjective in general.

PROPOSITION 20.30. The Picard groups of SLn and GLn are zero.

PROOF. The polynomial ring kŒX11;X12; : : : ;Xnn� is a unique factorization do-
main (CA 4.10), and remains so after det.Xij / has been inverted. Therefore
Pic.GLn/D 0. In 2.42 we saw that GLn ' SLn�Gm as schemes, from which it
follows that Pic.SLn/D 0. 2
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PROPOSITION 20.31. The algebraic group SL2 is simply connected, the map
SL2! PGL2 is the universal covering of PGL2, and �1.PGL2/D �2.

PROOF. This was shown in Example 18.20, but we give a direct proof. Recall
that the algebraic group GL2 is reductive and its split maximal tori are the
conjugates of the diagonal torus (17.89). It follows that PGL2 is reductive, and
its split maximal tori are the conjugates of the diagonal torus; in particular, each
is isomorphic to Gm.

Let 'WG! PGL2 be a multiplicative isogeny of connected group varieties.
Then G is reductive because Ru.Gka/ maps isomorphically onto its image in
PGL2, which is trivial. Let T be a maximal torus in G. The kernel N of ' is
central, and so it is contained in T (see 17.61). The image T=N of T in PGL2 is
isomorphic to Gm, and so T is isomorphic to Gm. Thus, N � �m for some m.
We show thatm� 2. For this, we may suppose that k is algebraically closed. The
image Nn of n in PGL2.k/ normalizes the diagonal torus and acts on it as t 7! t�1.
Therefore, a suitable conjugate n0 of Nn normalizes T=N and acts on it as t 7! t�1.
Every lift of n0 to G.k/ acts on T as its unique nontrivial automorphism t 7! t�1.
As N is central, the action is trivial on it, and so m� 2.

Let 'WG! SL2 be a multiplicative isogeny of connected group varieties. Its
composite with SL2! PGL2 has degree at most 2, and so ' is an isomorphism.
Hence SL2 is simply connected. 2

h. Classification of the split reductive groups of semisimple
rank 1

We let T2 denote the diagonal torus in SL2 and N its normalizer.

PROPOSITION 20.32. Let .G;T / be a split reductive group of semisimple rank
1. There exists a homomorphism vW.SL2;T2/! .G;T / with central kernel.
Every such homomorphism is a central isogeny from SL2 onto the derived group
of G, and any two differ by the inner automorphism defined by an element of
.N=�2/.k/.

PROOF. Recall (20.22) that there exists an exact sequence

e!Z.G/ �!G
q
�! PGL2! e:

The homomorphism q maps T onto a maximal split torus in PGL2. After com-
posing q with an inner automorphism of PGL2, we may suppose that it maps T
onto the diagonal torus in PGL2.

Let D DZ.G/ and G0 DDG. Then Dt \G
0 is finite and the sequence

e!Dt \G
0
!Dt �G

0
!G! e

is exact (12.46). Moreover, T 0 def
D .T \G0/t is a maximal split torus in G0

(see 17.85). The restriction of q to G0 ! PGL2 is a multiplicative isogeny
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mapping T 0 onto the diagonal torus, and so SL2 ! PGL2 lifts to a central
isogeny v0W.SL2;T2/! .G0;T 0/ by Proposition 20.31. The composite of this
with the inclusion G0 ,!G is the required homomorphism v.

Because SL2 is perfect, the homomorphism v maps intoG0, and vWSL2!G0

is an isogeny with kernel e or�2 according asG0 is simply connected or not. Now
Proposition 18.8 implies that any two v differ by an automorphism of .SL2;T2/,
and so the uniqueness statement follows from Theorem 20.27. 2

THEOREM 20.33. Every split reductive group is isomorphic to exactly one of
the groups

Grm�SL2; Grm�PGL2; Gr�1m �GL2 .r 2 N/:

PROOF. Because its adjoint group is perfect, G is the reductive group G.'/
attached to a triple .SL2;D;'/ with D a diagonalizable group and 'W�2!D

an injective homomorphism whose cokernel is a torus (19.29). Now ˛ DX�.'/

is a surjective homomorphism X�.D/! Z=2Z whose kernel is torsion-free.
There are three cases to consider. In the first case, there exists a decomposition
X.D/DN ˚Z=2Z such that ˛jN D 0 and ˛jZ=2ZD id . In this case

G.'/DD.N/�SL2 :

In the second case ˛ D 0. Then D is a torus T , and G.'/D T �PGL2. Finally,
there may exist a decomposition X�.D/DN ˚Z such that ˛jN D 0 and ˛jZ is
the quotient map Z! Z=2Z. In this case, G.'/DD.N/�GL2.

These exhaust the split reductive groups over k of semisimple rank 1. The
derived groups are PGL2 in the first case, and SL2 in the second and third cases,
while the centres are tori in the first two cases but not in the third, and so no two
of the groups are isomorphic. 2

As noted earlier (17.89), a split maximal torus T in GLV defines a decompos-
ition V D

L
i2I Vi of V into a direct sum of one-dimensional eigenspaces, and

T is the subgroup of GLV preserving the decomposition. As any two bases of V
are conjugate by an element of GLV .k/, it follows that any two split maximal
tori in GLV are conjugate by an element of GLV .k/. Similar statements are true
for SLV and PGLV .

COROLLARY 20.34. Any two split maximal tori in a reductive group G over k
of semisimple rank 1 are conjugate by an element of G.k/.

PROOF. This is true for T �SL2, T �GL2, and T �PGL2. 2

i. The forms of SL2, GL2, and PGL2

Let G be a reductive group of semisimple rank 1, and let T be a maximal torus
in G. Then T splits over ks, and so G is a ks=k-form of one of the groups in
Theorem 20.33. To determine the reductive groups of semisimple rank 1 over
k, it remains to determine the k-forms of these groups. We begin by finding the
k-forms of GL2.
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The forms of M2.k/

An algebra A over k is a quaternion algebra if A˝k ks is isomorphic to M2.k/.
In other words, A is a quaternion algebra if it is a ks=k-form of M2.k/.

Every automorphism of M2.k/ as an algebra over k is inner by the Skolem–
Noether theorem (24.23 below). Therefore Aut.M2.k//' PGL2.k/.

Let � D Gal.ks=k/, and let H 1.k;G/ D H 1.�;G.ks//. Let A be a qua-
ternion algebra over k, and choose an isomorphism aWM2.k

s/! A˝k k
s. Then

� 7! c� D a
�1ı�a is a continuous 1-cocycle for � with values in Aut.M2.k

s//D

PGL2.ks/ whose cohomology class does not depend on the choice of a. By des-
cent theory, every cohomology class arises from a quaternion algebra, and so the
isomorphism classes of quaternion algebras over k are classified by the elements
of H 1.k;PGL2/. See Section 2k.

Forms of GL2

Each quaternion algebra A over k defines a group-valued functor on k-algebras,

GAWR .A˝R/�.

There is a well-defined reduced norm homomorphism NrdWA! k, which be-
comes the determinant function when ADM2.k/ (see 24.25 below). In terms
of a basis for A, the norm homomorphism is a polynomial function, and GA is
the subfunctor of R A˝R determined by the nonvanishing of this function.
Thus, GA is representable, and so it is an algebraic group over k.

If ADM2.k/, then GA D GL2. Otherwise, GA is a k-form of GL2 :

THEOREM 20.35. The functor A GA defines a bijection from the set of
isomorphism classes of quaternion algebras over k to the set of isomorphism
classes of k-forms of GL2.

PROOF. Let G0 be a k-form of GL2, and choose an isomorphism aWGL2ks !

Gks . Then � 7! c� D a
�1 ı �a is a continuous 1-cocycle for � with values in

PGL2.ks/ whose cohomology class does not depend on the choice of a. In
this way, H 1.k;PGL2/ classifies the isomorphism classes of k-forms of GL2
(see 3.43). Let A be a quaternion algebra over k, and choose an isomorphism
aWM2.k

s/! A˝k k
s. Then a defines an isomorphism a0WGL2k0 !GA

k0
, and a

and a0 give rise to the same 1-cocycle � ! PGL2.ks/. Therefore, we have a
commutative diagram

fisomorphism classes of quaternion algebras over kg

H 1.k;PGL2/

fisomorphism classes of k-forms of GL2g

1W1

1W1

from which the statement follows. 2
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Forms of SL2 and PGL2

Let A be a quaternion algebra over k. The functor

SAWR fa 2 A˝R j Nrd.a/D 1g

is an algebraic group over k. We let

PA DGA=Z.GA/:

As in the previous case, the functors A SA and A PA define bijections
from the set of isomorphism classes of quaternion algebras over k to the sets of
isomorphism classes of k-forms of SL2 and PGL2.

j. Classification of reductive groups of semisimple rank one

THEOREM 20.36. Let T be a torus and A a quaternion algebra over k. Then
T �SA, T �PA, and T �GA are reductive groups of semisimple rank 1 over k,
and every reductive group of semisimple rank 1 over k is isomorphic to one of
these groups.

PROOF. Let G be a reductive group of semisimple rank 1 over k. Then G splits
over ks, and so G=Z.G/ is a k-form of PGL2. In particular, Gad is perfect, and
so G is equals G.'/ for some triple .H;D;'/ with H the group SA attached
to a quaternion algebra A over k, D a group of multiplicative type over k, and
'W�2!D an injective homomorphism whose cokernel is a torus (19.29, 19.30).
Again there are three cases to consider for the map X�.'/WX�.D/! Z=2Z of
� -modules, which lead to the three groups in the statement of the theorem. 2

The classification of the quaternion algebras

It remains to classify the quaternion algebras over k. Let k be a field of character-
istic¤ 2. Let a;b 2 k�, and define H.a;b/ to be the algebra over k with basis 1,
i , j , ij as a k-vector space and with the multiplication

i2 D a; j 2 D b; ij D�j i:

Then H.a;b/ is a quaternion algebra, and every quaternion algebra over k is of
this form for some a;b 2 k�. A quaternion algebra is either a division algebra or
it is isomorphic to M2.k/, in which case it is said to be split.

Over a finite field or a separably closed field, there are only the split quaternion
algebras, but over R there is also Hamilton’s quaternion algebra H.�1;�1/.
Over Q (or a number field), the isomorphism classes of quaternion algebras are
classified by the sets of primes with finite even cardinality. We sketch a proof of
this statement.

Let k be R or a p-adic field Qp . For a;b 2 k�, set .a;b/D 1 or �1 according
as z2�ax2�by2 D 0 has a nontrivial solution or not. An elementary argument
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shows that a quaternion algebra H.a;b/ is split if and only if .a;b/D 1, and that
there is (up to isomorphism) exactly one nonsplit quaternion algebra over k.

Let a;b 2 Q�. In the last paragraph, we defined a symbol .a;b/p for each
prime p and one symbol .a;b/1 corresponding to R. The Hilbert product
formula says that .a;b/p D 1 for almost all p, and that

.a;b/1 �
Y

p
.a;b/p D 1I

moreover, every possible family of˙1s arises from a pair a;b 2Q� (Serre 1970,
II, �2).

A quaternion algebra H.a;b/ over Q is determined up to isomorphism by
the quaternion algebras H.a;b/˝R and H.a;b/˝Qp , and hence by the Hilbert
symbols .a;b/1 and .a;b/p . Thus, a quaternion algebra H.a;b/ is determined
by the set of primes p or1 for which it is nonsplit, i.e., for which .a;b/D�1.
According to the product formula, this set has a finite even number of elements
and every such set arises from a quaternion algebra.

k. Review of SL2

Every semisimple group is built up from copies of SL2, just as every Dynkin
diagram is built up from copies of the Dynkin diagram of SL2 and line segments.
We collect here for future use some notation and facts concerning SL2.

20.37. Let G D SL2 and let T2 be the torus of diagonal matrices diag.t; t�1/ in
G. ThenX.T2/DZ�, where � is the character diag.t; t�1/ 7! t . The Lie algebra
of SL2 is

sl2 D

��
a b

c d

�
2M2.k/

ˇ̌̌̌
aCd D 0

�
;

and T acts on sl2 by conjugation (10.24):�
t 0

0 t�1

��
a b

c d

��
t�1 0

0 t

�
D

�
a t2b

t�2c d

�
: (132)

Therefore,

sl2 D t˚g˛˚g�˛; g˛ D

��
0 �

0 0

��
, g�˛ D

��
0 0

� 0

��
where T2 acts on g˛ and g�˛ through the characters ˛ D 2� and �˛ respectively.

20.38. Let � be the isomorphism t 7! diag.t; t�1/WGm! T2. Then

UC
def
D U.�/D

��
1 �

0 1

��
; Lie.UC/D g˛

U�
def
D U.��/D

��
1 0

� 1

��
; Lie.U�/D g�˛
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(see 13.31). The map a 7!
�
1 a
0 1

�
is an isomorphism u˛WGa ! UC with the

property that

t �u˛.a/ � t
�1
D u˛.˛.t/a/; all t 2 T .R/; a 2Ga.R/

(see (132)). Similarly, a 7!
�
1 0
a 1

�
is an isomorphism u�˛WGa ! U� with the

property that

t �u�˛.a/ � t
�1
D u�˛.�˛.t/a/; all t 2 T .R/; a 2Ga.R/:

The Borel subgroups containing T2 are BC D UC �T and B� D U� �T .

20.39. Let n˛ D u˛.1/u�˛.�1/u˛.1/. Then n˛ D
�
0 1
�1 0

�
, and

NG.T /D

��
a 0

0 a�1

��
t

��
0 a�1

�a 0

��
D T2tT2n˛:

Therefore W.G;T /D f1;sg, where s is represented by n˛ . Note that�
0 1

�1 0

��
a b

c d

��
0 �1

1 0

�
D

�
d �c

�b a

�
and so s acts as �1 on T2 and swaps BC and B�.

20.40. Let ˛_ be the cocharacter t 7! diag.t; t�1/ of T . Then h˛;˛_i D 2D
h�˛;�˛_i, and

s.�/D s˛.�/
def
D ��h�;˛_i˛; s.�/D s�˛.�/

def
D ��h�;�˛_i.�˛/;

for all � 2X�.T /. Note that s.˛/D�˛ and s.�˛/D ˛.

20.41. The following identities can be checked by direct calculation�
u˛.t/u�˛.�t

�1/u˛.t/D ˛
_.t/n˛

n2˛ D ˛
_.�1/:

Let n�˛ D u�˛.1/u˛.�1/u�˛.1/. Then n�˛ D n�1˛ . For each u 2 UC X feg,
there is a unique u0 2 U�Xfeg such that uu0u 2NSL2.T2/:

Exercises

EXERCISE 20-1. Show that SL2 D T2UC[UCn˛T2UC; in particular, SL2 is
generated by T2, UC, and n˛ .



CHAPTER 21

Split Reductive Groups

In this chapter, we reap the reward of our hard work in the earlier chapters and
determine the structure of split reductive groups. We assume some familiarity
with root systems and root data (Appendix C). The field k is arbitrary.

a. Split reductive groups and their roots

Let G be a reductive algebraic group over k. Recall (17.59) that the centralizer
of a torus in G is also a reductive algebraic group (in particular, it is smooth and
connected), and (17.84) that a torus T in G is maximal if and only if CG.T /D T .
Maximal tori remain maximal after extension of the base field.

Recall also that G is split if some maximal torus T is split, in which case
we refer to the pair .G;T / as a split reductive group. The centralizer of T in G
equals the identity component of its normalizer, and the Weyl group W.G;T / of
.G;T / is defined to be the étale group scheme

�0.NG.T //DNG.T /=CG.T /DNG.T /=T:

PROPOSITION 21.1. The Weyl groupW.G;T / of a split reductive group .G;T /
is a finite constant algebraic group. For every field k0 containing k,

W.G;T /.k/DW.G;T /.k0/DN.k0/=T .k0/; N DNG.T /:

PROOF. By definition, W.G;T / acts faithfully on T , and hence on X�.T /.
As T is split, Gal.ks=k/ acts trivially on X�.T /, and hence on the subgroup
W.G;T /.ks/ of Aut.X�.T //. Therefore W.G;T / is constant, and so, for all
fields k0 containing k, W.G;T /.k/DW.G;T /.k0/D .N=T /.k0/. As T is split,
H 1.k0;T /D 1 (see 3.47), and so the sequence

1! T .k0/!N.k0/! .N=T /.k0/! 1

is exact (3.45). Therefore N.k0/=T .k0/' .N=T /.k0/. 2

424
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Let .G;T / be a split reductive group over k, and let AdWG! GLg be the
adjoint representation (10.20). Then T acts on g and, because T is diagonalizable,
g decomposes into a direct sum

gD g0˚
M

˛2X.T /
g˛

with g0 D gT and g˛ the subspace on which T acts through a nontrivial character
˛. The characters ˛ of T occurring in this decomposition are called the roots of
.G;T /. They form a finite subset ˚.G;T / of X.T /. Note that

g0 D Lie.G/T 10.34
D Lie.GT /D Lie.CG.T //D Lie.T /;

and so1

gD t˚
M

˛2˚.G;T /

g˛:

We next show that the action of W.G;T / on X.T / stabilizes ˚.G;T /.

PROPOSITION 21.2. Let s 2W.G;T / and let ˛ be a root of .G;T /. Then s˛ is
also a root of .G;T /, and gs˛ D sg˛ .

PROOF. Let n 2NG.T /.k/ represent s, and let t 2 T .R/ for some k-algebra R.
Then s acts on � 2 X.T / by the rule (s�/.t/D �.n�1tn/. For x 2 g˛ , t .sx/D
t .nx/D n.n�1tn/x D n.˛.n�1tn/x/D ˛.n�1tn/.nx/D ..s˛/.t//.sx/, and so
T acts on sg˛ through the character s˛, as claimed. 2

EXAMPLE 21.3. Let .G;T /D .GL2;T / with T the diagonal torus in G. Then
X.T /DZ�1˚Z�2, wherem1�1Cm2�2 is the character diag.t1; t2/ 7! t

m1
1 t

m2
2 .

The Lie algebra g of GL2 is M2.k/ with the bracket ŒA;B�D AB �BA, and T
acts on g by conjugation (10.24):�

t1 0

0 t2

��
a b

c d

��
t�11 0

0 t�12

�
D

 
a t1

t2
b

t2
t1
c d

!
: (133)

Let Eij denote the matrix with a 1 in the ij th position and zeros elsewhere. Then
T acts trivially on g0 D kE11C kE22, through the character ˛ D �1��2 on
g˛ D kE12, and through the character �˛ D �2 ��1 on g�˛ D kE21. Thus,
˚.G;T /D f˛;�˛g with ˛D �1��2. When we use �1 and �2 to identify X.T /
with Z˚Z, the set ˚ becomes identified with f˙.e1�e2/g, where fe1; e2g is the
standard basis for Z2.

EXAMPLE 21.4. The roots of .SL2;T2/ are˙˛, where diag.t; t�1/
˛
7! t2 (20.37).

1The Lie algebra of T is often denoted by h.
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EXAMPLE 21.5. Let G D PGL2. Recall (5.49) that this is defined to be the
quotient of GL2 by its centre Gm, and that PGL2.k/DGL2.k/=k�. We let T be
the diagonal torus

T D

��
t1 0

0 t2

� ˇ̌̌̌
t1t2 ¤ 0

����
t 0

0 t

�ˇ̌̌̌
t ¤ 0

�
:

Then X.T /D Z�, where � is the character diag.t1; t2/ 7! t1=t2. The Lie algebra
of PGL2 is

pgl2 D gl2=fscalar matricesg;

and T acts on pgl2 by conjugation (133). Therefore, the roots are ˛ D � and
�˛ D��. When we use � to identify X.T / with Z, ˚.G;T / becomes identified
with f1;�1g.

EXAMPLE 21.6. Let G D GLn, and let T be the diagonal torus Dn in G. Then
X.T /D

L
1�i�nZ�i , where �i is the character diag.t1; : : : ; tn/ 7! ti . The Lie

algebra of GLn is

gln DMn.k/ with ŒA;B�D AB �BA;

and T acts on g by conjugation (10.20):

�
t1 0

: : :

0 tn

�
ˇ
a11 � � � � � � a1n
::: aij

:::
:::

:::

an1 � � � � � � ann


�
t�11 0

: : :

0 t�1n

�

D

�
a11 � � � � � �

t1
tn
a1n

::: ti
tj
aij

:::

:::
:::

tn
t1
an1 � � � � � � ann

�

:

Therefore T acts through the character ˛ij D �i ��j on g˛ij D kEij . The set of
roots is

˚.G;T /D f˛ij j 1� i;j � n; i ¤ j g:

When we use the �i to identify X.T / with Zn, then ˚.G;T / becomes identified
with

fei � ej j 1� i;j � n; i ¤ j g

where e1; : : : ; en is the standard basis for Zn.
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b. Centres of reductive groups

It is possible to compute the centre of a split reductive group from its roots.

PROPOSITION 21.7. Let G be a reductive algebraic group, and let T be a max-
imal torus in G. The centre Z.G/ of G is contained in T , and is equal to the
kernel of AdWT ! GLg.

PROOF. As Z.G/ centralizes T , it is contained in CG.T /D T . Certainly Z.G/
is contained in the kernel of the adjoint map AdWG ! GLg, and so Z.G/ �
Ker.Ad jT /. The quotient Ker.Ad/=Z.G/ is unipotent (14.23), and so the image
of Ker.Ad jT / in Ker.Ad/=Z.G/, being both multiplicative and unipotent, is
trivial (14.16). Thus Ker.Ad jT /�Z.G/. 2

PROPOSITION 21.8. Let .G;T / be a split reductive group, and let Z˚ denote
the Z-submodule of X�.T / generated by the roots. Then

X�.Z.G//DX�.T /=Z˚;

and soZ.G/ is the diagonalizable subgroup of T with character groupX.T /=Z˚ .

PROOF. As T acts on g through the characters ˛ 2 ˚.G;T /,

Z.G/
21.7
D

\
˛2˚.G;T /

Ker.˛WT !Gm/:

From this we get an exact sequence

0!Z.G/! T
t 7!.˛.t//˛
�������!

Y
˛2˚

Gm:

On applying X� to this sequence, we get an exact sequenceM
˛2˚

Z
.m˛/˛ 7!

P
m˛˛

����������!X�.T /!X�.Z.G//! 0

(see 12.23), which gives the required equality. 2

COROLLARY 21.9. The quotient T=Z.G/ of T has character group the sub-
group Z˚ of X�.T /:

PROOF. Because T=Z.G/ is the cokernel of Z.G/! T , its character group is
the kernel of X�.T /!X�.Z.G//, which equals Z˚ . 2

For example (21.4, 21.5, 21.6),

Z.SL2/D Ker.2�/D
˚
diag.t; t�1/ j t2 D 1

	
D �2

X�.Z.SL2//D Z�=Z2�' Z=2Z
Z.PGL2/D Ker.�/D 1

X�.Z.PGL2//D Z=ZD 0

Z.GLn/D
\

i¤j
Ker.�i ��j /D fdiag.t; : : : ; tg j t ¤ 0g DGm

X�.Z.GLn//D Zn
.X

i¤j
Z.ei � ej / ' Z by .ai / 7!

P
ai .
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c. The root datum of a split reductive group

We briefly review the notion of a root datum (see Appendix C). Let X be a free
Z-module of finite rank, let X_ denote the linear dual Hom.X;Z/ of X , and let
h ; iWX �X_! Z denote the perfect pairing hx;f i D f .x/.

Let ˛ be an element of X and ˛_ an element of X_ such that h˛;˛_i D 2.
The linear map

s˛WX !X; s˛.x/D x�hx;˛
_
i˛

fixes the elements of the hyperplane H D fx 2X j hx;˛_i D 0g in X and sends
˛ to �˛. We regard s˛ as a reflection with vector ˛.

Let ˚ be a finite subset of X and ˛ 7! ˛_ a map ˚ ! X_. The triple
RD .X;˚;˛ 7! ˛_/ is a root datum if (rd1) h˛;˛_i D 2, (rd2) s˛.˚/� ˚ for
all ˛ 2 ˚ , and (rd3) the group W.R/ of automorphisms of X generated by the
reflections s˛ is finite (it is called the Weyl group of R). The map ˛ 7! ˛_ (if it
exists) is bijective onto its image ˚_ �X_ and is uniquely determined by ˚_.
We sometimes write .X;˚;˚_/ for a root datum. The root datum is reduced if,
for every ˛ 2 ˚ , the only rational multiples of ˛ in ˚ are˙˛.

The main theorem

Let .G;T / be a split reductive group over k. For a root ˛ of .G;T /, we let
T˛ D Ker.˛/t (subtorus of T of codimension 1/ and G˛ D CG.T˛/.

DEFINITION 21.10. The root group U˛ of ˛ is the algebraic subgroup UG˛ .�/
of G, where � is any cocharacter � of T such that h˛;�i> 0.

In the next theorem, we show that U˛ is isomorphic to Ga. We always use
u˛ to denote an isomorphism Ga! U˛ .

By definition, U˛ is the unique connected subgroup variety of G such that

U˛.k
a/D fg 2G.ka/ j g centralizes T˛.ka/ and limt!0�.t/g D eg

(see 13.30). It is also the unique connected subgroup variety of G normalized by
T whose Lie algebra has weights the positive rational multiples of ˛ in ˚ (see
16.64). In particular, it is independent of �.

THEOREM 21.11. Let .G;T / be a split reductive group over k, and let ˛ be a
root of .G;T /.

(a) The pair .G˛;T / is a split reductive group of semisimple rank 1.

(b) The Lie algebra of G˛ satisfies

Lie.G˛/D t˚g˛˚g�˛

with tD Lie.T / and dimg˛ D 1D dimg�˛ . The only rational multiples
of ˛ in ˚.G;T / are˙˛.
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(c) The root group U˛ is normalized by T , is isomorphic to Ga, and has Lie
algebra g˛ . Any other subgroup variety of G normalized by T contains U˛
if and only if its Lie algebra contains g˛ .

(d) The Weyl group W.G˛;T / contains exactly one nontrivial element s˛ , and
s˛ is represented by an n˛ 2NG˛ .T /.k/.

(e) There is a unique ˛_ 2X�.T / such that

s˛.x/D x�hx;˛
_
i˛; for all x 2X.T /: (134)

Moreover, h˛;˛_i D 2.

(f) The algebraic group G is generated by T and its root groups U˛ (˛ 2
˚.G;T /):

PROOF. Our assumption that there exists a root implies that G ¤ T .
(a) The group G˛ is reductive because it is the centralizer of a torus in a

reductive group (17.59), and T is a split maximal torus in G˛ . The semisimple
rank ofG˛ is the dimension of the image of T inG˛=R.G˛/. As T˛ �Z.G˛/ıD
R.G˛/, this dimension is 0 or 1. If it were 0, then T � R.G˛/ � Z.G˛/ and
G˛ � CG.T /D T , which implies that Lie.G˛/� t, contradicting

Lie.G˛/D Lie.GT˛ / 10.34
D gT˛ D t˚g˛˚�� � .

(b) Because .G˛;T / is split reductive of semisimple rank 1, there exist
homomorphisms qWG˛ ! PGL2 and v˛WSL2! G˛ with central kernels such
that the diagrams

SL2 T2

e Z.G˛/ G˛ PGL2 e T T2

v˛ v˛ jT2
2

q qjT

are exact and commutative; moreover, v˛ is an isogeny from SL2 onto the derived
group G0˛ of G˛ (20.32). Here T2 denotes the diagonal maximal torus in SL2 or
PGL2. The quotient G˛=G0˛ is a torus, and so U˛ �G0˛ .

Let � be the cocharacter t 7! diag.t; t�1/ of T 2. Then v˛ maps UC D
USL2.�/ onto UG0˛ .v˛ ı�/D UG˛ .v˛ ı�/D U˛ (see 13.34). In fact, v˛ maps
UC isomorphically onto U˛ because the kernel of v˛ is contained in T2, and
so U˛ � Ga. As noted earlier, the weights of T on Lie.U˛/ are the positive
multiples of ˛ in ˚ . It follows that Lie.U˛/D g˛ , that g˛ has dimension 1, and
that the only rational multiples of ˛ in ˚ are˙˛.

(c) We have shown that U˛ is isomorphic to Ga, and that Lie.U˛/D g˛ . The
rest of (c) follows from Proposition 16.64.

(d) The Weyl group W.G˛;T / has order 2 because it acts simply transitively
on the Borel subgroups containing T , of which there are exactly two (17.53,
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20.20). Let n˛ be as in 20.39. Then v˛.n˛/ 2 NG˛ .T /.k/ and represents a
nontrivial element s˛ of W.G˛;T /.

(e) Let ˛0 be the cocharacter t 7! diag.t; t�1/ of T2. Then ˛_ D v˛ ı˛0 is the
unique cocharacter of T satisfying the condition (134); moreover, h˛;˛_i D 2.

(f) The Lie algebra of G is generated by the Lie algebras of T and of the U˛ ,
and so we can apply Corollary 10.17. 2

COROLLARY 21.12. The system .X.T /;˚.G;T /;˛ 7! ˛_/ is a reduced root
datum.

PROOF. We have to show that the map ˛ 7! ˛_ satisfies the conditions (rd1),
(rd2), and (rd3). The first was checked in (e) of the theorem. The reflection
s˛ of X.T / lies in W.G˛;T /�W.G;T /, and so it stabilizes ˚ by Proposition
21.2. We have W.R/ �W.G;T / (as groups of automorphisms of X.T /), and
W.G;T / is finite by definition. Thus, .X;˚;˛ 7! ˛_/ is a root datum, and (b) of
the theorem shows that it is reduced. 2

COROLLARY 21.13. The dimension of G is dimT Cj˚ j:

PROOF. From g D t˚
L
˛2˚ g˛ and (b) of the theorem, we see that dimg D

dim tCj˚ j. This implies the statement because G and T are smooth. 2

ASIDE 21.14. If char.k/¤ 2, then the map Lie.SL2/! Lie.PGL2/ is an isomorphism,
and so the first diagram gives a T -equivariant decomposition

Lie.G˛/D Lie.Z.G˛//˚Lie.SL2/:

This simplifies the proof.

EXAMPLE 21.15. The only root data of semisimple rank 1 are the systems
.Zr ;f˙˛g;f˙˛_g/ with�

˛ D 2e1
˛_ D e01;

�
˛ D e1
˛_ D 2e01;

or
�
˛ D e1C e2
˛_ D e01C e

0
2:

Here e1; e2; : : : and e01; e
0
2; : : : are the standard dual bases, and r � 2 in the third

case. These are the root data of the groups

Gr�1m �SL2; Gr�1m �PGL2; Gr�2m �GL2 :

EXAMPLE 21.16. Let .G;T / D .GLn;Dn/, and let ˛ D ˛12 D �1 � �2 (see
21.6). Then T˛ D fdiag.x;x;x3; : : : ;xn/ j xxx3 � � �xn ¤ 1g and

G˛ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�
� � 0 0

� � 0 0

0 0 � 0
: : :

:::

0 0 0 � � � �

�

2 GLn

9>>>>>>=>>>>>>;
:
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Moreover

n˛ D

�
0 1 0 0

1 0 0 0

0 0 1 0
: : :

:::

0 0 0 � � � 1

�

represents the unique nontrivial element s˛ of W.G˛;T /. It acts on T by

diag.x1;x2;x3; : : : ;xn/ 7�! diag.x2;x1;x3; : : : ;xn/:

For x Dm1�1C�� �Cmn�n,

s˛x Dm2�1Cm1�2Cm3�3C�� �Cmn�n

D x�hx;�1��2i.�1��2/:

Thus (134), p. 429, holds if and only if ˛_ is taken to be �1��2. In general, the
coroot ˛_ij of ˛ij is

t 7! diag.1; : : : ;1;
i
t ;1; : : : ;1;

j

t�1;1; : : : ;1/:

Clearly h˛ij ;˛_ij i D ˛ij ı˛
_
ij D 2. The associated root system is that in (C.16).

Notes

21.17. The root datum attached to a split reductive group does not change under
extension of the base field. This is obvious from its definition.

21.18. Let T and T 0 be split maximal tori in a reductive group G. Then T 0 D
inn.g/.T / for some g 2G.k/ (see 17.105). The isomorphism inn.g/W.G;T /!
.G;T 0/ induces an isomorphism of root data R.G;T /!R.G;T 0/ – we explain
this in 23.5 below. Therefore the isomorphism class of R.G;T / depends only on
G, not on the maximal torus.

21.19. Recall (14.59) that an algebraic group U isomorphic to Ga has a canon-
ical action of Gm. The root groupU˛ is the unique T -stable algebraic subgroup of
G isomorphic to Ga on which T acts through the character ˛. The last condition
means that, for every isomorphism uWGa! U˛ ,

t �u.a/ � t�1 D u.˛.t/a/, all t 2 T .R/, a 2Ga.R/: (135)

There is a unique isomorphism of algebraic groups u˛W.g˛/a! U˛ � G such
that Lie.u˛/ is the given inclusion g˛ ,! g.

21.20. It follows from Theorem 21.11(c) that the root groups of .G;T / are
exactly the T -stable algebraic subgroups of G isomorphic to Ga. As the roots
.G;T / are exactly the characters of T arising root groups, this gives a description
of the root system of .G;T / not involving Lie algebras.
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21.21. Let ˛ and ˇ be roots for .G;T /. The commutator subgroup ŒU˛;Uˇ �
is a smooth connected unipotent subgroup of G on which T acts through the
character ˛Cˇ. Therefore ŒU˛;Uˇ �D e if ˛Cˇ is not a root.

21.22. The centre Z of G is contained in T , and the action of T on G by inner
automorphisms factors through T=Z (see 17.63). Hence every root ˛WT !Gm
factors through T=Z. The action of T=Z on G preserves the root group U˛ , and
for every isomorphism uWGa! U˛;

inn.t/.u.a//D u.˛.t/a/; all t 2 .T=Z/.k/, a 2G.R/:

It suffices to prove this after an extension of the base field, and so we may suppose
that t is the image of an element of T .k/, in which case the statement follows
from 21.19.

21.23. The algebraic group G˛ of G is generated by its subgroups U˛ , U�˛ ,
and T because this is true on the level of Lie algebras. Its derived group G˛ is
generated by U˛ and U�˛ , because SL2 is generated by UC and U� (see 20.23).
By construction, n˛ 2G˛.k/.

21.24. As before, let t for t 2 k� denote the inner automorphism
�
a b
c d

�
7!�

a tb
t�1c d

�
of SL2. In the proof of Theorem 21.11 we constructed, for each root ˛

of .G;T /, a central isogeny

v˛WSL2!G˛

such that v˛.diag.x;x�1//D ˛_.x/ and v˛.UC/� U˛ . Such an isogeny v˛ is
uniquely determined by its restriction u˛ to UC (see 20.26). If v0˛ is a second
such isogeny, then v0˛ D v˛ ı t for a unique t 2 k� (see 20.25). Because the
kernel of v˛ is contained in T , v˛ restricts to an isomorphism UC! U˛ (and
also U�! U�˛).

21.25. When k has characteristic zero, we can define a canonical homomorph-
ism v˛ . The subalgebra s˛ D g�˛ ˚ Œg˛;g�˛�˚ g˛ of g is semisimple (it is
isomorphic to sl2). According to Theorem 23.70 below, there exists an algebraic
group S˛ such that Rep.S˛/D Rep.s˛/. Define

v˛WS˛!G

to be the homomorphism dual to the exact tensor functor

Rep.G/! Rep.g/! Rep.s˛/D Rep.S˛/:

The choice of a nonzero element of g˛ determines an isomorphism s˛! sl2, and
hence an isomorphism S˛! SL2.
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d. Borel subgroups; Weyl groups; Tits systems

In this section, .G;T / is a split reductive group over k with root datum R D
.X;˚;˚_/. As before, B denotes the collection of Borel subgroups of G and BT
the subset of B fixed by T (consisting of the Borel subgroups containing T ).

Borel subgroups

Let V DX�.T /Q and V _ DX�.T /Q. For a root ˛ 2 ˚ , we let

H˛ D ff 2 V
_
j h˛;f i D 0g:

It is a hyperplane in V _. The Weyl chambers of the root datum RD .X;˚;˚_/
are the connected components of

V _X
[

˛2˚
H˛:

DEFINITION 21.26. A cocharacter � of T is regular if it is contained in a Weyl
chamber, i.e., for all roots ˛, h˛;�i ¤ 0.

PROPOSITION 21.27. If � is regular, then B�.Gm/ D BT .

PROOF. We may suppose that k is algebraically closed. Recall (Section 17f) that
B has the structure of a smooth complete algebraic variety with an action of T .
The subvariety B�.Gm/ contains BT and is stable under T . Let Y be a connected
component of B�.Gm/. Then Y is stable under T (because T is connected) and
complete, and so it contains a fixed point B (see 17.3). From the isomorphism
G=B ' B we deduce that TgtB.B/' g=b. As b� t, TgtB.B/�

L
˛2˚.G;T / g˛ ,

and so the weights of Gm on TgtB.B/ are nonzero integers h˛;�i. But Gm acts
trivially on Y and hence on TgtB.Y /, which is a subspace of TgtB.B/, and so
TgtB.Y / D 0. Therefore Y has dimension 0, and so B�.Gm/ is finite. As it is
stable under T and T is connected, it is fixed by T . 2

LEMMA 21.28. Let ˛ be a root of .G;T /. Every Borel subgroup ofG containing
T contains exactly one of U˛ or U�˛ .

PROOF. As before, let T˛ D .Ker˛/t and G˛ D CG.T˛/. Then G˛ has exactly
two Borel subgroups containing T , namely, U˛ �T and U�˛ �T (see 20.20). If B
is a Borel subgroup of G containing T , then B \G˛ is a Borel subgroup of G˛
(see 17.72), and so it equals one of U˛ �T and U�˛ �T . 2

PROPOSITION 21.29. Let � be a regular cocharacter of T . Then P.�/ is a Borel
subgroup of G containing T . It is the only Borel subgroup of G containing T
and having Lie algebra

t˚
M
h˛;�i>0

g˛:
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PROOF. We may suppose that k is algebraically closed. We shall use 13.33 and
14.13. By definition, Z.�/ is the centralizer of �Gm in G. It contains T , has
Lie algebra g0.�/D t, and is connected, and so it equals T . Now P.�/ is the
semidirect product P.�/D U.�/ÌT of a torus T with a unipotent group U.�/,
and so it is solvable. As it is connected, it is contained in a Borel subgroup B .

The torus Gm acts on g˛ through the character t 7! t h˛;�i, and so (see 13.33c)

Lie.P.�//D t˚
M
h˛;�i>0

g˛:

The Lie algebra of B contains Lie.P.�//. According to the lemma, it contains
exactly one of g˛ or g�˛ for each ˛, and so it equals Lie.P.�//. Therefore
B D P.�/ (apply 10.15). In particular, P.�/ is a Borel subgroup.

Let B 0 be a second element of BT with Lie algebra t˚
L
h˛;�i>0 g˛ . Then

B 0 contains the root group U˛ for all ˛ with h˛;�i> 0 (21.11c). These groups,
together with T , generate P.�/, and so B 0 � P.�/. As before, this implies that
P.�/D B . 2

COROLLARY 21.30. Every split maximal torus of a reductive group is contained
in a Borel subgroup.

PROOF. The torus admits a regular cocharacter �, and so it is contained in the
Borel subgroup P.�/. 2

PROPOSITION 21.31. Let � and �0 be regular cocharacters of T . Then P.�/D
P.�0/ if and only if � and �0 lie in the same Weyl chamber.

PROOF. Obviously, � and �0 lie in the same Weyl chamber

” f˛ 2 ˚ j h˛;�i> 0g D f˛ 2 ˚ j h˛;�0i> 0g

” LieP.�/D LieP.�0/
” P.�/D P.�0/: 2

In particular, P.�/ depends only on the Weyl chamber C of �; we denote it by
B.C/.

THEOREM 21.32. The map C 7! B.C/ is a bijection from the set of Weyl
chambers of .G;T / onto the set of Borel subgroups of G containing T .

In particular, every Borel subgroup containing T is of the form P.�/ for
some regular cocharacter � of T .

PROOF. Proposition 21.31 shows that the mapC 7!B.C/ is injective. In proving
that it is surjective, we initially assume that k is algebraically closed. Let B 2 BT
and let � be a regular cocharacter of T . There exists an n 2NG.T /.k/ such that
B D nP.�/n�1 (see 17.11). Let w be the class of n in W.G;T /. Then

Lie.B/D Lie.nP.�/n�1/D t˚
M
h˛;�i>0

gw.˛/ D t˚
M

h˛;w�1.�/i>0

g˛ D bw�1.�/;
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and so B D P.w�1.�//. For a general k, we have maps

fWeyl chambersg
B
�! B.G/T ! B.Gka/Tka B

�1

�! fWeyl chambersg:

Their composite is the identity map and all are injective, which implies that all
the maps are bijective. 2

COROLLARY 21.33. Every Borel subgroup of Gka containing Tka is defined
over k.

PROOF. We saw in the proof of Theorem 21.32 that the map B.G/T !B.Gka/Tka

is bijective. 2

COROLLARY 21.34. Every Borel subgroup of G containing T is split as a
solvable algebraic group.

PROOF. The Borel subgroup is of the form P.�/ for some regular cocharacter �
of T . Now P.�/DU.�/ÌZ.�/ with U.�/ unipotent and Z.�/D T (see 13.33).
As U.�/ is split (16.63) and T is split, P.�/ is split . 2

DEFINITION 21.35. For a Borel subgroup B of G containing T , let

˚C.B/D f˛ 2 ˚ j g˛ � bg and

C.B/D f� 2X�.T /Q j h˛;�i> 0 for all ˛ 2 ˚C.B/g:

Then C.B/ is a Weyl chamber, called the dominant Weyl chamber for B . If
B D P.�/, then ˚C.B/D f˛ 2 ˚ j h˛;�i> 0g and so it is a system of positive
roots, called the system of positive roots attached to B .

Note that ˚C.B/D f˛ 2 ˚ j U˛ � Bg and Lie.B/D t˚
L
˛2˚C.B/ g˛ .

EXAMPLE 21.36. Let .G;T /D .GLn;Dn/, and let �i denote the character of
T sending diag.x1; : : : ;xn/ to xi . The roots of .G;T / are the characters �i ��j ,
i ¤ j (see 21.6). If B is the Borel subgroup of upper triangular matrices, then

˚C.B/D f�i ��j j i < j g.

Weyl groups

Recall (21.11d) that there is a distinguished element s˛ 2W.G;T / for each root
˛ of .G;T /.

THEOREM 21.37. The Weyl group W.G;T / of .G;T / is generated by the ele-
ments s˛ , ˛ 2 ˚ .
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PROOF. We may suppose that k is algebraically closed (21.1). By definition,
W.G;T / acts faithfully on T , and hence on X.T /. When we identify W.G;T /
with a subgroup of Aut.X.T //, the element s˛ becomes identified with the
reflection map x 7! x�hx;˛_i˛. By definition, the Weyl groupW.R/ of the root
system R of .G;T / is the subgroup of Aut.X.T // generated by these reflection
maps. It acts simply transitively on the set of Weyl chambers (C.22, C.30). On
the other hand, W.G;T / acts simply transitively on the set of Borel subgroups
of G containing T (17.53). Thus, it suffices to construct a bijection from the
set of Weyl chambers of the root datum R to the set of Borel subgroups of G
containing T compatible with the actions of the two Weyl groups. This Theorem
21.32 does. 2

COROLLARY 21.38. There is a canonical isomorphism W.R/!W.G;T /.

PROOF. Such an isomorphism was constructed in the proof of Theorem 21.37.2

COROLLARY 21.39. Let� be a base for the root system .G;T /. ThenW.G;T /
is generated by the elements s˛ for ˛ 2�.

PROOF. This is true for W.G;T / because it is true for W.R/ (see C.11). 2

EXAMPLE 21.40. Let .G;T /D .GLn;Dn/. The centralizer of T in G is T , but
its normalizer contains the permutation matrices (those obtained from the identity
matrix by permuting the rows). For example, let E.ij / be the matrix obtained
from the identity matrix by interchanging the i th and j th rows. Then

E.ij / �diag.� � �ai � � �aj � � �/ �E.ij /�1 D diag.� � �aj � � �ai � � �/:

More generally, let � be a permutation of f1; : : : ;ng, and let E.�/ be the matrix
obtained by using � to permute the rows. Then � 7! E.�/ is an isomorph-
ism from Sn onto the set of permutation matrices, and conjugating a diagonal
matrix by E.�/ simply permutes the diagonal entries. The E.�/ form a set of
representatives for the cosets of T .k/ in NG.T /.k/, and so W.G;T /' Sn.

Similarly, the Weyl group of .SLn;SLn\Dn/ is canonically isomorphic to
Sn. However, in this case, Sn cannot be realized as a subgroup of SLn, even in
the case nD 2 (s has no representative of order 2 in NG.T /; see 20.39).

SUMMARY 21.41. Let .G;T / be a split reductive group. There are natural
one-to-one correspondences between the following sets:

(a) the set of Borel subgroups of G containing T ;

(b) the set of Weyl chambers C in X�.T /Q;

(c) the set of systems of positive roots in ˚ ;

(d) the set of bases � for ˚ .
Each set is acted on simply transitively by the Weyl group.
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“The” root system of a splittable reductive group

21.42. Let G be a splittable reductive group over k. We say that a Borel pair
.B;T / is split if T is split. Choose a split Borel pair .B;T /, and let R.G;T /
be the root datum of .G;T /. Any other split Borel pair .B 0;T 0/ in G equals
g.B;T /g�1 for some g 2 G.k/. If .B 0;T 0/ also equals g0.B;T /g0�1, then we
can write g0 D gh for some h 2 G.k/. Now h 2 NG.T /.k/ because hT h�1 D
T , and h 2 T .k/ because hBh�1 D B (see 21.41). Hence inn.h/ induces the
identity map on R.G;T /, and so the isomorphism inn.g/WR.G;T /!R.G0;T 0/
is independent of the choice of g. This allows us to define the root datum of
G to be R.G;T / for any choice of a split Borel pair .B;T / with T split. It is
well-defined up to a unique isomorphism. The map sending G to its root datum
is functorial for isomorphisms of reductive groups.

21.43. We can exploit the same idea to define “the” maximal torus and “the”
Weyl group of a splittable reductive group. For most purposes, knowing an object
up to a unique isomorphism is as good as knowing the object itself. For example,
for most purposes it suffices to know that there exists an object with a certain
universal property without having a specific object in mind. We can state this
more formally as follows.

Suppose that we are given a family .Xi /i2I of objects and a system of
isomorphisms 'j i WXi �!Xj such that 'i i D id and 'lj ı'j i D 'li for all i;j; l 2
I . A projective limit of the family is an object X equipped with isomorphisms
'i WX !Xi such that 'j i ı'i D 'j for all i; j .

Now let G be a splittable reductive group over k. As index set I , we take
the set of split Borel pairs .B;T / in G. For an index i D .B;T /, we set Ti D T
and Bi D B . We take 'j i to be the isomorphism Ti ! Tj induced by inn.g/,
where g is any element of G.k/ such that g.Bi ;Ti /g�1 D .Bj ;Tj /. As before,
the elements g form a single right Ti .k/-coset, and so 'j i is independent of the
choice of g. The projective limit of the system is “the” maximal torus T in G.
Similarly, we can define the Weyl group W of G, the action of W on T , the root
datum of G, and its set of simple roots (see Deligne and Lusztig 1976, 1.1).

Tits systems

DEFINITION 21.44. Let G be an abstract group with subgroups B and N , and
let S be a subset of N=.B\N/. Then .G;B;N;S/ is a Tits system2 if it satisfies
the following axioms:

(T1) G is generated by B and N , and B \N is a normal subgroup of N ;

(T2) the elements of S are involutions generating the group W DN=.B \N/;

(T3) if s 2 S and w 2W , then sBw � BwB [BswB;

2We follow Bourbaki 1968, IV, �2. The set S is uniquely determined by .G;B;N/ (ibid. no. 5).
A pair .B;N/ such that .G;B;N;S/ is a Tits system for some S is called a BN -pair inG.
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(T4) for all s 2 S , sBs is not contained in B:

THEOREM 21.45 (BRUHAT DECOMPOSITION). Let .G;B;N;S/ be a Tits sys-
tem. Then

G D
G

w2W
BwB (disjoint union).

PROOF. The set BWB is stable under the formation of inverses (obviously) and
products. As it contains B and N , it equals G. It remains to show that the double
cosets BwB are disjoint. For this, see Exercise 21-5 or Bourbaki 1968, IV, �2,
Théorème 1. 2

EXAMPLE 21.46 (BOURBAKI 1981, IV, �2). LetGDGLn.k/ for some n� 0.
LetB be the standard (upper triangular) Borel subgroup, T the standard (diagonal)
maximal torus, and N the subgroup of G consisting of the matrices having
exactly one nonzero element in each row and column. Then N permutes the lines
kei in kn, and the resulting surjection N ! Sn has kernel T D B \N . Thus
W

def
DN=T ' Sn. Let si 2W correspond to the transposition .i; iC1/, and let

S D fs1; : : : ; sn�1g. The quadruple .G;B;N;S/ is a Tits system.
Axiom (T1) is a consequence of the following elementary statement from

linear algebra: the group GLn.k/ is generated by the permutation matrices, the
matrices diag.a;1; : : : ;1/, and the matrices I C�Eij .

Axiom (T2) holds because the transpositions .i; iC1/ are involutions gener-
ating Sn:

Axiom (T4) is equally obvious.
It remains to prove (T3), namely, that

sjBw � BwB [BsjwB for 1� j � n�1; w 2W:

This amounts to showing that

sjB � BB
0
[BsjB

0 with B 0 D wBw�1:

Let Gj be the subgroup of G consisting of the elements fixing ei for i ¤ j; j C1
and stabilizing the plane spanned by ej and ejC1 (for example, G1 is a subgroup
of the group G˛ in 21.16). Then Gj ' GL2.k/, and GjB D BGj . As sj 2 Gj ,
we have sjB � BGj , and so it suffices to prove that

Gj � .Bj �B
0
j /[ .Bj sjB

0
j / with Bj D B \Gj and B 0j D B

0
\Gj :

Identify Gj with GL2. This identifies Bj with the Borel subgroup BC of GL2
and B 0j with BC when w.j / < w.j C 1/ and with B� otherwise. In the first
case, we have to show that

GL2.k/D BC[BCsBC; s D

�
0 1

1 0

�
:
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This follows from the fact that BC is the stabilizer of the point .1W0/ in the natural
action of GL2.k/ on P1.k/ and acts transitively on the complement of .1W0/. In
the second case, we have to show that

GL2.k/D BCB�[BCsB�;

as B� D sBCs, this follows from the preceding equality by multiplying on the
right by s.

Thus (21.45),

GLn.k/D
G

w2W
B.k/wB.k/ (Bruhat decomposition).

This just says that every matrix can be written uniquely as a product U1PU2 with
U1, U2 in B and P a permutation matrix. For another proof, see Exercise 21-6.

EXAMPLE 21.47. Let .G;T / be a split reductive group over k. Let B be a Borel
subgroup of G containing T , and let � be the corresponding base for the root
system (21.41). The quadruple .G.k/;B.k/;N.k/;S/ with N DNG.T / and S
the set of reflections s˛ , ˛ 2�, is a Tits system. See Proposition 21.75 below.

The Tits systems of many classical groups are described in Borel 1991, V.23.

e. Complements on semisimple groups

Recall (C.34) that a root datum .X;˚;˚_/ is semisimple if Z˚ is of finite index
in X .

PROPOSITION 21.48. A split reductive group is semisimple if and only if its
root datum is semisimple.

PROOF. A reductive group is semisimple if and only if its centre is finite (19.10),
and so this follows from Proposition 21.8. 2

PROPOSITION 21.49. Let .G;T / be a split semisimple algebraic group.
(a) G is generated by its root groups U˛ (see 21.10), ˛ 2 ˚.G;T /.

(b) G is generated by the subgroups G˛ (see 21.23), ˛ 2 ˚.G;T /.

PROOF. (a) We may suppose the base field is algebraically closed. We know
(21.11) that G is generated by T and the root groups U˛ . Let H be the algebraic
subgroup of G generated by the U˛ . Because the identity

u˛.t/u�˛.�t
�1/u˛.t/D ˛

_.t/n˛

holds in SL2 (see 20.41), it holds in G (21.24). As ˛_.t/D ˛_.t/n˛˛_.�1/n˛ ,
it lies in H.k/, and so H contains ˛_.Gm/ for every root ˛. By duality the ˛_

generate a subgroup of X�.T / of finite index, and so H contains T .
(b) Every group G˛ contains U˛ , and so this is obvious. 2
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COROLLARY 21.50. Every semisimple algebraic group is perfect.

PROOF. We may suppose that the base field k is algebraically closed. Then the
semisimple group G is split. As each group G˛ is perfect (20.24), it is contained
in the derived group of G, which therefore equals G. 2

Recall (19.7) that a nontrivial algebraic group is almost-simple if it is semi-
simple and every proper normal subgroup is finite. Also (2.31) that an algebraic
group G is the almost-direct product of its algebraic subgroups G1; : : : ;Gr if the
multiplication map G1�� � ��Gr !G is a surjective homomorphism with finite
kernel. In particular, this means that the Gi commute in pairs and that each Gi is
normal in G.

THEOREM 21.51. A semisimple algebraic group G has only finitely many
almost-simple normal subgroup varieties G1; : : : ;Gr and is the almost-direct
product of them. Every connected normal subgroup variety of G is a product of
those Gi that it contains, and is centralized by the remaining ones.

PROOF. Let G1; : : : ;Gr be subgroup varieties of G that are minimal among the
nonfinite normal subgroup varieties of G. They are almost-simple.

For i ¤ j , ŒGi ;Gj � is the algebraic subgroup generated by the commutator
map

Gi �Gj !G; .a;b/ 7! aba�1b�1

(see 6.24). It is a connected normal subgroup variety of G, properly contained in
Gi , and so it is trivial (by the minimality of Gi ). Thus, the multiplication map

uWG1� � � ��Gr !G

is a homomorphism of algebraic groups, andH def
DG1 � � �Gr is a connected normal

subgroup variety of G; it is also semisimple. The kernel of u is finite, and so

dimG �
Xr

iD1
dimGi :

Thus r is bounded and we may suppose that our family .Gi /1�i�r contains all
minimal nonfinite normal subgroup varieties of G.

It remains to show that H DG. For this we may suppose that k is algebra-
ically closed. The torus TH

def
D .T \H/t is maximal in H (see 17.85). Suppose

that there exists ˇ 2 ˚.G;T /X˚.H;TH /, and let ˛ 2 ˚.H;TH /. Consider the
map

uWA1�A1!G; x;y 7! uˇ .y/u˛.x/uˇ .y/
�1:

Then u.x;y/ 2H and t �u.x;y/ � t�1 D y.˛.t/x;y/ for t 2 TH .k/. For a fixed
y, the map x 7! u.x;y/ is a homomorphism Ga! U˛ , and so it is a nonzero
multiple, f .y/ say, of u˛ . Now f is a regular map A1! A1X 0, and so it is
constant: f .y/D f .0/D 1. We deduce that

uˇ .y/u˛.x/uˇ .y/
�1
D u˛.x/; all x;y 2Ga.k/;
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and so u˛ and uˇ commute. As this is true for all ˛ 2 ˚.H;TH / and the groups
U˛ generate H , we see that Uˇ centralizes H . Hence the algebraic subgroup
H 0 generated by the Uˇ for ˇ 2 ˚.G;T /X˚.H;TH / is a connected subgroup
variety of G centralizing H . Let N be minimal among the nonfinite normal
subgroup varieties of H 0. Then N is normal in G (because G DH �H 0 and H
centralizes H 0), and so it equals one of the Gi . This contradicts the definition of
H , and so we conclude that ˚.H;TH /D ˚.G;T / and H contains U˛ for every
˛ 2 ˚.G;T /. Thus H DG. 2

The Gi in the theorem are called the almost-simple factors of G.

COROLLARY 21.52. Quotients and connected normal subgroup varieties of a
semisimple algebraic groups are semisimple.

PROOF. Every such group is an almost-direct product of almost-simple (hence
semisimple) algebraic groups. 2

COROLLARY 21.53. Every connected normal subgroup varietyN of a reductive
group G is reductive.

PROOF. We may suppose that k is algebraically closed. The quotient N=N \
R.G/ is a normal subgroup variety of the semisimple group G=R.G/, and so it
is semisimple. Therefore Ru.G/�N \R.G/, which is of multiplicative type,
and so Ru.G/D e. 2

SUMMARY 21.54. The following conditions on a connected reductive group G
are equivalent:

(a) G is semisimple;

(b) G is equal to its derived group;

(c) (G split) G is generated by the root groups U˛;

(d) (G split) if T is split, then the roots of .G;T / generate X�.T /Q.

Notes

21.55. Theorem 21.51 shows that every semisimple algebraic group is generated
by its almost-simple subgroups. As these are obviously perfect, this gives another
proof that semisimple algebraic groups are perfect.

21.56. When k has characteristic zero, Theorem 21.51 is most easily proved
using Lie algebras. The Lie algebra of a semisimple algebraic group G is
semisimple, and so it is a direct sum g D g1˚�� �˚ gr of its simple ideals gi .
Correspondingly, G is an almost-direct product of almost-simple subgroups Gi
with Gi equal to the centralizer of

L
j¤i gi in G.
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21.57. There is a more general form of Theorem 21.51. An almost pseudo-
simple group is a smooth connected noncommutative algebraic group such that
every proper normal subgroup is finite. A connected group variety G (not ne-
cessarily semisimple) has only finitely many minimal perfect nontrivial normal
subgroup varieties G1; : : : ;Gr . Each Gi is almost pseudo-simple, and the mul-
tiplication map G1� � � � �Gr ! G is a homomorphism with image the largest
perfect connected normal subgroup variety ofG. Its kernel is central and contains
no nontrivial connected subgroup variety. See Conrad et al. 2015, 3.1.8.

21.58. For a semisimple group G over an algebraically closed field k, every
element of G.k/ is a commutator (not merely a product of commutators); see
Ree 1964.

f. Complements on reductive groups

LEMMA 21.59. Every almost-simple algebraic group has a simple representa-
tion with finite kernel

PROOF. Every simple subrepresentation of a faithful representation on which the
group acts nontrivially has finite kernel. 2

Such an algebraic group need not have a faithful simple representation, essen-
tially because noncyclic commutative groups do not (see Exercise 22-2).

PROPOSITION 21.60. Let G be a connected group variety over a perfect field k.
The following conditions on G are equivalent:

(a) G is reductive;
(b) The radical R.G/ of G is a torus;
(c) G is an almost-direct product of a torus and a semisimple group;
(d) G admits a semisimple representation with finite kernel.

PROOF. (a))(b). If G is reductive, then R.G/DZ.G/t is a torus (17.62).
(b))(c). Let S D R.G/. Then S is a central torus in G and G=S is semi-

simple (19.2). Hence G=S is perfect (21.50), and so G is the almost-product of
S and Gder (see 12.46). The latter is semisimple because it is isogenous to G=S .

(c))(d). The group G is an almost-direct product

G0�G1� � � ��Gn!G

of subgroup varieties Gi with G0 a torus and each Gi , i � 1, an almost-simple
group (21.51). Each quotient G=.G0 � � �Gi�1GiC1 � � �Gn/ is either a torus or an
almost-simple group, and therefore admits a semisimple representation with finite
kernel. Choose such a representation for each i , and take the direct sum of them.

(d))(a). The unipotent radical of G acts trivially on semisimple representa-
tions of G (see 19.16). Hence (d) implies that it is finite, but, by definition it is
connected and smooth, and so it is trivial (2.17). As k is perfect, this implies that
G is reductive (19.11). 2
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PROPOSITION 21.61. Let G be a connected group variety over a field k (not
necessarily perfect). The following conditions are equivalent:

(a) G is reductive;

(b) the geometric radical R.Gka/ of G is a torus;

(c) G is an almost-direct product of a torus and a semisimple group.

PROOF. (a))(b). If G is reductive, then Gka is reductive, and so R.Gka/ is a
torus (21.60).

(b))(c). As R.G/ka �R.Gka/, we see that R.G/ is a torus. Now the same
argument as in the proof of Proposition 21.60 proves (c).

(c))(a). As Gka is also an almost-direct product of a torus and a semisimple
algebraic group, its unipotent radical is obviously zero. 2

Recall (21.23) that, for a root ˛ of .G;T /, G˛ (resp. G˛) is the algebraic
subgroup of G generated by U˙˛ (resp. T and U˙˛).

PROPOSITION 21.62. Let .G;T / be a split reductive group, and let � be a base
for the root system of .G;T /. Then Gder is generated by the algebraic subgroups
G˛ , ˛ 2�, and G is generated by the algebraic subgroups G˛ , ˛ 2�.

PROOF. As G DGder �T and each group G˛ contains T , it suffices to show that
Gder is generated by the groups G˛ . Thus, we may suppose that G is semisimple.

Let H be the algebraic subgroup of G generated by the G˛ . As each G˛

is normalized by T , so also is H . As G˛ contains U˛ and U�˛ , we see that H
contains g˛ and g�˛ for all ˛ 2�.

In characteristic zero, Œg˛;gˇ �D g˛Cˇ if ˛, ˇ, and ˛Cˇ are all roots (Serre
1966, VI, Thm 2) and so Lie.H/ contains g˛ for all ˛ 2 ˚ .

In the general case, we use that the Weyl group of .G;T / is generated by
the reflections s˛ for ˛ 2� (see 21.39). As G˛.k/ contains a representative for
n˛ for s˛ (see 21.11d), we see that H.k/ contains a set of representatives for
the elements of W.G;T /. Therefore, for all s 2 W.G;T / and ˛ 2 �, the Lie
algebra of H contains sg˛ D gs˛ (see 21.2) and so H contains the root group
Us˛ . As W ��D ˚ (see C.30), it follows that H contains U˛ for all ˛ 2 ˚ , and
so H DG (see 21.49). 2

COROLLARY 21.63. Let '1;'2W.G;T /� .G0;T 0/ be isogenies of split reduct-
ive groups, and let � be a base for ˚.G;T /. If '1 and '2 agree on T and on U˛
for all ˛ 2�, then they agree on G.

PROOF. As '1 and '2 agree on the Borel subgroup U˛ �T of G˛ , they agree on
G˛ (see 17.21), and these groups generated G (see 21.62). 2

PROPOSITION 21.64. A reductive group G is splittable (19.22) if and only if it
is split as a group variety (17.101).
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PROOF. If G contains a split maximal torus, then it contains a split Borel sub-
group (21.30, 21.34). Conversely, if G contains a Borel subgroup B that is split
as a solvable group, then (16.29d) applied to the extension

e! Bu! B! B=Bu! e

shows that B contains a split maximal torus, which is also split maximal in G.2

COROLLARY 21.65. Let G be a reductive group over k. Any two split maximal
tori in G are conjugate by an element of G.k).

PROOF. If G is not split, there is nothing to prove. Otherwise, G is split as an
algebraic group, and so we can apply Theorem 17.105(c). 2

NOTES. Proposition 21.60 is Proposition 2.2 of Borel and Tits 19653 except that there k is
implicitly assumed to be algebraically closed (the assumption is hidden in the terminology).

g. Unipotent subgroups normalized by T

21.66. Let .G;T / be a split reductive group, and letH be a connected subgroup
variety of G normalized by T . Then

Lie.G/T 10.34
D Lie.CG.T //

17.84
D Lie.T /,

and so

Lie.H/T D Lie.G/T \Lie.H/D Lie.T /\Lie.H/ 10.14
D Lie.T \H/.

