
Chapter 15

Algebraic Varieties over the
Complex Numbers

This is only a brief outline.
It is not hard to show that there is a unique way to endow all algebraic varieties over

ℂ with a topology such that:
(a) on 𝔸𝑛 = ℂ𝑛 it is just the usual complex topology;
(b) on closed subsets of 𝔸𝑛 it is the induced topology;
(c) all morphisms of algebraic varieties are continuous;
(d) it is finer than the Zariski topology.
We call this new topology the complex topology on 𝑉. Note that (a), (b), and (c)

determine the topology uniquely for affine algebraic varieties ((c) implies that an iso-
morphism of algebraic varieties will be a homeomorphism for the complex topology),
and (d) then determines it for all varieties.

Of course, the complex topology ismuch finer than the Zariski topology — this can
be seen even on 𝔸1. In view of this, the next two propositions are a little surprising.

Proposition 15.1. If a nonsingular variety is connected for the Zariski topology, then it is
connected for the complex topology.

Consider, for example, 𝔸1. Then, certainly, it is connected for both the Zariski
topology (that for which the nonempty open subsets are those that omit only finitely
many points) and the complex topology (that for which 𝑉 is homeomorphic to ℝ2).
When we remove a circle from 𝑉, it becomes disconnected for the complex topology, but
remains connected for the Zariski topology. This does not contradict the proposition,
because 𝔸1

ℂ with a circle removed is not an algebraic variety.
Let 𝑉 be a connected nonsingular (hence irreducible) curve. We prove that it is

connected for the complex topology. Removing or adding a finite number of points to 𝑉
will not change whether it is connected for the complex topology, and so we can assume
that 𝑉 is projective. Suppose 𝑉 is the disjoint union of two nonempty open (hence
closed) sets 𝑉1 and 𝑉2. According to the Riemann-Roch theorem (14.8), there exists a
nonconstant rational function 𝑓 on𝑉 having poles only in𝑉1. Therefore, its restriction to
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2 15. Algebraic Varieties over the Complex Numbers

𝑉2 is holomorphic. Because 𝑉2 is compact, 𝑓 is constant on each connected component
of 𝑉2 (Cartan 1963, VI.4.5), say, 𝑓(𝑧) = 𝑎 on some infinite connected component. Then
𝑓(𝑧)−𝑎 has infinitely many zeros, which contradicts the fact that it is a rational function.

The general case can be proved by induction on the dimension (Shafarevich 1994,
VII.2).

Proposition 15.2. Let𝑉 be an algebraic variety overℂ, and let𝐶 be a constructible subset
of 𝑉 (in the Zariski topology); then the closure of 𝐶 in the Zariski topology equals its closure
in the complex topology.

Proof. Mumford 1966, I, 10, Corollary 1, p. 60. 2

For example, if 𝑈 is an open dense subset of a closed subset 𝑍 of 𝑉 (for the Zariski
topology), then 𝑈 is also dense in 𝑍 for the complex topology.

The next result helps explain why completeness is the analogue of compactness for
topological spaces.

Proposition 15.3. Let 𝑉 be an algebraic variety over ℂ; then 𝑉 is complete (as an alge-
braic variety) if and only if it is compact for the complex topology.

Proof. Mumford 1966, I, 10, Theorem 2, p. 60. 2

In general, there are many more holomorphic (complex analytic) functions than
there are polynomial functions on a variety over ℂ. For example, by using the exponen-
tial function it is possible to construct many holomorphic functions on ℂ that are not
polynomials in 𝑧, but all these functions have nasty singularities at the point at infinity
on the Riemann sphere. In fact, the only meromorphic functions on the Riemann sphere
are the rational functions. This generalizes.

Theorem 15.4. Let 𝑉 be a complete nonsingular variety over ℂ. Then 𝑉 is, in a natural
way, a complex manifold, and the field of meromorphic functions on 𝑉 (as a complex
manifold) is equal to the field of rational functions on 𝑉.

Proof. Shafarevich 1994, VIII, 3.1, Theorem 1. 2

This provides one way of constructing compact complex manifolds that are not
algebraic varieties: find such a manifold𝑀 of dimension 𝑛 such that the transcendence
degree of the field of meromorphic functions on𝑀 is< 𝑛. For a torusℂ𝑔∕Λ of dimension
𝑔 > 1, this is typically the case. However, when the transcendence degree of the field of
meromorphic functions is equal to the dimension of manifold, then𝑀 can be given the
structure, not necessarily of an algebraic variety, but of something more general, namely,
that of an algebraic space in the sense of Artin. Roughly speaking, an algebraic space
is an object that is locally an affine algebraic variety, where locally means for the étale
“topology” rather than the Zariski topology.1

One way to show that a complex manifold is algebraic is to embed it into projective
space.

Theorem 15.5. Every closed analytic submanifold of ℙ𝑛 is algebraic.
1Artin, Michael. Algebraic spaces. Whittemore Lectures given at Yale University, 1969. Yale Mathe-

matical Monographs, 3. Yale University Press, New Haven, Conn.-London, 1971. vii+39 pp.
Knutson, Donald. Algebraic spaces. Lecture Notes in Mathematics, Vol. 203. Springer-Verlag, Berlin-

New York, 1971. vi+261 pp.
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Proof. See Shafarevich 1994, VIII, 3.1, in the nonsingular case. 2

Corollary 15.6. Every holomorphic map from one nonsingular projective algebraic
variety to a second nonsingular projective algebraic variety is algebraic (i.e., a morphism of
algebraic varieties).

Proof. Let 𝜑∶ 𝑉 →𝑊 be the map. Then the graph 𝛤𝜑 of 𝜑 is a closed analytic subset
of 𝑉 ×𝑊, and hence is algebraic according to the theorem. The projection map 𝛤𝜑 → 𝑉
is an isomorphism of algebraic varieties by 8.60, which means that its inverse 𝑉 → 𝛤𝜑
is algebraic. As 𝜑 is the composite of the isomorphism 𝑉 → 𝛤𝜑 with the projection
𝛤𝜑 →𝑊, and both are algebraic, 𝜑 itself is algebraic. 2

Since, in general, it is hopeless to write down a set of equations for a variety (it is
a fairly hopeless task even for an abelian variety of dimension 3), the most powerful
way we have for constructing varieties is to construct first a complex manifold and then
prove that it has a natural structure as a algebraic variety. Sometimes one can then show
that it has a canonical model over some number field, and then it is possible to reduce
the equations defining it modulo a prime of the number field, and obtain a variety in
characteristic 𝑝.

For example, it is known thatℂ𝑔∕Λ (Λ a lattice inℂ𝑔) has the structure of an algebraic
variety if and only if there is a skew-symmetric form 𝜓 on ℂ𝑔 having certain simple
properties relative to Λ. The variety is then an abelian variety, and all abelian varieties
over ℂ are of this form.
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