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Preface.

These12 are the notes for Math 776, University of Michigan, Winter 1997, slightly
revised from those handed out during the course. They have been substantially
revised and expanded from an earlier version, based on my notes from 1993 (v2.01).

My approach to class field theory in these notes is eclectic. Although it is possible
to prove the main theorems in class field theory using neither analysis nor cohomology,
there are major theorems that can not even be stated without using one or the other,
for example, theorems on densities of primes, or theorems about the cohomology
groups associated with number fields. When it sheds additional light, I have not
hesitated to include more than one proof of a result.

The heart of the course is the odd numbered chapters. Chapter II, which is on the
cohomology of groups, is basic for the rest of the course, but Chapters IV, VI, and
VIII are not essential for reading Chapters III, V, and VII. Except for its first section,
Chapter I can be skipped by those not interested in explicit local class field theory.

References of the form Math xxx are to course notes available at
http://www.math.lsa.umich.edu/∼jmilne.

Please send comments and corrections to me at jmilne@umich.edu.

Books including class field theory

Artin, E., Algebraic Numbers and Algebraic Functions, NYU, 1951. (Reprinted by
Gordon and Breach, 1967).

Artin, E., and Tate, J., Class Field Theory. Notes of a Seminar at Princeton,
1951/52. (Harvard University, Mathematics Department, 1961; Benjamin, 1968;
Addison Wesley, 1991).
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INTRODUCTION 1

Introduction

Class field theory relates the arithmetic of a number field (or local field) to the
Galois extensions of the field. For abelian extensions, the theory was developed
between roughly 1850 and 1927 by Kronecker, Weber, Hilbert, Takagi, Artin, and
others. For nonabelian extensions, serious progress began only about 25 years ago
with the work of Langlands. Today, the nonabelian theory is in roughly the state that
abelian class field theory was in 100 years ago: there are comprehensive conjectures
but few proofs. In this course, we shall be concerned only with abelian class field
theory.

Statement of the main problem. For a finite extension L/K of number fields
and a finite set S of prime ideals of K containing all those that ramify in L, let
SplS(L/K) be the set of prime ideals p of K not in S that split completely in L,
i.e., such that pOL =

∏
Pi with f(Pi/p) = 1 for all i. For example, if L = K[α] ∼=

K[X]/(f(X)) and S contains the prime ideals dividing the discriminant of f , then
SplS(L/K) is the set of prime ideals p such that f(X) splits completely modulo p. If
L/K is Galois, then SplS(L/K) has3 density 1/[L : K], and it follows that SplS(L/K)
determines4 L. Thus the problem of classifying the Galois extensions of K ramified
only at prime ideals in S becomes that of determining which sets of primes in K arise
as SplS(L/K) for some such L/K.

For quadratic extensions L/Q, the answer is provided by the quadratic reciprocity
law:

Let m be a positive integer that is either odd or divisible by 4, and let
S be a finite set of prime numbers containing all those that divide m.
For a subgroup H of (Z/mZ)× of index 2, let

Pr(H) = {(p) | p a prime number, p /∈ S, p mod m lies in H}.
Then the sets SplS(L/Q) for L running over the quadratic extensions
of Q ramified only at primes in S are exactly the sets Pr(H).

For example, let p be an odd prime number, and let S be a finite set of prime numbers

containing p. Let p∗ = (−1)
p−1
2 p, so that p∗ ≡ 1 mod 4. Then Q[

√
p∗]/Q is ramified

only at p. A prime number q �= p splits in Q[
√
p∗] if and only if p∗ is a square modulo

q, i.e.,
(
p∗
q

)
= 1. But if q is odd, then the quadratic reciprocity law says that(

p

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)
,

(−1

q

)
= (−1)

q−1
2 ,

and so
(
p∗
q

)
=
(
q
p

)
. Therefore q splits in Q[

√
p∗] if and only if q is a square modulo

p. The same is true of q = 2. The group (Z/pZ)× is cyclic of order p − 1, and so
has a unique subgroup H of index 2, namely, that consisting of squares. Therefore,
the sets SplS(Q[

√
p∗]/Q), p an odd prime number not in S, are precisely those of the

form Pr(H) with H the subgroup of (Z/pZ)× of index 2. The proof of the general
case is left as an exercise.

3A proof of this, essentially independent of the rest of the course, is given in Chapter VI).
4We are considering only the extensions of K contained in some fixed algebraic closure of K.
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By extension, any result identifying the sets SplS(L/K) for some class of extensions
L/K is usually called a reciprocity law, even when no reciprocity is involved.