Let ˚H be the set of roots ˛ such that H � U˛ . This is also the set of roots ˛
such that Lie.H/� g˛ (see 21.11c). As H is stable under T , its Lie algebra is a
direct sum of eigenspaces for T , and so

Lie.H/D Lie.T \H/˚
M

˛2˚H
g˛:

Therefore H is generated by T \H and the root groups U˛ it contains (10.17).

PROPOSITION 21.67. Let G be a reductive group over k, and let H1 and H2
be smooth connected subgroups of G. If H1\H2 is connected and contains a
maximal torus T of G, then it is smooth.

3These authors (see 0.3 of their paper) offer the reader three different definitions of “groupe
algébrique sur k”. However, many of the statements in their paper take on different meanings
according to which definition is adopted, and some become false. For example, Proposition 2.2 is
false as stated for “schémas en groupes affine absolument réduit sur k”.
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PROOF. We may suppose that k is algebraically closed. From 21.66,

Lie.Hi /D Lie.T /˚
M
fg˛ j ˛ 2 ˚Hi g for i D 1;2;

Lie..H1\H2/red/D Lie.T /˚
M
fg˛ j ˛ 2 ˚H1 \˚H2g:

Now Lie.H1\H2/
10.14
D Lie.H1/\Lie.H2/D Lie..H1\H2/red/, and so H1\

H2 is smooth (3.19). 2

THEOREM 21.68. Let .G;T / be a split reductive group. Let B be a Borel
subgroup of G containing T , and let ˚C.B/ D f˛1; : : : ;˛rg be its system of
positive roots.

(a) The multiplication map

'WU˛1 � � � ��U˛r ! Bu

is a T -equivariant isomorphism of algebraic varieties with T -action.

(b) The morphism BuÌT ! B is an isomorphism.

(c) Let U be a subgroup variety of Bu normalized by T , and let fˇ1; : : :ˇsg be
the weights of T on Lie.U /. Then U is connected and the multiplication
map

Uˇ1 � � � ��Uˇs ! U

is a T -equivariant isomorphism of algebraic varieties with T -action. In
particular, U is generated by the U˛ for which g˛ � Lie.U /.

(d) A subset ˚ 0 of ˚ is the set of weights of a subgroup U as in (c) if and only
if ˚ 0\�˚ 0 D ; and .N˛CNˇ/\˚ � ˚ 0 for all ˛;ˇ 2 ˚ 0.

PROOF. (a) Let U D U˛1 �� � ��U˛r . The map ' is equivariant for the actions of
T by conjugation, and it induces an isomorphism Tgte.U /! Tgte.Bu/ on the
tangent spaces. Let � lie in the dominant Weyl chamber of B . Then the weights
of �.Gm/ on Tgte.U / and Tgte.Bu/ are strictly positive, and so the Luna maps
U ! Tgte.U / and Bu! Tgte.Bu/ are isomorphisms (13.41). Therefore ' is an
isomorphism (cf. 13.42).

(b) Every Borel subgroup B containing T is of the form P.�/ for some
regular character � (see 21.32). Then Bu D U.�/ and T D Z.�/, and so the
required isomorphism is the isomorphism U.�/ÌZ.�/! P.�/ of Theorem
13.33(b).

(c) The same argument as in (a) shows that the multiplication map

Uˇ1 � � � ��Uˇs ! U ı

is an isomorphism. It remains to show that U D U ı. From (a) we get an
isomorphism

U ı�U 0! Bu
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with U 0 D
Q
fU˛ j ˛ 2 ˚

C; U˛ 6� U
ıg. This isomorphism restricts to an iso-

morphism
U ı�U \U 0! U:

On passing to the quotient by U ı, we get an isomorphism U \U 0 ! U=U ı.
Now U \U 0 is stable under T (because U and U 0 are), and the map is T -
equivariant. As T is connected and U=U ı is étale, the action of T is trivial, and
so U \U 0 � CG.T /D T . Therefore U \U 0 � Bu\T D e, and so U D U ı.

(d) The necessity is obvious, and the sufficiency follows from Theorem 16.65
applied to the subsemigroup of X generated by ˚ 0. 2

REMARK 21.69. In order to write down the map ', we had to choose an ordering
of the set ˚C. However, the theorem is true whichever ordering we choose.
Similar remarks apply elsewhere.

h. The Bruhat decomposition

Let .G;T / be a split reductive group over k and B a Borel subgroup of G
containing T . The Bruhat decomposition for G.k/ is

G.k/D
G

w2W
B.k/wB.k/

(see 21.46 for GLn). In this section, we prove that the Bruhat decomposition
exists on the level of schemes.

Recall (21.1) that every w 2 W has a representative nw 2 NG.T /.k/. As
nwB is independent of the choice of nw , we usually denote it by wB . Similarly,
BwB denotes the double coset BnwB . For w 2W , we let ew denote the point
wB=B in G=B – it is fixed by T . Recall that .G=B/T .k/ is equal to the set of
Borel subgroups of G containing B , which is acted on simply transitively by W
(see 21.41). It follows that

.G=B/T .k/D few j w 2W g:

In particular, .G=B/T is a finite constant scheme.
As usual, we choose a representation .V;r/ of G such that B is the stabilizer

of a line in V and regard G=B as a closed subvariety of P.V /. Fix a cocharacter
� of T in the dominant Weyl chamber C.B/ with the property that the numbers
h�;�i as � runs over the weights of T on V are distinct, and let Gm act on G and
G=B through �. Then B D P.�/ (21.29) and .G=B/Gm D .G=B/T (13.51).

PROPOSITION 21.70. For each w 2 W , there is a unique smooth subscheme
Y.w/ of G=B such that

Y.w/.ka/D fx 2 .G=B/.ka/ j lim
t!0

�.t/ �x D ewg:

Each Y.w/ is an affine space, and

G=B D
G

w2W
Y.w/ (disjoint union of locally closed subvarieties).
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For a unique (attracting) point, Y.w/ is open and dense in G=B , and for unique
(repelling) point, Y.w/ is a single point.

PROOF. As .G=B/�.Gm/ is the finite constant scheme few j w 2W g, this is the
Białynicki-Birula decomposition (13.49). 2

PROPOSITION 21.71. The cell Y.w/ is the Bu-orbit of ew in G=B .

PROOF. If b 2Bu.ka/, then limt!0�.t/ �b ��.t/
�1D 1 becauseBuDU.�/, and

so limt!0�.t/bx D ew for all x 2 Y.w/.ka/. Therefore Y.w/ is stable under the
action of Bu. In particular, Buew � Y.w/: As Y.w/ is smooth, it remains to show
that .Buew/.ka/D Y.w/.ka/. We may suppose that k is algebraically closed.
Let Bux be a nonempty orbit of Bu in Y.w/. Then Bux is closed by the Kostant–
Rosenlicht theorem (17.64). Therefore ew 2 Bux and Buew D Bux D Y.w/. 2

DEFINITION 21.72. The symmetry with respect to B is the element w0 2 W
such that w0.˚C/D�˚C (equivalently, w0.C.B//D�C.B/).

As the Weyl group acts simply transitively on the set of Weyl chambers
(21.41), there is a unique such element. Note that w0 is an involution because
w20.C.B//D C.B/.

THEOREM 21.73. (a) There are decompositions (of smooth algebraic varieties)

G=B D
G

w2W
BuwB=B (cellular decomposition)

G D
G

w2W
BuwB (Bruhat decomposition).

(b) The dense open orbit for the action of Bu on G=B is Buw0B=B and the
dense open orbit for the action of Bu�B on G is Buw0B .

PROOF. (a) The first equality follows from Propositions 21.70 and 21.71, and
the second equality follows from the first.

(c) Let n0 2N.k/ represent w0. Then

Tgtew0 .G=B/' g=n0.b/'
M
fg˛ j ˛ 2 ˚

C.B/g;

and so the weights of Gm on Tgtew0 .G=B/ are strictly positive (by our choice of
�/. Therefore the orbit Y.w0/D Bun0B=B is open and dense (13.49). 2

When k D C, the cellular decomposition in the theorem becomes a cellular
decomposition of the manifold .G=B/.C/ in the sense of geometric topology,
which explains the name.

REMARK 21.74. As B DBu �T andW normalizes T , we have BwB DBuwB
and BwB=B D BuwB=B . Therefore, the decompositions in (a) can be written

G=B D
G

w2W
BwB=B

G D
G

w2W
BwB:
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PROPOSITION 21.75. The quadruple .G.k/;B.k/;N.k/;S/ arising, as in Ex-
ample 21.47, from a split reductive group .G;T / over k is a Tits system.

PROOF. Note thatB\N D T , and so the groupW DN.k/=.B\N/.k/ is equal
to the Weyl group W.G;T /DN.k/=T .k/ (see 21.1). Therefore (T2) holds, and
(T1) holds because the equality (21.73)

G.k/D
G

w2W
Bu.k/nwB.k/

shows that G.k/ is generated by B.k/ and N.k/.
For (T3), we have to show that

s˛B.k/w � B.k/wB.k/[B.k/s˛wB.k/:

According to Theorem 21.68, B.k/D T .k/ �
Q
ˇ2˚C Uˇ .k/, and so

s˛B.k/w D T .k/ �
Y

ˇ2˚C;ˇ¤˛
Uˇ .k/U�˛.k/s˛w:

Therefore, it suffices to prove the inclusion

U�˛.k/s˛w � B.k/wB.k/[B.k/s˛wB.k/:

If w�1.˛/ 2 ˚C, then

U�˛.k/s˛w D s˛wUw�1.˛/.k/� B.k/s˛wB.k/:

If not, then using the Bruhat decomposition in G˛ , we have U�˛.k/� B.k/[
B.k/s˛B.k/. We deduce the inclusion

U�˛.k/s˛w � B.k/s˛w[B.k/s˛B.k/s˛w:

But we have B.k/s˛B.k/s˛w D B.k/U�˛.k/w D B.k/U�w�1.˛/.k/� B.k/.
Finally, (T4) is obvious. 2

The subgroups Uw and Uw

Let U D Bu. Let ˚� D�˚C and U� D n0.U /. Each of U and U� is equal to
the product of the root groups it contains (21.68), and�

U˛ � U ” ˛ 2 ˚C

U˛ � U
� ” ˛ 2 ˚�.

DEFINITION 21.76. For w 2 W , define Uw D U \ nw.U / and Uw D U \

nw.U
�/.

PROPOSITION 21.77. For all w 2W , the groups Uw and Uw are smooth and
connected; moreover(

Uw '
Y
fU˛ j ˛ 2 ˚

C
\w.˚C/

Uw '
Y
fU˛ j ˛ 2 ˚

C
\w.˚�/:

(136)
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PROOF. Once we prove that Uw and Uw are smooth, the remaining statements
will follow from Theorem 21.68(c). We may suppose that k is algebraically
closed. As .Uw/red is a subgroup variety of Bu normalized by T , it is connected
(21.68c). Now Uw is connected, and hence smooth by Proposition 21.67. The
proof that Uw is smooth is similar. 2

LEMMA 21.78. For all w 2W , the multiplication map

Uw �U
w
! U

is an isomorphism.

PROOF. We may suppose k to be algebraically closed. We first show that Uw \
Uw D e. The subgroup variety .Uw \Uw/red is normalized by T , and so it is
equal to the product of the U˛ that it contains. But

U˛ � Uw ” ˛ 2 ˚C\w.˚C/

U˛ � U
w
” ˛ 2 ˚C\w.˚�/:

These conditions are exclusive, which proves that .Uw\Uw/redD e. On the other
hand, Lie.Uw \Uw/ D Lie.Uw/\Lie.Uw/ D 0, and so Uw \Uw is smooth,
and hence trivial.

Every root ˛ satisfies one of the above conditions and U is smooth, and so
the homomorphism Uw �U

w ! U is surjective. Its kernel is Uw \Uw D e. 2

PROPOSITION 21.79. Let w 2W .
(a) The isotropy group at ew in G (resp. U ) is nw.B/ (resp. Uw ).

(b) The orbits Uwew � Uew are equal, and the orbit map

Uw ! Uwew D Uew

is an isomorphism.

(c) The dimension of Uew is n.w/ def
D
ˇ̌
˚C\w.˚�/

ˇ̌
:

PROOF. (a) Consider the quotient map � WG ! G=B . The isotropy group at
eB=B in G is obviously B . When we translate � by nw , we get a quotient map
�w WG!G=B defined by �w.g/D gnwB=B . The isotropy group at nwB=B is
the fibre of this map, which is nw.B/.

The stabilizer of ew in U is U \nw.B/D U \nw.U /D Uw .
(b) The kernel of the restriction of .d�w/e to Lie.U / is

Ker..d�w/e/\Lie.U /D nw.b/\Lie.U /D Lie.Uw/:

As Uw �Uw ' U , the morphism Uw ! Uwew is bijective on ka-points and the
kernel of its differential is Lie.Uw/\Lie.Uw/D 0. Therefore it is étale and an
isomorphism.

(c) From (b) we have dim.Uew/D dimUw , which equals n.w/ by (136). 2
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THEOREM 21.80 (BRUHAT DECOMPOSITION). (a) There are decomposi-
tions (of smooth algebraic varieties)

G=B D
G

w2W
UwnwB=B (cellular decomposition of G=B)

G D
G

w2W
UwnwB (Bruhat decomposition of G).

(b) For every w 2W , the morphism

Uw �B! UwnwB; .u;b/ 7! unwb

is an isomorphism.

(c) There are open coverings

G D
[
w2W

nwU
�B

G=B D
[
w2W

nwU
�B=B .

PROOF. (a, b) These statements summarize what was proved above.
(c) Theorem 21.73b implies that U�B and U�B=B are dense open subsets

of G and G=B containing e and eB . Therefore, their translates by nw are dense
open subsets containing nw and nwB . Their unions are all of G or G=B because

nwU
�B D .nwU

�n�1w /nwB � U
wnwB

and because of the decompositions in (a). 2

DEFINITION 21.81. For w 2W , define

N.w/D f˛ 2 ˚C j w�1.˛/ 2 ˚�g D ˚C\w.˚�/:

Thus n.w/D jN.w/j.

REMARK 21.82. For w 2W ,
(a) dimY.w/D dimUw D n.w/,

(b) n.w/D n.w�1/; and

(c) n.w0w/D n.ww0/D
ˇ̌
˚C

ˇ̌
�n.w/.

EXAMPLE 21.83. Let B be a Borel subgroup in a reductive group G. The map
gB;g0B 7! Bg�1g0B induces a bijection

Gn.G=B �G=B/! BnG=B

and so the Bruhat decomposition says that the orbits of pairs of maximal flags
under simultaneous translation by G are indexed by the elements W .
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Let G D GLn, and let B be the Borel subgroup of upper triangular matrices.
We can view G=B as the variety of maximal flags in V D kn. Let w 2 Sn.
Maximal flags .V1; : : : ;Vn/ and .V 01; : : : ;V

0
n/ are said to be in relative position w

if there exists a basis fe1; : : : ; en/ for V such that, for every i D 1; : : : ;n�1, we
have Vi D he1; : : : ; ei i and V 0i D hew.1/; : : : ; ew.i/i. The subvariety Y.w/ consists
of the maximal flags in relative position w. For a direct proof of the Bruhat
decomposition from this perspective, see Exercise 21-6.

The big cell

THEOREM 21.84. Let .G;T / be a split reductive group over k, and let B be a
Borel subgroup containing T . Then there exists a unique Borel subgroup B 0 of
G such that B \B 0 D T . The multiplication map

B 0u�T �Bu!G (137)

is an open immersion (of algebraic varieties).

PROOF. Choose a � 2 X�.T / such that h˛;�i > 0 for all ˛ 2 ˚C.B/. Then
B D P.�/. Let B 0 D P.��/. The map (137) is an open immersion by Theorem
13.33. The rest is obvious. 2

DEFINITION 21.85. The dense open subvariety B 0u �T �Bu of G is called the
big cell in G.

We often write B� for B 0, and U� for B�u . Then the big cell becomes U�B .
It is also equal to the dense open subset Buw0B of G in Theorem 21.73.

Borel subgroups B and B 0 of G such that B \B 0 is a maximal torus are said
to be opposite. Thus Borel subgroups are opposite if their intersection is as small
as possible. If w0 is the symmetry with respect to B (see 21.72), then w0B D B 0.

SUMMARY 21.86. Let .G;T / be a split reductive group over k, and let ˚C be
a positive system of roots. Then U D

Q
˛2˚C U˛ and U� D

Q
˛2˚C U�˛ are

maximal connected unipotent subgroup varieties of G. Each of U and U� is
isomorphic as an algebraic variety to the product of the factors in its definition.
The subgroups B D UT and B� D U�T are opposite Borel subgroups of G.
Finally, C D U�T U (the big cell) is a dense open subvariety of G.

EXAMPLE 21.87. Let .G;T /D .GLn;Dn/. Its roots are

˛ij Wdiag.t1; : : : ; tn/ 7! ti t
�1
j ; i;j D 1; : : : ;n; i ¤ j:

The corresponding root groups are Uij D fI CaEij j a 2 kg. Let ˚C D f˛ij j
i < j g. Then U and U� are, respectively, the subgroups of superdiagonal and
subdiagonal unipotent matrices, and the big cell is the set of matrices for which
the i � i matrix in the upper left-hand corner is invertible for all i .

NOTES. The existence of a Bruhat decomposition was proved for a number of classical
groups by Bruhat in 1956, and extended to the general case by Chevalley in his 1956–58
seminar.
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i. Parabolic subgroups

In this section, .G;T / is a split reductive group and B is a Borel subgroup of
G containing T . We determine the parabolic subgroups containing B . As a
consequence, we find that the parabolic subgroups of G are exactly the groups
P.�/ with � a cocharacter of G. As the parabolic subgroups of G and its
semisimple quotient G=R.G/ are in natural one-to-one correspondence, we
assume throughout that G is semisimple.

Maximal parabolic subgroups

Fix a Borel subgroup B of G containing T , and let � be the base corresponding
to B . Recall (13.30) that, for every cocharacter � ofG, there is a subgroup variety
P.�/ whose ka-points are the x 2G.ka/ such that limt!0�.t/ �x ��.t/

�1 exists.
Let .X;˚;˚_/ be the root system of .G;T /. Because G is semisimple, � is

a basis for XQ. The fundamental cocharacters (relative to �) are the elements
�˛ of the dual basis for X_Q DX�.T /Q. Thus, h˛;�ˇ i D ı˛;ˇ for ˛;ˇ 2�. For
˛ 2�, let P˛ D P.�˛/.

PROPOSITION 21.88. The group P˛ is a proper parabolic subgroup of G con-
taining B . Let sˇ 2W be the reflection corresponding to ˇ 2�Xf˛g; then every
element of NG.T /.k/ representing sˇ 2W lies in P˛.k/.

PROOF. We may suppose that k is algebraically closed. Obviously T � P˛
because �˛.t/ �x ��˛.t/�1 D x if x; t 2 T .k/. For a root ˇ and isomorphism
uˇ WGa! Uˇ ,

�˛.t/ �uˇ .x/ ��˛.t/
�1
D uˇ .t

hˇ;�˛ix/; all x 2 Uˇ .k/: (138)

If ˇ 2 ˚C, then hˇ;�˛i � 0, and so uˇ .x/ 2 P˛.k/. Hence Uˇ � P˛ for all
ˇ 2 ˚C, which implies that B � P˛ (see 21.68). Therefore P˛ is parabolic
(17.16), and it is proper because it does not contain U�˛ (this is clear from (138)).

If ˇ 2�Xf˛g and n 2NG.T /.k/ represents sˇ , then

n ��˛.t/ �n
�1
D sˇ .�˛/.t/D .�˛�hˇ;�˛iˇ/.t/D �˛.t/;

and so �˛.t/ �n ��˛.t/�1 D n ��˛.t/ �n�1 �n ��˛.t/�1 D n. It follows that n 2
P˛.k/. 2

From the formula (138), we see thatU�ˇ is contained in P˛ if ˇ 2�Xf˛g but
not if ˇ D ˛. It follows that P˛ contains the semisimple subgroup Gˇ generated
by Uˇ and U�ˇ if ˇ is a simple root¤ ˛.

Description of the parabolic subgroups containing B

As before, .G;T / is a split semisimple group over k, B is a Borel subgroup of G
containing T , and � is the base for ˚ D ˚.G;T / corresponding to B .
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NOTATION 21.89. Let I be a subset of �. We define the following objects:
(a) WI is the subgroup of W generated by the elements s˛ , ˛ 2 I ;

(b) ˚I D ZI \˚ (set of roots that are linear combinations of elements of I );

(c) TI D
�T

˛2I Ker.˛/
�
t

(largest subtorus of T such that ˛.TI /D 1 if ˛ 2 I );

(d) LI D CG.TI ).

PROPOSITION 21.90. (a) The pair .LI ;T / is a split reductive group with root
datum .X.T /;˚I ;˛ 7! ˛_) and Weyl group WI .

(b) The intersection B \LI is a Borel subgroup BI of LI with ˚C.BI /D
˚I \˚

C.B/; this has base I .

PROOF. We may suppose that k is algebraically closed.
(a) The group LI is reductive because it is the centralizer of a torus in a

reductive group (17.59). Clearly, T is maximal in LI and it is split, and so
.LI ;T / is a split reductive group.

The root groups U˛ contained in LI are those centralizing the torus TI . Let
u˛ be an isomorphism Ga! U˛ . For t 2 T .k/ and x 2Ga.k/,

u˛.x/ � t �u˛.x/
�1
D t t�1 �u˛.x/ � t �u˛.�x/D t �u˛.˛.t

�1/x/ �u˛.�x/

D t �u˛.˛.t
�1/x�x/.

If ˛ 2 ˚I , then ˛.t�1/ D 1 for all t 2 TI , and so U˛ � LI . Conversely, if
U˛ � LI , then u˛.x/ � t �u˛.x/�1 D t for t 2 TI .k/, and so ˛.t�1/ D 1; thus
˛.TI /D 1 and ˛ 2 ˚I . It follows that .LI ;T / has root datum .X;˚I ;˛ 7! ˛_/

(cf. 21.20), and this has Weyl group WI .
(b) The intersection B \LI is a Borel subgroup of LI (see 17.72). The

associated system of positive roots is obviously ˚I \˚C.B/. The set I is
contained in a base for ˚I , and it has the correct order to be a base. 2

Let w 2 W.G;T /. Recall from the last section that C.w/ is the smooth
subscheme of G=B whose points x satisfy limt!0�.t/ �x D wB=B for any (one
or all) � in the dominant Weyl chamber for B . It is the Bu-orbit of wB=B ,
and there is a Białynicki-Birula decomposition G=B D

F
w2W C.w/=B where

C.w/D BwB .

THEOREM 21.91. For each subset I of �, there is a unique parabolic subgroup
PI of G containing B such that

PI D
G
w2WI

C.w/:

The unipotent radical of PI is generated by the U˛ with ˛ 2 ˚CX˚I , and the
map

Ru.PI /ÌLI ! PI

is an isomorphism. Every parabolic subgroup P of G containing B is of the form
PI for a unique subset I of �.
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PROOF. Let ZI D fwB=B j w 2WI g, and let X.ZI / be the concentrator sub-
scheme (see 13.58). We define PI to the inverse image of X.ZI / in G. Then
PI is a smooth subscheme of G such that jPI j D

F
w2WI

jC.w/j. To show that
PI is an algebraic subgroup of G, it suffices to show that PI .ka/ is a subgroup
of G.ka/. It is obviously stable under the formation of inverses and under left
multiplication by elements of B.ka/. It remains to show that it is stable under left
multiplication by s˛ , ˛ 2 ˚I , but this follows from

s˛B.k
a/w � B.ka/wB.ka/[B.ka/s˛wB.k

a/

(see 21.75). As PI .ka/� C.e/.ka/, we have C.e/D B .
We have proved the first statement, and in proving the remainder, we may

suppose that k is algebraically closed. Let T˛ DKer.˛/t andG˛ DCG.T˛/. The
Bruhat decomposition of G˛ is

G˛ D C.e/[C.s˛/;

and so U˛ and U�˛ are contained in C.e/[C.s˛/. This implies that PI contains
LI .

Let U DBu. Then U is a maximal unipotent subgroup of PI , and so Ru.PI /
is the reduced identity component of

T
w2WI

w.U / (see 17.56). We can write
U D UI �U

I with UI D
Q
˛2˚

C

I

U˛ and UI D
Q
˛2˚CX˚I

U˛ . The elements

w 2WI map ˚CX˚I onto itself, and so\
w2WI

w.U /D
�\

w2WI
w.UI /

�
�U I .

But LI is reductive, UI is a maximal unipotent subgroup of LI , andWI the Weyl
group of LI , and so

T
w2WI

w.UI /D e. Thus Ru.PI /D U I .
For w 2W ,

C.w/D UwwB D UwwT UIU
I :

As Uw � LI if w 2WI , we deduce that C.w/� LI �Ru.PI /. The homomorph-
ismRu.PI /�LI !PI is therefore surjective, and it is easily seen to be injective
on ka-points. It is an isomorphism because it is an isomorphism on the Lie
algebras.

It remains to prove the third statement. LetP be a subgroup variety containing
B , and let ˚P be the set of weights of T on Lie.P=Ru.P //. Let I D ˚P \�.
For ˛ 2 I , the image in P=Ru.P / of the intersection of G˛ with P has the same
Lie algebra as G˛ , hence the same dimension, and so G˛ � P (because G˛ is
connected). In particular, U˙˛ � P , and so LI � P . As Ru.PI /� B � P , we
find that PI � P .

Conversely, the root systems of LI and P=Ru.P / are the same, and so
dimLI D dimP=Ru.P /. As LI is reductive, LI \Ru.P /D e, and so

P ,! LI �Ru.P /� LI �B � LI �Ru.PI /� PI . 2
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COROLLARY 21.92. Let � be a cocharacter of T . Then P.�/ contains B if and
only if h˛;�i � 0 for all ˛ 2 ˚C.B/, in which case P.�/D PI with I D f˛ 2
� j h˛;�i D 0g.

PROOF. From the definitions of the two groups, we see that P.�/ contains U˛
if and only if h˛;�i � 0. As B is generated by the U˛ with ˛ 2 ˚C.B/ (see
21.68a), this proves the first part of the statement. We saw in the proof of the
theorem that P.�/D PI with I the set of simple roots occurring as weights on
Lie.P.�/=RuP.�//. As the weight of T on Lie.P.�// (resp. Lie.RuP.�// are
the roots ˛ such that h˛;�i � 0 (resp. h˛;�i> 0), the set I is as described. 2

EXAMPLE 21.93. Let G DGLn with its standard Borel pair .B;T /. The corres-
ponding base � for ˚.G;T / consists of the characters

˛i Wdiag.t1; : : : ; tn/ 7! ti=tiC1; i D 1; : : : ;n�1:

Let I be a subset of �. Identify � with f1; : : : ;n�1g, and set

�XI D fa1;a1Ca2; : : : ;a1C�� �Cas�1g:

Then PI , LI , and Ru.PI / consist respectively of the matrices of the form
�
A1 � �

0
: : : �

0 0 As

�

;

�
A1 0 0

0
: : : 0

0 0 As

�

;

�
I � �

0
: : : �

0 0 I

�

with Ai an ai �ai matrix. Note that there are 2n�1 parabolic subgroups of this
shape. As there are 2n�1 subsets I of �, these subgroups must exhaust the
parabolic subgroups containing B D P;.

REMARK 21.94. In 21.90, we attached a reductive group L.I / to a subset I of
�. More generally, we say that a subset˚ 0 of˚ is closed if .N˛CNˇ/\˚ �˚ 0
for all ˛;ˇ 2 ˚ 0 and symmetric if ˚ 0 D�˚ 0. Given a symmetric closed subset
˚ 0 of ˚ , let G.˚ 0/ denote the algebraic subgroup of G generated by T and the
U˛ with ˛ 2 ˚ 0. Then .G.˚ 0/;T / is a split reductive group, and

Lie.G.˚ 0//D Lie.T /˚
M

˛2˚ 0
Lie.G/˛:

Therefore, its root system is .X;˚ 0; : : :/, and its Weyl group is the subgroup of
W.G;T / generated by s˛ with ˛ 2 ˚ 0. See Jantzen 2003, II, 1.7.

ASIDE 21.95. Let .G;T / be a split reductive group. Much is known about the lattice
group subvarieties ofG containing T – see, for example, the tables in Harebov and Vavilov
1996. In Sopkina 2009, the lattice of connected algebraic subgroups (not necessarily
smooth) ofG containing T is described in terms of the root system of .G;T /. In particular,
the smooth subgroups correspond to certain “quasi-closed” sets of roots (Borel and Tits
1965).
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j. The root data of the classical semisimple groups

We compute the root system attached to each of the classical split almost-simple
groups. In each case we work with a convenient form of the group G in GLn and
find the eigenspaces of a maximal split torus acting on Lie.G/. This determines
the roots, and either we find the coroots directly, as we did for GLn, or we deduce
them from the fact that we have a root system. We obtain groups for each of
the Dynkin diagrams An, Bn, Cn, Dn. As the Dynkin diagram determines the
group up to isogeny (23.9 below), we obtain in this way a complete list of split
geometrically almost-simple groups over k with Dynkin diagram An, Bn, Cn, or
Dn.

Example (An): SLnC1; n� 1

The diagonal torus T D fdiag.t1; : : : ; tnC1/ j t1 � � � tnC1 D 1g is a split maximal
torus in SLnC1. Its character group is

X�.T /D
L
i Z�i

ı
Z�;

where �i is the character diag.t1; : : : ; tnC1/ 7! ti and �D
P
�i , and

X�.T /D
˚P

ai�i 2
L
i Z�i j

P
ai D 0

	
;

where
P
ai�i is the cocharacter t 7! diag.ta1 ; : : : ; tan/. The canonical pairing

X�.T /�X�.T /! Z is h�j ;
P
ai�i i D aj :The Lie algebra of SLnC1 is

slnC1 D f.aij / 2MnC1.k/ j
P
ai i D 0g;

and SLnC1 acts on it by conjugation. Let N�i denote the class of �i in X�.T /.
Then T acts trivially on the set g0 of diagonal matrices in g, and it acts through
the character ˛ij

def
D N�i � N�j on kEi;j , i ¤ j (see 21.6). Therefore,

slnC1 D g0C
L
i¤j g˛ij ; g˛ij D kEi;j ;

and
˚ D f˛ij j 1� i;j � nC1; i ¤ j g:

It remains to compute the coroots. Consider, for example, the root ˛ D ˛12.
With the notation of Theorem 21.11,

T˛ D fdiag.x;x;x3; : : : ;xn/ j xxx3 � � �xn D 1g

and

G˛ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�
� � 0 0

� � 0 0

0 0 � 0
: : :

:::

0 0 0 � � � �

�

2 SLn

9>>>>>>=>>>>>>;
:
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As in Example 21.16, W.G˛;T /D f1;s˛g, where s˛ acts on T by interchanging
the first two coordinates – it is represented by

n˛ D

�
0 1 0 0

�1 0 0 0

0 0 1 0
: : :

:::

0 0 0 � � � 1

�

2NG.T /.k/:

Let �D
PnC1
iD1 ai N�i 2X

�.T /. Then

s˛.�/D a2 N�1Ca1 N�2C
PnC1
iD3 ai N�i D ��h�;�1��2i. N�1� N�2/:

In other words,
s˛12.�/D ��h�;˛

_
12i˛12

with ˛_12 D �1��2, which proves that �1��2 is the coroot of ˛12.
When the ordered index set f1;2; : : : ;nC1g is replaced with an unordered

set, everything becomes symmetric among the roots, and so the coroot of ˛ij is

˛_ij D �i ��j ; all i ¤ j:

Let B be the standard (upper triangular) Borel subgroup of SLnC1. The
corresponding system of positive roots is ˚C D f�i ��j j i < j g, which has
base f�1��2; : : : ;�n��nC1g:

The set˚ is a root system in the vector spaceX�.T /˝Q'QnC1=he1C�� �C
enC1i:We can transfer it to a root system in the hyperplaneH W

PnC1
iD1 aiXi D 0 by

noticing that each element of QnC1=he1C�� �CenC1i has a unique representative
in H .

SUMMARY 21.96. Let V be the hyperplane in QnC1 of .nC1/-tuples .ai / such
that

P
ai D 0. Let f"1; : : : ; "nC1g be the standard basis for QnC1, and consider

roots ˚ D f"i � "j j 1� i;j � nC1; i ¤ j g

root lattice Q.˚/ D f
P
ai"i j ai 2 Z;

P
ai D 0g

weight lattice P.˚/ DQ.˚/Ch"1� ."1C�� �C "nC1/=.nC1/ig

base � D f"1� "2; : : : ; "n� "nC1g:

The pair .V;˚/ is an indecomposable root system with Dynkin diagram of type
An (see p. 626). The group SLn is split and geometrically almost-simple with
root system .V;˚/. It is simply connected because X D P.˚/, and its centre is
�nC1 because P.˚/=Q.˚/' Z=nZ.
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Example (Bn): SO2nC1, n� 2

Let O2nC1 denote the algebraic subgroup of GL2nC1 preserving the quadratic
form

q D x20Cx1xnC1C�� �Cxnx2n;

i.e., O2nC1.R/Dfg 2GL2nC1.R/ j q.gx/D x for all x 2R2ng. Define SO2nC1
to be the kernel of the determinant map O2nC1 ! Gm. When char.k/ ¤ 2,
SO2nC1 is the special orthogonal group of the symmetric bilinear form

� D 2x0y0Cx1ynC1CxnC1y1C�� �Cxny2nCx2nyn;

i.e., it consists of the 2nC1�2nC1 matrices A of determinant 1 such that

At

0@1 0 0

0 0 I

0 I 0

1AAD
0@1 0 0

0 0 I

0 I 0

1A :
The subgroup T D fdiag.1; t1; : : : ; tn; t�11 ; : : : ; t�1n /g is a split maximal torus

in SO2nC1 and

X�.T /D
M

1�i�n
Z�i ; �i Wdiag.1; t1; : : : ; tn; t�11 ; : : : ; t�1n / 7! ti

X�.T /D
M

1�i�n
Z�i ; �i W t 7! diag.1; : : : ;

iC1
t ; : : : ; t�1; : : :1/

h�i ;�j i D ıij ; �i 2X
�.T /; �j 2X�.T /:

The Lie algebra so2nC1 of SO2nC1 consists of the 2nC1�2nC1 matrices
A of trace zero such that �.x;Ax/D 0 for all x. When char.k/¤ 2, the second
condition becomes

At

0@1 0 0

0 0 I

0 I 0

1AC
0@1 0 0

0 0 I

0 I 0

1AAD 0:
In the adjoint action of T on so2nC1, there are the following nonzero eigenvectors,

Weight Eigenvector

�i C�j Ei;nCj �Ej;nCi 1� i < j � n

��i ��j EnCi;j �EnCj;i 1� i < j � n

�i ��j Ei;j �EnCj;nCi 1� i ¤ j � n

��i E0;i �2EnCi;0 1� i � n

�i E0;nCi �2Ei;0 1� i � n:
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SUMMARY 21.97. Let V DQn with standard basis f"1; : : : "ng, and consider

roots ˚ D˙"i .1� i � n/,˙"i ˙ "j .1� i < j � n/

root lattice Q.˚/ D
Ln
iD1Z"i

weight lattice P.˚/ D
Ln
iD1Z"i CZ.1

2

Pn
iD1 "i /

base � D "1� "2; : : : ; "n�1� "n; "n:

The pair .V;˚/ is an indecomposable root system with Dynkin diagram of type
Bn (see p. 626). The group SO2nC1 is split and geometrically almost-simple
with root system .V;˚/. It is an adjoint group because X DQ.˚/. Its simply
connected covering group is the spin group Spin2nC1 (see Section 24i below),
which has center �2 because P.˚/=Q.˚/' Z=2Z.

Example (Cn): Sp2n, n� 3

Let Sp2n denote the algebraic subgroup of GL2n of matrices preserving the
skew-symmetric bilinear

� D x1ynC1�xnC1y1C�� �Cxny2n�x2nyn.

Thus Sp2n consists of the 2n� 2n matrices A such that �.Ax;Ay/D �.x;y/,
i.e., such that

At
�

0 I

�I 0

�
AD

�
0 I

�I 0

�
:

The subgroup T D diag.t1; : : : ; tn; t�11 ; : : : ; t�1n / is a split maximal torus in
SO2nC1, and

X�.T /D
M

1�i�n
Z�i ; �i Wdiag.t1; : : : ; tn; t�11 ; : : : ; t�1n / 7! ti

X�.T /D
M

1�i�n
Z�i ; �i W t 7! diag.1; : : : ;

i
t ; : : : ; t�1; : : :1/.

The Lie algebra spn of Spn consists of the 2n� 2n matrices A such that
�.Ax;y/C�.x;Ay/D 0, i.e., such that

At
�

0 I

�I 0

�
C

�
0 I

�I 0

�
AD 0:

In the adjoint action of T on spn, there are the following nonzero eigenvectors,

Weight Eigenvector

2�i Ei;nCi 1� i � n

�2�i EnCi;i 1� i � n

�i C�j Ei;nCj CEj;nCi 1� i < j � n

��i ��j EnCi:j CEnCj;i 1� i < j � n

�i ��j Ei;j �EnCj;nCi 1� i ¤ j � n:
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SUMMARY 21.98. Let V DQn with standard basis f"1; : : : "ng, and consider

roots ˚ D˙2"i .1� i � n/,˙"i ˙ "j , .1� i < j � n/

root lattice Q.˚/ D f
P
aiei j ai 2 Z;

P
ai 2 2Zg

weight lattice P.˚/ D f
P
aiei j ai 2 Zg

base � "1� "2; : : : ; "n�1� "n;2"n:

The pair .V;˚/ is an indecomposable root system with Dynkin diagram of type
Cn (see p. 626). The group Spn is split and geometrically almost-simple. It is
simply connected because X D P.˚/, and its centre is �2 because P.˚/=Q.˚/
equals Z=2Z.

Example (Dn): SO2n, n� 4

Let O2n denote the algebraic subgroup of GL2n of matrices preserving the
quadratic form

q D x1xnC1C�� �Cxnx2n:

When char.k/ ¤ 2, we define SO2n to be the kernel of the determinant map
O2n!Gm; it is the special orthogonal group of the symmetric bilinear form

� D x1ynC1CxnC1y1C�� �Cxny2nCx2ny2n:

Otherwise, we define SOn as in Section 24i below.
The subgroup T D fdiag.t1; : : : ; tn; t�11 ; : : : ; t�1n /g is a split maximal torus in

SO2nC1 and

X�.T /D
M

1�i�n
Z�i ; �i Wdiag.1; t1; : : : ; tn; t�11 ; : : : ; t�1n / 7! ti

X�.T /D
M

1�i�n
Z�i ; �i W t 7! diag.1; : : : ;

i
t ; : : : ; t�1; : : :1/.

The Lie algebra so2n of SO2n consists of the 2nC 1� 2nC 1 matrices A
of trace zero such that �.x;Ax/D 0 for all x. When char.k/¤ 2, the second
condition becomes

At
�
0 I

I 0

�
C

�
0 I

I 0

�
AD 0:

In the adjoint action of T on so2n, there are the following nonzero eigenvectors:

Weight Eigenvector

�i C�j Ei;nCj �Ej;nCi 1� i < j � n

��i ��j EnCi;j �EnCj;i 1� i < j � n

�i ��j Eij �EnCj;nCi 1� i ¤ j � n:
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SUMMARY 21.99. Let V DQn, and let "1; : : : "n be the standard basis for Qn.
Then

roots ˚ D˙"i ˙ "j .1� i < j � n/

root lattice Q.˚/ D f
P
aiei j ai 2 Z;

P
ai 2 2Zg

weight lattice P.˚/ D
Ln
iD1Z"i CZ.1

2

Pn
iD1 "i /

base � D "1� "2; : : : ; "n�1� "n; "n�1C "n:

The pair .V;˚/ is an indecomposable root system with Dynkin diagram of type
Dn (see p. 626). The group SO2n is split and geometrically almost-simple. It
is neither adjoint nor simply connected because Q.˚/¤X ¤ P.˚/. Its simply
connected covering group is the spin group Spin2n (see Section 24i below). When
n is even, the centre of Spin2n is �2��2 because P.˚/=Q.˚/'Z=2Z�Z=2Z,
and when n is odd, its centre is �4 because P.˚/=Q.˚/' Z=4Z.

The subscript on An, Bn, Cn, Dn denotes the rank of the group.

Exercises

EXERCISE 21-1. Verify the statements in Example 21.15 (root data of semi-
simple rank 1).

EXERCISE 21-2. Show that a reductive group contains no nontrivial normal
connected unipotent algebraic subgroup.

EXERCISE 21-3. Show that X 7! .X t /�1WSLnC1.R/! SLnC1.R/ is an auto-
morphism of SLnC1, and that it acts on the Dynkin diagram of SLnC1 as the
obvious nontrivial symmetry (X t is the transpose of X ).

EXERCISE 21-4. Let .X;˚;˚_/ be a root datum. LetX0D fx 2X j hx;˚_i D
0g, and let X 0 D X=X0. Let ˚ 0 denote the image of ˚ in X 0, and let Q D
Q.˚/'Q.˚ 0/ (see C.43). Then .X 0;˚ 0/ is a semisimple root datum. Assume
that there exists a split semisimple group .H;T / with root datum .X 0;˚ 0/. Then
Z.H/ has character group X 0=Q. Let 'WZ.H/! D be the homomorphism
of diagonalizable groups corresponding to the homomorphism X=Q!X 0=Q.
Define G.'/ and T .'/ to be the cokernels

Z.H/!H �D!G.'/

Z.H/! T �D! T .'/

(see 19.27). Show that .G.'/;T .'// is a split reductive group with root datum
.X;˚;˚_/.

EXERCISE 21-5. Let .G;B;N;S/ be a Tits system.
(a) Show that the union BwB [BswB is disjoint for all s 2 S , w 2W .
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(b) Show that wBs � BwB [BwsB for all s 2 S , w 2W .
Let w 2W . An expression w D s1 � � �sn (si 2 S ) for w is said to be reduced if it
is as short as possible; we then set l.w/D n.

(c) Show that l.w/D 1 if and only if w D e. Show that

�1� l.ws/� l.w/� 1

�1� l.sw/� l.w/� 1

for all s 2 S; w 2W .
For a subset I of S , let WI denote the subgroup of W generated by I , and let
PI D BWIB .

(d) Show that P; D B .

(e) Show that PI is a subgroup of G, and deduce that PS DG.

(f) Show that BwB D B implies that w D e:

(g) Let w and w0 be elements of W with l.w/ � l.w0/. Prove by induction
on l.w/ that BwB D Bw0B implies that w D w0. [Write w D sv with
l.v/D l.w/�1.]

(h) Deduce that G D
F
w2W BwB (Bruhat decomposition).

EXERCISE 21-6. This exercise gives a direct proof of the Bruhat decomposition
for GLn. We write G for GLn.k/ and B for B.k/.4

(a) Let Fn � �� � � F1 � F0 and F 0n � �� � � F
0
1 � F

0
0 be two maximal flags

(in some vector space of dimension n), and let dij D dimFi \F 0j . Show
that the numbers dij determine the orbit of the pair .F;F 0/, i.e., if a
pair .E;E 0/ has the same numbers, then .E;E 0/ D g.F;F 0/ for some
g 2 GLn.k/. (Hint: choose suitable bases.)

(b) Let wij D dij �di�1;j �di;j�1Cdi�1;j�1. Show that .wij / is a permuta-
tion matrix and that the dij can be recovered from thewij (note that thewij
determine where the jump from 0 to 1 occurs in the filtration of Fi=Fi�1
induced by F 0).

(c) Show that every permutation matrix w arises in this way, for example, from
the pair .F;w �F /.

(d) Deduce that, for any maximal flag F ,

G=B �G=B D
G
w2W

G � .F;w �F /

(we have identified W with the group of permutation matrices in GLn).

4For this and other proofs, see https://mathoverflow.net/, question 15438.

https://mathoverflow.net/


CHAPTER 22

Representations of Reductive
Groups

We begin by classifying the semisimple representations of a split reductive group
over a field k (see 22.2). When k has characteristic zero, this includes all of them
(22.42). Throughout, representations are finite-dimensional unless it is specified
otherwise. As usual, R is a (variable) k-algebra.

a. The semisimple representations of a split reductive group

Let .G;T / be a split reductive group over k, and let .X;˚;˚_/ be its root datum.
Because T is split, every representation .V;r/ of G decomposes into a direct sum
V D

L
�2X.T /V� of its weight spaces V� for the action of T (see 12.12). The �

for which V� ¤ 0 are called the weights of .V;r/.

Statement of the fundamental theorem

To classify the semisimple representations of G, it suffices to classify the simple
representations. For this, we fix a Borel subgroup B of G containing T . Let ˚C

denote the corresponding system of positive roots and � the set of simple roots
in ˚C. Define an order relation on X by setting � � � if ���D

P
˛2�m˛˛

with m˛ 2 N. Thus ˚C D f˛ 2 ˚ j ˛ > 0g.

DEFINITION 22.1. An element � of X is said to be dominant if h�;˛_i � 0 for
all ˛ 2 ˚C.

THEOREM 22.2 (FUNDAMENTAL THEOREM). For each dominant �2X , there
exists a simple representation V.�/ of G, unique up to isomorphism, that decom-
poses as a representation of T into

V.�/D V.�/�˚
M

�
V.�/�

463
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with V.�/� of dimension 1 and all � < �. Every simple representation is iso-
morphic to V.�/ for a unique dominant �.

Before proving the theorem, we list some complements.

22.3. Every simple representation .V;r/ has a unique weight �.r/ (called the
highest weight) such that �< �.r/ for all other weights. The map .V;r/ 7! �.r/

defines a bijection from the set of isomorphism classes of simple representations
of G to the set of dominant � 2X .

22.4. The only endomorphisms of V.�/ are the scalar multiplications by ele-
ments of k, i.e., End.V .�// ' k (Exercise 22-1). Therefore, V.�/ remains
simple under extension of the base field (4.19). It follows that if .V;r/ is a simple
representation of G of highest weight � over k, then .V;r/˝ k0 is a simple
representation of Gk0 of highest weight � over k0.

22.5. LetG be a split reductive group over k, and let k0 be an extension of k. For
every semisimple representation .V 0; r 0/ of Gk0 over k0, there exists a semisimple
representation .V;r/ of G over k and an isomorphism .V;r/˝ k0 ! .V 0; r 0/.
This follows from 22.4.

22.6. Let V.�/ and V.�0/ be simple representations of split reductive groups G
andG0 with highest weights � and �0. Because End.V .�//' k, the representation
V.�/˝V.�0/ of G �G0 is simple (4.21), and it obviously has highest weight
�C�0.

22.7. Let G be a reductive group over k (not necessarily split). Every semi-
simple representation of G over ka is defined over ks. Indeed, G splits over ks,
and so we can apply 22.5.

The dominant characters

Let .G;B;T / be as before, and letX.T /C, or justXC, denote the set of dominant
� 2X.T /. We describe XC and make the fundamental theorem more explicit.

22.8. Recall that the root lattice QDQ.˚/ of .X;˚;˚_/ is the Z-submodule
of X generated by the roots. The pair .Q˝ZQ;˚/ is a root system, and the
weight lattice P.˚/ consists of the � 2Q˝Z Q such that h�;˛_i 2 Z for all
˛ 2 ˚ (see C.26). Then Q and P are lattices in Q˝ZQ, and

X �X0CP.˚/,

where X0 D fx 2 X j hx;˛_i D 0 for all ˛ 2 ˚g. Let �D f˛1; : : : ;˛ng. Then
f˛_1 ; : : : ;˛

_
n g is a base for ˚_, and

Q.˚/D Z˛1˚�� �˚Z˛n
P.˚/D Z�1˚�� �˚Z�n;
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where f�1; : : : ;�ng is the basis ofQ˝ZQ dual to f˛_1 ; : : : ;˛
_
n g, i.e., �i inQ˝ZQ

is such that h�i ;˛_j i D ıij for all j . The �i are called the fundamental weights.
A dominant character � can be written uniquely in the form

�D
X

1�i�n
mi�i C�0; mi 2 N;

X
mi�i 2X; �0 2X0: (139)

22.9. If G is semisimple, then .V;˚/ is a root system with V DXQ, and X is
a lattice in V such that Q � X � P (see C.35). In particular, X0 D 0, and the
dominant � in XQ form a cone C with the fundamental weights �1; : : : ;�n as a
base (i.e., every � 2 C can be written uniquely �D

P
ai�i , ai � 0).

Choose an inner product . ; / on V for which the s˛; ˛ 2˚ , act as orthogonal
transformations. Then, for � 2 V , h�;˛_i D 2.�;˛/=.˛;˛/. Hence,

P.˚/D

�
� 2XQ

ˇ̌̌̌
2
.�;˛/

.˛;˛/
2 Z all ˛ 2 ˚

�
D Z�1˚�� �˚Z�n

where �i is the element of V such that 2 .�i ; j̨ /
. j̨ ; j̨ /

D ıij :

22.10. When G is a torus, XC DX0 DX , and the fundamental theorem says
that the simple representations of G are the one-dimensional spaces on which G
acts through a character (in agreement with 12.12).

22.11. Let G be semisimple. The centre of G is the subgroup of T with
character group X=Q (see 21.8). As the weights of T on V.�/ are of the form
��

P
˛2�m˛˛ with m˛ 2N, the centre of G acts on V.�/ through the character

�CQ. If G is simply connected, then X D P , and

XC D PC
def
D f� 2 P j h�;˛_i � 0 for all ˛ 2 ˚g.

In general, Q �X � P and XC DX \PC. The simple representation V.�/ of
the universal covering QG of G factors through G if and only if � 2X .

22.12. An isogeny .G0;T 0/! .G;T / of split reductive groups realizes X.T /
as a subgroup of X.T 0/ of finite index. Let � be a dominant element of X.T 0/;
and let V.�/ be a simple representation ofG0 whose weights other than � are<�.
Then, as in the preceding example, Z.G0/ acts on V.�/ through the character
�CQ, and � factors through G if and only if � 2X.T /.

Proof of the fundamental theorem

We shall, in fact, prove somewhat more precise statements (22.18, 22.19, 22.20).
As usual, for a root ˛ of .G;T /, u˛ denotes an isomorphism Ga! U˛ , G˛ is
the semisimple subgroup generated by U˛ and U�˛ , and n˛ 2G˛.k/ represents
the nontrivial element of W.G˛;T ) (Section 21c).

PROPOSITION 22.13. Every character of T occurs as a weight in some repres-
entation of G.
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PROOF. Let � 2 X.T /. As the homomorphism of coordinate rings O.G/!
O.T / is surjective, there exists an f 2O.G/ such that f jT D �. The action of
T on O.G/ is semisimple, and so f is a sum of eigenfunctions:

f D f1C�� �Cfr ; fi 2O.X/�i ; �1; : : : ;�r distinct characters of T:

Now, for t 2 T .R/,

�.t/D f .t/D .tf /.1/D
P
i .tfi /.1/D

P
i .�i .t/f /.1/D

P
i fi .1/�i .t/;

and so �D
Pr
iD1fi .1/�i . But distinct characters are linearly independent (4.24),

and so �D �i for some i . 2

Let V be a finite-dimensional vector space, and consider an action �WGa�
Va! Va of Ga on Va. To say that � is a regular function means that, when we
choose a basis .ej /1�j�n for V , each coordinate of �.c;

P
bj ej / is a polynomial

in c and the bj , say,X
i;i1;:::;in

ai i1���inc
ib
i1
1 � � �b

in
n D

X
i
ci
�X

i1;:::;in
ai i1���inb

i1
1 � � �b

in
n

�
.

Thus �.c;v/D
P
i�0 c

ivi with vi 2 V independent of c.

PROPOSITION 22.14. Let .V;r/ be a representation of G, and let v lie in the
weight space V�. Let ˛ be a root of .G;T /. There exist vi 2 V�Ci˛ , i D 1;2; : : :,
such that

u˛.c/ �v D vC
X

i�1
civi (finite sum)

for all c 2Ga.k/.

PROOF. We write g �v for r.g/.v/. From the above discussion, we see that

u˛.c/ �v D
P
i�0 c

ivi : (140)

It remains to show that vi 2 V�Ci˛ and that v0 D v. Let t 2 T .R/. Then

t � .u˛.c/ �v/D
P
i�0 c

i .t �vi /,

but also

t � .u˛.c/ �v/D .t u˛.c/ t
�1/ � .t �v/D .u˛.˛.t/c// ��.t/v

D
P
i�0˛.t/

ici�.t/vi :

On comparing these equalities, we find that t � vi D �.t/ � ˛.t/i � vi . and so
vi 2 V�Ci˛ . Setting c D 0 in (140), we find that v D v0 because u˛.0/D e. 2

LEMMA 22.15. Let .V;r/ be a representation of G. If v 2 V�, then n˛ � v 2
Vn˛.�/.
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PROOF. For t 2 T .R/,

t � .n˛ �v/D n˛.n
�1
˛ t n˛/ �v D n˛ ��.n

�1
˛ t n˛/v D n˛.�/.t/.n˛ �v/;

and so, by definition, n˛ �v 2 Vn˛.�/. 2

It follows that dim.V�/D dim.Vw.�// for all w 2W.G;T /.

DEFINITION 22.16. An element of V is primitive if it is an eigenvector for B ,
i.e., if it spans a one-dimensional subspace stable under B .

PROPOSITION 22.17. Let .V;r/ be a representation of G (not necessarily finite-
dimensional). Suppose that V is generated (as a G-module) by a primitive
element v of weight �. Then � has multiplicity 1 on V , and the remaining
weights are of the form ��

P
m˛˛ with m˛ � 0 and ˛ 2 �. Moreover, � is

dominant, and V has a largest proper subspace stable under G.

PROOF. Let U�B be the big cell (21.85). As U�B is dense in G, we see that V
is spanned by U�Bv, and hence by U�v (because B acts as scalars on v). Let
˛ 2 ˚C, and consider an element u�˛.c˛/ of U�. By Proposition 22.14,

u�˛.c˛/ �v D vC
X

i�1
ci˛vi ; with vi 2 V��i˛ .

As U� is generated by the U�˛ with ˛ 2˚C, we see that u� �v 2 vC
L
�<�V�

if u� 2 U�, and so
V D kv˚

M
�<�

V�. (141)

The second sum is over the weights of the form �D ��
P
˛>0m˛˛, m˛ 2N. In

the decomposition (141), V� is the line kv, and so � has multiplicity 1.
If ˛ is a simple root, then w˛.�/ is also a weight of r (see 22.15). But

w˛.�/D ��h�;˛
_i˛. Hence h�;˛_/� 0, and so � is dominant.

Finally, every proper G-stable subspace of V is a sum of weight spaces V�
with �¤ �, and so the sum of all proper G-stable subspaces is still proper. 2

THEOREM 22.18. Let .V;r/ be a simple representation of G.
(a) There exists a primitive element v of V , unique up to scalar multiplication.

(b) The weight � of v is dominant of multiplicity 1.

(c) The weights � of V are of the form �D ��
P
˛2�m˛˛ withm˛ 2N (and

so � is the highest weight of V ).

PROOF. The group B is split (21.34), hence trigonalizable (16.52), and so V
contains a primitive element v. Because V is simple, v generates V , and so its
weight � has multiplicity 1 (see 22.17).

Let v and v0 be primitive elements of V with weights � and �0 respectively.
Because V is simple, v generates V , and so Proposition 22.17 shows that

�0 D ��
X

˛2�
m˛˛; m˛ � 0:
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Similarly,
�D �0�

X
˛2�

m0˛˛; m0˛ � 0:

These equations imply that m˛ D 0 D m0˛ for all ˛, and so � D �0. As � has
multiplicity 1, the elements v and v0 span the same line. This proves (a), and the
rest of the statement follows from Proposition 22.17. 2

THEOREM 22.19. Two simple representations of G are isomorphic if and only
if their highest weights are equal.

PROOF. The necessity being obvious, we prove the sufficiency. Let V1 and V2 be
two simple representations with the same highest weight �, and let v1 and v2 be
primitive elements of V1 and V2 (of weight �/. Clearly vD v1Cv2 is a primitive
element of V1˚V2 of weight �. Let V be the G-subspace of V1˚V2 generated
by v. The projection V1˚V2! V2 defines a G-homomorphism 'WV ! V2. As
'.v/D v2, the map ' is surjective. The kernel of ' is V1\V , which does not
contain v1 because the only elements of V of weight � are the multiples of v.
Therefore V1 \V ¤ V1 and, as V1 is simple, V1 \V D 0. Therefore ' is an
isomorphism V ! V2. Similarly, V projects isomorphically onto V1. Hence V1
and V2 are isomorphic. 2

THEOREM 22.20. Every dominant character of G is the highest weight of some
simple representation of G.

It suffices to show that there exists a representation (possibly infinite-dimen-
sional) containing a primitive vector v of weight �, because then the quotient of
the G-submodule generated by v by its largest proper subspace stable under G
(see 22.17) is a simple module with highest weight �. Recall that simple modules
are automatically finite-dimensional (4.16).

DEFINITION 22.21. For a character � of B , let E.�/ denote the k-subspace of
O.G/ of f satisfying

f .xb/D f .x/�.b�1/ x 2G; b 2 B: (142)

It isG-submodule of O.G/ for the left regular representation: gf .x/D f .g�1x/,
g 2G, f 2O.G/, x 2G:

Let w0 2W be the symmetry with respect to B , so that w0.˚C/D ˚� D
�˚C and w0.B/D B� (see 21.72).

PROPOSITION 22.22. IfE.�/¤ 0, then it contains a primitive element v, unique
up to scalar multiplication, and the weight of v is w0.�/.

PROOF. Let U D B�u . Then the map

U �B!G; .u;b/ 7! uw0b
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is an open immersion. Therefore an f 2E.�/ is determined by the function fU
on U given by fU .u/D f .uw0/. Note that

.uf /U .x/D fU .u
�1x/; u 2 U; x 2 U:

Because U is unipotent, E.�/U ¤ 0. If f 2 E.�/U , then fU is constant and it
follows that E.�/U is one-dimensional. Its nonzero elements are the primitive
elements. That E.�/U has weight w0.�/ follows from the equality

.tf /U .x/D fU .t
�1xt/w0.�/.t/; t 2 T; u 2 U:

To prove the equality, note that

.tf /U .x/D .
tf /.xw0/D f .t

�1xw0/D f .t
�1xtw0.w0t

�1w0//:

Now, using (142), we find that

.tf /U .x/D f .t
�1xtw0/w0.�/.t/D fU .t

�1xt/w0.�/.t/: 2

LEMMA 22.23. Let X be a normal integral affine scheme, and let U be a dense
open subscheme of X . Let f 2 O.U /. If f d 2 O.X/ for some d � 1, then
f 2O.X/.
PROOF. We have O.X/�O.U /� k.X/. Now f 2 k.X/ and is integral over
O.X/, and so it lies in O.X/. 2

We now use the notation of 22.8. In particular, � D f˛1; : : : ;˛ng and the
fundamental weights are �1; : : : ;�n:

LEMMA 22.24. Let �i be a fundamental weight of G. For some d > 0, d�i
arises as the weight of a primitive element in a representation of G.

PROOF. Let P be a parabolic subgroup of G containing T and U˙ j̨
for every

j ¤ i but not containing U�˛i (see 21.88). Let .V;r/ be a representation of
G containing a line kv whose stabilizer in G is P . Each s

j̨
, j ¤ i , has a

representative in P.k/, and so it fixes v. By construction, v is a primitive
element; let �D

Pn
jD1dj�j be its weight. For j ¤ i , we have s

j̨
.�/D �, and

so dj D 0. We conclude that �D di�i . As the action of G on V is nontrivial,
di > 0. 2

LEMMA 22.25. If G is semisimple and simply connected, then every funda-
mental weight of G arises as the weight of a primitive element in a representation
of G.

PROOF. Let � be a fundamental weight of G. For some d > 0, there is a simple
representation V with highest weight d� (by 22.24). Then V embeds into O.G/,
and soE.w0.d�//¤ 0. Therefore the function fd�Wub 7! .d�/.w0b/ on Uw0B
extends to G. As fd�.ub/D .d�/.w0b/D f d� .ub/, we see from (22.23) that
the function f� on the big cell also extends to G. Hence E.w0.�//¤ 0, and so it
contains a primitive element of weight � (by 22.22). 2
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LEMMA 22.26. Let .V;r/ and .V 0; r 0/ be representations with primitive ele-
ments v and v0 of weights � and �0 respectively. Then v˝ v0 is a primitive
element of V ˝V 0 with weight �C�0.

PROOF. Obvious. 2

We now prove Theorem 22.20. Let � be a dominant character, and write it in
the form (139), p. 465. The theorem follows from Lemmas 22.25 and 22.26 when
G is the product of a torus with a simply connected semisimple group. Every
reductive group is an isogeny quotient of such a group, and so the general case of
the theorem follows from 22.12.

PROPOSITION 22.27. Let � 2X .
(a) The space E.�/ is nonzero if and only if w0.�/ is dominant.

(b) If w0.�/ is dominant, then E.�/ contains a unique simple representation,
which has highest weight w0.�/.

(c) The weights of E.�/ are � w0.�/.

PROOF. If E.�/¤ 0, then it contains a primitive element of weight w0.�/ (see
22.22), and so w0.�/ is dominant (22.17). Conversely, if w0.�/ is dominant,
there exists a simple representation with highest weight w0.�/, which embeds
into O.G/, thereby showing the E.�/ ¤ 0. The rest of the statement follows
easily from the above results. 2

COROLLARY 22.28. If E.�/ is nonzero and semisimple, then it is simple with
highest weight w0.�/.

PROOF. This is an obvious consequence of Proposition 22.27. 2

When k has characteristic zero, E.�/ is automatically semisimple (22.41).

Restatement of the main theorem

22.29. Let G be an algebraic group over k and H an algebraic subgroup of G.
For a representation .V;r/ of H over k, we define

IndGH .V /D ff 2Mor.G;Va/ j f .gh/D h�1f .g/ all g 2G.R/, h 2H.R/g:

This is a k-vector space on which G acts according to the rule

.gf /.x/D f .g�1x/; g;x 2G.R/; f 2 IndGH .V /R:

In this way we obtain a functor IndGH from representations ofH to representations
of G. As in the case of finite groups, Frobenius reciprocity holds:

(a) the map "W IndGH .V /! V , f 7! f .e/, is a homomorphism of H -modules;

(b) for every G-module W , the map ' 7! "ı' is an isomorphism

HomG.W; IndGH .V //' HomH .W;V /:
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See Jantzen 2003, I.3.

22.30. Let .G;T / be a split reductive group with a Borel subgroup B , and
let Ga.�/ be the one-dimensional representation of B on which B acts through
� 2X.T /. Then E.�/D IndGB .Ga.�//, and so

HomG.V;E.�//' HomB.V;G˛.�//

for all representations V of G. We often write IndGB .�/ for IndGB .Ga.�//.

22.31. The socle soc.V / of a representation .V;r/ of G is the sum of the
simple subrepresentations of V . In other words, it is the largest semisimple
subrepresentation ofG. With this terminology, the fundamental theorem becomes
the following statement:

TheB-socle of a simple representation V ofG is one-dimensional; if
� is the weight of this socle, then V D IndGB .�/, and so V is uniquely
determined by �; the characters � of T that arise in this way are
exactly those that are dominant.

