
Chapter 11

Surfaces

The theory of surfaces is one of the most beautiful parts of algebraic geometry. It is
more complex than the theory of curves, but is more complete than the theory of higher
dimensional varieties and serves as a model for it. In this chapter, we prove the Riemann-
Roch theorem for a surface, and deduce the Hodge index theorem. From this, the
Riemann hypothesis for curves over finite fields follows easily — this remains the most
illuminating proof.

We fix an algebraically closed field 𝑘. Algebraic varieties over 𝑘 are assumed to
be irreducible. Points on varieties are closed. A surface is an algebraically variety of
dimension 2.
a. Divisors and their intersections

Let𝑉 be a smooth surface over 𝑘. Recall that smoothness means that the local ring𝒪𝑃 at
a point 𝑃 of𝑉 is regular. In particular, it is factorial, and so we have a good theory of Weil
divisors (cf. Chapter 12). If 𝑥, 𝑦 generate the maximal ideal in 𝒪𝑃, the the completion of𝒪𝑃 is the power series ring 𝑘[[𝑥, 𝑦]].
Definitions

If 𝑉 is affine, say, 𝑉 = Spec𝐴, then the prime ideals 𝔭 of 𝐴 are of the following types
according as their height is 0, 1, or 2:𝔭 = 0 ⇐⇒ tr.deg𝑘 𝐴∕𝔭 = 2 ⇐⇒ 𝑉(𝔭) = 𝑉𝔭minimal nonzero ⇐⇒ tr.deg𝑘𝐴∕𝔭 = 1 ⇐⇒ 𝑉(𝔭) = a curve on 𝑉𝔭maximal ⇐⇒ tr.deg𝑘𝐴∕𝔭 = 0 (so 𝐴∕𝔭 = 𝑘) ⇐⇒ 𝑉(𝔭) = a point.

By a curve on𝑉, we mean an irreducible closed subvariety of𝑉 of dimension one (hence
also codimension one). Equivalently, it is an irreducible closed subset of |𝑉| of dimension1 equipped with its canonical structure as a reduced scheme. By a divisor on 𝑉, we
mean a finite formal sum𝐷 =∑𝑛𝑖𝑍𝑖, 𝑛𝑖 ∈ ℤ, 𝑍𝑖 a curve on 𝑉.
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2 11. Surfaces

We say that 𝐷 is positive (or effective), denoted 𝐷 ≥ 0, if all 𝑛𝑖 ≥ 0.
Let𝑍 be a curve on𝑉. If𝑈 is an open affine of𝑉 that intersects𝑍, then𝑍 corresponds

to a prime ideal 𝔭 in 𝒪𝑉(𝑈) of height 1, and so 𝒪𝑍 def= 𝒪𝑉(𝑈)𝔭 is a normal noetherian
local ring of dimension 1. It is therefore a discrete valuation ring (Commutative Algebra,
20.2), and we let ord𝑍 ∶ 𝑘(𝑉)× ↠ ℤ
denote the corresponding normalized valuation on 𝑘(𝑉). The divisor of 𝑓 is(𝑓) =∑ ord𝑍(𝑓) ⋅ 𝑍
(sum over the finitely many curves 𝑍 on 𝑉 such that ord𝑍(𝑓) ≠ 0). Write (𝑓) as the
difference of two positive divisors (𝑓) = (𝑓)0 − (𝑓)∞,
— (𝑓)0 is the divisor of zeros of 𝑓 and (𝑓)∞ the divisor of poles. A divisor of the form(𝑓) is said to be principal. Two divisors 𝐷1 and 𝐷2 are said to be linearly equivalent,
denoted 𝐷1 ∼ 𝐷2, if they differ by a principal divisor,𝐷1 − 𝐷2 = (𝑓).
Intersections

We first consider the problem of defining the intersection of two curves 𝑍1 and 𝑍2 on a
smooth surface 𝑉 (note that 𝑍1 and 𝑍2 may be singular).

Z1

Z2

Proposition 11.1. If 𝑍1 and 𝑍2 are distinct curves on 𝑉, then 𝑍1 ∩ 𝑍2 is a finite set of
points.

Proof. It suffices to prove this when 𝑉 is affine, say 𝑉 = Spec(𝐴). Then 𝑍1 and 𝑍2
correspond to prime ideals 𝔭1 and 𝔭2 in 𝐴, and𝑍1 ∩ 𝑍2 = 𝑉(𝔭1,𝔭2).
Let (𝔭1,𝔭2) = 𝑛⋂

𝑖=1 𝔮𝑖
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be a minimal primary decomposition of (𝔭1,𝔭2), and let 𝔭′𝑖 = rad(𝔮𝑖) (Commutative
Algebra, 19.7 et seq.). If 𝔭′𝑖 were a minimal nonzero prime ideal in 𝐴, then it would have
to equal both 𝔭1 and 𝔭2 because it contains them, but 𝔭1 ≠ 𝔭2, and so this is impossible.
Therefore 𝔭′𝑖 is maximal. Now𝑍1 ∩ 𝑍2 = 𝑉(⋂𝑛𝑖=1 𝔮𝑖) =⋃𝑛𝑖=1 𝑉(𝔭′𝑖),
which is a finite set of points. 2

Let 𝑃 be a point on 𝑉. Let 𝒪𝑃 be the local ring at 𝑃 and let𝔪𝑃 be its maximal ideal.
A curve 𝑍 on𝑉 defines an ideal 𝔭 in𝒪𝑃 (for example, if𝑉 = Spec𝐴 and 𝑍 = 𝑉(𝔭′), then𝔭 = 𝔭′𝒪𝑃). Because 𝒪𝑃 is factorial, and 𝔭 has height 1, it is principal, say 𝔭 = (𝑓) (1.25).
Now 𝑍 = (𝑓) + components not passing through 𝑃.
We call 𝑓 = 0 a local equation for 𝑍 near 𝑃. Note that 𝑓 is a unit in 𝒪𝑃 if and only if𝑃 ∉ 𝑍.

Let 𝑍1 and 𝑍2 be curves on 𝑉 with local equations 𝑓 = 0 and 𝑔 = 0 near 𝑃. Then(𝔭1,𝔭2)𝒪𝑃 = (𝑓, 𝑔)𝒪𝑃.
If 𝑃 ∉ 𝑍1 ∩ 𝑍2, then (𝔭1,𝔭2) = 𝒪𝑃. On the other hand, if 𝑃 ∈ 𝑍1 ∩ 𝑍2, then (𝑓, 𝑔)𝒪𝑃
is primary for𝔪𝑃, and so rad(𝑓, 𝑔) = 𝔪𝑃. Because 𝒪𝑃 is noetherian, this implies that(𝑓, 𝑔) contains some power𝔪𝑟+1𝑃 of𝔪𝑃. Thereforedim𝑘(𝒪𝑃∕(𝑓, 𝑔)) ≤ dim𝑘(𝒪𝑃∕𝔪𝑟+1𝑃 ) = dim𝑘 𝑘[[𝑥, 𝑦]]∕(𝑥, 𝑦)𝑟+1 <∞.
Definition 11.2. Let 𝑍1 and 𝑍2 be distinct curves on a smooth surface 𝑉, and let 𝑃 be
a point on 𝑉. We set (𝑍1 ⋅ 𝑍2)𝑃 = dim𝑘 𝒪𝑃∕(𝑓, 𝑔),
where 𝑓 and 𝑔 are local equations for 𝑍1 and 𝑍2 near 𝑃.
Aside 11.3. Let 𝑋1, 𝑋2 be local parameters at 𝑃.1 Then every 𝑓 ∈ 𝒪𝑃 can be written uniquely in
the form𝑓 = (polynomial of degree ≤ 𝑟 in 𝑋1, 𝑋2 with coefficients in 𝑘) + 𝑓0, 𝑓0 ∈𝔪𝑟+1
(because gr(𝐴) ≃ 𝑘[𝑋1, 𝑋2]) and so the calculation of (𝑍1 ⋅ 𝑍2)𝑃 comes down to a calculation in
a polynomial ring.

Note that (𝑍1 ⋅ 𝑍2)𝑃 = 0 ⇐⇒ 𝑃 ∉ 𝑍1 ∩ 𝑍2.
The support of a divisor 𝐷 =∑𝑛𝑖𝑍𝑖 is the union of the set of curves 𝑍𝑖 with 𝑛𝑖 ≠ 0.

We say that 𝐷1 ∩ 𝐷2 is defined (or that 𝐷1 and 𝐷2 are in general position) if supp(𝐷1)
and supp(𝐷2) have no common curves. We extend the above definition to all divisors𝐷1 =∑𝑚𝑖𝑍𝑖 and 𝐷2 =∑𝑛𝑗𝑍𝑗 such that 𝐷1 ∩ 𝐷2 is defined by setting(𝐷1 ⋅ 𝐷2)𝑃 =∑𝑚𝑖𝑛𝑗(𝑍𝑖 ⋅ 𝑍𝑗)𝑃.

1Let 𝑃 be a nonsingular point on a variety 𝑉. By a system of local parameters at 𝑃 we mean a family{𝑓1,… , 𝑓𝑑} of germs of regular functions at 𝑃 generating the maximal ideal in 𝒪𝑃. Equivalent condition:(𝑑𝑓1)𝑃,… , (𝑑𝑓𝑑)𝑃 is a basis for the dual space to 𝑇𝑃(𝑉). Such a system defines an étale map 𝑈 → 𝔸𝑑 on
an open neighbourhood of 𝑃. We also say that 𝑓1,… , 𝑓𝑛 are local uniformizing parameters, or just local
parameters, at 𝑃. See Section 5o.
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Let 𝐷 =∑𝑛𝑖𝑍𝑖 be a positive divisor. Let 𝑓𝑖 = 0 be a local equation for 𝑍𝑖 near 𝑃, and
let 𝑓 =∏𝑖 𝑓𝑛𝑖𝑖 . Then𝐷 = (𝑓) + components not passing through 𝑃,
and we call 𝑓 = 0 a local equation for 𝐷 near 𝑃.
Proposition 11.4. Let 𝐷1, 𝐷2 ≥ 0 be divisors on 𝑉 such that 𝐷1 ∩ 𝐷2 is defined. Then(𝐷1 ⋅ 𝐷2)𝑃 = dim𝑘(𝒪𝑃∕(𝑓, 𝑔)),
where 𝑓 and 𝑔 are local equations for 𝐷1 and 𝐷2 near 𝑃.
Proof. From the above description of a local equation for 𝐷1 (and induction), one sees
that it suffices to prove thatdim𝑘(𝒪𝑃∕(𝑓1𝑓2, 𝑔)) = dim𝑘(𝒪𝑃∕(𝑓1, 𝑔)) + dim𝑘(𝒪∕(𝑓2, 𝑔)) (1)

for all nonzero 𝑓1, 𝑓2, 𝑔 ∈ 𝒪𝑃 with 𝑓1𝑓2 and 𝑔 relatively prime. Consider the quotient
map 𝑓 ↦ 𝑓∶ 𝒪𝑃 → �̄� def= 𝒪𝑃∕(𝑔).
This gives an isomorphism 𝒪𝑃∕(𝑓, 𝑔) ≃ �̄�∕(𝑓),
and so equation (1) can be rewritten asdim𝑘(�̄�∕(𝑓1𝑓2)) = dim𝑘(�̄�∕(𝑓1)) + dim𝑘(�̄�∕(𝑓2)).
Consider the map �̄� ↦ 𝑓1�̄�∶ �̄�→ 𝑓1�̄� (i.e., 𝒪𝑃∕(𝑔)→ (𝑓1, 𝑔)∕(𝑔))
If �̄� maps to zero, then 𝑓1𝛼 = 𝛽𝑔 for some 𝛽 ∈ 𝒪𝑃,
but 𝒪𝑃 is factorial and 𝑓1 and 𝑔 are relatively prime, and so this implies that 𝑔|𝛼, i.e.,�̄� = 0. Therefore the map is an isomorphism. It maps (𝑓2) isomorphically onto (𝑓1𝑓2),
and so dim𝑘(�̄�∕(𝑓2)) = dim𝑘((𝑓1)∕(𝑓1𝑓2)).
Nowdim𝑘(�̄�∕(𝑓1𝑓2)) = dim𝑘(�̄�∕(𝑓1))+dim𝑘((𝑓1)∕(𝑓1𝑓2)) = dim𝑘(�̄�∕(𝑓1))+dim𝑘(�̄�∕(𝑓2))
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as required, �̄�
(𝑓1) (𝑓2)

(𝑓1𝑓2)
=

=
2

Example 11.5. Consider the curves 𝑌2 = 𝑋3 and 𝑌 = 𝑋2 in 𝔸2 at the origin 𝑃 = (0, 0).

𝑌2 = 𝑋3

𝑌 = 𝑋2

𝑃

Here 𝑓 = 𝑌2 − 𝑋3 and 𝑔 = 𝑌 − 𝑋2. What is dim𝑘(𝒪𝑃∕(𝑓, 𝑔))? The ideal (𝑓, 𝑔) contains𝑌2 − 𝑋3, 𝑌 − 𝑋2, and 𝑋3 − 𝑋4. In the quotient ring 𝒪𝑃∕(𝑓, 𝑔), 𝑦 = 𝑥2, and so we can
forget powers of 𝑦; we have 𝑥3(𝑥 − 1) = 0, and so 𝑥3 = 0 because 𝑥 − 1 is a unit in 𝒪𝑃.
Therefore, 1, 𝑥, 𝑥2 is a basis for 𝒪𝑃∕(𝑓, 𝑔), and so (𝑍1 ⋅ 𝑍2)𝑃 = 3 .

In the alternative (old Italian) approach, one moves one curve slightly, say, to𝑌+ 𝜀 =𝑋2. In the quotient ring, we then have the relation(𝑥2 − 𝜀)2 − 𝑥3 = 0, i.e.,𝑥4 − 𝑥3 − 2𝑥2𝜀 + 𝜀2 = 0,
which has one root near 1 and 3 near zero.
Brief review of cohomology (see Chapter 13)

Let 0→ℳ′ →ℳ →ℳ′′ → 0 (2)

be an exact sequence of coherent sheaves of 𝒪𝑉-modules on an algebraic variety 𝑉.
When we tensor this with a locally free sheaf𝒩 of finite rank 𝑟, then0→ℳ′ ⊗𝒩 →ℳ ⊗𝒩 →ℳ′′ ⊗𝒩 → 0
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is exact because locally it is just a direct sum of 𝑟 copies of the original sequence. In
general, when𝒩 is only coherent, only the sequenceℳ′ ⊗𝒩 →ℳ ⊗𝒩 →ℳ′′ ⊗𝒩 → 0
is exact. However, this sequence extends to an exact sequence⋯→ 𝒯𝑜𝑟1(ℳ,𝒩)→ 𝒯𝑜𝑟1(ℳ′′,𝒩)→ℳ′ ⊗𝒩 →ℳ ⊗𝒩 →ℳ′′ ⊗𝒩 → 0
with well-defined sheaves 𝒯𝑜𝑟𝑖.