Classification of unramified abelian extensions. Let I be the group of frac-
tional ideals of K, i.e., the free abelian group generated by the prime ideals, and let
i : K× → I be the map sending a ∈ K× to the principal ideal (a). The class group C

of K is I/i(K×). To give a subgroup H of C is the same as to give a subgroup H̃ of
I containing i(K×).
By a “prime” of K, we mean an equivalence class of nontrivial valuations on K.

Thus there is exactly one prime for each prime ideal in OK , for each embedding K ↪→
R, and for each conjugate pair of nonreal embeddings K ↪→ C. The corresponding
primes are called finite, real, and complex respectively. An element of K is said to
be positive at the real prime corresponding to an embedding K ↪→ R if it maps to a
positive element of R. A real prime of K is said to split in an extension L/K if every
prime lying over it is real; otherwise it is said to ramify in L.

Let H be a subgroup of the class group C of K. An extension L of K is said to be
a class field for H if

(a) L is a finite abelian extension of K;
(b) no prime of K ramifies in L;

(c) the prime ideals of K splitting in L are those in H̃ .

The condition (b) means that no prime ideal of K ramifies in L and that no real prime
of K has a complex prime lying over it, for example, Q[

√−5]/Q fails the condition
at 2, 5,∞.

Theorem 0.1. A class field exists for each subgroup H of C. It is unique, and
C/H ≈ Gal(L/K). Moreover, every extension L/K satisfying (a) and (b) is the
class field of some H.

The existence of a class field for the trivial subgroup of C was conjectured by
Hilbert in 1897, and proved by his student Furtwängler in 1907—for this reason, this
class field is called the Hilbert class field of K. It is the largest abelian extension L of
K unramified at all primes of K (including the infinite primes); the prime ideals that
split in it are exactly the principal ones, and Gal(L/K) ≈ C . Hilbert also conjectured
that every ideal in K becomes principal in the Hilbert class field, and this was proved
by Furtwängler in 1930 (Principal Ideal Theorem) after Artin had reduced the proof
to an exercise in group theory.

Example 0.2. The class number of Q[
√−5] is 2 (Math 676, 4.6), and its Hilbert

class field is Q[
√−5,

√−1].

Classification of ramified abelian extensions. In order to obtain ramified
abelian extensions, we need to consider more general class groups. A modulus m is a
function

m : {primes of K} → Z

such that

(a) m(p) ≥ 0 for all primes p, and m(p) = 0 for all but finitely many p;
(b) if p is a real prime, then m(p) = 0 or 1; if p is complex, then m(p) = 0.
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Traditionally, one writes

m =
∏

pm(p).

Let S = S(m) be the set of finite primes for which m(p) > 0, and let IS be the group
of S-ideals (free abelian group generated by the prime ideals not in S). Let Km be the
set of nonzero elements of K that can be expressed in the form a

b
with (a), (b) ∈ IS,

and let Km,1 be the subgroup of α ∈ Km such that{
ordp(α − 1) ≥ m(p) for all finite p with m(p) > 0

α is positive at all real p with m(p) = 1.

Let i denote the map sending an element α of Km,1 to the principal ideal (α) it defines
in IS. The ray class group for the modulus m is defined to be

Cm = IS/i(Km,1).

Example 0.3. (a) If m(p) = 0 for all p, then Cm is just the usual ideal class
group.

(b) If m(p) = 1 for all real primes and m(p) = 0 otherwise, then Km,1 consists
of the totally positive elements of K, i.e., those that are positive in every real
embedding of K, and Cm is called the narrow class group.

(c) Let m be an integer that is either odd or divisible by 4, and let m = (m)∞
where ∞ denotes the real prime of Q. Then

S = {(p) | p|m};
IS = set of ideals of the form

∏
(p)r(p), gcd(p,m) = 1, r(p) ∈ Z;

Qm = {b/c | b, c ∈ Z, gcd(b,m) = 1 = gcd(c,m)};
Qm,1 = {a ∈ Qm | a > 0, ordp(a− 1) ≥ r if pr|m, r > 0}.

If c ∈ Z is relatively prime tom, then there exist d, e ∈ Z such that cd+me = 1,
and so c becomes a unit in Z/mZ. Each a ∈ IS can be represented a = (b/c)
with b and c positive integers. Therefore there is a well-defined map5 map
(b/c) �→ [b][c]−1 : IS → (Z/mZ)×, which one can show induces an isomorphism
Cm → (Z/mZ)×.