The highest weight of the contragredient representation

Let .G;B;T / be as before but with G semisimple, and let w0 be the symmetry
with respect to B , so that w0.˚C/D �˚C D ˚�. The automorphism �W˛ 7!

�w0.˛/ of X.T / is called the opposition involution. If � id 2W , then � is the
identity map. This is the case for groups of type Bn, Cn, Dn n even, G2, F4, E7,
E8.

The contragredient of a representation .V;r/ of G is the representation r_

on V _ given by the rule r_.g/v_ D .r.g/_/�1v_. On writing V as a sum of
eigenspaces for T , we see that the weights of r_ are the negatives of the weights
of r . If .V;r/ is simple, then so is .V _; r_/, and it follows that

�.r_/D ��.r/:

In particular, if w0 D � id, then every semisimple representation is self-dual
(isomorphic to its contragredient).

Examples

EXAMPLE 22.32. LetGDGLn with its standard Borel pair .B;T /. ThenX.T /
has basis �1; : : : ;�n, where �i sends diag.x1; : : : ;xn/ to xi , and we use this to
identify X.T / with Zn. Then the roots of .G;T / are the vectors ei � ej , i ¤ j ,
the positive roots are the vectors ei � ej with i < j , and the simple roots are
e1�e2; : : : ; en�1�en. Moreover, .ei�eiC1/_D .ei�eiC1/, and so the dominant
weights are the expressions

m1e1C�� �Cmnen; mi 2 Z; m1 � � � � �mn.
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The fundamental weights are �1; : : : ;�n�1 with

�i D e1C�� �C ei �n
�1i .e1C�� �C en/ :

The obvious representation of GLn on kn defines a representation of GLn
on
Vi
.kn/, 1 � i � n. The nonzero weight spaces for T in

Vi
.kn/ are all

one-dimensional, and they are permuted by the Weyl group Sn, and so the
representation is simple. Its highest weight is e1C�� �C ei .

Note that GLn has a representation

GLn
det
�!Gm

t 7!tm

�! GL1 DGm

for each m 2 Z, and that every representation can be tensored with one of these.
Thus, we can shift the weights of a simple representation of GLn by any integer
multiple of e1C�� �C en.

EXAMPLE 22.33. Let G D SL2. With the standard torus T and Borel subgroup
B D T �UC, the root datum is isomorphic to fZ;f˙2g;Z;f˙1gg, the root lattice
is Q D 2Z, the weight lattice is P D Z, and PC D N. Therefore, there is (up
to isomorphism) exactly one simple representation for each m � 0. There is a
natural action of SL2.k/ on the ring kŒX;Y �, namely, let�

a b

c d

��
X

Y

�
D

�
aXCbY

cXCdY

�
:

In other words,
f A.X;Y /D f .aXCbY;cXCdY /:

This is a right action, i.e., .f A/B D f AB . We turn it into a left action by
setting Af D f A

�1
. One can show that the representation of SL2 on the set of

homogeneous polynomials of degree m is simple if char.k/D 0 or char.k/D p
and m< p or mD ph�1 (Springer 1977, Chapter 3).

EXAMPLE 22.34. Let G D SLn. Let T1 be the diagonal torus in SLn. Then

X�.T1/DX
�.T /=Z.�1C�� �C�n/

with T D Dn. The root datum for SLn is isomorphic to

.Zn=Z.e1C�� �C en/;f"i � "j j i ¤ j g; : : :/

where "i is the image of ei in Zn=Z.e1C�� �C en/. It follows from the GLn case
that the fundamental weights are �1; : : : ;�n�1 with

�i D "1C�� �C "i :

Again, the simple representation with highest weight "1 is the representation of
SLn on kn, and the simple representation with highest weight "1C�� �C "i is the
representation of SLn on

Vi
.kn/.
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EXAMPLE 22.35. Let G D PGLn. Let T1 be the diagonal in SLn. Then

X�.T1/DX
�.T /=Z.�1C�� �C�n/

with T D Dn. The root datum for SLn is isomorphic to

.Zn=Z.e1C�� �C en/;f"i � "j j i ¤ j g; : : :/

where "i is the image of ei in Zn=Z.e1C�� �C en/. It follows from the GLn case
that the fundamental weights are �1; : : : ;�n�1 with

�i D "1C�� �C "i :

Again, the simple representation with highest weight "1 is the representation of
SLn on kn, and the simple representation with highest weight "1C�� �C "i is the
representation SLnon

Vi
.kn/.

The fundamental weights for each of the almost-simple split groups are listed
in the tables in Bourbaki 1968.

b. Characters and Grothendieck groups

Let A be an abelian category, and let ŒA� denote the isomorphism class of an
object A of A. The Grothendieck group K.A/ of A is the commutative group
with one generator for each isomorphism class of objects of A, and one relation
ŒA�� ŒB�C ŒC � for each exact sequence

0! A! B! C ! 0.

If the objects of A have finite length, then K.A/ is generated as a Z-module by
the elements ŒA� with A simple. If A is semisimple (i.e., every object is a finite
sum of simple objects), then K.A/ is the free abelian group generated by the
isomorphism classes of simple objects.

EXAMPLE 22.36. Let T be a split torus over k, and let X DX�.T /. The group
algebra ofX is the free Z-module ZŒX�with basis the set of symbols fe� j�2Xg
and with e� � e�

0

D e�C�
0

(cf. 12.6). The (formal) character of a representation
.V;r/ of T is

ch.V / def
D

X
�2X

dim.V�/ � e�:

In other words, the coefficient of e� is the multiplicity of � as a weight of V . The
character of V depends only on the isomorphism class of .V;r/, and ch defines
an isomorphism

K.Rep.T //! ZŒX�:
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Let .G;T / be a split reductive group over k, and let X DX�.T /. We define
the character chG.V / of a representation .V;r/ of G to be its character as a
representation of T . Choose a Borel subgroup B of G containing T , and let
˚C be the corresponding system of positive roots. As before, we write �� � if
��� is a linear combination of positive roots with coefficients in N. Recall that
a � 2X is dominant if h�;˛_i � 0 for all ˛ 2 ˚C.

PROPOSITION 22.37. For every dominant � 2 X , there exists a unique (up to
isomorphism) simple representation V.�/ of G such that

chG.V .�//D e�C
X

�
e�

with all �< �. Every simple representation of G is isomorphic to V.�/ for some
dominant �.

PROOF. This is a restatement of the fundamental theorem (22.2). 2

In particular, the elements ŒV .�/� with � dominant generateK.Rep.G//. The
Weyl group W of .G;T / acts on X , and hence on ZŒX�.

THEOREM 22.38. The homomorphism chG WK.Rep.G//! ZŒX� is injective
with image ZŒX�W (elements of ZŒX� fixed by the action of the Weyl group).

PROOF. We prove this by showing that the elements chG.V .�// of ZŒX� with �
dominant form a basis for ZŒX�W .

By definition, the dominant characters are those in a fixed Weyl chamber.
As W acts simply transitively on the Weyl chambers, every orbit of W in X
contains exactly one dominant character. For each dominant character �, we let
x� denote the sum

P
e� as � runs over the orbit W ��. Then the x� form a basis

for ZŒX�W .
The elements of chG.V .�// are invariant under W because W acts by inner

automorphisms of G. Clearly,

chG.V .�//D x�C
X

i
x�i

where the �i are dominant characters with �i < �.
If � is dominant, then the set X.�/ of dominant � such that � � � is finite.

To see this, let .xjy/ denote a scalar product on XR invariant under W . Then

.�j�/� .�j�/� .�j�/

if � 2 X.�/, and so X.�/ is a bounded subset of the lattice X . It follows that
the partially ordered set of dominant characters satisfies the descending chain
condition.

For a set J of dominant characters, we let EJ denote the Z-submodule of
ZŒX�W with basis fx� j � 2 J g. Let S denote the collection of sets J with the
following two properties:
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(a) if � 2 J and �0 is a dominant character such that �0 � �, then �0 2 J ;

(b) fchG.V .�// j � 2 J g is a basis for EJ :
Then S is partially ordered by inclusion and it is inductive and nonempty. By
Zorn’s lemma, it has a maximal element J0. Suppose that J0 omits a dominant
character, and let �0 be minimal among those omitted. Put J D J0[f�0g. Every
dominant � such that � < �0 belongs to J0, and so J satisfies (a). On the other
hand, J also satisfies (b) because

x�0 D chG.V .�0//�
X

i
x�i ; �i < �0:

Therefore J 2S, which contradicts the maximality of J0. Hence J0 contains all
the dominant characters, and so fchG.V .�// j � dominantg is a basis for ZŒX�W .2

c. Semisimplicity in characteristic zero

In this section, k is a field of characteristic zero. All Lie algebras and their
representations are finite-dimensional.

The Casimir operator

A Lie algebra is said to be semisimple if its only solvable ideal is 0. Let g be a
semisimple Lie algebra over k. From a representation .V;�/ of g, we obtain a
symmetric bilinear form B� on g,

B�.x;y/D Tr.�.x/ı�.y//; x;y 2 g:

When .V;�/ is the adjoint representation adWg! glg of g, this is called the Killing
form �g. When .V;�/ is faithful, Cartan’s criterion (Humphreys 1972, 4.2) shows
that the kernel of B� is a solvable ideal, and hence is 0. Thus B� is nondegenerate.
Let fe1; : : : ; eng be a basis for g, and let

˚
e01; : : : ; e

0
n

	
be the dual basis with respect

to B�. The endomorphism

cV
def
D

Xn

iD1
�.ei / ��.e

0
i /

of V is called the Casimir operator of V . It is independent of the choice of the
basis, and it is an endomorphism of V as a g-module (Humphreys 1972, 6.2).
The trace of cV isXn

iD1
Tr.�.ei / ��.e0i /jV /D

Xn

iD1
B�.ei ; e

0
i /D nD dim.g/.

When .V;�/ is not faithful, its kernel is an ideal a of g, and (using the Killing
form) we can write g D a˚ b with a and b semisimple Lie subalgebras of g.
Now .V;�/ is a faithful representation of b, and we define the Casimir operator
cV WV ! V by using b instead of g.
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Let G be a semisimple algebraic group over k. We sketch a proof that the Lie
algebra g of G is semisimple. Let n be a commutative ideal in g. In the adjoint
action of G on g, the centralizer H of n in G has Lie algebra

hD fx 2 g j Œx;n�D 0g.

Note that h contains n (because n is commutative) and is an ideal in g: for y 2 g,
x 2 h, and n 2 n, ŒŒy;x�;n�D Œy; Œx;n��� Œx; Œy;n��D 0. Because h is an ideal,
H ı is normal in G, and so its centre Z.H ı/ is normal in G. As G is semisimple,
Z.H ı/ is finite. Now Lie.Z.H ı// D z.h/ (see 10.33), and so z.h/ D 0. But
z.h/� n, and so nD 0.

Let .V;r/ be a representation of G. Then r defines a representation of g on
V , and we let cV denote the corresponding Casimir operator. Because it is a
g-endomorphism, cV is fixed under the natural action of g on End.V /, and so
the subspace hcV i is stable under the action of G (see 10.31). As X.G/ D 0
(21.51), this implies that cV is fixed by G, and so it is an endomorphism of V as
a G-module.

Semisimplicity.

LEMMA 22.39. Let G be an algebraic group over k. A representation of G is
semisimple if it becomes semisimple after an extension of scalars to ka.

PROOF. This is a special case of (4.19). 2

LEMMA 22.40. Let G be an algebraic group over k such that X.G/D 0: The
following conditions on G are equivalent.

(a) Every finite-dimensional G-module is semisimple.

(b) Every submodule W of codimension 1 in a finite-dimensional G-module
V is a direct summand: V DW ˚W 0 (direct sum of G-modules).

(c) Every simple submodule W of codimension 1 in a finite-dimensional G-
module V is a direct summand: V DW ˚W 0 (direct sum of G-modules).

PROOF. The implications (a))(b))(c) are trivial.
(c))(b). We use induction on dim.V /. LetW �V have dimension dimV �1.

If W is simple, we know that it has a G-complement, and so we may suppose
that there is a nonzero G-submodule W 0 of W with W=W 0 simple. Then the
G-submodule W=W 0 of V=W 0 has a G-complement, which we can write in the
form V 0=W 0 with V 0 a G-submodule of V containing W 0; thus

V=W 0 DW=W 0˚V 0=W 0.

As .V=W 0/=.W=W 0/' V=W , the G-module V 0=W 0 has dimension 1, and so
V 0 DW 0˚L for some line L. Now L is a G-submodule of V , which intersects
W trivially and has complementary dimension, and so is a G-complement for W .
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(b))(a). Let W be a G-submodule of a finite-dimensional G-module V ; we
have to show that it is a direct summand. The space Homk-linear.V;W / of k-linear
maps has a natural G-module structure: .gf /.v/D g �f .g�1v/. Let

V1 D ff 2 Homk-linear.V;W / j f jW D a idW for some a 2 kg
W1 D ff 2 Homk-linear.V;W / j f jW D 0g:

They are both G-submodules of Homk-linear.V;W /, and V1=W1 has dimension 1.
Therefore V1 DW1˚L for some one-dimensional G-submodule L of V1. Let
LD hf i. As X.G/D 0, G acts trivially on L; and so f is a G-homomorphism
V !W . As f jW D a idW with a ¤ 0, the kernel of f is a G-complement to
W . 2

PROPOSITION 22.41. Let G be a semisimple algebraic group over k. Every
finite-dimensional representation of G is semisimple.

PROOF. After Lemma 22.39, we may suppose that k is algebraically closed. Let
V be a nontrivial representation of G, and letW be a subrepresentation of V . We
have to show that W has a G-complement. By Lemma 22.40 we may suppose
that W is simple of codimension 1. Consider the Casimir operator cV WV ! V

relative to the representation .V;dr/ of g. Because .V;r/ is nontrivial, the image
Ng of g in glV is nonzero. As X.G/D 0 (see 21.50) and V=W is one-dimensional,
G acts trivially on V=W . Therefore, g acts trivially on V=W , i.e., gV �W . In
particular, cV V �W . On the other hand, cV acts on W as a multiplication by
some a 2 k (Schur’s lemma 4.20). Now

a �dimW C0D Tr.cV jV /D dim.Ng/¤ 0;

and so a¤ 0. Therefore the kernel of cV is one-dimensional. It is aG-submodule
of V intersecting W trivially, and so it is a G-complement for W . 2

THEOREM 22.42. The following conditions on a connected algebraic group G
over k (of characteristic zero) are equivalent:

(a) G is reductive;

(b) every finite-dimensional representation of G is semisimple;

(c) some faithful finite-dimensional representation of G is semisimple.

PROOF. (a))(b). If G is reductive, then G DZ �G0, where Z is the centre of G
(a group of multiplicative type) and G0 is the derived group of G (a semisimple
group). Let G! GLV be a representation of G. When regarded as a representa-
tion of Z, V decomposes into a direct sum V D

L
i Vi of simple representations

(12.54). Because Z and G0 commute, each subspace Vi is stable under G0. As a
G0-module, Vi decomposes into a direct sum Vi D

L
j Vij with each Vij simple

as a G0-module (22.41). Now V D
L
i;j Vij is a decomposition of V into a direct

sum of simple G-modules.
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(b))(c). Obvious, because every algebraic group has a faithful finite-
dimensional representation (4.9).

(c))(a). The condition implies that the unipotent radical of G is trivial
(19.17), which implies that G is reductive (because k has characteristic zero). 2

COROLLARY 22.43. LetG be an algebraic group over k. The finite-dimensional
representations of G are all semisimple if and only if Gı is reductive.

PROOF. Assume that Gı is reductive. Let .V;r/ be a representation of G, and
let W be G-stable subspace. As Gı is reductive, there exists a Gı-equivariant
map � WV !W such that �jW D id. Consider the map

qWVka !Wka ; q D
1

n

X
g
g�g�1

where n D .G.ka/WGı.ka// and g runs over a set of coset representatives for
Gı.ka/ in G.ka/. One checks easily that q is independent of the choice of coset
representatives, is fixed by all elements of Gal.ka=k/, restricts to the identity map
on Wka , and is G.ka/-equivariant. Therefore, q is defined over k, restricts to the
identity map on W , and is G-equivariant. This shows that .V;r/ is semisimple.

For the converse, assume that Rep.G/ is semisimple. A representation .V;r/
of Gı embeds in a representation of G, which we may suppose to be simple.
Because Gı is normal in G, the sum of the simple Gı-submodules of .V;r/ is
stable under G, and hence equals V . Therefore .V;r/ is semisimple. 2

COROLLARY 22.44. Let G be an algebraic group over k, and let V and W be
finite-dimensional representations of G. If V and W are semisimple, then so is
V ˝W .

PROOF. We may replace G with its image in GLV �GLW . Then V ˚W is a
faithful semisimple representation of G, and so G is reductive (possibly noncon-
nected). Therefore every representation of G, e.g., V ˝W , is semisimple. 2

Theorem 22.42 has the following remarkable consequence (Chevalley 1955b,
p. 88).

COROLLARY 22.45. Let G be an abstract group, and let .V;r/ and .W;s/ be
representations of G on finite-dimensional vector spaces V and W over a field k
of characteristic zero. If V and W are semisimple, then so is V ˝W .

PROOF. We may replace G with its Zariski closure G0 in GLV �GLW – as G is
dense in G0 (as a scheme 1.9), the two have the same invariant subspaces in any
representation. Thus we may suppose that G is a group variety over k, and apply
the previous corollary. 2
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Notes

22.46. Let G be a reductive group over a field of characteristic p ¤ 0. Then G
has nonsemisimple representations unless Gı is a torus and .GWGı/ is prime to
p. However, a representation of G is semisimple if its dimension is small relative
to p. For example, if G is a connected reductive group over an algebraically
closed field, then a representation .V;r/ is semisimple if dim.V / � p (Jantzen
1997; see also McNinch 1998).

22.47. Corollary 22.44 also fails in characteristic p, except when the dimen-
sions of the representations are small relative to p. More precisely, let G be an
algebraic group (not necessarily smooth) over a field k of characteristic p ¤ 0,
and let .Vi /i2I be a finite family of representations of G; if the Vi are semisimple
and X

i2I
.dim.Vi /�1/ < p;

then
N
i2I Vi is semisimple (Serre 1994 for smooth G and Deligne 2014 in

general). As a consequence, Corollary 22.45 is true if dimV CdimW < pC2:

d. Weyl’s character formula

In the first section of this chapter, we classified the simple representations of a
split reductive group. In this section, we determine their characters.

Let .G;T / be a split reductive group over a field k, and let B be a Borel
subgroup of G containing T . For a character � of B (or T ), we let L.�/ denote
the line bundle on G=B defined in Section 18c.

THEOREM 22.48. Let � be a character of T .
(a) H 0.G=B;L.�//¤ 0 if and only if w0.�/ is dominant:

(b) If w0.�/ is dominant, then H 0.G=B;L.�// contains a unique simple
representation, which has highest weight w0.�/.

(c) The weights of T on V are � w0.�/.

PROOF. Recall that we obtain L.�/!G=B by passing to the quotient in G�
A1 ! G by the action of B , and that b 2 G acts on G �A1 by .g;x/b D
.gb;�.b/�1x/. A section ofG�A1!G is a map g 7! .g;f .g//with f 2O.G/.
This section sends gb to .gb;f .gb//, and so it passes to the quotient if and only
if

f .gb/D f .g/�.b�1/; g 2G.R/; b 2 B.R/:

This is the condition that f lie in E.�/ , and so H 0.G=B;L.�//' E.�/. The
statement now follows from Proposition 22.27. 2

When k has characteristic zero, H 0.G=B;L.�// itself is simple.
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REMARK 22.49. In Section a, we used an argument from Steinberg 1967 to show
that E.�/¤ 0 when � is dominant. Iversen gives a more geometric argument.
He constructs an explicit basis .D˛/˛2� for the divisor classes on G=B , and
shows that L.�/ is the line bundle attached to the divisor

P
˛2�hw0.�/;˛

_iD˛
(Iversen 1976, Theorem 5.3). From this it follows that H 0.G=B;L.�//¤ 0 if
and only if hw0.�/;˛_i � 0 for all ˛ 2 �. (Iversen’s definition the system of
positive roots attached to B is opposite to our definition.)

We now assume that Pic.G/ D 0. When G is semisimple, this condition
means that G is simply connected (18.19, 18.23).

Let X D X.T / and let W D W.G;T /. We let W act on ZŒX� on the left
(see 22.36 for ZŒX�). For w 2W , we let det.w/D det.wjX/, and we define the
antisymmetry operator

J WZŒX�! ZŒX�; J.e�/D
X

w2W
det.w/ew.�/:

The half sum of the positive roots,

�D
1

2

X
f˛ j ˛ 2 ˚Cg;

lies in X – the proof of this uses that Pic.G/D 0 (Iversen 1976, 9.2).

THEOREM 22.50. For all � 2X.T /,X
i

.�1/ichGH i .G=B;L.�//D J.e�C�/=J.e�/:

PROOF. This follows from the general fixed point theorem in Nielsen 1974. See
Iversen 1976, 9.4. 2

THEOREM 22.51 (KEMPF’S VANISHING THEOREM). If � is dominant, then
the group H i .G=B;L.�//D 0 for i > 0.

PROOF. In characteristic 0, the statement follows from the Kodaira vanishing
theorem. In characteristic p, it was proved in Kempf 1976. For a proof valid in
all characteristics (due to Anderson and Haboush independently), see Jantzen
2003, II, 4.5. 2

The statement fails if � is not dominant.

THEOREM 22.52 (WEYL CHARACTER FORMULA). For a simple representa-
tion V of G with highest weight �,

chG.V /D
J.e�C�/

J.e�/

def
D

P
w2W det.w/ew.�C�/P
w2W det.w/ew.�/

:

PROOF. In characteristic zero, the representation V is isomorphic to the group
H 0.G=B;L.�/ for some dominant �, and so the statement follows from The-
orems 22.50 and 22.51. For the general case, see Iversen 1976, 9.5, or Jantzen
2003, 5.10. 2
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e. Relation to the representations of Lie.G/

Let G be a semisimple algebraic group. A representation .W;r/ of G is said
to be infinitesimally simple if .W;dr/ is simple. An infinitesimally simple
representation is simple. The converse is true in characteristic 0, but not otherwise.

Characteristic 0

THEOREM 22.53. Let G be a semisimple algebraic group over a field k of
characteristic zero. Then g is a semisimple Lie algebra, and the natural functor
Rep.G/! Rep.g/ is fully faithful; it is essentially surjective if G is simply
connected.

PROOF. We showed that g is semisimple in Section c. According to Theorem
23.70 below, there is a semisimple algebraic group G0 such that Rep.G0/ '
Rep.g/; moreover G0 is the universal covering group of G. Now Rep.G/!
Rep.G0/ is fully faithful and Rep.G0/! Rep.g/ is an equivalence of categor-
ies. 2

When G is split with diagram .V;˚;X/, a simple representation in Rep.g/
lies in the essential image of the functor if and only if its highest weight lies in X .

Characteristic p

In this subsection, we list some of the known results for a split semisimple
algebraic group .G;T / over a field k of characteristic p ¤ 0.

Let GF denote the kernel of the Frobenius homomorphism FG WG!G.p/.
Then Lie.G/D Lie.GF / and so the representations of Lie.G/ depend only on
the finite group scheme GF .

22.54. Suppose that G is simply connected. A simple representation of .V;r/
of G is infinitesimally simple if and only if its highest weight �.r/ is of the form

�.r/D
X
˛2�

m˛.r/˛ with 0�m˛.r/ < p:

Therefore, the infinitesimally simple representations fall into exactly prank.G/

isomorphism classes.
For a representation r WG! GLV of G, we write r Œp

l � for the composite of r
with F lG . For example, for a representation r WG! GLn, the representation r Œp

l �

is
g 7! .r.g/

pl

i;j /1�i;j�n:

If .V;r/ is simple with highest weight �.r/, then .V;r Œp
l �/ is simple with highest

weight pl ��.r/.
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22.55. Suppose that G is simply connected, and let .V0; r0/; : : : ; .Vm; rm/ be
infinitesimally simple representations of G. Then

r0˝ r
Œp�
1 ˝�� �˝ r

Œpm�
m

is a simple representation of G, and every nontrivial simple representation can be
written uniquely in this way with rm ¤ 1.

Note that r0˝ r
Œp�
1 ˝�� �˝ r

Œpm�
m has highest weight �D �.r0/Cp�.r1/C

�� �Cpm�.rm/:

22.56. Suppose that G is simply connected and that k is finite, say, k D Fpm .
For every family .Vi ; ri /0�i�m�1 of simple representations of G, the map

g 7! r0.g/˝ r
Œp�
1 .g/˝�� �˝ r

Œpm�1�
m�1 .g/

is a simple representation of the abstract group G.k/, and every simple rep-
resentation of G.k/ is of this form; moreover, the .Vi ; ri / are unique (up to
isomorphism).

Thus, the representations of G.k/ fall into exactly .pm/rank.G/ isomorphism
classes.

These results of Curtis and Steinberg make it possible to deduce the simple
representations of the finite Chevalley groups from knowing the representations
of the semisimple Lie algebras over C. See Borel 1975 and the references therein,
and Jantzen 2003, II.3.

Exercises

EXERCISE 22-1. Let � be a dominant character of a split reductive group
.G;T / relative to a Borel subgroup B , and let E.�/ D IndGB .Ga.�//. Show
that End.E.�//' k. Deduce that End.V .�//' k if V.�/ is a simple representa-
tion with highest weight �.

EXERCISE 22-2. Let .G;T / be a reductive group over an algebraically closed
field k of characteristic zero. Show that the following are equivalent:

(a) G admits a faithful simple representation;
(b) either the centre of G is a one-dimensional torus or it is finite and cyclic

(as an abstract group);
(c) the character group X.T /=Z˚ of the centre of G is cyclic.

(See https://mathoverflow.net/, question 29813; spin groups in even di-
mensions have centre a non-cyclic group of order 4 and so have no faithful simple
representations.)

EXERCISE 22-3. Let G be a reductive group over a field k of characteristic zero,
and let V be a faithful self-dual representation of G. Show that there exist tensors
t1; : : : ; ts , ti 2 .V ˝ri /_, such that G is the algebraic subgroup of GLV fixing
the ti .

https://mathoverflow.net/


CHAPTER 23

The Isogeny and Existence
Theorems

These theorems show that the split reductive groups and their isogenies over k
are classified by their (combinatorial) root data.

a. Isogenies of groups and of root data

We first define the notion of an isogeny of root data. An isogeny of split reductive
groups defines an isogeny of root data, and the isogeny theorem says that every
isogeny of root data arises in this way. Throughout this section, p denotes the
characteristic exponent of k (so p is either 1 or a prime number).

Definition of an isogeny of root data

Recall that a root datum is a triple .X;˚;˚_/ with X a free Z-module of finite
rank and ˚ and ˚_ finite subsets of X and X_ such that there exists a bijection
˛ 7! ˛_W ˚ ! ˚_ satisfying the conditions (rd1, rd2, rd3) of C.28. Here X_ is
the Z-linear dual of X . The map ˛ 7! ˛_ is uniquely determined by the rest of
the data. We call ˛_ the coroot of the root ˛. The triple .X_;˚_;˚/ is also a
root datum (C.48). We require root data to be reduced, i.e., Q˛\˚ D f˙˛g for
all ˛ 2 ˚ .

DEFINITION 23.1. Let R D .X;˚;˚_/ and R0 D .X 0;˚ 0;˚ 0_/ be root data.
An injective homomorphism f WX 0! X with finite cokernel is an isogeny of
root data R0!R if there exists a one-to-one correspondence ˛$ ˛0W˚ $ ˚ 0

and a map qW˚ ! pN satisfying

f .˛0/D q.˛/˛ and f _.˛_/D q.˛/˛0_ (143)

for all ˛ 2 ˚ .

483
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Note that the following conditions on a homomorphism f WX 0 ! X are
equivalent: (a) f is injective with finite cokernel; (b) both f and f _ are injective;
(c) fQ is an isomorphism.

If f WX 0 ! X is an isogeny, then f .˚ 0/ � pN˚ and f _.˚_/ � pN˚ 0_.
Because we require root data to be reduced, given ˛ 2 ˚ , there exists at most
one ˛0 2 ˚ 0 such that f .˛0/ is a positive multiple of ˛. It follows that the
correspondence ˛$ ˛0 and the map q are uniquely determined by f . As .�˛/0

and �˛0 are both elements of ˚ 0 such that f ..�˛/0/ and f .�˛0/ are positive
multiples of �˛, we find that .�˛/0 D�˛0 and q.�˛/D q.˛/.

DEFINITION 23.2. An isogeny f of root data is central if q.˛/D 1 for all ˛ 2˚ ;
it is an isomorphism if it is central and f is an isomorphism of Z-modules.

Thus an isomorphism f WX 0! X of Z-modules is an isomorphism of root
data if and only if there exists a one-to-one correspondence ˛$ ˛0W˚ $ ˚ 0

such that f .˛0/D ˛ and f _.˛_/D ˛0_ for all ˛ 2 ˚ .

EXAMPLE 23.3. Let .X;˚;˚_/ be a root datum, and let q be a power of p.
The map x 7! qxWX ! X is an isogeny .X;˚;˚_/! .X;˚;˚_/, called the
Frobenius isogeny (the correspondence ˛$ ˛0 is the identity map, and q.˛/D q
for all ˛).

PROPOSITION 23.4. Let f W.X 0;˚ 0;˚ 0_/! .X;˚;˚_/ be an isogeny of root
data, and let ˚C be a system of positive roots for ˚ with base �. Then ˚ 0C def

D

f˛0 j ˛ 2 ˚Cg is a system of positive roots for ˚ 0 with base �0 def
D f˛0 j ˛ 2�g.

PROOF. Using that f is an isogeny of root data, we find that each element of ˚ 0

has a unique expression as a Q-linear combination of elements of �0 in which
the coefficients all have the same sign. Clearly those elements of ˚ 0 for which
the signs are positive form a system of positive roots ˚ 0C for ˚ 0. From this and
the fact that ˚ 0 is reduced, it follows that a decomposition

˛0 D ˇ0C 0; ˛0 2�0; ˇ0; 0 2 ˚ 0C

is impossible, and so �0 is a base for ˚ 0 (see C.21). 2

NOTES. The definition of an isogeny of root data in (23.1) is that of Steinberg 1999.
It essentially agrees with the definition of a p-morphism of root data in Springer 1998,
p. 172. The definition of a p-morphism of root data in SGA 3, XXI, 6.8.1, p. 100, differs
in that it does not require fQ to be an isomorphism.

The isogeny of root data defined by an isogeny of groups

Let .G;T / be a split reductive group, and let ˚ �X.T / be its set of roots. Let
U˛ denote the root group attached to a root ˛ 2 ˚ . Recall that U˛ is the unique
algebraic subgroup of G isomorphic to Ga, normalized by T , and such that T



a. Isogenies of groups and of root data 485

acts on it through the character ˛ (see 21.19). This last condition means that, for
every isomorphism u˛WGa! Ua,

t �u˛.a/ � t
�1
D u˛.˛.t/a/; (144)

for all t 2 T .R/, a 2Ga.R/, R a k-algebra.
An isogeny of split reductive groups .G;T /! .G0;T 0/ is an isogeny 'WG!

G0 such that '.T / � T 0. We write 'T for 'jT WT ! T 0. In the following, u˛
always denotes an isomorphism Ga! U˛ .

PROPOSITION 23.5. If 'W.G;T /! .G0;T 0/ is an isogeny of split reductive
groups, then f def

D X.'T /WX.T
0/! X.T / is an isogeny of root data. Roots

˛ 2 ˚ and ˛0 2 ˚ 0 correspond if and only if '.U˛/D U˛0 , in which case

'.u˛.a//D u˛0.c˛a
q.˛//; all a 2Ga.k/; (145)

where c˛ 2 k� and q.˛/ is such that f .˛0/D q.˛/˛. The isogeny ' is central
(resp. an isomorphism) if and only if f is central (resp. an isomorphism).

PROOF. The restriction of ' to T is an isogeny T ! T 0, and so f WX.T 0/!
X.T / is injective with finite cokernel. By definition, f .�0/D �0 ı'jT for �0 2
X.T 0/. The image '.U˛/ of U˛ in G0 is isomorphic to Ga (see 14.58) and
normalized by T 0, and so it equals the root group U˛0 with ˛0 the character of T 0

on Lie.'.U˛//. Therefore

'.u˛.a//D u˛0.g.a//; a 2Ga.R/; R a k-algebra, (146)

with g.a/ a polynomial
P
cja

pj in a with coefficients in k (14.40). On applying
' to (144), we find that

'.t/ �'.u˛.a// �'.t/
�1
D '.u˛.˛.t/a//:

Using (146), we can rewrite this as

'.t/ �u˛0.g.a// �'.t/
�1
D u˛0.g.˛.t/a//;

and using (144) in the group G0, we find that

u˛0.˛
0.'.t//g.a//D u˛0.g.˛.t/a//:

As u˛0 is injective and ˛0 ı' D f .˛0/, this implies that

f .˛0/.t/ �g.a/D g.˛.t/ �a/; all a 2Ga.R/: (147)

It follows that g.T / is a monomial, say, g.T /D cT q.˛/ with c 2 k� and q.˛/ a
constant in pN. Now (146) and (147) become

'.u˛.a//D u˛0.ca
q.˛//

and f .˛0/.t/D ˛.t/q.˛/; i.e., f .˛0/D q.˛/˛:
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Let G˛ be the subgroup of G generated by U˙˛ and T . There exists an
element n˛ 2 G˛.k/ normalizing T and acting nontrivially on T (see 21.11d).
Then '.n˛/ normalizes T 0 in G˛0 and acts nontrivially on it, and so we can take
n˛0 D '.n˛/. Now

f ı .1�n˛0/D .1�n˛/ıf:

On applying this to �0 2X.T 0/ and using that n˛0�0D �0�h�0;˛0_i˛0, we obtain
the first equality below:

h�0;˛0_if .˛0/D hf .�0/;˛_i˛ D h�0;f _.˛_/i˛:

As this holds for all �0 2X.T 0/, it follows from f .˛0/D q.˛/˛ that f _.˛_/D
q.˛/˛0_. Thus f is an isogeny of root data.

The isogeny ' is central if and only if its kernel is contained in T , which
is true if and only if the restriction of ' to U˛ ! U˛0 is injective, hence an
isomorphism, for all ˛ (see 21.84). In turn, this is true if and only if q.˛/D 1 for
all ˛.

Let ' be a central isogeny. As its kernel is contained in T , it is an isomorphism
if and only if 'T is an isomorphism, which is true if and only if f D X.'T / is
an isomorphism. 2

It is not quite true that an isogeny 'W.G;T /! .G0;T 0/ is an isomorphism if
'T is an isomorphism (it need not be central; 23.30).

EXAMPLE 23.6. We say that an isogeny 'WG! G0 is a Frobenius isogeny if
its kernel is equal to the kernel of the Frobenius homomorphism FG WG!G.q/

for some q (see 2.28). An isogeny ' of split reductive groups is a Frobenius
isogeny if and only if X.'/ is a Frobenius isogeny of root data.

Uniqueness

The isogeny f DX.'T / of root data in Proposition 23.5 does not determine '
uniquely because the inner automorphism of .G0;T 0/ defined by an element of
.T 0=Z.G0//.k/ does not change f . However, this is the only indeterminacy.

PROPOSITION 23.7. Let '1;'2W.G;T /� .G0;T 0/ be isogenies of split reduct-
ive groups. If they induce the same map on root data, then '2 D inn.t/ı'1 for a
unique t 2 .T 0=Z.G0//.k/.

PROOF. Let f1 DX.'1jT /. Let � be a base for ˚ , and let ˛ 2�. The equality
f1.˛

0/ D q.˛/˛ implies that '1.u˛.a// D u˛0.c˛aq.˛// for some c˛ 2 k, and
similarly '2.u˛.a//D u˛0.d˛aq.˛// for some d˛ 2 k. As �0 is a basis for the
Z-module X.T 0=Z0/ (see 21.9), there exists a t 2 T 0.k/ such that ˛0.t/D d˛c�1˛
for all ˛ 2�. Let ' D inn.t/ı'1, then

'.u˛.a//D inn.t/.u˛0.c˛aq.˛///
21.22
D u˛0.˛

0.t/c˛a
q.˛//D '2.u˛.a//:

Therefore, '2 and ' agree on U˛ for ˛ 2� as well as on T , and so they agree on
G (see 21.63); hence '2 D '1 ı inn.t/. 2
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PROPOSITION 23.8. Let '1;'2W.G;T /� .G0;T 0/ be isogenies of split reduct-
ive groups. If one of G or G0 is semisimple and '1 and '2 induce the same
correspondence ˛$ ˛0 on the roots, then '1jT D '2jT .

PROOF. Let f1 D X.'1jT / and f2 D X.'2jT /. We are given that for some
one-to-one correspondence ˛$ ˛0W˚ $ ˚ 0,

f1.˛
0/D q1.˛/˛ and f2.˛

0/D q2.˛/˛:

Because ˚ is reduced, q1.˛/D q2.˛/. Therefore f1 and f2 agree on Z˚ 0. If G0

is semisimple, then Z˚ 0 has finite index in X.T 0/, and so f1 and f2 agree on
X.T 0/. This implies that '1 and '2 agree on T (see 12.9a). The proof when G is
semisimple is similar. 2

Statement of the isogeny theorem

THEOREM 23.9 (ISOGENY THEOREM). Let .G;T / and .G0;T 0/ be split reduct-
ive algebraic groups over k. An isogeny 'WT ! T 0 of tori extends to an isogeny
G!G0 if and only if the map X.'/WX.T 0/!X.T / is an isogeny of root data.

In particular, every isogeny of root data R.G0;T 0/!R.G;T / arises from
an isogeny .G;T /! .G0;T 0/. The necessity was proved in Proposition 23.5; the
sufficiency is proved in the next section.

b. Proof of the isogeny theorem

Preliminaries

The next lemma shows that it suffices to prove that every isogeny of root data
arises from a homomorphism of algebraic groups.

LEMMA 23.10. Let 'W.G;T /! .G0;T 0/ be a homomorphism of split reductive
groups over k. If X.'T /WX.T 0/!X.T / is an isogeny of root data, then ' is an
isogeny.

PROOF. Let f DX.'T /. We are given that there exist a one-to-one correspond-
ence ˛$ ˛0W˚ $ ˚ 0 and a map qW˚ ! pN such that

f .˛0/D q.˛/˛ and f _.˛_/D q.˛/˛0_ (148)

for all ˛ 2 ˚ . As in the proof of Proposition 23.5, ' maps each U˛ onto U˛0 . It
follows that ' is surjective because G0 is generated by its subgroups U˛0 and T 0

(see 21.11f). As

dimG 21.13
D dimT Cj˚ j D dimT 0C

ˇ̌
˚ 0
ˇ̌ 21.13
D dimG0;

this implies that ' is an isogeny. 2
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The next two lemmas, both due to Chevalley, prove special cases of the
isogeny theorem.

LEMMA 23.11. Let '1W.G;T /! .G1;T1/ and '2W.G;T /! .G2;T2/ be iso-
genies of split reductive groups, and let 'T WT1! T2 be a homomorphism such
that 'T ı'1jT D '2jT . If X.'T / is an isogeny of root data, then 'T extends to a
homomorphism 'WG1!G2 such that ' ı'1 D '2:

.G;T / .G1;T1/

.G2;T2/:

'1

'2
'

PROOF. The homomorphism '2 factors through '1 (i.e., ' exists) if and only
if Ker.'1/� Ker.'2/. If '1 and '2 are central isogenies (for example, if k has
characteristic zero), then the kernels are contained in T (because T D CG.T /),
and so this follows from the fact that '1jT factors through '2jT .

Clearly the statement Ker.'1/ � Ker.'2/ is true if and only if it becomes
true after an extension of the base field, and so we may suppose that k is al-
gebraically closed. The kernels of '1.k/ and '2.k/ are central in G.k/, and so
'1.k/WG.k/!G1.k/ factors through '2.k/, say, g ı'1.k/D '2.k/. It remains
to show that gWG1.k/!G2.k/ is a regular map.

Let ˛, ˛1, and ˛2 be roots of .G;T /, .G;T1/, and .G;T2/ related in pairs
by the maps f1 DX.'1jT /, f2 DX.'2jT /, and f DX.'/. Then '1.U˛.k//D
U˛1.k/ and '2.U˛.k//DU˛2.k/, so that g.U˛1.k//DU˛2 . Moreover, gWU˛1!
U˛2 is a regular map because, for some c 2 k, it has the form

g.u˛1.a//D u˛2.ca
q.˛1//; a 2 U˛1.k/

(see (145), p. 485). It follows that g is a regular map on the big cell of G1 (see
21.84), and hence on the union of its translates, which is G1 itself. Thus g is an
isogeny of algebraic groups. 2

LEMMA 23.12. Let '1W.G1;T1/! .G;T / and '2W.G2;T2/! .G;T / be iso-
genies of split reductive groups, and let 'T WT1! T2 be a homomorphism such
that '2jT ı'T D '1jT . If X.'T / is an isogeny of root data, then 'T extends to a
homomorphism 'WG1!G2 such that '2 ı' D '1.

PROOF. Let G3 be the identity component of G1�G G2, and let p1 and p2 be
the projections of G3 onto G1 and G2. It suffices to show that p2 factors through
p1, say ' ıp1 D p2, because then

'2 ı' ıp1 D '2 ıp2 D '1 ıp1;

and the surjectivity of p1 implies that '2 ı' D '1. As in the last proof, it suffices
to show that p2 factors through p1 after an extension of the base field, and so we
may suppose that k is algebraically closed.
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Replace G3 with .G3/red. The homomorphisms p1 and p2 are isogenies and
so G3 is reductive. Let T3 be the inverse image torus of T in G3 (under '2 ıp2
or '1 ıp1):

.G3;T3/ .G2;T2/

.G1;T1/ .G;T /:

p2

p1 '2

'1

'

Then 'T ıp1jT3 D p2jT3, and Lemma 23.11 applied to p1 and p2 shows that
'T extends to a homomorphism 'WG1!G2 such that ' ıp1 D p2. 2

LEMMA 23.13. It suffices to prove the isogeny theorem for split semisimple
groups.

PROOF. Assume the isogeny theorem for semisimple groups, and let .G;T /
and .G0;T 0/ be split reductive groups. Then G D T0 �S with S D Gder and
T0 DR.G/, and T D T0 �TS with TS a maximal split torus of S (see 17.86). Let
XS DX.TS / and X0 DX.T0/. Similarly, let G0 D T 00 �S

0 etc. Let 'T WT ! T 0

be an isogeny such that f DX.'T / is an isogeny of root data.
The roots ˛0 of G0 generate .XS 0/Q, and so the equalities f .˛0/ D q.˛/˛

imply that f .XS 0/ � XS . The lattice X0 (resp. X 00) is the annihilator in X
(resp. X 0) of X_S (resp. X_S 0), and so the equalities f _.˛_/ D q.˛/˛0_ imply
that f maps X 00 into X0. Now f jX 00 and f jXS 0 correspond to homomorphisms
'0WT0! T 00 and 'TS WTS ! T 0S . Because f jXS 0 is an isogeny of root data, 'TS
extends to a homomorphism 'S WS ! S 0. The homomorphisms '0 and 'S agree
on T0\S , and so '0�'S induces an isogeny G!G0 extending 'T :

e T0\S T0�S G e

e T 00\S
0 T 00�S

0 G0 e:

'0�'S '

2

The isogeny theorem for groups of semisimple rank at most 1

If .G;T / and .G0;T 0/ have semisimple rank 0, then G D T and G0 D T 0, and so
there is nothing to prove.

PROPOSITION 23.14. The isogeny theorem holds for split reductive groups of
semisimple rank 1.

PROOF. Let .G;T / and .G0;T 0/ be split reductive groups of semisimple rank 1,
and let f WX.T 0/!X.T / be an isogeny of root data. According to (the proof of)
Lemma 23.13, we may suppose that G and G0 are semisimple.

Assume first that G0 D PGL2. According to Theorem 20.22, there exists a
central isogeny '1WG!G0; let f1DX.'1/. Then f .˛0/D q.˛/˛D q.˛/f1.˛0/
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for all roots ˛ of G, and so the composite of '1 with the q.˛/th power Frobenius
homomorphism of G0 (see 23.6) is an isogeny realizing f .

We now prove the general case. Let '1W.G0;T 0/! .PGL2;T2/ be a central
isogeny, and let f1 D X.'1/. By the previous case, there exists an isogeny
'0W.G;T /! .PGL2;T2/ with X.'0/ D f ı f1. Now (23.12) applied to the
diagram

.G0;T 0/

.G;T / .PGL2;T2/

'1
'

'0

yields an isogeny 'WG!G0 with X.'/D f . 2

REMARK 23.15. Since we know that the only split semisimple groups of rank
1 are SL2 and PGL2 (see 20.33), we could have proved Proposition 20.32 by
using a case-by-case argument. Alternatively, the proof of Proposition 23.14 only
requires Theorem 20.22, and from it one can recover many of the later results in
Chapter 20.

Proof of the isogeny theorem in the general case.

To pass to the general case from the case of semisimple rank 1, we make use
of the subgroups G˛ of G attached to each root ˛ of .G;T /. Recall that G˛
is generated by T and the root groups U˛ and U�˛ , and that .G˛;T / is a split
reductive group of semisimple rank 1 (see 21.11).

Let .G;T / and .G0;T 0/ be split reductive groups over k, and let 'T WT ! T 0

be a homomorphism such that f DX.'T /WX.T 0/!X.T / is an isogeny of root
data. Thus there is a one-to-one correspondence ˛$ ˛0W˚ $ ˚ 0 and a map
qW˚ ! pN satisfying (143, p. 483). We fix a base � for ˚ .

23.16. For each ˛ 2�, the isogeny 'T extends to an isogeny '˛WG˛!G˛0 .

PROOF. As G˛ and G˛0 have semisimple rank 1, this was proved in 23.14. 2

It remains to prove the following statement.

23.17. The family of homomorphisms .'˛WG˛!G0/˛2� extends to a homo-
morphism 'WG!G0.

We construct ' by constructing its graph.1 Let G00 denote the algebraic
subgroup of G �G0 generated by the family of maps x 7! .x;'˛.x//WG˛ !

G �G0 (see Section 2h). It is a connected group variety because the G˛ are
connected group varieties. It suffices to prove the following statement (because
then p0 ıp�1 will be the map sought).

1Let 'WX!Y be a morphism of algebraic schemes over k. The morphism .id;'/WX!X�Y
is an isomorphism from X onto a subscheme of X �Y , called the graph �' of '. If Y is
separated, then �' is a closed subscheme ofX �Y . The projection mapX �Y !X restricts to an
isomorphism �'!X inverse to .id;'/.
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23.18. The projection pWG�G0!G maps G00 isomorphically onto G.

We prove this in several steps. We may suppose that k is algebraically closed.

23.19. The projections of G00 to G and G0 are both surjective.

PROOF. The image of p contains
S
˛2�G˛ , which generates G (see 21.62).

Similarly, p0WG00!G0 is surjective because of Proposition 23.4. 2

23.20. The group G00 is reductive.

PROOF. The images of Ru.G00/ in G and G0 are smooth, connected, unipotent,
and normal (because p and p0 are surjective), and hence trivial. This implies that
Ru.G

00/ is trivial. 2

When H is a subgroup variety of G˛ , some ˛ 2 �, we let H 00 denote the
graph of '˛jH . It is a subgroup variety of G00, and .id;'˛jH/ is an isomorphism
of H onto H 00 with inverse pjH 00. In particular, U 00˛ , U 00�˛ , T 00, and G00˛ are
subgroup varieties of G00 (in G �G0/ isomorphic respectively to U˛ , U�˛ , T ,
and G˛ via p. Let U 00 and V 00 be the subgroup varieties of G00 generated by
the families .U 00˛ /˛2� and .U 00�˛/˛2�. The groups U 00˛ , U 00, U 00�˛ , and V 00 are
connected unipotent subgroup varieties of G00, and they are all normalized by the
torus T 00.

23.21. The groups U 00�˛ and U 00
ˇ

commute elementwise for all ˛;ˇ 2�, ˛ ¤ ˇ.

PROOF. As � and �0 are bases for ˚ and ˚ 0, the similar statement holds for G
and G0 (see 21.21), and hence for G00. 2

23.22. The subset C D V 00 �T 00 �U 00 of G00 is open and dense.

PROOF. First C is open and dense in its closure NC because it is the image of the
multiplication map

V 00�T 00�U 00!G00

and we can apply A.15. For the proof that this closure is G00, we use 23.21 and
the definition of C . We first show by induction on n that

U 00˛U
00
�˛1

U 00�˛2 � � �U
00
�˛n
� NC (149)

for any elements ˛;˛1; : : : ;˛n of �. If nD 0, this is obvious. Assume that n > 0.
If ˛ ¤ ˛1, then

U 00˛U
00
�˛1
D U 00�˛1U

00
˛

by 23.21, and if ˛ D ˛1, then

U 00˛U
00
�˛1
�G00˛ D U

00

�˛T
00U 00˛ .

Thus in both cases (149) follows from the induction hypothesis. We haveU 00˛ V
00�

NC by (149) because V 00 D U 00�˛1U
00
�˛2
� � � for some elements ˛1;˛2; : : : of �. It

follows that U 00˛ NC � NC and clearly U 00�˛ NC � NC and T 00 NC � NC . As the subgroups
U 00˛ , U 00�˛ , ˛ 2�, and T 00 generateG00, this shows that NC equalsG00, as required.2
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23.23. The torus T 00 in G00 equals its centralizer, and so it is maximal.

PROOF. The centralizer of T 00 in C is T 00 because the corresponding result is
true in G and G0. It follows from 23.22 that the centralizer of T 00 in G00, which is
connected (17.38), contains T 00 as a dense open subset and hence equals it. 2

23.24. The projection p.k/WG00.k/!G.k/ is bijective and the restriction of p
to T 00! T is an isomorphism.

PROOF. That T 00!T is an isomorphism was noted earlier, and p.k/ is surjective
because p is surjective (23.19). Let N D Ker.p/red. Then N is a subgroup
variety of G00, which is normal in G00 because N.k/D Ker.p.k// is normal in
G00.k/ and we can apply Corollary 1.86. As N \T D e, the group N maps
isomorphically onto its image NN in NG00 D G00=R.G00/. Moreover NN is normal
in NG00 and NN \ NT D e, which contradicts Theorem 21.51 unless N ı D e. Thus
Ker.p/ı.k/ is trivial. Then Ker.p/.k/ is also trivial because it is finite and
normal, hence central, and therefore contained in T 00. 2

We now complete the proof of 23.18. The properties in 23.24 are not quite
enough to make p an isomorphism, as shown by the examples in Proposition
23.30 below. However, in the present case, p also induces an isomorphism
between all corresponding pairs of root subgroups of G00 and G, since this is true
for the root subgroups U 00˛ and U˛ (˛ 2 �) by construction and the others are
conjugate to these under the Weyl groups. It therefore induces an isomorphism
between the big cells of G00 and of G. Since the translates of the big cell form an
open covering, it follows that p itself is an isomorphism. Thus 23.18 is proved,
and with it the isogeny theorem (23.9).

NOTES. The isogeny theorem was first proved by Chevalley (in his famous 1956–58
seminar) for semisimple groups over an algebraically closed field. Chevalley’s proof
works through semisimple groups of rank 2, and is long and complicated.2 The proofs
in Humphreys 1975, Springer 1998, SGA 3, and elsewhere follow Chevalley. Takeuchi
(1983) gave a proof of the isogeny theorem in terms of “hyperalgebras” that avoids using
systems of rank 2. This inspired Steinberg to find his simple proof for reductive groups
over algebraically closed fields (Steinberg 1999). Our proof follows Steinberg except that
we have rewritten it in the language of group schemes and extended it to split groups over
arbitrary base fields.

c. Complements

The next theorem summarizes what we have proved so far.

THEOREM 23.25 (FULL ISOGENY THEOREM). Let 'W.G;T /! .G0;T 0/ be an
isogeny of split reductive groups over the field k; then ' defines an isogeny

2See, for example, the six pages of case-by-case calculations in Humphreys 1975, pp. 209–214,
or the ten pages in SGA 3, Tome III, pp. 191–200. Borel 1991 does not prove the isogeny theorem.
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f DX.'jT /WR.G0;T 0/!R.G;T / of root data, and every isogeny of root data
arises in this way from an isogeny of split reductive groups; moreover, ' is
uniquely determined by f up to an inner automorphism defined by an element
of .T 0=Z0/.k/. This statement also holds with “isogeny” replaced by “central
isogeny”, “Frobenius isogeny”, or “isomorphism”.

PROOF. Combine 23.5, 23.6, 23.7, and 23.9. 2

REMARK 23.26. In particular, an isomorphism ' of split reductive groups de-
fines an isomorphism f of root data, and every isomorphism of root data f
arises from a ', unique up to the inner automorphism defined by an element of
.T 0=Z0/.k/. This statement is called the isomorphism theorem.

COROLLARY 23.27. Let .G;T / and .G0;T 0/ be split reductive groups over k.
IfG andG0 become isomorphic over ka, then .G;T / and .G0;T 0/ are isomorphic
over k.

PROOF. If Gka and G0
ka are isomorphic, then .G;T /ka and .G0;T 0/ka are iso-

morphic (21.18), and so their root data are isomorphic. But it is obvious from
their definition that root data do not change under extension of the base field,
and so the root data of .G;T / and .G0;T 0/ are isomorphic. Hence .G;T / and
.G0;T 0/ are isomorphic. 2

COROLLARY 23.28. Let G and G0 be reductive groups over k. If G and G0

become isomorphic over ka, then they become isomorphic over a finite separable
extension of k.

PROOF. They split over a finite separable extension of k, and so the statement
follows from the last corollary. 2

PROPOSITION 23.29. Let .G;T / be a split semisimple group with diagram
.V;˚;X/. If X D P.˚/, then G is simply connected.

PROOF. A central isogeny 'WG0!G gives a central isogeny f W.X;˚;˚_/!
.X 0;˚ 0;˚ 0_/ of root data. The map fQWXQ!X 0Q is an isomorphism, and

Q.˚ 0/D f .Q.˚//� f .X/�X 0 � P.˚ 0/D fQ.P.˚//

(the equalities hold because f is central). If X D P.˚/, then f .X/DX 0, and
so f is an isomorphism of root data, which implies that ' is an isomorphism
(23.5). 2

Noncentral isogenies

As étale subgroups of connected groups are central, and finite group schemes of
order not divisible by p are étale (11.31), only isogenies of degree divisible by p
in characteristic p ¤ 0 can be noncentral. The simplest noncentral isogenies are
the Frobenius isogenies, but there are others, that occur when there are two root
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lengths whose ratio squared equals p. Identify ˛_ with 2˛=.˛;˛/; then, for any
long root ˛0 and n 2 N, multiplication by pn.˛0;˛0/=2 is an isogeny between
RD .X;˚;˚_/ and its dual R_ D .X_;˚_;˚/ which sends ˛_ 2 ˚_ to pn˛
or pnC1˛ according as ˛ is a long or short root. When R_ is isomorphic to
R, we get an endomorphism ' of the given algebraic group G. These are the
Steinberg endomorphisms giving rise to the Suzuki groups and the Ree groups
(17.100; Malle and Testerman 2011, Chapter 22). In characteristic p D 2, there
are also the isogenies we discussed in 18.3, where R is of type Bn and R_ of
type Cn (n� 3).

PROPOSITION 23.30. An isogeny .G;T /! .G0;T 0/ of geometrically almost-
simple split algebraic groups is an isomorphism if it restricts to an isomorphism
T ! T 0, except for the isogenies SO2nC1! Sp2n in characteristic 2 listed in
Example 18.3.

PROOF. Steinberg 1999, 4.11. 2

Generalizations

The method of proof of the isogeny theorem can be applied to obtain more general
statements.

THEOREM 23.31. Let H be a group variety, let T be a split maximal torus in
H , and let � be a finite Z-linearly independent subset of X D X.T /. Suppose
that for each ˛ 2� we are given a split reductive subgroup .G˛;T / of .H;T / of
semisimple rank 1 with roots˙˛, and let U˙˛ be the root groups of˙˛ in G˛ .
If U�˛ and Uˇ commute for all ˛;ˇ 2�, ˛ ¤ ˇ, then the algebraic subgroup G
of H generated by the G˛ is reductive with maximal torus T , and � is a base for
the root system of .G;T /.

PROOF. See Steinberg 1999, 5.4. 2

COROLLARY 23.32. Let .G;T / be a split reductive group, and let � be a base
for its root datum. For any subset �0 of �, there exists an algebraic subgroup
G0 of G containing T as a maximal torus and such that �0 is a base for the root
datum of .G0;T /.

PROOF. Immediate consequence of the theorem. 2

REMARK 23.33. In the situation of Theorem 23.31, let ˛_ be the coroot of
˛ 2� relative to .G˛;T /, and let �_ D f˛_ j ˛ 2�g. Let RD .X;˚;˚_/ be
the root datum of .G;T /. According to the theorem � is a base of ˚ , and so �_

is the corresponding base of ˚_. If R0 D .X;˚ 0;˚ 0_/ is a second root datum
such that � and �_ are bases for ˚ and ˚_, then the Weyl groups of R and R0
are the same because their generators w˛ , ˛ 2�, satisfy the same formulas, and
so

˚ DW�D ˚ 0

˚_ DW�_ D ˚ 0_:
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THEOREM 23.34. Let .G;T / be a split reductive group, let � be a base for its
root system, and let .G˛;T / be the reductive subgroup of semisimple rank 1
attached to ˛ 2�. Let H be an algebraic group, and let 'W

S
˛2�G˛!H be

a morphism of algebraic varieties such that 'jG˛ is a homomorphism for each
˛. If '.U�˛/ and '.Uˇ / commute for all ˛;ˇ 2�, ˛ ¤ ˇ, then ' extends to a
homomorphism 'WG!H .

PROOF. The graphs G0˛ D f.x;'.x// j x 2 G˛g, ˛ 2 �, in G �H satisfy the
hypotheses of Theorem 23.31, and hence generate a reductive group L in G�H
with R.G;T / as its root datum. The projection p1WL!G is an isomorphism by
Theorem 23.25, and p2 ıp�11 is the required extension of '. 2

d. Pinnings

Let .G;T / be a split reductive group over k. For a root ˛, we let G˛ denote the
subgroup of G (semisimple of rank 1) generated by U˛ and U�˛ . The subgroup
UC of SL2 is

˚�
1 �
0 1

�	
.

LEMMA 23.35. Let ˛ be a root of .G;T /. There are natural one-to-one corres-
pondences between the following objects:

(a) nonzero elements e˛ of g˛;

(b) isomorphisms u˛WGa! U˛;

(c) central isogenies v˛WSL2! G˛ such that v˛.diag.t; t�1// D ˛_.t/ and
v˛.U

C/� U˛ .

PROOF. (a)$(b). Given u˛ , we define e˛ to be Lie.u˛/.1/. Every nonzero e˛
arises from a unique u˛ because the map

' 7! Lie.'/W Isom.Ga;U˛/! Isom.k;g˛/

is an isomorphism (each set is a principal homogeneous space for k�; 14.59).
(b)$(c). Given v˛ , we define u˛ to be the composite of v˛ with the isomorph-

ism a 7!
�
1 a
0 1

�
WGa! UC. That every u˛ arises from a unique v˛ is proved in

21.24. 2

When e˛ and u˛ correspond as in the lemma, we let exp.e˛/D u˛.1/.

DEFINITION 23.36. A pinning3 of a split reductive group is a pair .�;.e˛/˛2�/
with � a base for the roots and e˛ a nonzero element of g˛ for every simple ˛.
A pinned reductive group is a split reductive group equipped with a pinning.
The homomorphisms u˛ and v˛ corresponding to e˛ as in (23.44) are called the
pinning maps.

3The original French term is “épinglage”. Some authors prefer “frame” to “pinning”.
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DEFINITION 23.37. Let .G;T;�;.e˛/˛2�/ and .G0;T 0;�0; .e0˛/˛2�0/ be pin-
ned reductive groups. An isogeny 'W.G;T /! .G0;T 0/ respects the pinnings, or
is an isogeny of pinned groups, if

(a) under the one-to-one correspondence ˛$ ˛0W˚$˚ 0 defined by ' (23.5),
elements of � correspond to elements of �0, and

(b) '.exp.e˛//D exp.e˛0/ for all ˛ 2�.

When ' is a central isogeny the conditions become: (a) if ˛ 2�, then ˛0 2�0

and ' restricts to an isomorphism U˛! U˛0 ; (b) .'jU˛/ıu˛ D u˛0 .

DEFINITION 23.38. A based (or pinned) root datum is a root datum .X;˚;˚_/

equipped with a base � for ˚ . An isogeny of based root data .X;˚;˚_;�/!
.X 0;˚ 0;˚ 0_;�0/ is an isogeny of root data such that simple roots correspond to
simple roots under ˛$ ˛0. Central isogenies and isomorphisms of based root
data are defined similarly.

Recall (23.4) that, under an isogeny .X;˚;˚_/! .X 0;˚ 0;˚ 0_/ of root data,
bases for ˚ correspond to bases for ˚ 0. For an isogeny of root data to be an
isogeny of based root data, the given base for ˚ must correspond to the given
base for ˚ 0.

Let .X;˚;˚_;�/ be a based root datum, and let˚C be the system of positive
roots defined by �. Then f˛_ j ˛ 2 ˚Cg is a system of positive roots in ˚_,
and we let �_ denote its base. Often, the based root datum is denoted by
.X;˚;˚_;�;�_/ or, more symmetrically, by .X;X_;˚;˚_;�;�_/.

LEMMA 23.39. Let .G;T / be a split reductive group over k, and let .�;.e˛//
and .�0; .f˛0// be pinnings of .G;T /. Then there exists a g 2 .NG.T /=Z.G//.k/
such that inn.g/ maps .�;.e˛// onto .�0; .f˛0//.

PROOF. There exists a w 2W such that w�0D� (see 21.41), and w is represen-
ted by an element of NG.T /.k/ (see 21.11d, 21.37). Thus, we may suppose that
�0 D�. As � is a basis for X.T=Z.G// (see 21.9), there exists a t 2 .T=Z/.k/
such that ˛.t/e˛ D f˛ for all ˛ 2�. Now inn.t/ acts trivially on � and maps e˛
to f˛ for all ˛ 2� (see 21.22). 2

With these definitions, .G;T;�;.e˛// .X;˚;˚_;�/ is a contravariant
functor from pinned reductive groups over k and isogenies to based root data and
isogenies. The fundamental theorem says that this functor is fully faithful.

THEOREM 23.40 (FUNDAMENTAL THEOREM). Let G and G0 be pinned re-
ductive groups over k, and let f WR.G0/!R.G/ be an isogeny of the corres-
ponding based root data. There exists a unique isogeny 'WG! G0 of pinned
groups such that R.'/D f . This statement also holds with “isogeny” replaced
by “central isogeny” or “isomorphism”.



e. Automorphisms 497

PROOF. The uniqueness follows from Corollary 21.63. According to Theorem
23.9, there exists an isogeny 'W.G;T /! .G0;T 0/ such that X�.'/ D f , and
Lemma 23.39 shows that, after ' has been composed with an inner automorphism
by an element of .NG.T /=Z.G//.k/, it will preserve the pinnings. 2

COROLLARY 23.41. Let G and G0 be pinned reductive groups over k. The
following are equivalent:

(a) G and G0 are isomorphic as pinned groups;

(b) G and G0 have isomorphic based root data;

(c) G and G0 become isomorphic over ka as pinned groups.