For a coherent sheafℳ of𝒪𝑉-modules, we define𝐻𝑖(𝑉,ℳ) to be the C̆ech cohomol-
ogy groups ofℳ relative to a finite covering 𝑉 =⋃𝑖 𝑈𝑖 of 𝑉 by open affines 𝑈𝑖. Thus,𝐻𝑖(𝑉,ℳ) is the 𝑖th cohomology group of a complex∏𝑖ℳ(𝑈𝑖)→∏𝑖,𝑗ℳ(𝑈𝑖 ∩𝑈𝑗)→∏𝑖,𝑗,𝑙ℳ(𝑈𝑖 ∩𝑈𝑗 ∩𝑈𝑙)→⋯ .
Up to a canonical isomorphism, the groups are independent of the covering. Asℳ is
a sheaf, 𝐻0(𝑉,ℳ) = ℳ(𝑈). An exact sequence (2) gives rise to an exact cohomology
sequence (of 𝑘-vector spaces)0→ 𝐻0(𝑉,ℳ′)→ 𝐻0(𝑉,ℳ)→ 𝐻0(𝑉,ℳ′′)→ 𝐻1(𝑉,ℳ′)→ 𝐻1(𝑉,ℳ)→⋯ .
If 𝑉 has dimension 𝑛, then 𝐻𝑖(𝑉,ℳ) = 0 for 𝑖 > 𝑛, and if 𝑉 is complete, then the𝑘-vector spaces𝐻𝑖(𝑉,ℳ) are finite-dimensional.

Let 𝑉 be a normal closed subvariety of dimension ≥ 2 in some projective space, and
let ℒ be a locally free sheaf on 𝑉 of finite rank. Then “Theorem B”:𝐻1(𝑉,ℒ(−𝑛)) = 0 for all sufficiently large 𝑛.
Serre FAC,2 §76). This statement is related to the “Enriques-Severi lemma” proved
by Zariski (1952)3 and used by him to prove the Riemann-Roch theorem in nonzero
characteristic.

Intersections and cohomology

Given a divisor 𝐷, we define the sheaf 𝒪(𝐷) by𝛤(𝑈,𝒪(𝐷)) = {𝑓 ∈ 𝑘(𝑉)× ∣ (𝑓) + 𝐷 ≥ 0} ∪ {0}.
When 𝐷 is positive, we define the sheaf 𝒪𝐷 by the exact sequence0→ 𝒪(−𝐷)→ 𝒪→ 𝒪𝐷 → 0.
Then supp(𝒪𝐷) = supp(𝐷). For example, if𝐷 is a curve 𝑍, then𝒪𝑍 is the structure sheaf
on 𝑍 extended by zero to 𝑉, i.e., 𝒪𝑍 = 𝑗∗(structure sheaf on 𝑍), where 𝑗 is the inclusion𝑍 → 𝑉.
Proposition 11.6. Let 𝐷1 and 𝐷2 be divisors on 𝑉:

2Serre, Jean-Pierre. Faisceaux algébriques cohérents. Ann. ofMath. (2) 61, (1955), 197–278. Translation
available.

3Zariski, Oscar, Complete linear systems on normal varieties and a generalization of a lemma of
Enriques-Severi. Ann. of Math. (2) 55, (1952). 552–592.

https://www.jmilne.org/math/Documents/fac.pdf
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(a) supp(𝒪𝐷1 ⊗𝒪𝐷2) = supp(𝐷1) ∪ supp(𝐷2);
(b) dim𝑘(𝐻0(𝒪𝐷1 ⊗𝒪𝐷2)) = (𝐷1 ⋅ 𝐷2);
(c) 𝒯or1𝒪𝑉 (𝒪𝐷1 ,𝒪𝐷2) = 0.

Proof. These are all local statements. For (a) and (b), it suffices to show that𝒪𝑃∕(𝑓, 𝑔) ≃ 𝒪𝑃∕(𝑓)⊗𝒪𝑃∕(𝑔),
and for (c) it suffices to show that𝒯𝑜𝑟1𝒪𝑃(𝒪𝑃∕(𝑓),𝒪𝑃∕(𝑔)) = 0.
On tensoring 0→ (𝑔)→ 𝒪→ 𝒪∕(𝑔)→ 0
with (𝑓), we obtain an isomorphism(𝑓)⊗𝒪∕(𝑔) ≃ (𝑓)∕(𝑓𝑔).
On tensoring 0→ (𝑓)→ 𝒪→ 𝒪𝑃∕(𝑓)→ 0
with 𝒪∕(𝑔), we obtain an exact sequence0 𝒯𝑜𝑟1𝒪(𝒪∕(𝑓),𝒪∕(𝑔)) (𝑓)⊗𝒪∕(𝑔) 𝒪∕(𝑔) 𝒪∕(𝑓)⊗𝒪∕(𝑔) 0

(𝑓)∕(𝑓𝑔)
←→ ←→ ←→⇐⇐ ←→ ←→

—at left𝒯𝑜𝑟1𝒪(𝒪,𝒪∕(𝑔)) = 0 because𝒪 is (locally) free. But the map (𝑓)∕(𝑓𝑔)→ 𝒪∕(𝑔)
is injective because 𝒪𝑃 is factorial, and so𝒯𝑜𝑟1𝒪(𝒪∕(𝑓),𝒪∕(𝑔)) = 0
and 𝒪𝑃∕(𝑓, 𝑔) ≃ 𝒪𝑃∕(𝑓)⊗𝒪𝑃∕(𝑔). 2

For a divisor 𝐷, we let𝜒(𝐷) = 𝜒(𝒪(𝐷)) def= dim𝑘𝐻0(𝑉,𝒪(𝐷)) − dim𝑘𝐻1(𝑉,𝒪(𝐷)) + dim𝑘𝐻2(𝑉,𝒪(𝐷)).
Proposition 11.7. Let 𝑉 be a smooth complete surface over 𝑘, and let 𝐷1, 𝐷2 ≥ 0 be
divisors on 𝑉 such that 𝐷1 ∩ 𝐷2 is defined. Then(𝐷1 ⋅ 𝐷2) = 𝜒(𝒪) − 𝜒(−𝐷1) − 𝜒(−𝐷2) + 𝜒(−𝐷1 − 𝐷2).
Proof. Tensoring 0→ 𝒪(−𝐷1)→ 𝒪→ 𝒪𝐷1 → 0
with 𝒪𝐷2 gives an exact sequence0→ 𝒪(−𝐷1)⊗𝒪𝐷2 → 𝒪𝐷2 → 𝒪𝐷1 ⊗𝒪𝐷2 → 0.
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Therefore,(𝐷1 ⋅ 𝐷2) = dim𝑘𝐻0(𝒪𝐷1 ⊗𝒪𝐷2) (by 11.6)= 𝜒(𝒪𝐷1 ⊗𝒪𝐷2) (supp(𝒪𝐷1 ⊗𝒪𝐷2) has dimension 0)= 𝜒(𝒪𝐷2) − 𝜒(𝒪(−𝐷1)⊗𝒪𝐷2) (see the above sequence)= −𝜒(−𝐷2) + 𝜒(𝒪) − 𝜒(−𝐷1) + 𝜒(−𝐷1 − 𝐷2).
For the last equality, we used the exact sequences0→ 𝒪(−𝐷2)→ 𝒪→ 𝒪𝐷2 → 00→ 𝒪(−𝐷1)⊗𝒪(−𝐷2)→ 𝒪(−𝐷1)→ 𝒪(−𝐷1)⊗𝒪𝐷2 → 0
(the first is the definition of 𝒪𝐷2 and the second is obtained from it by tensoring with𝒪(−𝐷1); note that 𝒪(−𝐷1)⊗𝒪(−𝐷2) ≃ 𝒪(−𝐷1 − 𝐷2)). 2

Corollary 11.8. Let 𝐷1 and 𝐷2 be divisors on 𝑉 (not necessarily positive). If 𝐷1 is princi-
pal and 𝐷1 ∩ 𝐷2 is defined, then (𝐷1 ⋅ 𝐷2) = 0.
Proof. By linearity, we may suppose that 𝐷2 ≥ 0. Let 𝐷1 = 𝐸1 − 𝐸2, 𝐸𝑖 ≥ 0. Then(𝐷1 ⋅ 𝐷2) = (𝐸1 ⋅ 𝐷2) − (𝐸2 ⋅ 𝐷2) = 0
because 𝐸1 ∼ 𝐸2 implies 𝒪(𝐸1) ≈ 𝒪(𝐸2).

(More directly, if 𝐷2 is a smooth curve 𝐶 on 𝑉 and 𝐷 = (𝑓), then 𝐶 ⋅ (𝑓) is the divisor
of 𝑓|𝐶 on 𝐶, and (𝐶 ⋅ 𝐷) = deg(𝐶 ⋅ 𝐷) = deg(𝑓|𝐶) = 0.)

2

Definition 11.9. Let 𝑉 be a smooth complete surface, and let 𝐷1 and 𝐷2 be divisors on𝑉 such that 𝐷1 ∩ 𝐷2 is defined. We set𝐷1 ⋅ 𝐷2 =∑(𝐷1 ⋅ 𝐷2)𝑃𝑃(𝐷1 ⋅ 𝐷2) =∑(𝐷1 ⋅ 𝐷2)𝑃.
Aside 11.10. Every smooth complete surface is projective (Zariski 19584), and so we can use
“smooth projective” and “smooth complete” interchangeably. A singular surface need not be
projective.

Lemma 11.11. Let 𝐶 be a curve on a smooth surface 𝑉. For any divisor 𝐷 ≥ 0 such that𝐶 ∩ 𝐷 is defined,𝒪𝐶(𝐷 ⋅ 𝐶) = 𝒪𝐶 ⊗𝒪𝑉 𝒪(𝐷) (= restriction of 𝒪(𝐷) to 𝐶).
Proof. On tensoring 0→ 𝒪(−𝐶)→ 𝒪→ 𝒪𝐶 → 0
with 𝒪(𝐷), we get an exact sequence0→ 𝒪(−𝐶)⊗𝒪(𝐷)→ 𝒪(𝐷)→ 𝒪𝐶 ⊗𝒪(𝐷)→ 0.

4Zariski, Oscar. Introduction to the problem of minimal models in the theory of algebraic surfaces.
Publications of the Mathematical Society of Japan, no. 4 The Mathematical Society of Japan, Tokyo 1958.
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Let 𝑓 = 0 (resp. 𝑔 = 0) be a local equation for 𝐷 (resp. 𝐶) near 𝑃. Then, near 𝑃, these
sequences become 0→ (𝑔)→ 𝒪→ �̄�→ 0
and (𝑓)⊗ (𝑔)→ (𝑓)→ �̄�⊗ (𝑓)→ 0.
Therefore �̄�⊗ (𝑓) ≃ (𝑓)∕(𝑓𝑔).
But there is an 𝒪𝐷-isomorphism (𝑓)∕(𝑓𝑔) ≃,→ (𝑓)
(see the proof of (11.4)). 2

Definition 11.12. Curves 𝑍1 and 𝑍2 on 𝑉 are said to intersect transversally at 𝑃 if(𝑍1 ⋅ 𝑍2)𝑃 = 1.
In other words, 𝑍1 and 𝑍2 intersect transversally at 𝑃 if their local equations near 𝑃 form
a system of local parameters at 𝑃.

We wish to define 𝐷1 ⋅ 𝐷2 for arbitrary 𝐷𝑖, e.g., for 𝐷1 = 𝐷2.
Lemma 11.13 (Moving Lemma). Given divisors 𝐷1, 𝐷2, there exists 𝐷′1 ∼ 𝐷1 such that𝐷′1 ∩ 𝐷2 is defined.
Proof. The surface 𝑉 is normal (because smooth), and so each curve 𝑍 on 𝑉 defines a
discrete valuation ord𝑍 of 𝑘(𝑉). The weak approximation theorem for valuations5 says
that, for any finite set {𝑍1,… , 𝑍𝑚} of distinct curves on 𝑉 and integers 𝑛1,… , 𝑛𝑚, there
exists an 𝑓 ∈ 𝑘(𝑉) such that ord𝑍𝑖 (𝑓) = 𝑛𝑖 for all 𝑖.

Write 𝐷1 =∑ ord𝑍(𝐷)𝑍, and choose 𝑓 so that
ord𝑍(𝑓) = { ord𝑍(𝐷1) all 𝑍 ⊂ supp(𝐷1)0 all 𝑍 ⊂ supp(𝐷2) but not in supp(𝐷1).

Let 𝐷′1 = 𝐷1 − (𝑓), and consider a curve 𝑍 ∈ supp(𝐷2). Then
{ 𝑍 ⊂ supp(𝐷1) ⇐⇒ ord𝑍(𝐷′1) = ord𝑍(𝐷1) − ord𝑍(𝑓) = 0𝑍 ∉ supp(𝐷1) ⇐⇒ ord𝑍(𝐷′1) = ord𝑍(𝑓) = 0,

and so 𝐷′1 ∩ 𝐷2 is defined. 2

Now we can define (𝐷1 ⋅ 𝐷2) = (𝐷′1 ⋅ 𝐷2)
with 𝐷′1 as in the lemma. This makes sense, because if 𝐷′′1 ∼ 𝐷1 is such that 𝐷′′1 ∩ 𝐷2 is
also defined, then (𝐷′1 ⋅ 𝐷2) = (𝐷′′1 ⋅ 𝐷2) because 𝐷′1 ∼ 𝐷′′1 .
In particular, (𝐷 ⋅ 𝐷) is defined — we denote it by (𝐷2).

5My notes Algebraic Number Theory, Theorem 7.20. Alternatively, let 𝐴 = 𝒪𝑍1 ∩⋯ ∩ 𝒪𝑍𝑚 , and let𝔭𝑖 =𝔪𝑍𝑖 ∩ 𝐴. Then 𝐴 is a Dedekind domain with 𝔭1,… ,𝔭𝑚 as its nonzero prime ideals. For each 𝑖, choose𝑓𝑖 ∈ 𝔭𝑛𝑖𝑖 ∖ 𝔭𝑛𝑖+1𝑖 and apply the Chinese remainder theorem to get 𝑓.
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Summary 11.14. We have a symmetric bi-additive pairing

𝐷1, 𝐷2 ↦ (𝐷1 ⋅ 𝐷2)∶ Div(𝑉) × Div(𝑉)→ ℤ.
When 𝑉 is complete, the Euler formula holds:

(𝐷1 ⋅ 𝐷2) = 𝜒(𝒪) − 𝜒(−𝐷1) − 𝜒(−𝐷2) + 𝜒(−𝐷1 − 𝐷2).
(We proved this for positive divisors, but it extends by linearity.)

Example 11.15. Let 𝑉 = ℙ1 × ℙ1, 𝑍1 = 𝑃 × ℙ1, 𝑍2 = ℙ1 × 𝑃, ∆ = diagonal.
ℙ1 𝑍1 = 𝑃 × ℙ1

ℙ1
𝑍2 = ℙ1 × 𝑃

∙
∙ 𝑃
𝑃

Then (𝑍1 ⋅ 𝑍2) = 1, (𝑍21) = 0 = (𝑍22).
The diagonal ∆ is the zero-set of 𝑋 − 𝑋′ on 𝑉, which has poles, where 𝑋 and 𝑋′ have
poles, namely, on 𝑃∞ × ℙ1 and ℙ1 × 𝑃∞. Therefore ∆ ∼ 𝑍1 + 𝑍2, and so

(∆ ⋅ ∆) = (∆ ⋅ 𝑍1) + (∆ ⋅ 𝑍2) = 1 + 1 = 2.
In general, if 𝐶 is a curve of genus 𝑔, then on 𝐶 × 𝐶,

(∆ ⋅ ∆) = 2 − 2𝑔
(see later 11.32).

Example 11.16. Let 𝑉 be the projective plane with a point 𝑃 “blown up” to a line, i.e.,
we have a monoidal transformation

𝑉 𝜋,→ ℙ2.
Then 𝑉 is smooth, and 𝜋 is an isomorphism outside 𝜋−1(𝑃), which is a curve 𝐶 on 𝑉.
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We claim that (𝐶 ⋅ 𝐶) = −1.