To give a subgroup H of Cm is the same as to give a subgroup H̃ of IS containing
i(Km,1).

Let H be a subgroup of the ray class group Cm of K, and let S = S(m). An
extension L of K is said to be a class field for H if

(a) L is a finite abelian extension of K;
(b) m(p) = 0 =⇒ p does not ramify in L;

(c) the prime ideals not in S that split in L are those in H̃.

Theorem 0.4. A class field exists for each subgroup H of Cm. It is unique, and
Cm/H ≈ Gal(L/K). Moreover, every finite abelian extension L/K is a class field for
some m and H.

5Here, and elsewhere, I use [x] to denote an equivalence class containing x.
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Ray class groups were defined by Weber in 1897. Theorem 0.4 was proved by
Takagi in a series of papers published between 1915 and 1922—see especially his talk
at the 1920 International Congress, where he states his results almost exactly as we
have (Collected Papers, p168, QA3.T341).

The class field L for the trivial subgroup of Cm is called the ray class field for m.
It is ramified only at primes dividing m, and Cm ≈ Gal(L/K).

Example 0.5. The field Q[
√
6] has class number 1, and so equals its Hilbert class

field. However, its narrow class group has order 2, and indeed Q[
√
6] does possess

a quadratic extension, namely, Q[
√−2,

√−3] that is unramified over Q at all finite
primes (but is ramified at both infinite primes).

For any finite set S of finite primes of K, Takagi’s theorem completely solves
the problem of determining the sets SplS(L/K) for abelian Galois extensions L/K
ramified only at primes in S.

Example 0.6. Let d = p∗1 · · · p∗t where the pi are odd primes and p∗i = (−1)
p−1
2 pi, as

before. The field K = Q[
√
d] is ramified exactly over the primes p1, . . . , pt. Consider

K[
√
p∗i ]. It contains Q[

√
p∗1 · · · p∗i−1p∗i+1 · · · p∗t ], which is unramified over pi, and so pi

can’t be totally ramified in K[
√
p∗i ]. As pi ramifies in K/Q, it follows that the prime

above pi in K does not ramify in K[
√
p∗i ]. No other prime ramifies, and so K[

√
p∗i ] is

unramified over K. From Kummer theory, we find that

L = K[
√
p∗1,
√
p∗2, . . . ,

√
p∗t−1]

has degree 2t−1 over K, and Gal(L/K) ≈ (Z/2Z)t−1. Let C∞ be the narrow class
group of K. The above construction shows that (C∞ : C2

∞) ≥ 2t−1. In fact, with a
only a little more effort one can prove the following:

Let K be a quadratic extension of Q in which t finite primes ramify.
Then (C∞ : C2

∞) = 2t−1. (Koch 1992, 2.114.)

This result was known to Gauss (by different methods, and in a different language).

In particular, we see that, by using class field theory, it is easy to construct
quadratic extensions of Q such that (C : C2) is very large. By contrast, as of 1991,
no quadratic field was known with (C : C3) > 36. All methods of constructing ele-
ments of order 3 in the class groups of quadratic number fields seem to involve elliptic
curves.

The Artin map. Takagi showed that if L is the class field for H, then Cm/H
is isomorphic to Gal(L/K). Any modern mathematician looking at this result will
immediately ask whether there is a natural isomorphism C/H → Gal(L/K). Surpris-
ingly, this question seems not to have occurred to Kronecker, Weber, Hilbert, Takagi
et al.. Artin did show that there is a natural isomorphism, but even he did this to
obtain another result that interested him.

Let L/K be a finite Galois extension with Galois group G. Recall that the de-
composition group D(P) of a prime ideal P in OL is the set of σ ∈ G such that
σP = P. Any σ ∈ D(P) acts continuously for the P-adic topology on L, and so
extends to the completion LP of L at P. In this way, we obtain an isomorphism
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D(P) → Gal(LP/Kp), p = P ∩ K. When P is unramified over p, then the natu-
ral map Gal(LP/Kp) → Gal(l/k) is an isomorphism. Here l and k are the residue
fields at P and p. Therefore, there is a unique element (P, L/K) ∈ D(P) inducing
the Frobenius map x �→ xq, q = (OK : p), on the residue field. It is the unique
σ ∈ Gal(L/K) such that:

(a) σP = P;
(b) for all α ∈ OL, σα ≡ αq mod P.