PROOF. The based root datum of a pinned reductive group does not change under
extension of the base field, and so the statement is an immediate consequence of
the fundamental theorem. 2

COROLLARY 23.42. The only automorphism of a split reductive group respect-
ing a pinning of the group is the trivial one.

PROOF. Immediate consequence of the theorem (with isomorphism for iso-
geny). 2

In other words, the pinning rigidifies the group. This inspired the frontispiece.

COROLLARY 23.43. Let .G;T;�;.e˛// be a pinned reductive group over k, and
let k0 be a subfield of k. There exists a split model .G0;T0/ of .G;T / over k0,
unique up to a unique isomorphism, such that exp.e˛/ 2G0.k/ for all ˛ 2�.

Specifically, there exists a split reductive group .G0;T0/ over k0 and an
isomorphism 'W.G0;T0/k! .G;T / such that e˛ lies in the image of d'W.g0/k!
g for each ˛ 2�. It follows that .G0;T0/ has a pinning .�0; .e0˛/˛2�0/ for which
' becomes an isomorphism of pinned reductive groups.

The proof is by descent using the fundamental theorem (Conrad et al. 2015,
A.4.13).

e. Automorphisms

Let G be a reductive group over k. We write Aut.G/ for the group of auto-
morphisms of G as an algebraic group over k. Recall (17.63) that the inner
automorphisms of G are those defined by an element of Gad.k/. There is an
exact sequence

1! Inn.G/! Aut.G/! Out.G/! 1 (150)

with Inn.G/DGad.k/ and Out.G/ the cokernel of Inn.G/! Aut.G/.

PROPOSITION 23.44. Let G be a pinned reductive group over k, and let f be
an automorphism of the based root system of G. Then there exists a unique
automorphism ' of G respecting the pinning and such that X�.'/D f .
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PROOF. Special case of Theorem 23.40 with “isomorphism” for “isogeny”. 2

More explicitly, let .G;T / be a split reductive group over k. Let � be a
base for the root system of .G;T /, and choose for each ˛ 2� an isomorphism
u˛WGa ! U˛ . If f is an automorphism of X.T / permuting the simple roots,
then there exists a unique automorphism ' of .G;T / such that X.'jT /D f and
' ıu˛ D uf .˛/ for all simple ˛.

PROPOSITION 23.45. Let .G;T;�;.e˛// be a pinned reductive group over k.
The map Aut.G/! Out.G/ induces an isomorphism

Aut.G;T;�;.e˛//! Out.G/:

PROOF. Immediate consequence of Theorem 23.40. 2

COROLLARY 23.46. There are canonical isomorphisms

Aut.X;˚;�/' Aut.G;T;�;.e˛//' Out.G/:

PROOF. Combine Propositions 23.44 and 23.45. 2

COROLLARY 23.47. Let G be a reductive group over k. If G is splittable, then
the sequence (150) splits. More precisely, the choice of a split maximal torus T
and a pinning .�;.e˛// determines an isomorphism

Aut.G/' Inn.G/ÌAut.X;˚;�/:

PROOF. The choice of .T;˚;�/ determines a homomorphismG!Aut.X;˚;�/
whose kernel is Inn.G/ and whose restriction to Aut.G;T;�;.e˛// is an iso-
morphism. 2

COROLLARY 23.48. Let G0 be a splittable reductive group over k. The map
.G;f / 7!G sending an inner form .G;f / ofG0 toG defines a bijection from the
set of equivalence classes of inner forms .G;f / ofG0 onto the set of isomorphism
classes of inner forms G of G0.

PROOF. The map H 1.k; Inn.G//! H 1.k;Aut.G// is injective, and so both
sets map bijectively to H 1.k; Inn.G//. 2

COROLLARY 23.49. Let .G;T / be a split reductive group over k, and let B be
a Borel subgroup containing T . The isomorphism Gad.k/! Inn.G/ induces
isomorphisms

.N=Z/.k/' Inn.G;T /
.T=Z/.k/' Inn.G;B;T /

where N DNG.T / and Z DZ.G/.
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PROOF. Obvious, as N=Z is the stabilizer of T in G, and T=Z is the stabilizer
of B in N=Z (see 21.41). 2

REMARK 23.50. For a reductive group G over k, there is an exact sequence of
sheaves of groups

e! Inn.G/! Aut.G/! Out.G/! e (151)

with Inn.G/ ' Gad and Out.G/ the cokernel of Inn.G/! Aut.G/ (as a map
of sheaves of groups; 5.73). If G is split, then Out.G/ is the constant group
scheme defined by a finitely generated group, and so Aut.G/ is an affine group
scheme (not necessarily of finite type over k/; it follows by descent that the same
is true for nonsplit reductive groups. For example, if G is diagonalizable, say,
G DD.M/, then Aut.G/'Aut.M/k as in 12.43. When G andH are algebraic
groups over k, the functor Hom.G;H/ is representable by an affine group scheme
if G is reductive (SGA 3, XXIV, 7), but not in general otherwise (Exercise 1-1).

f. Quasi-split forms

In this section, a k-form is a ks=k-form and we write Autks.X/ for Aut.Xks/.
Let � D Gal.ks=k/. Recall (17.67) that a connected group variety is said to
be quasi-split if it contains a Borel subgroup. For a k-form H of an algebraic
group G, let .H/ denote the image of the cohomology class of H under the
map H 1.�;Autks.G//!H 1.�;Outks.G//.

THEOREM 23.51. Let G be a splittable reductive group over k. Every element
of H 1.�;Outks.G// is the class of a quasi-split k-form of G, and two quasi-split
k-forms of G are isomorphic if and only if they have the same class.

In other words, the set H 1.�;Outks.G// classifies the isomorphism classes of
quasi-split k-forms of G.

PROOF. Let T be a split maximal torus in G and .�;.e˛// a pinning of .G;T /.
Let B be the Borel subgroup of G (containing T ) corresponding to �.

Let H be a quasi-split k-form of G. By definition, it contains a Borel
subgroup B 0, and we let T 0 be a maximal torus of B 0. The isomorphism Gks !

Hks may be chosen to map .B;T /ks to .B 0;T 0/ks . It follows that classifying the
quasi-split k-forms of G amounts to classifying the k-forms of .G;B;T /, which
are classified by H 1.�;Autks.G;B;T //.

The obvious maps

Autks.G;T;�;.e˛//
a
�! Autks.G;B;T /

b
�! Outks.G/

compose to an isomorphism. Therefore b is surjective with kernel .T=Z/.ks/

(see 23.49). As T=Z is a split torus, we deduce (3.47) that

H 1.b/WH 1.�;Autks.G;B;T //!H 1.�;Outks.G//
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is injective. As H 1.b/ıH 1.a/ is an isomorphism, we see that both H 1.a/ and
H 1.b/ are isomorphisms. This completes the proof. 2

THEOREM 23.52. Consider the cohomology sequence of (150):

H 1.�; Innks.G//!H 1.�;Autks.G//
b
�!H 1.�;Outks.G//:

Let  2H 1.�;Outks.G//, and let G0 be a quasi-split k-form of G with class 
(23.51). The fibre of b over  classifies the isomorphism classes of inner k-forms
of G0.

PROOF. By definition, the fibre of b over the neutral class classifies the isomorph-
ism classes of inner k-forms of G. To determine the fibres over other elements
of H 1.�;Outks.G// we have to twist the sequence by a 1-cocycle for Autks.G/,
as explained in Serre 1997, I, �5.5. Let f be an isomorphism Gks ! G0

ks , and
let .a� / with a� D f �1 ı�f W� ! Autks.G/ be the corresponding continuous
1-cocycle. From the exact sequence

1! Innks.G0/! Autks.G0/! Outks.G0/! 1

we get the top row of the following diagram:

H 1.�; Innks.G0// H 1.�;Autks.G0// H 1.�;Outks.G0//

H 1.�; Innks.G// H 1.�;Autks.G// H 1.�;Outks.G//:

b0

' '

b

The vertical maps are canonically defined by .a� /, and send the neutral elements
to the class of .a� / in H 1.�;Autks.G// and its image  in H 1.�;Outks.G//.
Thus the fibre of b over  is in canonical one-to-one correspondence with the fibre
of b0 over the neutral element, which is in canonical one-to-one correspondence
with the isomorphism classes of inner forms of G0. 2

COROLLARY 23.53. Each k-form of G is an inner form of a quasi-split k-form,
which is uniquely determined up to isomorphism.

PROOF. A k-form H of G is an inner form of any quasi-split form whose class
in H 1.�;Outks.G// is that of H . 2

COROLLARY 23.54. Let H be a reductive group over k. The quasi-split in-
ner k-forms of H form a single isomorphism class, i.e., there is a unique
 2H 1.k;H ad/ such that H is quasi-split.

PROOF. Immediate consequence of the theorem. 2
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g. Statement of the existence theorem; applications

To complete the classification of reductive groups in terms of root data, we need
the existence theorem.

THEOREM 23.55 (EXISTENCE THEOREM). Every reduced root datum arises
from a split reductive group over k.

We defer the proof to the next section (see also Chapter 24).

COROLLARY 23.56. The functor .G;T / .X;˚;˚_/ is an equivalence from
the category�

objects: split reductive groups .G;T / over k
morphisms: .T 0=Z0/.k/nIsog..G;T /; .G0;T 0//

to the category �
objects: root data
morphisms: isogenies.

PROOF. Combine Theorems 23.25 and 23.55. 2

A remarkable feature of this statement is that, while the first category appears
to depend on k, the second does not. In particular, if k0=k is an extension of
fields, then every split reductive group .G;T / over k0 arises from a split reductive
group over k.

COROLLARY 23.57. Let G be a reductive group over k. There exists a split
reductive group G0 over k, unique up to isomorphism, such that G0ks 'Gks .

PROOF. Let T be a maximal torus in G. Then Tks is a split maximal torus in
Gks (see 17.82), and we take .G0;T0/ to be the split reductive group over k with
root datum equal to that of .G;T /ks . 2

Semisimple groups

Recall (C.26) that a diagram is a reduced root system .V;˚/ over Q together with
a latticeX in V such thatQ.˚/�X �P.˚/. A split semisimple algebraic group
.G;T / over k defines a diagram .V;˚;X/ with X DX.T / and V DX.T /Q.

THEOREM 23.58. The map .G;T / 7! .V;˚;X// defines a bijection from the
set of isomorphism classes of split semisimple groups over k to the set of iso-
morphism classes of diagrams.

PROOF. The isomorphism and existence theorems give a one-to-one correspond-
ence between the first set and the set of isomorphism classes of semisimple root
data (23.26, 23.55, 21.48), but semisimple root data are essentially the same as
diagrams (C.35). 2
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PROPOSITION 23.59. Let .G;T / be a split semisimple group with diagram
.V;˚;X/. Then G is simply connected if and only if X D P.˚/.

PROOF. We know that G is simply connected if X D P.˚/ (see 23.29). For
the converse, suppose that X ¤ P.˚/. Then the inclusion X ,! P.˚/ is a
nonisomorphic central isogeny .X;˚;˚_/! .P.˚/;˚;˚_/. According to
Corollary 23.56, this arises from a nonisomorphic central isogeny .G0;T 0/!
.G;T / and so G is not simply connected. 2

The centre of a split semisimple group .G;T / is the subgroup of T with
character group X=Q.˚/ (see 21.8). Therefore, the proposition says that the
simply connected groups are those with the largest possible centre given the
constraint Q.˚/�X � P.˚/. At the opposite extreme, G has trivial centre if
and only if X DQ.˚/. These are the adjoint groups.

REMARK 23.60. The existence theorem implies that every semisimple group
admits a universal covering. For a split group .G;T /, the universal covering
is the central isogeny corresponding to the isogeny of root data .X;˚;˚_/!
.P.˚/;˚;˚_/. Every semisimple group over k splits over ks, and descent theory
then shows that the universal covering over ks descends to k (because of the
uniqueness of the universal covering 18.8). This is the usual proof (see, for
example, Conrad et al. 2015, A.4.11). However, as we saw in Chapter 18, by
using a little algebraic geometry, it is possible to give a direct proof that every
connected group variety G such that X.G/D 0 admits a universal covering.

EXAMPLE 23.61. The groups SLn, Sp2n, and Spinn are simply connected, the
groups SO2nC1 and PSLn are adjoint, while the groups SO2n are neither. The
groups of type G2, F4, E8 are simultaneously simply connected and adjoint. See
Chapter 24.

Semisimple groups up to strict isogeny

Two semisimple algebraic group G and G0 are said to be strictly isogenous if
there exist central isogenies H ! G and H ! G0. In other words, they are
strictly isogenous if they have the same simply connected covering group.

THEOREM 23.62. Two splittable semisimple groups over k are strictly isogen-
ous if and only if they have the same Dynkin diagram, and every Dynkin diagram
arises from a splittable semisimple group over k. Such a group is almost-simple
if and only if its Dynkin diagram is connected.

PROOF. Simply connected semisimple groups are classified by their root systems
(23.58, 23.59), which in turn are classified by their Dynkin diagrams (Section
Cf). 2
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h. Proof of the existence theorem

Let k be a field. It remains to prove that every root datum arises from a split
reductive group over k. In fact, by Exercise 21-4, it suffices to prove the following
statement:

for every diagram .V;˚/, there exists a split semisimple group
.G;T / over k with diagram .V;˚;P.˚//.

One approach to proving this, which we explain in the next chapter, is to exhibit a
simply connected almost-simple group for each indecomposable root system. In
this section, we sketch a uniform approach that goes back in essence to Chevalley.
We assume some knowledge of the theory of semisimple Lie algebras (Serre
1966).

Semisimple Lie algebras in characteristic zero

Let k be a field of characteristic zero, and let g be a semisimple Lie algebra
over k. A maximal abelian Lie subalgebra h of g is Cartan if it consists of
semisimple elements. To say that an element h of h is semisimple means that
the endomorphism adg.h/, x 7! Œh;x�, of g becomes diagonalizable over an
extension of k. The Cartan algebra is said to be splitting if these endomorphisms
are diagonalizable over k itself, and a semisimple Lie algebra is said to be split if
it contains a splitting Cartan subalgebra.

Let h be a splitting Cartan subalgebra in g. The adg.h/ for h 2 h form a
commuting family of diagonalizable endomorphisms of g. From linear algebra,
we know that there exists a basis of simultaneous eigenvalues. In other words, g
is a direct sum of the subspaces

u˛
def
D fx 2 g j adg.h/.x/D ˛.h/x for all h 2 hg

where ˛ runs over the elements of the linear dual h_ of h. The nonzero ˛ such
that u˛ ¤ 0 form a reduced root system ˚ in h_, and we have

gD h˚
M

˛2˚
u˛:

Up to isomorphism, the root system .h_;˚/ depends only on g.

THEOREM 23.63 (CARTAN–KILLING). Every reduced root system arises from
a semisimple Lie algebra over C.

FIRST PROOF

Let .V;˚/ be the root system, and let � D f˛1; : : : ;˛ng be a base for ˚ . Let
n.i;j /D h j̨ ;˛

_
i i (so .n.i:j //1�i;j�n is the Cartan matrix of the root system).
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Let a be the algebra with generators X1; : : : ;Xn;Y1; : : : ;Yn;H1; : : : ;Hn and
(Weyl) relations

ŒHi ;Hj �D 0

ŒXi ;Xi �DHi ; ŒXi ;Yj �D 0 if i ¤ j
ŒHi ;Xj �D n.i;j /Xj ; ŒHi ;Xj �D�n.i;j /Yj :

Let y and x be the Lie subalgebras generated by the Yi and Xi respectively, and
let h be the Lie subalgebra with basis the Hi . Then

aD y˚h˚ x;

and y and x are the free Lie algebras generated by the Yi and Xi respectively. For
a direct proof of this, see Bourbaki 1975, VIII, �4, no. 2.

Now let g be the quotient of a by the relations

ad.Xi /�n.i;j /C1.Xj /D 0 if i ¤ j

ad.Yi /�n.i;j /C1.Jj /D 0 if i ¤ j:

Then g is a semisimple Lie algebra with Cartan algebra h, and the root system of
.g;h/ is isomorphic to .V;˚/. For a direct proof of this, see Serre 1966, VI.

SECOND PROOF

Let k be a field of characteristic zero. A Lie algebra is reductive if it is a product
of a commutative Lie algebra and a semisimple Lie algebra.

PROPOSITION 23.64. Let g be a semisimple Lie algebra over k and h a splitting
Cartan subalgebra. Let � be a finite linearly independent subset of h_. Suppose
that, for each ˛ 2 �, we are given a reductive Lie subalgebra g.˛/ of G with
splitting Cartan subalgebra h and roots ˙˛. Let u˛ D g.˛/˛ . If Œu�˛;uˇ �D 0
for all ˛;ˇ 2�, ˛ ¤ ˇ, then the Lie subalgebra g0 of g generated by the g.˛/ is
reductive with splitting Cartan algebra h, and � is a base for the root system of
.g;h/.

PROOF. Rewrite Steinberg’s proof of (23.31) for Lie algebras. See also the
arguments in Geck 2016, �4. 2

Let .V;˚/ be a root system over Q. Given ˛;ˇ 2 ˚ such that ˇ ¤˙˛, the
˛-string through ˇ is the longest sequence

ˇ�p˛; : : : ;ˇ�˛;ˇ;ˇC˛; : : : ;ˇCq˛

consisting of roots. Let mC˛ .ˇ/D qC1 and m�˛ .ˇ/D pC1.
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Let �D f˛i j i 2 I g be a base for .V;˚/. Let M be the vector space over
k with basis fui ; i 2 I I v˛; ˛ 2 ˚g: For each i 2 I , let hi , ei , and fi be the
endomorphisms of M defined by the following formulas:

ei .uj /D jh˛i ;˛
_
j ijv˛i ei .v˛/D

8<:
m�˛i .˛/v˛C˛i if ˛C˛i 2 ˚
ui if ˛ D�˛i
0 otherwise

fi .uj /D jh˛i ;˛
_
j ijv�˛i fi .v˛/D

8<:
mC˛i .˛/v˛�˛i if ˛�˛i 2 ˚
ui if ˛ D ˛i
0 otherwise

hi .uj /D 0 hi .v˛/D h˛;˛
_iv˛:

Regard these endomorphisms as elements of glM . The hi act diagonally, and
generate a commutative Lie subalgebra h0 of glM ; moreover h0_ ' kjI j ' V .

LEMMA 23.65. There are the following equalities:�
Œhj ; ei �D h˛i ;˛

_
j iei for all i;j;

Œhj ;fi �D�h˛;˛
_
j ifi for all i;j;

�
Œei ;fi �D hi for all i;
Œei ;fj �D 0 for all i ¤ j:

PROOF. These can be proved by a direct calculation (Geck 2016, 3.3, 3.4, 3.5).2

LEMMA 23.66. Relative to a suitable basis for M , the ei act by strictly upper
triangular matrices and the fi by strictly lower triangular matrices.

PROOF. The height ht.ˇ/ of a root ˇ is
P
mi if ˇ D

P
mi˛i . Write ˚C D

fˇ1; : : : ;ˇN g with ht.ˇ1/� ht.ˇ2/� � � � . Then

fvˇN ; : : : ;vˇ1;uj1 ; : : : ;ujl ;v�ˇ1 ; : : : ;v�ˇN g

is a suitable basis for M , as can be seen directly from the definitions of the ei
and fi . 2

In particular, ei and fi lie in slM .

THEOREM 23.67. Let g0 be the Lie subalgebra of slM generated by fei ; fi j i 2
I g. Then g0 is a semisimple Lie algebra with splitting Cartan subalgebra h0, and
the root system of .g0;h0/ is .V;˚/.

PROOF. Let h denote the diagonal Cartan subalgebra of slM . For i 2 I , let gi
denote the Lie subalgebra of slM generated by ei , fi , and h. From the lemma,
we see that gi is a reductive Lie algebra with splitting Cartan subalgebra h and
roots˙˛i ; moreover, Œu�˛i ;u j̨

�D 0 if i ¤ j . According to the proposition, the
Lie algebra g generated by the gi is a reductive Lie algebra with splitting Cartan
subalgebra h and � is a base for the root system of .g;h/. Now g0 D Œg;g� has
the required properties, and it is generated (as a Lie algebra) by fei ; fi j i 2 I g.2

NOTES. The definition of the vector space M and its family of operators follows Geck
2016, which extends earlier work of Lusztig.
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Semisimple algebraic groups in characteristic zero

Classically, the path from the existence theorem for Lie algebras to algebraic
groups passed through compact Lie groups and complex Lie groups (Borel 1975,
1.5; Conrad 2014, Appendix D). Using Tannakian theory, it is possible to give a
much simpler and more direct derivation (Milne 2007).

LEMMA 23.68. A connected algebraic group G over a field of characteristic
zero is semisimple (resp. reductive) if and only if its Lie algebra is semisimple
(resp. reductive and Z.G/ is of multiplicative type).

PROOF. Suppose that Lie.G/ is semisimple, and let N be a normal commutative
algebraic subgroup of G. Then Lie.N / is a commutative ideal in G, and so it is
zero. This implies that N is finite. For the converse, see p. 475. The statements
for “reductive” follow from those for “semisimple”. 2

Let g be a finite-dimensional Lie algebra over a field k of characteristic zero.
A ring of representations of g is a collection of finite-dimensional representations
of g that is closed under the formation of direct sums, subquotients, tensor
products, and duals. An endomorphism of such a ring R is a family

˛ D .˛V /V 2R; ˛V 2 Endk-linear.V /;

satisfying the following conditions:
(a) for all V;W 2R, ˛V˝W D ˛V ˝ idW C idV ˝˛W I

(b) ˛V D 0 if g acts trivially on V , and

(c) for all V;W 2R and homomorphisms ˇWV !W , ˛W ıˇR D ˇR ı˛V :
The set gR of all endomorphisms of R becomes a Lie algebra over k (possibly
infinite-dimensional) with the bracket Œ˛;ˇ�V D Œ˛V ;ˇV �:

Let R be a ring of representations of a Lie algebra g. For x 2 g, the family
.rV .x//V 2R is an endomorphism of R, and x 7! .rV .x// is a homomorphism of
Lie algebras g! gR. If R contains a faithful representation of g, then g! gR
is injective.

LEMMA 23.69. Let G be an affine group scheme over k, and let R be the
collection of representations of Lie.G/ arising from a representation of G. Then
Lie.G/' gR.

PROOF. We identify Lie.G/ with the kernel of G.kŒ"�/!G.k/ (see 10.6). To
give an element of Lie.G/ is the same as giving a family of kŒ"�-linear maps

idV C˛V "WV Œ"�! V Œ"�

indexed by V 2R satisfying the conditions (a, b, c) of Theorem 9.2. When written
out, these conditions say exactly that the family .˛V / satisfies the conditions (a,
b, c) above, i.e., that .˛V /V 2R 2 gR. 2
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Let Rep.g/ be the category of finite-dimensional representations of a Lie
algebra g over k. It has a tensor product, and the forgetful functor satisfies the
conditions of Theorem 9.24, and so there is an affine group scheme G.g/ such
that

Rep.G.g//D Rep.g/:

The set R of objects of Rep.g/ contains a faithful representation (Ado’s theorem;
14.34), and so the homomorphism g! gR is injective. On composing this with
the isomorphism in 23.69, we get a homomorphism �Wg! Lie.G.g//.

THEOREM 23.70. Let g be a semisimple Lie algebra over a field k of character-
istic zero.

(a) The homomorphism �Wg! Lie.G.g// is an isomorphism.

(b) The affine group scheme G.g/ is a connected semisimple algebraic group.

(c) Let H be an algebraic group over k. The map b 7! Lie.b/ ı � is an
isomorphism

Hom.G.g/;H/' Hom.g;Lie.H//:

(d) If g is split with root system .V;˚/, then the group G is split with diagram
.V;˚;P.˚//.

(e) The group G is simply connected.

PROOF. (a) It remains to prove that � is surjective. As g is semisimple, its
representations are semisimple (Weyl’s theorem), and so G.g/ı is reductive
(22.42). Therefore G.g/ı is an almost-direct product of almost-simple algebraic
groups and a torus. Correspondingly, Lie.G.g// is a direct sum of simple Lie
algebras and a commutative Lie algebra (21.56). If �.g/ fails to contain one
of these summands, there will be a nontrivial representation r of G.g/ such
that Lie.r/ is trivial on g, contradicting the fact that � defines an equivalence
Rep.G.g//! Rep.g/.

(b) The group scheme G.g/ is of finite type over k because its Lie algebra
is finite-dimensional. To show that it is connected, we have to show that its
representations satisfy the condition in 9.50. This follows directly from the
standard description of the representations of a semisimple Lie algebra (we can
extend k and assume that g is split). Finally, G.g/ is semisimple because its Lie
algebra is semisimple (23.68).

(c) From a we get an exact tensor functor

Rep.H/! Rep.h/
a_

�! Rep.g/' Rep.G.g//;

and hence a homomorphism bWG.g/!H , which acts as a on the Lie algebras.
(d) Let h be a splitting Cartan algebra in g, so .V;˚/ is the root system

of .g;h/. Let T be the split torus over k with X�.T /D P.˚/. Then Rep.T /
can be identified with the category of finite-dimensional vector spaces with a
P.˚/-gradation (12.13). Let .W;r/ be a representation of g. The action of h on
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W defines a P.˚/-gradation on W . In this way we get an exact tensor functor
from Rep.G/ to the category of vector spaces with a P.˚/-gradation, which
corresponds to an injective homomorphism T !G (see 9.28). This realizes T
as a split maximal torus in G with character group P.˚/, and the diagram of
.G;T / is .V;˚;P.˚//.

(e) We may extend the base field, and so assume that g is split. Then the
statement follows from Proposition 23.29 and (d). 2

The Cartan–Killing theorem (23.63) holds over an arbitrary field of character-
istic zero (same proof, or use Chevalley bases as below), and so this completes
the proof of the existence theorem over fields of characteristic zero.

Chevalley bases and adjoint groups

Let .g; t/ be a simple Lie algebra over C. Thus .g; t/ corresponds to one of
the Dynkin diagrams on p. 626. Let .V;˚/ be the root system of .g; t/, and let
.�;.e˛/˛2�/ be a pinning for .G;T /. For each ˛ 2 �, there is a unique e�˛
in g˛ such that t˛ D Œe˛; e�˛� lies in t and satisfies h˛; tai D 2. For example, if
gD sl2, then

e˛ D

�
0 1

0 0

�
; t˛ D

�
1 0

0 �1

�
; e�˛ D

�
0 0

1 0

�
are such elements, and in the general case, we let t˛ and e�˛ be the images of
these elements under Lie.v˛/, where v˛ corresponds to e˛ as in (23.35).

There is a unique endomorphism � of g sending each e˛ to �e�˛ .˛ 2 �/
and acting as �1 on t. For example, if gD sl2, then �.X/ is the transpose of
�X . This is an involution of g, called the opposition involution. It is possible
to extend the family .e˛/˛2� to a family .e˛/˛2˚ such that each e˛ is a nonzero
element of g˛ and the equality �.e˛/D�e�˛ still holds. The family ft˛ , ˛ 2�;
e˛; ˛ 2 ˚g is then a basis for g, called a Chevalley basis. Given a pinning, the
elements of a Chevalley basis are uniquely determined up to sign. This lack of
uniqueness of the signs causes difficulties for the theory.

Let ft˛ , ˛ 2�; e˛; ˛ 2 ˚g be a Chevalley basis. For ˛;ˇ 2 ˚ , write

Œe˛; eˇ �D

�
N˛;ˇe˛Cˇ if ˛Cˇ 2 ˚
0 if ˛Cˇ … ˚; ˛Cˇ ¤ 0:

The N˛;ˇ defined by these equations are the structure constants of g relative to
the given Chevalley basis. They determine the multiplication table for g.

THEOREM 23.71. If ˛ and ˇ are roots such that ˛Cˇ is a root, then

N˛;ˇ D˙.pC1/

where p D p˛;ˇ is the greatest integer such that ˇ�p˛ is a root.
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PROOF. This was originally proved in Chevalley 1955a. For recent proofs, see
Casselman 2015 and Raghunathan 2015. 2

Let g.Z/ be the Z-submodule of g generated by the elements of a Chevalley
basis. The theorem shows that g.Z/ is a Lie algebra over Z such that g.Z/˝ZC'
g, i.e., g.Z/ is a Z-structure on g. The isomorphism class of g.Z/ as a Lie algebra
over Z does not depend on the choice of the Chevalley basis.

For every field k, there is a unique homomorphism Z! k, and g.k/
def
D

g.Z/˝Z k is a split semisimple Lie algebra over k. In this way, we obtain, for
every root system .V;˚/ and field k, a split semisimple Lie algebra over k. It is
called the split semisimple Lie algebra of type .V;˚/ over k.

The Lie algebra g.k/ is equipped with a family of homomorphisms u˛WGa!
Aut.g.k// indexed by the roots ˛ 2 ˚ . The algebraic subgroup of Aut.g.k//
generated by the u˛ is a split semisimple algebraic group over k with diagram
.V;˚;Z˚/, i.e., it is the split adjoint group with root system .V;˚/.

Semisimple algebraic groups over arbitrary fields

A remarkable feature of the classification of split semisimple algebraic groups
over a field k in terms of diagrams is that it is independent of the field k. This
suggests that the existence problem should have a solution over Z. More precisely,
given a diagram .V;˚;X/, there should exist a smooth group scheme G over
Z such that, for every homomorphism Z! k from Z into a field k, the group
schemeGk

def
DG�Spec.Z/Spec.k/ is a split semisimple group over k with diagram

.V;˚;X/. In fact, such a G does exist.
Since the Tannakian theory works over Z (with some caveats) one might

try to construct G by constructing its category representations. This works, but
requires a heavy machinery (Mirković and Vilonen 2007; Prasad and Yu 2006).
The original, more elementary, strategy of Chevalley is to choose a lattice in some
representation of GC and realize G as a group of automorphisms of the lattice.

As before, let .g; t/ be a split semisimple Lie algebra over C. We fix a
Chevalley basis ft˛; ˛ 2 �I e˛; ˛ 2 ˚g for .g; t/. The choice of the Chevalley
basis allows us to regard .g; t/ as a Lie algebra over Q.

Let .W;�/ be a finite-dimensional faithful representation of g over Q. We
know (23.70) that there exists a split almost-simple algebraic group G over Q
such that Rep.G/D Rep.g/. In particular, there exists a representation r of G
on W with dr D �.

According to Lemma 23.35, the elements e˛ 2 u˛ , ˛ 2 ˚ , determine a homo-
morphism u˛WGa!G. Let exp.e˛/D u˛.1/ 2 U˛.k/. Then �.e˛/ is nilpotent,
and

r.exp.e˛//D idC�.e˛/C�.e˛/2=2C�� �

(see 14.28). Let T be the subtorus of G with Lie algebra t, and let 	.r/ be the
set of weights of T on W , so W D

L
�2	.r/W�. Then r.T / is the subtorus of

GLW whose elements act as scalars on each space W�.
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For each ˛ 2 ˚ , let G˛ be the subgroup of GLW generated the maps r jT ,
u˛ , and u�˛ . Then the groups G˛ satisfy the hypotheses of Theorem 23.31
and generate a semisimple group G.r/ over Q with diagram .X.T /Q;˚;X.r//,
where X.r/ is the sublattice of X�.T /Q generated by the weights of r . In this
case, it is just the image of G in GLW .

To obtain a similar statement for base fields of nonzero characteristic, we
need a result of Chevalley.

As before, let .W;�/ be a finite-dimensional faithful representation of g over
Q, and let W.Z/ be a lattice in W (so W.Z/˝ZQ'W ). Such a lattice W.Z/ is
said to be admissible if

�.e˛/
m

mŠ
W.Z/�W.Z/; all ˛ 2 ˚ , m 2 N:

Chevalley (1961) showed that an admissible lattice always exists.
Let W.Z/ be an admissible lattice. Then

W.Z/D
M

�2	.r/
W�\W.Z/ (152)

(Borel 1970, 2.3). Choose a basis for the Z-module W.Z/ containing a basis
for each submodule W�\W.Z/. Let ˛ 2 ˚ . For every Z-algebra R, we have a
homomorphism

c 7!
X

m�0

�.e˛/
m

mŠ
cmWR! AutR.W.Z/˝ZR/: (153)

Now consider a homomorphism Z! k with k a field, and let W.k/ D
W.Z/˝Z k. From (152), we get a decomposition of the k-vector space

W.k/D
M

�2	.r/
W�:

Define T .r/ to be the subtorus of GLW.k/ whose elements act as scalars on
the W�. For each ˛, the homomorphisms (153) for R a k-algebra determine a
homomorphism

u˛WGa! GLW.k/

of algebraic groups over k.

THEOREM 23.72. Let G.r/ be the algebraic subgroup of GLW.k/ generated by
the maps u˛ for ˛ 2˚ . Then the pair .G.r/;T .r// is a split semisimple algebraic
group over k with semisimple root datum .X.r/;˚/, where X.r/ is the sublattice
of X�.T .r//˝Q generated by the weights of r . The Lie algebra of G.r/ is
canonically isomorphic to g.Z/˝Z k.

PROOF. The chosen Z-basis for W.Z/ determines a k-basis for W.k/, and we
let T denote the corresponding maximal torus of GLW.k/. For each ˛ 2�, let
G˛ denote the algebraic subgroup of GLW.k/ generated by T and u˙˛ . The
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pairs .G˛;T / in GLW.k/ satisfy the hypotheses of Theorem 23.31, and so the G˛
generate a reductive subgroup G of GLW.k/ with maximal torus T such that �
is a base for the root system of .G;T /. The derived group of G is the required
algebraic subgroup G.r/. We omit the details. 2

COROLLARY 23.73. For every root system .V;˚/ and every field k, there exists
a split semisimple algebraic group .G;T / over k with semisimple root datum
.P.˚/;˚/.

PROOF. As the Z-moduleP.˚/ is generated by the fundamental weights, Lemma
22.24 shows that a suitable sum of representations will have X.r/D P.˚/. 2

NOTES. Apart from the original articles of Chevalley, the basic reference for the existence
theorem is the lecture notes Steinberg 1967. Kostant (1966) suggested a more direct
method of defining the Hopf algebra of G=Z. This is elaborated in Lusztig 2009.

Reductive groups over Z

In fact, Chevalley and Steinberg showed that, in the situation of the last subsection,
there exists a smooth group scheme of finite type G.r;Z/ over Z such that, for
every homomorphism Z! k, the algebraic group G.r;k/ is obtained from
G.r;Z/ by extension of scalars. In his thesis, Demazure extended these results to
reductive groups.

THEOREM 23.74. For every reduced root datum R, there exists a smooth group
scheme G of finite type over Z and a split torus T � G such that, for every
homomorphism Z! k, the pair .G;T /k is a split reductive group over k with
root datum R. Moreover, .G;T / is unique up to isomorphism.

PROOF. See Demazure 1965 and SGA 3, XXV. 2

The starting point of the proof of Theorem 23.74 in SGA 3 is the Cartan–
Killing theorem 23.63. To construct G, it suffices to define a (torsion-free)
Z-structure on the Hopf algebra O.G/ such that Spec.O.G/˝Z Fp/ is a split
reductive group of the correct type for all p. The tori can be recovered from
gradations on the representations.

Following Steinberg 1967, split semisimple algebraic groups over Z or a field
k, are often called Chevalley groups.

Exercises

EXERCISE 23-1. Let G and G0 be reductive groups over k, and let k0 be an
algebraically closed field containing k. Show that every isogeny Gk0 !G0

k0
is

defined over the algebraic closure of k in k0.



CHAPTER 24

Construction of the Semisimple
Groups

All reductive groups can be constructed from semisimple groups and tori (19.29).
In the first section of this chapter, we explain how to express all semisimple
algebraic groups in terms of those that are simply connected and geometrically
almost-simple, and in the remainder of the chapter we explain how to construct
all geometrically almost-simple groups. In particular, for each field k and in-
decomposable Dynkin diagram D, we exhibit a split simply connected group
over k with Dynkin diagram D. Throughout, � D Gal.ks=k/.

a. Deconstructing semisimple algebraic groups

Recall that a semisimple group G over k is geometrically almost-simple if Gka is
almost-simple.

PROPOSITION 24.1. The following conditions on a split semisimple group G
over k are equivalent: (a) G is almost-simple; (b) the root system of G is
indecomposable; (c) G is geometrically almost-simple.

PROOF. (a),(b). Choose a maximal split torus T in G. If the root system of
.G;T / decomposes into a product, then the root datum of .G;T / is isogenous to
a product of root data, and .G;T / is isogenous to a product (23.56). Conversely,
if G is isogenous to G1 �G2, then the root system of G is isomorphic to the
product of the root systems of G1 and G2.

(a),(c). The follows from the equivalence of (a) and (b) because the root
system of .G;T / equals that of .G;T /ka . 2

COROLLARY 24.2. An almost-simple group over a separably closed field is
geometrically almost-simple.

PROOF. It is automatically split. 2

512
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LetG be a semisimple group over k, and let fG1; : : : ;Grg be the set of almost-
simple normal subgroup varieties of Gks . According to Theorem 21.51, there is
an isogeny

.g1; : : : ;gr / 7! g1 � � �gr WG1� � � ��Gr !Gks . (154)

When G is simply connected, this becomes an isomorphism

Gks 'G1� � � ��Gr . (155)

Let G be a simply connected semisimple group over k. When we apply an
element � of � to (155), it becomesGks ' �G1�� � ���Gr with f�G1; : : : ;�Grg
a permutation of fG1; : : : ;Grg. In this way, we get a continuous action of � on
the set fG1; : : : ;Grg. LetH1; : : : ;Hs denote the products of theGi in the different
orbits for this action. Then �Hi DHi , and so Hi is defined over k as a subgroup
of G (see 1.54). Now

G DH1� � � ��Hs

is a decomposition of G into a product of almost-simple groups over k.
If G is almost-simple, then � acts transitively on the set fG1; : : : ;Grg.

Let � be the set of � 2 � such that �G1 D G1, and let K D .ks/�. Then
Homk.K;k

s/ ' �=� and G1 is defined over K as a subgroup of GK . The
Weil restriction of G1 is an algebraic group .G1/K=k over k equipped with an
isomorphism

..G1/K=k/ks 'G1� � � ��Gr DGks

(see 2.61). This isomorphism is � -equivariant, and so it is defined over k:

.G1/K=k 'G:

THEOREM 24.3. Let G be a simply connected semisimple group over k. Let S
be the set of almost-simple normal subgroup varieties ofGks , and let fG1; : : : ;Gsg
be a set of representatives for the orbits of � acting on S . Then

G ' .G1/k1=k � � � �� .Gs/ks=k

where ki is the field of definition of Gi as a subgroup of G. Each group Gi is
geometrically almost-simple and .Gi /ki=k is almost-simple.

PROOF. Let Hi be the product of the groups in the orbit of Gi . According to the
above discussion,Hi is defined over k (as a subgroup ofG) and is almost-simple;
moreover, Hi ' .Gi /ki=k and G 'H1� � � ��Hs . 2

If G is adjoint, then the map (154) is again an isomorphism, and Theorem
24.3 holds for G with “simple” for “almost-simple”. For a general semisimple
group G, the best we can say is that G is the quotient by a central subgroup of an
algebraic group of the form

.G1/k1=k � � � �� .Gs/ks=k
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with ki=k separable and Gi simply connected almost-simple. Therefore, to
understand all semisimple groups, it suffices to understand the simply connected
almost-simple groups and their centres.

ASIDE 24.4. Here is a more canonical statement of Theorem 24.3. Let G and S be as in
the theorem. Then S is a finite set with a continuous action of � , and we let E denote the
étale k-algebra with Homk.E;ks/' S (see A.62). The elementG� of S corresponding to
an element � of Homk.E;ks/ is defined over the subfield �E of ks (as a subgroup of G).
Let G0 denote the algebraic group over E such that �.G0/DG� for all � . Then .G0/E=k
is an algebraic group over k equipped with an isomorphism ..G0/E=k/ks '

Q
� G� (see

2.62). The composite of this with the isomorphism (154) is � -equivariant, and so it is
defined over k; thus .G0/E=k 'G:

b. Generalities on forms of semisimple groups

24.5. Let .G;T / be a split semisimple group over k, and let B be a Borel
subgroup of G containing T . The triple .G;B;T / determines a based semisimple
root datum .X;˚;�/, which in turn determines a Dynkin diagram D whose nodes
are indexed by the elements of �. Recall (23.46) that Out.G/' Aut.X;˚;�/.
Assume that G is simply connected. Then X D P.˚/ and the group of auto-
morphisms of .X;˚;�/ is isomorphic to the group Sym.D) of symmetries of D
(see C.53 and the following discussion). Therefore, there is an exact sequence

1!Gad.k/! Aut.G/! Sym.D/! 1:

Any choice of a pinning for .G;T / splits the sequence (23.47).

24.6. LetG be a simply connected semisimple groupG over k and T a maximal
torus in G. Then .G;T /ks is split and so the choice of a Borel subgroup B
containing Tks determines a based semisimple root datum .X;˚;�/. There is
a natural action of � on X def

D X�.T / which preserves the subset ˚ . If � is an
element of � , then �.�/ is also a base for ˚ , and so w� .�.�//D� for a unique
w� 2W (see 21.41). For ˛ 2�, define � �˛ D w� .�˛/. One checks that this
defines an action of � on�, which is obviously continuous. Using that the nodes
of D are indexed by the elements of �, we obtain an action of � on D, called
the �-action. When G is split, the �-action of � on D is trivial. When G is
quasi-split, we can choose a Borel pair .B;T / in G and define .X;˚;�/ to be
the based semisimple root datum attached to .G;B;T /ks . In this case, � is stable
under the action of � on X , and the �-action on � is induced by the natural
action of � on X .

24.7. Let .G;T / be as in 24.6. Because .G;T /ks is split, we have an exact
sequence (24.5),

1!Gad.ks/! Aut.Gks/! Sym.D/! 1. (156)

We claim that this is � -equivariant for the �-action of � on D. When G is
quasi-split, it is obvious that the map Aut.Gks/! Sym.D/ is � -equivariant. In
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the general case, G is an inner form of a quasi-split group G0 (see 23.53), say,
that defined by a 1-cocycle f W� ! Aut.G0

ks/. Now the sequence (156) for G
can be obtained from that for G0 by twisting using f . It follows that the maps
are equivariant.

The cohomology sequence of (156) is an exact sequence

� � � ! Sym.D/� !H 1.�;Gad.ks//!H 1.�;Aut.Gks//!H 1.�;Sym.D//:

When .G;T / is split, the sequence (156) splits (see 23.47), and so we get short
exact sequences

1!Gad.k/! Aut.G/! Sym.D/! 1

1!H 1.�;Gad.ks//!H 1.�;Aut.Gks//!H 1.�;Sym.D//! 1:

24.8. Let .G;T / be as in 24.6, and let Aut.D/ denote the étale group scheme
over k corresponding to the finite � -set Sym.D/. We claim that there is an exact
sequence of smooth algebraic groups over k

e!Gad
! Aut.G/! Aut.D/! e (157)

that becomes (156) on ks-points. When .G;T / is split, we define Aut.G/ to be
a disjoint union of copies of Gad indexed by the elements of Sym.D/, and we
endow it with the obvious extension of the multiplication on Gad. In general,
.G;T / can be obtained from a split pair .G0;T 0/ by twisting by a 1-cocycle
f W� ! Aut.G0

ks/. Then the sequence for G is obtained from the sequence for
G0 by twisting each term by f .

24.9. Let G be a semisimple algebraic group over k, and let � W QG!G be its
simply connected covering. Then

Aut.G/' f˛ 2 Aut. QG/ j ˛.Ker.�//� Ker.�/g:

Certainly, an automorphism of QG induces an automorphism of G if it maps
the kernel of � into itself. That all automorphisms of G arise (uniquely) in
this way follows from the universality of the universal covering. If the kernel
of QG ! G is characteristic in QG, for example, if G is an adjoint group, then
Aut.Gk0/' Aut. QGk0/ and there are exact sequences (156) and (157).

24.10. Let G be a semisimple group over k. There exists a split semisimple
group G0 over k, unique up to isomorphism, that becomes isomorphic to G over
ks (see 23.57). We call G0 the split form of G, and we say that G is inner or
outer according as it is an inner or outer form of its split form.

24.11. Now let G0 be a split semisimple group over k, and assume that G0 is
simply connected and almost-simple. We know that such groups are classified by
their Dynkin diagrams (23.62), which are listed on p. 626. Thus, each such group
is of type An (n � 1), Bn (n � 2/, Cn (n � 3/, Dn (n � 4/, E6, E7, E8, F4, or
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G2. Every k-form G of G0 defines a cohomology class in H 1.�;Aut.G0ks//. If
 lies in the subset H 1.�;Gad

0 .k
s//, then G is an inner form of G0. Otherwise it

maps to a nontrivial element in

H 1.k;Sym.D//D Hom.�;Sym.D// (continuous homomorphisms).

Let � denote the kernel of this homomorphism and L its fixed field .ks/�. Then
G becomes an inner form of G0 over L. As G0 is geometrically almost-simple,
so also is G. If G0 has type Xy , then we say that G has type zXy , where
z D ŒLWk�D .� W�/. For example, to say that G is of type 3D4 means that it is
an outer form of type D4 and becomes an inner form over a cubic extension of k.

24.12. The indecomposable Dynkin diagrams have few symmetries:

Type Sym.D/ Nontrivial symmetries
An (n > 1/ Z=2Z reflection about centre
D4 S3 permutations of three outer nodes
Dn (n > 4/ Z=2Z reflection about axis
E6 Z=2Z reflection about centre
remainder 1

Thus z is 1 or 2 except for D4, for which it can be 1, 2, 3, or 6.

24.13. Let G be a semisimple group. When G is simply connected and geomet-
rically almost-simple, we say thatG is classical if it is of type An, Bn, Cn, orDn,
but not of subtype 3D4 or 6D4, and it is exceptional if it is of typeE6,E7,E8, F4,
or G2. A general semisimple group G is classical (resp. exceptional) if, in the
decomposition QG '

Q
.Gi /ki=k in 24.3, all Gi are classical (resp. exceptional).

Groups of subtypes 3D4 or 6D4 are neither exceptional nor classical.
In more down-to-earth terms, the geometrically almost-simple simply con-

nected classical groups over k are the k-forms of SLnC1, Sp2n, and Spinn (see
below), except for some k-forms of Spin8. Each is an inner form or becomes
so over a quadratic extension of k. Weil restrictions of classical groups are
classical, products of classical groups are classical, and every group isogenous to
a classical group is classical. In this chapter, we show that all the geometrically
almost-simple classical groups can be described in terms of associative algebras.

c. The centres of semisimple groups

Let .G;T / be a split semisimple group over k. The centre Z.G/ of G is the
diagonalizable group whose character group is X.T /=Z˚ with � acting trivially
(21.8). Thus,

Z.G/D
Y

i
�ni ” X.T /=Z˚ D

M
i
Z=niZ:

If G is simply connected, then X.T / is the weight lattice P.˚/ (23.29), and
so the character group of Z.G/ is isomorphic to P.˚/=Q.˚/. Choose a base
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� for ˚ . Then P.˚/=Q.˚/ is canonically isomorphic to the cokernel of the
map Zn! Zn defined by the Cartan matrix .h˛;ˇ_i/˛;ˇ2�. From the tables
in Bourbaki 1968, one arrives at the following table of centres for the simply
connected split almost-simple groups:

An Bn Cn D2m D2mC1 E6 E7 E8, F4 G2
�nC1 �2 �2 �2��2 �4 �3 �2 e

For example, the simply connected split almost-simple group of typeAn is SLnC1.
This has centre �nC1, which is the diagonalizable group whose character group
is Z=.nC1/Z with � acting trivially. Note that the centre need not be étale.

Let � D Gal.ks=k/. Let G0 and G be algebraic groups over k with centres
Z0 andZ. IfG is obtained fromG0 by twisting by a cocycle inZ1.�;Aut.G0ks//,
then Z.G/ is obtained from Z.G0/ by twisting with the same cocycle. Specific-
ally, let f WG0ks!Gks be an isomorphism over ks. Write a� D f �1 ı�f , � 2 � .
Then f restricts to an isomorphism f jZ0WZ0 ! Z and

�
f �1 ı�f

�
jZ0 D

a� jZ0. Note that f defines an isomorphism f WZ0.k
s/!Z.ks/ and f .a��x/D

�.f .x//. When we use f to identify Z0.ks/ with Z.ks/, this says that � acts
on Z.ks/ by the twisted action

�x D a� ��x:

Let .G;f / be an inner form of G0 (see 3.52). Then the automorphism
a� D f

�1 ı �f of G0 is inner, and so it acts trivially on the centre. Hence
f jZ0 D �.f jZ0/ for all � 2 � , and so f jZ0 is defined over k (see A.66). If
.G;f / and .G0;f 0/ are equivalent inner forms, then

Z.G/'Z.G0/'Z.G
0/.

In other words, the centre of G depends only on the equivalence class of .G;f /,
and is canonically isomorphic to the centre of G0.

We now have a procedure for computing the centre of any simply connected
semisimple group G. Write

G ' .G1/k1=k � � � �� .Gs/ks=k

as in 24.3. Then Gi is the twist by a 1-cocycle of the split group Hi of the same
type over ki , and Z.Gi / is the twist of Z.Hi / by the same cocycle. Now

Z.G/' .Z.G1//k1=k � � � �� .Z.Gs//ks=k .

The connected algebraic groups isogenous to G are the quotients of G by al-
gebraic subgroups of Z.G/. These correspond to quotients of X�.Z.G// by
� -stable subgroups.
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d. Semisimple algebras

For the remainder of the chapter, all algebrasA over k and their modules are finite-
dimensional as k-vector spaces. The dimension of an algebra A as a k-vector
space k is called its degree1 and is denoted ŒAWk�.

DEFINITION 24.14. An algebra A over k is central if its centre is k, and it is a
division algebra if every nonzero element has an inverse. It is simple if it contains
no two-sided ideals (except 0 and A), and it is semisimple if every A-module is
semisimple.

EXAMPLE 24.15. The matrix algebra Mn.k/ is central and simple. For all
a;b 2 k�, the quaternion algebra H.a;b/ (see p. 421) is central and simple.

We shall need to use the following five basic theorems, which are proved, for
example, in Jacobson 1989.

THEOREM 24.16. Let A be a simple algebra over k and S a simple A-module.
Then every A-module is isomorphic to Sm for some m.

For example, every Mn.k/-module is isomorphic to a direct sum of copies of
kn. Note that the theorem implies that simple algebras over k are semisimple,
and so finite products of simple algebras over k are semisimple.

THEOREM 24.17. If D is a division algebra over k, then Mn.D/ is a simple
algebra over k, and every simple algebra over k is of this form. Moreover
Mn.D/�Mn0.D

0/ if and only if nD n0 and D �D0.

In particular, the centre of a simple algebra over k is a field (because the
centre of a division algebra D is obviously a field, and the centre of Mn.D/

equals that of D).

THEOREM 24.18. A semisimple algebra A over k has only finitely many min-
imal two-sided ideals A1; : : : ;Ar . Each Ai is a simple k-algebra, and A D
A1� � � ��Ar :

In particular, a semisimple k-algebra is simple if its centre is a field.

THEOREM 24.19. A central simple algebra over k remains central simple when
tensored with a field k0 containing k.

THEOREM 24.20. Let D be a central division algebra over k, and let L be a
subfield of D that is maximal among the separable extensions of k in D. Then
D˝k L is isomorphic to a matrix algebra over L.

PROPOSITION 24.21. The only central simple algebras over a separably closed
field k are the matrix algebras Mn.k/.

1The degree of a central simple algebra A over k is a square n2. We call n the reduced degree
of A over k; some authors call it the degree of A over k.
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PROOF. A central simple algebra over k is of the form Mn.D/ with D a central
division algebra over k (see 24.17). As k is separably closed, the subfield L in
24.20 equals k, and so D is a matrix algebra over k. This implies that D D k.2

PROPOSITION 24.22. The ks=k-forms ofMn.k/ are the central simple algebras
over k of degree n2.

PROOF. Let A be a central simple algebra over k. Then A˝ks is again central
simple (24.19), and so it is isomorphic to Mn.k/ with n2 D ŒAWk� (see 24.21).
Conversely, if A is an algebra over k that becomes isomorphic to Mn.k

s/ over
ks, then it is obviously central simple of degree n2. 2

THEOREM 24.23 (SKOLEM, NOETHER). Every automorphism of a simple al-
gebra A over k is inner, i.e., of the form a 7! bab�1 for some b 2 A�.

PROOF. Let ˛ be an automorphism of A. We first suppose that A DMn.k/.
Then S D kn is an A-module, and we let S 0 denote kn with a 2A acting as ˛.a/.
Now S and S 0 are both simple A-modules, and so there is an A-isomorphism
f WS ! S 0 (see 24.16). This is an isomorphism of k-vector spaces f Wkn! kn

with the property ˛.a/f .x/ D f .ax/ for all a 2 A and x 2 kn. Now f is
multiplication by an invertible matrix b such that ˛.a/b D ba, i.e., such that
˛.a/D bab�1.

In the general case, there exists a finite Galois extension k0 of k such that
A˝k0 �Mn.k

0/ (see 24.19, 24.21). It follows that there exists a b 2 Ak0 such
that ˛k0.a/D bab�1 for all a 2Ak0 . On applying � 2Gal.k0=k/ to this equality,
we find that �b D b � c� with c� 2 k0�. Now � 7! c� is a 1-cocycle, and so
c� D d

�1 ��d for some d 2 k0� (see 3.39). The element bd�1 of Ak0 is fixed by
all � , and so lies in Ak , and ˛.a/D .bd�1/a.bd�1/�1 for all a 2 A. 2

PROPOSITION 24.24. The isomorphism classes of central simple algebras of
degree n2 over k are classified by H 1.k;PGLn/.

PROOF. These are the ks=k-forms ofMn.k/ (see 24.22). According to Theorem
24.23, Aut.Mn.k

s//' PGLn.ks/. Given an A over k, choose an isomorphism
f WMn.k

s/! ks˝k A, and let a� D f �1 ı�f for � 2 � D Gal.ks=k/. Then
.a� /� is a continuous 1-cocycle whose cohomology class depends only on the
k-isomorphism class of A. Conversely, given a continuous 1-cocycle .a� /� , let

�X D a� ��X; � 2 �; X 2Mn.k
s/:

This defines an action of � on Mn.k
s/, and Mn.k

s/� is an algebra over k such
that Mn.k

s/� ˝k k
s 'Mn.k

s/ (cf. the proof of 3.37). 2

REMARK 24.25. Let A be a central simple algebra over k. For some n, there
exists an isomorphism f WA˝ks!Mn.k

s/, unique up to an inner automorphism
(24.22, 24.23). Let a 2 A, and let Nrd.a/D det.f .a//. Then Nrd.a/ does not
depend on the choice of f . Moreover, it is fixed by � , and so lies in k. It is
called the reduced norm of a.
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Let A be an algebra over k. The opposite algebra Aopp has the same underly-
ing k-vector space as A, but the multiplication is reversed: aoppbopp D .ba/opp:

Let A0 denote the underlying k-vector space of A. Then A˝Aopp acts k-linearly
on A0 by the rule

.a˝b/.x/D axb; a 2 A; b 2 Aopp; x 2 A0:

PROPOSITION 24.26. Let A be a central algebra over k. The map

A˝Aopp
! End.A/ (k-linear endomorphisms)

defined by the above action is an isomorphism of algebras over k.

PROOF. The map is obviously injective and, as the source and target have the
same dimension as k-vector spaces, this implies that it is an isomorphism. 2

DEFINITION 24.27. An algebra over k is separable if it is semisimple and its
centre is an étale k-algebra.

A semisimple algebra over k is separable if and only if the centre of each of
its simple factors is a separable field extension of k.

PROPOSITION 24.28. If A is separable, then A˝k0 is semisimple for all fields
k0 containing k.

PROOF. We may suppose that the centre K of A is field. Then K˝k0 D
Q
Ki

with each Ki a separable extension of k0, and

A˝k k
0
' A˝K .K˝k k

0/'
Y

i
A˝KKi :

Each algebra A˝K Ki is central and semisimple over Ki (see 24.19), and so
A˝k k

0 is semisimple over k0. 2

The converse is also true: if A is not separable, then either it is not semisimple
or its centre K is not étale over k; in the second case, A˝k k0 contains central
nilpotents for some k0, and so it is not semisimple.

e. Algebras with involution

DEFINITION 24.29. LetA be an algebra over k. An involution ofA is a k-linear
map a 7! a�WA! A such that

1� D 1; .ab/� D b�a�; a�� D a; all a;b 2 A:

A homomorphism .A;�/! .B;�/ of algebras with involution over k is a homo-
morphism 'WA! B of algebras over k such that '.a�/D '.a/� for all a 2 A.

An involution of A maps the centre of A into itself. If it fixes the elements of
the centre, it is said to be of the first kind; otherwise it is of the second kind.
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EXAMPLE 24.30. (a) On Mn.k/, the standard involution X 7! X t (transpose)
is of the first kind.

(b) On a quaternion algebra H.a;b/, the standard involution

.aCbiC cj Cdij /� D a�bi � cj Cdij

is the unique involution of the first kind such that ˛�˛ 2 k for all ˛.
(c) On an étale k-algebra of degree 2, there is a unique nontrivial involution.

LEMMA 24.31. Let .A;�/ be an algebra over k with involution. An inner
automorphism x 7! axa�1 of A commutes with � if and only if a�a lies in the
centre of A.

PROOF. To say that inn.a/ and � commute means that ax�a�1 D .a�/�1x�a�

for all x 2 A, i.e., that a�ax� D x�a�a for all x. As x 7! x� is bijective, this
holds if and only if a�a lies in the centre of A. 2

REMARK 24.32. Let .A;�/ be a simple algebra over k with involution, and let
K be the centre of A. Every automorphism of A is inner (24.23), and inn.a/
respects � if and only if a�a 2K�. When we replace a with ca for some c 2K�,
the automorphism inn.a/ is unchanged but a�a becomes c�c �a�a. When � is of
the first kind, so c�c D c2, and every element of K is a square, we can choose c
to make a�aD 1.

PROPOSITION 24.33. Let A be a simple algebra over k with centreK, and let �
and � be involutions of A that agree on K. Then there exists an a 2 A� such that

x� D ax�a�1; all x 2 A:

PROOF. Apply 24.23 to the automorphism x 7! .x�/� of the algebra A overK.2

PROPOSITION 24.34. Let A be a simple algebra over k with centre K, and let �
be an involution of A.

(a) If � is of the first kind, then the involutions of the first kind on A are the
maps x 7! ax�a�1, a 2 A�, with a� D˙a.

(b) If � is of the second kind, then the involutions � on A agreeing with � on
K are the maps x 7! ax�a�1, a 2 A�, with a� D a.

PROOF. It is easy to see that x 7! ax�a�1 is an involution of the correct type
in case (a) if a� D˙a, or in case (b) if a� D a. Now let a 2 A� be such that
x 7! x� D ax�a�1 is an involution. Then

x D x�� D .a�a�1/�1x.a�a�1/ for all x 2 A;

and so a�a�1 2 K�, say, a� D ca, c 2 K. Now, a D a�� D cc� � a; and so
cc� D 1. When � is of the first kind, this says that c2 D 1, and so c D˙1. When
� is of the second kind, the condition cc� D 1 implies that c D d �=d for some
d 2K (see 3.42c). Since � is unchanged when we replace a with a=d , we see
that in this case x� D ax�a�1 for some a satisfying a� D a. 2
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EXAMPLE 24.35. Let V be a finite-dimensional vector space over k, and let �
be a nondegenerate k-bilinear form on V . For ˛ 2 End.V /, define ˛� to be the
endomorphism of V such that

�.˛�.v/;w/D �.v;˛.w//; all v;w 2 V:

In other words,
˛� D O��1 ı˛_ ı O�

where O� is the isomorphism V ! V _ such that O�.v/.w/D �.v;w/ for v;w 2 V
and ˛_ is the map V _! V _ such that ˛_.f /D f ı˛ for f 2 V _. The map
˛ 7!˛� is an involution of the algebra End.V / over k if and only if � is symmetric
or skew-symmetric, in which case � is called the adjoint involution of � and
denoted �� . Every involution of the first kind on End.V / is the adjoint involution
of some �, and � and �0 define the same involution if and only if �0 D c� for
some c 2 k�. These statements can be deduced from Proposition 24.34 by taking
� to be the adjoint involution of some nondegenerate symmetric k-bilinear form.

PROPOSITION 24.36. Let .A;�/ be a central simple algebra over k with an
involution of the first kind. Then .A;�/˝ ks � .End.V /;��/ for some finite-
dimensional ks-vector space V and nondegenerate symmetric or skew-symmetric
bilinear form � on V .

PROOF. Choose an isomorphismA˝ks!End.V / (see 24.19, 24.21), and apply
24.35 to the involution induced on End.V /. 2

DEFINITION 24.37. Let A be a central simple algebra over k. An involution �
onA of the first kind is of orthogonal type (resp. symplectic type) if .A;�/˝ks�

.End.V /;��/ with � symmetric (resp. alternating).

For an algebra .A;�/ with involution over k, we define

Sym.A;�/D fa 2 A j a� D ag
Skew.A;�/D fa 2 A j a� D�ag:

PROPOSITION 24.38. Let .A;�/ be a central simple algebra of degree n2 over k
with an involution of the first kind. Assume that char.k/¤ 2. If � is of orthogonal
type, then

dimk Sym.A;�/D
n.nC1/

2
; dimk Skew.A;�/D

n.n�1/

2
:

If � is of symplectic type, then

dimk Sym.A;�/D
n.n�1/

2
; dimk Skew.A;�/D

n.nC1/

2
:

PROOF. As the conditions a� D a and a� D�a are linear, we may extend k and
so assume that ADMn.k/, and even that � is one of the standard involutions.
The statement is then obvious. 2
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EXAMPLE 24.39. For every algebra A over k, the map

"WA�Aopp
! A�Aopp; .a;b/ 7! .b;a/;

is an involution of the second kind of the k-algebra A�Aopp. It is called the
transpose involution (other names: exchange involution; switch involution).

PROPOSITION 24.40. Let .A;�/ be a separable algebra over k with an involu-
tion of the second kind. Let K be the centre of A, and assume that k D fa 2K j
a� D ag.

(a) The centre K of .A;�/ is an étale k-algebra of degree two.

(b) Let L be an extension of k such that K˝k LD K1�K2, and let A1 D
A˝KK1. Then A1 is a central simple algebra over K1, and

a˝ c 7! .a˝ c;a�˝ c/W.A˝k L;�/' .A1�A
opp
1 ; "/

is an isomorphism of algebras over k with involution.

PROOF. (a) The k-algebra K is étale because A is separable. That its degree
over k is at most 2 is a standard result in Galois theory when K is a field, and
otherwise we can apply A.62.