∙𝑃

𝐿1
𝐿2

ℙ2

𝐿′1 = 𝜋−1(𝐿1)
𝐿′2 = 𝜋−1(𝐿2)

𝐶 = 𝜋−1(𝑃))𝑉
The curve𝐶 parametrizes the directions through𝑃 (the lines through the origin in𝑇𝑃(𝑉)).
The line 𝐿′1 intersects 𝐶 at the point representing the direction of 𝐿1, and 𝐿′2 ∩ 𝐶 = ∅.
Because 𝐿1 ∼ 𝐿2 on ℙ2, we have 𝐶 + 𝐿′1 ∼ 𝐿′2 for their inverse images on 𝑉. Therefore(𝐶 ⋅ 𝐶) = (𝐶 ⋅ (𝐿′2 − 𝐿′1)) = 0 − 1 = −1.
Aside 11.17. When 𝐶 and 𝐷 move in an algebraic family, the intersection number (𝐶 ⋅ 𝐷) is
preserved. Hence, if (𝐶2) < 0, then 𝐶 cannot move in a family of effective divisors (i.e., 𝐶 is
“rigid” inside 𝑉); otherwise, if 𝐶 moved to distinct curves 𝐶′and 𝐶′′, then(𝐶 ⋅ 𝐶) = (𝐶′ ⋅ 𝐶′′) ≥ 0.
Aside 11.18. Let 𝑉 be a smooth complete surface. A divisor 𝐷 on 𝑉 is numerically equivalent
to zero, 𝐷 ≈𝑛 0 if (𝐷 ⋅ 𝐶) = 0 for all curves 𝐶. Such divisor classes form a subgroup𝒩 = Pic𝜏(𝑉)
of Pic(𝑉), and the quotient Pic(𝑉)∕𝒩 is the Néron-Severi group of 𝑉. It is a free abelian group
of finite rank 𝜌, called the Picard number of 𝑉. There is a filtration of Pic(𝑉) with the quotients
at right: Pic(𝑉)∪ Néron-Severi group𝒩∪ finite groupPic0(𝑉)∪ abelian variety0
Over ℂ, 𝜌 = dimℚ𝐻1,1(𝑉,ℚ) def= 𝐻1,1(𝑉,ℂ) ∩𝐻2(𝑉,ℚ).
Aside 11.19. The first rigorous general definition of the intersection numbers of algebraic cycles
on smooth abstract varieties over arbitrary fields was given by Weil in his Foundations.6 For a
“static” approach, see Serre’s Multiplicity notes.7 For an introduction to modern intersection
theory, see Fulton 1984.8

6Weil, André, Foundations of Algebraic Geometry. American Mathematical Society Colloquium
Publications, vol. 29. American Mathematical Society, New York, 1946.

7Serre, Jean–Pierre, Algèbre Locale Multiplicités, LNM 11, 1965.
8Fulton, W., Introduction to Intersection Theory in Algebraic Geometry, AMS, 1984.
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b. Differentials

Following Zariski (Harvard notes, 1957–58),9 we give a down-to-earth definition of
differentials, which is especially suitable for computation. Laterwe shall show that, in the
case of interest to us, namely, smooth varieties, they agree with the Kähler differentials.

Let𝑉 be a variety (possibly incomplete, singular) of dimension 𝑛 over an algebraically
closed field 𝑘. We consider derivations of 𝑘(𝑉)∕𝑘, i.e. maps 𝐷∶ 𝑘(𝑉)→ 𝑘(𝑉) satisfying𝐷(𝑥 + 𝑦) = 𝐷𝑥 + 𝐷𝑦, 𝐷(𝑥𝑦) = 𝑥𝐷𝑦 + 𝑦𝐷𝑥, 𝐷𝑐 = 0, 𝑥, 𝑦 ∈ 𝑘(𝑉), 𝑐 ∈ 𝑘.
The derivations of 𝑘(𝑉)∕𝑘 become a 𝑘(𝑉)-vector space of dimension 𝑛with the definition(𝛼𝐷)(𝑥) = 𝛼(𝐷𝑥), 𝛼, 𝑥 ∈ 𝑘(𝑉).
For example, if 𝑉 = ℙ𝑛, then 𝑘(𝑉) = 𝑘(𝑋1,… , 𝑋𝑛), and { 𝜕𝜕𝑋1 ,… , 𝜕𝜕𝑋𝑛 } is a basis for the
space of derivations.

Theorem 11.20. Let {𝑋1,… , 𝑋𝑛} be a transcendence basis for 𝑘(𝑉)∕𝑘. Then 𝑘(𝑉)∕𝑘 is
separable if and only if every derivation of 𝑘(𝑋1,… , 𝑋𝑛)∕𝑘 extends uniquely to 𝑘(𝑉).
Proof. Let 𝐷 be a derivation of 𝑘(𝑋1,… , 𝑋𝑛)∕𝑘, and let 𝑦 ∈ 𝑘(𝑉). Then𝑓(𝑦, 𝑋1,… , 𝑋𝑛) = 0
for some polynomial 𝑓, and 𝜕𝑓𝜕𝑌𝐷𝑦 +∑ 𝜕𝑓𝜕𝑋𝑖𝐷𝑋𝑖 = 0.
If 𝜕𝑓𝜕𝑌 ≠ 0, then this equation defines 𝐷𝑦 uniquely. 2

Recall that a transcendence basis {𝑋1,… , 𝑋𝑛} for 𝑘(𝑉)∕𝑘 is separating if 𝑘(𝑉) is sep-
arable over 𝑘(𝑋1,… , 𝑋𝑛). Any transcendence basis {𝑋1,… , 𝑋𝑛} such that the derivations𝜕∕𝜕𝑋𝑖 extend to 𝑘(𝑉) is separating (and then the 𝜕∕𝜕𝑋𝑖 form a basis for the space of
derivations). Such transcendence bases exists (Field Theory, 9.27).

The differential 1-forms of 𝑘(𝑉)∕𝑘 are the elements of the 𝑘(𝑉)-dual of the space
of derivations. Hence, if 𝑋1,… , 𝑋𝑛 form a separating transcendence basis of 𝐹∕𝑘, then𝑑𝑋1,… , 𝑑𝑋𝑛 (where 𝑑𝑋𝑖(𝐷) = 𝐷(𝑋𝑖)) form a basis for the differential 1-forms, and so
every differential 1-form has a unique expression

∑𝛼𝑖𝑑𝑋𝑖, 𝛼𝑖 ∈ 𝑘(𝑉). If 𝑋′1,… , 𝑋′𝑛 is
second such basis, then ∑𝛼𝑖𝑑𝑋𝑖 =∑

𝑖,𝑗 𝛼𝑖 𝜕𝑋𝑖𝜕𝑋′𝑗 𝑑𝑋′𝑗
We let 𝒟𝑉 denote the 𝑘(𝑉) -space 1-forms. Then ⋀𝑝𝒟𝑉 is the space of 𝑝-forms.

Relative to a separating transcendence basis {𝑋1,… , 𝑋𝑛}, such a form can be written
uniquely as 𝜔 = ∑

𝑖1<⋯<𝑖𝑝 𝛼𝑖1⋯𝑖𝑝𝑑𝑋𝑖1 ⋯𝑑𝑋𝑖𝑝 , 𝛼𝑖1⋯𝑖𝑝 ∈ 𝑘(𝑉).
9Zariski, Oscar. An Introduction to the theory of algebraic surfaces (notes of a course at Harvard,

1957-58). Lecture Notes in Mathematics, No. 83 Springer, 1969.
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We are especially interested in the space of 𝑛-forms. This is a one-dimensional space
over 𝑘(𝑉), with basis 𝑑𝑋1𝑑𝑋2⋯𝑑𝑋𝑛 for any separating transcendence basis {𝑋1,… , 𝑋𝑛}.
Note that if {𝑋′1,… , 𝑋′𝑛} is a second such transcendence basis

𝑑𝑋1⋯𝑑𝑋𝑛 = 𝜕(𝑋1,… , 𝑋𝑛)𝜕(𝑋′1,… , 𝑋′𝑛)𝑑𝑋′1⋯𝑑𝑋′𝑛.
Lemma 11.21. Let 𝑃 be a smooth point of 𝑉, and let 𝑋1,… , 𝑋𝑛 be a system of local param-
eters at 𝑃. Then
(a) 𝑋1,… , 𝑋𝑛 is a separating transcendence basis for 𝐹∕𝑘;
(b) 𝜕𝜕𝑋𝑖𝒪𝑃 ⊂ 𝒪𝑃, 𝜕𝜕𝑋𝑖𝔪𝑟+1 ⊂𝔪𝑟.

Proof. We shall use that 𝑓 ∈ 𝒪𝑃 can be written𝑓 = (polynomial in the 𝑋𝑖with coefficients in 𝑘) + 𝑓0, 𝑓0 ∈𝔪𝑟+1
(algebraic Taylor’s formula).

(a) It suffices to show that a 𝑘-derivation 𝐷 of 𝑘(𝑉)∕𝑘 is zero if it is zero on 𝑋1,… , 𝑋𝑛
(for then 𝑑𝑋1,… , 𝑑𝑋𝑛 is a basis for the space of 1-forms; hence 𝜕𝜕𝑋1 ,… , 𝜕𝜕𝑋1 is a basis for
the 𝑘-derivations of 𝑘(𝑉)∕𝑘, and so 𝑋1,…𝑋𝑛 form a separating transcendence basis for𝑘(𝑉)∕𝑘).

I claim that 𝐷′𝒪𝑃 ⊂ 𝒪𝑃.
for some multiple 𝐷′ = 𝑔𝐷 of 𝐷 with 𝑔 ∈ 𝒪𝑃. To see this, note that

𝐷(𝑓∕ℎ) = ℎ𝐷𝑓 − 𝑓𝐷ℎℎ2 , (3)

and so, if 𝒪𝑃 is a localization of 𝑘[𝑓1,… , 𝑓𝑚], then it suffices to take 𝑔 to be the product
of the denominators of the 𝐷𝑓𝑖. Now𝐷′𝔪𝑟+1 ⊂𝔪𝑟
because 𝐷′(𝑓1⋯𝑓𝑟+1) = 𝐷′(𝑓1)𝑓2⋯𝑓𝑟+1 +⋯ + 𝑓1⋯𝑓𝑟𝐷′(𝑓𝑟+1). (4)

Let 𝑓 ∈ 𝒪𝑃. We are given that 𝐷′𝑋𝑖 = 0 all 𝑖, and so𝐷′𝑓 = 𝐷′𝑓0 ∈𝔪𝑟.
As this is true for all 𝑟, Krull’s intersection theorem (1.8) shows that 𝐷′𝑓 = 0. Now𝐷 = 𝑔−1𝐷′ is zero on 𝒪𝑃, and this implies that it is zero on 𝑘(𝑉) by (3).

(b) Let 𝐷 = 𝜕𝜕𝑋𝑖 . Choose a 𝑔 as in (a), so that (𝑔𝐷)𝒪𝑃 ⊂ 𝒪𝑃. Let 𝑓 ∈ 𝒪𝑃; then(𝑔𝐷)𝑋𝑗 ∈ (𝑔) (all 𝑗) ⇐⇒ (𝑔𝐷)𝑓 ∈ (𝑔) +𝔪𝑟 (all 𝑟) ⇐⇒ 𝐷𝑓 ∈ 𝒪𝑃.
Now (4) shows that 𝜕𝜕𝑋𝑖𝔪𝑟+1 ⊂𝔪𝑟. 2
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We now assume that 𝑉 is smooth.
A differential 1-form 𝜔 is holomorphic at 𝑃 if, when expressed in terms of a system

of local parameters 𝑋𝑖 at 𝑃, 𝜔 =∑𝛼𝑖𝑑𝑋𝑖,
the 𝛼𝑖 ∈ 𝒪𝑃. This definition is independent of the choice of the 𝑋𝑖 because, for another
choice 𝑋′𝑗 of a system of local parameters, 𝜕𝑋𝑖𝜕𝑋′𝑖 and its inverse lie in 𝒪𝑃, by the lemma.
Similarly, a differential 𝑛-form 𝜔 = 𝛼𝑑𝑋1⋯𝑑𝑋𝑛 is said to be holomorphic at 𝑃 if𝛼 ∈ 𝒪𝑃. Again this is independent of the choice of the 𝑋𝑖 because the Jacobian 𝜕(𝑋1,…,𝑋𝑛)𝜕(𝑋′1,…,𝑋′𝑛)
and its inverse lie in 𝒪𝑃.

The sheaf Ω𝑝𝑉 of holomorphic 𝑝-forms on 𝑉 is defined by setting𝛤(𝑈,Ω𝑝𝑉) = {𝑝-forms 𝜔 ∣ 𝜔 holomorphic at all points of 𝑈}
for all open 𝑈 in 𝑉. For exampleΩ1 = “cotangent sheaf”Ω𝑛 = “canonical sheaf”, is invertible= 𝒪𝑉(𝐾) where 𝐾 is a canonical divisor.

Proposition 11.22. The sheafΩ𝑝𝑉 is locally free of rank
rank(Ω𝑝) = (𝑛𝑝) ;

in particular, it is coherent.

We need the following basic fact (5.52):

11.23. Let 𝑓1,… , 𝑓𝑛 be a system of local parameters at a smooth point 𝑃. Then there is an
open neighbourhood𝑈 of 𝑃 such that 𝑓1,… , 𝑓𝑛 are represented by pairs (𝑓1, 𝑈),… , (𝑓𝑛, 𝑈)
and the map (𝑓1,… , 𝑓𝑛)∶ 𝑈 → 𝔸𝑛 is étale.

In particular, 𝑓1 − 𝑓1(𝑄),… , 𝑓𝑛 − 𝑓𝑛(𝑄) is a system of local parameters at 𝑄 for
all points 𝑄 ∈ 𝑈. It follows that the family 𝑑𝑓1,… , 𝑑𝑓𝑛 is a basis for Ω1𝑉|𝑈, which is
therefore free of rank 𝑛. Similarly,𝑑𝑓𝑖1 ⋯𝑑𝑓𝑖𝑝 , 𝑖1 <⋯ < 𝑖𝑝,
form a basis for Ω𝑝𝑉|𝑈.

Now assume that 𝑉 is complete. We defineℎ𝑝,𝑞 = dim𝑘𝐻𝑞(𝑉,Ω𝑝).
Thus, ℎ𝑝,0 def= dim𝑘𝐻0(𝑉,Ω𝑃) is number of independent holomorphic 𝑝-forms on 𝑉.
The integer ℎ𝑛,0 = dim𝑘𝐻0(𝑉,Ω𝑛)
is called the geometric genus of 𝑉 and is denoted 𝑝𝑔.
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In characteristic 0, the theory of harmonic integrals shows thatℎ𝑝,𝑞 = ℎ𝑞,𝑝ℎ𝑝,𝑞 = ℎ𝑛−𝑝,𝑛−𝑞
and ℎ1,0 is the irregularity of 𝑉.

In characteristic ≠ 0, then Mumford10, showed that there exists a surface withℎ1,0 ≠ ℎ0,1.
(See also Igusa 1955). Serre duality implies that ℎ0,𝑞 = ℎ𝑛,𝑛−𝑞 in all characteristics.
The canonical class

The sheaf Ω𝑛𝑉 can also be described as 𝒪𝑉(𝐾), where 𝐾 is the divisor of an 𝑛-form 𝜔, as
we now explain.

