Chapter 13

Coherent Sheaves and Vector Bundles

In this chapter, k is an arbitrary field.

a. Coherent sheaves

13.1. Let V be a k -ringed space. Suppose that, for each open subset U of V , we have an $\mathcal{O}_V(U)$ -module $\mathcal{M}(U)$ and, for each pair of open subsets $U' \subset U$, a "restriction" map $res_{U',U}: \mathcal{M}(U) \to \mathcal{M}(U')$ compatible with the module structures. The system is a **sheaf** *of* \mathcal{O}_V -modules if (a) $U \rightsquigarrow \mathcal{M}(U)$ is a functor from the category of open subsets of V and (b) M satisfies the sheaf condition. The first condition means that

> $\begin{cases} \text{res}_{U,U} \text{ is the identity map} \\ \text{res}_{U,U} \text{ s.t. } \text{res}_{U,U} = \text{res}_{U,U} \end{cases}$ $res_{U'',U'} \circ res_{U' \circ U} = res_{U'',U}$ for $U'' \subset U' \subset U$.

The second condition means that, for any open covering $U = \bigcup U_i$ of an open subset U ,

$$
\mathcal{M}(U) \simeq \{(m_i) \in \prod \mathcal{M}(U_i) \mid \text{res}_{U_i \cap U_j, U_i}(m_i) = \text{res}_{U_i \cap U_j, U_j}(m_j) \text{ for all } i, j\}.
$$

With the obvious notion of morphism, the sheaves of \mathcal{O}_V -modules become a category.

13.2. Now let $V = \text{Spm } A$ be an affine algebraic scheme over k, and let M be a finitely generated A-module. There is a unique sheaf of \mathcal{O}_V -modules M on V such that, for all $f \in A$,

$$
\Gamma(D(f), \mathcal{M}) = M_f \quad (= A_f \otimes_A M)
$$

(apply 10.5). Such an \mathcal{O}_V -module M is said to be *coherent*. A homomorphism $M \to N$ of A-modules defines a homomorphism $\mathcal{M} \to \mathcal{N}$ of \mathcal{O}_V -modules, and $M \to \mathcal{M}$ is a fully faithful functor from the category of finitely generated A -modules to the category of coherent \mathcal{O}_V -modules, with quasi-inverse $\mathcal{M} \rightsquigarrow \Gamma(V, \mathcal{M})$. We sometimes write \tilde{M} for the coherent \mathcal{O}_V -module defined by M.

Now consider an algebraic scheme V over k . An \mathcal{O}_V -module $\mathcal M$ is said to be *coherent* if, for every open affine subset U of V , $\mathcal{M}|U$ is coherent. It suffices to check this condition for the sets in some open affine covering of V .

This is Chapter 13 of Algebraic Geometry by J.S. Milne. Last revised November 4, 2024 Copyright ©2024 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permission from the copyright holder.

For example, \mathcal{O}_V^n $\frac{n}{V}$ is a coherent \mathcal{O}_V -module. An \mathcal{O}_V -module M is said to be *locally free of rank n* if it is locally isomorphic to \mathcal{O}^n_V ⁿ, i.e., if every point $P \in V$ has an open neighbourhood such that $\mathcal{M}|U \approx \mathcal{O}_V^n$ η ⁿ. A locally free \mathcal{O}_V -module of rank *n* is coherent.

13.3. For two coherent \mathcal{O}_V -modules M and N, there is a unique coherent \mathcal{O}_V -module $\mathcal{M} \otimes_{\mathcal{O}_V} \mathcal{N}$ such that

$$
\Gamma(U, \mathcal{M} \otimes_{\mathcal{O}_V} \mathcal{N}) = \Gamma(U, \mathcal{M}) \otimes_{\Gamma(U, \mathcal{O}_V)} \Gamma(U, \mathcal{N})
$$
 (*)

for all open affines U in V . Indeed, let $U = \bigcup U_i$ with the U_i open affines, and define $\Gamma(U, \mathcal{M} \otimes_{\mathcal{O}_V} \mathcal{N})$ to be the kernel of

$$
\prod_i \Gamma(U_i, \mathcal{M} \otimes_{\mathcal{O}_V} \mathcal{N}) \rightrightarrows \prod_{i,j} \Gamma(U_{ij}, \mathcal{M} \otimes_{\mathcal{O}_V} \mathcal{N}), \quad U_{ij} \stackrel{\text{def}}{=} U_i \cap U_j.
$$

If the restrictions of M and N to some open affine $U = \text{Spm } A$ correspond to A-modules M and N, then $\mathcal{M} \otimes_{\mathcal{O}_V} \mathcal{N} | U$ corresponds to $M \otimes_A N$. The reader should be careful not to assume that $(*)$ holds for nonaffine open subsets U (see example [13.10](#page-4-0) below).