(b) The algebra A1 over K1 is semisimple, and hence a product of simple
K1-algebras (24.18). But its centre is K1, and so A1 itself must be simple. The
map is the composite of the canonical isomorphisms

A˝k L' A˝K .K˝k L/D A˝K .K1�K2/

' .A˝KK1/� .A˝KK2/' A1�A
opp
1 : 2

COROLLARY 24.41. Let .A;�/ be as in the proposition. Then

.A;�/˝ks
' .End.V /�End.V /opp; "/

for some finite-dimensional ks-vector space V .

PROOF. Apply the proposition with LD ks. Then A1 is a central simple algebra
over ks, and so it is of the form End.V / (see 24.21). 2

DEFINITION 24.42. A pair .A;�/ as in Proposition 24.40 is said to be simple of
unitary type. In other words, an algebra with involution .A;�/ over k is simple
of unitary type if � is an involution of the second kind on A, the centre K of A is
an étale k-algebra of degree 2, and A is either simple (case K is a field) or the
product of two simple algebras (case K D k�k).

f. The geometrically almost-simple groups of type A

Recall (p. 456) that the split simply connected almost-simple group of type An�1
is SLn. Thus, we need to find the forms of SLn.
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The inner forms of SLn

When we embed SLn.ks/ in Mn.k
s/,

X 7!X WSLn.ks/!Mn.k
s/;

the action of PGLn.ks/ on Mn.k
s/ by inner automorphisms preserves SLn.ks/,

and identifies PGLn.ks/ with the full group of inner automorphisms of SLn:

Inn.SLn;ks/' Aut.Mn.k
s//' PGLn.ks/:

The isomorphism classes of k-forms of Mn and inner k-forms of SLn are both
classified byH 1.k;PGLn/, and so they are in natural one-to-one correspondence.

We make this explicit. Recall that the k-forms of Mn are the central simple
algebras A of degree n2 over k (see 24.22). Given such an A, we let SL1.A/
denote the algebraic group over k such that

SL1.A/.R/D fa 2 .A˝R/� j Nrd.a/D 1g

for all k-algebras R.

THEOREM 24.43. The inner forms of SLn over k are the algebraic groups
SL1.A/ for A a central simple algebra of degree n2 over k; two algebraic groups
SL1.A/ and SL1.A0/ are isomorphic if and only if A and A0 are isomorphic as
algebras over k.

PROOF. This summarizes the above discussion (cf. the proof 20.35). 2

The outer forms of SLn

According to 24.7, there is an exact sequence

1! PGLn.ks/! Aut.SLnks/! Sym.D/! 1;

and Sym.D/ has order 2 if n > 2. In fact, X 7! .X t /�1 is an outer automorphism
of SLn inducing the obvious symmetry on the Dynkin diagram (Exercise 21-3).
This does not extend to an automorphism of Mn.k/, and so we need to proceed
differently.

Consider the algebra ADMn.k/�Mn.k/ over k. The two copies of Mn.k/

are the only minimal two-sided ideals in A (see 24.18). Thus, an automorphism
of A either respects the pair .Mn.k/;Mn.k// or it swaps them. In the first case,
the automorphism is inner and in the second it is the composite of an inner
automorphism with .X;Y / 7! .Y;X/.

Now endow Mn.k/�Mn.k/ with the involution

�W.X;Y / 7! .Y t ;X t /:

According to Lemma 24.31, the inner automorphism inn.a/ commutes with �
if and only if a�a 2 k�k. If a�a 2 k�k, then it lies in the diagonal k of k�k
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because it is fixed by �. When we work over ks, we can scale a so that a�aD 1.
Let aD .X;Y /. If

1D a�aD .Y tX;X tY /;

then aD .X;.X t /�1/. It follows that the automorphisms of .Mn.k
s/�Mn.k

s/;�/

are the inner automorphisms by elements .X;.X t /�1/ and the composites of such
automorphisms with .X;Y / 7! .Y;X/.

When we embed SLn.ks/ in the product,

X 7! .X;.X t /�1/WSLn.ks/ ,!Mn.k
s/�Mn.k

s/; (158)

the image is stable under the automorphisms of .Mn.k
s/�Mn.k

s/;�/, and in
this way we get an isomorphism

Aut.SLnks/' Aut.Mn.k
s/�Mn.k

s/;�/:

Thus, the forms of SLn correspond to the forms of .Mn.k/�Mn.k/;�/, and
these are the algebras with involution .A;�/ over k that are simple of unitary
type (24.42).

The map (158) identifies SLn.ks/ with the subgroup of Mn.k
s/�Mn.k

s/ of
elements such that a�aD 1 and Nrd.a/D 1. Define SU.A;�/ to be the algebraic
group over k such that

SU.A;�/.R/D fa 2 A˝kR j a�aD 1, Nrd.a/D 1g

for all k-algebras R.

THEOREM 24.44. The forms of SLn over k are the algebraic groups SU.A;�/,
where .A;�/ is an algebra with involution of degree 2n2 over k that is simple of
unitary type (24.42); two groups SU.A;�/ and SU.A0;�0/ are isomorphic if and
only if .A;�/ and .A0;�0/ are isomorphic as algebras with involution over k.

PROOF. This summarizes the above discussion. 2

REMARK 24.45. There is a commutative diagram

Aut.SLnks/ Sym.D/

Aut.Mn.k
s/�Mn.k

s/;�/ Aut.ks�ks/:

' '

restrict

The centre of A is the form of ks�ks corresponding to the image of the cohomo-
logy class of G in Sym.D/. Therefore, SU.A;�/ is an inner or outer form of SLn
according as the centre of A is k�k or a field.

REMARK 24.46. More formally (and precisely), the functor .A;�/ SU.A;�/
defines an equivalence from the category�

objects: algebras with involution of degree 2n2 over k simple of unitary type,
morphisms: isomorphisms of algebras with involution over k,
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to the category�
objects: k-forms of SLn;
morphisms: isomorphisms of algebraic groups over k

(Knus et al. 1998, 26.9).

g. The geometrically almost-simple groups of type C

Recall (p. 459) that the split simply connected almost-simple group of type Cn is
Sp2n. Thus, we need to find the k-forms of Sp2n.

Consider the algebra M2n.k/ over k with its involution

X 7!X�
def
D S�1X tS; S D

�
0 I

�I 0

�
:

The inner automorphism of M2n.k/ defined by an invertible matrix U commutes
with � if and only if U �U 2 k� (see 24.31). When we pass to ks, we may scale U
so that U �U D I . Then U tSU D S , i.e., U 2 Sp2n.k

s/. As the Dynkin diagram
of type Cn has no symmetries, all automorphisms of Sp2n are inner. Therefore
the inclusion

X 7!X WSp2n.k
s/ ,!M2n.k

s/ (159)

induces an isomorphism

Aut.Sp2nks/' Aut.M2n.k
s/;�/:

It follows that the k-forms of Sp2n correspond to the k-forms of .M2n.k/;�/.
These are the central simple algebras A over k equipped with an involution � of
symplectic type (24.37).

The map (159) identifies Sp2n.k
s/ with the subgroup ofM2n.k

s/ of elements
such that a�aD 1. Define Sp.A;�/ to be the algebraic group over k such that

Sp.A;�/.R/D fa 2 .A˝kR/� j a�aD 1g

for all k-algebras R.

THEOREM 24.47. The forms of Sp2n over k are the algebraic groups Sp.A;�/
where .A;�/ is a central simple algebra of degree .2n/2 over k with an involution
� of symplectic type (24.37); two groups Sp.A;�/ and Sp.A0;�0/ are isomorphic
if and only if .A;�/ and .A0;�0/ are isomorphic as algebras with involution over
k.

Again, this can be stated more precisely as an equivalence of categories (Knus
et al. 1998, 26.14).
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h. Clifford algebras

The spin groups are the simply connected coverings of the special orthogonal
groups. Unusually among the classical groups, they do not have faithful repres-
entations of small dimension. For example, for the double covering of SO2n, the
smallest such dimension is 2s with s D bn�1

2
c. Instead, we construct them as

subgroups of the Clifford algebras, which we define in this section.
Throughout, vector spaces V over k are finite-dimensional.

Graded algebras

24.48. By a graded algebra over k in this section, we mean a Z=2Z-graded
algebra over k, i.e., an algebra C over k together with a k-subspaces C0 and
C1 such that C D C0˚C1, k � C0, and CiCj � CiCj for i;j 2 Z=2Z. When
char.k/¤ 2, a gradation on an algebra C over k determines an involution � of
C by �.x/D .�1/deg.x/x, and every gradation arises in this way from a unique
involution.

24.49. Let c1; : : : ; cn 2 k. Define C.c1; : : : ; cn/ to be the k-algebra with gener-
ators e1; : : : ; en and relations

e2i D ci ; ej ei D�eiej (i ¤ j ).

As a k-vector space, C.c1; : : : ; cn/ has basis fei11 � � �e
in
n j ij 2 f0;1gg, and so it has

dimension 2n. When we set C0 (resp. C1) equal to the subspace spanned by the
elements ei11 � � �e

in
n with i1C�� �C in even (resp. odd), then we obtain a graded

algebra.

24.50. The tensor product of two graded algebras C andD over k is the graded
algebra C ŐD over k with underlying k-vector space C ˝D, multiplication

.ci ˝dj /.c
0
l ˝d

0
m/D .�1/

jl .cic
0
l ˝djd

0
m/; ci 2 Ci , dj 2Dj , : : : ;

and gradation .C ŐD/l D
L
iCjDl Ci ˝Dj .

24.51. There is an isomorphism

C.c1; : : : ; cn/' C.c1/ Ő � � � Ő C.cn/

under which ei corresponds to 1˝�� �˝ e˝�� �˝1 (e in the i th position).

Quadratic spaces

Let V be a vector space over k. A map qWV ! k is a quadratic form if there
exists a k-bilinear form �WV �V ! k such that q.v/D �.v;v/ for all v in V .
Then the polar symmetric bilinear form

�q.v;w/D q.vCw/�q.v/�q.w/
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of q has the property that �q.v;v/D 2q.v/.
A quadratic form on a space of dimension n is nondegenerate if over ka it

becomes equivalent to
Pn=2
iD1x2i�1x2i (n even) or x20 C

P.n�1/=2
iD1 x2i�1x2i (n

odd). When char.k/¤ 2, this is equivalent to the polar form �q being nondegen-
erate. In characteristic 2, q is nondegenerate if either the left kernel V ? of �q is
zero, or it has dimension 1 and q.V ?/¤ 0.

A quadratic space is a vector space V equipped with a quadratic form. A
quadratic space .V;q/ is regular if q is nondegenerate.

NOTES. In characteristic¤ 2, these definitions are standard. Otherwise, we have followed
Knus et al. 1998, p. xix.

Definition of the Clifford algebra

Let .V;q/ be a quadratic space.

DEFINITION 24.52. The Clifford algebra C.V;q/ is the quotient of the tensor
algebra T .V / of V by the two-sided ideal I.q/ generated by the elements of the
form x˝x�q.x/ with x 2 V .

Let �WV ! C.V;q/ be the composite of the canonical map V ! T .V / and
the quotient map T .V /! C.V;q/. Then � is k-linear, and

�.x/2 D q.x/, all x 2 V:

If q.x/¤ 0, then �.x/ is invertible in C.V;q/, because �.x/ � .�.x/=q.x//D 1.

EXAMPLE 24.53. If V is one-dimensional with basis e and q.e/D c, then T .V /
is a polynomial algebra over k in the symbol e and I.q/D .e2� c/. Therefore,
C.V;q/' C.c/.

EXAMPLE 24.54. If q D 0, then C.V;q/ is the exterior algebra on V (quotient
of T .V / by the ideal generated by all squares x2, x 2 V ).

PROPOSITION 24.55. Let r be a k-linear map from V to an algebra D over k
such that r.x/2 D q.x/. Then there exists a unique homomorphism Nr WC.V;q/!
D of algebras over k such that Nr ı�D r .

PROOF. According to the universal property of the tensor algebra, r extends
uniquely to a homomorphism r 0WT .V /!D of algebras over k, namely,

r 0.x1˝�� �˝xn/D r.x1/ � � �r.xn/.

As
r 0.x˝x�q.x//D r.x/2�q.x/D 0;

r 0 factors uniquely through C.V;q/. 2
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The gradation on the Clifford algebra

Decompose

T .V /D T .V /0˚T .V /1; T .V /0 D
M
m even

V ˝m; T .V /1 D
M
m odd

V ˝m:

As I.q/ is generated by elements of T .V /0,

I.q/D .I.q/\T .V /0/˚ .I.q/\T .V /1/ ;

and so

C.V;q/D C0˚C1 with Ci D T .V /i=I.q/\T .V /i :

Clearly this decomposition makes C.V;q/ into a graded algebra over k.

The map C.c1; : : : ; cn/! C.V;q/

If ff1; : : : ;fng is an orthogonal basis for V , then

�.fi /
2
D q.fi /; �.fj /�.fi /D��.fi /�.fj / .i ¤ j /:

Let ci D q.fi /. Then there exists a surjective homomorphism

ei 7! �.fi /WC.c1; : : : ; cn/! C.V;q/: (160)

The behaviour of the Clifford algebra with respect to direct sums

If .V;q/D .V1;q1/˚ .V2;q2/, then the k-linear map

V D V1˚V2
r
�! C.V1;q1/ Ő C.V2;q2/

x D .x1;x2/ 7! �1.x1/˝1C1˝�2.x2/

has the property that r.x/2 D q1.x1/Cq2.x2/D q.x/, and so it factors uniquely
through C.V;q/:

C.V;q/! C.V1;q1/ Ő C.V2;q2/. (161)

Extension of scalars

Let .V;q/ be a quadratic space over k, and let R be a k-algebra. By definition,
q.x/D �.x;x/ for some k-bilinear form � on V . This � extends bilinearly to an
R-bilinear form �R on VR, and we set qR.x/D �R.x;x/ for x 2 VR.
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Explicit description of the Clifford algebra

In the remainder of this section, we assume that char.k/¤ 2.

THEOREM 24.56. Let .V;q/ be a quadratic space of dimension n.
(a) For every orthogonal basis for .V;q/, the homomorphism (160)

C.c1; : : : ; cn/! C.V;q/

is an isomorphism.
(b) For every orthogonal decomposition .V;q/D .V1;q1/˚ .V2;q2/, the ho-

momorphism (161)

C.V;q/! C.V1;q1/ Ő C.V2;q2/

is an isomorphism.
(c) The dimension of C.V;q/ as a k-vector space is 2n.

PROOF. If n D 1, all three statements are clear from 24.53. Assume induct-
ively that they are true for dim.V / < n. Certainly, we can decompose .V;q/D
.V1;q1/˚ .V2;q2/ in such a way that dim.Vi / < n. The homomorphism (161) is
surjective because its image contains �1.V1/˝1 and 1˝�2.V2/ which generate
C.V1;q1/ Ő C.V2;q2/, and so

dim.C.V;q//� 2dim.V1/2dim.V2/ D 2n:

From an orthogonal basis for .V;q/, we get a surjective homomorphism (160).
Therefore, dim.C.V;q//� 2n. It follows that dim.C.V;q//D 2n. By comparing
dimensions, we deduce that the homomorphisms (160) and (161) are isomorph-
isms. 2

COROLLARY 24.57. The map �WV ! C.V;q/ is injective.

This allows us to omit the � and regard V as a subset of C.V;q/.

The structure of the Clifford algebra

Assume that .V;q/ is regular, and that n D dimV > 0. Let e1; : : : ; en be an
orthogonal basis for .V;q/, and let q.ei /D ci . Let

ı D .�1/
n.n�1/
2 c1 � � �cn D .�1/

n.n�1/
2 det.�.ei ; ej //.

We saw in Theorem 24.56 that

C.c1; : : : ; cn/' C.V;q/:

Note that .e1 � � �en/2 D ı in C.c1; : : : ; cn/. Moreover,

ei � .e1 � � �en/D .�1/
i�1ci .e1 � � �ei�1eiC1 � � �en/

.e1 � � �en/ � ei D .�1/
n�ici .e1 � � �ei�1eiC1 � � �en/.

Therefore, e1 � � �en lies in the centre of C.V;q/ if and only if n is odd.
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PROPOSITION 24.58. (a) If n is even, then the centre of C.V;q/ is k; if n is odd,
it is of degree 2 over k, generated by the element e1 � � �en of square ı.

(b) No nonzero element of C1 centralizes C0, and C0\Centre.C.V;q//D k.

PROOF. First show that a linear combination of reduced monomials is in the
centre (or centralizes C0) if and only if each monomial does, and then find the
monomials that centralize the ei (or the eiej ). 2

THEOREM 24.59. If n is even, then C.V;q/ is a central simple algebra over k,
isomorphic to a tensor product of quaternion algebras. If n is odd, then C.V;q/
is a central simple algebra over the field kŒ

p
ı� when ı is not a square in k, and a

product of two central simple algebras over k otherwise.

PROOF. See Scharlau 1985, Chapter 9, 2.10. 2

The involution �

Assume that .V;q/ is regular (and char.k/¤ 2). The map �WV ! C.V;q/opp is
k-linear and has the property that �.x/2 D q.x/, and so it extends uniquely to a
homomorphism �WC.V;q/! C.V;q/opp. As � acts as the identity map on V ,

.x1 � � �xr /
�
D xr � � �x1; all x1; : : : ;xr 2 V:

In particular, � is an involution of C.V;q/. From � we get a norm map x 7!
x�xWC.V;q/! C.V;q/. Note that x�x D q.x/ for x 2 V , and so the norm map
extends q from V to C.V;q/.

NOTES. For more on Clifford algebras, see Scharlau 1985, Chapter 9, and Knus et al.
1998.

i. The spin groups

Let .V;q/ be a regular quadratic space over k of dimension n. Define O.V;q/ to
be the algebraic group over k such that

O.V;q/.R/D f˛ 2 GLV .R/ j qR.˛v/D qR.v/ for all v 2 VRg;

for all k-algebras R. When char.k/¤ 2 or n is odd, we define

SO.V;q/D Ker.O.V;q/
det
�!Gm/:

Otherwise, we define SO.V;q/ so that SO.V;q/.R/ consists of the ˛ 2O.V;q/.R/
inducing the identity map on the centre of C.V;q/.

When char.k/¤ 2;

dim.O.V;q//D
n.n�1/

2
D dim.Lie.O.V;q//
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and so O.V;q/ is smooth; thus SO.V;q/ is smooth and connected (Exercise 2-9).
For a proof of this when char.k/D 2, see Knus et al. 1998, p. 348.

We now assume that char.k/¤ 2. Let g 2 SO.q/.k/. Then g is an isomorph-
ism V ! V , and so it extends to an isomorphism C.V;q/! C.V;q/ of the
Clifford algebra (by universality). It is known that this is the inner automorph-
ism defined by an element h 2 C0.V;q/�. Conversely, if h 2 C0.V;q/�R is such
that hVRh�1 D VR, then the mapping x 7! hxh�1WVR! VR is an element of
SO.q/.R/.

Define GSpin.V;q/ to be the algebraic group over k such that

GSpin.V;q/.R/D fg 2 C0.V;q/�R j gVRg
�1
D VRg:

From the above discussion, we see that there is a natural homomorphism GSpin!
SO.V;q/ sending g 2 GSpin.V;q/.R/ to the map v 7! gvg�1WVR! VR. The
kernel consists of the scalars, and so there is an exact sequence

e!Gm! GSpin.V;q/! SO.V;q/! e:

Therefore GSpin.V;q/ is also smooth and connected; moreover, it is reductive
with adjoint group the adjoint group of SO.V;q/.

When g 2 GSpin.V;q/.R/, its norm g�g 2R�. In this way, we get a homo-
morphism GSpin.V;q/!Gm, called the spinor norm. The group Spin.V;q/ is
defined to be its kernel. Thus there is a diagram

Spin.V;q/

Gm GSpin.V;q/ SO.V;q/

Gm
x 7!x2

in which the column and row are short exact sequences. We can extract from the
diagram an exact sequence

e! �2! Spin.V;q/�Gm! GSpin.V;q/! e,

and so the diagram

�2 Gm

Spin.V;q/ GSpin.V;q/

(162)

satisfies the hypotheses of Lemma 19.23. Thus, there are canonical isomorphisms

Gm=�2 ' GSpin.V;q/=Spin.V;q/;
Spin.V;q/=�2 ' GSpin.V;q/=Gm ' SO.V;q/:
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We see that Spin.V;q/ is the derived group of GSpin.V;q/, and it is a two-fold
covering group of SO.V;q/. Explicitly, an element g of Spin.k/ lies in the kernel
of Spin.k/! SO.k/ if and only if gxg�1 D x for all x 2 V . As V generates
C.V;q/, this implies that g 2 C0\Centre.C /D k (24.58); now the condition
g�g D 1 implies that g2 D 1, and so g D˙1.

The root system .X.T /Q;˚/ of Spin.V;q/ equals that of SO.V;q/, but
X.T / D P.˚/ and so Spin.V;q/ is the simply connected covering group of
SO.V;q/ (see 23.29). The root datum of GSpin can be computed from the
diagram (162) (Exercise 24-4).

REMARK 24.60. Let � be the bilinear form on V such that q.v/ D �.v;v/.
When char.k/¤ 2, the groups O.V;�/ and O.V;q/ coincide. When char.k/D 2,
the group O.V;�/, and even its reduced subgroup, need not be smooth (Exercise
24-2). When char.k/ ¤ 2 and k is perfect, O.V;�/red is isomorphic to the
symplectic group of an alternating space of dimension dim.V /�1 if dim.V / is
odd, but it need not be reductive when dim.V / is even (Exercise 24-3).

j. The geometrically almost-simple group of types B and D

For simplicity, we assume that char.k/ ¤ 2. In particular, this implies that
O.V;q/D O.V;�q/ for a quadratic form q and its polar form �q .

Let .V;q/ be a regular quadratic space of dimension m. The Witt index of
.V;q/ is the dimension of any maximal totally isotropic subspace of V . The
groups SO.V;q/ and Spin.V;q/ are split if and only if .V;q/ has the largest
possible Witt index. For example, the quadratic forms

q D x20C
Xn

iD1
x2i�1x2i .mD 2nC1 odd/

q D
Xn

iD1
x2i�1x2i .mD 2n even/

on km have the largest possible Witt index, namely, nD bm
2
c. We write Spinm,

Om, and SOm for the algebraic groups attached to these forms.
Let .V;q/ be a regular quadratic space of dimension m � 7 with largest

possible Witt index. Then O.V;q/ acts on its subgroup SO.q/ by conjugation,
and every automorphism of SO.V;q/ arises from an element of O.V;q/.k/.
On the other hand, O.V;q/ acts on the Clifford algebra C.V;q/, and hence on
Spin.V;q/. The map O.V;q/! Aut.Spin.V;q// factors through an injective
homomorphism

O.V;q/ad
' Aut.SO.V;q//! Aut.Spin.V;q//: (163)

This induces an isomorphism SO.V;q/ad! Spin.V;q/ad on the groups of inner
automorphisms. Recall that the index of Spin.V;q/ad in Aut.Spin.V;q// is the
number of symmetries of the Dynkin diagram of Spin.V;q/, which is 1 if m is
odd and 2 ifm is even but¤ 8 (see Section b). Thus (163) is an isomorphism ifm
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is odd. If m is even, the automorphism of SO.V;q/ defined by a reflection is not
inner, and so SO.V;q/ad ¤O.V;q/ad. We see that (163) is again an isomorphism
if m is even and m¤ 8. We conclude that

Aut.SO.V;q//' Aut.Spin.V;q//

if m¤ 8.

THEOREM 24.61. The k-forms of Spinm are exactly the simply connected cov-
erings of the k-forms of SOm except for mD 8.

PROOF. Immediate consequence of the above discussion and Theorem 3.43. 2

Thus, it suffices to find the k-forms of SOm. Let S be the matrix of one
of the quadratic forms on km displayed above, and let � be the involution
X� D X tSX�1 on Mm.k/. The automorphisms of .Mm.k/;�/ are the inner
automorphisms by elements a such that a�a 2 k (see 24.31). After passing to
ks, we can scale a so that a�aD 1, i.e., a 2 O.k/. The automorphisms of SOm
are also given by inner automorphisms by elements of O.k/. The image of the
inclusion

X 7!X WSOm.ks/ ,!Mm.k
s/

is stable under the automorphisms of .Mm.k
s/;�/, and in this way we get an

isomorphism
Aut.SOm;ks/' Aut.Mm.k

s/;�/:

It follows that the k-forms of SOm correspond to the k-forms of .Mm.k
s/;�/.

These are the central simple algebras A over k equipped with an involution of �
of orthogonal type (24.37). For such a pair, define SO.A;�/ to be the algebraic
group over k such that

SO.A;�/.R/D fa 2 .A˝R/� j a�aD 1; Nrd.a/D 1g

for all k-algebras R.

THEOREM 24.62. The forms of SOm over k are the algebraic groups SO.A;�/,
where .A;�/ is a central simple algebra of degree m2 over k with an involution �
of orthogonal type (24.37); two groups SO.A;�/ and SO.A0;�0/ are isomorphic
if and only if .A;�/ and .A0;�0/ are isomorphic.

NOTES. It is possible to remove the restriction char.k/ ¤ 2 in this and the preceding
section, but this involves modifying some of the definitions. See Knus et al. 1998, VI, �26.

k. The classical groups in terms of sesquilinear forms

In the above, we described the geometrically almost-simple classical groups in
terms of simple algebras with involution, but every simple algebra is a matrix
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algebra over a division algebra. In this section, we explain how to rewrite the
previous description in terms of division algebras and sesquilinear forms.

We shall use that the standard results in the linear algebra of vector spaces
over a field hold also for vector spaces over a division algebra.

DEFINITION 24.63. Let .D;�/ be a division algebra over k with an involution
�, and let V be a left vector space over D.

(a) A bi-additive form �WV �V !D is sesquilinear if it is semilinear in the
first variable and linear in the second, so

�.ax;by/D a��.x;y/b for a;b 2D; x;y 2 V .

(b) A sesquilinear form � is hermitian if

�.x;y/D �.y;x/�; for x;y 2 V;

and skew hermitian if

�.x;y/D��.y;x/�; for x;y 2 V:

EXAMPLE 24.64. (a) Let D D k with � the identity map. In this case, the
hermitian and skew hermitian forms are, respectively, the symmetric and skew
symmetric forms.

(b) Let D DC with � D complex conjugation. In this case, the hermitian and
skew hermitian forms are the usual objects.

Let .D;�/ be a central division algebra over k with involution �, and let �
be a nondegenerate sesquilinear form on a vector space V over D. For each
˛ 2 EndD.V /, there is an ˛�� 2 EndD.V / uniquely characterized by the equation

�.˛��x;y/D �.x;˛y/; x;y 2 V:

This can be defined as in the bilinear case (24.35) except that O� must be regarded
as a map V ! V 0, where V 0 is the set ff 0 j f 2 V _/ with theD-module structure

f 0Cg0 D .f Cg/0; cf 0 D .c�f /0; c 2D; f;g 2 V _:

If � is hermitian or skew hermitian then �� is an involution.

THEOREM 24.65. Let .D;�/ and .V;�/ be as above, and let A D EndD.V /.
Assume that � is of the first kind on D and that char.k/¤ 2. The map � 7! ��
defines a one-to-one correspondence

fnondegenerate hermitian or skew hermitian forms on V g=k�

$ finvolutions on A extending � on Dg.

The involutions �� and � have the same or opposite type according as � is
hermitian or skew hermitian.
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The following table makes the second statement explicit.

� � ��

symplectic type hermitian symplectic type
orthogonal type hermitian orthogonal type
symplectic type skew hermitian orthogonal type
orthogonal type skew hermitian symplectic type

PROOF. Let � and �0 be nondegenerate hermitian or skew hermitian forms on
V , and let u�1 D O��1 ı O�0 2 A�. Then

�0.x;y/D �.u�1.x/;y/; x;y 2 V; (164)

and so
�� D inn.u�1/ı��0 .

This shows that �� D ��0 if and only if �0 D c� for some c 2 k�.
Let �0 be an involution on A extending � on D. Choose a basis for V

as a vector space over D, and use it to extend � on D to an involution � on
A of the same type (identify A with Mm.D/ and set .aij /� D .a�ij /

t ). Now
�0 D inn.u/ ı � for some u 2 A� such that u� D ˙u (24.34a). Define �0 by
(164). Then �0 is a nondegenerate form with ��0 D�0, and it is hermitian or skew
hermitian according as u� DCu or �u. This completes the proof of the first
statement.

Let �0 D inn.u/ı�. Then

Sym.A;�0/D
�

Sym.A;�/ if u� DCu
Skew.A;�/ if u� D�u:

Now the second statement follows from Proposition 24.38. 2

To each hermitian or skew hermitian form, we attach the group of automorph-
isms of .V;�/, and the special group of automorphisms of � (the automorphisms
with determinant 1, if this is not automatic).

SUMMARY 24.66. Let k be a field of characteristic ¤ 2. The geometrically
almost-simple, simply connected, classical groups over k are the following.
(A) The groups SLm.D/ forD a central division algebra over k (the inner forms

of SLn); the groups attached to a hermitian form for a quadratic field
extension K of k (the outer forms of SLn).

(C) The symplectic groups, and unitary groups of hermitian forms over division
algebras.

(BD) The spin groups of quadratic forms, and the spin groups of skew hermitian
forms over division algebras.
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Special fields

LetD andD0 be central division algebras over k. ThenD˝D0 is again a central
simple algebra over k, and so D˝D0 �Mn.D

00/ for some central division
algebra D00 over k. In this way we get a binary operation ŒD�ŒD0�D ŒD00� on the
set of isomorphism classes of central division algebras over k, which makes it
into a commutative group (called the Brauer group of k, denoted Br.k/). For
example, Œk� is an identity element, and Proposition 24.26 shows that ŒDopp� is an
inverse to ŒD�. We define the class ŒA� of a central simple algebra ADMm.D/

over k to be ŒD� (see 24.17). Then ŒA˝A0�D ŒA�ŒA0�.

EXAMPLE 24.67. (a) Br.k/D 1 if k is separably closed (24.21) or finite (Wed-
derburn’s little theorem).

(b) Br.R/' Z=2Z. The nontrivial element is represented by the usual qua-
ternion algebra.

(c) Br.k/'Q=Z if k is a nonarchimedean local field (i.e., a finite extension
of Qp or Fp..T //).

(d) If k is a global field (i.e., a finite extension of Q or Fp.T /), then there is
an exact sequence2

0! Br.k/ �!
M
v

Br.kv/
P
�!Q=Z! 0 (165)

where the direct sum is over the primes of k (including the real primes).

The statements for local and global fields are part of class field theory (Serre
1962, XIII, �3; XIV, Annexe).

PROPOSITION 24.68. If a central simple algebra A over k admits an involution
of the first kind, then ŒD� has order dividing 2 in Br.k/:

PROOF. An involution of the first kind on A is an isomorphism A! Aopp. Thus
Proposition 24.26 shows that

A˝A' End.A/ (k-linear endomorphisms),

and so 2ŒA�D 0. 2

In particular, every quaternion algebra has order 2 in Br.k/.

DEFINITION 24.69. We say that a field k is special if every element of order 2
in the Brauer group of k is represented by a quaternion algebra over k.

THEOREM 24.70. The following fields are special: separably closed fields, finite
fields, local fields including R, global fields.

2For an algebraic number field, this is related to the famous theorem of Albert, Brauer, Hasse,
and Noether.
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PROOF. In each case, it is possible to show directly that each class of order 2 in
the Brauer group is represented by a quaternion algebra. For example, if k is a
local field, then there is exactly one class of order 2 in the Brauer group, and one
can exhibit a division quaternion algebra over k which must represent that class.
For a global field k, the sequence (165) shows that it suffices to exhibit, for every
set S of primes of k with a finite even number of elements, a quaternion algebra
H over k such that H ˝k kv is nonsplit exactly at the primes v in S . This can be
done in a similar way to the case k DQ (see Section 20j). 2

SUMMARY 24.71. Let k be a special field of characteristic¤ 2. The geometric-
ally almost-simple, simply connected, classical groups over k are the following.
(A) The groups SLm.D/ forD a central division algebra over k (the inner forms

of SLn); the groups attached to a hermitian form for a quadratic field
extension K of k (the outer forms of SLn).

(BD) The spin groups of quadratic forms, and the spin groups of skew hermitian
forms over quaternion division algebras.

(C) The symplectic groups, and unitary groups of hermitian forms over qua-
ternion division algebras.

l. The exceptional groups

In this section, we describe the almost-simple groups of exceptional type F4, E6,
E7, E8, and G2. This is only a brief survey. For more details, we refer the reader
to Springer 1998 and the references therein, especially Springer and Veldkamp
2000 and Knus et al. 1998. For the exceptional Lie groups, see Adams 1969; and
for the corresponding root systems, see Bourbaki 1968.

The exceptional Lie algebras over C were discovered and classified by Killing
in the 1880s. They form a chain

g2 � f4 � e6 � e7 � e8:

In this section, an algebra A over k is a finite-dimensional k-vector space
equipped with a k-bilinear map A�A! A.

Groups of type G2

Let V be the hyperplane x1Cx2Cx3 D 0 in R3 and ˚ the set of elements

˙ .e1� e2/; ˙.e1� e3/; ˙.e2� e3/;

˙ .2e1� e2� e3/; ˙.2e2� e1� e2/; ˙.2e3� e1� e2/:

Then .V;˚/ is a root system with base�Dfe1�e2;�2e2Ce2Ce3/ and Dynkin
diagram G2 (see Section Cg). It has rank 2, and there are 12 roots, and so
every geometrically almost-simple group of type G2 has dimension 14. As
P.˚/DQ.˚/, such a group is both simply connected and adjoint.
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A Hurwitz algebra over k is an algebra A of finite degree over k with 1
together with a nondegenerate quadratic (norm) form N WA! k such that

N.xy/DN.x/N.y/ for all x;y 2 A:

If char.k/D 2, the bilinear form attached to N is required to be nondegenerate.
The possible dimensions of A are 1, 2, 4, and 8. A Hurwitz algebra of dimension
8 is called an octonion algebra. For such an algebra A, the functor

R AutR.R˝k A/

is a simple group variety over k of type G2, and all geometrically simple group
varieties of type G2 arise in this way from octonion algebras.

Consider the map

x D

�
a b

c d

�
7! Nx D

�
d �b

�c a

�
WM2.k/!M2.k/:

The special octonion algebra O over k equals M2.k/˚M2.k/ as a vector space,
and the multiplication and norm form on O are defined by

.x;y/.u;v/D .xu� Nvy;vxCy Nu/

N..x;y//D x Nx�y Ny D det.x/�det.y/.

The group G attached to O is a split connected group variety of type G2.
Every octonion algebra over k becomes isomorphic to O over ks and

G.ks/' Aut.Gks/' Aut.O˝ks/:

Therefore there are natural bijections between the following sets: (a) isomorphism
classes of octonion algebras over k; (b) isomorphism classes of geometrically
simple groups of type G2 over k; (c) H 1.k;G/. There is a canonical bijection
from H 1.k;G/ onto the subset of H 3.k;Z=2Z/ consisting of decomposable
elements, i.e., cup products of three elements of H 1.k;Z=2Z/. Thus these
groups are quite well understood.

References: Springer 1998, 17.4; Serre 1997, III, Annexe.

Groups of type F4

Let V be R4 and ˚ the set of elements

˙ei .1� i � 4/; ˙ei ˙ ej .1� i < j � 4/;
1
2
.˙e1˙ e2˙ e3˙ e4/:

Then .V;˚/ is a root system with base

fe2� e2; e3� e4; e4;
1
2
.e1� e2� e3� e4/g
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and Dynkin diagram F4. It has rank 4 and there are 48 roots, and so every
geometrically almost-simple group of type F4 has dimension 52. As P.˚/D
Q.˚/, such a group is both simply connected and adjoint.

An Albert algebra over k is a finite-dimensional k-vector space A equipped
with a cubic (norm) form N , a nondegenerate symmetric bilinear (trace) form
� , and an element e 2 A satisfying certain conditions (see below). For such an
algebra A, the functor

R AutR.R˝A;N;�;e/

is a simple group variety over k of type F4, and all simple group varieties of type
F4 arise in this way from Albert algebras.

Let V DM3.k/�M3.k/�M3.k/ – it is a k-vector space of dimension 27.
Let d and t denote the determinant and trace on M3.k/, and let N0 denote the
cubic form

N0..x0;x1;x2//D d.x0/Cd.x1/Cd.x2/� t .x0x1x2/

on V . For a 2 GL3.k/, we define �.a/D d.a/a�1. Then � is a quadratic map
M3.k/!M3.k/, and we define n to be the quadratic map V ! V with

n..x0;x1;x2//D .�.x0/�x1x2;�.x2/�x0x1;�.x1/�x2x0/:

We have a symmetric bilinear map

V �V ! V; x�y D n.xCy/�n.x/�n.y/;

and a nondegenerate symmetric bilinear form

�0WV �V ! k; �.x;y/D t .x0y0Cx1y2Cx2y1/:

Finally, let e0 D .1;0;0/. Then A0 D .V;N0;�0; e0/ is an Albert algebra, called
the standard Albert algebra. The group G0 attached to A0 is the split connected
simple group variety of type F4.

By definition, the Albert algebras over k are the quadruples .A;N;�;e/ over
k that become isomorphic to .A0;N0;�0; e0/ over ks. As

G0.k
s/' Aut.G0ks/' Aut.A˝ks/;

we see that there are natural bijections between the following sets: (a) isomorph-
ism classes of Albert algebras over k; (b) isomorphism classes of geometrically
simple groups of type F2 over k; (c) H 1.k;G0/.

There are constructions of Tits that yield all Albert algebras (up to isomorph-
ism) over an arbitrary field.

References: Springer 1998, p. 305; Knus et al. 1998, �40.
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Groups of type E6

Let V be the subspace of R8 defined by the equations x6 D x7 D�x8 and ˚ the
set of elements

˙ei ˙ ej .1� i < j � 5/;

˙
1
2
.e8� e7� e6C

P5
iD1.�1/

�.i/ei with
P5
iD1 �.i/ even:

Then .V;˚/ is a root system of type E6. It has rank 6 and there are 72 roots,
and so every geometrically almost-simple group of type E6 has dimension 78.
The quotient P.˚/=Q.˚/ is cyclic of order 3 and so the centre of a split simply
connected almost-simple group of type E6 is isomorphic to �3.

Let AD .V;N;�;e/ be an Albert algebra over k. Recall that N is a cubic
form on V . Let G be the subgroup of GLV fixing N (2.13). Then G is a simply
connected group variety over k of type E6, which is split if A is the standard
Albert algebra.

Let G0 be the split group of type E6. From the description of G0, we see
that H 1.k;G0/ classifies the isomorphism classes of cubic forms on the k-vector
space V0DM3.k/

3 becoming isomorphic toN over ks. The group of symmetries
of the Dynkin diagram of G has order 2 (the nontrivial element is the reflection
about ˛4/, and soG has both inner and outer forms. The inner forms are classified
by H 1.k;Gad

0 /, where Gad
0 DG0=�3.

References: Springer 1998, 17.6, 17.7; Knus et al. 1998.

Groups of type E7

Let V be the hyperplane in R8 orthogonal to e7C e8 and ˚ the set of vectors

˙ei ˙ ej .1� i < j � 6/;

˙
1
2
.e7� e8C

P6
iD1.�1/

�.i/ei with
P6
iD1 �.i/ even:

Then .V;˚/ is a root system of type E7. It has rank 7 and there are 126 roots,
and so every geometrically almost-simple group of type E7 has dimension 133.
The quotient P.˚/=Q.˚/ is cyclic of order 2 and so the centre of a split simply
connected group of type E7 is isomorphic to �2.

Over a field k of characteristic ¤ 2;3, adjoint groups of type E7 are the
automorphism groups of certain objects called gifts (generalized Freudenthal
triple systems). There is a natural bijection between the isomorphism classes of
adjoint groups of type E7 and the isomorphism classes of gifts (Garibaldi 2001,
3.13).

Groups of type E8

Let V be R8 and ˚ the set of elements

˙ei ˙ ej .1� i < j � 8/;
1
2

P8
iD1.�1/

�.i/ei with
P8
iD1 �.i/ even.
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Then .V;˚/ is a root system of type E8. It has rank 8 and there are 240 roots,
and so a geometrically almost-simple group of type E7 has dimension 248. As
P.˚/DQ.˚/, such a group is both simply connected and adjoint.

For a recent expository article on groups of type E8, see Garibaldi 2016.

m. The trialitarian groups (groups of subtype 3D4 and 6D4)

An algebraic group over k is said to be trialitarian if it is geometrically almost-
simple of typeD4 and the Galois group of k permutes the three end vertices of its
Dynkin diagram. This means that the group is of subtype 3D4 or 6D4. Detailed
studies of trialitarian groups over fields of characteristic ¤ 2 can be found in
Knus et al. 1998, Chapter X, and Garibaldi 1998.

Exercises

EXERCISE 24-1. Verify that the two descriptions of the inner forms of SLn in
Section 24f coincide.

The next two problems (Knus et al. 1998, VI, Exercises 15, 16) show that the
orthogonal groups of bilinear forms behave badly in characteristic 2.

EXERCISE 24-2. Let k have characteristic 2, and let a1;a2 2 k�. Let G be
the algebraic group of isometries of the bilinear form a1x1y1Ca2x2y2. Then
O.G/ is the quotient of the ring kŒx11;x12;x21;x22� by the ideal generated by
the entries of the matrix�

x11 x12
x21 x22

�t
�

�
a1 0

0 a2

�
�

�
x11 x12
x21 x22

�
�

�
a1 0

0 a2

�
:

(a) Show that x11x22Cx12x21C1 and x11Cx22 are nilpotent in O.G/.
(b) Assume that a1=a2 is not a square in k, and show that

O.Gred/D kŒx11;x21�=.x
2
1Ca2a

�1
1 x221C1/I

deduce that .Gred/ka is not reduced.

(c) Assume that a1=a2 is a square in k, and show that Gred �Ga.

EXERCISE 24-3. Let k be perfect of characteristic 2 and let � be a nondegen-
erate symmetric nonalternating bilinear form on a vector space V of dimension
n.

(a) Show that there is a unique e 2 V such that �.v;v/ D �.v;e/2 for all
v 2 V . Let V 0 D hei? be the hyperplane of all vectors orthogonal to e.
Show that e 2 V 0 if and only if e is even, and that the restriction �0 of � to
V 0 is alternating.

(b) Show that the smooth algebraic group O.V;�/red fixes e.
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(c) Suppose that n is odd. Show that the alternating form �0 is nondegenerate
and that the restriction map O.V;�/red! Sp.V 0;�0/ is an isomorphism.

(d) Suppose that n is even. Show that the radical V 0? of �0 is ke, and let
V 00 D V 0=ke with its induced bilinear form �00. Show that there is an exact
sequence

e!R.G/! O.V;�/red! Sp.V 00;�00/! e

and that R.G/¤ e.

EXERCISE 24-4. Show that the root datum of GSpinm, mD 2nC1 or 2n, has
the following description. The Z-modulesX andX_ have dual bases fe0; : : : ; eng
and fe00; : : : ; e

0
ng. If dim.V /D 2nC1; then

base for the roots e1� e2; : : : ; en�1� en; en
base for the coroots e01� e

0
2; : : : ; e0n�1� e

0
n; 2e0n� e

0
0:

If dim.V /D 2n, then

base for the roots e1� e2; : : : ; en�1� en; en�1C en
base for the coroots e01� e

0
2; : : : ; e0n�1� e

0
n; e0n�1C e

0
n� e

0
0:



CHAPTER 25

Additional Topics

In this chapter, we briefly treat some additional topics. In particular, we extend
some earlier results from split groups to nonsplit groups. Much of this chapter is
only a survey. Recall that all algebraic groups are affine over a base field k.

a. Parabolic subgroups of reductive groups

In this section, G is a reductive group over k.

THEOREM 25.1. Let � be a cocharacter of G. Then P.�/ is a parabolic sub-
group of G, and every parabolic subgroup of G is of this form.

PROOF. In proving that P.�/ is parabolic, we may suppose that k is algebraically
closed. Let T be a maximal torus such that � 2 X�.T /, and let ˚ D ˚.G;T /.
Then P.�/ contains a root group U˛ if and only if h˛;�i � 0. If � is regular, then
P.�/ is a Borel subgroup (21.29). Otherwise, a regular �0 sufficiently close to �
will satisfy

˛ 2 ˚; h˛;�0i> 0 H) h˛;�i � 0:

Then P.�/ contains the Borel subgroup P.�0/, and so P.�/ is parabolic.
For the converse, let P be a parabolic subgroup of G and let T be a maximal

torus in P . For some finite Galois extension k0 of k, the torus Tk0 splits and Pk0
contains a Borel subgroup B containing Tk0 . Now Pk0 D PI for some subset I
of � (see 21.91), and Pk0 D P.�/ for every cocharacter � of Tk0 such that I is
the set of simple roots ˛ of .G;T /k0 orthogonal to � (see 21.92).

The weights of T acting on the Lie.Pk0/ form a subset ˚ 0 of ˚.G;T / stable
under the action of � D Gal.k0=k/, and Pk0 D P.�/ (� 2X�.T /) if and only if

˚ 0 D f˛ 2 ˚.G;T / j h˛;�i � 0g. (166)

We showed in the last paragraph there exists a � such that (166) holds. Now
� D

P
�2� �� is a cocharacter of T defined over k satisfying (166), and so

P D P.�/. 2

544
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PROPOSITION 25.2. The group G contains a proper parabolic subgroup if and
only if it contains a noncentral split torus.

PROOF. Let � be a cocharacter of G. If P.�/D G, then U.�/ and U.��/ are
smooth normal unipotent subgroups of G (13.33), and hence are trivial because
G is reductive; therefore G D Z.�/ and so �.Gm/ � Z.G/. Conversely, if
�.Gm/�Z.G/, then P.�/DG. From this the statement follows. 2

DEFINITION 25.3. A reductive group is isotropic if it contains a noncentral split
torus; otherwise, it is anisotropic.1

Thus, the isotropic reductive groups are those containing a proper parabolic
subgroup. A semisimple group is isotropic if and only if contains a nontrivial
split torus.

EXAMPLE 25.4. Let D be a central division algebra over k, and let G be the
algebraic group R .D˝R/�. It is a k-form of GLn, where n D ŒDWk�1=2.
If S is a split torus in D, then there exists a basis e1; e2; : : : for D as a k-vector
space consisting of eigenvectors for the action of S on D by conjugation, i.e.,
such that seis�1 2 kei for all s 2 S.ka/ and all i . This implies that S � Z.G/,
and so G is anisotropic.

EXAMPLE 25.5. Let G D SO.q/ for some regular quadratic space .V;q/, and
assume char.k/ ¤ 2. Recall that q is isotropic if q.x/ D 0 for some nonzero
x 2 V , and otherwise it is anisotropic. In general, there exists a basis for V such
that

q D x1xnC�� �Cxrxn�rC1Cq0.xrC1; : : : ;xn�r /

with q0 anistropic (Witt decomposition; Scharlau 1985, Chapter 1, �5). Here r is
the Witt index of q.

If G is isotropic, then q is isotropic, because q.x/D 0 for any eigenvector x
of a split torus in G. Therefore G is anisotropic if q is anisotropic.

The subgroup S of G consisting of the matrices

diag.s1; : : : ; sr ;1; : : : ;1; s�1r ; : : : ; s�11 /

is a split subtorus of G. Its centralizer is isomorphic to S �SO.q0/, and so S is
maximal. Thus G is isotropic if and only if q is isotropic. More precisely, the
k-rank of G is equal to the Witt index of q.

THEOREM 25.6. Let P be a parabolic subgroup of G.
(a) The unipotent group RuP is split and the quotient P=RuP is reductive.

(b) If S is a maximal split torus of P , then CG.S/ is a reductive subgroup of
P , and P 'RuP ÌCG.S/.

1We follow Springer 1994, p. 66, and Springer 1998, p. 271. Some authors define a reductive
group to be isotropic if it contains a nontrivial split torus. The two definitions agree for semisimple
groups.
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(c) If S and S 0 are maximal split subtori of P , then CG.S/ and CG.S 0/ are
conjugate by a unique element of .RuP /.k/.

PROOF. (a) As P D P.�/ for some cocharacter � of G, this follows from Pro-
position 17.60.

(b) The centralizer CG.S/ was shown to be reductive in Corollary 17.57. It
is possible to choose the � in (a) to be a cocharacter of S such that CG.S/D
CG.�Gm/ (cf. 13.51). Then P 'RuP ÌCG.S/ by Theorem 13.33(b).

(c) Springer 1998, 16.1.1. 2

LEMMA 25.7. Let P and Q be parabolic subgroups of G. Then P \Q is
smooth, and .P \Q/RuP is a parabolic subgroup contained in P .

PROOF. Proposition 21.67 shows that P \Q is smooth. The second part of the
statement is proved by examining root groups (Springer 1994, 5.2.5). 2

THEOREM 25.8. Let P and Q be parabolic subgroups of G with P minimal.
There exists a g 2G.k/ such that gPg�1 �Q. Consequently, any two minimal
parabolic subgroups in G are conjugate by an element of G.k/.

PROOF. AsRuP is split (25.6a), it has a fixed point in the complete varietyG=Q
(see 16.51). Therefore, after replacing P with a conjugate, we may suppose that
Q �RuP . Now Q � .P \Q/RuP . Because P is minimal, the lemma shows
that this last group equals P . 2

THEOREM 25.9. Let P be a parabolic subgroup of G.
(a) If k is infinite, then the map � WG!G=P has local sections, i.e., G=P is

covered by open subsets over which the map has a section.
(b) The map G.k/! .G=P /.k/ is surjective.

PROOF. (a) Let P D P.�/. Then the multiplication map U.��/�P !G is an
open immersion (13.33). The image U of U.��/ in G=P is an open subvariety
of G=P and � induces an isomorphism U.��/! U . The inverse of this is a
section over U . Now translate using that G.k/ is dense in jGj (see 17.93).

(b) When k is infinite, this follows from (a). When k is finite, it follows
from Lang’s theorem (17.98), because the fibre of G! G=P over a point x 2
.G=P /.k/ is a torsor under P over k. 2

THEOREM 25.10. Any two maximal split tori in G are conjugate by an element
of G.k/.

PROOF. We use induction on the dimension of G. If G contains no nontrivial
split torus, there is nothing to prove. Otherwise G contains a proper parabolic
subgroup P (see 25.2). Let S be a split solvable subgroup of G. When we let
S act on G=P , there is a fixed point x 2 .G=P /.k/ (see 16.51). According to
Theorem 25.9 there exists a g 2 G.k/ mapping to x. Then SgP � gP , and so
gSg�1 � P . Thus, we may suppose that the two split tori S and S 0 are contained
in P . Now Theorem 25.6 allows us to suppose that CG.S/D CG.S 0/. As this
group is reductive, we can apply the induction hypothesis. 2
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ASIDE 25.11. Much of the above theory extends to nonreductive groups. Let G be a
connected group variety over k. A pseudo-parabolic subgroup of G is an algebraic
subgroup of the form RuG �P.�/ for some cocharacter � of G. For reductive groups,
parabolic and pseudo-parabolic subgroups coincide (21.92). Pseudo-parabolic subgroups
are smooth and connected (13.33). There exists a proper pseudo-parabolic subgroup in G
if and only if G=Ru.G/ contains a noncentral split torus (Springer 1998, 15.1.2). Any two
minimal pseudo-parabolic subgroups of G are conjugate by an element of G.k/ (Conrad
et al. 2015, C.2.5).

Parabolic subgroups and filtrations on Rep.G/

Let V be a vector space. A homomorphism �WGm! GLV defines a filtration

� � � � F sV � F sC1V � �� � ; F sV D
M

i�s
Vi

of V , where V D
L
i Vi is the gradation defined by �.

Let G be an algebraic group over a field k of cocharacteristic zero. A
homomorphism �WGm!G defines a filtration F � on V for each representation
.V;r/ of G, namely, that corresponding to r ı�. These filtrations are compatible
with the formation of tensor products and duals, and they are exact in the sense
that the functor V  Gr�.V / is exact. Conversely, a functor .V;r/ .V;F �/

from representations of G to filtered vector spaces satisfying these conditions
arises from a (nonunique) homomorphism �WGm!G. We call such a functor a
filtration F � of Rep.G/, and a homomorphism �WGm!G defining F � is said
to split F �. We write Filt.�/ for the filtration defined by �.

For each s, we define F sG to be the algebraic subgroup of G whose ele-
ments act as the identity map on

L
i F

iV=F iCsV for all representations V of G.
Clearly, F sG is unipotent for s � 1, and F 0G is the semidirect product of F 1G
with the centralizer Z.�/ of any cocharacter � splitting F �.

THEOREM 25.12. Let G be a reductive group over a field k, and let F � be a
filtration of Rep.G/. From the adjoint action of G on g, we acquire a filtration
of g.

(a) F 0G is the algebraic subgroup of G respecting the filtration on each
representation of G; it is a parabolic subgroup of G with Lie algebra F 0g.

(b) F 1G is the algebraic subgroup of F 0G acting trivially on the graded
module

L
i F

iV=F iC1V attached to each representation of G; it is the
unipotent radical of F 0G, and Lie.F 1G/D F 1g.

(c) The centralizerZ.�/ of any cocharacter � splitting F � is a connected algeb-
raic subgroup of F 0G such that the quotient map qWF 0G! F 0G=F 1G

induces an isomorphism Z.�/! F 0G=F 1G; the composite q ı� of �
with q is central.

(d) Two cocharacters � and �0 of G define the same filtration of G if and only
if they define the same group F 0G and q ı�D q ı�0; the cocharacters �
and �0 are then conjugate under F 1G.
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PROOF. The algebraic subgroups F 0G and F 1G of G equal P.�/ and U.�/ for
any cocharacter � splitting the filtration, and so this is a restatement of earlier
results. See Saavedra Rivano 1972, especially IV 2.2.5. 2

b. The small root system

In this section, G is a reductive group over k.

The relative roots

25.13. Let S be a maximal split torus in G. Under the adjoint action of S , the
Lie algebra g of G decomposes into a direct sum

gD g0˚
M

˛2X.S/
g˛

with g0 the Lie algebra of CG.S/ and g˛ the subspace of g on which S acts
through a nontrivial character ˛. The characters ˛ of S such that g˛ ¤ 0 are
called the relative roots2 of .G;S/. They form a finite subset k˚ D k˚.G;S/ of
X.S/.

Semisimple groups of k-rank 1

25.14. The role of split semisimple groups of rank 1 in the split case is taken by
semisimple groups of k-rank 1. Let G be such a group and let S be a maximal
split torus. Choose an isomorphism �WGm! S , and let P D P.�/. Then,

(a) there exists an n 2NG.S/.k/ acting as s 7! s�1 on S ;

(b) G.k/D P.k/[P.k/nP.k/:
As in the split case, S has at least two fixed points in .G=P /.k/. On the other
hand, the group .NG.S/=CG.S//.k/ acts faithfully on S and so it has order at
most two. Therefore S has exactly two fixed points P and nP , and n is the
required element.

25.15. The classification of semisimple groups of k-rank 1 is complicated
because it includes the classification of all anisotropic semisimple groups (those
of k-rank 0). For example, if q is a quadratic form of Witt index 1, then SO.q/
has k-rank 1 (see 25.5). Fortunately, the classification is not needed for the proofs
of the remaining results in this section.

2The “relative” means relative to the field k. Since, for us, everything is relative to the field k,
we should omit the “relative”, but this would be too confusing. With this terminology, the absolute
roots ofG are the roots of .G;T /ks , where T is a maximal torus T ofG containing S . The relative
roots are sometimes called restricted roots because they are the restrictions to S of the absolute roots
(Exercise 25-1).
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The relative (or small) root system

25.16. Let S be a maximal split torus in G. Let kV be the subspace of X.S/˝
Q spanned by the relative roots of .G;S/. The quotient NG.S/=CG.S/ acts
faithfully on S , and we identify it with its image in GL

kV . Then,
(a) the pair .kV;k˚/ is a root system;

(b) every connected component of NG.S/ meets G.k/;

(c) the quotient NG.S/=CG.S/ is a finite constant group scheme canonically
isomorphic to the Weyl group of the root system .kV;k˚/.

The proof is based on a study of semisimple groups of k-rank 1.

25.17. The pair .kV;k˚/ is the relative (or small) root system of .G;S/. It
is not, in general, reduced. This means that there may be roots �2˛;�˛;˛;2˛
(see C.18). The Weyl group of .kV;k˚/ is called the relative Weyl group and is
denoted kW or kW.G;S/. The action of NG.S/ on kV factors through an iso-
morphism NG.S/=CG.S/! kW (finite constant group schemes). In particular,
it preserves k˚ . Every coset of CG.S/ in NG.S/ is represented by an element of
NG.S/.k/:The set of ˛ 2 k˚ such that 1

2
˛ … k˚ is a reduced root system k˚i in

kV . A base for k˚ is defined to be a base for k˚i , and a system of positive roots
in k˚ is a set of the form N� with � a base.

25.18. The centralizer CG.S/ of S in G is a reductive group over k (see
17.57). Its derived group CG.S/0 is an anisotropic semisimple group, called
the anisotropic semisimple kernel. It is one ingredient in the classification of
nonsplit groups.

The root groups

25.19. Let S be a maximal split in G. Let T be a maximal torus containing
S , and let ˚ be the set of roots of .G;T /ks . Then k˚ is the set of nontrivial
restrictions to S of elements of ˚ (Exercise 25-1). Let ˛ 2 k˚ . The subgroup of
Gks generated by the root groups Uˇ in Gks such that ˇjS D ˛ is defined over
k. It is denoted kU˛ and called the root group of ˛. It is the unique unipotent
subgroup of G normalized by S with Lie algebra g˛ . It is a split unipotent group.

25.20. If G is split over k, then kU˛ is the usual root group; in particular it has
dimension 1. In general, dim.kU˛/D dimg˛Cdimg2˛ .

Example: special orthogonal groups

25.21. Let G D SO.q/ with q as in Example 25.5. Write q0.x/ D xtM0x.
Then the Lie algebra of G consists of the matrices

AD

0@A11 A12 A13
A21 A22 �M0A

t
12

A31 �At21M
�1
0 �At11

1A
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with A13 and A31 skew-symmetric and At22 D �M
�1
0 A22M0. The diagonal

torus S acts on Lie.G/ by conjugation. The root system k˚ of .G;S/ is of type
Br unless nD 2r , in which case it is of type Dr . The elements of G that are
upper triangular in this block decomposition (so A21 D 0DA31) form a minimal
parabolic subgroup of G.

Parabolic subgroups

25.22. Any two minimal parabolic subgroups of G are conjugate by an element
of G.k/ (see 25.8). Let S be a maximal split torus in G. The minimal parabolic
subgroups containing S are indexed by the Weyl chambers of the root system
.kV;k˚/, and they are permuted simply transitively by the relative Weyl group.

25.23. Let P be a minimal parabolic subgroup of G, and let S be a maximal
split torus in P . Then P DRu.P /ÌCG.S/ (see 25.6), and P defines a base k�
for k˚ . For a subset I � k�, let PI denote the algebraic subgroup ofG generated
by CG.S/ and the root groups U˛ such that, when ˛ is expressed as a linear
combination of the elements of k�, the roots not in I occur with nonnegative
coefficients. Then

G D P
k� � PI � P; D P .

In particular, P is generated by CG.S/ and the root groups U˛ with ˛ positive.
ThePI are the standard parabolic subgroups ofG containingP . Every parabolic
subgroup is conjugate by an element ofG.k/ to a unique PI . The reduced identity
component SI of

T
˛2I Ker˛ is a split torus in G, and

PI DRu.PI /ÌCG.SI /:

Moreover, Ru.PI / is generated by the U˛ , where ˛ runs over the positive roots
that are not linear combinations of elements of I .

25.24. Let Q be a parabolic subgroup of G with unipotent radical U . A Levi
subgroup of Q is an algebraic subgroup L such that Q is the semidirect product
QD U ÌL. Such a subgroup is reductive (25.6a). It follows from 25.23 that a
Levi subgroup in Q always exists. Any two Levi subgroups of Q are conjugate
by an element of G.k/. For any maximal split subtorus of the centre of L, we
have LD CG.S/.

25.25. If S is a split subtorus of G, then there is a parabolic subgroup Q of
G with Levi subgroup CG.S/. Two such Q are not necessarily conjugate by an
element of G.k/ (as they are when S is a maximal split torus). Two parabolic
subgroups Q1 and Q2 are said to be associated if they have Levi subgroups that
are conjugate by an element of G.k/. This defines an equivalence relation on the
set of parabolic subgroups.

25.26. Let P and Q be parabolic subgroups. Then .P \Q/Ru.P / is a para-
bolic subgroup contained in P (see 25.26). It equals P if and only if some Levi
subgroup of P contains a Levi subgroup of Q. Parabolic subgroups P and Q are
said to be opposite if P \Q is a Levi subgroup of P and Q.
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BRUHAT DECOMPOSITION OF G.k/

25.27. Let P be a parabolic subgroup of G with unipotent radical U , and let S
be a split torus such that P D U ÌCG.S/. Then

G.k/D
G
w2kW

U.k/wP.k/ (Bruhat decomposition).

As in the split case, this can be made more precise. Let nw 2NG.S/.k/ represent
w 2 kW . There exist two subgroup varieties Uw and Uw of U such that

U ' Uw �U
w (product of varieties)

and the map
.u;p/ 7! unwpWU

w
�P ! UnwP

is an isomorphism of algebraic varieties. We then have

G=P D
G

w2kW
UwnwP=P

G D
G

w2kW
UwnwP

(decompositions of smooth algebraic varieties).
The reflections s˛ with ˛ 2 kW form a set of generators kS of kW , and

.G.k/;P.k/;NG.S/.k/;kS/ is a Tits system. This implies the above statements
on the level of sets (Theorem 21.45 and Exercise 21-5).

NOTES. The original reference for most of the results in this section is Borel and Tits
1965, 1972. The exposition partly follows that in Springer 1979. For proofs, see Borel
1991, V.21, and Springer 1998, Chapter 15.

c. The Satake–Tits classification

A theorem of Witt says that a regular quadratic space is determined up to iso-
morphism by its index and its anistropic direct summand (cf. 25.5). In this section,
we explain a similar result for reductive groups. Throughout, G is a reductive
group over k and � D Gal.ks=k/.

Let S be a maximal split torus in G and T a maximal torus containing S .
Then .G;T /ks is split, and so Tks is contained in a Borel subgroup B of Gks (see
21.30). Let .X;˚;˚_;�/ be the based root datum of .Gks ;B;Tks/ (see 23.38).
As was explained in (21.43), this is independent of the choice of .B;T / and
so, even though the action of � on Gks need not preserve B , it does define an
action of � on .X;˚;˚_;�/. We make this explicit. As the action of � on Gks

preserves Tks , there are natural actions of � on X DX�.T / and X_ DX�.T /.
These preserve ˚ and ˚_. If � is an element of � , then �.�/ is also a base
for ˚ , and so w� .�.�// D � for a unique w� 2 W (see 21.41). For ˛ 2 �,
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define � �˛Dw� .�˛/. This does define an action of � on�, and it is obviously
continuous. It is called the �-action.

Let �0 be the set of ˛ 2� whose restriction to S is trivial. Then � stabilizes
both �0 and its complement in � (Springer 1998, 15.5.3). The elements of
�X�0 are called distinguished.