Let 𝜔 be an 𝑛-form on 𝑉 (smooth, not necessarily complete), and let 𝑃 be a (closed)
point on 𝑉. We want to define the divisor (𝜔) of 𝜔. Let 𝑍 be an irreducible closed
subvariety of 𝑉 of codimension 1, and suppose that𝜔 = 𝛼𝑑𝑋1…𝑑𝑋𝑛,
where the 𝑋𝑖 are a system of local parameters at some nonsingular point in 𝑍. Setord𝑍(𝜔) = ord𝑍(𝛼).
We first check that this is independent of the choice of 𝑋1,… , 𝑋𝑛.We have𝜕𝜕𝑋𝑖𝒪𝑍 ⊂ 𝒪𝑍
(write 𝛽 ∈ 𝒪𝑍 as 𝛽 = 𝑓∕𝑔, 𝑓, 𝑔 ∈ 𝒪𝑃, 𝑔|𝑍 ≠ 0, and note that 𝜕𝑓𝜕𝑋𝑖 , 𝜕𝑔𝜕𝑋𝑖 ∈ 𝒪𝑃). Therefore,

𝜔 = 𝛼𝑑𝑋1⋯𝑑𝑋𝑛= 𝛼𝐽𝑑𝑋′1⋯𝑑𝑋′𝑛
with 𝐽 = 𝜕(𝑋1,…,𝑋𝑛)𝜕(𝑋′1,…,𝑋′𝑛) a unit in 𝒪𝑍 , and so ord𝑍(𝛼) = 𝗈𝗋𝖽𝑍(𝛼𝐽).

Secondly, one checks that it is independent of the choice of 𝑃.
Thirdly, one check that the sum (𝜔) = ∑𝑍 ord𝑍(𝜔)𝑍 is finite, i.e., ord𝑍(𝜔) ≠ 0 for

only finitely many 𝑍. For this, we use the following fact:
If 𝑋1,… , 𝑋𝑛 is a separating transcendence basis for 𝑘(𝑉)∕𝑘, then there exists
an open subset 𝑈 of 𝑉 such that (a) 𝑋1,… , 𝑋𝑛 are all holomorphic on 𝑈,
and (b) for all points 𝑃 in 𝑈, the functions 𝑋𝑖 − 𝑋𝑖(𝑃) form a system of local
parameters at 𝑃.

10Amer. J. Math. 83 (1961), 339–342; 84 (1962), 642–648.
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𝑈

𝔸𝑛
𝑋1,… , 𝑋𝑛

Here 𝑋1,… , 𝑋𝑛 are a system of local parameters at all unramified points (the 𝑋𝑖 define
a regular map to 𝔸𝑛 on an open subset 𝑈 of 𝑉, which is étale over an open subset of𝑈 because it is at the generic point; cf. 11.23). On 𝑈, we can write 𝜔 = 𝛼𝑑𝑋1⋯𝑑𝑋𝑛,
where 𝑑𝑋𝑖 = 𝑑(𝑋𝑖 − 𝑋𝑖(𝑃)). The only 𝑍 that enter into (𝜔) are (a) the 𝑍 in (𝛼) (finite
number), and (b) the 𝑍 that occur in 𝑉 ∖𝑈 (finite number).

Let 𝐾 = (𝜔). Replacing 𝜔 with 𝑓𝜔, 𝑓 ∈ 𝑘(𝑉)×, replaces 𝐾 with a linearly equivalent
divisor. The class of 𝐾 is said to be canonical.

Fix a 𝜔0. Then any other 𝑛-form 𝜔 on an open subset 𝑈 of 𝑉 can be written in the
form 𝜔 = 𝑓𝜔0, and the map 𝜔 ↦ 𝑓 defines an isomorphismΩ𝑛 → 𝒪(𝐾).
Example 11.24. Consider 𝑉 = ℙ𝑛. Let𝑇0,… , 𝑇𝑛 be homogeneous coordinates𝑋𝑖 = 𝑇𝑖∕𝑇0𝑌1 = 𝑇0∕𝑇1 and 𝑌𝑖 = 𝑇𝑖∕𝑇1, 𝑖 ≥ 2.
Then 𝑋1 = 1∕𝑌1, 𝑋𝑖 = 𝑌𝑖∕𝑌1, 𝑖 ≥ 2. Thus

𝑑𝑋1⋯𝑑𝑋𝑛 ↔ (−𝑑𝑌1𝑌21 ) ⋅ (𝑌1𝑑𝑌2 − 𝑌2𝑑𝑌1𝑌21 )⋯
= −𝑑𝑌1𝑑𝑌2⋯𝑑𝑌𝑛 ⋅ 𝑌𝑛−11𝑌2𝑛1 𝑑𝑌1𝑑𝑌1⋯ = 0
= 1𝑌𝑛+11 𝑑𝑌1⋯𝑑𝑌𝑛.

Note that 𝑌1 = 0 is the hyperplane at infinity,𝐻∞, and so(𝑑𝑋1⋯𝑑𝑋𝑛) = −(𝑛 + 1)𝐻∞.
In fact, 𝐾ℙ𝑛 = −(𝑛 + 1)𝐻, 𝐻 any hyperplane.𝑝𝑔 = dim𝐻0(𝑉,Ω𝑝) = 0 (because 𝐾 < 0).
Example 11.25. Let 𝑉 be the product of two complete smooth curves,𝑉 = 𝐶1 × 𝐶2.



b. Differentials 17

I claim that 𝐾𝐶1×𝐶2 = 𝐾𝐶1 × 𝐶2 + 𝐶1 × 𝐾𝐶2 .
Let 𝜔1 (resp. 𝜔2) be a 1-form on 𝐶1 (resp. 𝐶2); then 𝜔1 ∧ 𝜔2 is a 2-form on 𝐶1 × 𝐶2, and(𝜔1 ∧ 𝜔2) = (𝜔1) × 𝐶2 + 𝐶1 × (𝜔2),
and so Ω2𝐶1×𝐶2 = Ω1𝐶1 ⊗Ω1𝐶2 .
By the Künneth formula,11𝐻0(Ω2𝐶1×𝐶2) = 𝐻0(Ω1𝐶1)⊗𝐻0(Ω1𝐶2),
and so 𝑝𝑔(𝐶1 × 𝐶2) = 𝑝𝑔(𝐶1) × 𝑝𝑔(𝐶2).
(In fact, we didn’t use that the 𝐶𝑖 have dimension 1).
The residue map and the adjunction formula

Now let 𝑉 be a smooth variety over 𝑘, and let 𝑍 be a smooth closed subvariety of
codimension 1. We wish to relate 𝐾𝑉 to 𝐾𝑍 , by showing that there is an exact sequence0 ,→ Ω𝑛𝑉 ,,,,,,→ Ω𝑛𝑉(𝑍) residue,,,,,,→ Ω𝑛−1𝑍 ,→ 0. (5)

Here Ω𝑛𝑉(𝑍) = Ω𝑛𝑉 ⊗𝒪(𝑍) =“𝑛-forms with at worst a simple pole on 𝑍”.
First we must define the (Poincaré) residue map. Let 𝑃 be a point in 𝑍, and let 𝑧 = 0

be a local equation for 𝑍 near 𝑃. Write 𝒪𝑉,𝑃 → 𝒪𝑍,𝑃 = 𝒪𝑉,𝑃∕(𝑧) as 𝑓 ↦ 𝑓∶ 𝒪𝑃 → �̄�𝑃.
Let 𝑋1,… , 𝑋𝑛−1 ∈ 𝒪𝑃 be such that �̄�1,… , �̄�𝑛−1 are a system of local parameters at 𝑃 on𝑍; then 𝑋1,… , 𝑋𝑛−1, 𝑧 are a system of local parameters for 𝑃 on 𝑉. Define the residue
of the 𝑛-form 𝜔 ≥ −𝑍 at 𝑃 as follows: by assumption, 𝑧𝜔 is a holomorphic 𝑛-form at 𝑃,
say, 𝑧𝜔 = 𝑓𝑑𝑋1⋯𝑑𝑋𝑛−1𝑑𝑍 with 𝑓 ∈ 𝒪𝑃; then

res𝑃(𝜔) = 𝑓𝑑�̄�1⋯𝑑�̄�𝑛−1.
Lemma 11.26. This definition is independent of the choice of 𝑋𝑖 and 𝑧.
Proof. Suppose that 𝑧′, 𝑋′1,… , 𝑋′𝑛 are used instead. Note that ( 𝜕𝜕𝑋′𝑖 ) is a well-defined
derivation on �̄�. Moreover, ( 𝜕𝑦𝜕𝑋′𝑖 ) = 𝜕�̄�𝜕�̄�𝑖 for 𝑦 = 𝑋1,… , 𝑋𝑛−1, and therefore equality.
holds for all 𝑦 ∈ 𝒪. Note also that 𝑧 = 𝜀𝑧′ with 𝜀 a unit in𝒪𝑃 because (𝑧) = (𝑧′) as ideals
in 𝒪𝑃 (by definition). We have

{ 𝑧𝜔 = 𝑓𝑑𝑋1⋯𝑑𝑋𝑛−1𝑑𝑧𝑧′𝜔 = 𝑓′𝑑𝑋′1⋯𝑑𝑋′𝑛−1𝑑𝑧′.
11Let ℱ and 𝒢 be coherent sheaves on algebraic varieties 𝑉 and𝑊. Define a coherent sheaf on 𝑉 ×𝑊

by setting ℱ⊠ 𝒢 = ℱ ⊗𝒪𝑉 𝒪𝑉×𝑊 ⊗𝒪𝑊 𝒢. Then𝐻∗(𝑉 ×𝑊,ℱ⊠ 𝒢) ≃ 𝐻∗(𝑉,ℱ)⊗𝐻∗(𝑊,𝒢).
See Serre, GACC, 1959, VII, n◦17.
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Therefore, { 𝑧𝜔 = 𝑓𝐽𝑑𝑋′1⋯𝑑𝑋′𝑛−1𝑑𝑧′𝑧′𝜔 = (𝑓∕𝜀)𝐽𝑑𝑋′1⋯𝑑𝑋′𝑛−1𝑑𝑧′
and so 𝑓′ = (𝑓∕𝜀)𝐽𝑓′ = (𝑓∕𝜀)𝐽.
We calculate 𝐽. First

𝐽 = ⎛⎜⎜⎜⎜⎝
𝜕𝑋1𝜕𝑋′1

𝜕𝑋1𝜕𝑋′2 ⋯ ∗⋮ ⋮⋮ ∗𝜕𝑍𝜕𝑋′1 ⋯ ⋯ 𝜕𝑧𝜕𝑧′

⎞⎟⎟⎟⎟⎠
Now 𝜕𝑧𝜕𝑧′ = 𝜀 + 𝑧′ 𝜕𝜀𝜕𝑧′ , ( 𝜕𝜀𝜕𝑧′ ∈ 𝒪𝑝),
therefore

( 𝜕𝑧𝜕𝑧′ ) = 𝜀, �̄�′ = 0⎛⎜⎝ 𝜕𝑧𝜕𝑥′𝑗 ⎞⎟⎠ = 𝜕�̄�𝜕�̄�𝑗 = 0 (as �̄� = 0).
We conclude that

𝐽 = ⎛⎜⎜⎜⎜⎝
𝜕�̄�1𝜕�̄�′1 ⋯ 𝜕�̄�1𝜕�̄�′𝑛−1 ∗⋮ ⋮ ⋮𝜕�̄�𝑛−1𝜕�̄�′1 ⋯ 𝜕�̄�𝑛−1𝜕�̄�′𝑛−1 ∗0 0 0 𝜀

⎞⎟⎟⎟⎟⎠= 𝜕(�̄�1⋯ �̄�𝑛−1)𝜕(�̄�′1⋯ �̄�′𝑛−1)𝜀.
Therefore, 𝑓′ = 𝑓𝜕(�̄�1⋯ �̄�𝑛−1)𝜕(�̄�′1⋯ �̄�′𝑛−1)
and so 𝑓𝑑�̄�1⋯𝑑�̄�𝑛 = 𝑓′𝑑�̄�′1⋯𝑑�̄�′𝑛
as required.

At this point, it is easy to check the exactness of the sequence. 2

Theorem 11.27 (Adjunction formula). Let 𝑍 be a smooth curve on a smooth surface𝑉. Then 𝐾𝑍 = (𝐾𝑉 + 𝑍) ⋅ 𝑍.
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Proof. We write the residue sequence in the form0→ 𝒪𝑉(𝐾𝑉)→ 𝒪𝑉(𝐾𝑉 + 𝑍)→ 𝒪𝑍(𝐾𝑍)→ 0
Tensoring the following exact sequence (which is the definition of 𝒪𝑍)0→ 𝒪(−𝑍)→ 𝒪→ 𝒪𝑍 → 0
with 𝒪(𝐾𝑉 + 𝑍) gives an exact sequence0→ 𝒪(𝐾𝑉)→ 𝒪(𝐾𝑉 + 𝑍)→ 𝒪𝑍(𝐾𝑉 + 𝑍 ⋅ 𝑍)→ 0
(recall (11.11) that 𝒪𝑍 ⊗𝒪(𝐷) = 𝒪𝑍(𝐷 ⋅ 𝑍)). On comparing the two sequences, we find
that 𝒪𝑍(𝐾𝑉 + 𝑍 ⋅ 𝑍) ≃ 𝒪𝑍(𝐾𝑍)
and hence that 𝐾𝑉 + 𝑍 ⋅ 𝑍 ∼ 𝐾𝑍 . 2

Aside 11.28. The theorem holds for any smooth closed subvariety 𝑍 of dimension 𝑛 − 1 in a
smooth variety 𝑉 of dimension 𝑛. We have to define 𝐷 ⋅ 𝑍 for 𝐷 a divisor on 𝑉. For this, write𝐷 = (𝑓) locally near 𝑃, and define 𝐷 ⋅ 𝑍 locally to be (𝑓|𝑍). Now the equality 𝒪𝑍 ⊗ 𝒪(𝐷) =𝒪𝑍(𝐷 ⋅ 𝑍) holds in general (with the same proof).
Example 11.29. Let 𝐶 be a smooth curve on a smooth complete surface 𝑉. From the
theory of curves, deg(𝐾𝐶) = 2𝑔(𝐶) − 2.
From the adjunction formula deg(𝐾𝐶) = ((𝐾𝑉 + 𝐶) ⋅ 𝐶).
Therefore 𝑔(𝐶) = 12(𝐾𝑉 + 𝐶) ⋅ 𝐶 + 1.

For a curve 𝐶 (possibly singular) on a surface 𝑉, define
𝑝𝑎(𝐶) = 12(𝐾𝑉 + 𝐶 ⋅ 𝐶) + 1.

This is the “virtual arithmetic genus of 𝐶 on 𝑉”. Note that it is an invariant of 𝐶 on 𝑉.
Theorem 11.30. 𝑝𝑎(𝐶) ≥ 𝑔(𝐶), and equality holds if and only if 𝐶 is smooth.