13.4. For coherent \mathcal{O}_V -modules M and N, define $\mathcal{H}om_{\mathcal{O}_V}(\mathcal{M}, \mathcal{N})$ to be the presheaf on V such that

$$
\Gamma(U,{\mathcal Hom}_{\mathcal{O}_V}(\mathcal{M},\mathcal{N}))=\mathrm{Hom}_{\mathcal{O}_U}(\mathcal{M}|U,\mathcal{N}|U)
$$

for all open U in V. It is easy to see that this is a sheaf. If the restrictions of M and N to some open affine $U = \text{Spm } A$ correspond to A-modules M and N, then $\mathcal{H}\mathit{om}_{\mathcal{O}_V}(\mathcal{M},\mathcal{N})|U$ is the sheaf of \mathcal{O}_U -modules defined by the A -module $\mathrm{Hom}_A(M,N).$ Hence, \mathcal{H} om $(\mathcal{M}, \mathcal{N})$ is again a coherent \mathcal{O}_V -module.

13.5. Let $v \in V$, and let M be a coherent \mathcal{O}_V -module. We define a $\kappa(v)$ -module $\mathcal{M}(v)$ as follows: after replacing V with an open neighbourhood of v , we can assume that it is affine; hence we may suppose that $V = \text{Spm}(A)$, that v corresponds to a maximal ideal m in A (so that $\kappa(v) = A/m$), and that M corresponds to the A-module M; we then define

$$
\mathcal{M}(v) = M \otimes_A \kappa(v) = M/\mathfrak{m}M.
$$

It is a finitely generated vector space over $\kappa(v)$. Do not confuse $\mathcal{M}(v)$ with the stalk \mathcal{M}_v of *M* which, with the above notation, is $M_m = M \otimes_A A_m$. Thus

$$
\mathcal{M}(v) = \mathcal{M}_v / \mathfrak{m} \mathcal{M}_v = \kappa(v) \otimes_{A_{\mathfrak{m}}} \mathcal{M}_{\mathfrak{m}}.
$$

Nakayama's lemma (1.3) shows that

$$
\mathcal{M}(v) = 0 \Rightarrow \mathcal{M}_v = 0.
$$

The *support* of a coherent \mathcal{O}_V -module M is

$$
Supp(\mathcal{M}) = \{v \in V \mid \mathcal{M}(v) \neq 0\} = \{v \in V \mid \mathcal{M}_v \neq 0\}.
$$

Suppose that V is affine, and that M corresponds to the A-module M. Let α be the annihilator of M :

$$
\mathfrak{a} \stackrel{\text{def}}{=} \{ f \in A \mid fM = 0 \}.
$$

Then $M/mM \neq 0 \iff \mathfrak{m} \supset \mathfrak{a}$ (for otherwise A/mA contains a nonzero element annihilating $M/\mathfrak{m}M$), and so

$$
Supp(\mathcal{M})=V(\mathfrak{a}).
$$

Thus the support of a coherent module is a closed subset of V .

Note that if M is locally free of rank n, then $\mathcal{M}(v)$ is a vector space of dimension n for all v . There is a converse of this.

PROPOSITION 13.6. *Assume that* V *is reduced. If* M *is a coherent* \mathcal{O}_V -module such that $\mathcal{M}(v)$ has constant dimension n for all $v \in V$, then $\mathcal M$ is a locally free of rank n.

PROOF. We may assume that V is affine, say, $V = \text{Spm}(A)$, and that M corresponds to the finitely generated A-module M. Fix a maximal ideal m of A, and let x_1, \ldots, x_n be elements of M whose images in M/mM form a basis for it over $\kappa(v)$. Consider the map

$$
\gamma: A^n \to M, \quad (a_1, \dots, a_n) \mapsto \sum a_i x_i.
$$

Its cokernel is a finitely generated A -module whose support does not contain v . Therefore there is an element $f \in A$, $f \notin \mathfrak{m}$, such that γ defines a surjection $A_f^n \to M_f$. After replacing A with A_f we may assume that γ itself is surjective. For every maximal ideal n of A, the map $(A/\mathfrak{n})^n \to M/\mathfrak{n}M$ is surjective, and hence (because of the condition on the dimension of $\mathcal{M}(v)$) bijective. Therefore, the kernel of γ is contained in \mathfrak{n}^n (meaning $\mathfrak{n} \times \cdots \times \mathfrak{n}$) for all maximal ideals \mathfrak{n} in A, and Corollary [1](#page-2-0)0.21¹ shows that this implies that the kernel is zero. \Box