PROPOSITION 25.28. (a) The group G is quasi-split if and only if �0 D ;, in
which case the �-action is the natural action of � on � as a subset of X .

(b) The group G is anisotropic if and only if �0 D�.

PROOF. If G is quasi-split, we choose B to be defined over k, and then it is
obvious that � is stable under � . For the rest, see Springer 1998, 16.2.2. 2

Let V D Z˚ ˝Q. Then .V;˚/ is a root system, and we let D denote the
Dynkin diagram of .V;˚;�/. Its nodes are indexed by the elements of �. We
write � for the �-action of � on the nodes of D.

DEFINITION 25.29. The triple .D;�0;�/ is called the index (or Tits index or
Satake diagram) of G, and is denoted by I.G/.

Up to isomorphism, the index depends only on G. When k is replaced by
an extension field k0, the Dynkin diagram D is unchanged, distinguished simple
roots remain distinguished, and the �-action forGk0 is obtained from that forG by
composing with the map Gal.k0s=k0/!Gal.ks=k/ (here ks � k0s). Traditionally,
the index is illustrated by marking the distinguished nodes in the Dynkin diagram
and circling the � -orbits in � X�0. See Tits 1966 and Selbach 1976.

As Tits (1966, pp. 40–41) explains, it is possible to recover the relative root
system of .G;S/ from I.G/.

Let G0 denote the derived group of CG.S/. It is a connected anisotropic
semisimple group over k, called the semisimple anisotropic kernel of G. Its
Dynkin diagram is the full subgraph D0 of D with nodes indexed by the elements
of �0.

THEOREM 25.30. A reductive group G over k is determined up to isomorphism
by its isomorphism class over ks, its index, and its semisimple anisotropic kernel
(as a subgroup of G).

More precisely, let G and G0 be two reductive groups over k, and let T and
T 0 be maximal tori in G and G0 containing maximal split tori S and S 0. If there
exists an isomorphism of algebraic groups 'WGks !G0

ks such that
(a) '.Tks/D T 0

ks ,

(b) ' restricts to an isomorphism G0!G00 defined over k, and

(c) ' induces an isomorphism of I.G/ onto I.G0/,
then there exists an isomorphism G!G0 (Springer 1994, 6.1.2).
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EXAMPLE 25.31. Let G D SO.q/, S , and q0 be as in 25.5 and 25.21. Assume
that n� 2r is odd. Let T0 be a maximal torus in SO.q0/, and identify it with
a torus in SO.q/ by identifying A with diag.Ir ;A;Ir /. Then T def

D S �T0 is a
maximal torus containing S . The set �X�0 consists of the first r nodes of D.

EXAMPLE 25.32. Let D be a central division algebra over k of degree d2,
and let GLrC1;D be the algebraic group representing R GLrC1.D˝R/. It
becomes isomorphic to GL.rC1/d over any field k0 splittingD (in particular, over
ks; 24.20). There is a natural embedding of GLrC1 in GLrC1;D , and the image of
any split maximal torus in GLrC1 is a maximal split torus in GLrC1;D . Suitably
numbered �X�0 is the subset f˛d ;˛2d ; : : :g of �D f˛1; : : : ;˛.rC1/d�1g.

The next result extends Theorem 23.62 to the nonsplit case.

THEOREM 25.33. Two semisimple groups over k are strictly isogenous if and
only if they become strictly isogenous over ks, their anistropic semisimple kernels
are isogenous, and their indices are isomorphic.

PROOF. See Tits 1966, 2.6, 2.7. 2

Isogenous semisimple groups need not have isomorphic indices. Indeed, there
exists a quadratic form q in characteristic 2 such that SO.q/ is isogenous to SL2
but the two groups have different k-ranks (18.3; Tits 1966, 2.6.4).

After Theorem 25.33, the problem of classifying the semisimple groups over
a field k comes down to the following two problems:

(a) determine the indices arising from semisimple groups over k;

(b) for a given index, find all possible semisimple anistropic kernels.
As in Section 24b, we need only consider the simply connected almost-simple
case. Much is known about (a), and much is known about (b) for certain fields.
However, for a general field, little is known about (b), essentially because little is
known about the division algebras over the field.

NOTES. The theory sketched in this section originated with Satake’s article, Satake 1963,
and with Tits’s talk at the 1965 Boulder conference (Tits 1966). Tits’s report on his talk
was expanded and completed by Selbach in his 1973 Diplomarbeit (Selbach 1976). See
also the 1967 lectures of Satake (Satake 1971). In addition to the original sources, the
topic is treated in Springer 1998, Chapters 16 and 17.

d. Representation theory

Let T be a torus over k, and let � D Gal.ks=k/. Recall (12.30) that there is
the following description of the finite-dimensional representations of T over k.
For each � 2X�.T /, the one-dimensional representation V.�/ on which T acts
through � is defined over k; it is absolutely simple, and every absolutely simple
representation of T over k is isomorphic to V.�/ for a unique �. For each orbit
� of � on X�.T /, there is a representation V.�/ of T over k such that V.�/ks
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is a direct sum of one-dimensional eigenspaces with characters the � in � ; it is
simple, and every simple representation of T over k is isomorphic to V.�/ for a
unique � -orbit � .

One can ask whether similar statements hold for an arbitrary reductive group
over k. The answer is yes, but not in any naive sense unless G is quasi-split.

Let G be a reductive group over k. Choose a maximal torus T in k and a
Borel subgroup B in Gks containing Tks . Let � � X def

D X�.T / be the set of
simple roots corresponding to B , and let

XC D f� 2X j h�;˛_i � 0 for all ˛ 2�g

be the set of dominant weights. For each dominant �, there is a simple repres-
entation V.�/ of G over ks, and every simple representation of G over ks is
isomorphic to V.�/ for a unique � (see 22.2). The first problem we run into is
that the natural action of � on X need not preserve the set of dominant weights
(because the action of � need not preserve B or �). Instead, we must use the
action of � onXC deduced from the �-action of � on� (see p. 551). The second
problem is that, if a dominant � is fixed by � , then V.�/ need not be defined
over k, but only over a certain division algebra D.�/ over k. Nevertheless, it
does turn out that the simple representations of G over k are classified by the
� -orbits of dominant weights.

This theory is worked out in detail in Tits 1971 (for earlier results, see Borel
and Tits 1965, 12.6, 12.7, and Satake 1967, I, II). We now sketch it.

Representations over an algebra

By an algebra A over k in this section, we mean an associative algebra over k
of finite degree (not necessarily commutative). Let A be an algebra over k and
M a finitely generated A-module. We define GLM;A to be the algebraic group
over k such that, for every k-algebra R, GLM;A.R/ is the group of A˝R-linear
automorphisms of M ˝R. It is naturally an algebraic subgroup of GLM (M
regarded as a k-vector space). When M is the free module Am, m 2 N, we write
GLm;A for GLM;A.

Let A be a simple algebra over k, and let S be a simple A-module. The
centralizer of A in the k-algebra Endk.S/ of k-linear endomorphisms of S is a
division algebraD. If S has dimension d as aD-vector space, then A�Md .D/.
As D is a division algebra, we can make S into a right D-module. Then M  
S˝DM WModD ! ModA is an equivalence of categories (A.63). Let M be an
A-module, and M1 a D-module mapped to M by this functor. Then

GLM1;D ' GLM;A : (167)

Let D be a central division algebra over k and M a D-module. A D-
representation of G on M is a homomorphism r WG ! GLM;D of algebraic
groups over k. Let ADD˝ks. Then A is a matrix algebra over ks, and so (167)
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becomes
GLM1;ks ' GLM˝ks;D˝ks

with M1 a suitable ks-vector space such that dimks.M1/D ŒDWk�
1=2 �dimD.M/.

Therefore, aD-representation r WG!GLM;D defines a representation r1WGks !

GLM1 . We say that a representation of Gks is defined over D if it arises in this
way.

The Tits class and the Tits algebra

Let G be a simply connected semisimple algebraic group over k. There is a
quasi-split group G0 over k, unique up to isomorphism, and an isomorphism
f WG0ks ! Gks such that .G;f / is an inner form of G0 (see 23.53). Let  2
H 1.k;Gad

0 / be the cohomology class of .G;f /. From the exact sequence

e!Z.G0/!G0!Gad
0 ! e

we get a boundary map ıWH 1.k;Gad
0 /!H 2.k;Z.G0// (flat cohomology). As

was explained in Section 24c, Z.G0/'Z.G/. Let tG denote the image of ı./
under the isomorphism

H 2.k;Z.G0//'H
2.k;Z.G//:

Then tG is called the Tits class of G. When G is not simply connected, its Tits
class is defined to be that of its simply connected cover (so tG 2H 2.k;Z. QG/).
By definition, tG depends only on the strict isogeny class of G. Obviously it is
zero if G is quasi-split.

Let � be a character of Z. QG/, and let k.�/ be its field of definition (i.e.,
k.�/ is the subfield of ks fixed by the subgroup of � fixing �). Then � is a
homomorphism Z. QG/k.�/! Gm;k.�/, and we write �.tG/ for the image of tG
under

H 2.k;Z. QG//!H 2.k.�/;Z. QG/k.�//
H2.�/
�! H 2.k.�/;Gm/:

The Brauer group of k.�/ is canonically isomorphic to the cohomology group
H 2.k.�/;Gm/ (Serre 1962, X, �5). We define the Tits algebra D.�/ to be
the central division algebra over k.�/ whose class ŒD.�/� in the Brauer group
corresponds to �.tG/ under this isomorphism. It is uniquely determined up to
isomorphism.

Statements of the main theorems

Let G be a simply connected semisimple group over k and T a maximal torus in
G. We fix a Borel subgroup B of Gks containing Tks . The Galois group � acts
on the dominant weights through the �-action.

THEOREM 25.34. Let � be a dominant weight of G. If � is fixed by � , then the
simple representation of Gks of highest weight � is defined over D.�/.
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PROOF. Tits 1971, 3.3. 2

In more detail, a dominant weight � restricts to a character of Z.G/, and
we let D.�/ denote the corresponding Tits algebra. The theorem says that
there exists a D.�/-module M and a representation r WG ! GLM;D.�/ such
that the corresponding representation r1WGks ! GLM1 (see above) is simple
of highest weight �. Tits’s theorem also includes a uniqueness statement. If
r 0WG! GLM 0;D.�/ is a second representation with the same property, then there
is an isomorphism of D.�/-modules M !M 0 such that r 0 is the composite of r
with the map GLM;D.�/! GLM 0;D.�/ defined by the isomorphism.

COROLLARY 25.35. Let � be a dominant weight of G fixed by � , and let
d2 D ŒD.�/Wk�. There exists a representation r 0WG! GLV such that .V;r 0/ks

is isomorphic to a direct sum of d simple representations each with highest
weight �:

PROOF. Let r WG! GLM;D be the representation in Theorem 25.34. As noted
above, GLM;D is naturally an algebraic subgroup of GLM (M regarded as a
k-vector space). The composite of r with the inclusion GLM;D ,! GLM has the
required property. 2

Let � be a dominant weight, and let k.�/ be its field of definition. The Tits
algebra D.�/ is a central division algebra over k.�/, whose degree we denote by
d2. According to the corollary, there exists a representation r1WGk.�/! GLV1
over k.�/ such .V1; r1/˝k.�/ ks � V.�/˚d . By the universality of the Weil
restriction functor (2.57), r1 corresponds to a homomorphism

r2WG!˘k.�/=k.GLV1/' GLV1;k.�/;

and there is a natural inclusion GLV1;k.�/ ,! GLV1 (V1 regarded as a k-vector
space). We define kr.�/ to be the composite of r2 with this homomorphism.

THEOREM 25.36. For every dominant weight �, the representation kr.�/ is
simple, and every simple representation of G is equivalent to a representation of
this form. The representations kr.�/ and kr.�0/ corresponding to two dominant
weights � and �0 are equivalent if and only if �.�/D �0 for some � 2 � .

PROOF. Tits 1971, 7.2. 2

In particular the isomorphism classes of simple representations of G over
k are classified by the orbits of � in XC. Note, however, that if .V;r/ is
the representation corresponding to an orbit f�1; : : : ;�rg, then .V;r/ becomes
isomorphic over ks, not to

V.�1/˚�� �˚V.�r /,

but to a direct sum of d copies of this representation.
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EXAMPLE 25.37. If G is quasi-split, then there exists a Borel subgroup B in G
and we take T to be a maximal torus in B . As B is stable under the action of � ,
the �-action on � is the natural action on it as a subset of X . Moreover, the Tits
algebra D.�/ of a dominant weight equals k.�/. Thus,

(a) if a fundamental weight � is fixed by � , then V.�/ is defined over k, and
every absolutely simple representation of G over k is isomorphic to V.�/
for a unique �;

(b) if � is a � -orbit in XC, then the representation V.�/ def
D
L
�2� V.�/ is

defined over k, and every simple representation of G over k is isomorphic
to V.�/ for a unique � -orbit � .

e. Pseudo-reductive groups

We briefly summarize Conrad et al. 2015, which completes earlier work of Borel
and Tits (Borel and Tits 1978; Tits 1992, 1993; Springer 1998, Chapters 13–15).

Recall (6.47) that a smooth connected algebraic group G is pseudo-reductive
if Ru.G/D e. For example, G is pseudo-reductive if it admits a faithful semi-
simple representation (19.17).

25.38. We gave an example of a nonreductive pseudo-reductive group in 6.48.
We now construct another. Let G D .Gm/k0=k , where k is infinite and k0=k is
purely inseparable of degree p. Then G is a smooth connected commutative
algebraic group over k. The canonical map Gm!G realizes Gm as the largest
subgroup of G of multiplicative type, and the quotient G=Gm is unipotent (Exer-
cise 2-10). Over ka, G decomposes into .Gm/ka � .G=Gm/ka (see 16.13), and so
G is not reductive. However, G contains no smooth unipotent subgroup because
G.k/ is dense in G (Exercise 12-10) and G.k/ contains no element of order p (it
equals .k0/�).

25.39. Let k0 be a finite field extension of k, and let G be a reductive group
over k0. If k0 is separable over k, then .G/k0=k is reductive, but otherwise it is
only pseudo-reductive. For example, if k0=k is purely inseparable of degree p,
then G is a nonreductive pseudo-reductive group as in 25.38.

25.40. Let C be a commutative connected algebraic group over k. If C is
reductive, then it is a torus, and the tori are classified by the continuous actions of
Gal.ks=k/ on free commutative groups of finite rank. By contrast, “it seems to
be an impossible task to describe general commutative pseudo-reductive groups
over imperfect fields” (Conrad et al. 2015, p. xvii). The main theorem of Conrad
et al. 2015 describes all pseudo-reductive groups in terms of commutative pseudo-
reductive groups and the Weil restrictions of reductive groups.

25.41. Let k1; : : : ;kn be finite field extensions of k. For each i , let Gi be a
reductive group over ki , and let Ti be a maximal torus in Gi . Define algebraic
groups

G - T � NT
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by

G D
Y

i
.Gi /ki=k ; T D

Y
i
.Ti /ki=k ;

NT D
Y

i
.Ti=Z.Gi //ki=k .

Let �WT ! C be a homomorphism of commutative pseudo-reductive groups that
factors through the quotient map T ! NT :

T
�
�! C

 
�! NT :

Then  defines an action of C on G by conjugation, and so we can form the
semidirect product GÌC . The map

t 7! .t�1;�.t//WT !GÌC

is an isomorphism from T onto a central subgroup of G ÌC , and the quotient
.G ÌC/=T is a pseudo-reductive group over k. The main theorem (5.1.1) of
Conrad et al. 2015 says that, except possibly when k has characteristic 2 or 3,
every pseudo-reductive group over k arises by such a construction (the theorem
also treats the exceptional cases).

25.42. The maximal tori in reductive groups are their own centralizers. Any
pseudo-reductive group with this property is reductive (except possibly in charac-
teristic 2; Conrad et al. 2015, 11.1.1).

25.43. IfG is reductive, thenG DDG � .ZG/t , where DG is the derived group
of G and .ZG/t is the largest central connected reductive subgroup of G. This
statement becomes false with “pseudo-reductive” for “reductive” (ibid., 11.2.1).

25.44. For a reductive groupG, the mapRG D .ZG/ı!G=DG is an isogeny,
and G is semisimple if and only if one of these groups (hence both) is trivial. For
a pseudo-reductive group, the condition RG D e does not imply that G DDG.
Conrad et al. 2015, 11.2.2, instead adopt the following definition: an algebraic
group G is pseudo-semisimple if it is pseudo-reductive and G D DG. The
derived group of a pseudo-reductive group is pseudo-semisimple.

25.45. Every reductive group G over a field k is unirational, and so G.k/ is
dense in G if k is infinite. This fails for pseudo-reductive groups: over every
nonperfect field k there exists a commutative pseudo-reductive group that is not
unirational, and G.k/ need not be dense in G for infinite k (ibid., 11.3.1).

f. Nonreductive groups: Levi subgroups

In the last nine chapters, we have concentrated on reductive subgroups. Every
connected group variety G over a field k is an extension

e!Ru.G/!G!G=Ru.G/! e

of a pseudo-reductive group by a unipotent group. If k is perfect, then the quotient
G=Ru.G/ is reductive and the unipotent group Ru.G/ is split. In good cases, the
extension itself splits.
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DEFINITION 25.46. Let G be a connected group variety over k. A Levi sub-
group of G is a connected subgroup variety L such that the quotient map
Gka !Gka=RuGka restricts to an isomorphism Lka !Gka=RuGka .

In other words, L is a reductive subgroup of G such that Gka DRuGka ÌLka

(see 2.34). When a Levi subgroup exists, to some extent the study of G reduces
to the study of a reductive group and a unipotent group.

Notes

25.47. Let P be a parabolic subgroup of a reductive group G over k. Then P
admits a Levi subgroup, and any two Levi subgroups are conjugate by a unique
element of .RuP /.k/ (see 25.6).

25.48. Suppose that there exists an algebraic subgroup R of G such that
Rka DRu.Gka/ (so R is smooth, connnected, unipotent, and normal, and G=R
is reductive). Then a Levi subgroup of G is a connected subgroup variety L
such that the quotient map G!G=R restricts to an isomorphism L!G=R. In
this case, G is the semidirect product G DRÌL of a reductive group L with a
unipotent group R.

25.49. When k is perfect, a subgroup R as in 25.48 always exists (19.9). In
characteristic zero, Levi subgroups always exist and any two are conjugate by an
element of the unipotent radical (Theorem of Mostow; Hochschild 1981, VIII,
Theorem 4.3).

25.50. Every pseudo-reductive group with a split maximal torus has a Levi
subgroup (Conrad et al. 2015, 3.4.6).

25.51. In nonzero characteristic, a connected group variety G need not have a
Levi subgroup, even when the base field is algebraically closed. An example is
SLn.W2.k//, n > 1, regarded as an algebraic group over k. Moreover, a group
variety can have Levi subgroups that are not geometrically conjugate.

For recent work on Levi subgroups, see McNinch 2010, 2013, 2014a.

g. Galois cohomology

Having persuaded the reader of the usefulness of Galois cohomology groups,
we now study them in their own right. Let G be an algebraic group over k. In
this section, we write H 1.k;G/ for the flat cohomology group (2.72). When
G is smooth, it is canonically isomorphic to the Galois cohomology group
H 1.�;G.ks//, � D Gal.ks=k/ (they both classify the isomorphism classes of
G-torsors over k; see 3.50).
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Tori

Recall (12.62) that a torus T is induced if it is a finite product of tori of the form
.Gm/k0=k with k0 finite and separable over k. If T D

Q
i .Gm/ki=k , then

H 1.k;T /
3.44
'

Y
i
H 1.ki ;Gm/

3.47
D 1.

If T is induced over k, then Tk0 is induced over k0 for all fields k0 � k, and so
H 1.k0;Tk0/D 1. This property characterizes direct factors of induced tori.

Finite fields; fields of dimension � 1

A field k is said to have dimension� 1 if every finite-dimensional division algebra
over k is commutative. An equivalent condition is that Br.k0/D 0 for all fields
k0 algebraic over k. Finite fields and fields of transcendence degree 1 over an
algebraically closed field have dimension � 1 (Tsen’s theorem3).

The next theorem generalizes Lang’s theorem (17.98).

THEOREM 25.52. Let G be a connected group variety over a field k of dimen-
sion � 1. If k is perfect or G is reductive, then H 1.k;G/D 1.

PROOF. See Steinberg 1965, 1.9, and Borel and Springer 1968, 8.6. 2

COROLLARY 25.53. Let k be a perfect field of dimension� 1. Every connected
group variety over k is quasi-split.

PROOF. This follows from 25.52 in the same way that 17.99 follows from 17.98.2

The field of real numbers

THEOREM 25.54 (CARTAN). Let G be a semisimple algebraic group over R. If
G is simply connected, then G.R/ is connected.

PROOF. If G D .H/C=R for H a connected group variety over C, then G.R/D
H.C/, which is connected for the complex topology. If G is absolutely almost-
simple, then the statement is proved in Platonov and Rapinchuk 1994, Theorem
7.6, p. 407. The general case now follows from these two cases (24.3). 2

COROLLARY 25.55. Let G be a reductive algebraic group over R. Then G.R/
has only finitely many components for the real topology.

3Tsen was a student of Emmy Noether, and this was part of his thesis. Let k0 be an algebraically
closed field. Tsen first proved the following statement: let f1; : : : ;fr 2 k0.X/ŒT1; : : : ;Tr � be
homogeneous of degree d ; if n > rd then the equations f1 D 0;: : : ;fr D 0 have a common
nontrivial solution in k0.X/. It follows that, ifD is a central division algebra over a finite extension
k of k0.X/, then the norm map NmWD� ! k� is surjective. Now let ŒDWk� D n2, and let
Nm.d/DX . Then X D Nm.d/D Nrd.d/n, and so X1=n 2 k. Similarly, X1=n

2
, X1=n

3
, . . .

2 k, which is impossible unless nD 1:
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PROOF. For a torus, this can be proved directly. For a general G, there is an
exact sequence

e!N !G0�T !G! e (168)

with G0 the simply connected covering of Gder, T the torus Z.G/t , and N finite.
The group H 1.R;N / is finite, from which the statement follows. 2

THEOREM 25.56 (CARTAN). Every semisimple algebraic group over R has an
anisotropic form, which is unique up to isomorphism.

PROOF. See Harder 1965, 3.3.2. 2

THEOREM 25.57 (CARTAN). Let G be an anisotropic semisimple algebraic
group over R. Then any two maximal tori in G are conjugate by an element of
G.R/.

PROOF. For a short proof, see Suzuki 1971, Theorem 2. 2

THEOREM 25.58. Let G be a reductive algebraic group over R, and let T0 be
a maximal compact torus in G. The centralizer of T0 in G is a torus T , and
W0 DNG.T0/=T is a finite group acting on H 1.R;T /. The map H 1.R;T /!
H 1.R;G/ induces an isomorphism

H 1.R;T /=W0.R/!H 1.R;G/.

PROOF. See Borovoi 2014, Theorem 9. 2

COROLLARY 25.59 (BOREL AND SERRE). LetG be an anisotropic semisimple
algebraic group over R. Then

T .R/2=W 'H 1.R;G/;

where T .R/2 denotes the set of elements of order� 2 in T .R/ andW is the Weyl
group.

PROOF. Special case of the theorem. 2

ASIDE 25.60. Using Kac diagrams, Borovoi and Timashev (2015) describe combinatori-
ally the cohomology sets H1.R;G/ for all inner forms G of an anisotropic semisimple
algebraic group H over R. See also Adams 2013.

Local fields

By a local field in this subsection, we mean a finite extension of Qp or Fp..T //.

THEOREM 25.61. Let G be a semisimple group over a local field k.
(a) If G is simply connected, then H 1.k;G/D 1.

(b) If G is simply connected, almost-simple, and anisotropic, then it is iso-
morphic to SL1.D/ for some finite-dimensional division algebra D.
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PROOF. These statements were proved in characteristic zero by Kneser and
extended to more general local fields by Bruhat and Tits (1987, 4.3). See Platonov
and Rapinchuk 1994, Theorems 6.4, 6.5, pp. 284–285 (characteristic zero only).2

THEOREM 25.62. Let G be a semisimple group over a local field k and let
QG!G be its simply connected covering. Then the boundary map

ıWH 1.k;G/!H 2.k;Z. QG//

is bijective.

PROOF. The injectivity follows from Theorem 25.61. In characteristic zero, the
theorem is proved in Kneser 1969, Theorem 2, p. 60, and in nonzero characteristic,
it is proved in Thǎńg 2008 (in this case, H 2.k;Z. QG// is the flat group). 2

Global fields

A global field is a finite extension of Q or Fp.T /. We let V denote the set of
primes (possibly infinite) of a global field k, and kv the completion of k at a
v 2 V .

THEOREM 25.63. Let G be a semisimple group over a global field k and let
QG!G be its simply connected covering. Then the boundary map

H 1.k;G/
ı
�!H 2.k;Z. QG//

is surjective.

PROOF. See Harder 1975 for the number field case and Thǎńg 2008 for the
function field case. 2

Theorem 25.63 reduces the study of the cohomology of semisimple groups
over global fields to that of simply connected groups and finite group schemes.

THEOREM 25.64. Let G be an algebraic group over a global field k. The
canonical map

H 1.k;G/!
Y

v
H 1.kv;G/ (169)

is injective in each of the following cases:
(a) G is semisimple and simply connected;
(b) G is semisimple with trivial centre and k is a number field;
(c) G D O.�/ for some nondegenerate quadratic space .V;�/ and k is a num-

ber field.

PROOF. In the number field case, (a) was proved in Harder 1966 except for the
case E8, which was proved in Chernousov 1989. The remaining statements can
be deduced from (a) by using Theorem 25.63 and a knowledge of the cohomology
of finite group schemes. See Platonov and Rapinchuk 1994, Chapter 6. The
function field case of (a) is proved in Harder 1975. 2
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Note that (c) of the theorem implies that two quadratic spaces over a number
field k are isomorphic if and only if they become isomorphic over kv for all
primes v (including the infinite primes). This is a very important result in number
theory.

A group G for which the map (169) is injective is said to satisfy the Hasse
principle for H 1.

THEOREM 25.65. Let G be a simply connected semisimple group over a global
field k. Then

H 1.k;G/'
Y

v real
H 1.kv;G/:

PROOF. Theorems 25.61 and 25.64 show that the map is injective. For the
surjectivity, see Platonov and Rapinchuk 1994, Theorem 6.6, p. 286. 2

Theorem 25.65 reduces the study of the cohomology of simply connected
semisimple groups over global fields to that of the same groups over R.

THEOREM 25.66. Let G be a semisimple algebraic group over a global field k.
For every nonarchimedean prime v0 of k, the canonical map

H 1.k;G/!
Y

v¤v0
H 1.kv;G/

is surjective.

PROOF. In the number field case, this can be proved by the same argument as
Theorem 1.7 of Borel and Harder 1978. For the function field case, see Thǎńg
2012. 2

COROLLARY 25.67. In the situation of the theorem, suppose given for each
v ¤ v0 an inner form G.v/ of Gkv over kv; then there exists an inner form G0 of
G over k such that G0

kv
�G.v/ for all v ¤ v0.

PROOF. When inner forms are interpreted as pairs .G0;f / (see 3.52), this is an
immediate consequence of the theorem. Otherwise, we refer the reader to Prasad
and Rapinchuk 2006 and Thǎńg 2012 (where more complete results are proved).2

THEOREM 25.68. Let G be a geometrically almost-simple group over a number
field, and let S be a finite set of primes for k. If G is simply connected or has
trivial centre, then the canonical map

H 1.k;Aut.G//!
Y

v2S
H 1.kv;Aut.Gkv //

is surjective.

PROOF. See Borel and Harder 1978, Theorem B. 2

COROLLARY 25.69. In the situation of the theorem, suppose given a kv-form
G.v/ of Gkv for each v 2 S ; then there exists a k-form of G0 of G such that
G0
kv
�G.v/ for all v 2 S .
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PROOF. Immediate consequence of the theorem and Theorem 3.43. 2

THEOREM 25.70 (REAL APPROXIMATION). For every connected group variety
G over Q, the group G.Q/ is dense in G.R/.

PROOF. For a torus of the form .Gm/k=Q (hence for all induced tori) the statement
follows from the weak approximation theorem in algebraic number theory. Every
torus T fits into an exact sequence

1! T 00! T 0! T ! 1

with T 0 induced (see 12.63). An easy application of the Nakayama–Tate theorem
(Serre 1962, IX) shows that H 1.R;T 00/D 0 and so the map T 0.R/! T .R/ is
surjective. Therefore the statement for T follows from the statement for T 0.

Let S be a group of multiplicative type over Q. Then X�.S/ is a quotient of
a direct sum of modules of the form ZŒ� =�� (as in 12.63), and correspondingly
there is an exact sequence

0! S ! T 0! T 00! 0

with T 0 an induced torus and T 00 a torus. From the diagram

T 0.Q/ T 00.Q/ H 1.Q;S/ 0

T 0.R/ T 00.R/ H 1.R;S/ 0

dense image

onto T 00.R/C

we see that H 1.Q;S/!H 1.R;S/ is surjective.
Let G be a reductive group. There exists an exact sequence

1!N !G0�T !G! 1

with G0 simply connected, T a torus, and N a group of multiplicative type. The
real approximation theorem holds for G0 because it is unirational (17.93) and
G0.R/ is connected (25.54). From the diagram

G0.Q/�T .Q/ G.Q/ H 1.Q;N / H 1.Q;G0/

G0.R/�T .R/ G.R/ H 1.R;N / H 1.R;G0/

dense image onto 25:64

ontoG.R/C

we see that the real approximation theorem holds for G.
Finally, let G be connected group variety over Q. Because we are in char-

acteristic zero, G is the semidirect product of a unipotent group and a reductive
group (Section f) and the underlying scheme of a unipotent group is isomorphic
to An (see 14.66). 2
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THEOREM 25.71. Let G be a reductive group over Q. If the derived group G0

of G is simply connected and the torus G=G0 satisfies the Hasse principle for
H 1, then G satisfies the Hasse principle for H 1.

PROOF. Let T DG=G0. The theorem follows from a diagram chase in

T .Q/ H 1.Q;G0/ H 1.Q;G/ H 1.T /

G.R/ T .R/ H 1.R;G0/
Q
vH

1.Qv;G/
Q
vH

1.Qv;T /

dense image

and its twists (in the sense of Serre 1997, I, 5.4 and 5.5). 2

Theorems 25.70 and 25.71 can be extended to groups over number fields by
using Shapiro’s lemma (3.44).

NOTES. For more on the cohomology of algebraic groups, see Kneser 1969 and Platonov
and Rapinchuk 1994.

Exercises

EXERCISE 25-1. Let G be a reductive group over k. Let S be a maximal
split torus in G and T a maximal torus containing S . Show that the following
conditions on a nonzero ˛ 2X.S/ are equivalent:

(a) ˛ is a relative root (i.e., there exists a nonzero X 2 g such that Ad.s/.X/D
˛.s/X for all s 2 S );

(b) there exists a nonzero X 2 g˝ ks such that Ad.s/.X/ D ˛.s/X for all
s 2 S ;

(c) there exists a nonzero X 2 g˝ ks and a character � 2 X.T / such that
�jS D ˛ and Ad.t/.X/D �.t/X for all t 2 T .

EXERCISE 25-2. Show that a linearly reductive algebraic group has only finitely
many simple representations (up to isomorphism) if and only if it is finite. Deduce
that an algebraic group (not necessarily affine) has only finitely many simple
representations if and only if its identity component is an extension of a unipotent
algebraic group by an anti-affine algebraic group.

EXERCISE 25-3. Let k be a field of characteristic p. Show that H 1.k; p̨/'

k=kp (hence is 0 if k is perfect).

EXERCISE 25-4. Let G be a semisimple algebraic group over k. If G is quasi-
split and either simply connected or adjoint, then every maximal torus of G
contained in a Borel subgroup of G is induced (https://mathoverflow.net/,
question 241535).

https://mathoverflow.net/


APPENDIX A

Review of Algebraic Geometry

This is a list of the definitions and results from algebraic geometry used in the
book. For commutative algebra, we refer the reader to the notes Milne 2017
(cited as CA). In this appendix, everything takes place over a fixed field k, and
“k-algebra” means “finitely generated k-algebra”.

As we work mostly with schemes algebraic over a field, it is convenient to
ignore nonclosed points. We formalize this by working with max specs rather
than specs. Those already familiar with the language of schemes can skip to A.22,
where we provide a dictionary.

a. Affine algebraic schemes

Let A be a k-algebra.

A.1. Let X be the set of maximal ideals in A, and, for an ideal a in A, let

Z.a/D fm jm� ag:

Then
˘ Z.0/DX , Z.A/D ;,

˘ Z.ab/DZ.a\b/DZ.a/[Z.b/ for every pair of ideals a;b, and

˘ Z.
P
i2I ai /D

T
i2I Z.ai / for every family of ideals .ai /i2I .

For example, if m …Z.a/[Z.b/, then there exist f 2 aXm and g 2 bXm; but
then fg … abXm, and so m…Z.ab/. These statements show that the setsZ.a/ are
the closed sets for a topology onX , called the Zariski topology. We write spm.A/
for X endowed with this topology. For example, An def

D spm.kŒT1; : : : ;Tn�/ is
affine n-space over k. If k is algebraically closed, then the maximal ideals in A
are exactly the ideals .T1�a1; : : : ;Tn�an/, and An can be identified with kn

endowed with its usual Zariski topology.

566
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A.2. For a subset S of spm.A/, let I.S/D
T
fm jm 2 Sg. The Nullstellensatz

says that, for an ideal a in A,

I.Z.a//
def
D

\
fm jm� ag

is the radical of a (CA 13.11). Using this, one sees that Z and I define inverse
bijections between the radical ideals of A and the closed subsets of X . Under
this bijection, prime ideals correspond to irreducible sets (nonempty sets not the
union of two proper closed subsets), and maximal ideals correspond to points.

A.3. For f 2 A, let D.f / D fm j f … mg. It is open in spm.A/ because its
complement is the closed set Z..f //. The sets of this form are called the basic
open subsets of spm.A/. LetZDZ.a/ be a closed subset of spm.A/. According
to the Hilbert basis theorem (CA 3.7), A is noetherian, and so aD .f1; : : : ;fm/
for some fi 2 A, and

X XZ DD.f1/[� � �[D.fm/.

This shows that every open subset of spm.A/ is a finite union of basic open
subsets. In particular, the basic open subsets form a base for the Zariski topology
on spm.A/.

A.4. Let ˛WA! B be a homomorphism of k-algebras, and let m be a maximal
ideal in B . As B is finitely generated as a k-algebra, so also is B=m, which im-
plies that it is a finite field extension of k (Zariski’s lemma; CA 13.1). Therefore
the image of A in B=mB is an integral domain of finite dimension over k, and
hence is a field. This image is isomorphic to A=˛�1.m/, and so the ideal ˛�1.m/
is maximal in A. Hence ˛ defines a map

˛�Wspm.B/! spm.A/; m 7! ˛�1.m/;

which is continuous because .˛�/�1.D.f //DD.˛.f //. In this way, spm be-
comes a functor from k-algebras to topological spaces.

A.5. For a multiplicative subset S ofA, we let S�1A denote the ring of fractions
having the elements of S as denominators. For example, if f 2 A, then we let
Sf D f1;f;f

2; : : :g and

Af D S
�1
f A' AŒT �=.1�f T / .

Let D be a basic open subset of X . We define SD to be the multiplicative subset
of A,

SD D AX
[
fm jm 2Dg:

If D DD.f /, then the map S�1
f
A! S�1D A defined by the inclusion Sf � SD

is an isomorphism. If D0 and D are both basic open subsets of X and D0 �D,
then SD0 � SD , and so there is a canonical map

S�1D A! S�1D0 A: (170)
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A.6. There is a unique sheaf OX of k-algebras on X D Spm.A/ such that
OX .D/D S�1D A for every basic open subset D of X , and the restriction map
OX .D/!OX .D0/ is the map (170) for every pairD0 �D of basic open subsets.
Note that, for every f 2 A,

Af
def
D S�1f A' S�1D.f /.A/

def
DOX .D.f //.

We write Spm.A/ for spm.A/ endowed with this sheaf of k-algebras.

A.7. By a k-ringed space we mean a topological space equipped with a sheaf of
k-algebras. An affine algebraic scheme over k is a k-ringed space isomorphic to
Spm.A/ for some k-algebra A. A morphism (or regular map) of affine algebraic
schemes over k is a morphism of k-ringed spaces (it is automatically a morphism
of locally ringed spaces).

A.8. The functor A Spm.A/ is a contravariant equivalence from the category
of k-algebras to the category of affine algebraic schemes over k, with quasi-
inverse .X;OX / OX .X/. In particular, for all k-algebras A and B ,

Hom.A;B/' Hom.Spm.B/;Spm.A//.

A.9. Let M be an A-module. There is a unique sheaf M of OX -modules on
X D Spm.A/ such that M.D/D S�1D M for every basic open subsetD ofX , and
the restriction map M.D/!M.D0/ is the canonical map S�1D M ! S�1D0M

for every pair D0 � D of basic open subsets. A sheaf of OX -modules on X
is said to be coherent if it is isomorphic to M for some finitely generated A-
module M . The functor M  M is an equivalence from the category of finitely
generated A-modules to the category of coherent OX -modules with quasi-inverse
M M.X/. In this equivalence, finitely generated projective A-modules
correspond to locally free OX -modules of finite rank (CA 12.6).

A.10. For fields K � k, the Zariski topology on Kn induces that on kn. In
order to prove this, we have to show (a) that every closed subset S of kn is of the
form T \kn for some closed subset T of Kn, and (b) that T \kn is closed for
every closed subset of Kn.

(a) Let S DZ.f1; : : : ;fm/ with the fi 2 kŒX1; : : : ;Xn�. Then

S D kn\fzero set of f1; : : : ;fm in Kng.

(b) Let T D Z.f1; : : : ;fm/ with the fi 2 KŒX1; : : : ;Xn�. Choose a basis
.ej /j2J for K as a k-vector space, and write fi D

P
ejfij (finite sum)

with fij 2 kŒX1; : : : ;Xn�. Then

Z.fi /\k
n
D fzero set of the family .fij /j2J in kng

for each i , and so T \kn is the zero set in kn of the family .fij /.
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b. Algebraic schemes

A.11. Let .X;OX / be a k-ringed space. An open subset U of X is said to
be affine if .U;OX jU/ is an affine algebraic scheme over k, i.e., isomorphic
to Spm.A/ for some (finitely generated) k-algebra A. An algebraic scheme
over k is a k-ringed space .X;OX / that admits a finite covering by open affine
subsets. A morphism of algebraic schemes (also called a regular map) over k
is a morphism of k-ringed spaces. We often let X denote the algebraic scheme
.X;OX / and jX j the underlying topological space of X . When the base field k is
understood, we write “algebraic scheme” for “algebraic scheme over k”.

The local ring at a point x of X is denoted by OX;x or just Ox , and the
residue field at x is denoted by �.x/. For example, if X D Spm.A/ and x Dm,
then OX;x D Am and �.x/ D A=m. A regular map 'WY ! X induces a local
homomorphism of local rings OX;'.y/!OY;y for every y 2 Y .

A.12. A morphism 'WY !X of algebraic schemes over k is said to be surject-
ive (resp. injective, open, closed) if the map of topological spaces j'jW jY j ! jX j
is surjective (resp. injective, open, closed). A morphism ' is surjective if and
only if '.ka/WY.ka/!X.ka/ is surjective.

A.13. Let X be an algebraic scheme over k, and let A be a k-algebra. By
definition, a morphism of k-schemes X ! Spm.A/ gives a homomorphism
A!OX .X/ of k-algebras (but OX .X/ need not be finitely generated!). In this
way, we get a natural isomorphism

Hom.X;SpmA/' Hom.A;OX .X//:

A.14. Let X be an algebraic scheme over k. Then jX j is a noetherian topolo-
gical space (i.e., the open subsets of jX j satisfy the ascending chain condition;
equivalently, the closed subsets of jX j satisfy the descending chain condition).
It follows that jX j can be written as a finite union of closed irreducible sub-
sets, jX j DW1[ � � �[Wr . When we discard any Wi contained in another, the
collection fW1; : : : ;Wrg is uniquely determined, and its elements are called the
irreducible components of X .

A noetherian topological space has only finitely many connected components,
each of which is open and closed, and it is a disjoint union of them.

A.15. The image of a regular map 'WY !X of algebraic schemes is construct-
ible; therefore it contains a dense open subset of its closure. If ' is dominant,
then its image is dense in jX j and so contains a dense open subset of X .

A.16. A regular map 'WY !X of algebraic schemes is said to be affine if, for
all open affine subschemes U in X , '�1.U / is an open affine subscheme in X . It
suffices to check this condition for the sets in an open affine covering of X .

A.17. A regular map 'WY ! X of algebraic schemes over k is finite if, for
every open affine subscheme U � X , '�1.U / is affine and OY .'

�1.U // is a
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finite OX .U /-algebra. It suffices to check this condition for the sets in an open
affine covering of X . For example, the map Spm.B/! Spm.A/ defined by a
homomorphism of k-algebras A! B is finite if and only if A! B is finite.

A.18. (Extension of the base field; extension of scalars). Let K be a field
containing k. There is a functor X  XK from algebraic schemes over k to
algebraic schemes over K. For example, if X D Spm.A/, then XK D Spm.K˝
A/.

A.19. For an algebraic scheme X over k, we let X.R/ denote the set of points
of X with coordinates in a k-algebra R,

X.R/
def
D Hom.Spm.R/;X/:

For example, if X D Spm.A/, then X.R/ D Hom.A;R/ (homomorphisms of
k-algebras).

For a ring R containing k, we let X.R/ D lim
�!

X.Ri /, where Ri runs over
the (finitely generated) k-subalgebras of R. Again X.R/D Hom.A;R/ if X D
Spm.A/. Now R X.R/ is a functor from all k-algebras (not necessarily
finitely generated) to sets.

A.20. Let A be a finitely generated k-algebra, and let Aka D ka˝k A. If m is a
maximal ideal in Aka , then m\A is maximal because A=m\A ,! Aka=mD ka.
The map � Wspm.Aka/! spm.A/ sending m to m\A is surjective,1 continuous,2

and closed,3 and hence it is a quotient map.
More generally, let X be an algebraic scheme over k; then the projection map

Xka !X realizes the topological space jX j as a quotient of jXka j.4

A.21. Let X be an algebraic scheme. An OX -module M is said to be coherent
if, for every open affine subset U of X , the restriction of M to U is coherent
(A.9). It suffices to check this condition for the sets in an open affine covering of
X . Similarly, a sheaf I of ideals in OX is coherent if its restriction to every open
affine subset U is the subsheaf of OX jU defined by an ideal in the ring OX .U /.

A.22. For those familiar with schemes in the sense of specs, we provide a
short dictionary. Let X be an algebraic scheme over a field in the sense of
EGA, and let X0 be the set of closed points in X with the induced topology.

1Every maximal ideal m of A is the kernel of a k-algebra homomorphism A! ka (CA 13.2),
which extends to a ka-algebra homomorphism Aka ! ka, whose kernel is a maximal ideal lying
over m.

2Let S DZ.f1; : : : ;fs/ be closed in spm.A/. Then ��1.S/DZ.f1; : : : ;fs/ in spm.Aka /.
3Let T DZ.f1; : : : ;fs/ be a closed subset of spm.Aka /. Choose a basis .ej /j2J for ka as

a k-vector space, and write fi D
P
j ejfij (finite sum) with fij 2 A. Every maximal ideal of

Aka is the kernel of a ka-algebra homomorphism Aka ! ka, and the fi map to zero under such a
homomorphism if and only if every fij does. Therefore T DZ.:: : ;fij ; : : :/ in spm.Aka /, and it
follows that �.T /DZ.:: : ;fij ; : : :/ in spm.A/.

4The cognoscenti prefer to derive this statement from Corollary 2.3.12 of EGA IV 2.3.10, whose
proof depends on EGA I 9.5.3 and EGA IV 1.9.5, 2.3.3, 2.3.7, which in turn depend on . . .
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The map S 7! S \X0 is an isomorphism from the lattice of closed (resp. open,
constructible) subsets of X to the lattice of closed (resp. open, constructible)
subsets of X0. In particular, X is connected if and only if X0 is connected. To
recover X from X0, add a point z for each irreducible closed subset Z of X0
not already a point; the point z lies in an open subset U if and only if U \Z is
nonempty. The ringed spaces .X;OX / and .X0;OX jX0/ have the same lattice
of open subsets and the same ring for each open subset; they differ only in the
underlying sets. See EGA IV, �10.

A regular map 'WY !X of algebraic schemes over k is surjective if and only
if it is surjective on closed points (DG, I, �3, 6.10).

c. Subschemes

A.23. Let X be an algebraic scheme over k. An open subscheme of X is a pair
.U;OX jU/ with U open in X . It is again an algebraic scheme over k.

A.24. Let X D Spm.A/ be an affine algebraic scheme over k, and let a be
an ideal in A. Then Spm.A=a/ is an affine algebraic scheme with underlying
topological space Z.a/.

Let X be an algebraic scheme over k, and let I be a coherent sheaf of ideals
in OX . The support of the sheaf OX=I is a closed subsetZ ofX , and .Z;OX=I/
is an algebraic scheme, called the closed subscheme of X defined by the sheaf of
ideals I. Note that Z\U is affine for every open affine subscheme U of X .

The closed subschemes of an algebraic scheme satisfy the descending chain
condition. To see this, consider a chain of closed subschemes

Z �Z1 �Z2 � �� �

of an algebraic scheme X . Because jX j is noetherian (A.14), the chain jZj �
jZ1j � jZ2j � � � � becomes constant, and so we may suppose that jZj D jZ1j D
� � � . Write Z as a finite union of open affine subsets, Z D

S
Ui . For each i , the

chain Z \Ui � Z1\Ui � �� � of closed subschemes of Ui corresponds to an
ascending chain of ideals in the noetherian ring OZ.Ui /, and therefore becomes
constant.

A.25. A subscheme of an algebraic scheme X is a closed subscheme of an
open subscheme of X . Its underlying set is locally closed in X (i.e., open in its
closure; equivalently, it is the intersection of an open subset with a closed subset).

A.26. A regular map 'WY !X is an immersion if it induces an isomorphism
from Y onto a subscheme Z of X . If Z is open (resp. closed), then ' is called
an open (resp. closed) immersion. Every immersion can be written as a closed
immersion into an open subscheme and also as an open immersion into a closed
subscheme.
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A.27. Recall that a ring A is reduced if it has no nonzero nilpotent elements.
If A is reduced, then S�1A is reduced for every multiplicative subset S of A;
conversely, if Am is reduced for all maximal ideals m in A, then A is reduced.

An algebraic scheme X is reduced if OX;P is reduced for all P 2 X . For
example, Spm.A/ is reduced if and only if A is reduced. If X is reduced, then
OX .U / is reduced for all open affine subsets U of X .

A.28. A k-algebra A is reduced if and only if the intersection of the maximal
ideals in A is zero (A.2). Let X be an algebraic scheme over k. For a section f
of OX over some open subset U of X and u 2U , let f .u/ denote the image of f
in �.u/DOX;u=mu (a finite extension of k). If X is reduced, then two sections
f1;f2 2OX .U / are equal if and only if f1.u/D f2.u/ for all u 2 jU j. When k
is algebraically closed, �.x/D k for all x 2 jX j, and so this observation allows
us to identify OX with a sheaf of k-valued functions on X .

A.29. An algebraic scheme X is said to be integral if it is reduced and irredu-
cible. For example, Spm.A/ is integral if and only if A is an integral domain. If
X is integral, then OX .U / is an integral domain for all open affine subsets U of
X .

A.30. LetX be an algebraic scheme over k. There is a unique reduced algebraic
subscheme Xred of X with the same underlying topological space as X . For
example, if X D Spm.A/, then Xred D Spm.A=N/, where N is the nilradical of
A.

Every regular map Y !X from a reduced scheme Y to X factors uniquely
through the inclusion map i WXred!X . In particular, Xred.R/'X.R/ if R is a
reduced k-algebra.

More generally, every locally closed subset Y of jX j carries a unique structure
of a reduced subscheme of X ; we write Yred for Y equipped with this structure.

Passage to the associated reduced scheme does not commute with extension
of the base field. For example, an algebraic scheme X over k may be reduced
without Xka being reduced.

d. Algebraic schemes as functors

A.31. Recall that Algk is the category of finitely generated k-algebras. For
a k-algebra A, let hA denote the functor R Hom.A;R/ from k-algebras to
sets. A functor F WAlgk ! Set is representable if it is isomorphic to hA for
some k-algebra A. A pair .A;a/, a 2 F.A/, is said to represent F if the natural
transformation

TaWh
A
! F; .Ta/R.f /D F.f /.a/;

is an isomorphism. This means that, for each x 2 F.R/, there is a unique
homomorphism A!R such that F.A/! F.R/ sends a to x. The element a is
said to be universal. For example, .A; idA/ represents hA. If .A;a/ and .A0;a0/
both represent F , then there is a unique isomorphism A! A0 sending a to a0.
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A.32. Let B be a k-algebra and let F be a functor Algk ! Set. An element
x 2 F.B/ defines a homomorphism

Hom.B;R/! F.R/

sending an f to the image of x under F.f /. This homomorphism is natural in
R, and so we have a map of sets

F.B/! Nat.hB ;F /.

The Yoneda lemma says that this is a bijection, natural in both B and F . For
F D hA, this says that

Hom.A;B/' Nat.hB ;hA/:

In other words, the contravariant functor A hA is fully faithful. Its essential
image consists of the representable functors.

A.33. Let hX denote the functor Hom.�;X/ from algebraic schemes over k to
sets. The Yoneda lemma in this situation says that, for algebraic schemes X;Y ,

Hom.X;Y /' Nat.hX ;hY /.

Let haff
X denote the functor R X.R/WAlgk! Set. Then haff

X D hX ıSpm, and
can be regarded as the restriction of hX to affine algebraic schemes.

Let X and Y be algebraic schemes over k. Every natural transformation
haff
X ! haff

Y extends uniquely to a natural transformation hX ! hY ,

Nat.haff
X ;h

aff
Y /' Nat.hX ;hY /,

and so
Hom.X;Y /' Nat.haff

X ;h
aff
Y /:

In other words, the functor X haff
X is fully faithful. We shall also refer to this

statement as the Yoneda lemma. It allows us to identify an algebraic scheme over
k with its “points-functor” Algk! Set.

Recall (p. 4) that Alg0k denotes the category of “small” k-algebras. We let QX
denote the functor Alg0k! Set defined by an algebraic scheme. Then X QX is
fully faithful. We shall also refer to this statement as the Yoneda lemma.

Let F be a functor Alg0k! Set. If F is representable by an algebraic scheme
X , then X is uniquely determined up to a unique isomorphism, and hX extends
F to a functor Algk! Set.

A.34. By a functor in this paragraph and the next we mean a functor Alg0k!Set.
A subfunctor U of a functor X is open if, for all maps 'WhA!X , the subfunctor
'�1.U / of hA is defined by an open subscheme of Spm.A/. A family .Ui /i2I
of open subfunctors of X is an open covering of X if each Ui is open in X and
X D

S
Ui .K/ for every fieldK. A functor X is local if, for all k-algebras R and
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all finite families .fi /i of elements of A generating the ideal A, the sequence of
sets

X.R/!
Y

i
X.Rfi /�

Y
i;j
X.Rfifj /

is exact. Let A1 denote the functor sending a k-algebra R to its underlying
set. For a functor U , let O.U /D Nat.U;A1/ – it is a k-algebra, not necessarily
finitely generated.5 A functor U is said to be affine if O.U / is finitely generated
and the canonical map U ! hO.U / is an isomorphism. A local functor admitting
a finite covering by open affine functors is represented by an algebraic scheme.6

A.35. A morphism 'WX ! Y of functors is a monomorphism if '.R/ is in-
jective for all R. A morphism ' is an open immersion if it is open and a
monomorphism (DG, I, �1, 3.6). Let 'WX ! Y be a regular map of algebraic
schemes. If QX ! QY is a monomorphism, then it is injective (DG, I, �1, 5.3). If
X is irreducible and QX ! QY is a monomorphism, then there exists a dense open
subset U of X such that 'jU is an immersion (DG, I, �3, 4.5, 4.6).

A.36. LetR be a k-algebra (finitely generated as always). AnR-algebra is small
if it is small as a k-algebra. An algebraic R-scheme is a pair .X;'/ consisting
of an algebraic k-scheme X and a morphism 'WX ! Spm.R/. For example, if
f WR!R0 is a finitely generated R-algebra, then Spm.f /WSpm.R0/! Spm.R/
is an algebraic R-scheme. The algebraic R-schemes form a category in an
obvious way. Moreover, the Yoneda lemma still holds: for an algebraic R-
scheme X , let QX denote the functor sending a small R-algebra R0 to the set
HomR.Spm.R0/;X/; then X QX is fully faithful.

e. Fibred products of algebraic schemes

A.37. Let 'WX!Z and  WY !Z be regular maps of algebraic schemes over
k. The functor

R X.R/�Z.R/ Y.R/
def
D f.x;y/ 2X.R/�Y.R/ j '.x/D  .y/g

is representable by an algebraic scheme X �Z Y over k, and X �Z Y is the fibred
product of .'; / in the category of algebraic k-schemes, i.e., the diagram

X �Z Y Y

X Z

 

'

is cartesian. For example, if R! A and R! B are homomorphisms of k-
algebras, then A˝RB is a finitely generated k-algebra, and

Spm.A/�Spm.R/ Spm.B/D Spm.A˝RB/:
5Here it is important that we consider functors on Alg0

k
, not Algk , in order to know that O.U / is

a set.
6This is the definition of a scheme in DG, I, �1, 3.11.
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When ' and  are the structure maps X ! Spm.k/ and Y ! Spm.k/, the
fibred product becomes the product, denoted X �Y , and

Hom.T;X �Y /' Hom.T;X/�Hom.T;Y /:

The diagonal map �X WX ! X �X is the regular map whose composites with
the projection maps equal idX .

The fibre '�1.x/ over x of a regular map 'WY !X of algebraic schemes is
defined to be the fibred product of the maps x ,!X and ':

Y Y �X x
def
D '�1.x/

X xD Spm.�.x//:

'

Thus, it is an algebraic scheme over the field �.x/. It need not be reduced even if
both X and Y are reduced (see A.44).

A.38. For a pair of regular maps '1;'2WX� Y , the functor

R fx 2X.R/ j '1.x/D '2.x/g

is represented by a subscheme of X , called the equalizer Eq.'1;'2/ of '1 and '2.
It is the fibred product of the maps .'1;'2/WX ! Y �Y and �Y WY ! Y �Y .
Its underlying set is fx 2 jX j j '1.x/D '2.x/g.

A.39. The intersection of two closed subschemes Z1 and Z2 of an algebraic
scheme X is defined to be Z1�X Z2 regarded as a closed subscheme of X with
underlying set jZ1j \ jZ2j. For example, if X D Spm.A/, Z1 D Spm.A=a1/,
and Z1 D Spm.A=a2/, then Z1\Z2 D Spm.A=a1C a2/. This definition ex-
tends in an obvious way to finite, or even infinite, sets of closed subschemes.
Because X has the descending chain condition on closed subschemes (A.24),
every infinite intersection is equal to a finite intersection. An intersection of
reduced subschemes of a reduced scheme need not be reduced.

A.40. A regular map 'WY !X of algebraic schemes over k is quasi-finite if
the fibre '�1.x/ is a finite scheme over �.x/ for x 2 jX j. For example, a finite
map is quasi-finite. For x 2 X , we let Yx denote the fibre '�1.x/ and degx.'/
the dimension of O.Yx/ as a k-vector space. When X is integral, a finite map
'WY !X is flat if and only if degx.'/ is independent of x (CA 12.6).

f. Algebraic varieties

A.41. An algebraic scheme X over k is said to be separated if the diagonal
in X �X is closed (so �X is a closed immersion). Then any two regular maps
'1;'2WY � X agree on a closed subset of jY j, and so Eq.'1;'2/ is a closed
subscheme of Y .
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A.42. An affine k-algebra is a k-algebra A such that ka˝A is reduced. If A is
an affine k-algebra and B is a reduced ring containing k, then A˝B is reduced;
in particular A˝K is reduced for every fieldK containing k. The tensor product
of two affine k-algebras is affine. If k is perfect, then every reduced k-algebra is
affine.

A.43. An algebraic scheme X is said to be geometrically reduced if Xka is
reduced. For example, Spm.A/ is geometrically reduced if and only if A is an
affine k-algebra. If X is geometrically reduced, then XK is reduced for every
field K containing k. If X is geometrically reduced and Y is reduced (resp.
geometrically reduced), then X �Y is reduced (resp. geometrically reduced). If
k is perfect, then every reduced algebraic scheme over k is geometrically reduced.
These statements all follow from the affine case (A.42).

A.44. An algebraic variety over k is an algebraic scheme over k that is both
separated and geometrically reduced. Algebraic varieties remain algebraic vari-
eties under extension of the base field, and products of algebraic varieties are
again algebraic varieties, but a fibred product of algebraic varieties need not be
an algebraic variety. Consider, for example,

A1 A1�A1 fagD Spm.kŒT �=.T p�a//

A1 fag:

x 7!xp

This is one reason for working with algebraic schemes rather than varieties.
Let X be an irreducible algebraic variety over k. The rings OX .U / for U an

affine open subset of X have a common field of fractions, which is denoted k.X/.
Its elements are the rational functions on X .

Two irreducible varieties X and X 0 over k are said to be birationally equival-
ent if some dense open subset of X is isomorphic to a dense open subset of X 0.
The varieties X and X 0 are birationally equivalent if and only if k.X/� k.X 0/
as k-algebras.

g. The dimension of an algebraic scheme

A.45. Let A be a noetherian ring. The height of a prime ideal p is the greatest
length d of a chain of distinct prime ideals

pD pd � �� � � p1 � p0.

Let p be minimal among the prime ideals containing an ideal .a1; : : : ;am/; then
height.p/�m. Conversely, if height.p/Dm, then there exist a1; : : : ;am 2 p such
that p is minimal among the prime ideals containing .a1; : : : ;am/. See CA 21.5,
21.7.
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The (Krull) dimension of A is supfheight.p/g, where p runs over the prime
ideals of A (or just the maximal ideals – the two obviously give the same answer).
Clearly, the dimension of a local ring with maximal ideal m is the height of m,
and dim.A/D sup.dim.Am//. Since all prime ideals of A contain the nilradical
N of A, we have dim.A/D dim.A=N/:

A.46. Let A be a finitely generated k-algebra, and assume that A=N is an
integral domain. According to the Noether normalization theorem, A contains
a polynomial ring kŒt1; : : : ; tr � such that A is a finitely generated kŒt1; : : : ; tr �-
module. We call r the transcendence degree of A over k – it is equal to the
transcendence degree of the field of fractions of A=N over k. The length of every
maximal chain of distinct prime ideals in A is tr degk.A/. In particular, every
maximal ideal in A has height tr degk.A/, and so A has dimension tr degk.A/.
See CA, �18.

A.47. Let X be an irreducible algebraic scheme over k. The dimension of X is
the greatest length d of a chain of irreducible closed subschemes

Z DZd � �� � �Z1 �Z0:

It is equal to the Krull dimension of OX;x for every x 2 jX j, and to the Krull
dimension of OX .U / for every open affine subset U of X . We have dim.X/D
dim.Xred/, and if X is reduced, then dim.X/ is equal to the transcendence degree
of k.X/ over k. These statements follow from the affine case (A.45, A.46).

The dimension of a general algebraic scheme is defined to be the maximum
dimension of an irreducible component. When the irreducible components all
have the same dimensions, the scheme is said to be equidimensional.

A.48. Assume that X is irreducible and geometrically reduced. Then there
exists a transcendence basis t1; : : : ; td for k.X/ over k such that k.X/ is separable
over k.t1; : : : ; td /. This means that X is birationally equivalent to a hypersurface

f .T1; : : : ;TdC1/D 0 .d D dim.X//

in AdC1 with the property that @f=@TdC1 ¤ 0. It follows that the points x in X
such that �.x/ is separable over k form a dense subset of jX j. In particular, X.k/
is dense in jX j when k is separably closed.

h. Tangent spaces; smooth points; regular points

A.49. Let A be a noetherian local ring with maximal ideal m. The dimension
of A is the height of m, and so (A.45)

dimA�minimum number of generators for m.
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When equality holds, A is said to be regular. Nakayama’s lemma (CA 3.9) shows
that a set of elements of m generates m if and only if it spans the �-vector space
m=m2, where � D A=m. Therefore

dim.A/� dim�.m=m
2/

with equality if and only if A is regular. Every regular noetherian local ring is
a unique factorization domain; in particular, it is an integrally closed integral
domain. For every ideal p in a regular local ring A, the ring Ap is regular. See
CA 22.5.

A.50. Let X be an algebraic scheme over k. A point x 2 jX j is regular if OX;x
is a regular local ring. The scheme X is regular if every point of jX j is regular. A
connected regular algebraic scheme is integral but not necessarily geometrically
reduced.

A.51. Let kŒ"� be the k-algebra generated by an element " with "2 D 0, and
let X be an algebraic scheme over k. From the map " 7! 0WkŒ"�! k, we
get a map X.kŒ"�/! X.k/. The fibre of this over a point x 2 X.k/ is the
tangent space Tgtx.X/ of X at x. Thus Tgtx.X/ is defined for all x 2 jX j with
�.x/D k. To give a tangent vector at x amounts to giving a local homomorphism
˛WOX;x! kŒ"� of k-algebras. Such a homomorphism can be written

˛.f /D f .x/CD˛.f /"; f 2Ox ; f .x/; D˛.f / 2 k:

Then D˛ is a k-derivation Ox ! k, which induces a k-linear map m=m2! k.
In this way, we get canonical isomorphisms

Tgtx.X/' Derk.Ox ;k/' Homk-linear.m=m
2;k/: (171)

The formation of the tangent space commutes with extension of the base field.

A.52. Let X be an irreducible algebraic scheme over k, and let x be a point on
X such that �.x/D k. Then

dimTgtx.X/� dimX

with equality if and only if x is regular. This follows from (171).

A.53. Let X be a closed subscheme of An, say

X D SpmA; AD kŒT1; : : : ;Tn�=a; aD aD .f1; :::;fr /.

Let ti D Ti Ca, and consider the Jacobian matrix

Jac.f1;f2; : : : ;fr /D

ˇ
@f1
@t1

@f1
@t2

� � �
@f1
@tn

@f2
@t1
:::
@fr
@t1

@fr
@tn



2Mr;n.A/:
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Let d D dimX . The singular locus Xsing of X is the closed subscheme of X
defined by the .n�d/� .n�d/ minors of this matrix. This is independent of
the embedding of X into An. For example, if X is the hypersurface defined by a
polynomial f .T1; : : : ;TdC1/, then

Jac.f /D @f
@t1

@f
@t2

� � �
@f

@tdC1
2M1;dC1.A/;

and Xsing is the closed subscheme of X defined by the equations

@f

@T1
D 0; : : : ;

@f

@TdC1
D 0:

For a general algebraic scheme X over k, the singular locus Xsing is the
closed subscheme such that Xsing\U has this description for every open affine
subset U of X . From its definition, one sees that the formation of the singular
locus commutes with extension of the base field.