If Q also lies over p, then Q = τP for some τ ∈ Gal(L/K), and (Q, L/K) =
τ ◦ (P, L/K) ◦ τ−1. Therefore, to each prime p of K that is unramified in L, we have
attached a conjugacy class

(p, L/K)
df
= {(P, L/K) | P ∩OK = p}

of elements in Gal(L/K). Note that each element in (p, L/K) has order f(P/p).

In an abelian group, conjugacy classes consist of single elements, and so in this case
we can regard (p, L/K) as an element of Gal(L/K).

Theorem 0.7. Let L be an abelian extension of K, and let S be the set of finite
primes ramifying in L. Then, for some modulus m with S(m) = S, the map

p �→ (p, L/K) : IS → Gal(L/K)

factors through IS/i(Km,1), and defines an isomorphism Cm/H → Gal(L/K) where
H is the ray class group corresponding to L.

If the map were not surjective, then there would be a proper extension ofK in which
every prime of K splits. It is easy to see analytically (much harder algebraically) that
no such extension exists. The difficult point to prove is that there exists a modulus
m such that kernel of the map IS → Gal(L/K) contains i(Km,1) for some m.

Theorem 0.7 was proved by Artin (published 1927), and the homomorphism Cm →
Gal(L/K) is called the Artin (or reciprocity) map.

Example 0.8. Let m be a positive integer that is either odd or divisible by 4, and
let L = Q[ζ] be the field generated by a primitive mth root of 1. Recall (Math 676,
Section 6) that there is an isomorphism

(Z/mZ)× → Gal(L/Q), [n] �→ (ζ �→ ζn).

Let P be a prime of L lying over a prime p not dividing m. Because OL/P has
characteristic p, for any α =

∑
aiζ

i, ai ∈ Z,

(
∑

aiζ
i)p ≡∑

aiζ
ip mod P.

Let σ ∈ Gal(L/Q) map ζ to ζp. Then this congruence shows that α ∈ P =⇒ σα ∈
P, i.e., that σP = P, and that σ acts x �→ xp on OL/P. Therefore σ = (P, L/Q) =
(p, L/Q).

Let m = (m)∞. It follows easily from the above remarks that p �→ (p, L/Q) :
IS(m) → Gal(L/Q) factors through Cm

∼= (Z/mZ)×, and defines an isomorphism
Cm → Gal(L/Q).
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Explicit class field theory. Takagi’s theorem states that with every modulus for
K there is associated a ray class field L, but it does not explain how to construct L.
For the Q, the ray class field for m = (m)∞ is generated by ζ = e2πi/m. In the 12th

of his famous problems, Hilbert asked whether the ray class fields for other number
fields can be generated by the special values of explicit holomorphic functions. There
are some very beautiful results on the problem, but they remain rather special: in
general, we don’t know how to construct class fields explicitly.

Nonabelian class field theory. For abelian extensions, class field theory shows
that each set SplS(L/K) is described by congruence conditions. For nonabelian ex-
tensions, this is no longer true, and any description of the sets must be analytic. I
briefly explain what is expected to be true. For simplicity, I take K = Q.

Let L/Q be a finite Galois extension with Galois group G, and let S be the set
of finite primes ramifying in L. From each prime (p) /∈ S, we obtain a conjugacy
class (p, L/Q) of Frobenius elements of G. One group whose conjugacy classes we
understand is GLn(C)—this is the theory of Jordan canonical forms—and so it is
natural to fix an injective homomorphism ρ : G ↪→ GLn(C). Then ρ maps (p, L/Q)
to a conjugacy class Φp(ρ) in GLn(C). Note that

SplS(L/Q) = {(p) | Φp(ρ) = {I}}.
The elements of Φp(ρ) are diagonalizable, and so Φp(ρ) is determined by the common
characteristic polynomial det(I − Φp(ρ)T ) of its elements. Set

LS(s, ρ) =
∏
p/∈S

1

det(I − Φp(ρ)p−s)
, s ∈ C.

For example, if L = Q and n = 1, then

L(s, ρ) =
∏
p

1

1− p−s
= ζ(s).

The product converges to a holomorphic function in some right half plane in C, and
an elementary lemma on Dirichlet series implies that the factors 1

det(I−Φp(ρ)p−s)
are

uniquely determined by the analytic function LS(s, ρ). The problem of describing
the sets SplS(L/Q) then becomes that of describing the set of analytic functions that
arise in this fashion. Langlands has constructed a set of L-series, called automorphic
L-series, and conjectures6 that each LS(s, ρ) is automorphic, and specifies which
automorphic L-series arise in this fashion. Thus, the conjecture answers the original
question for all finite Galois extensions of Q.