Proof. Zariski, Harvard notes, 11.3. 2

Example 11.31. Let 𝐶 be a smooth curve of degree 𝑛 in ℙ2. Then 𝐾𝑉 = −3𝐻 by 11.24
and 𝐶 ∼ 𝑛𝐻, where𝐻 is a hyperplane in ℙ2. From the adjunction formula,𝐾𝐶 = (−3𝐻 + 𝐶) ⋅ 𝐶= (𝑛 − 3)𝐻 ⋅ 𝐶= hypersurface section of 𝐶 of degree 𝑛 − 3
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and so deg(𝐾𝐶) = (𝑛 − 3)𝑛.
From the formula deg(𝐾𝐶) = 2𝑔(𝐶) − 2, we deduce that

𝑔(𝐶) = 12(𝑛 − 3)𝑛 + 1 = (𝑛 − 1)(𝑛 − 2)2 .
For example, a smooth cubic curve 𝐶 in ℙ2 has genus 1 and canonical class 𝐾𝐶 = 0.
Example 11.32. Let 𝑉 = 𝐶 × 𝐶 with 𝐶 a smooth curve of genus 𝑔. Then (see 11.25),𝐾𝑉 = 𝐾𝐶 × 𝐶 + 𝐶 × 𝐾𝐶

∙ ∙ ∙𝐾𝐶 𝐶
∙∙
∙𝐾𝐶

𝐶

The diagonal ∆ is a smooth curve on 𝐶 × 𝐶, isomorphic to 𝐶, and so 𝐾∆ = 𝐾𝐶 when we
identify the two curves. We have𝐾∆ = (𝐾𝐶 × 𝐶 + 𝐶 × 𝐾𝐶 + ∆) ⋅ ∆ (adjunction formula)= 𝐾∆ + 𝐾∆ + ∆ ⋅ ∆ (because 𝑃 × 𝐶 ⋅ ∆ = (𝑃, 𝑃)“=”𝑃).
Therefore ∆ ⋅ ∆ = −𝐾∆.
(Weil 194512 uses this as the definition of 𝐾∆ = 𝐾𝐶). On taking degrees, we find that(∆ ⋅ ∆) = 2 − 2𝑔.
Topologically (over ℂ),(∆ ⋅ ∆) = Euler characteristic 𝑏0 − 𝑏1 + 𝑏2 of 𝐶= 1 − 2𝑔 + 1.
Example 11.33. Consider ℙ2 with a point 𝑃 “blown up” to a line. Thus, we have a
surface 𝑉 and a regular birational map𝜋∶ 𝑉 ,→ ℙ2
such that the restriction of 𝜋 to 𝑉 ∖ 𝐶 → ℙ2 ∖ 𝑃 is an isomorphism. Here 𝐶 ≈ ℙ1 is the
curve 𝜋−1(𝑃), which is the set of “directions” through 𝑃. Let 𝜔 be a 2-form on ℙ2. Its

12Weil, André, Sur les courbes algébriques et les variétés qui s’en déduisent. Publications de l’Institut de
Mathématiques de l’Université de Strasbourg, 7 (1945).
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divisor (𝜔) = −3𝐻, and 𝜋∗𝜔 is a 2-form on 𝑉. Choose a hyperplane (i.e., a line)𝐻 in ℙ2
not containing 𝑃, and let𝐻′ = 𝜋−1𝐻. Then𝐾𝑉 = (𝜋∗𝜔) = −3𝐻′ + 𝑛𝐶, some 𝑛.
Take degrees in the adjunction formula, we find that(𝐾𝐶) = ((𝐾𝑉 + 𝐶) ⋅ 𝐶)−2 = ((−3𝐻′ + (𝑛 + 1)𝐶) ⋅ 𝐶)= (𝑛 + 1)(𝐶2) (note that𝐻′ ⋅ 𝐶 = 0 because𝐻 ∌ 𝑃).
But 𝐶 ⋅ 𝐶 = −1 (see 11.16), and so −2 = −(𝑛 + 1)
and 𝑛 = 1. We have shown that 𝐾𝑉 = −3𝐻′ + 𝐶.
(More generally, when blowing up a point on a smooth surface,𝐾𝑉 = 𝜋∗(canonical class) + 𝐶.)
Example 11.34. Let 𝑉 be a smooth surface of degree 𝑛 in ℙ3. Then𝐾ℙ3 = −4𝐻𝐾𝑉 = (−4𝐻 + 𝑉) ⋅ 𝑉,
where𝐻 is a hyperplane in ℙ3.We have 𝑉 ∼ 𝑛𝐻, and so𝐾𝑉 = hypersurface section of degree 𝑛 − 4.𝑛 = 4, quartic surface, 𝐾 = 0 (𝐾3 surfaces, Kummer, Kähler, Kodaira).𝑛 = 3, cubic.𝑛 = 2, quadric surface 𝐾 = −2 (hyperplane section)𝑉 = ℙ1 × ℙ1 if 𝑉 smooth𝐾𝑉 = 𝐾 × ℙ1 + ℙ1 × 𝐾.
Comparison with Kähler differentials

Let 𝐴 be a 𝑘-algebra, and let𝑀 be an 𝐴-module. Recall (from §5) that a 𝑘-derivation is a𝑘-linear map 𝐷∶ 𝐴 → 𝑀 satisfying Leibniz’s rule:𝐷(𝑓𝑔) = 𝑓◦𝐷𝑔 + 𝑔◦𝐷𝑓, all 𝑓, 𝑔 ∈ 𝐴.
A pair (Ω𝐴∕𝑘, 𝑑) comprising an 𝐴-module Ω𝐴∕𝑘 and a 𝑘-derivation 𝑑∶ 𝐴 → Ω𝐴∕𝑘 is
the (Kähler) module of differential one-forms for 𝐴 over 𝑘 if it has the following
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universal property: for any 𝑘-derivation 𝐷∶ 𝐴 → 𝑀, there is a unique 𝐴-linear map𝛼∶ Ω𝐴∕𝑘 → 𝑀 such that 𝐷 = 𝛼◦𝑑,
𝐴 Ω𝐴∕𝑘

𝑀.

←→𝑑← →𝐷 ←→ 𝛼
Thus, Der𝑘(𝐴,𝑀) ≃ Hom𝐴-linear(Ω𝐴∕𝑘,𝑀).
For any multiplicative subset 𝑆 of 𝐴,𝑆−1Ω𝐴∕𝑘 ≃ Ω𝑆−1𝐴∕𝑘. (6)

Now let𝑉 be an irreducible algebraic variety over 𝑘. The sheaf of Kähler differentials
on 𝑉 is the coherent 𝒪𝑉-module Ω𝑉∕𝑘 such that𝛤(𝑈,Ω𝑉∕𝑘) = Ω𝒪(𝑈)∕𝑘
for all open affines 𝑈. From (6), we deduce that𝛤(𝑈,Ω𝑉∕𝑘) = {𝜔 ∈ Ω𝑘(𝑉)∕𝑘 ∣ 𝜔 ∈ Ω𝒪𝑝∕𝑘 for all 𝑃 ∈ 𝑈}.

Now assume that 𝑉 is nonsingular. ThenΩ𝑘(𝑉)∕𝑘 ≃ Ω1𝑘(𝑉)∕𝑘
since both are (by definition) the 𝑘(𝑉)-linear dual of Der𝑘(𝑘(𝑉), 𝑘(𝑉)). Similarly,

(Ω𝑉∕𝑘)𝑃 (6)≃ Ω𝒪𝑃∕𝑘 ≃ Ω1𝒪𝑃∕𝑘 def= (Ω1𝑉∕𝑘)𝑃.
Therefore Ω𝑉∕𝑘 and Ω1𝑉∕𝑘 are equal as subsheaves of the constant sheaf Ω1𝑘(𝑉)∕𝑘 (and the
arguments in the text show that both are locally free of rank dim𝑉).
c. The Riemann-Roch theorem

Let 𝑉 be a smooth projective surface over 𝑘, and let 𝐷 be a divisor on 𝑉. Defineℎ𝑖(𝐷) = dim𝑘𝐻𝑖(𝑉,𝒪(𝐷))𝜒𝑉(𝐷) =∑(−1)𝑖ℎ𝑖(𝐷)𝜒𝑉(𝒪𝑉) = 𝜒𝑉 = “Euler characteristic” of 𝑉= 𝑝𝑎(𝑉) + 1, 𝑝𝑎(𝑉) = arithmetic genus of 𝑉.
For example, for a surface, 𝜒(𝐷) = ℎ0(𝐷) − ℎ1(𝐷) + ℎ2(𝐷)𝑝𝑎(𝑉) = −ℎ1(𝒪𝑉) + ℎ2(𝒪𝑉).
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The weak Riemann-Roch theorem

Recall that, for a curve 𝐶, the weak Riemann-Roch theorem (i.e., Riemann’s theorem)
says that 𝜒(𝐷) = 1 − 𝑔 + deg(𝐷),
where 1 − 𝑔 = 𝜒𝐶 . This holds for 𝐷 = 0 by definition, and it can be proved for a general𝐷 by noting that adding a point 𝑃 to a divisor𝐷 adds 1 to both sides. Indeed, on tensoring0→ 𝒪(−𝑃)→ 𝒪→ 𝒪𝑃 → 0
with 𝒪(𝐷 + 𝑃), we obtain an exact sequence0→ 𝒪(𝐷)→ 𝒪(𝐷 + 𝑃)→ 𝒪(𝐷 + 𝑃)⊗𝒪𝑃 → 0;
but 𝒪(𝐷 + 𝑃)⊗ 𝒪𝑃 = 𝒪𝑃 (i.e., it is the sheaf supported on the point 𝑃 having fibre 𝑘),
and so 𝜒(𝐷 + 𝑃) − 𝜒(𝐷) = 𝜒(𝒪𝑃) = 1.
The proof of the similar result for surfaces ismore complicated because curves on surfaces
are more complicated than points in curves.

Theorem 11.35 (weak Riemann-Roch for surfaces). Let𝐷 be adivisor ona smooth
projective surface. Then 𝜒(𝐷) = 𝜒𝑉 + 12(𝐷 ⋅ 𝐷 − 𝐾).
Proof. If 𝐷 = 0, then the statement is true by definition. Thus, to prove the theorem it
suffices to show that the statement is true for 𝐷 + 𝐶 if and only if it is true for 𝐷, where𝐶 is any curve on 𝐷. We prove this first for a smooth curve 𝐶.

On tensoring 0→ 𝒪(−𝐶)→ 𝒪→ 𝒪𝐶 → 0
with 𝒪(𝐷 + 𝐶), we obtain an exact sequence0→ 𝒪(𝐷)→ 𝒪(𝐷 + 𝐶)→ 𝒪𝐶(𝐷 + 𝐶 ⋅ 𝐶)→ 0
(we used (11.11) to replace 𝒪(𝐷 + 𝐶)⊗𝒪𝐶 with 𝒪𝐶(𝐷 + 𝐶 ⋅ 𝐶)). Hence𝜒(𝐷 + 𝐶) − 𝜒(𝐷) = 𝜒𝐶(𝐷 + 𝐶 ⋅ 𝐶)= 𝜒𝐶 + (𝐷 + 𝐶 ⋅ 𝐶) by R-R for a curve= 1 − 𝑔(𝐶) + (𝐷 + 𝐶 ⋅ 𝐶)= −12(𝐾 + 𝐶 ⋅ 𝐶) + (𝐷 + 𝐶 ⋅ 𝐶).
On the other hand,12(𝐷 + 𝐶 ⋅ 𝐷 + 𝐶 − 𝐾) − 12(𝐷 ⋅ 𝐷 − 𝐾) = 12(𝐷 + 𝐶 ⋅ 𝐶 + 𝐶 ⋅ 𝐷 − 𝐾)= 12(𝐷 + 𝐶 ⋅ 𝐶 + 𝐷 + 𝐶 ⋅ 𝐶 − 𝐶 ⋅ 𝐶 + 𝐾)= 𝜒(𝐷 + 𝐶) − 𝜒(𝐷)
This completes the proof of the theorem when 𝐷 is a sum of smooth curves.

To complete the proof of the theorem, we need to use aweak form of Bertini’s theorem
(proved later 11.45).
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Let 𝑉 be a smooth projective variety, and let 𝐷 be a divisor on 𝑉. Then there
exists a hypersurface section 𝐶 of 𝑉 such that 𝐷 +𝐶 is linearly equivalent to
a sum

∑𝐸𝑖 with the 𝐸𝑖 smooth and irreducible and such that 𝐸𝑖 ∩ 𝐸𝑗 = ∅
for 𝑖 ≠ 𝑗.

We can nowprove theweakRiemann-Roch theorem for an arbitrary divisor𝐷. According
to the Bertini theorem, 𝐷 ∼∑𝐸𝑖 − 𝐶 =∑𝐸𝑖 −∑𝐶𝑗
with the 𝐸𝑖 and 𝐶𝑗 all smooth. This completes the proof. 2

Remark 11.36. We use this to compute the Hilbert polynomial of a surface:𝜒(𝒪(𝑛)) def= 𝜒(𝐶𝑛) (𝐶𝑛 = 𝑛𝐻,𝐻 a hyperplane section)= 𝜒𝑉 + 12(𝐶𝑛 ⋅ 𝐶𝑛 − 𝐾) (weak R-R)= (𝐻 ⋅𝐻)2 𝑛2 − 12𝐾 ⋅𝐻 + 𝜒𝑉 .
In general, for a smooth projective variety 𝑉 of dimension 𝑑 and degree 𝛿,

𝜒(𝒪(𝑛)) = 𝛿𝑑!𝑛𝑑 + terms of lower degree in 𝑛.
Recall that the degree of 𝑉 is the intersection number of 𝑉 with a linear subvariety
of ℙ𝑚 of codimension 2. This agrees with our calculation. For 𝑛 sufficiently positive,ℎ𝑖(𝐶𝑛) = 0 for 𝑖 ≥ 1, and so𝜒(𝒪(𝑛)) = ℎ0(𝐶𝑛) = dim𝑘(𝑘hom[𝑉]𝑛) for 𝑛 ≥ 0,
where 𝑘hom[𝑉] is the homogeneous coordinate ring of 𝑉 and 𝑘hom[𝑉]𝑛 is the part of
degreee 𝑛.
Serre duality

Theorem 11.37 (Serre duality). Let 𝑉 be a smooth projective variety of dimension 𝑛
over 𝑘, let ℰ be a locally free sheaf on 𝑉, and letΩ𝑛 be the sheaf of holomorphic 𝑛-forms on𝑉. Then the cup-product pairing𝐻𝑝(𝑉,ℰ) ×𝐻𝑛−𝑝(𝑉,ℰ∨ ⊗Ω𝑛)→ 𝐻𝑛(𝑉,Ω𝑛) ≃ 𝑘
is a perfect pairing (i.e., it identifies each of𝐻𝑝 and𝐻𝑛−𝑝 with the dual of the other).

Therefore, dim𝑘𝐻𝑝(𝑉,ℰ) = dim𝑘𝐻𝑛−𝑝(𝑉,ℰ∨ ⊗Ω𝑛).
When ℰ = 𝒪(𝐷), this becomes ℎ𝑝(𝐷) = ℎ𝑛−𝑝(𝐾 − 𝐷).

In particular, for 𝑉 a surface, ℎ2(𝐷) = ℎ0(𝐾 − 𝐷)ℎ1(𝐷) = ℎ1(𝐾 − 𝐷).
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Hence, Riemann-Roch for a surface becomesℎ0(𝐷) − ℎ1(𝐷) + ℎ0(𝐾 − 𝐷) = 𝜒𝑉 + 12(𝐷 ⋅ 𝐷 − 𝐾).
The general theorem is proved in Grothendieck’s Séminaire Bourbaki 149. See also

Grothendieck’s talk at the 1958 ICM (Edinburgh), and the last section of Serre’s FAC.
We will prove only that ℎ𝑛(𝐷) = ℎ0(𝐾 − 𝐷).13 This will suffice to complete the proof of
the Riemann-Roch theorem for a surface.