13.7. In the above proof, we showed the following (without assume V to be reduced): let $v \in |V|$; if U is an open neighbourhood of v and $x_1, ..., x_n \in \Gamma(U, M)$ are such that their images in $\mathcal{M}(v)$ generate it, then there is an open neighbourhood $U' \subset U$ of v such that $x_1|U',...,x_n|U'$ generate $\mathcal{M}|U'.$

13.8. With a little more effort, it is posssible to prove the following more precise result. Let M be a coherent \mathcal{O}_V -module on an algebraic scheme V over k. The function

$$
v \mapsto \dim_{\kappa(v)} \mathcal{M}(v) : |V| \to \mathbb{Z}
$$

is upper semicontinuous, i.e., the sets

$$
U_r \stackrel{\text{def}}{=} \{v \mid \dim_{\kappa(v)} \mathcal{M}(v) \le r\}
$$

are open for all $r \in \mathbb{N}$ (so the dimension is constant on an open subset, and jumps on closed subsets). Let r_0 be the smallest value such that U_{r_0} is nonempty. If V is reduced, then $\mathcal{M}|U_{r_0}$ is locally constant of rank r_0 (by [13.5\)](#page-1-0).

b. Invertible sheaves.

An *invertible sheaf* on V is a locally free \mathcal{O}_V -module $\mathcal L$ of rank 1. The tensor product of two invertible sheaves is again an invertible sheaf. In this way, we get a product structure on the set of isomorphism classes of invertible sheaves:

$$
[\mathcal{L}] \cdot [\mathcal{L}'] \stackrel{\text{def}}{=} [\mathcal{L} \otimes \mathcal{L}'].
$$

The product structure is associative and commutative (because tensor products are associative and commutative, up to isomorphism), and $[O_V]$ is an identity element. Define

$$
\mathcal{L}^{\vee}=\mathcal{H}om(\mathcal{L},\mathcal{O}_{V}).
$$

¹For a reduced k -algebra, the intersection of the maximal ideals is zero.

Clearly, \mathcal{L}^{\vee} is free of rank 1 over any open set where \mathcal{L} is free of rank 1, and so \mathcal{L}^{\vee} is again an invertible sheaf. Moreover, the canonical map

$$
\mathcal{L}^{\vee} \otimes \mathcal{L} \to \mathcal{O}_{V}, \quad (f, x) \mapsto f(x)
$$

is an isomorphism (because it is an isomorphism over any open subset where $\mathcal L$ is free). Thus

$$
[\mathcal{L}^{\vee}][\mathcal{L}] = [\mathcal{O}_V].
$$

For this reason, we often write \mathcal{L}^{-1} for \mathcal{L}^{\vee} .

From these remarks, we see that the set of isomorphism classes of invertible sheaves on V is a group — it is called the **Picard group**, $Pic(V)$, of V.

We say that an invertible sheaf $\mathcal L$ is *trivial* if it is isomorphic to $\mathcal O_V$ — then $\mathcal L$ represents the zero element in $Pic(V)$.

PROPOSITION 13.9. An invertible sheaf $\mathcal L$ on a complete variety V is trivial if and only if *both it and its dual have nonzero global sections, i.e.,*

$$
\Gamma(V,\mathcal{L}) \neq 0 \neq \Gamma(V,\mathcal{L}^{\vee}).
$$

PROOF. We may assume that V is irreducible. Note first that, for any \mathcal{O}_V -module M on any variety V , the map

$$
Hom(\mathcal{O}_V, \mathcal{M}) \to \Gamma(V, \mathcal{M}), \quad \alpha \mapsto \alpha(1)
$$

is an isomorphism.

Next recall that the only regular functions on a complete variety are the constant functions (10.142), i.e., $\Gamma(V, \mathcal{O}_V) = k'$ where k' is the algebraic closure of k in $k(V)$. Hence $\mathcal{H}om(\mathcal{O}_V, \mathcal{O}_V) = k'$, and so a homomorphism $\mathcal{O}_V \to \mathcal{O}_V$ is either 0 or an isomorphism.