The L-functions LS(s, ρ) were defined by Artin, and so are called Artin L-
series. For n = 1 (so G is abelian) and all K, Artin proved all Artin L-series are
automorphic—this was his motivation for proving Theorem 0.7.

For n = 2, Langlands (and Tunnell) have proved the conjecture in some cases.
(Their result played a vital role in Wiles’s work on the Taniyama conjecture.)

6Note the similarity to the Taniyama conjecture—in fact, both are special cases of a much more
general conjecture.
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Exercises.

0.1. Complete the proof that the quadratic reciprocity law allows one to describe
the sets SplS(L/Q) with L/Q quadratic.

0.2. Prove that Q[
√−5,

√−1] is the Hilbert class field of Q[
√−5].

0.3. Prove that the map IS → (Z/mZ)× defined in Example 0.3 has kernel i(Qm,1),
and hence induces an isomorphism Cm → (Z/mZ)×.

0.4. Prove the statements in Example 0.5.

0.5. Let L = Q[
√−1,

√−5]. Then Gal(L/Q) = {1, σ, τ, στ} ≈ Z/2Z × Z/2Z,
where σ fixes Q[

√−1], τ fixes Q[
√−5], and στ fixes Q[

√
5].

(a) Show that only 2, 5,∞ ramify in L.
(b) Compute (p, L/Q) for all p �= 2, 5.
(c) Let m = (20)∞. Show that p �→ (p, L/Q) defines an isomorphism Cm/H →

Gal(L/Q) for some H ⊂ Cm, and find H.

Hint: Show L ⊂ Q[ζ] where ζ is a primitive 20th root of 1.
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CHAPTER I

Local Class Field Theory:
Statements of the Main Theorems and Lubin-Tate

Extensions

Local class field theory classifies the abelian extensions of a local field. From a different
perspective, it describes the local components of the global Artin map.

By a local field, I mean a fieldK that is locally compact with respect to a nontrivial
valuation. Thus it is

(a) a finite extension of Qp for some p;
(b) a finite extension of the field of Laurent series Fp((T )) over the field with p

elements; or
(c) R or C (archimedean case).

WhenK is nonarchimedean, the ring of integers (alias, valuation ring) inK is denoted
by OK (or A), its maximal ideal by mK (or just m), and its group of units by O×

K or
UK . A generator of m is called a prime element of K (rather than the more customary
local uniformizing parameter). If π is a prime element of K, then every element of

K× can be written uniquely in the form a = uπm with u ∈ O×
K and m

df
= ordK(a).

The residue field k of K has q elements, and its characteristic is p. The normalized
valuation on K is defined by |a| = q−ordK (a).

We fix a separable algebraic closure Kal of K. Throughout the chapter “extension
of K” will mean “subfield of Kal containing K”. Both ordK and | · | have unique
extensions to Kal.

1. Statements of the Main Theorems

The composite of two finite abelian extensions of K is again a finite abelian exten-
sion of K. Therefore the union Kab of all finite abelian extensions of K (in Kal) is an
infinite abelian extension whose Galois group is the quotient of Gal(Kal/K) by the
closure of its commutator subgroup. (See the appendix to this chapter for a review
of the Galois theory of infinite extensions.)

Let L be a finite unramified extension of K. Then L is Galois over K, and there
is a unique element σ ∈ Gal(L/K) such that σα ≡ αq for all α ∈ OL, i.e., such that
σ induces the Frobenius automorphism on the residue field of L. This σ is called the
Frobenius element of Gal(L/K), and is denoted FrobL/K . It generates Gal(L/K).
(See Math 676, 7.41 et seqq.)

9
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Theorem 1.1 (Local Reciprocity Law). For any nonarchimedian local field,
there is a unique homomorphism

φK : K× → Gal(Kab/K)

with the following properties:

(a) for any prime element π of K and any finite unramified extension L of K,
φK(π)|L = FrobL/K;

(b) for any finite abelian extension L of K, NmL/K(L
×) is contained in the kernel

of a �→ φK(a)|L, and φK induces an isomorphism

φL/K : K×/NmL/K(L
×) → Gal(L/K).

Denote NmL/K(L
×) by Nm(L×). Statement (b) says that, for every finite abelian

extension L of K, there is a commutative diagram

K× φK−−−→ Gal(Kab/K)
 
τ �→τ |L
K×/Nm(L×)

φL/K−−−→ Gal(L/K)

with φL/K an isomorphism. I shall refer to φK (and φL/K) as the local Artin map.
Other names in use: (local) reciprocity map, norm residue map (symbol), etc..