Lemma 11.38. Let 𝑉 be a complete smooth surface embedded in some projective space ℙ𝑁 ,
and let 𝐶𝑛 be a section of 𝑉 by a hypersurface of degree 𝑛 (i.e., a section of 𝒪(𝑛)). Let 𝐷 be
a divisor on 𝑉. Then 𝐷 > 0 ⇐⇒ 𝐷 ⋅ 𝐶𝑛 > 0 on 𝐶𝑛,
and so (𝐷 ⋅ 𝐶𝑛) > 0. For example, (𝐶2𝑛) > 0.
Proof. Choose 𝐶𝑛 so that its intersection with all the components of 𝐷 are defined.
Then supp(𝐷 ⋅ 𝐶𝑛) = supp(𝐷) ∩ supp(𝐶𝑛) ≠ ∅.
Indeed, 𝐶𝑛 = 𝐻𝑛 ∩ 𝑉 with𝐻𝑛 a hypersurface of degree 𝑛 in ℙ𝑁 , andsupp(𝐷) ∩ supp(𝐶𝑛) = supp(𝐷) ∩𝐻𝑛
is nonempty because otherwise each component of 𝐷 would be contained an affine
variety ℙ𝑁 ∖𝐻𝑛. 2

Lemma 11.39. Let 𝑉 be a smooth projective surface over 𝑘.
(a) 𝐻2(𝑉,Ω2𝑉) ≃ 𝑘;
(b) 𝐻2(𝑉,Ω2𝑉(𝐷)) = 0 if 𝐷 > 0.

Proof. (a) From the residue sequence0→ Ω2𝑉 → Ω2𝑉(𝐶𝑛)→ Ω1𝐶𝑛 → 0,
we get an exact cohomology sequence𝐻1(𝑉,Ω2𝑉(𝑛))→ 𝐻1(𝐶,Ω1𝐶𝑛) 𝛼,→ 𝐻2(𝑉,Ω2𝑉)→ 𝐻2(𝑉,Ω2𝑉(𝑛))→ 0.
But by Theorem B in cohomology (p. 6), the two end terms are zero for large 𝑛, and so 𝛼
is an isomorphism for large 𝑛. But 𝐻1(𝐶,Ω1𝐶𝑛) ≃ 𝑘
by the theory of curves.

(b) On tensoring the residue sequence with 𝒪(𝐷), we get an exact sequence0→ Ω2𝑉(𝐷)→ Ω2𝑉(𝐷 + 𝐶𝑛)→ Ω1𝐶𝑛 ⊗𝒪(𝐷)→ 0.
But Ω1𝐶𝑛 = 𝒪(𝐾𝐶𝑛), and so Ω1𝐶𝑛 ⊗ 𝒪(𝐷) = 𝒪𝐶𝑛(𝐾𝐶𝑛 + 𝐷 ⋅ 𝐶𝑛). Now the cohomology
sequence of this sequence and Theorem 𝐵 show that𝐻2(𝑉,Ω2𝑉(𝐷)) ≃ 𝐻1(𝐶𝑛,𝒪𝐶𝑛(𝐾𝐶𝑛 + 𝐷 ⋅ 𝐶𝑛))≃ 𝐻0(𝐶𝑛,−𝐷 ⋅ 𝐶𝑛)∨ (Serre duality on a curve)= 0 as − 𝐷 ⋅ 𝐶𝑛 < 0. 2

13Following Zariski, Bulletin of the AMS, 1958 — see the end of the report.
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Let 𝑉 be a smooth projective surface.

Definition 11.40. We let 𝐽(𝐷) denote the dual 𝑘-vector space to𝐻2(𝒪(𝐷)).
If 𝐷′ ≥ 𝐷, then there is an exact sequence0→ 𝒪(𝐷)→ 𝒪(𝐷′)→ ℒ→ 0,

and the sheaf ℒ has support in supp(𝐷′ ∖ 𝐷) (let 𝑃 be a point of 𝑉; if there exists an 𝑓
such that (𝑓) ≥ −𝐷′ but (𝑓) ≱ −𝐷 at 𝑃, then clearly 𝑃 ∈ supp(𝐷′ − 𝐷)). Thus, supp(ℒ)
is of dimension ≤ 1, and so𝐻2(𝑉,ℒ) = 0, and we have an exact sequence𝐻2(𝒪(𝐷))→ 𝐻2(𝒪(𝐷′))→ 0.
Dually, this becomes 𝐽(𝐷)← 𝐽(𝐷′)← 0.
In other words, 𝐷′ ≥ 𝐷 ⇐⇒ 𝐽(𝐷′) ⊂ 𝐽(𝐷).
Definition 11.41. The “Weil differential 2-forms” are defined to be𝐽 = lim,,→ 𝐽(𝐷) =⋃

𝐷 𝐽(𝐷)
(limit as 𝐷 becomes more negative).

Let 𝑓 ∈ 𝑘(𝑉) and 𝜎 ∈ 𝐻2(𝐷), then𝑓(𝜎) ∈ 𝐻2(𝐷 − (𝑓)) (roughly, 𝑓𝜎 ≥ −𝐷 + (𝑓)).
Let 𝜆 ∈ 𝐽(𝐷) and 𝑓 ∈ 𝑘(𝑉); then 𝑓𝜆 ∈ 𝐽(𝐷 + (𝑓)) is the element

𝐻2(𝐷 + (𝑓)) 𝑓,→ 𝐻2(𝐷) 𝜆,→ 𝑘(𝑉),
i.e., (𝑓𝜆)(𝜎) = 𝜆(𝑓(𝜎)) for all 𝜎 ∈ 𝐻2(𝐷 + (𝑓)).
In this way, 𝐽 becomes a 𝑘(𝑉)-vector space.
Theorem 11.42. 𝐽 is a one-dimensional 𝑘(𝑉)-vector space.
Proof. Clearly, dim𝑘(𝑉) 𝐽 ≥ 1, because 𝐽(𝐾) is dual to 𝐻2(𝑉,Ω2) = 𝑘 ≠ 0. It remains
to show that dim𝑘(𝑉) 𝐽 ≤ 1. Suppose not, and let 𝜆1 and 𝜆2 be two 𝑘(𝑉)-independent
elements of 𝐽, which we may suppose lie in 𝐽(𝐷) for some 𝐷 < 0. The mapΦ∶ 𝐻0(𝑉,𝒪(𝑛))⊕𝐻0(𝑉,𝒪(𝑛))→ 𝐽, 𝑓, 𝑔 ↦ 𝑓𝜆1 + 𝑔𝜆2
is injective, because 𝜆1, 𝜆2 are independent over 𝑘(𝑉), and it takes values in 𝐽(𝐷 − 𝐶𝑛),
because 𝑓 ≥ −𝐶𝑛, 𝜆 ∈ 𝐽(𝐷) ⇐⇒ 𝑓𝜆 ∈ 𝐽(𝐷 + (𝑓)) ⊂ 𝐽(𝐷 − 𝐶𝑛)).
We obtain a contradiction by estimating the dimensions of the 𝑘-vector spaces for 𝑛 ≫ 0.
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For the left hand side,

dim𝐻0(𝑉,𝒪(𝑛)) ∼ (𝐶21)2 𝑛2 + lower powers.

— see (11.36), or use the weak Riemann-Roch theorem,ℎ0(𝐶𝑛) ∼ 12(𝐶2𝑛 − 𝐾) ∼ 12(𝑛2𝐶21)
Therefore dim𝑘(𝐻0(𝑉,𝒪(𝑛))⊕𝐻0(𝑉,𝒪(𝑛))) ∼ 𝑛2(𝐶21).

On the other hand,dim𝑘(𝐽(𝐷 − 𝐶𝑛)) = dim𝐻2(𝒪(𝐷 − 𝐶𝑛)).
From the cohomology sequence of0→ 𝒪(𝐷 − 𝐶𝑛)→ 𝒪(𝐷)→ 𝒪𝐶𝑛(𝐷 ⋅ 𝐶𝑛)→ 0
we find that ℎ2(𝐷 − 𝐶𝑛) ∼ ℎ1𝐶𝑛(𝐷 ⋅ 𝐶𝑛),
and ℎ1𝐶𝑛(𝐷 ⋅ 𝐶𝑛) = 1 − 𝑔(𝐶𝑛) + deg(𝐷 ⋅ 𝐶𝑛)
by the Riemann-Roch theorem for curves (note that ℎ0𝐶𝑛(𝐷 ⋅ 𝐶𝑛) = 0 as 𝐷 < 0). Nowdeg(𝐷 ⋅ 𝐶𝑛) = 𝑛 deg(𝐷 ⋅ 𝐶1)
and so we can ignore it. On the other hand,𝑔(𝐶𝑛) = 12(𝐶𝑛 ⋅ 𝐶𝑛 + 𝐾) + 1 (adjunction formula)∼ 12𝑛2(𝐶21) (we may suppose 𝐶𝑛 smooth by Bertini).
Hence dim𝑘(𝐽(𝐷 − 𝐶𝑛)) ∼ 𝑛22 (𝐶21),
which is a contradiction (because (𝐶21) > 0). 2

Now consider the pairing𝐻0(Ω2(−𝐷)) × 𝐻2(𝒪(𝐷)) → 𝐻2(𝐷) ≃ 𝑘.𝜔 > 𝐷 𝜎 = {𝑓𝑖𝑗𝑘}(𝑓𝑖𝑗𝑘) > −𝐷 ↦ 𝜔𝜎 = {𝜔𝑓𝑖𝑗𝑘}𝜔𝑓𝑖𝑗𝑘 holomorphic
The pairing gives a commutative diagram (all 𝐷′ > 𝐷):𝐻0(Ω2(−𝐷)) 𝐽(𝐷)

𝐻0(Ω2(−𝐷′)) 𝐽(𝐷′)

←→𝜑𝐷←→ ←→𝜑𝐷′ ←→ dual to
𝐻2(𝒪(𝐷))
𝐻2(𝒪(𝐷′)).←↠
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On passing to the direct limit, we get a map𝜑∶ Ω2𝑘(𝑉)∕𝑘 → 𝐽,
where Ω2𝑘(𝑉)∕𝑘 is the space of 2-forms of 𝑘(𝑉)∕𝑘. This is a nonzero 𝑘(𝑉)-linear map, and
both spaces are one-dimensional 𝑘(𝑉)-vector spaces, and so 𝜑 is an isomorphism.

It follows that each map 𝜑𝐷 is injective, but we shall in fact show that 𝜑𝐷 is also
surjective. For this it suffices to show:{𝜔 a 2-form, 𝜔 ≥ 𝐷 and 𝜑(𝜔) ∈ 𝐽(𝐷′), 𝐷′ > 𝐷} ⇐⇒ {𝜔 ≥ 𝐷′} .
It suffices prove this with 𝐷′ = 𝐷 +𝐸 with 𝐸 irreducible, because, if 𝐷′ = 𝐷 +𝐸1 +⋯+𝐸𝑟, then 𝜔 ≥ 𝐷, 𝜑(𝜔) ∈ 𝐽(𝐷′) ⊂ 𝐽(𝐷 + 𝐸1)⇐⇒ 𝜔 ≥ 𝐷 + 𝐸1, 𝜑(𝜔) ∈ 𝐽(𝐷′) ⊂ 𝐽(𝐷 + 𝐸1 + 𝐸2)⇐⇒ etc.

Note that 𝜑(𝜔) ∈ 𝐽(𝐷′) ⇐⇒ 𝜑(𝜔) vanishes on Ker(𝜓). Consider the diagram0 𝒪(𝐷) 𝒪(𝐷 + 𝐸) ℳ1 0
0 Ω2 Ω2(𝐸) ℳ2 0

←→ ←→←→ ←→←→ ←→←→←→ ← → ← → ←→
in which the vertical arrows at left are multiplication by 𝜔, and the dashed arrow on the
cokernels is induced by the other two. If 𝐸 is smooth, thenℳ1 = 𝒪𝐸(𝐷 + 𝐸 ⋅ 𝐸) andℳ2 = Ω1𝐸 . In any event, supp(ℳ1) ⊂ 𝐸. Consider𝐻1(𝐸,ℳ1) 𝐻2(𝒪(𝐷)) 𝐻2(𝒪(𝐷 + 𝐸)) 0

𝐻1(𝐸,ℳ2) 𝐻2(Ω2) 𝐻2(Ω2(𝐸)) 0
𝑘 0

←→𝜌←→ 𝛼 ←→𝜓←→ 𝜑(𝜔) ←→←→←→𝑎 ← →⇐⇐ ← →⇐⇐

The zeros at right are because 𝐸 is one-dimensional, and 𝐻2(Ω2(𝐸)) = 0 because 𝐸 > 0
(see an earlier lemma). Now 𝜑(𝜔) vanishes on Ker(𝜓) = Im(𝜌), and so 𝜑(𝛼)◦𝜌 = 0;
therefore 𝑎◦𝛼 = 0, and so 𝛼 is not surjective.
Lemma 11.43. If 𝜔 ≱ 𝐷 + 𝐸, then 𝛼 must be surjective.
Proof. Let (𝜔) = 𝐷 + 𝐷′′, 𝐷′′ > 0, supp(𝐸) ⊄ supp(𝐷′′).

In order to show that 𝛼∶ 𝐻1(𝐸,ℳ1)→ 𝐻1(𝐸,ℳ2) is surjective, it suffices to show
thatℳ1 →ℳ2 is surjective except at a finite number of points. To see this, consider,0 𝐾1 ℳ1 ℳ2 𝐾2 0.

𝐶
0 0

←→ ←→ ← →←→

←→ ←→← →

← →← →
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Ifℳ1 →ℳ2 is surjective for almost all points, then supp(𝐾2) has dimensional zero, and
the cohomology sequences of the two short exact sequences give surjections𝐻1(𝐶)↠ 𝐻1(ℳ2)𝐻1(ℳ1)↠ 𝐻1(𝐶).

It remains to show thatℳ1 →ℳ2 is almost surjective. It suffices to show that𝒪(𝐷 + 𝐸)𝑃 → Ω(𝐸)𝑃
is surjective for almost all 𝑃 ∈ 𝐸. But𝒪(𝐷)𝑃 → Ω2𝑃
is surjective whenever (𝜔)𝑃 = 𝐷𝑃, i.e., whenever 𝑃 ∉ 𝐷. The same is true after tensoring
with 𝒪(𝐸): the map 𝒪(𝐷 + 𝐸)𝑃 → Ω2(𝐸)𝑃 is surjective whenever 𝑃 ∉ 𝐷′′, and 𝐷′′ ∩ 𝐸
has only finitely many points. This completes the proof. 2

This type of argument works only to show that 𝐻0(𝒪(𝐷)) and 𝐻𝑛(𝒪(𝐾 − 𝐷)) are
dual.

The full Riemann-Roch theorem

Theorem 11.44 (Riemann-Roch). Let 𝐷 be a divisor on a smooth projective surface.
Then ℎ0(𝐷) − ℎ1(𝐷) + ℎ0(𝐾 − 𝐷) = 𝜒𝑉 + 12(𝐷 ⋅ 𝐷 − 𝐾).
Proof. Combine the weak version of the theorem (11.35) with the equality ℎ2(𝐷) =ℎ0(𝐾 − 𝐷) proved in the last subsection. 2

Compare this with the original version (of the early Italian geometers):ℎ0(𝐷) + ℎ0(𝐾 − 𝐷) ≥ 𝜒𝑉 + 12(𝐷 ⋅ 𝐷 − 𝐾)
The difference of the two sides was denoted 𝑖(𝐷), and called the “superabundance” of 𝐷.
The early Italian geometers could prove that 𝑖(𝐷 + 𝐶𝑛) = 0 for 𝑛 ≫ 0.