We now prove the proposition. The sections define nonzero homomorphisms

$$
s_1: \mathcal{O}_V \to \mathcal{L}, \quad s_2: \mathcal{O}_V \to \mathcal{L}^{\vee}.
$$

We can take the dual of the second homomorphism, and so obtain nonzero homomorphisms

$$
\mathcal{O}_V \xrightarrow{s_1} \mathcal{L} \xrightarrow{s_2^{\vee}} \mathcal{O}_V.
$$

The composite is nonzero, and hence an isomorphism, which shows that s_2^{\vee} $\frac{1}{2}$ is surjective, and this implies that it is an isomorphism (for any ring A , a surjective homomorphism of A-modules $A \to A$ is bijective because 1 must map to a unit).

c. Invertible sheaves and divisors.

Now assume that V is nonsingular and irreducible. For a divisor D on V , the vector space $L(D)$ is defined to be

$$
L(D) = \{ f \in k(V)^{\times} \mid \text{div}(f) + D \ge 0 \}.
$$

We make this definition local: define $\mathcal{L}(D)$ to be the sheaf on V such that, for any open set U ,

$$
\Gamma(U, \mathcal{L}(D)) = \{ f \in k(V)^{\times} \mid \text{div}(f) + D \ge 0 \text{ on } U \} \cup \{0\}.
$$

The condition "div(f) + D ≥ 0 on U" means that, if $D = \sum n_Z Z$, then $\text{ord}_Z(f) + n_Z \geq 0$ for all Z with $Z \cap U \neq \emptyset$. Thus, $\Gamma(U, \mathcal{L}(D))$ is a $\Gamma(U, \mathcal{O}_V)$ -module, and if $U \subset U'$, then $\Gamma(U', \mathcal{L}(D)) \subset \Gamma(U, \mathcal{L}(D))$. We define the restriction map to be this inclusion. In this way, $\mathcal{L}(D)$ becomes a sheaf of \mathcal{O}_V -modules.

Suppose D is principal on an open subset U, say $D|U = \text{div}(g), g \in k(V)^{\times}$. Then

$$
\Gamma(U, \mathcal{L}(D)) = \{ f \in k(V)^{\times} \mid \text{div}(fg) \ge 0 \text{ on } U \} \cup \{0\}.
$$

Therefore,

$$
\Gamma(U, \mathcal{L}(D)) \to \Gamma(U, \mathcal{O}_V), \quad f \mapsto fg,
$$

is an isomorphism. These isomorphisms clearly commute with the restriction maps for $U' \subset U$, and so we obtain an isomorphism $\mathcal{L}(D)|U \to \mathcal{O}_U$. Since every D is locally principal, this shows that $\mathcal{L}(D)$ is locally isomorphic to \mathcal{O}_V , i.e., that it is an invertible sheaf. If *D* itself is principal, then $\mathcal{L}(D)$ is trivial.

Next we note that the canonical map

$$
\mathcal{L}(D) \otimes \mathcal{L}(D') \to \mathcal{L}(D+D'), \quad f \otimes g \mapsto fg
$$

is an isomorphism on any open set where D and D^{\prime} are principal, and hence it is an isomorphism globally. Therefore, we have a homomorphism

$$
Div(V) \to Pic(V), \quad D \mapsto [\mathcal{L}(D)],
$$

which is zero on the principal divisors.

EXAMPLE 13.10. Let V be an elliptic curve, and let P be the point at infinity. Let D be the divisor $D = P$. Then $\Gamma(V, \mathcal{L}(D)) = k$, the ring of constant functions, but $\Gamma(V, \mathcal{L}(2D))$ contains a nonconstant function x . Therefore,

$$
\Gamma(V, \mathcal{L}(2D)) \neq \Gamma(V, \mathcal{L}(D)) \otimes \Gamma(V, \mathcal{L}(D)),
$$

— in other words, $\Gamma(V, \mathcal{L}(D) \otimes \mathcal{L}(D)) \neq \Gamma(V, \mathcal{L}(D)) \otimes \Gamma(V, \mathcal{L}(D)).$

PROPOSITION 13.11. *For an irreducible nonsingular variety, the map* $D \mapsto [\mathcal{L}(D)]$ *defines an isomorphism*

 $Div(V)/PrinDiv(V) \rightarrow Pic(V)$.