A.54. Let X be an algebraic scheme over k. A point x of X is singular or
nonsingular according as x lies in the singular locus or not, andX is nonsingular
(= smooth) or singular according as Xsing is empty or not. If x is such that
�.x/D k, then x is nonsingular if and only if it is regular. A smooth variety is
regular, and a regular variety is smooth if k is perfect.

A.55. A smooth scheme is geometrically reduced. Conversely, if X is geo-
metrically reduced and irreducible, then Xsing is a proper closed subset of X
(because X is birationally equivalent to a hypersurface f .T1; : : : ;TdC1/D 0 with
@f=@TdC1 ¤ 0; see A.48).

A.56. An algebraic scheme X over a field k is smooth if and only if, for all
k-algebras R and ideals I in R such that I 2 D 0, the map X.R/! X.R=I / is
surjective (DG, I, �4, 4.6).

i. Étale schemes

A.57. A k-algebra A is said to be diagonalizable if it is isomorphic to the
product algebra kn for some n 2 N, and it is étale if A˝k0 is diagonalizable for
some field k0 containing k. In particular, an étale k-algebra is finite.

A.58. A k-algebra kŒT �=.f .T // is étale if and only if the polynomial f .T / is
separable, i.e., has distinct roots in ka. Every étale k-algebra is a finite product of
such algebras.

A.59. The following conditions on a finite k-algebra A are equivalent: (a) A is
étale; (b) A is a product of separable field extensions of k; (c) A˝k0 is reduced
for all fields k0 containing k; (d) A˝ks is diagonalizable.
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A.60. A scheme X finite over k is said to be étale over k if it satisfies each
of the following equivalent conditions: (a) the k-algebra O.X/ is étale (recall
that X is affine); (b) X is smooth; (c) X is geometrically reduced; (d) X is an
algebraic variety. The equivalence is an immediate consequence of (A.59).

A.61. The following conditions on an algebraic schemeX over k are equivalent:
(a) X is étale over k; (b) X is an algebraic variety over k of dimension zero; (c)
the space jX j is discrete and the local rings OX;x for x 2 jX j are finite separable
field extensions of k.

A.62. Fix a separable closure ks of k, and let � D Gal.ks=k). The functor
X X.ks/ is an equivalence from the category of étale schemes over k to the
category of finite discrete � -sets. This is an easy consequence of standard Galois
theory. By a discrete � -set we mean a set X equipped with a continuous action
� �X !X of � (Krull topology on � ; discrete topology on X). An action of
� on a finite discrete set is continuous if and only if it factors through Gal.K=k/
for some finite Galois extension K of k contained in ks.

j. Galois descent for closed subschemes

A.63. Let A and B be rings (not necessarily commutative), and let S be an
A-B-bimodule (this means that A acts on S on the left, B acts on S on the right,
and two actions commute). When the functor M  S˝BM WModB !ModA is
an equivalence of categories, A and B are said to be Morita equivalent through
S . For example, let D be a division algebra over k of finite degree, and let
ADMr .D/. Let S DDr with A acting by left multiplication and D acting by
right multiplication. Then S is a simple A-module, and every A-module is a
direct sum of copies of S (24.16). It follows that A and D are Morita equivalent
through S .

A.64. Let K be a Galois extension of k with Galois group � . Recall that an
action of � on aK-vector space V is semilinear if �.cv/D �c ��v for all � 2 � ,
c 2K, and v 2 V . For example, if V is a k-vector space, then �.c˝v/D �c˝v
is a semilinear action of � on K˝V . We claim that the functor V  K˝k V

from k-vector spaces over k to K-vector spaces equipped with a continuous
semilinear action of � is an equivalence of categories.

It suffices to prove this with K a finite Galois extension. Let KŒ� � be the
K-vector space with basis � . It becomes a K-algebra with the multiplication
.
P
a��/.

P
b��/ D

P
a��.b� /�� . Then KŒ� � acts k-linearly on K by the

rule .
P
a��/c D

P
a� � �c and Dedekind’s theorem on the independence of

characters shows that the homomorphism

KŒ� �! Endk-linear.K/�Mdim.V /.k/

is injective. It is an isomorphism because the two sides have the same dimension
as k-vector spaces. Now A.63 shows that KŒ� � and k are Morita equivalent
through K, which is the required statement.
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It follows that the functor A K˝A from Hopf algebras over k to Hopf
algebras over K equipped with a continuous semilinear action of � compatible
with the Hopf algebra structure is an equivalence of categories.

A.65. Let X be an algebraic scheme over a field k, and let X 0 DXk0 for some
field k0 containing k. Let Y 0 be a closed subscheme of X 0. There exists at most
one closed subscheme Y of X such that Yk0 D Y 0 (as a subscheme of X 0/. For
example, if X D Spm.A/ and a0 is an ideal in A˝k0, then there is at most one
ideal a in A such that a˝k0 maps isomorphically onto a0 (the ideal a exists if
and only if A contains a set of generators for a0, in which case aD a0\A).

Now assume that k0 is Galois over k with Galois group � . Then � acts on
X 0 and Y 0 arises from an algebraic subscheme of X if and only if it is stable
under this action. When X is affine, the action of � on X 0 corresponds to the
natural semilinear action of � on O.X 0/, and the statement follows from (A.64).
In this case, if O.Y 0/DO.X 0/=a0, then Y 0 is stable under � if and only if a0 is
stable under � .

Let k0 be the separable closure of k. An algebraic subvariety Y 0 of X 0 is
stable under the action of � on X 0 if and only if the set Y 0.k0/ is stable under the
action of � on X.k0/ (because Y 0.k0/ is dense in Y ; see A.48).

A.66. Let X and Y be algebraic schemes over k with Y separated, and let
X 0 D Xk0 and Y 0 D Yk0 for some field k0 containing k. Let '0WX 0! Y 0 be a
regular map. Because Y 0 is separated, the graph �'0 of '0 is closed in X �Y , and
so we can apply A.65 to it. We deduce the following:

˘ There exists at most one regular map 'WX ! Y such that '0 D 'k0 .

˘ Assume k0 is Galois over k, and let � D Aut.k0=k/. Then '0WX 0! Y 0

arises from a regular map over k if and only if its graph is stable under the
action of � on X 0�Y 0.

˘ Let k0 D ks, and assume that X and Y are algebraic varieties. Then '0

arises from a regular map over k if and only if the map

'0.k0/WX.k0/! Y.k0/

commutes with the actions of � on X.k0/ and Y.k0/.

k. Flat and smooth morphisms

We assume that the reader is familiar with the basic properties of flatness for
rings (CA, �11).

A.67. Let A! B be a local homomorphism of local noetherian rings, and let
uWM 0!M be a homomorphism of finitely generated B-modules. If M is flat
over A and u˝A .A=mA/ is injective, then u is injective and Coker.u/ is flat over
A (Matsumura 1986, 22.5).
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A.68. A regular map 'WY !X of algebraic schemes over k is said to be flat
if, for all y 2 jY j, the map OX;'.y/! OY;y is flat. A flat map ' is said to be
faithfully flat if it is flat and j'j is surjective. The map Spm.B/! Spm.A/
defined by a homomorphism of k-algebras A! B is flat (resp. faithfully flat) if
and only if A! B is flat (resp. faithfully flat).

A.69. A flat map 'WY !X of algebraic schemes over k is open. This follows
from the affine case, proved in CA 23.4.

A.70 (GENERIC FLATNESS). Let 'WY ! X be a regular map of algebraic
schemes over k. If X is integral, then there exists a dense open subset U of
X such that '�1.U /

'
�! U is faithfully flat. This follows from the affine case,

proved in CA 21.10.

A.71. A morphism 'WY !X of algebraic schemes over k is said to be smooth
(of relative dimension n) if it is flat and the fibres '�1.x/ are smooth (of equi-
dimension n) for all x 2 X . Let k0 be an extension of k; then ' is smooth if
and only if 'k0 is smooth. A morphism 'WY ! X of smooth algebraic vari-
eties over an algebraically closed field k is smooth if and only if the map
.d'/y WTgty.Y /! T'.y/.X/ is surjective for all y 2 Y.k/ (Hartshorne 1977,
III, 10.4). If 'WY !X is smooth and X is smooth, then Y is smooth (pass to the
algebraic closure of k and check that the tangent spaces at points in Y.k/ have
the correct dimension).

l. The fibres of regular maps

A.72. Let 'WY !X be a dominant map of integral schemes. For all P 2 '.Y /,

dim.'�1.P //� dim.Y /�dim.X/:

Equality holds for all P if ' is flat, and hence it always holds for P in a dense
open subset of X contained in '.Y / (A.70). These statements follow from the
corresponding local statements (CA 23.1, 23.2).

A.73. Let 'WY ! X be a dominant map of integral schemes. Let S be an
irreducible closed subset of X , and let T be an irreducible component of '�1.S/
such that '.T / is dense in S . Then

dim.T /� dim.S/Cdim.Y /�dim.X/:

There exists a dense open subsetU of Y such that '.U / is open, U D '�1.'.U //,
and U

'
�! '.U / is flat. If S meets '.U / and T meets U , then

dim.T /D dim.S/Cdim.Y /�dim.X/:

A.74. A surjective morphism of smooth algebraic k-schemes is flat (hence
faithfully flat) if its fibres all have the same dimension.
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m. Complete schemes; proper maps

A.75. An algebraic scheme X is said to be complete if it is separated and if, for
all algebraic schemes T , the projection map qWX �T ! T is closed. (It suffices
to check this with T D An.)

(a) Closed subschemes of complete schemes are complete.

(b) An algebraic scheme is complete if and only if its irreducible components
are complete.

(c) Products of complete schemes are complete.

(d) Let 'WX ! S be a regular map of algebraic varieties. If X is complete,
then '.X/ is a complete closed subvariety of S . In particular,

(i) if 'WX ! S is dominant and X is complete, then ' is surjective and
S is complete;

(ii) complete subvarieties of algebraic varieties are closed.

(e) A regular map X ! P1 from a complete connected algebraic variety X is
either constant or surjective (special case of (d)).

(f) The only regular functions on a complete connected algebraic variety are
the constant functions (consequence of (e)).

(g) The image of a regular map from a complete connected algebraic scheme
to an affine algebraic scheme is a point. The only complete affine algebraic
schemes are the finite schemes.

(h) Projective space Pn is complete (hence projective varieties are complete).

(i) Every quasi-finite map Y !X with Y complete is finite.

A.76. A regular map 'WX ! S of algebraic schemes is proper if it is separated
and universally closed (i.e., for all regular maps T ! S , the projection map
qWX �S T ! T is closed).

(a) A finite map is proper.

(b) An algebraic scheme X is complete if and only if the map X ! Spm.k/
is proper. The base change of a proper map is proper. In particular, if
� WX ! S is proper, then ��1.P / is a complete subscheme of X for all
P 2 S .

(c) If X ! S is a proper map and S is complete, then X is complete.

(d) The inverse image of a complete algebraic scheme under a proper map is
complete.

(e) Let 'WX ! S be a proper map. The image of every complete algebraic
subscheme of X is a complete algebraic subscheme of S .
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n. The Picard group

A.77. Let X be an algebraic scheme over k. An invertible sheaf on X is a
locally free OX -module of rank 1. The isomorphism classes of invertible sheaves
on X form a group under tensor product, called the Picard group of X . It is
denoted Pic.X/. There is a canonical isomorphism

Pic.X/'H 1.X;O�X /

(Zariski, étale, or flat cohomology). The Picard group of X can also be described
as the group of isomorphism classes of line bundles on X .

A.78. An integral domain A is said to be normal if it is integrally closed in its
field of fractions. An algebraic scheme X over k is normal if OX;x is normal
for all x 2 jX j. This is equivalent to requiring that OX .U / be a normal integral
domain for every connected open affine subset U of X (see CA, �6).

LetX be an irreducible variety over k. A prime divisor onX is an irreducible
closed subvariety of codimension 1, and a (Weil) divisor is an element of the free
abelian group Div.X/ generated by the prime divisors. WhenZ is a prime divisor
on X , we define OX;Z to be the set of rational functions on X that are defined on
an open subset U of X with U \Z ¤ ;. For example, if X D Spm.A/, then a
prime divisor Z corresponds to a prime ideal p of height 1 in A and OX;Z D Ap.

Assume that X is normal. Then OX;Z is a discrete valuation ring (CA 20.2),
and we let ordZ denote the corresponding valuation on k.X/. The divisor of a
nonzero rational function f on X is defined to be

div.f /D
X

ordZ.f / �Z 2 Div.X/:

There is an exact sequence

k.X/�
div
�! Div.X/ �! Pic.X/! 0: (172)

If f is a regular function defined on the whole of X , then ordZ.f / � 0 for all
Z. If, in addition, f is nowhere zero, then div.f /D 0. A rational function on a
complete normal variety is constant if its divisor is zero.

A.79. When A is a k-algebra, we let Pic.A/D Pic.Spm.A//. The invertible
sheaves on X correspond to finitely generated projective A-modules of rank 1
(CA 12.6). If A is a Dedekind domain, then the exact sequence (172) shows that
Pic.A/ is the ideal class group of A. If A is a unique factorization domain, then
every prime ideal of height 1 is principal (CA 4.2), and so Pic.A/D 0.

o. Flat descent

A.80. Let 'WY ! X be a regular map, and let X 0! X be faithfully flat. If
'0WY �X X

0!X 0 is affine (resp. finite, flat, smooth), then ' is affine (resp. finite,
flat, smooth).
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A.81. Let Y ! X be a faithfully flat morphism of algebraic schemes over k.
A descent datum on a scheme Z0 over Y is an isomorphism �Wp�1Z

0! p�2Z
0

satisfying
p�31.�/D p

�
32.�/ıp

�
21.�/;

where the pi are the projections Y �X Y ! Y and the pij are the projections
Y �X Y �X Y ! Y �X Y . A scheme Z over X defines, in an obvious way, a
descent datum on Z0 D Z �X X . Conversely, a scheme Z0 over Y equipped
with a descent datum arises from an essentially unique scheme Z over X if, for
example, Z0 admits a projective embedding compatible with the descent datum.
More precisely, the map sending a scheme Z over X equipped with an ample
invertible sheaf toZ0 equipped with its canonical descent datum is an equivalence
of categories. See Bosch et al. 1990, Chapter 6.



APPENDIX B

Existence of Quotients of Algebraic
Groups

Let H be an algebraic subgroup of an algebraic group G over a field k. In this
appendix, we prove that G=H exists as an algebraic scheme over k.

Because of the additional flexibility it gives us, we consider the problem
of quotients in the more general setting of equivalence relations on algebraic
schemes. First we prove the existence of a quotient when the equivalence classes
are finite (B.18, B.26). From this, we deduce that quotients exist whenever there
exists a “quasi-section” (i.e., a one-to-finite section) (see B.32). In general, there
will exist a quasi-section for an equivalence relation over a dense open subset
(B.35). Using this and homogeneity, we deduce the existence of G=H (see B.37).

In this appendix, we work over a noetherian base ring R0, and we ignore
set-theoretic questions. Points of schemes are not required to be closed. All
R0-algebras are finitely generated, and all rings are noetherian. An algebraic
scheme over R0 is a scheme of finite type over Spec.R0/. Throughout, “functor”
means “functor from R0-algebras to sets representable by an algebraic scheme
over R0”. An algebraic scheme X over R0 defines such a functor, R X.R/,
which we denote by QX or hX (or hA if X D Spec.A/). The functor X  QX is
fully faithful.

This appendix is more technical than the rest of the book. It is used only to
prove Theorems 5.14 and 5.34 for nonaffine groups.

a. Equivalence relations

DEFINITION B.1. A pair of morphisms u0;u1WF1� F0 of functors is an equi-
valence relation if, for all k-algebras R, the map

F1.R/
.u0;u1/
�����! F0.R/�F0.R/

is a bijection from F1.R/ onto the graph of an equivalence relation on F0.R/.

586
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Explicitly, the condition means the following: let R be an R0-algebra; for
x;x0 2 F0.R/, write x � x0 if there exists a y 2 F1.R/ such that u0.y/D x and
u1.y/D x

0; then � is an equivalence relation on the set F0.R/ in the usual sense
and y, if it exists, is unique.

Note that the equivalence class of x 2 F0.R/ is u1.u�10 .x//. We say that
a subfunctor F 00 of F0 is saturated with respect to an equivalence relation if
F 00.R/ is a union of equivalence classes for all R (i.e., u1.u�10 .F

0//� F 0). Then
F 01� F 00 is an equivalence relation with F 01 D u

�1
0 .F

0
0/D u

�1
1 .F

0
0/.

EXAMPLE B.2. Recall that an (abstract) group acts freely on a set if no element
of the group except e has a fixed element. An action of a group functor G on a
functor F is said to be free if G.R/ acts freely on F.R/ for all R0-algebras R.
Let G�F ! F be a free action. Then

G�F F
.g;x/ 7! gx

.g;x/ 7! x

is an equivalence relation because the freeness means that the map

.g;x/ 7! .gx;x/WG.R/�F.R/! F.R/�F.R/

is injective for all R. The graph of the equivalence relation on F.R/ is

f.gx;x/ j g 2G.R/; x 2 F.R/g

and so the equivalence classes are the orbits.

EXAMPLE B.3. For any map of functors uWF0! F , the pair

F1 D F0�u;F;uF0 F0
p1

p2

(p1;p2 are the projections)

is an equivalence relation (two elements of F0.R/ are equivalent if and only if
they have the same image in F.R/).

DEFINITION B.4. Let u0;u1WF1� F0 be an equivalence relation on F0, and
let f WF 00! F0 be a morphism. Form the fibred product

F 01 F 00�F
0
0

F1 F0�F0:

.u0
0
;u0
1
/

f �f

.u0;u1/

Then u00 and u01 define an equivalence relation on F 00, called the inverse image of
.u0;u1/ with respect to f . Note that x0;x1 2 F 00.R/ are equivalent with respect
to the inverse image relation if and only if f .x0/;f .x1/ are equivalent with
respect to .u0;u1/.
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EXAMPLE B.5. Let u0;u1WF1� F0 be an equivalence relation. Then the in-
verse images of .u0;u1/ with respect to u0 and u1 coincide (as subfunctors
of F1 �F1). (Identify F1.R/ with the set of pairs .x0;x1/ 2 F0.R/ such that
x0 � x1. Then .x0;x1/� .x00;x

0
1/ with respect to the inverse image by u0 (resp.

u1/ if and only if x0 � x00 (resp. x1 � x01). These conditions are the same.)

DEFINITION B.6. Suppose given a diagram

F1 F0 F
u0

u1

u

in which .u0;u1/ is an equivalence relation. We say that u (or by an abuse of
language F ) is a quotient of .u0;u1/ if the following hold:

(a) uıu0 D uıu1;

(b) the map .u0;u1/WF1! F0�F F0 is an isomorphism;

(c) for all functors T , the sequence

Hom.F;T / Hom.F0;T / Hom.F1;T /

is exact, i.e., Hom.F;T /' fvWF0! T j v ıu0 D v ıu1g.

REMARK B.7. Condition (a) says that .u0;u1/ maps into the fibred product, so
that (b) makes sense. Condition (c) implies (a), but (b) and (c) are completely
independent. Condition (c) implies that the quotient, if it exists, is unique up to a
unique isomorphism.

REMARK B.8. Let u0;u1WX1� X0 be morphisms in some category C with
fibred products. A morphism uWX0!X is a cokernel of .u0;u1/ in C if uıu0D
uıu1 and u is universal with this property:

X1 X0 X

T:

u0

u1

u

v
v ıu0 D v ıu1

In other words, u is the cokernel of .u0;u1/ if

Hom.X;T /! Hom.X0;T /� Hom.X1;T /

is exact for all objects T in C. A morphism uWX0!X is an effective epimorph-
ism if it is a cokernel of the projection maps X0�X X0�X . Conditions (a) and
(c) in B.6 say that u is a cokernel of (u0;u1/ in the category of functors, and (b)
then says that u is an effective epimorphism.
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PROPOSITION B.9. A pair of maps u0;u1WF1� F0 is an equivalence relation
if and only if

(a) F1.R/
.u0;u1/
�! .F0�F0/.R/ is injective for all R;

(b) there exists a map sWF0! F1 such that u0 ı s D idF0 D u1 ı s (i.e., there
exists a common section to u0 and u1);

(c) there exist maps v0;v1;v2WF2! F1 (of functors) such that

F2

F1

F1

F0

F0
v0

v1

u0

u0

u1

v2 u1

commutes (i.e., u0 ıv0D u0 ıv1, u1 ıv0D u0 ıv2; u1 ıv1D u1 ıv2) and
the two squares

F2

F1

F1

F0

v0

u0

v2 u1

F2

F1

F1

F0

v1

u1

v2 u1

are cartesian.

PROOF. H) : (a) is part of the definition of an equivalence relation.
(b) Let S denote the image of .u0;u1/ in F0�F0. It contains the diagonal,

and we define s to be the composite of the maps

F0
.id;id/
�! S

.u0;u1/
�1

�! F1:

In other words, let x 2F0.R/; then x� x, and so there is a unique y 2F1.R/ such
that u0.y/D x D u1.y/; set s.x/D y. Clearly this has the required properties.

(c) Set

F2.R/D f.x;y;z/ 2 .F0�F0�F0/.R/ j x � y; y � zg

and

v0 W .x;y;z/ 7! .y;z/

v1 W .x;y;z/ 7! .x;z/

v2 W .x;y;z/ 7! .x;y/

9=; 2 F1.R/D f.z;w/ 2 .F0�F0/.R/ j z � wg:
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With the last identification,

u0.z;w/D w

u1.z;w/D z:

Now

u0 ıv0 and u0 ıv1 both map .x;y;z/ to z
u1 ıv0 and u0 ıv2 both map .x;y;z/ to y
u1 ıv1 and u1 ıv2 both map .x;y;z/ to x:

This proves the commutativity, and the first square is cartesian because

F1�F0 F1 D f.x;y/; .x
0;y0/ j x � y; x0 � y0; y D x0g

D f.x;y;y0/ j x � y; y � y0g:

Similarly, the second square is cartesian.
(H: For x 2 F0.R/,

x D u0.s.x//D u1.s.x//D x;

and so
x � x:

Suppose that x � y and x � z in F0.R/; then�
x D u1.x

0/

y D u0.x
0/

some x0 2 F1.R/
�
x D u1.x

00/

z D u0.x
00/

some x00 2 F1.R/:

Now u1.x
0/D u1.x

00/, and so there exists an x000 2 F2.R/ such that

v1.x
000/D x0 and v2.x000/D x00

(the second square is cartesian). Consider v0.x000/. Firstly,

u0.v0.x
000//D u0.v1.x

000//D y:

Secondly,
u1.v0.x

000//D u0.v2.x
000//D z;

and so y � z. This shows that � is an equivalence relation (if x � y then y � x
because x � x). 2

REMARK B.10. Let u0;u1WF1 � F0 be an equivalence relation. From the
symmetry of the equivalence relation, we obtain an automorphism s0WF0! F0
such that u0 ı s0 D u1 and u1 ı s0 D u0. (Let y 2 F1.R/; then u0.y/ � u1.y/
and so u1.y/� u0.y/; this means that there exists a (unique) y0 2 F1.R/ such
that u0.y0/D u1.y/ and u1.y0/D u0.y/; set s0.y/D y0.) Thus, if F1 and F0
are schemes and the morphism u0 has some property, then the morphism u1 will
have the same property.
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b. Existence of quotients in the finite affine case

Preliminaries

B.11. Let A be a ring and M an A-module. We say that M is locally free of
finite rank if there exists a finite family .fi /i2I of elements of A generating the
unit ideal A and such that, for all i 2 I , the Afi -module Mfi is free of finite
rank. Equivalent conditions: M is finitely generated and projective; M is finitely
presented and flat (CA 12.6). We say that an A-algebra is locally free of finite
rank if it is so as an A-module.

B.12. Let B be a locally free A-algebra of finite rank r , and let b 2 B . If B is
free over A, then we define the characteristic polynomial of b over A in the usual
way. Now let .fi /i2I be a family of elements generating the unit ideal and such
that Bfi is free over Afi . Then we have a well-defined characteristic polynomial
in Afi ŒT � for each i . These agree in Afifj ŒT � for all i;j 2 I . Using the exact
sequence1

A
Y
i2I

Afi

Y
.i;j /2I�I

Afifj

we obtain a well-defined characteristic polynomial of b in AŒT �. In particular,
the norm of b is a well-defined element of A.

B.13. Let A be a ring and B a faithfully flat A-algebra. Then an A-module M
is locally free of finite rank if and only if the B-module B˝AM is locally free
of finite rank (because this is true with “flat” or “finitely presented” in place of
“locally free of finite rank”; CA 11.9, 12.4).

B.14. Let A be a ring and uWM ! N a homomorphism of A-modules. Then
u is injective (resp. surjective, bijective, zero) if and only if umWMm! Nm is
injective (resp. surjective, zero) for all maximal ideals m in A (CA 5.17).

B.15. Let A be a ring. An A-module M is flat (resp. faithfully flat) if and only
if the Am-module Mm is flat (resp. faithfully flat) for all maximal ideals m in A
(CA 11.17).

B.16. A locally free module of finite constant rank over a semilocal ring is free
(CA 12.9).

B.17. If B is faithfully flat over A and M ˝AB is faithfully flat over B , then
M faithfully flat over A (CA 11.9).

1This exists because there is a sheaf O on spec.A/ with O.D.f // D Af for all f 2 A;
alternatively, use that A!

Q
i Afi is faithfully flat.
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The theorem

Let A0 and A1 be R0-algebras. We say that the pair of maps u0;u1WA0� A1 is
an equivalence relation if the pair hu0 ;hu1 WhA1� hA0 is an equivalence relation,
and that uWA! A0 is a quotient if huWhA0 ! hA is a quotient.

THEOREM B.18. Let u0;u1WA0 � A1 be an equivalence relation. If u0 is
locally free of constant rank r , then a quotient uWA!A0 exists, and A0 is locally
free of rank r as an A-module.

The proof will require several steps. Consider the diagram

A2

A1

A1

A0

A0

A:

v0

v1

u0

u0

u1

v2 u1 u

u

Condition (c) for a quotient says that, for all R0-algebras R,

Hom.R;A/ Hom.R;A0/ Hom.R;A1/
u0

u1

is exact. With R D R0, this says that A D Ker.u0;u1/ and that u equals the
inclusion map – define them in this way. Then,

(a) the map hA1.R/!
�
hA0 �hA0

�
.R/D hA0˝RA0.R/ is injective for all R

(because .u0;u1/ is an equivalence relation);

(b) there exists an s such that s ıu0 D s ıu1 (see B.10);

(c) the undashed part of the diagram is commutative, and the two left-hand
squares are cocartesian (see B.9);

(d) u1 is locally free of rank r (hypothesis and (b));

(e) uD Ker.u0;u1/ (construction);
and we have to show

(f) the right-hand square is cocartesian () u is a quotient);

(g) u is locally free of rank r .

STEP 0. Statement (a) is equivalent to (a0): A0˝AA0! A1 is surjective.

PROOF. First note that we have a factorization

A0˝R0 A0 A0˝AA0 A1

hA0 �hA0 hA0 �hA h
A0 hA1
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and so (a) is equivalent to the map hA1 ! hA0˝AA0 being injective. Certainly,
(a0) implies that this map is injective, and the converse follows from the next
(general) lemma. 2

LEMMA B.19. Let A be a ring and B a finite A-algebra. If hB! hA is injective,
then the map A! B is surjective.

PROOF. First note that hB ! hA is injective if and only if hB �hA hB ' hB ,
i.e., the map b 7! b˝ 1� 1˝ bWB ! B ˝A B is an isomorphism. The map
A! B is surjective if Am! Bm is surjective for all maximal ideals m of A (see
B.14). After localizing at m, we still have that Bm is a finite Am-algebra and that
Bm ' Bm˝Am Bm: Thus, we may assume that A is local (with maximal ideal
m). Then, by Nakayama’s lemma, it suffices to prove that

A=mA! B=mB

is surjective. Let k D A=mA (a field) and C D B=mB . The hypothesis implies
that C ' C ˝k C , but this implies that dimk.C /D 1, and so k ' C . 2

As R0 has dropped out of all the hypotheses, we may forget about it.

STEP 1. It suffices to prove (f) and (g0): u is faithfully flat.

PROOF. These conditions imply that u is locally free (of rank r), because after a
faithfully flat base change it is and so we can apply (B.13). 2

STEP 2. We may suppose that A is local.

PROOF. Note that tensoring the diagram with Ap (over A) preserves all the
hypotheses (because Ap is flat over A). Suppose that the theorem has been
proved for Ap with p arbitrary. Then (f) follows from (B.14) and (g0/ follows
from (B.15). 2

STEP 3. We may suppose that A is local with infinite residue field.

PROOF. Suppose that A is local with maximal ideal m; then p D mAŒT � is
prime in AŒT � because AŒT �=p D .A=m/ŒT �. Moreover, A! .AŒT �/p is flat
(because A! AŒT � is) and is local, therefore faithfully flat. All the hypotheses
are preserved by a faithfully flat base change, and also the conclusions. For (g0)
this follows from B.17. 2

STEP 4. The ring A0 is integral over A.

PROOF. Let x 2A0 and let yD u0.x/2A1. We shall show that the characteristic
polynomial

F.T /D T r ��1T
r�1
C�� �C .�/r�r

of y over A0 (via u1/ has coefficients in A and that F.x/D 0.
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Let z D v0.y/D v1.y/ 2 A2. The characteristic polynomial is preserved by
base change, and so u0.F / and u1.F / both equal the characteristic polynomial
of z (over A1 via v2):

A2

A1

A1

A0

A0

A

v0

v1

u0

u0

u1

v2 u1 u

u

z

*

y

*.

x
v0

v1

u

u0

u1

u0.F /;u1.F / v2 F u1

Therefore, u0.F /D u1.F /, and so F D u.F0/ with F0 2 AŒT �. But F.y/D 0,
i.e., .uF0/.u0x/D 0, and so u0.F0.x//D 0. Now apply s to get F0.x/D 0. 2

STEP 5. The ring A0 is semilocal.

PROOF. Because A0 is integral over A, every maximal ideal of A0 lies over
the maximal ideal of A. Let m1; : : : ;mN be distinct maximal ideals of A0, and
let a1; : : : ;aN 2 A be distinct modulo m (recall that the residue field is infinite).
Take x 2A0 such that x � ai mod mi (exists by the Chinese remainder theorem).
Then the characteristic polynomial of x, modulo m, has N distinct roots, namely,
a1; : : : ;aN , and so N � r . 2

STEP 6. Completion of the proof.

Now apply B.16:

A1 locally free of rank r over A0 (via u1)
A0 semilocal

�
H) A1 free over A0 (via u1).

Note that the set u0.A0/ generates A1 as a .u1;A0/-module (because A0˝A
A0! A1 is surjective). Therefore Lemma B.20 below shows that there exist
x1; : : : ;xr 2 A0 such that u0.x1/; : : : ;u0.xr / form a basis for A1 over A0 (via
u1).

We shall complete the proof by showing that A0 is free over A with basis
fx1; : : : ;xrg and that A1 D A0˝AA0. Let yi D u0.xi /.

If
P
aixi D 0, ai 2 A, then

P
aiyi D 0, and so ai D 0 all i . Therefore the

xi are linearly independent.
Let x 2 A0, and let y D u0.x/. By assumption, there exist bi 2 A0 such that

y D
X

u1.bi /yi D
X

biyi .

In the last expression, we regard A1 as an A0-module via u1. Let

z D v0.y/D v1.y/

zi D v0.yi /D v1.yi /:
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Then the zi form a basis A2 over A1 (via v2/, and so

z D
X

u0.bi /zi D
X

u1.bi /zi H) u0.bi /D u1.bi / all i H) bi 2 A, all i:

On applying s to y D
P
biyi , we find that x D

P
bixi , and so the xi generate.

LEMMA B.20. Let uWA!B be a homomorphism withA local and B semilocal.
Assume that u maps the maximal ideal m of A into every maximal ideal of B .
Let N be a free B-module of rank r , and let M be an A-submodule of N such
that N D BM . If the residue field of A is infinite, then M contains a B-basis for
N .

PROOF. Let r be the radical of B (intersection of the maximal ideals). Elements
n1; : : : ;nr of N form a B-basis for N if (and only if) their images in N=rN form
a B=r-basis – by Nakayama’s lemma, they will generate N , and there are r of
them. Thus we may replace N with N=rN , M with M=M \ rN , and so on.
Then A is a field, and B is a finite product of finite field extensions B D

Qs
jD1 kj

of k. Correspondingly, N D
Qs
jD1Nj with Nj a kj -vector space of dimension r .

To complete the proof, we use induction on r , the case r D 0 being trivial.
We claim that there exists an m 2M whose image in Nj is zero for no j . By

hypothesis there exists an mj 2M whose image in Nj is not zero. Consider

mD c1m1C�� �C csms; cj 2 k:

The set of families .cj /1�j�s for which mD 0 in Nj is a proper subspace of ks ,
and a finite union of proper subspaces of a finite-dimensional vector space over
an infinite field cannot equal the whole space2 – hence there exists an appropriate
family .cj /.

The B-module N=Bm D
Q
j Nj =kjmj is free of rank r � 1, and the k-

subspace M=km still generates it. By the induction hypothesis, there exist
elements m1; : : : ;mr�1 in M forming a B-basis for N=Bm. Now m1; : : : ;mr�1
together with m form a B-basis for N . 2

REMARK B.21. Let uWA! A0 be faithfully flat. Then uD Ker.u0;u1/, and so
the maps

x 7! x˝1; 1˝xWA0� A0˝AA0

are an equivalence relation on A0 with quotient uWA! A0. The theorem says
that every equivalence relation with A1 locally free of constant rank over A0 is
isomorphic to one of this form.

REMARK B.22. (a) The system

A A0 A0˝AA0
u u0

u1

�
u faithfully flat
uD Ker.u0;u1/

2Suppose V D
Sn
iD1Vi with Vi ¤ V . Let fi WV ! k be a nonzero linear map zero on Vi .

Then
Q
fj is a nonzero polynomial function on V vanishing identically, which is impossible because

k is infinite.
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retains its properties under extension of scalars (because u stays faithfully flat).
(b) The above system retains its properties under tensor products, i.e.,

A A0 A0˝AA0

B B0 B0˝B B0

˝R0 ˝R0 ˝R0

has the same properties.
(c) A map 'WA0! B0 defines a map A! B if '˝' satisfies the obvious

commutativity condition:

A

B

A0

B0

A0˝A0

B0˝V0:

u

' '˝'

In other words, given equivalence relations A0� A1 and B0� B1 as in B.18,
we have a map

Hom..A0;A1/; .B0;B1//! Hom.A;B/:

c. Existence of quotients in the finite case

Preliminaries

B.23. Let Z be a closed subset of X D Spec.A/ and let S be a finite set of
points of X XZ. Then there exists an f 2A that is zero on Z but not zero at any
point in S .

PROOF. This is the prime avoidance lemma (CA 2.8) 2

B.24. Let B be a locally free A-algebra of rank r . Let p be a prime ideal in A,
and let q1; : : : ;qn be the prime ideals of B lying over it. An element b of B lies
in q1[� � �[qn if and only if its norm Nm.b/ 2 p.

PROOF. After replacing A and B with Ap and Bp, we may suppose that A is
local with maximal ideal p and that B is semilocal with maximal ideals q1; : : : ;qn.
Then B is free of rank r (see B.16), and Nm.b/ is the determinant of an A-linear
map `b WB! B , x 7! bx. Now

Nm.b/ … p, Nm.b/ is invertible (p is the only maximal ideal of A)
, `b is invertible (linear algebra)
, b is invertible in B
, b … q1[� � �[qn (q1; : : : ;qn are the only maximal ideals of B).2
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B.25. According to the prime avoidance lemma, b lies in q1[ � � �[ qn if and
only if it lies in some qi . Therefore, B.24 says the zero set of Nm.b/ in spec.A/
is the image under spec.B/! spec.A/ of the zero set of b in spec.B/. More
generally, let � WY !X be a morphism of schemes that is finite and locally free
of constant rank r , and let b 2 � .Y;OY /; then �.Z.b//DZ.Nm.b//.

The theorem

Let X0 be an algebraic scheme over R0. By an equivalence relation on X0, we
mean a pair of morphismsX1�X0 such that QX1� QX0 is an equivalence relation
on QX0. We say that X0!X is a quotient if QX0! QX is a quotient; in particular,
X1 ' X0�X X0. A subscheme U0 of X0 is saturated if QU0 is saturated in QX0;
then U1� U0 is an equivalence relation on U0 with U1 D u�10 .U /D u

�1
1 .U /.

THEOREM B.26. Let u0;u1WX1�X0 be an equivalence relation on the algeb-
raic scheme X0 over R0. Assume

(a) u0WX1!X0 is locally free of constant rank r ;

(b) for all x 2X0, the set u0.u�11 .x// is contained in an open affine subscheme
of X0.

Then a quotient uWX0!X exists; moreover, u is locally free of rank r .

When X0 and X1 are affine, this is a restatement of Theorem B.18. The idea
of the general proof is to construct the quotient in the category of R0-ringed
spaces, and then use the affine case to show that the ringed space quotient is a
scheme quotient.

STEP 1. Every x 2X0 has a saturated open affine neighbourhood.

PROOF. By hypothesis, there exists an open affine neighbourhoodU of x contain-
ing its equivalence class u1u�10 .x/. Let U 0 denote the union of the equivalence
classes contained in U , i.e., U 0 is the complement in U of u1u�10 .X0XU/. This
last set is closed because u1 is finite, and so U 0 is open. Moreover U 0 is saturated
by construction. It contains x and is contained in U , and it is quasi-affine, but it
need not be affine.

As U is affine and the set u1u�10 .x/ is finite and contained in U 0, there
exists an f 2OX0.U / that is zero on U XU 0 but is not zero at any of the points
of u1u�10 .x/ (see B.23). In other words, the principal open subset D.f / of
U is contained in U 0 and contains u1u�10 .x/. Let U 00 denote the union of the
equivalence classes contained in D.f /, i.e., U 00 is the complement in D.f / of
u1u

�1
0 .U

0XD.f //. As before, this is a saturated open set. It contains x and is
contained in D.f /. It remains to show that it is affine.

Let Z.f /D U 0XD.f / be the zero set of f in U 0. Then u�10 .Z.f // is the
zero set of u�0.f / in u�10 .U

0/D u�11 .U
0/. Therefore u1u�10 .Z.f // is the zero

set of Nm.u�0.f // in U 0 (B.24). By construction, its complement in D.f / is
exactly U 00, and so U 00 is the set of points of D.f / where Nm.u�0.f // is not
zero, which is an open affine subset of D.f /. 2
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STEP 2. Let u0;u1WX1�X0 be a pair of morphisms of R0-ringed spaces.
(a) There exists a cokernel uWX0!X in the category of R0-ringed spaces.

(b) If u0, u1, and u are morphisms of schemes, then uWX0!X is a cokernel
in the category of R0-schemes.

PROOF. (a) Let jX j be the topological space obtained from jX0j by identifying
u0.x/ and u1.x/ for all x 2 jX1j, and let u be the quotient map. For an open
subset U of X , define OX .U / so that

OX .U /!OX0.u�1.U //�OX1..u0 ıu/�1U/

is exact. A routine verification shows that OX is a sheaf of R0-algebras on X ,
and that uWX0!X is a cokernel of .u0;u1/ in the category of ringed spaces.

(b) Assume that u0, u1, and u are morphisms of schemes, and let vWX0! T

be a morphism of R0-schemes such that v ıu0 D v ıu1. By hypothesis, there
exists a unique morphism of ringed spaces r WX ! T such that r ıu D v. It
remains to show that, for all x 2X , the homomorphism Or.x/!Ox induced by
r is local. But x D u.x0/ for some x0 2X0, and Ox!Ox0 and the composite
map

Or.x/!Ox!Ox0

are local, which implies the statement. 2

STEP 3. Completion of the proof

PROOF. Let u0;u1WX1 � X0 be as in the statement of the theorem, and let
uWX0!X of .u0;u1/ be the cokernel in the category of R0-ringed spaces. Let
U0 be a saturated open affine subset of X0, and let U1 D u�10 .U0/D u

�1
1 .U0/.

Then .u0;u1/WU1� U0 is an equivalence relation, and V D u.U0/� X is the
cokernel of .u0;u1/jU1 in the category of R0-ringed spaces. From the affine
case (B.18), we see that V is an affine scheme. From Step 1, we see that X is
covered by finitely many such V , and so X is an algebraic scheme over R0 and u
is a morphism of R0-schemes. It follows from Step 2 that u is the cokernel of
.u0;u1/ in the category of schemes over R0. Finally, X1 ' X0�X X0 because
this condition is local on X . 2

REMARK B.27. It is possible to weaken the hypothesis (a) to
(a0) u0WX1!X0 is locally free of finite rank,

because such an equivalence relation decomposes into a finite disjoint union of
equivalence relations of constant rank. Indeed, for r 2N, let X r0 denote the set of
points over which u0 has rank r . As u0 is locally free of finite rank, each X r0 is
open in X0, and X0 is a finite disjoint union of the X r0 . Using the associativity
of the equivalence relation, one sees that each X r0 is saturated, from which the
claim follows.
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Application

PROPOSITION B.28. Let G be an algebraic group over R0 and H an algebraic
subgroup of G. Assume that H is locally free of rank r over R0. Then the
quotient sheaf G Q=H is representable by an algebraic scheme G=H over R0, and
the morphismG!G=H is locally free of rank r ; moreover,G�H 'G�G=H G.

PROOF. Apply the theorem to the following equivalence relation on G:

G�H G:
.g;h/ 7! gh

.g;h/ 7! g
2

d. Existence of quotients in the presence of quasi-sections

Preliminaries

We shall need the following technical lemma.

LEMMA B.29. Let

Y1

X1

Y0

X0

v0

v1

u0

u1

f1 f0

be a commutative diagram in some category C with fibred products. Assume
that f0 and f1 are effective epimorphisms, and that there exists a morphism
�WY0�X0 Y0! Y1 such that v0 ı�D p1 and v1 ı�D p2. Then the cokernel
of .u0;u1/ exists if and only if the cokernel of .v0;v1/ exists, in which case f0
induces an isomorphism

Coker.v0;v1/! Coker.u0;u1/:

PROOF. Let T be an object of C, and consider the diagram

C.u0;u1/.T /

C.v0;v1/.T /

Hom.X0;T /

Hom.Y0;T /

Hom.X1;T /

Hom.Y1;T /

u

v

T.f0/ T .f1/f .T /

in which the left-hand terms are defined to make the rows exact. Here T .fi / is
the map defined by fi WYi !Xi . The cokernel of .u0;u1/ exists if and only if the
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functor T  C.u0;u1/.T /WC! Set is representable, in which case it represents
the functor.

The map T .f0/ is injective because f0 is an epimorphism. As f .T / is
induced by T .f0/, it also is injective. We shall show that f .T / is surjective
for all T , and so f is an isomorphism of functors on C. Thus C.u0;u1/ is
representable by an object of C if and only if C.v0;v1/ is. This will complete the
proof of the lemma because we will have shown that f0 induces an isomorphism
of functors.

Let g 2 C.v0;v1/.T /. Thus g is a map Y0! T such that g ıv0 D g ıv1:

Y1

X1

Y0�X0 Y0

Y0

X0

T

v0

v1

u0

u1

� p1 p2

f1 f0

g

h

Then g ı v0 ı� D g ı v1 ı�; and so g ıp1 D g ıp2. As f0 is an effective
epimorphism, g D hıf0 for some hWX0! T , i.e., g D T .f0/.h/. It remains to
show that hıu0 D hıu1. But

hıu0 ıf1 D hıf0 ıv0 D g ıv0 D g ıv1 D hıf0 ıv1 D hıu1 ıf1;

which implies that hıu0 D hıu1 because f1 is an epimorphism. 2

LEMMA B.30. Let u0;u1WX1�X0 be an equivalence relation on an algebraic
scheme X0 over R0, and let v 1;v0WY1� Y0 be its inverse image with respect
to a morphism f0WY0!X0. Assume that f0 is faithfully flat or that it admits a
section. Then the cokernel of .u0;u1/ exists if and only if the cokernel of .v0;v1/
exists, in which case f0 induces an isomorphism

Coker.v0;v1/! Coker.u0;u1/:

PROOF. Assume that f0 is faithfully flat. Recall (B.4) that the inverse image
equivalence relation is defined by the cartesian square

Y1 Y0�Y0

X1 X0�X0:

.v1;v0/

f1 f0�f0

.u1;u0/

Therefore f1WY1!X1 is also faithfully flat, and so both f0 and f1 are effective
epimorphisms (Appendix A). There exists a morphism sWX0!X1 such that u0 ı
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sD idX0 D u1 ıs (see B.9) and we let� denote the map Y0�X0 Y0! Y1 defined
by the inclusion Y0�X0 Y0 ,! Y0�Y0 and the map s ıf0 ıp1WY0�X0 Y0!X1.
Then v0 ı�D p1 and v1 ı�D p2, and so we can apply Lemma B.29 to obtain
the result. The proof when f0 admits a section is similar. 2

The theorem

DEFINITION B.31. Let u0;u1WX1�X0 be an equivalence relation on an algeb-
raic scheme X0 over R0. A quasi-section of .u0;u1/ is a subscheme Y0 of X0
such that

(a) the restriction of u1 to u�10 .Y0/ is finite, locally free, and surjective onto
X0I

(b) for all x 2 Y0, the set u1u�10 .x/\Y0 is contained in an open affine subs-
cheme of Y0.

Condition (a) implies that every equivalence class meets Y0 in a finite non-
empty set, and (b) then says that each of these sets is contained in an open affine
subset of Y0.

THEOREM B.32. Let u0;u1WX1�X0 be an equivalence relation on an algeb-
raic scheme X0 over R0. If .u0;u1/ admits a quasi-section, then a quotient
uWX0!X exists; moreover, u is surjective, and if u0 is open (resp. universally
closed, flat) then u is also.

PROOF. We shall need the following diagrams:

(a)

Y1

X1

Y0

X0

v0

v1

u0

u1

i (b)

Z1

Y1

Z0

Y0

w0

w1

v0

v1

u0jZ0
(c)

Z1

X1

Z0

X0.

w0

w1

u0

u1

f

(a) Let Y0 be a quasi-section. Let i WY0 ,!X0 denote the inclusion map, and
let v0;v1WY1� Y0 be the inverse image of .u0;u1/ with respect to i . According
to the definition (B.4), Y1 is the intersection u�10 .Y0/\u

�1
1 .Y0/, and so we have

a cartesian square:

Y1 u�10 .Y0/

Y0 X0:

v1 f

i

f D restriction of u1 to u�10 .Y0/:

Hence v1 is finite, locally free, and surjective. According to Theorem B.26 (and
B.27), the equivalence relation v0;v1WY1� Y0 admits a quotient vWY0! Y .
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(b) LetZ0D u�10 .Y0/�X1, and let .w0;w1/WZ1�Z0 be the inverse image
of .v0;v1/ with respect to the restriction u0jZ0 of u0 to Z0. The map u0jZ0
admits a section (because u0 does by B.9b), and so B.30 shows that the pair of
maps .w0;w1/WZ1�Z0 admits a cokernel wWZ0!Z isomorphic (by u0jZ0/
to vWY0 ! Y . The map Z1 ! Z0 �Z Z0 is an isomorphism because it is a
pull-back of the isomorphism Y1! Y0�Y Y0. Thus w is a quotient of .w0;w1/.

(c) Note that .w0;w1/ is the inverse image of .u0;u1/ with respect to i ı
.u0jZ0/, which equals the map Z0 ,! X1

u0
�! X0. Therefore, according to

Example B.5, it is also the inverse image of .u0;u1/ with respect to the map
Z0 ,!X1

u1
�!X0. But this last map is the restriction f of u1 to u�10 .Y0/, which

is finite and locally free (by assumption), and hence faithfully flat. Lemma B.30
now shows that .u0;u1/ admits a cokernel uWX0 ! X isomorphic (by f / to
wWZ0!Z. The mapX1!X0�X X0 because its pull-back by the faithfully flat
map f �f is the isomorphism Z1!Z0�ZZ0. Thus uWX0!X is a quotient
of .u0;u1/.

Finally, u is obviously surjective. The morphism v is finite and locally free
(B.26), and it follows easily that u is open (resp. universally closed, flat) if u0
is. 2

REMARK B.33. The map uWX0!X is the cokernel of .u0;u1/ in the category
of ringed spaces.

e. Existence generically of a quotient

For simplicity, in this section we take the base ring R0 to be a field k.

Preliminaries

B.34. Let X and Y be algebraic schemes over k. Let x be a closed point of
jX j and let y be a point of jY j. There exist only finitely many points of jX �Y j
mapping to both x and y under the projection maps X �Y !X and X �Y ! Y .

PROOF. The points in question are in one-to-one correspondence with the points
mapping to y under the projection map Spec.�.x//�Y ! Y . As �.x/ is a finite
extension of k, this set is obviously finite. 2

The theorem

THEOREM B.35. Let u0;u1WX1�X0 be an equivalence relation on an algeb-
raic scheme X0 over k. Suppose that u0 is flat and that X0 is quasi-projective
over k. Then there exists a saturated dense open subscheme W of X such that
the induced equivalence relation on W admits a quotient.

After B.32 it suffices to show that we can choose W so that the equivalence
relation induced on it has a quasi-section.



e. Existence generically of a quotient 603

STEP 1. For every closed point z of X0, there exists a closed subset Z of X0
such that

(a) the restriction of u1 to u�10 .Z/ is flat at the points of u�11 .z/;

(b) Z\u1u�10 .z/ is finite and nonempty.

PROOF. We construct a Z satisfying (b), and then show that the Z we have
constructed also satisfies (a).

To obtain Z, we construct a strictly decreasing sequence Z0 � Z1 � �� �
of closed subsets of X0 such that Zn\u1u�10 .z/ is nonempty. Let Z0 D X0,
and suppose that Zn has been constructed. If Zn\u1u�10 .z/ is finite, then Zn
satisfies (b). Otherwise we constructZnC1 as follows. The set u�10 .Zn/\u

�1
1 .z/

is closed in X1, and we let y1; : : : ;yr denote the generic points of its irreducible
components. The image Zn\u0u�11 .z/ of u�10 .Zn/\u

�1
1 .z/ in X0 is infinite

by hypothesis; it is also constructible, and so it contains infinitely many closed
points. We can therefore choose a closed point x of Zn\u0u�11 .z/ distinct from
the points u0.y1/; : : : ;u0.yr /. By hypothesis, X0 can be realized as a subscheme
of Pm for some m. As x is closed in X0, its closure in Pm does not contain any
point u0.yi /, and so there exists a homogeneous polynomial f 2 kŒX0; : : : ;Xm�
which is zero at x but not at any point u0.yi / (homogeneous prime avoidance
lemma; cf. B.23). We putZnC1DZn\VC.f /. It is a closed subset ofX , strictly
contained in Zn, and ZnC1\u1u�10 .z/ is nonempty because it contains x.

Eventually, ZnC1\u1u�10 .z/ will be finite, and it remains to show (induct-
ively) that the restriction of u1 to u�10 .ZnC1/ is flat at the points of u�11 .z/. Let
y be such a point. Let Oz (resp. Oy , O0y/ be the local ring of z in X (resp. of y in
u�10 .Zn/, of y in u�10 .ZnC1//. By induction Oy is flat over Oz . The local ring
O0y of y in u�10 .ZnC1/ can be described as follows. Let g be a homogeneous
polynomial of degree 1 such that DC.g/ is a neighbourhood of u0.y/ in Pm.
In a neighbourhood of u0.y/ (in Zn), ZnC1 has equation f=gd D 0 for some
homogeneous polynomial f of degree d . Therefore in a neighbourhood of y (in
u�10 .Zn/), u

�1
0 .ZnC1/ has equation hD 0, where h is the image f=gd in Oy ,

and so O0y DOy=hOy . By construction, h is not a zero-divisor on Oy , and so
(A.67) implies that O0y is flat over Oz . 2

STEP 2. For every closed point z of X0, there exists a saturated open subset Wz
of X0 admitting a quasi-section and meeting every irreducible component of X0
passing through z.

PROOF. Let Z be as in Step 1, and let u01Wu
�1
0 .Z/!X0 be the restriction of u1.

The fibre u0�11 .z/ is finite (B.34). Let U be the open subset of u�10 .Z/ formed
of the points where u01 is both flat and quasi-finite. Let Wz denote the largest
open subset of u01.U / above which u01 is finite and flat. Then Wz contains the
generic points of the irreducible components passing through z. By using the
associativity of the equivalence relation, one shows that Wz is saturated, and
that u0�11 .Wz/D u

0�1
0 .U / for some open subset U of Z. Note that Wz contains

U because it is saturated. It follows from the construction of Wz that U is a
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quasi-section for the induced equivalence relation on Wz (see SGA 3, V, �8,
p. 281 for more details). 2

STEP 3. There exists a saturated dense open subscheme W of X such that the
equivalence relation induced on W has a quasi-section.

PROOF. Let z be a closed point of X , and let Wz be as in Step 2. Its exterior
u�10 .X0X

NWz/ is then saturated (because u1.u�10 .X0X NWz// is open and doesn’t
meet Wz). If this exterior is nonempty, then it contains a closed point z0, and we
have a set Wz0 , which we may suppose to be contained in X0X NWz . Then Wz
and Wz0 are disjoint, and the equivalence relation induced on Wz tWz0 admits
a quasi-section. Continuing in this way, we arrive at the required W in finitely
many steps because X0 has only finitely many components. 2

As noted earlier, this completes the proof of the theorem.

f. Existence of quotients of algebraic groups

In this section, we work over a base field k.

Preliminaries

LEMMA B.36. LetX be an algebraic scheme over a field k. Suppose that we are
given, for each finite extension k0 of k in fixed algebraic closure ka of k, an open
subset U Œk0� of Xk0 containing X.k0/. Assume that U Œk0�k00 � U Œk00� whenever
k0 � k00. Then U Œk0�DXk0 for some finite extension k0 of k.

PROOF. Let ZŒk0� denote the complement of U Œk0� in Xk0 . If ZŒk� is nonempty,
we choose a closed point xi in each irreducible component of ZŒk�, and we let
k1 be a finite normal extension of k in ka containing a conjugate of every field
�.xi /. Every point of Xk1 above an xi is k1-rational and so lies in U Œk1�; hence
dimZŒk1� < dimZŒk�. If ZŒk1� is nonempty, we repeat the argument with k1 for
k to obtain a finite extension k2=k1 such that

dimZŒk2� < dimZŒk1� < dimZŒk�:

Eventually this process stops with an empty scheme ZŒk0�. 2

The theorem

Recall that a homomorphism i WH ! G of algebraic groups is said to be a
monomorphism if Ker.'/D e. A monomorphism i WH !G of algebraic groups
defines an equivalence relation on G:

G�H G.
.g;h/ 7! gh

.g;h/ 7! g

The quotient of G by this relation (if it exists) is denoted G=H .
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THEOREM B.37. Let i WH !G be a monomorphism of algebraic groups over
k. Then G admits a quotient G=H for the equivalence relation defined by .H;i/;
in particular, the sheaf G Q=H is represented by an algebraic scheme G=H over k.
The quotient map uWG!G=H is faithfully flat.

In the proof, we assume that G is quasi-projective.

STEP 1. The theorem becomes true after a finite extension of the base field.

PROOF. For a finite extension k0 of k, we let U Œk0� denote the union of the open
subsets W �Gk0 stable under the right action of Hk0 and such that the quotient
W=Hk0 exists. Then U Œk0� is the largest open subset of Gk0 with these properties.
The left translate of U Œk0� by an element of G.k0/ also has these properties, and
so equals U Œk0�; thus U Œk0� is stable under the left action ofG.k0/. Theorem B.35
implies that U Œk� is dense in G, and, in particular, contains a closed point. After
possibly replacing k by a finite extension, we may suppose that U Œk� contains
a k-point. Then, for every finite extension k0=k, the set U Œk0� contains G.k0/.
Now Lemma B.36 shows that U Œk0�DXk0 for some k0. 2

STEP 2. Suppose thatG admits a quotient uWG!X for the equivalence relation
defined by H . Then every finite set of closed points of X is contained in an open
affine subset.

PROOF. Let x1; : : : ;xn be closed points of X and U a dense open affine subset
of X .

Suppose initially that each xi equals u.gi / for some gi 2G.k/, and that the
open subset \n

iD1
gi .u

�1.U //�1

of G, which is automatically dense, contains a k-rational point g. Then g 2
gi � .u

�1.U //�1 for all i , and so gi 2 g �u�1.U / and xi 2 g �U . Therefore the
open affine subset g �U has the required properties.

We know that xi D u.gi / for some closed point gi of G. Let K be a finite
extension of k such that all the points g0j of GK mapping to some gi are K-
rational (take K to be any normal extension of k such that every field �.gi /
embeds into it). Then \

j
g0j .u

�1.UK//
�1

is a dense open subset of GK , and therefore contains a closed point g. After
possibly extending K, we may suppose that g is K-rational. The previous case
now shows that there exists an open affine subset U 0 ofXK containing the images
x0j of the g0j . As the x0j are all the points of XK mapping to an xi , they form a
union of orbits for the finite locally free equivalence relation on XK defined by
the projection XK ! X . By arguing as in (B.18), we obtain a saturated open
affine subset W 0 � U 0 containing all the x0j . Its image W in X contains all the
xi , and it is open and affine because it is the quotient of the affine W 0 by a finite
locally free equivalence relation (see the affine case B.18). 2
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STEP 3. Conclusion (descent)

PROOF. Let K be a finite extension of k such that the quotient GK !GK=HK
exists. The inverse image of the equivalence relation

Spec.K˝kK/ Spec.K/
p1

p2

(see B.3) with respect to GK=HK ! Spec.K/ is an equivalence relation on
GK=HK satisfying the conditions of Theorem B.26. Its quotient is the required
quotient of G by H . 2

As shown earlier (5.14, 5.34), Theorem B.37 can be used to prove that every
normal algebraic subgroup N of an algebraic group G arises as the kernel of a
quotient map G!G=N , and that every monomorphism of algebraic groups is a
closed immersion.

REMARK B.38. The quasi-projectivity hypothesis can be removed from the
proof of (B.37) by first removing it from the proof of (B.35) – see SGA 3, V, 8.1.
Once this has been done, it is possible to deduce that all algebraic groups G over
a field are, in fact, quasi-projective. We may suppose that G is connected. It then
contains a connected affine normal algebraic subgroup N such that G=N is an
abelian variety (Barsotti, Chevalley, Raynaud; 8.28). The morphism G!G=N

is affine and hence quasi-projective. Now G is quasi-projective because abelian
varieties are projective (Barsotti, Matsusaka) and a composite of quasi-projective
maps is quasi-projective. Alternatively, it is possible to prove directly that all
algebraic groups are quasi-projective (see 8.43 for more general result).

NOTES. The elementary proof of (B.18) follows lectures of Tate from 1967. For the rest,
we have followed Brochard 2014 and the original source, SGA 3, V.



APPENDIX C

Root Data

In the main body of the work, we classify split reductive groups in terms of
certain combinatorial objects called root data. Here we review the theory of root
data. Proofs of some of the more standard statements are omitted. The standard
reference for root systems is Bourbaki 1968.

Throughout, F is a field of characteristic zero, for example, Q or R. Vector
spaces V over F are finite-dimensional. The subspace spanned by a subset S
of V is denoted by hSi. We let V _ denote the dual vector space of V , and we
write h ; i for the pairing .x;f / 7! f .x/WV �V _! F . When F is a subfield of
R, an inner product on V is a positive definite bilinear form . ; /. A linear map
˛WV ! V is orthogonal for . ; / if .˛x;˛y/D .x;y/ for all x;y 2 V .

After C.18, all root systems are reduced.

a. Preliminaries

A reflection of a vector space V over F is an endomorphism s of V that fixes the
elements of some hyperplane H and acts as �1 on a complementary line. If ˛
is a nonzero element of V such that s.˛/D�˛, then s is said to be a reflection
with vector ˛. Then V DH ˚h˛i with s acting as 1˚�1. In particular, s is
determined by H and ˛, and s2 D 1.

LEMMA C.1. If ˛_ is an element of V _ such that h˛;˛_i D 2, then

s˛Wx 7! x�hx;˛_i˛ (173)

is a reflection with vector ˛, and every reflection with vector ˛ is of this form for
a unique ˛_.

PROOF. Certainly, s˛ is a reflection with vector ˛. Conversely, let s be a reflec-
tion with vector ˛, and let H be its fixed hyperplane. We seek a map ˛_WV ! F

such that ˛_.H/ D 0 and h˛;˛_i D 2. The composite of the quotient map
V ! V=H with the linear map V=H ! F sending ˛CH to 2 is the unique such
map. 2

607
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REMARK C.2. There is a canonical isomorphism V ˝ V _ ' End.V / under
which v˝f corresponds to the map x 7! hx;f iv. Under this isomorphism, s˛
corresponds to idV �˛˝˛_.

LEMMA C.3. Let R be a finite spanning set for V . For any nonzero vector ˛ in
V , there exists at most one reflection s with vector ˛ such that s.R/�R.

PROOF. Let s and s0 be such reflections, and let t D ss0. Then t acts as the
identity map on both F˛ and V=F˛, and so

.t �1/2V � .t �1/F˛ D 0:

Thus the minimum polynomial of t divides .T �1/2. On the other hand, because
R is finite, there exists an integer m� 1 such that tm.x/D x for all x 2R, and
hence for all x 2 V . Therefore the minimum polynomial of t divides Tm� 1.
As .T � 1/2 and Tm� 1 have greatest common divisor T � 1, this shows that
t D 1. 2

Let V be a vector space over F .

DEFINITION C.4. A subgroup X of V is a lattice in V if it is generated as a
Z-module by a basis of V . This means that the natural map X˝ZF ! V is an
isomorphism.

REMARK C.5. When F DQ, every finitely generated subgroup of V spanning
V is a lattice, but this is not true when F D R or C. For example, Z1CZ

p
2

is not a lattice in R. When F D R, the lattices in V are exactly the discrete
subgroups X such that V=X is compact.

DEFINITION C.6. Let X and Y be free Z-modules of finite rank. A bi-additive
pairing X �Y ! Z is said to be perfect if it has discriminant ˙1. This means
that it realizes each of X and Y as the dual of the other.

REMARK C.7. Let h ; iWV �W ! F be a nondegenerate bilinear pairing of
F -vector spaces, and let Y be a lattice in W . Then

X D fv 2 V j hv;Y i � Zg

is the unique lattice in V such that h ; i restricts to a perfect pairing X �Y ! Z:

b. Reflection groups

Let V be a vector space over R equipped with an inner product . ; /. A reflection
group on V is a discrete subgroup of the group of linear automorphisms of V
generated by orthogonal reflections.
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LEMMA C.8. For each nonzero vector ˛ in V , there is a unique orthogonal
reflection with vector ˛, namely,

s˛.x/D x�2
.x;˛/

.˛;˛/
˛. (174)

PROOF. Certainly, s˛ is an orthogonal reflection with vector ˛. Let s0 be a
second such reflection, and let H D h˛i?. Then H is stable under s0, and
projects isomorphically on V=h˛i. Therefore s0 acts as 1 onH . As V DH˚h˛i
and s0 acts as �1 on h˛i, it coincides with s. 2

Thus the reflection (173) defined by a vector ˛_ 2 V _ is orthogonal if and
only if ˛_ D 2. ;˛/=.˛;˛/.