When 𝐷 = 0, 𝒪(𝐷) = 𝒪𝑉 , and1 − ℎ1(𝒪) + ℎ0(𝐾) = 𝜒𝑉ℎ0(𝐾) = dim𝑘𝐻0(Ω2) = 𝑝𝑔 (geometric genus)𝑝𝑎 = 𝜒𝑉 − 1 (arithmetic genus).𝑝𝑔 − 𝑝𝑎 = ℎ1(𝒪).
In characteristic zero only,ℎ1(Ω0) = ℎ0(Ω1).ℎ0(Ω1) = number independent holomorphic 1-forms= 𝑞 (irregularity = dimPicard variety).

Note that 𝑝𝑔 − 𝑝𝑎 = 𝑞.
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Grothendieck’s Riemann-Roch theorem:𝜒𝑉 = 112((𝐾2) + [𝑐2]).
Here [𝑐2] is the degree of the second Chern class of 𝑉. In characteristic zero, [𝑐2] is the
topological Euler characteristic,

∑(−1)𝑖 dimℚ𝐻𝑖(𝑉,ℚ) (any good cohomology theory
and coefficient fieldℚ). This was proved in characteristic zero by Max Noether and in
characteristic 𝑝 by Grothendieck. (It would be nice to have a proof of the theorem just
for surfaces.)

Proof of the weak weak Bertini theorem

We still have to prove:

Theorem 11.45. Let𝐷 be a divisor on a smooth projective variety𝑉. Then𝒪(𝐷+𝐶𝑛) has
smooth zeros of sections, i.e., |𝐷 + 𝐶𝑛| has smooth irreducible members, i.e., there exists a
smooth irreducible (positive) divisor𝐸 ∼ 𝐷 + 𝐶𝑛, 𝑛 ≫ 0.

(The weak Bertini theorem says that 𝐷 + 𝐶𝑚 ∼ 𝐸, 𝐸 smooth and irreducible (ifdim(𝑉) > 1). Hence 𝑉 has smooth hyperplane sections of all degrees.)
In fact, almost all members of 𝐷 + 𝐶𝑛 have these properties.
We first show that it suffices to prove the theorem in the case of a hypersurface

section. Use sections of 𝒪(𝐷 + 𝐶𝑛) to define a rational map𝜑ℒ∶ 𝑉 ⤏ ℙ𝑛.
Suppose that 𝑓0,… , 𝑓𝑁 form a basis for the sections. Map𝑥 ↦ (𝑓0(𝑥)∶ ⋯ ∶ 𝑓𝑁(𝑥)).
We want to show that if 𝑛 ≫ 0, then 𝜑ℒ is an isomorphism into ℙ𝑛 (then the hyperplane
sections of 𝜑ℒ(𝑉) correspond to the divisors in |𝐷 + 𝐶𝑛|).

(An invertible sheaf ℒ on 𝑉 such that 𝜑ℒ∶ 𝑉 ⤏ ℙ𝑛 is an isomorphism from 𝑉 onto
its image is said to be “very ample” . Thus, we want to show thatℒ⊗𝒪(𝑛) is very ample
for 𝑛 >> 0.)

Step 1: 𝑛 ≫ 0, then |||𝐷 + 𝐶𝑛||| has no base points, so 𝜑ℒ is a morphism.
[Theorem: 𝒪(𝐷 + 𝐶𝑛) is generated by its global sections ⇐⇒ |𝐷 + 𝐶𝑛| has no base

points, i.e., there is no 𝑥 ∈ 𝑉 common to all positive divisors ∼ 𝐷 +𝐶𝑛; therefore 𝜑ℒ is a
rational map; elementary ZMT + normality implies that it is a morphism.]

Step 2: For 𝑛 ≥ 𝑛0 + 1, |𝐷 + 𝐶𝑛| separates points (i.e., given 𝑥, 𝑦, there exists an 𝐸
in the linear system such that 𝑥 ∈ 𝐸 and 𝑦 ∉ 𝐸).
Proof. Take 𝐸′ ∼ 𝐷 + 𝐶𝑛, 𝐸′ not containing 𝑥. Take a 𝐶1 containing 𝑦 but not 𝑥. Now𝐸′ + 𝐶1 contains 𝑦 but not 𝑥. 2

Therefore, 𝜑 is bijective on points, 𝑉(𝑘) ≃ (𝜑𝑉)(𝑘). This is not enough to show that𝜑 is an isomorphism, e.g., 𝑡 ↦ (𝑡2, 𝑡3)∶ 𝔸1 → {𝑌2 = 𝑋3}.
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Step 3: If 𝑛 ≥ 𝑛0 + 1, then |𝐷 + 𝐶𝑛| separates directions.
Consider the tangent space to 𝑉 at 𝑥,𝑇𝑥,𝑉 = Hom𝑘(𝔪∕𝔪2, 𝑘), 𝔪 ⊂ 𝒪𝑥.

To separate directions means that 𝑇𝑥,𝑉 → 𝑇𝜑𝑥,𝜑𝑉
is injective. In other words, given two tangent vector 𝜏1 and 𝜏2 at 𝑥,there exists a divisor
in |𝐷 + 𝐶𝑛| through 𝑥 such that its tangent space at 𝑥 contains 𝜏1 but not 𝜏2:

𝜏1
𝜏2

If 𝜑 separates directions at 𝑥, then it is an isomorphism at 𝑥, because then𝔪′ → 𝔪
is surjective, so 𝒪′𝜑𝑥 → 𝒪𝑥 is surjective, and it is certainly injective as 𝜑 is a surjective
morphism.

Take 𝐸′ ∼ 𝐷+𝐶𝑛 not through 𝑥. Take𝐶1 throught 𝜏1 and not through 𝜏2;now 𝐸′+𝐶1
works.

Second part of the proof: 𝑉 is smooth projective ⊂ ℙ𝑁; then a general hyperplane
section is smooth (and irreducible).

We can take 𝑉 to be affine, say, 𝑉 = 𝑉(𝑓1,… , 𝑓𝑠) of dimension 𝑟 in 𝔸𝑛, with 𝑓𝑖 =𝑓𝑖(𝑋1,… , 𝑋𝑛). Recall that the tangent space at 𝑥 is defined by the system of linear
equations ∑𝑗 𝜕𝑓𝑖𝜕𝑋𝑗 (𝑋𝑗 − 𝑥𝑗) = 0, 𝑖 = 1,… , 𝑟.
To say that 𝑉 is smooth at 𝑥 means that the tangent space has dimension 𝑛 − 𝑟, or,
equivalently, that the matrix ( 𝜕𝑓𝑖𝜕𝑋𝑗 )𝑥 has rank 𝑛 − 𝑟.

When is the hyperplane section defined byℎ =∑𝑗 𝑎𝑗(𝑋𝑗 − 𝑎𝑗) = 0
nonsingular at 𝑥? Its ideal is (𝑓1,… , 𝑓𝑠, ℎ), and we need

rank ( 𝜕𝑓𝑖𝜕𝑋𝑗 , 𝜕ℎ𝜕𝑋𝑗 ) = 𝑛 − 𝑟 + 1,
i.e., the equation ℎ = 0 should be independent from the equations defining the tangent
space 𝑇𝑥,𝑉 i.e., ℎ is not zero on 𝑇𝑥,𝑉 .

We have to show that, in general, a hyperplane in ℙ𝑛 does not contain any tangent
space to 𝑉.
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Given 𝑇𝑥,𝑉 of dimension 𝑟, how many hyperplanes𝐻 in ℙ𝑛 contain 𝑇𝑥,𝑉? Note that𝐻 contains 𝑇𝑥 ⇐⇒ 𝐻 contains 𝑟 + 1 “independent” points of 𝑇𝑥.
Heuristically, there are∞𝑛 hyperplanes inℙ𝑛 (parametrized by the dual projective space),
and so there are∞𝑛−𝑟−1 hyperplanes containing 𝑇𝑥. But there are ≤∞𝑟 tangent spaces𝑇𝑥 as 𝑥 varies over 𝑉 , i.e., a family of dimension ≤ 𝑟. Hence the number of hyperplanes
that do contain some 𝑇𝑥 is∞𝑟 +∞𝑛−𝑟+1 ≤∞𝑛−1. Therefore, almost all hyperplanes inℙ𝑛 do not conttain any 𝑇𝑥,𝑉 , and so give nonsingular sections. Irreducible? Generically
they are irreducible (cf. Lang, IAG, p.213).

We now translate the Italian into English.14 We are given 𝑉 smooth of dimension 𝑟
closed in ℙ𝑛. We want to show that “in general” a hyperplane of ℙ𝑛 does not contain
any 𝑇𝑥,𝑉 . The hyperplanes∑ 𝑎𝑗𝑋𝑗 = 0 are parametrized by ℙ̌𝑛 = {(𝑎0,… , 𝑎𝑛)}.

Claim: the hyperplanes containing some 𝑇𝑥,𝑉 correspond to the points of ℙ̌𝑛 in some
closed subset of dimension ≤ 𝑛 − 1.
Lemma 11.46. The set of all hyperplanes containing a fixed 𝐿𝑟 (linear space of dimension𝑟) is represented in ℙ̌𝑛 by a linear space of dimension 𝑛 − 𝑟 − 1.
Proof. A hyperplane𝐻 contains 𝐿𝑟 ⇐⇒ 𝐻 contains 𝑟 + 1 points that span 𝐿𝑟, say,𝑃𝑖 = (𝑥𝑖0,… , 𝑥𝑖𝑛), 𝑖 = 1,… , 𝑟 + 1.
Thus, 𝐻 ⊃ {𝑃1,… , 𝑃𝑟+1} ⇐⇒ ∑𝑗 𝑎𝑗𝑥𝑖𝑗 = 0, 𝑖 = 1,… , 𝑟 + 1.
This is a system of equations in the variables 𝑎𝑗. The equations are independent, and so
the solution space is a projective space of dimension 𝑛 − (𝑟 + 1). 2

Lemma 11.47. The set of tangent spaces 𝑇𝑥,𝑉 is a “space of dimension ≤ 𝑟”.
Proof. Let 𝑆 = {(𝑥,𝐻) ∣ 𝑥 ∈ 𝑉, 𝐻 ⊃ 𝑇𝑥,𝑉} ⊂ ℙ𝑛 × ℙ̌𝑛.A point 𝑃 of 𝑆 has coordi-
nates (𝑋0,… , 𝑋𝑛, 𝑎0,… , 𝑎𝑛), satisfying certain polynomial equations: the equations of 𝑉
expressing that 𝑥 ∈ 𝑉 and the vanishing of various subdeterminants of⎛⎜⎝𝑎0,… , 𝑎𝑛𝜕𝐹𝑖𝜕𝑋𝑗

⎞⎟⎠
expressing that

∑ 𝑎𝑖𝑋𝑖 contains the tangent plane to 𝑉 at 𝑥.
ℙ̌𝑛

ℙ𝑛pr1
pr2 𝑆

14According to Severi, modern algebraic geometers have feet of lead.



d. Proof of the Riemann hypothesis for curves 33

We have pr1(𝑆) = 𝑉 and pr−11 (𝑥) is a linear space of dimension 𝑛 − 𝑟 − 1 (previous
lemma). Hence dim(𝑆) = 𝑛 − 1. On the other hand, pr2(𝑆) is the set of hyperplanes
containing some 𝑇𝑥,𝑉 . An 𝑎 ∈ pr2(𝑆) came from a pair (𝑋, 𝑎). It is a closed set becauseℙ𝑛 is complete. As dim(𝑆) = 𝑛 − 1, we have dimpr2(𝑆) ≤ 𝑛 − 1. 2

Contrast: Early Italian geometers, systems of objects∞𝑟. Modern geometers, objects
are parametrized by a projective space of dimension 𝑟, i.e., can be algebraized to such a
space.

Let 𝐿 be a linear system of positive divisors on𝑉𝑟, projective. Assume that the general
member is irreducible. Then it has no singularieties outside
(a) the singularities of 𝑉,
(b) base points of the system (characteristic zero).

Example 11.48.

Y 2 = X3

This family doesn’t contradict Bertini because it is not a linear system (it is parametrized
by 𝑡, 𝑌2 = (𝑋 − 𝑡)3).
d. Proof of the Riemann hypothesis for curves

Let 𝑉 be a smooth projective surface over an algebraically closed field 𝑘.
Some algebra

Let 𝑉 be a finite dimensional vector space over ℚ (or ℝ), and let 𝑄(𝑥, 𝑦) be a symmetric
bilinear form with values in ℚ (or ℝ),𝑄(𝑥, 𝑦) =∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗, 𝑎𝑖𝑗 = 𝑎𝑗𝑖.
The associated quadratic form is𝑄(𝑥, 𝑥) =∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗,
and we can recover 𝑄(𝑥, 𝑦) from this by𝑄(𝑥, 𝑦) = 12(𝑄(𝑥 + 𝑦, 𝑥 + 𝑦) − 𝑄(𝑥, 𝑥) − 𝑄(𝑦, 𝑦)).
Such a form is diagonalizable by a rational orthogonal transformation of 𝑉,𝑄(𝑥, 𝑥) = 𝑑1𝑥21 + 𝑑2𝑥22 +⋯ + 𝑑𝑛𝑥2𝑛.
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Law of inertia: the numbers of 𝑑𝑖 > 0, 𝑑𝑖 < 0, and 𝑑𝑖 = 0 are invariants of 𝑄. The index
is the number of 𝑑𝑖 > 0, and the signature is the family (+,⋯ ,+,−,⋯ ,−, 0,⋯ , 0).

For example,
(a) index= 𝑛 if and only if all 𝑑𝑖 > 0, i.e., 𝑄 positive definite;

(b) index= 0 if and only if 𝑄 is negative semi-definite (𝑄 is negative definite if all𝑑𝑖 < 0);
(c) index= 1 if and only if there exists an 𝑥 ∈ 𝑉 such that (1) 𝑄(𝑥, 𝑥) > 0 and (2)𝑄(𝑦, 𝑦) ≤ 0 for all 𝑦 ∈ ⟨𝑥⟩⟂.
(Proof of (c). ⇐⇒ : 𝑄( , ) = 𝑑1𝑥21 − 𝑑2𝑥22 − ⋯ − 𝑑𝑛𝑥2𝑛, 𝑑𝑖 ≥ 0, 𝑑1 > 0. Take𝑥 = (1, 0,… , 0). Then 𝑦 ∈ ⟨𝑥⟩⟂ means that 𝑦 = (0, 𝑥2,… , 𝑥𝑛). ⇐ : Choose coordinates

so that 𝑥 = (1, 0,… , 0); choose the 𝑦𝑖 to be an orthogonal basis of the complement ⟨𝑥⟩⟂
of ⟨𝑥⟩. Then 𝑑1 = 𝑄(𝑥, 𝑥) > 0 and 𝑑𝑖 = 𝑄(𝑦𝑖, 𝑦𝑖) ≤ 0 for 𝑖 = 2,… , 𝑛.
Divisors

A divisor on 𝑉 is a formal sum 𝐷 =∑𝑛𝑖𝐶𝑖 with 𝑛𝑖 ∈ ℤ and 𝐶𝑖 an irreducible curve on𝑉. We say that 𝐷 is positive, denoted 𝐷 ≥ 0, if all the 𝑛𝑖 ≥ 0. Every 𝑓 ∈ 𝑘(𝑉)× has an
associated divisor (𝑓) of zeros and poles — these are the principal divisors. Two divisors𝐷 and 𝐷′ are said to be linearly equivalent if𝐷′ = 𝐷 + (𝑓) some 𝑓 ∈ 𝑘(𝑉)×.