PROOF. (Injectivity). If s is an isomorphism $\mathcal{O}_V \to \mathcal{L}(D)$, then $g = s(1)$ is an element of $k(V)^{\times}$ such that

- (a) div(g) + $D \ge 0$ (on the whole of V);
- (b) if $div(f) + D \ge 0$ on U, that is, if $f \in \Gamma(U, \mathcal{L}(D))$, then $f = h(g|U)$ for some $h \in \Gamma(U, \mathcal{O}_V).$

Statement (a) says that $D \ge \text{div}(-g)$ (on the whole of V). Suppose U is such that $D|U$ admits a local equation $f = 0$. When we apply (b) to $-f$, then we see that $div(-f) \leq div(g)$ on U, so that $D|U + div(g) \geq 0$. Since the U's cover V, together with (a) this implies that $D = div(-g)$.

(Surjectivity). Define

$$
\Gamma(U, \mathcal{K}) = \begin{cases} k(V)^{\times} \text{ if } U \text{ is open and nonempty} \\ 0 \text{ if } U \text{ is empty.} \end{cases}
$$

Because V is irreducible, $\mathcal K$ becomes a sheaf with the obvious restriction maps. On any open subset U where $\mathcal{L}|U \approx \mathcal{O}_U$, we have $\mathcal{L}|U \otimes \mathcal{K} \approx \mathcal{K}$. Since these open sets form a covering of V , V is irreducible, and the restriction maps are all the identity map, this implies that $\mathcal{L} \otimes \mathcal{K} \approx \mathcal{K}$ on the whole of V. Choose such an isomorphism, and identify $\mathcal L$ with a subsheaf of $\mathcal K$. On any U where $\mathcal L \approx \mathcal O_U$, $\mathcal L |U = g\mathcal O_U$ as a subsheaf of $\mathcal K$, where g is the image of $1 \in \Gamma(U, \mathcal{O}_V)$. Define D to be the divisor such that, on a U, g^{-1} is a local equation for D .

EXAMPLE 13.12. Suppose V is affine, say $V = \text{Spm } A$. We know that coherent \mathcal{O}_V modules correspond to finitely generated A-modules, but what do the locally free sheaves of rank *n* correspond to? They correspond to finitely generated *projective* A-modules $(CA, 12.6)$. The invertible sheaves correspond to finitely generated projective A -modules of rank 1. Suppose for example that V is a curve, so that A is a Dedekind domain. This gives a new interpretation of the ideal class group: it is the group of isomorphism classes of finitely generated projective A-modules of rank one (i.e., such that $M \otimes_A K$ is a vector space of dimension one).

This can be proved directly. First show that every (fractional) ideal is a projective A -module — it is obviously finitely generated of rank one; then show that two ideals are isomorphic as A -modules if and only if they differ by a principal divisor; finally, show that every finitely generated projective A -module of rank 1 is isomorphic to a fractional ideal (by assumption $M \otimes_A K \approx K$; when we choose an identification $M \otimes_A K = K$, then $M \subset M \otimes_A K$ becomes identified with a fractional ideal). [Exercise: Prove the statements in this last paragraph.]

REMARK 13.13. Quite a lot is known about $Pic(V)$, the group of divisors modulo linear equivalence, or of invertible sheaves up to isomorphism. For example, for any complete nonsingular variety V, there is an abelian variety P canonically attached to V, called the *Picard variety* of V, and an exact sequence

$$
0 \to P(k) \to Pic(V) \to NS(V) \to 0
$$

where $NS(V)$ is a finitely generated group called the Néron-Severi group.

Much less is known about algebraic cycles of codimension > 1 , and about locally free sheaves of rank > 1 (and the two do not correspond exactly, although the Chern classes of locally free sheaves are algebraic cycles).

d. Direct images and inverse images of coherent sheaves.

Consider a homomorphism $A \to B$ of rings. From an A-module M, we get a B-module $B \otimes_A M$, which is finitely generated if M is finitely generated. Conversely, a B-module M can also be considered an A -module, but it usually won't be finitely generated (unless B is finitely generated as an A -module). Both these operations extend to maps of varieties.

Consider a regular map $\alpha: W \to V$, and let $\mathcal F$ be a coherent sheaf of $\mathcal O_V$ -modules. There is a unique coherent sheaf of \mathcal{O}_W -modules $\alpha^*\mathcal{F}$ with the following property: for any open affine subsets U' and U of W and V respectively such that $\alpha(U') \subset U, \alpha^* \mathcal{F} | U'$ is the sheaf corresponding to the $\Gamma(U', \mathcal{O}_W)$ -module $\Gamma(U', \mathcal{O}_W) \otimes_{\Gamma(U, \mathcal{O}_V)} \Gamma(U, \mathcal{F})$.