Now let R be a finite spanning subset, not containing 0, such that (a) R\
R˛ D f˛;�˛g and (b) s˛.R/�R for all ˛ 2R. We call the elements of R roots,
and we letW denote the reflection group generated by the s˛ for ˛ 2R. For each
˛ 2R, we have a hyperplane

H˛ D fx 2 V j s˛.x/D xg D fx 2 V j .x;˛/D 0g D h˛i
?:

The chambers for R are the connected components of V X
S
˛2RH˛ . The group

W acts on the set of chambers.
A subset S of R is a base for R if it is a basis for V and each root can be

written ˇ D
P
˛2Sm˛˛, with the m˛ integers of the same sign (i.e., either all

m˛ � 0 or all m˛ � 0). The elements of a (fixed) base S are called the simple
roots (for the base), and the roots

P
˛2Sm˛˛ with nonnegative coefficients m˛

the positive roots (for the base).
Let t lie in a Weyl chamber. Thus, t is an element of V such that .˛; t/¤ 0 if

˛ 2 R. Let RCt D f˛ 2 R j .˛; t/ > 0g. We say that ˛ 2 RCt is indecomposable
if it cannot be written as a sum of two elements of RCt .

PROPOSITION C.9. The indecomposable elements of RCt form a base St , which
depends only on the Weyl chamber of t , and RCt is the system of positive roots
for the base. Every base arises in this way from a unique Weyl chamber.

PROOF. Suppose that St is not a base. Then there exists an element ˛ of RCt
not a linear combination with nonnegative coefficients of the elements of St ,
and we may choose one with .˛; t/ minimal. As ˛ … St , it is decomposable, say,
˛ D ˇC with ˇ; 2RCt . Now

.˛; t/D .ˇ; t/C .; t/:

As .ˇ; t/; .; t/ > 0, each is strictly less than .˛; t/, and so each is a linear
combination with nonnegative coefficients of the elements of St , which is a
contradiction. Thus no such element ˛ exists. The rest of the proof is similarly
straightforward (Humphreys 1990, 1.3, 1.12). 2
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The proposition shows that the base S and the set RC of positive roots
determine each other.

PROPOSITION C.10. The group W acts simply transitively on the set of bases,
hence also on the set of chambers.

PROOF. Humphreys 1990, 1.8. 2

THEOREM C.11. Let S be a base for R. Then W is generated by the reflections
s˛ with ˛ 2 S , subject only to the relations

.s˛sˇ /
m.˛;ˇ/

D 1;

where m.˛;ˇ/ is the order of s˛sˇ in W .

PROOF. For the first part of the statement, which is all we need, see Serre 1966,
V, Théorème 2. For the complete statement, see Humphreys 1990, 1.9. 2

A group G with a presentation hS j .st/m.s;t/ D 1i, where m.s;s/D 1 and
m.s; t/� 2 for s ¤ t , is called a Coxeter group. Thus, the theorem says that W
is a Coxeter group.

c. Root systems

Let V be a vector space over F .

DEFINITION C.12. A subset R of V is a root system in V if
RS1 R is finite, spans V , and does not contain 0;

RS2 for each ˛ 2R, there exists a reflection s˛ with vector ˛ such that s˛.R/�
R;

RS3 for all ˛;ˇ 2R, s˛.ˇ/�ˇ is an integer multiple of ˛.
We sometimes refer to the pair .V;R/ as a root system over F . The elements of
R are called the roots of the root system. If ˛ is a root, then s˛.˛/D�˛ is also a
root. The dimension of V is called the rank of the root system.

C.13. It follows from C.3 that the reflection s˛ in (RS2) is uniquely determined
by ˛, and so the condition (RS3) does make sense.

C.14. Using C.1, we can be more explicit: a finite spanning subset R of V not
containing 0 is a root system if there exists a map ˛ 7! ˛_WR! V _ such that
h˛;˛_i D 2, hR;˛_i � Z, and the reflection s˛Wx 7! hx;˛_i˛ maps R into R.
Remarks C.1 and C.13 show that there is at most one map ˛ 7! ˛_ satisfying
these conditions. The element ˛_ 2 V _ is called the coroot of ˛.
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C.15. The Weyl group W D W.R/ of a root system .V;R/ is the group of
automorphisms of V generated by the reflections s˛ for ˛ 2R. The group W.R/
acts on R, and as R spans V , this action is faithful. Therefore W.R/ is finite. For
˛ 2R, let H 0˛ denote the hyperplane in V _ orthogonal to ˛:

H 0˛ D ft 2 V
_
j h˛; ti D 0g:

WhenF �R, the Weyl chambers are the connected components of V X
S
˛2RH

0
˛ .

The group W.R/ acts on the set of Weyl chambers.

EXAMPLE C.16. Let V be the hyperplane in F nC1 consisting of .nC1/-tuples
.x1; : : : ;xnC1/ such that

P
xi D 0, and let

RD f˛ij
def
D ei � ej j i ¤ j; 1� i;j � nC1g;

where .ei /1�i�nC1 is the standard basis for F nC1. For each i ¤ j , let s˛ij be
the linear map V ! V that interchanges the i th and j th entries of an .nC 1/-
tuple in V . Then s˛ij is a reflection with vector ˛ij such that s˛ij .R/� R and
s˛ij .ˇ/�ˇ 2 Z˛ij for all ˇ 2R. As R obviously spans V , this shows that R is
a root system in V .

C.17. Let .V;R/ be a root system over F , and let V0 be the Q-vector space
generated by R. Then c˝v 7! cvWV0˝QF ! V is an isomorphism, and R is a
root system in V0. Thus, to give a root system over F is the same as giving a root
system over Q (or R). The proof is straightforward.

C.18. Let ˛ be a root. If ˇ D c˛ (c 2Q) is also a root, then 2c D hc˛;˛_i 2
Z. Using this one finds that Q˛ \R equals f�˛;˛g, f�2˛;�˛;˛;2˛g, or
f�˛;�˛=2;˛=2;˛g. When only the first case occurs, the root system is said
to be reduced. In other words, R is reduced if, for every ˛ 2 R, the only mul-
tiples of ˛ in R are˙˛.

From now on “root system” will mean “reduced root system”.

An invariant inner product

C.19. Let .V;R/ be a root system over F � R. There exists an inner product
. ; / on V for which the elements of W act as orthogonal maps. For example, we
can choose any inner product . ; /0 and define .x;y/D

P
w2W .wx;wy/

0.

C.20. Once an invariant inner product has been chosen, the above theory takes
on a more familiar form. For example, s˛ is given by the formula (174). The
hyperplane H˛ of vectors in V fixed by s˛ is orthogonal to ˛, and the ratio
.x;˛/=.˛;˛/ is independent of the choice of the inner form:

hx;˛_i D 2
.x;˛/

.˛;˛/
D .x;˛0/; where ˛0 D

2˛

.˛;˛/
:

Note that the map ˛ 7! . ;˛/ is an isomorphism V ! V _ that sends H˛ onto
H 0˛ . Thus it maps V X

S
˛2RH˛ isomorphically onto V _X

S
˛2RH

0
˛ .
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Bases

Let .V;R/ be a (reduced) root system over F � R.

C.21. As before, a base for R is a subset S of R that is a basis for V and
such that each root can be written as a linear combination of elements of S with
coefficients integers all of the same sign. A system of positive roots for R is a
subset RC such that (a) for each root ˛, exactly one of˙˛ lies in RC, and (b) if
˛ and ˇ are distinct elements of RC and ˛Cˇ 2 R, then ˛Cˇ 2 RC. If S is
a base for R, then NS \˚ is a system of positive roots. Conversely, if RC is a
system of positive roots, then the simple roots, i.e., those that cannot be written
as the sum of two elements of RC, form a base.

C.22. On applying the results of the previous section to V ˝F R and the choice
of an invariant inner form, we find that bases exist and are in one-to-one corres-
pondence with the Weyl chambers. The Weyl group acts simply transitively on
the set of Weyl chambers, and hence on the set of bases for R. The Weyl group is
a Coxeter group with generators s˛ , ˛ 2 S . Moreover, W �S DR (Humphreys
1990, 1.5).

C.23. If .Vi ;Ri /i2I is a finite family of root systems, thenL
i2I .Vi ;Ri /

def
D .

L
i2I Vi ;

F
Ri /

is a root system, called the direct sum of the .Vi ;Ri /. A root system is indecom-
posable (or irreducible) if it cannot be written as a direct sum of nonempty
root systems. Clearly, every root system is a direct sum of indecomposable root
systems (and the decomposition is unique).

C.24. Let S be a base for R. If .V;R/ is indecomposable, then there exists
a root Q̨ D

P
˛2S n˛˛ such that, for any other root

P
˛2Sm˛˛, we have that

n˛ �m˛ for all ˛. Obviously Q̨ is uniquely determined by the base S . It is called
the highest root (for the base). The simple roots ˛ with n˛ D 1 are said to be
special.

EXAMPLE C.25. Let .V;R/ be the root system in C.16, and endow V with the
usual inner product. If we choose

t D ne1C�� �C en�
n

2
.e1C�� �C enC1/;

then
RCt

def
D f˛ j .t;˛/ > 0g D fei � ej j i > j g:

For i > j C1,
ei � ej D .ei � eiC1/C�� �C .ejC1� ej /;

and so ei � ej is decomposable. The indecomposable elements are e1� e2; : : : ;
en�enC1. Obviously, they do form a base S for R. The Weyl group has a natural
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identification with SnC1, and it certainly is generated by the elements s˛1 ; : : : ; s˛n ,
where ˛i D ei � eiC1; moreover, W �S DR. The highest root is

Q̨ D e1� enC1 D ˛1C�� �C˛n:

For a detailed study of root systems of rank 2, see Section g below.

Diagrams

C.26. Let .V;R/ be a root system over Q. The root lattice Q.R/ is the Z-
submodule of V spanned by R, i.e., Q.R/D ZR. The weight lattice is

P.R/D fv 2 V j hv;˛_i 2 Z for all ˛ 2Rg:

Let R_ D f˛_ j ˛ 2Rg and Q.R_/D ZR_. Then P.R/ is the unique lattice in
V such that h ; i restricts to a perfect pairing P.R/�Q.R_/! Z (see C.7). The
condition (RS3) says that Q.R/� P.R/. Because P.R/ and Q.R/ are lattices
in the same Q-vector space, the quotient P.R/=Q.R/ is finite.

C.27. A diagram is a root system .V;R/ together with a lattice X in V such
that

Q.R/�X � P.R/:

To give X amounts to giving a subgroup of the finite group P.R/=Q.R/.

d. Root data

When X is a free Z-module of finite rank, we let X_ denote the linear dual
Hom.X;Z/ of X , and we write h ; i for the perfect pairing

hx;f i 7! f .x/WX �X_! Z:

DEFINITION C.28. A root datum1 is a triple RD .X;R;˛ 7! ˛_/ in which X
is a free Z-module of finite rank, R is a finite subset of X , and ˛ 7! ˛_ is a map
from R into the dual X_ of X , satisfying
(rd1) h˛;˛_i D 2 for all ˛ 2R;

(rd2) s˛.R/ � R for all ˛ 2 R, where s˛WX ! X is the reflection x 7! x �

hx;˛_i˛I

(rd3) the group generated by the automorphisms s˛ of X is finite (it is denoted
W.R/ and called the Weyl group of R).

Note that s˛ is a reflection of XQ with vector ˛ and fixed hyperplane fx 2
XQ j hx;˛

_i D 0g. We let R_ D f˛_ j ˛ 2 Rg. The elements of R and R_ are
called the roots and corootsof the root datum (and ˛_ is the coroot of ˛).

1The original French term is “donnée radicielle” (SGA 3, XXI).
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The condition (rd1) implies that s˛.˛/D�˛, and that the converse holds if
˛ ¤ 0. If, for every ˛ 2 R, the only multiples of ˛ in R are ˙˛, then the root
datum is said to be reduced. From now on, “root datum” will mean “reduced
root datum”.

PROPOSITION C.29. Let .X;R;˛ 7! ˛_/ be a triple satisfying (rd1) and (rd2),
and let V be the Q-subspace of XQ spanned by R. Then .V;R/ is a root system
(not necessarily reduced) and the image of ˛_ in V _ is the coroot of ˛ in the
sense of root systems.

PROOF. We check (C.14). The inclusion V ,! XQ defines a surjection f 7!
Nf WX_Q� V _. Let ˛ 2R. Then ˛¤ 0 because h˛; N̨_i D 2. Moreover, s˛.R/�
R by hypothesis, and hR; N̨_i D hR;˛_i � Z because ˛_ 2X_. 2

C.30. By a base S for a root datum .X;R;˛ 7! ˛_/, we mean a base of the
associated root system .V;R/. There is a natural identification of the Weyl group
W of .X;R;˛ 7! ˛_/ with that of .V;R/, and so WS DR (see C.22).

PROPOSITION C.31. Let .X;R;˛ 7! ˛_/ be a triple satisfying (rd1) and (rd2),
and let ˛;ˇ 2R. If hx;˛_i D hx;ˇ_i for all x 2R, then ˛ D ˇ. Hence the map
˛ 7! ˛_WR!R_ is a bijection.

PROOF. As hˇ;˛_i D hˇ;ˇ_i D 2, we have s˛.ˇ/ D ˇ � 2˛, and similarly,
sˇ .˛/D ˛�2ˇ. Now�

sˇ s˛.˛/D sˇ .�˛/D 2ˇ�˛ D ˛C2.ˇ�˛/

sˇ s˛.ˇ�˛/D sˇ .ˇ�˛/D ˇ�˛;

and inductively .sˇ s˛/n.˛/D ˛C 2n.ˇ�˛/. But .sˇ s˛/n.˛/ lies in the finite
set R by (rd2), and so ˛ D ˇ. 2

COROLLARY C.32. Let r;s 2R_. If hx;ri D hx;si for all x 2R, then r D s.

PROOF. Write r D ˛_ and s D ˇ_. Then the proposition shows that aD ˇ and
so ˛_ D ˇ_. 2

PROPOSITION C.33. Let X be a free Z-module of finite rank, and let R and
R_ be finite subsets of X and X_. There exists at most one map ˛ 7! ˛_WR!

R_ �X_ satisfying (rd1) and (rd2).

PROOF. Let ˛ 7! ˛_WR!R_ be a map satisfying (rd1) and (rd2). Let V be the
Q-subspace of XQ generated by R. Then V _ is a quotient of .XQ/

_ and ˛_ is
determined as an element of R_ by its image N̨_ in V _ (see C.32). But N̨_ is
the coroot of ˛ in the sense of root systems (C.29), and so ˛ 7! N̨_ is uniquely
determined by .V;R/ and ˛ (see C.14). 2

Thus, we could define a root system to be a triple .X;R;R_/ such that there
exists a map ˛ 7! ˛_WR!R_ �X_ satisfying (rd1), (rd2), and (rd3).
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DEFINITION C.34. A root datum .X;R;˛ 7! ˛_/ is semisimple if R spans the
Q-vector space XQ.

In this case, ˛_ is the unique element of .XQ/
_ such that h˛;˛_i D 2 and the

reflection x 7! x�hx;˛_i˛ mapsR intoR (C.13). In particular, the map ˛ 7! ˛_

(hence R_/ is uniquely determined by .X;R/. We often regard a semisimple root
datum as a pair .X;R/ such that R spans XQ and there exists a map ˛ 7! ˛_

satisfying (rd1), (rd2), and (rd3).

PROPOSITION C.35. If .X;R/ is a semisimple root datum, then .XQ;R/ is a
root system with the same map ˛ 7! ˛_, and

Q.R/�X � P.R/: (175)

Conversely, if .V;R/ is a root system, then, for any choice of a lattice X in V
satisfying (175), the pair .X;R/ is a semisimple root datum.

PROOF. We showed that .XQ;R/ is a root system in C.29. Also Q.R/ � X
because R �X , and X � P.R/ because R_ �X_. Conversely, let .V;R/ be a
root system, and let X be a lattice betweenQ and P . If ˛ 2R, then hR;˛_i � Z,
and so ˛_ 2X_. Therefore, we have a well-defined map ˛ 7! ˛_ satisfying (rd1)
and (rd2). The group of automorphisms of V (hence of X) generated by the s˛
acts faithfully on R, and so it is finite. Therefore .X;R;˛ 7! ˛_/ is a root datum
(obviously semisimple). 2

Thus, to give a semisimple root datum amounts to giving a diagram in the
sense of C.27.

DEFINITION C.36. The rank (resp. semisimple rank) of a root datum .X;R;

R_/ is the dimension of X˝ZQ (resp. .ZR/˝ZQ).

e. Duals of root data

Let .X;R;˛ 7! ˛_/ be a root datum. We want to show that .X_;R_;˛_ 7! ˛/

is also a root datum. The most elegant way of doing this is to give a definition
that is intrinsically self-dual. The following is the definition of a root datum in
SGA 3, XXI, 1.1.1.

DEFINITION C.37. A root datum (in the sense of SGA 3) is an ordered quad-
ruple RD .X;R;X_;R_/, where
˘ X;X_ are free Z-modules of finite rank in duality by a pairing h ; iWX �

X_! Z,

˘ R;R_ are finite subsets of X and X_ in bijection by a correspondence
˛$ ˛_,

satisfying the following conditions:
RD1 h˛;˛_i D 2 for all ˛ 2RI
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RD2 s˛.R/�R and s˛_.R_/�R_ for all ˛ 2R.

Here s˛ and s˛_ are given by

s˛.x/D x�hx;˛
_
i˛; i.e., s˛ D idX �˛˝˛_

s˛_.y/D y�h˛;yi˛
_:

Thus, in C.37, the condition s˛_.R_/�R_ replaces the condition thatW.R/
is finite in C.28. Definition C.37 has the merit of being obviously self-dual:
.X;R;X_;R_/ is a root datum if and only if .X_;R_;X;R/ is a root datum.

Recall that the condition h˛;˛_i D 2 implies that s˛.˛/D�˛ and s2˛ D 1.
Set

QDQ.R/D ZR �X Q_ DQ.R_/D ZR_ �X_
V DQ˝ZQ V _ DQ˝ZQ

_

X0 D fx 2X j hx;R
_i D 0g:

By ZR we mean the Z-submodule of X generated by the ˛ 2R.

LEMMA C.38. For ˛ 2R, x 2X , and y 2X_,

hs˛.x/;yi D hx;s˛_.y/i; (176)

and so
hs˛.x/;s˛_.y/i D hx;yi: (177)

PROOF. We have

hs˛.x/;yi D hx�hx;˛
_
i˛;yi D hx;yi�hx;˛_ih˛;yi

hx;s˛_.y/i D hx;y�h˛;yi˛
_
i D hx;yi�hx;˛_ih˛;yi;

which gives the first formula, and the second is obtained from the first by replacing
y with s˛_.y/. 2

The second equality says that s˛_ is the transpose of s˛ – it is often denoted s_˛ .
Let .X;R;X_;R_/ be a root datum in the sense of SGA 3. We define a

homomorphism pWX !X_,

p.x/D
X
˛2R

hx;˛_i˛_.

LEMMA C.39. (a) For all x 2X ,

hx;p.x/i D
X

˛2R
hx;˛_i2 � 0; (178)

with strict inequality holding if x 2R:
(b) For all x 2X and w 2W , hwx;p.wx/i D hx;p.x/i:
(c) For all ˛ 2R,

h˛;p.˛/i˛_ D 2p.˛/; all ˛ 2R: (179)
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PROOF. (a) Certainly, hx;p.x/i D hx;
P
hx;˛_i˛_i D

P
hx;˛_i2, which is a

sum of squares of integers. If x 2R, then at least one term is nonzero.
(b) It suffices to check this for w D s˛ , but

hs˛x;˛
_
i D hx;˛_i�hx;˛_ih˛;˛_i D �hx;˛_i

and so each term on the right of (178) is unchanged if x is replaced with s˛x.
(c) Recall that, for y 2X_,

s˛_.y/D y�h˛;yi˛
_:

On multiplying this by h˛;yi and re-arranging, we find that

h˛;yi2˛_ D h˛;yiy�h˛;yis˛_.y/:

But
�h˛;yi D hs˛.˛/;yi

(176)
D h˛;s˛_.y/i

and so
h˛;yi2˛_ D h˛;yiyCh˛;s˛_.y/is˛_.y/;

which we rewrite as

h˛;ˇ_i2˛_ D h˛;ˇ_iˇ_Ch˛;s˛_.ˇ
_/is˛_.ˇ

_/:

As ˇ runs over R, both ˇ_ and s˛_.ˇ_/ run over R_, and so when we sum we
obtain (179). 2

REMARK C.40. Suppose m˛ is also a root. On replacing ˛ with m˛ in (179)
and using that p is a homomorphism of Z-modules, we find that

mh˛;p.˛/i.m˛/_ D 2p.˛/; all ˛ 2R:

Therefore,
.m˛/_ Dm�1˛_:

In particular,
.�˛/_ D�.˛_/:

LEMMA C.41. The map pWX !X_ defines an isomorphism

1˝pWV ! V _:

In particular, dimV D dimV _.

PROOF. When ˛ 2R, (178) shows that h˛;p.˛/i ¤ 0, and now (179) shows that
p.Q/ has finite index in Q_. Therefore, when we tensor pWQ!Q_ with Q,
we get a surjective map 1˝pWV ! V _; in particular, dimV � dimV _. From
the symmetry between .X;R/ and .X_;R_/, we deduce that dimV _ � dimV ,
and hence that dimV D dimV _. Therefore 1˝pWV ! V _ is an isomorphism.2
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LEMMA C.42. The kernel of pWX !X_ is X0.

PROOF. Clearly, X0 � Ker.p/, but if x …X0, then (178) shows that p.x/¤ 0.2

PROPOSITION C.43. The intersection Q\X0 is zero and the sum QCX0 has
finite index in X . Therefore, there is an exact sequence

0!Q˚X0
.q;x/ 7!qCx
��������!X ! finite group! 0:

PROOF. The map
1˝pWQ˝X ! V _

has kernel Q˝X0 by (C.42), and it sends the subspace V of Q˝X isomorphic-
ally onto V _ by (C.41). Therefore

.Q˝X0/˚V 'Q˝X;

from which the proposition follows. 2

A root datum .X;R;˛ 7! ˛_/ is toral if RD ;. The proposition shows that
every root datum is “isogenous” to a direct sum of a toral root datum and a
semisimple root datum.

LEMMA C.44. The form h ; i defines a nondegenerate pairing V �V _!Q.

PROOF. Let x 2X . If hx;˛_i D 0 for all a_ 2 R_, then x 2 Ker.p/DX0. As
its left kernel is zero and the spaces have the same dimension, the pairing is
nondegenerate. 2

The Weyl group W D W.R/ of R D .X;R;X_;R_/ is defined to be the
subgroup of Aut.X/ generated by the s˛ for ˛ 2R.

LEMMA C.45. For every x 2X and w 2W , w.x/�x 2Q.

PROOF. For ˛ 2R,
s˛.x/�x D�hx;˛

_
i˛ 2Q:

Now, for ˛1;˛2 2R,

.s˛1 ı s˛2/.x/�x D s˛1.s˛2.x/�x/C s˛1.x/�x 2Q:

Continue in this fashion. 2

We let w 2W act on X_ as .w_/�1, i.e., so that

hwx;wyi D hx;yi; all w 2W , x 2X , y 2X_:

Note that this makes s˛ act on X_ as .s˛_/�1 D s˛_ (see 176).

PROPOSITION C.46. The Weyl group W acts faithfully on R (and so is finite).
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PROOF. By symmetry, it is equivalent to show that W acts faithfully on R_. Let
w be an element of W such that w.˛/D ˛ for all ˛ 2R_. For x 2X ,

hw.x/�x;˛_i D hw.x/;˛_i�hx;˛_i D hx;w�1.˛_/i�hx;˛_i D 0:

Thus w.x/�x is orthogonal to R_. As it lies in Q (see C.45), this implies that it
is zero (C.44), and so w D 1. 2

Thus, if .X;R;X_;R_/ is a root datum in the sense of SGA 3, then the triple
.X;R;˛ 7! ˛_/ is a root datum in the sense of C.28. The next proposition proves
the converse.

PROPOSITION C.47. Let .X;R;f W˛ 7! ˛_/ be a triple satisfying the conditions
(rd1), (rd2), and (rd3) of C.28; let X_ D Hom.X;Z/, and let R_ D f .R/; then
the quadruple .X;R;X_;R_/ equipped with the natural pairing X �X_! Z
and the bijection ˛$ f .˛/ is a root system in the sense of SGA 3 (C.37).

PROOF. We have to show that s˛_.R_/�R_. Because s˛_ is the transpose st˛
of s˛ (see C.38), it suffices to show that st˛.R

_/�R_.
Let ˛;ˇ 2R. Then s˛sˇ s˛ and ss˛.ˇ/ are involutions in the group generated

by s˛; let t be their composite t D ss˛.ˇ/ ı s˛sˇ s˛ . A direct calculation (cf.
Springer 1979, 1.4) shows that

t .x/D xC .hx;st˛.ˇ
_/i�hx;s˛.ˇ/

_
i/s˛.ˇ/; all x 2X:

As

hs˛.ˇ/;s
t
˛.ˇ
_/i�hs˛.ˇ/;s˛.ˇ/

_
i D hˇ;ˇ_i�hs˛.ˇ/;s˛.ˇ/

_
i D 2�2D 0;

we see that t is unipotent. On the other hand, as t lies in a finite group, it has
finite order, say tm D 1, and it follows that t is the identity map (see the proof of
C.3). Hence

hx;st˛.ˇ
_/i�hx;s˛.ˇ/

_
i D 0 for all x 2X;

and so
st˛.ˇ

_/D s˛.ˇ/
_
2R_: 2

We conclude that to give a root system in the sense of SGA 3 (C.37) amounts
to giving a root system in the sense of C.28.

COROLLARY C.48. If .X;R;˛ 7! ˛_/ satisfies the axioms (rd1), (rd2), and
(rd3) for a root system, then so does .X_;R_;˛_ 7! ˛/.

PROOF. If .X;R;˛ 7! ˛_/ satisfies (rd1), (rd2), and (rd3), then .X;R;X_;R_/
satisfies (RD1) and (RD2). As these axioms are self-dual, .X_;R_;X;R/ sat-
isfies (RD1) and (RD2), and so .X_;R_;˛_ 7! ˛/ satisfies (rd1), (rd2), and
(rd3). 2
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COROLLARY C.49. Let .X;R;˛ 7! ˛_/ be a root system, and let ˛;ˇ 2 R.
Then

s˛.ˇ/
_
D s˛_.ˇ

_/:

PROOF. As s˛ and s˛_ are adjoint (C.38) and preserve R and R_, by the unique-
ness (C.33), they must intertwine the bijection ˇ 7! ˇ_ with itself. 2

EXERCISE C.50. Let X be a free Z-module of finite rank, and let R and R_ be
finite subsets of X and X_. Show that .X;R;X_;R_/ is a root datum if and
only if it satisfies the following conditions:

(a) R and R_ are root systems in QR def
D .ZR/˝Q and QR_ def

D .ZR_/˝Q.

(b) there exists a one-to-one correspondence ˛ $ ˛_WR $ R_ such that
h˛;˛_i D 2 and the reflections s˛ and s˛_ of the root systems .QR;R/
and .QR_;R_/ are

x 7! x�hx;˛_i˛; x 2QR
y 7! y�h˛;yi˛_; y 2QR_:

(This is essentially the definition in Malle and Testerman 2011, 9.10.)

NOTES. The original source for root data is SGA 3, XXI. The observation that the axiom
(RD2) can be replaced by the axioms (rd2) and (rd3) is from Springer 1979, �1. Proposition
C.33 is due to Gabber (Conrad et al. 2015, 3.2.4).

f. Deconstructing root data

C.51. Let .X;R;R_/ be a root datum. Let X0 D fx 2 X j hx;R_i D 0g as
before, and let X 0 D X=X0. The quotient map X ! X 0 is injective on Q (see
C.43), and we let R0 denote the image of R in X 0. Then .X 0;R0/ is a semisimple
root datum, and .X 0Q;R

0/ is a root system (C.35). We now explain how to
construct a root datum from a root system and a homomorphism of Z-modules.
Every root datum arises in this way, and so this essentially reduces the problem
of classifying the root data to that of classifying root systems.

Let .V;R/ be a root system, let Y be a finitely generated Z-module, and let
'WY !P.R/=Q.R/ be a homomorphism whose kernelX is torsion-free. Define
X.'/ to be the kernel of the map

.p;y/ 7! Np�'.y/WP.R/˚Y ! P.R/=Q.R/.

Then X.'/ is a free Z-module of finite rank, and it contains the submodule
Q.R/˚0 of P.R/˚Y . Let R.'/ denote R regarded as a subset of X.'/. Then
.X.'/;R.'// is a root datum with associated root system .V;R/; moreover,
X.'/=Q.R.'//' Y .
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g. Classification of reduced root systems

As every root system is uniquely a direct sum of indecomposable systems (C.23),
we need only classify the latter. We choose an invariant inner product (C.19).
For an indecomposable root system, this is uniquely determined up to scalar
multiplication, and so the ratio of the lengths of two vectors is independent of the
choice of the inner product.

The (reduced) root systems of rank 1 are the subsets f˛;�˛g, ˛ ¤ 0, of a
vector space V of dimension 1, and so the first interesting case is rank 2.

Root systems of rank 2

Assume F D R. For roots ˛;ˇ, we let

n.ˇ;˛/D 2
.ˇ;˛/

.˛;˛/
D hˇ;˛_i 2 Z.

Write

n.ˇ;˛/D 2
jˇj

j˛j
cos�;

where j � j denotes the length of a vector and � is the angle between ˛ and ˇ. Then

n.ˇ;˛/ �n.˛;ˇ/D 4cos2� 2 Z:

When we assume that ˇ is not a multiple of ˛, there are only the following
possibilities (in the table, we have chosen ˇ to be the longer root):

n.ˇ;˛/ �n.˛;ˇ/ n.˛;ˇ/ n.ˇ;˛/ � jˇj=j˛j

0 0 0 �=2

1
1

�1

1

�1

�=3

2�=3
1

2
1

�1

2

�2

�=4

3�=4

p
2

3
1

�1

3

�3

�=6

5�=6

p
3

(180)

If ˛ and ˇ are simple roots and n.˛;ˇ/ and n.ˇ;˛/ are strictly positive (i.e.,
the angle between ˛ and ˇ is acute), then a glance at the table shows that one of
the numbers, say, n.˛;ˇ/, equals 1. Then

sˇ .˛/D ˛�n.˛;ˇ/ˇ D ˛�ˇ;

and so ˙.˛�ˇ/ are roots, and one, say, ˛�ˇ, will be in RC. But then ˛ D
.˛�ˇ/Cˇ, contradicting the simplicity of ˛.
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We conclude from the table that n.˛;ˇ/ and n.ˇ;˛/ are both negative. From
this it follows that there are exactly the four nonisomorphic root systems of rank
2 displayed below. The set f˛;ˇg is the base determined by the shaded Weyl
chamber.

α = (2, 0)−α

β = (0, 2)

−β

A1 ×A1

α = (2, 0)

β = (−1,
√
3)

α+ β

−α

−α− β −β

A2

α = (2, 0)

β = (−2, 2)
α+ β

−α

−α− β −β

2α+ β

−2α− β

B2

α = (2, 0)

β = (−3,
√
3) α+ β

3α+ 2β

α+ β 2α+ βα+ β 3α+ β

−α

−β−α− β

−3α− 2β

−2α− β−3α− β

G2

Note that each set of vectors does satisfy (RS1), (RS2), and (RS3). The root
system A1�A1 is decomposable and the remainder are indecomposable. We
have

A1�A1 A2 B2 G2

s˛.ˇ/�ˇ 0˛ 1˛ 2˛ 3˛

� �=2 2�=3 3�=4 5�=6

W.R/ D2 D3 D4 D6

.Aut.R/WW.R// 2 2 1 1
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where Dn denotes the dihedral group of order 2n.

Cartan matrices

Let .V;R/ be a root system. As before, for ˛;ˇ 2R, we let

n.˛;ˇ/D h˛;ˇ_i 2 Z;

so that

n.˛;ˇ/D 2
.˛;ˇ/

.ˇ;ˇ/

for any inner product as in (C.19). From the second expression, we see that
n.w˛;wˇ/D n.˛;ˇ/ for all w 2W .

Let S be a base for R. The Cartan matrix of R (relative to S) is the matrix
.n.˛;ˇ//˛;ˇ2S . Its diagonal entries n.˛;˛/ equal 2, and the remaining entries
are negative or zero.

For example, the Cartan matrices of the root systems of rank 2 are 
2 0

0 2

!  
2 �1

�1 2

!  
2 �1

�2 2

!  
2 �1

�3 2

!
A1�A1 A2 B2 G2

and the Cartan matrix for the root system in (C.16, C.25) is
�

2 �1 0 0 0

�1 2 �1 0 0

0 �1 2 0 0

: : :

0 0 0 2 �1

0 0 0 �1 2

˘

because

2
.ei � eiC1; eiC1� eiC2/

.ei � eiC1; ei � eiC1/
D�1, etc.

PROPOSITION C.52. The Cartan matrix of .V;R/ is independent of S , and
determines .V;R/ up to isomorphism.

PROOF. If S 0 is a second base for R, then we know that S 0 D wS for a unique
w 2W (see C.22) and that n.w˛;wˇ/D n.˛;ˇ/. Thus S and S 0 give the same
Cartan matrices up to the naming of the index sets. Let .V 0;R0/ be a second root
system with the same Cartan matrix. This means that there exists a base S 0 for
R0 and a bijection ˛ 7! ˛0WS ! S 0 such that

n.˛;ˇ/D n.˛0;ˇ0/ for all ˛;ˇ 2 S: (181)
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The bijection extends uniquely to an isomorphism of vector spaces V ! V 0,
which sends s˛ to s˛0 for all ˛ 2 S because of (181). But by definition the s˛
generate the Weyl groups, and so the isomorphism mapsW ontoW 0, and hence it
maps RDW �S onto R0 DW 0 �S 0 (see C.22). We have shown that the bijection
S! S 0 extends uniquely to an isomorphism .V;R/! .V 0;R0/ of root systems.2

The automorphisms of R

Let A.R/ denote the group of linear automorphisms of V leaving R stable. It is
a finite group containing the Weyl group W.R/ as a normal subgroup (because
ts˛t

�1 D st.˛/ if t 2 A.R/ and ˛ 2R).

PROPOSITION C.53. Let S be a base for R, and let D be the group of elements
of A.R/ leaving S stable. Then A.R/DW.R/ÌD:

PROOF. If a 2A.R/, then a.S/ is a base forR, and so a.S/Dw.S/ for a unique
w 2W.R/ (see C.22). Now a D wd with d 2D, and this expression for a is
unique. 2

Let S be a base for R. The last sentence in the proof of (C.52) allows us to
identify D with the set of permutations of S leaving the Cartan matrix invariant.

In the next section we attach a (Dynkin) diagram to .V;R;S/ whose nodes
correspond to the elements of S and whose automorphisms correspond to the
elements of D. For this reason, the elements of D are called the graph auto-
morphisms of R. From the Dynkin diagrams displayed below, we see that D is
trivial when .V;R/ is indecomposable of type A1, Bn, Cn, G2, F4, E7, or E8.
It has order 2 for types An (n� 2), Dn (n� 5), and E6, and it is a permutation
group on three symbols for type D4.

Classification of root systems by Dynkin diagrams

Let .V;R/ be a root system, and let S be a base for R.

PROPOSITION C.54. Let ˛ and ˇ be distinct simple roots. Up to interchanging
˛ and ˇ, the only possibilities for n.˛;ˇ/ are

n.˛;ˇ/ n.ˇ;˛/ n.˛;ˇ/n.ˇ;˛/

0 0 0

�1 �1 1

�2 �1 2

�3 �1 3

PROOF. If W is the subspace of V spanned by ˛ and ˇ, then W \R is a root
system of rank 2 in W , and so this can be read off from the table (180), p. 621.2
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Choose a base S for R. Then the Coxeter graph of .V;R/ is the graph
whose nodes are indexed by the elements of S ; two distinct nodes are joined by
n.˛;ˇ/ �n.ˇ;˛/ edges. Up to the indexing of the nodes, it is independent of the
choice of S .

PROPOSITION C.55. The Coxeter graph is connected if and only if the root
system is indecomposable.

In other words, the decomposition of the Coxeter graph of .V;R/ into its
connected components corresponds to the decomposition of .V;R/ into a direct
sum of its indecomposable summands.

PROOF. A root system is decomposable if and only if R can be written as a
disjoint union RDR1tR2 with each root in R1 orthogonal to each root in R2.
Since roots ˛;ˇ are orthogonal if and only if n.˛;ˇ/ �n.ˇ;˛/ D 4cos2� D 0,
this is equivalent to the Coxeter graph being disconnected. 2

The Coxeter graph does not determine the Cartan matrix because it just gives
the number n.˛;ˇ/ �n.ˇ;˛/. However, for each value of n.˛;ˇ/ �n.ˇ;˛/ there is
only one possibility for the unordered pair

fn.˛;ˇ/;n.ˇ;˛/g D

�
2
j˛j

jˇj
cos�;2

jˇj

j˛j
cos�

�
:

Thus, if we know in addition which is the longer root, then we know the ordered
pair. To remedy this, we put an inequality sign < on the lines joining the nodes
indexed by ˛ and ˇ pointing towards the shorter root. The resulting diagram is
called the Dynkin diagram of the root system. It determines the Cartan matrix
and hence the root system.

For example, the Dynkin diagrams of the root systems of rank 2 are

˛ ˇ ˛ ˇ ˛ ˇ ˛ ˇ

A1�A1 A2 B2 G2

THEOREM C.56. The Dynkin diagrams arising from indecomposable root sys-
tems are exactly the diagrams An (n� 1), Bn (n� 2), Cn (n� 3), Dn (n� 4),
E6, E7, E8, F4, G2 displayed below (p. 626).

For example, the Dynkin diagram of the root system in (C.16) isAn. Note that
Coxeter graphs do not distinguish Bn from Cn. We have used the conventional
(Bourbaki) numbering for the simple roots.

A Dynkin diagram is simply laced if it has no multiple edges. This means
that the simple roots in the corresponding indecomposable root system all have
the same length (see table (180), p. 621). The simply laced Dynkin diagrams are
An (n� 1), Dn (n� 4/, and En (6� n� 8).
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Indecomposable Dynkin diagrams

An (n ≥ 1)

α1 α2 α3 αn−2 αn−1 αn

Bn (n ≥ 2)

α1 α2 α3 αn−2 αn−1 αn

Cn (n ≥ 3)

α1 α2 α3 αn−2 αn−1 αn

Dn (n ≥ 4)

α1 α2 α3 αn−3 αn−2

αn−1

αn

E6

α1 α3 α4

α2

α5 α6

E7

α1 α3 α4

α2

α5 α6 α7

E8

α1 α3 α4

α2

α5 α6 α7 α8

F4

α1 α2 α3 α4

G2

α1 α2
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Notes in Mathematics, Vol. 288. Springer-Verlag, Berlin. Séminaire de Géométrie
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Matemáticas: Textos, Vol. 16. Sociedad Matemática Mexicana, México.
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Études Sci. Publ. Math. pp. 49–80. Reprinted in Serre 1997.

STEINBERG, R. 1967. Lectures on Chevalley groups. Department of Mathematics, Yale
University. mimeographed notes (reprinted by the American Mathematical Society,
2016).

STEINBERG, R. 1968. Endomorphisms of linear algebraic groups. Memoirs of the
American Mathematical Society, No. 80. American Mathematical Society, Providence,
RI.

STEINBERG, R. 1999. The isomorphism and isogeny theorems for reductive algebraic
groups. J. Algebra 216:366–383.

SUZUKI, K. 1971. A note on a theorem of E. Cartan. Tôhoku Math. J. (2) 23:17–20.
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�.x/, 569
�n, 40
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definite, 269
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locally affine, 272
of a group functor, 26
of an algebraic group, 26
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strictly definite, 269

adg.x/, 187
adjoint group, 373
adjoint map, 187
admissible lattice, 510
affine n-space, 566
algebra

affine, 576
central, 518
Clifford, 528
diagonalizable, 579
division, 518
étale, 579
Hopf, 65
Lie, 186
opposite, 520

quaternion, 420
split, 421

separable, 520
simple, 518
small, 5
symmetric, 40
tensor, 200
universal enveloping, 199

algebra of distributions, 207
algebra with involution

simple of unitary type, 523
algebraic group, 6

absolutely simple, 399
additive, 39
adjoint, 373
affine, 6
almost pseudo-simple, 442
almost-simple, 399
anti-affine, 39
constant, 40
derived, 129
diagonalizable, 233
elementary unipotent, 295
étale, 44
finite, 44
fixing tensors, 43
general linear, 41
geometrically almost-simple, 399
geometrically simple, 399
infinitesimal, 44
linear, 87
linearly reductive, 248
multiplicative, 40, 236
multiplicative type, 236
of monomial matrices, 52
over R, 11
perfect, 245
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pseudo-reductive, 136
quasi-split, 375
reductive, 135

anisotropic, 545
isotropic, 545
pinned, 495
quasi-split, 499
split, 402
splittable, 402

semisimple, 135, 397
simple, 399
simply connected, 388
solvable, 131, 133

split, 132
split, 384
strongly connected, 126
toroidal, 248
trigonalizable, 324
trivial, 7, 40
unipotent, 135

split, 299
vector, 43
wound unipotent, 299

algebraic monoid, 7
algebraic scheme, 569

affine, 568
complete, 583
étale, 580
finite, 210
homogeneous, 9
integral, 572
nonsingular, 579
rational, 250
reduced, 572
regular, 578
separated, 575
singular, 579
unirational, 250

algebraic subgroup, 7
Borel, 353, 363, 375

opposite, 451
Cartan, 364
central, 245
characteristic, 21
commutator, 131
generated by, 53
Levi, 550, 559
normal, 21

parabolic, 356
opposite, 550

pseudo-parabolic, 547
standard parabolic, 550
weakly characteristic, 33

algebraic variety, 576
almost-simple factor, 441
anisotropic semisimple kernel, 549
augmentation ideal, 23
Aut.G/, 497
Aut.M/, 302

base
for a root datum, 614
for a root system, 609, 612
for a small root system, 549

bialgebra, 179
big cell, 451
birationally equivalent, 576
BN -pair, 437
Borel pair, 355, 375
Br.k/, 537
bracket, 186
Brauer group, 537

Campbell–Hausdorff series, 290
Cartan matrix, 623
Cartan subgroup, 364
Cartier dual, 213
Cartier pairing, 214
Casimir operator, 475
category

k-linear, 172
neutral Tannakian, 183
rigid tensor, 183
semisimple abelian , 241
Tannakian, 183
tensor, 183

centralizer, 33
centre, 34

of a Lie algebra, 197
chambers, 609
character, 92, 230

of a representation, 473
Chevalley basis, 508
Chevalley group, 511
classifies, 76
closed set of roots, 455
closed subfunctor, 29
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co-action, 84
coalgebra, 174, 236

cocommutative, 174
coétale, 174, 237

coboundary, 304
cocharacter, 230

regular, 433
cocycle, 76, 304
coherent ideal, 570
coherent module, 570
coherent sheaf, 568
cokernel, 588
commutative, 12
comodule, 84

free, 88
component group, 52
connected

strongly, 126
connected components, 569
connected-étale exact sequence, 114
contragredient, 471
coordinate ring, 39
coroot, 610, 613
Coxeter graph, 625
Coxeter group, 610
crossed homomorphism, 76, 302

principal, 302
CV , 175

D.M/, 240
defined over k, 21
degree

of an algebra, 518
of an isogeny, 46

dense, 9, 11
schematically, 9

derivation, 187, 194
descent datum, 585
DG, 129
diagram, 613
Dieudonné ring, 228
dimension

of an algebraic group, 17
of an algebraic scheme, 577

distribution, 208
divisor, 584

prime, 584
Dn, 42

E.G;M/, 308
effective epimorphism, 588
eigenspace

generalized, 167
with character, 92

eigenvalues
of an endomorphism, 166

Eij , 187, 380
element

group-like, 92
semisimple, 171
unipotent, 171, 286
universal, 572

elliptic curve, 45
embedding, 108
En.G;M/, 309
endomorphism

diagonalizable, 166
locally finite, 170
nilpotent, 166
semisimple, 166
Steinberg, 382
unipotent, 166

equidimensional, 577
equivariant, 26
exact sequence, 24

connected étale, 114
exp, 287
Ext.G;M/, 314
extension

central, 34
of algebraic groups, 24
sheaf, 313

extension of scalars, 7
extension of the base field, 7
Exti .G;M/, 314

faithfully flat, 116
fat subfunctor, 99
fibre, 575
finite algebraic p-group, 228
finite group scheme, 44
fixed subscheme, 139
Fk , 40
flag, 146

maximal, 146
flag variety, 146, 369
form, 76
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inner, 80
outer, 81
split, 515

Frobenius morphism
absolute, 47
relative, 47

function
rational, 576
representative, 81

functor
concentrator, 276
fibre, 183
of zeros, 29
representable, 7
separated, 116

fundamental cocharacters, 452
fundamental group, 389
fundamental weight

fundamental, 465

Gı, 14
Ga, 39
Gad, 373
G˛ , 428
G˛ , 432
Gder, 129
GLn, 41
gln, 187
glV , 187
Gm, 40
G-module, 304
G-morphism, 26
gradation, 173
graph automorphism, 624
graph of a morphism, 490
Gred, 18
Grothendieck group, 473
group

affine, 172
finite of Lie type, 384
of connected components, 52
reflection, 608

group algebra, 231, 473
group variety, 6
group-like element, 92, 230
Gt , 241
Gu, 326, 336

H.a;b/, 421

Hasse principle, 563
height

of a prime ideal, 576
of an algebraic group, 48

hermitian, 535
skew, 535

Hilbert product formula, 422
Hn.G;V /, 310
Hn
0 .G;M/, 304

Hochschild cohomology group, 304
Hochschild extension, 308

equivalent, 308
trivial, 308

Hom.G;G0/, 213
homogeneous space, 140, 161
homomorphism

central, 396
normal, 123
of algebraic groups, 7
of algebras with involution, 520
of bialgebras, 179
of Lie algebras, 186
quasi-central, 388
trivial, 7

Hopf algebra, 65
coconnected, 281

Hopf ideal, 67
Hopf subalgebra, 67
Hurwitz algebra, 539
hyperalgebra, 207

identity component, 14
image of a homomorphism, 29
immersion, 571

closed, 571
open, 571

index
of a reductive group, 552

inn.g/, 32, 373
inner automorphism, 80, 373
inv, 6
involution, 520

adjoint, 522
of the first kind, 520
of the second kind, 520
of unitary type, 523
opposition, 471, 508
orthogonal type, 522
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symplectic type, 522
transpose, 523

irreducible component, 569
isogenous, 126

strictly, 502
isogeny, 46, 126

central, 387
étale, 46
Frobenius, 486
multiplicative, 387
of root data, 483

central, 484
Frobenius, 484

of split reductive groups, 485
isotropy group, 140

Jacobi identity, 186
Jordan decomposition, 169, 171

additive, 376
Jordan–Chevalley decomposition, 171

k.X/, 576
k-rank, 401

semisimple, 401
kernel, 23
Killing form, 475
Krull dimension, 577

L.�/, 390
lattice, 608

root, 613
weight, 613

Lie algebra
nilpotent, 290
reductive, 504
semisimple, 475

limt!0'.t/, 258
linear action, 190
local immersion, 107
locally finite endomorphism, 170

locally nilpotent, 170
locally unipotent, 170
semisimple, 170

log, 287
Luna map, 268

map
characteristic, 390
comultiplication, 39, 66

lives in, 172
rational, 151

Mm;n, 41
module, 83

Dieudonné, 228
monomial matrix, 52
monomorphism, 106
Mor.X;Y /, 30
Morita equivalence, 580
morphism

of affine algebraic schemes, 568
of algebraic schemes, 569
of flat sheaves, 116
realization, 277
schematically dominant, 55
Verschiebung, 224

norm
reduced, 519

normal, 584
normalizer, 32
normalizes, 111
Nrd, 519

object
monogenic, 175

octonion algebra, 539
special, 539

o.G/, 44
On, 43
one-parameter subgroup, 230
open subset

basic, 567
orbit, 27, 139
orbit map, 27, 261
order

of a finite algebraic group, 44
of a finite group scheme, 44

orthogonal group, 43
OX;x , 569

P.�/, 264
P.R/, 613
p-Lie algebra, 206
perfect pairing, 608
PGLn, 111
Picard group, 584
pinned root datum

central isogeny of, 496
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isomorphism of, 496
pinning, 495
pinning map, 495
point

nonsingular, 579
regular, 578
singular, 579

primitive element, 292
primitive vector, 467
product, 49

almost-direct, 49
fibred, 49
semidirect, 50

projective embedding
nondegenerate, 145

Q.R/, 613
quadratic form, 527

nondegenerate, 528
quadratic space, 53, 528

regular, 528
quasi-finite, 575
quasi-finite algebra, 107
quotient, 101, 104
quotient map

of algebraic groups, 99
of sheaves, 118

quotient object, 175

radical, 135, 397
geometric, 135
geometric unipotent, 135
unipotent, 135

rank, 141, 401
of a root system, 610
semisimple, 401

real algebraic envelope, 174
reduced, 462

geometrically, 576
reflection, 607

with vector ˛, 607
regular local ring, 254
regular map

affine, 569
étale, 267
faithfully flat, 582
finite, 569
flat, 582
proper, 583

regular, 568, 569
smooth, 582
surjective, 569

regular representation, 87, 163
regular system of parameters, 254
Rep.G/, 165
represent, 572
representable, 117, 572
representation

adjoint, 187, 192
diagonalizable, 234
faithful, 83
infinitesimally simple, 481
linear, 83
semisimple, 90
simple, 90
trigonalizable, 324
trivial, 83
unipotent, 280

Reynolds operator, 249
ring

reduced, 572
regular, 578

ring of representations, 506
ringed space, 568
root

distinguished simple, 552
highest, 612
indecomposable, 609
special, 612

root datum, 613
based, 496
pinned, 496
rank, 615
reduced, 614
semisimple, 615
semisimple rank, 615
toral, 618

root group, 428, 549
root system, 610

indecomposable, 612
reduced, 611
relative, 549
small, 549

roots, 548, 613
of a root system, 610
of a split reductive group, 425
simple, 609



Index 643

Satake diagram, 552
scheme

concentrator, 261, 277
semilinear action, 76
semisimple element, 171
semisimple part, 169

semisimple, 171
series

characteristic, 124
composition, 127
derived, 132
descending central, 133
nilpotent, 133
normal, 124
subnormal, 124

central, 133
set of zeros, 29
sheaf, 116

associated with, 116
invertible, 584

simple root, 612
simply connected covering, 389
simply laced, 625
singular locus, 579
SL1.A/, 524
SLn, 6
socle, 471
solvable series, 131
SOn, 43
Sp.V;�/, 42
Sp2n, 42
space

primary, 167
special orthogonal group, 43
spinor norm, 532
Spm, 568
spm, 566
stabilizer, 31, 85, 196
stabilizes, 85
strong identity component, 127
strongly connected, 126
subalgebra

Lie, 186
subgroup variety, 7
subobject, 175

generated by, 175
subscheme, 571

closed, 571

open, 571
subtorus

largest, 241
subvariety

abelian, 151
Sym.V /, 40
symmetric set of roots, 455
symmetry

with respect to B , 447
symplectic group, 42
system of positive roots, 612

attached to B , 435
system of postive roots, 549
T˛ , 428
tangent space, 13
Tgtx.X/, 13
theorem

Barsotti–Chevalley, 154
Białynicki-Birula decomposition,

272
Bruhat decomposition, 438, 450
Cartan–Killing, 503
Cartier, 71
Chevalley, 94, 370
correspondence, 112
existence, 501
existence of quotients, 120
fixed point, 343, 352, 353
full isogeny, 492
fundamental, 463, 496
homomorphism, 28, 75, 108, 120
isogeny, 487
isomorphism, 112, 120, 493
Kostant–Rosenlicht, 373
Lazard, 345
Lie–Kolchin, 334
normalizer, 366
PBW, 200
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Errata for Algebraic Groups (2017)
Starred items have been corrected in the paperback edition.
DG=Demazure and Gabriel 1970; CGP=Conrad, Gabber, and Prasad 2015.
Contributors include: Jarod Alper; Michel Brion; Magnus Carlson; Dylon

Chow; Brian Conrad; Rostislav Devyatov; Ofer Gabber; Cédric Pépin; Bjorn
Poonen; Matthieu Romagny; Zev Rosengarten; Thierry Stulemeijer; Vladimir
Sotirov; Yugo Takanashi; Christian Voigt; Qijun Yan.

Chapter 1

The Notation 3.2 should be placed earlier in the book. For example, it is implicitly
used in the proof of 1.49.

*p.18. Proof of 1.40. Multiplication on G.k/ is continuous for the Zariski topology,
but not necessarily for the product topology, and so we don’t know that there
exist A and B as claimed. A correct proof is not difficult.

*p.20. Corrected statement of 1.45: Let G be an algebraic group over k and S a
closed subgroup of G.k/. There is a unique reduced algebraic subgroup H of
G such that jH j is the closure NS of S in jGj; it is geometrically reduced and
H.k/D S . The algebraic subgroups H of G that arise in this way are exactly
those for which H.k/ is schematically dense in H .

*p.21 Definition 1.48. Let G be an algebraic group over k and S a subgroup of
G.k/. The unique algebraic subgroup H of G such S is schematically dense in
H is called the Zariski closure of S in G.

*p.26. Proposition 1.65. In the proof of (a), one should choose U before passing to
the algebraic closure.

Chapter 2

*p.48 The group G has height � n if Ker.F nG/DG, i.e., F nG is trivial (rather than
0).

*p.51. Replace X with G thrice in the first paragraph of Section 2g.
*p.60. Section 2j: Define torsors over nonaffine bases, because such torsors occur

later in the book.

Chapter 3

*p.80, 3.52. Two inner forms .G;f / and .G0;f 0/ are said to be equivalent if
there exists an isomorphism 'WG! G0 such that f 0 D 'K ıf up to an inner
automorphism of G0K , i.e., such that f 0�1 ı'K ıf is inner.

*p.85. GW is the stabilizer of W in G (not V ).

Chapter 4

*p.95. In the proof of 4.29, V ˝m˝W should be V ˝m˝V 0 (twice).
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Chapter 5

*p.123. Delete Coker.g0/ from the diagram and sequence in Exercise 5-7 (the
homomorphism g0 need not be normal).

Chapter 6

*p.129, 6.19. In (c,d,e), G should be assumed to be smooth (to be safe). See DG, II,
Sect. 5, 4.8, p.247, for a proof of (c) in the smooth case.

*p.136. In the example 6.48, take p D 2, otherwise the multiplication doesn’t
preserve the defining relation. Also, the kernel N of ' is Xp� tY p D 1 (not 0).

Chapter 8

*p.150. The proof of Proposition 8.9 requires X to be reduced. Corollary 8.10 is
correct, but the proof requires an addition step. This suffices for the applications.

*p.157. The line before Proposition 8.37 should read: central extension if G is
connected.

Chapter 9

*p.173, 9.25. �X should lie in End.!.X//:::, not End.X/:::
*p.181. In the proof of 9.44 requires correction.

Chapter 11

*p.223. Proposition 11.36 should read : : :˛ D Lie.'/ not : : :˛ D Lie.'/ıLie.'/.
*p.224. Throughout the section on the Verschiebung morphism, G is commutative

(as in the first paragraph). In definition 11.39 the second arrow is reversed.

Chapter 12

*p.244. In 12.41, N should be a central subgroup of H . This suffices for the
applications.

*p.249. The proof of 12.57 is missing a step: first show that the Reynolds operator
is AG-linear. Also ai should be ri .

Chapter 13

*p.255. In the proof of 13.4, replaceD� with'.
*p.262. In (86), set Z DX .

Chapter 14

*p.273. In Theorem 13.47(c) (and corollaries), it is necessary to require X to be
proper, otherwise there may be no fixed points.
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Chapter 15

*p.317. Delete 15.29 and 15.30. The proofs in Section 15h have been rewritten.

Chapter 16

*p.324. In the last sentence of first paragraph, replace “diagonalizable” with “tri-
gonalizable”.

*p.330. Near the end of 16.20, the field k0 is kŒc1=p�.
*p.349. In 16.65, the subgroup H should be connected (obviously).

Chapter 17

*p.360. The statement before 17.28 should say that SL2 (not SL3) has dimension 3
(obviously).

*p.364. In 17.42, take I D f1;2; : : : ;ng (or rewrite the last sentence).
*p.386. Delete Exercise 17-7. It is true that Steinberg 1968, 7.2, proves that every

surjective endomorphism of an algebraic group over an algebraically closed field
fixes a Borel subgroup, but you should read Steinberg’s proof rather than trying
to prove it yourself.

Chapter 18

*p.388 and p.396 In the last sentence of 18.4 and in 18-1, G should be reductive.
*p.389. In the statement of 18.8, the target of ˛ is G0, not G. This is correct in the

diagram.

Chapter 19

*p.399 Definition 19.7 should read: An algebraic group G over k is almost-simple
if it is semisimple and non-commutative and its only smooth connected normal
subgroups are G and e. It is simple if in addition its centre is trivial. Similarly
change in 19.8.

Chapter 20

*p.417. In the proof of 20.27, interchange second and third.
*p.419. In the statement of 20.33, add “G of semisimple rank 1” after “reduct-

ive group”. In the final sentence of the proof, (first,second,third) should be
(second,third,first).

*p.420. The reference to “Section 2k” should be to “Section 3k”.

Chapter 21

*p.440 The proof of Theorem 21.51 has been rewritten.
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*p.445. The necessity in Theorem 21.68(d) fails in characteristics 2;3 (and is not
“obvious” in characteristics¤ 2;3).

*p.447. The proof of Proposition 21.71 only shows that Buew � Y.w/. To prove
equality, show as in the proof of 21.75 that (T3) holds, and deduce that G DS
w BuwB .

*p.449. In the proof of Proposition 21.11, replace the appeal to 21.67 with a direct
argument.

*p.456–60. In several places in Example (An), I write n instead of nC1. In 21.96,
replace SLn with SLnC1 and Z=nZ with Z=.nC1/Z.

Set braces are missing in the lines displaying ˚ and � in 21.97, 21.98, 21.99, and
an equality symbol is missing for � in 21.98.

In Example Cn there is an errant SO2nC1. In Example (Dn), SOn should be SO2n
and, two lines later, SO2nC1 should be SO2n.

*p.460 middle, definition of �, the last y2n should be yn.
*p.460 last paragraph, 2nC1�2nC1 should be 2n�2n.
*p.461. In Exercise 21-2 one needs to assume that the unipotent group is smooth,

otherwise there are the infamous unipotent isogenies in characteristic 2, as in
18.3 and as discussed in Section 2 of Prasad and Yu 2006.

Chapter 22

*p.468. Redefined E.�/ to be induced from the opposite Borel subgroup B 0 so as
to agree with the literature. Now it is nonzero if and only if � is dominant etc.

*p.469. Expanded the proof of the crucial Lemma 22.24.
*p.473. Example 22.35 mysteriously repeats example 22.34 instead of giving the

fundamental weights of PGLn.
*p.480. In Theorem 22.52, either assume k has characteristic zero or replace V

with H 0.G=B 0;L.�//.

Chapter 23

*p.488. End of second sentence of last paragraph of the proof of 23.11, change U˛2

to U˛2
.k/.

*p.494. In the statement of Corollary, 23.32, change “an algebraic group” to “a
reductive algebraic group” (so .G0;T / is a split reductive group, and having a
root datum makes sense).

*p.497 23.42. Any inner automorphism of a pinned reductive group is trivial.
*p.498. Replace .X;˚;�/ with .X;˚;˚_;�/ thrice. –¿
*p.498.The statement of Corollary 23.48 is incorrect. When G is split, the map
H 1.k; Inn.G//!H 1.k;Aut.G// is injective as a map of pointed sets, but not
necessarily as a map of sets. See p.523 below. This is not used, but it means that
it is necessary to distinguish the two notions of inner form, even for split groups.

*p.498. In the proof of Corollary 23.47, the first G should be Aut.G/.
*p.498. Corollary 23.48 should only say that an inner form .G;f / is trivial if and

only if the inner form G is trivial.
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p.499. In 23.50, Hom.G;H/ is not affine unless Out.G/ is finite (because .Z/k is
not affine).

*p.500 In 23.52, G is a reductive group.
*p.500. Here is a more precise statement of Corollary 23.54: Let G be a reductive

group over k. There exists an inner form .H;f / of G such that H is quasi-split,
and any two such inner forms are equivalent. In particular, the class of .H;f / in
H 1.k;Gad/ is uniquely determined.

*p.501. In the statement of Corollary 23.56, the objects of the second category are
reduced root data.

*p.504. Line 4, should read ŒXi ;Yi �DHi : : :, not ŒXi ;Xi � : : :.
*p.504. In the last displayed equation of the “First proof”, Jj should be Yj .
*p.504. Proposition 23.64 has been deleted and a remark added.
*p.505. The last displayed equation before Lemma 23.65 should read hi .v˛/D
h˛;˛_i iv˛ (subscript i is missing).

*p.506. In the condition (c), replace ˇR with ˇ. In the next line, replace gR with
gR.

*p.506. In the proof of Lemma 23.68, p.475 should be p.476.
*p.507. In Theorem 23.70, (d) and (e), G should be G.g/.

Chapter 24

*p.513 In line 3, replace “isogeny” with “central isogeny”. In 24.3, “the field
of definition of Gi as a subgroup of G” is the fixed field of the subgroup of
Gal.ks=k/ fixing Gi .

*p.515, Caution: the second exact sequence in the displayed pair is only exact as a
sequence of pointed sets. See p.498 above.

*p.516. Line 2: replace “subset” with “image of”.
*p.516. Line 4: Homs modulo conjugation in the case D4.
*p.518. Simple algebras over k are required to be nonzero.
*p.518. In fact, 24.20 is not proved in Jacobson 1989, Section 4.6, with the

“separable” condition.
*p.524. Throughout this section, n > 2.
*p.531. At the end of the first paragraph of Section 24i, replace C.V;q/ with
C0.V;q/.

*p.540. Near the bottom, F2 should be F4 — there is no F2.

Chapter 25

*p.545 et seq. In 25.6(b), in the final sentence of 25.24, and in 25.27, the parabolic
subgroup (P or Q) should be minimal, and in 25.27, S should be maximal split
in P .

*p.546. The proof of 25.7 is only a brief sketch. The “nontrivial” on the first line of
the proof of 25.10 should be “noncentral”.

p.549. The statement in 25.16, that the relative root system is a root system, is
certainly correct but (as explained to me by Brian Conrad) the proofs of this in
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the classical literature (Borel and Tits 1965, Borel 1991, and Springer 1998) are
incomplete. For a complete proof, see CGP, C.2.15.

*p.549. In line 1 of 25.19, add “torus” to “maximal split”.
*p.563. In 25.66 and 25.68, the direct products should be direct sums. In 25.67 and

25.69, the G.v/ should be required to be quasi-split for all but finitely many v.

Appendix A

*p.570. The proof in footnote 3 requires correction.
*p.582. In A.70, delete the word “faithfully”.
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