For a divisor 𝐷, let 𝐿(𝐷) = {𝑓 ∈ 𝑘(𝑉) ∣ (𝑓) + 𝐷 ≥ 0}.
Then 𝐿(𝐶) is a finite-dimensional vector space over 𝑘, whose dimension we denote by𝑙(𝐷). The map 𝑔 ↦ 𝑔𝑓 is an isomorphism 𝐿(𝐷)→ 𝐿(𝐷 − (𝑓)), and so 𝑙(𝐷) depends only
on the linear equivalence class of 𝐷.
Elementary intersection theory

Because 𝑉 is smooth, a curve 𝐶 on 𝑉 has a local equation at every closed point 𝑃 of 𝑉,
i.e., there exists an 𝑓 such that𝐶 = (𝑓) + components not passing through 𝑃.
If 𝐶 and 𝐶′ are distinct irreducible curves on 𝑉, then their intersection number at𝑃 ∈ 𝐶 ∩ 𝐶′ is (𝐶 ⋅ 𝐶′)𝑃 def= dim𝑘(𝒪𝑉,𝑃∕(𝑓, 𝑓′)),
where 𝑓 and 𝑓′ are local equations for 𝐶 and 𝐶′ at 𝑃, and their (global) intersection
number is (𝐶 ⋅ 𝐶′) = ∑

𝑃∈𝐶∩𝐶′(𝐶 ⋅ 𝐶′)𝑃.
This definition extends by linearity to pairs of divisors 𝐷,𝐷′ without common compo-
nents. Now observe that ((𝑓) ⋅ 𝐶) = 0, because it equals the degree of the divisor of 𝑓|𝐶
on 𝐶, and so (𝐷 ⋅ 𝐷′) depends only on the linear equivalence classes of 𝐷 and 𝐷′. This
allows us to define (𝐷 ⋅ 𝐷′) for all pairs 𝐷,𝐷′ by replacing 𝐷 with a linearly equivalent

divisor that intersects 𝐷′ properly. In particular, (𝐷2) def= (𝐷 ⋅ 𝐷) is defined.
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The Riemann-Roch theorem

Recall that the Riemann-Roch theorem for a curve 𝐶 states that, for all divisors 𝐷 on 𝐶,𝑙(𝐷) − 𝑙(𝐾𝐶 − 𝐷) = deg(𝐷) + 1 − 𝑔,
where 𝑔 is the genus of𝐶 and𝐾𝐶 is a canonical divisor (so deg𝐾𝐶 = 2𝑔−2 and 𝑙(𝐾𝐶) = 𝑔).
Better, in terms of cohomology,𝜒(𝒪(𝐷)) = deg(𝐷) + 𝜒(𝒪)ℎ1(𝐷) = ℎ0(𝐾𝐶 − 𝐷).

The Riemann-Roch theorem for a surface 𝑉 states that, for all divisors 𝐷 on 𝑉,𝑙(𝐷) − sup(𝐷) + 𝑙(𝐾𝑉 − 𝐷) = 𝑝𝑎 + 1 + 12(𝐷 ⋅ 𝐷 − 𝐾𝑉),
where 𝐾𝑉 is a canonical divisor and𝑝𝑎 = 𝜒(𝒪) − 1 (arithmetic genus),sup(𝐷) = superabundance of 𝐷 ( ≥ 0, and = 0 for some divisors).
Better, in terms of cohomology,

𝜒(𝒪(𝐷)) = 𝜒(𝒪𝑉) + 12(𝐷 ⋅ 𝐷 − 𝐾)ℎ2(𝐷) = ℎ0(𝐾 − 𝐷),
and so sup(𝐷) = ℎ1(𝐷).

We shall also need the adjunction formula: let 𝐶 be a curve on 𝑉; then𝐾𝐶 = (𝐾𝑉 + 𝐶) ⋅ 𝐶.
The Hodge index theorem

Embed 𝑉 in ℙ𝑛. A hyperplane section of 𝑉 is a divisor of the form𝐻 = 𝑉 ∩𝐻′ with𝐻′ a
hyperplane in ℙ𝑛 not containing 𝑉. Any two hyperplane sections are linearly equivalent
(obviously).

Lemma 11.49. For a divisor 𝐷 and hyperplane section𝐻,𝑙(𝐷) > 1 ⇐⇒ (𝐷 ⋅𝐻) > 0. (7)

Proof. The hypothesis implies that there exists a 𝐷1 > 0 linearly equivalent to 𝐷. If
the hyperplane 𝐻′ is chosen not to contain a component of 𝐷1, then the hyperplane
section𝐻 = 𝑉 ∩𝐻′ intersects 𝐷1 properly. Now 𝐷1 ∩𝐻 = 𝐷1 ∩𝐻′, which is nonempty
by dimension theory, and so (𝐷1 ⋅𝐻) > 0. 2

Theorem 11.50 (Hodge Index Theorem). For a divisor 𝐷 and hyperplane section𝐻,(𝐷 ⋅𝐻) = 0 ⇐⇒ (𝐷 ⋅ 𝐷) ≤ 0.
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Proof. We begin with a remark: suppose that 𝑙(𝐷) > 0, i.e., there exists an 𝑓 ≠ 0 such
that (𝑓) + 𝐷 ≥ 0; then, for a divisor 𝐷′,𝑙(𝐷 + 𝐷′) = 𝑙((𝐷 + (𝑓)) + 𝐷′) ≥ 𝑙(𝐷′). (8)

We now prove the theorem. To prove the contrapositive, it suffices to show that(𝐷 ⋅ 𝐷) > 0 ⇐⇒ 𝑙(𝑚𝐷) > 1 for some integer𝑚,
because then (𝐷 ⋅𝐻) = 1𝑚 (𝑚𝐷 ⋅𝐻) ≠ 0
by (7) above. Hence, suppose that (𝐷 ⋅ 𝐷) > 0. By the Riemann-Roch theorem

𝑙(𝑚𝐷) + 𝑙(𝐾𝑉 −𝑚𝐷) ≥ (𝐷 ⋅ 𝐷)2 𝑚2 + lower powers of𝑚.
Therefore, for a fixed𝑚0 ≥ 1, we can find an𝑚 > 0 such that𝑙(𝑚𝐷) + 𝑙(𝐾𝑉 −𝑚𝐷) ≥ 𝑚0 + 1𝑙(−𝑚𝐷) + 𝑙(𝐾𝑉 +𝑚𝐷) ≥ 𝑚0 + 1.
If both 𝑙(𝑚𝐷) ≤ 1 and 𝑙(−𝑚𝐷) ≤ 1, then both 𝑙(𝐾𝑉 −𝑚𝐷) ≥ 𝑚0 and 𝑙(𝐾𝑉 +𝑚𝐷) ≥ 𝑚0,
and so 𝑙(2𝐾𝑉) = 𝑙(𝐾𝑉 −𝑚𝐷 + 𝐾𝑉 +𝑚𝐷) (8)≥ 𝑙(𝐾𝑉 +𝑚𝐷) ≥ 𝑚0.
As𝑚0 was arbitrary, this is impossible. 2

Let 𝑄 be a symmetric bilinear form on a finite-dimensional vector space𝑊 overℚ
(or ℝ). There exists a basis for𝑊 such that 𝑄(𝑥, 𝑥) = 𝑎1𝑥21 +⋯ + 𝑎𝑛𝑥2𝑛. The number of𝑎𝑖 > 0 is called the index (of positivity) of 𝑄— it is independent of the basis. There is
the following (obvious) criterion: 𝑄 has index 1 if and only if there exists an 𝑥 ∈ 𝑉 such
that 𝑄(𝑥, 𝑥) > 0 and 𝑄(𝑦, 𝑦) ≤ 0 for all 𝑦 ∈ ⟨𝑥⟩⟂.

Now consider a surface 𝑉 as before, and let Pic(𝑉) denote the group of divisors on 𝑉
modulo linear equivalence. We have a symmetric bi-additive intersection formPic(𝑉) × Pic(𝑉)→ ℤ.
On tensoring withℚ and quotienting by the kernels, we get a nondegenerate intersection
form15 𝑁(𝑉) ×𝑁(𝑉)→ ℚ.
Corollary 11.51. The intersection form on𝑁(𝑉) has index 1.
Proof. Apply the theorem and the criterion just stated. 2

Corollary 11.52. Let 𝐷 be a divisor on 𝑉 such that (𝐷2) > 0. If (𝐷 ⋅ 𝐷′) = 0, then(𝐷′2) ≤ 0.
Proof. The form is negative definite on ⟨𝐷⟩⟂. 2

15Here 𝑁(𝑉) is the Néron-Severi group of 𝑉.
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The inequality of Castelnuovo-Severi

Now take 𝑉 to be the product of two curves, 𝑉 = 𝐶1 × 𝐶2. Identify 𝐶1 and 𝐶2 with the
curves 𝐶1 × pt and pt × C2 on 𝑉, and note that𝐶1 ⋅ 𝐶1 = 0 = 𝐶2 ⋅ 𝐶2𝐶1 ⋅ 𝐶2 = 1 = 𝐶2 ⋅ 𝐶1.
Let 𝐷 be a divisor on 𝐶1 × 𝐶2 and set 𝑑1 = 𝐷 ⋅ 𝐶1 and 𝑑2 = 𝐷 ⋅ 𝐶2.
Theorem 11.53 (Castelnuovo-Severi Inequality). Let 𝐷 be a divisor on 𝑉; then(𝐷2) ≤ 2𝑑1𝑑2. (9)

Proof. We have (𝐶1 + 𝐶2)2 = 2 > 0(𝐷 − 𝑑2𝐶1 − 𝑑1𝐶2) ⋅ (𝐶1 + 𝐶2) = 0.
Therefore, by the Hodge index theorem,(𝐷 − 𝑑2𝐶1 − 𝑑1𝐶2)2 ≤ 0.
On expanding this out, we find that 𝐷2 ≤ 2𝑑1𝑑2. 2

Define the equivalence defect (difetto di equivalenza) of a divisor 𝐷 bydef (𝐷) = 2𝑑1𝑑2 − (𝐷2) ≥ 0.
Corollary 11.54. Let 𝐷, 𝐷′ be divisors on 𝑉; then||||(𝐷 ⋅ 𝐷′) − 𝑑1𝑑′2 − 𝑑2𝑑′1|||| ≤ (def (𝐷)def (𝐷′))1∕2 . (10)

Proof. Let𝑚, 𝑛 ∈ ℤ. On expanding outdef (𝑚𝐷 + 𝑛𝐷′) ≥ 0,
we find that 𝑚2def (𝐷) − 2𝑚𝑛 ((𝐷 ⋅ 𝐷′) − 𝑑1𝑑′2 − 𝑑2𝑑′1) + 𝑛2def (𝐷′) ≥ 0.
As this holds for all𝑚, 𝑛, it implies (10). 2

Example 11.55. Let 𝑓 be a nonconstantmorphism𝐶1 → 𝐶2, and let 𝑔𝑖 denote the genus
of 𝐶𝑖. The graph of 𝑓 is a divisor 𝛤𝑓 on 𝐶1 ×𝐶2 with 𝑑2 = 1 and 𝑑1 equal to the degree of𝑓. Now 𝐾𝛤𝑓 = (𝐾𝑉 + 𝛤𝑓) ⋅ 𝛤𝑓 (adjunction formula).

On using that 𝐾𝑉 = 𝐾𝐶1 × 𝐶2 + 𝐶1 × 𝐾𝐶2 , and taking degrees, we find that2𝑔1 − 2 = (𝛤𝑓)2 + (2𝑔1 − 2) ⋅ 1 + (2𝑔2 − 2) deg(𝑓).
Hence def (𝛤𝑓) = 2𝑔2 deg(𝑓). (11)



38 11. Surfaces

Proof of the Riemann hypothesis for curves

Let𝐶0 be a projective smooth curve over a finite field 𝑘0, and let𝐶 be the curve obtained by
extension of scalars to the algebraic closure𝑘 of𝑘0. Let𝜋 be the Frobenius endomorphism
of 𝐶. Then (see (11)), def (∆) = 2𝑔 and def (𝛤𝜋) = 2𝑔𝑞, and so (see (10)),|||(∆ ⋅ 𝛤𝜋) − 𝑞 − 1||| ≤ 2𝑔𝑞1∕2.
As (∆ ⋅ 𝛤𝜋) = number of points on 𝐶 rational over 𝑘0,
we obtain Riemann hypothesis for 𝐶0.
Aside 11.56. Note that, except for the last few lines, the proof is purely geometric and takes
place over an algebraically closed field.16 This is typical: study of the Riemann hypothesis over
finite fields suggests questions in algebraic geometry whose resolution proves the hypothesis.
This proof suggested to Grothendieck what have become known as the “standard conjectures”,
which apply to all projective smooth algebraic varieties, and which have the Riemann hypothesis
for the variety as an immediate consequence when the ground field is finite.

Correspondences

A divisor 𝐷 on a product 𝐶1 × 𝐶2 of curves is said to have valence zero if it is linearly
equivalent to a sum of divisors of the form 𝐶1 × pt and pt × 𝐶2. The group of correspon-
dences 𝒞(𝐶1, 𝐶2) is the quotient of the group of divisors on 𝐶1 × 𝐶2 by those of valence
zero. When 𝐶1 = 𝐶2 = 𝐶, the composite of two divisors 𝐷1 and 𝐷2 is𝐷1◦𝐷2 def= 𝑝13∗(𝑝∗12𝐷1 ⋅ 𝑝∗23𝐷2)
where the 𝑝𝑖𝑗 are the projections 𝐶 × 𝐶 × 𝐶 → 𝐶 × 𝐶; in general, it is only defined up to
linear equivalence. When 𝐷◦𝐸 is defined, we have𝑑1(𝐷◦𝐸) = 𝑑1(𝐷)𝑑1(𝐸), 𝑑2(𝐷◦𝐸) = 𝑑2(𝐷)𝑑2(𝐸), (𝐷 ⋅ 𝐸) = (𝐷◦𝐸′,∆) (12)

where, as usual, 𝐸′ is obtained from 𝐸 by reversing the factors. Composition makes the
group 𝒞(𝐶, 𝐶) of correspondences on 𝐶 into a ring ℛ(𝐶).

Following Weil, we define the “trace” of a correspondence 𝐷 on 𝐶 by𝜎(𝐷) = 𝑑1(𝐷) + 𝑑2(𝐷) − (𝐷 ⋅ ∆).
Applying (12), we find that𝜎(𝐷◦𝐷′) def= 𝑑1(𝐷◦𝐷′) + 𝑑2(𝐷◦𝐷′) − ((𝐷◦𝐷′) ⋅ ∆)= 𝑑1(𝐷)𝑑2(𝐷) + 𝑑2(𝐷)𝑑1(𝐷) − (𝐷2)= def (𝐷).
Thus Weil’s inequality 𝜎(𝐷◦𝐷′) ≥ 0 is a restatement of (9).
References.
Zariski, Algebraic surfaces 1935. (Reprinted with appendices by S. S. Abhyankar, J. Lipman and

D. Mumford. Preface to the appendices by Mumford. Classics in Mathematics. Springer,
1995).
16I once presented this proof in a lecture. At the end, a listener at the back triumphantly announced

that I couldn’t have proved the Riemann hypothesis because I had only ever worked over an algebraically
closed field.
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