Let *F* be a sheaf of O_V -modules. For any open subset U of V, we define $\Gamma(U, \alpha_* \mathcal{F}) =$ $\Gamma(\alpha^{-1}U, \mathcal{F})$, regarded as a $\Gamma(U, \mathcal{O}_V)$ -module via the map $\Gamma(U, \mathcal{O}_V) \to \Gamma(\alpha^{-1}U, \mathcal{O}_W)$. Then $U \mapsto \Gamma(U, \alpha_* \mathcal{F})$ is a sheaf of \mathcal{O}_V -modules. In general, $\alpha_* \mathcal{F}$ will not be coherent, even when $\mathcal F$ is.

LEMMA 13.14. \quad (a) *For any regular maps U* $\stackrel{\alpha}{\to}$ *V* $\stackrel{\beta}{\to}$ *W and coherent* \mathcal{O}_W *-module* $\mathcal F$ *on* W , there is a canonical isomorphism

$$
(\beta\alpha)^*\mathcal{F} \stackrel{\approx}{\rightarrow} \alpha^*(\beta^*\mathcal{F}).
$$

(b) *For any regular map* $\alpha : V \to W$ *,* α^* *maps locally free sheaves of rank* n *to locally free sheaves of rank (hence also invertible sheaves to invertible sheaves). It preserves tensor products, and, for an invertible sheaf L,* $\alpha^*(\mathcal{L}^{-1}) \simeq (\alpha^*\mathcal{L})^{-1}$ *.*

PROOF. (a) This follows from the fact that, given homomorphisms of rings $A \rightarrow B \rightarrow T$, $T \otimes_R (B \otimes_A M) = T \otimes_A M$.

(b) This again follows from well-known facts about tensor products of rings. \Box

e. Vector bundles

Let V be an algebraic variety over k . The *trivial vector bundle of rank* n over V is the variety $V \times \mathbb{A}^n$ equipped with the projection map $V \times \mathbb{A}^n \to V$. A pair (E, π) comprising an algebraic variety E and a (projection) morphism $\pi : E \to V$ is a **vector bundle of rank** *n* over *V* if it is locally isomorphic to the trivial vector bundle. More bundle by rank *n* over v in it is locally isomorphic to the trivial vector bundle. More precisely, we require that, for some open covering $V = \bigcup U_i$, there exist isomorphisms $\varphi_i: \pi^{-1}(U_i) \to U_i \times \mathbb{A}^n$ such that

(a) for each i , the diagram

commutes;

(b) for each i , j , the isomorphism

$$
\varphi_j \circ \varphi_i^{-1}: (U_i \cap U_j) \times \mathbb{A}^n \to (U_i \cap U_j) \times \mathbb{A}^n
$$

is linear on the fibres, i.e., the map $(u, (a_1, ..., a_n)) \mapsto (u, (b_1, ..., b_n))$ is k-linear in the second variable.

A **morphism of vector bundles** $(E, p) \rightarrow (E', p')$ is a commutative diagram

such that φ is linear on the fibres. A vector bundle of rank 1 is called a *line bundle*.

Let V be an algebraic variety over k. A *vector sheaf* on V is a locally free sheaf V of \mathcal{O}_V -modules of finite rank. In order for a vector sheaf W to be a vector subsheaf of a vector sheaf V, we require that the maps $W_s \rightarrow V_s$ be injective. The vector sheaves of rank n on V are exactly the sheaves of sections of vector bundles of rank n , and the vector subsheaves are exactly the sheaves of sections of the vector subbundles.

Examples

13.15 (THE TAUTOLOGICAL LINE BUNDLE). Let V be a closed subvariety of \mathbb{P}^n . A point P in V, when regarded as a point in \mathbb{P}^n , is a line l_P in \mathbb{A}^{n+1} . For the tautological line bundle, the fibre over *P* is the line l_p . As a set,

$$
B \stackrel{\text{def}}{=} \{(a, P) \in \mathbb{A}^{n+1} \times V \mid a \in l_P\}.
$$

A global section of *B* is a regular map $P \mapsto (P, s(P))$ with $s(P) \in \mathbb{A}^{n+1}$. As there are no nonconstant maps $V \to \mathbb{A}^{n+1}$ (10.142), such a section must be zero.

To be continued.