Theorem 1.2 (Local Existence Theorem). A subgroup N of K× is of the
form NmL/K(L

×) for some finite abelian extension L of K if and only if it is of finite
index and open.

The proofs of these theorems will occupy most of the rest of this chapter and of
chapter 3. First, we note an immediate consequence.

Corollary 1.3. The map L �→ Nm(L×) is a bijection from the set of finite abelian
extensions of K to the set of open subgroups of finite index in K×. Moreover

L1 ⊂ L2 ⇐⇒ Nm(L×
1 ) ⊃ Nm(L×

2 );

Nm(L1 · L2) = Nm(L1) ∩ Nm(L2);

Nm(L1 ∩ L2) = Nm(L1) · Nm(L2).

Proof. Let K̄ be a finite abelian extension of K. According to the Theorem 1.1,
φK̄/K identifies K×/Nm(K̄×) with Gal(K̄/K) in such a way that a subfield L of

K̄ is the fixed field of the subgroup Nm(L×)/Nm(K̄×) of K×/Nm(K̄×). Moreover,
Theorem 1.2 shows that every subgroup H of K× containing Nm(K̄×) is a norm
group. Therefore, so far as it concerns subfields of K̄ and subgroups of K× containing
Nm(K̄), the corollary is a restatement of the main theorem of Galois theory. The full
result is obtained by letting K̄ grow.

Remark 1.4. Corollary 1.3 also holds for archimedean local fields. The abelian
extensions of R are R and C, and their norm subgroups are R× and R>0. Let H be a
subgroup of finite index in R×. Then H ⊃ R×m for some m, and R×m = R× or R>0
according as m is odd or even (apply the intermediate value theorem). Therefore R×
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and R>0 are the only two subgroups of R× of finite index. Moreover, there is a unique
isomorphism (local Artin map in the real case)

R×/R>0 → Gal(C/R),

namely, that sending r to the identity map or complex conjugation according as r > 0
or r < 0. This verifies the corollary for K = R, and it is even more obvious for K = C.

Remark 1.5. If K has characteristic zero, then every subgroup H of K× of finite
index is open. To prove this, observe that a subgroup H of finite index will contain
K×m for some m, and that Newton’s lemma (Math 676, 7.23) applied to Xm − a
shows that any a ∈ O×

K such that |1− a| < |m|2 is of the form um with u ∈ 1 + m.
Therefore H contains an open neighbourhood of 1 in K×, and, since it is a group,
this implies that it is open.

If K has characteristic p �= 0, then not every subgroup of K× of finite index is
open. Note that an open subgroup is also closed (because its complement is a union
of cosets of the group, which are also open). Weil 1967, II.3, Proposition 10, shows
that 1 + m ≈ ∏

N Zp (product of copies of Zp indexed by N), from which it follows
that K× has a quotient isomorphic to

∏
N Fp. Let a = (an)n∈N ∈ ∏

N Fp, and let
a(m) = (a(m)n)n∈N be such that a(m)n = an for n ≤ m and a(m)n = 0 otherwise.
Then a(m) → a as m → ∞, and so ⊕NFp is dense in

∏
N Fp. Therefore any proper

subgroup of
∏
N Zp containing ⊕NZp can not be closed. Because

∏
N Fp/ ⊕N Fp is a

vector space over Fp, it will have subspaces of finite index, and the inverse image of
such a subspace in K× will be a nonclosed subgroup of finite index.

Remark 1.6. The composite of two finite unramified extensions of K is again
unramified, and therefore the union Kun of all finite unramified extensions of K (in
Kal) is an unramified extension of K. The residue field k̄ of Kun is an algebraic
closure of the residue field k of K.

Every automorphism σ of Kun fixing K preserves the valuation | · | on Kun, and
hence induces an automorphism σ̄ of k̄/k. The map σ �→ σ̄ is an isomorphism
Gal(Kun/K) → Gal(k̄/k). Therefore, there is a unique element FrobK ∈ Gal(Kun/K)

inducing the map x �→ xq on k̄, and the map α �→ FrobαK : Ẑ → Gal(Kun/K) is an
isomorphism of topological groups. Condition (a) of Theorem 1.1 can be re-stated as:

(a) for any prime element π of K, φ(π) acts as FrobK on Kun.

Consequences of Theorems 1.1 and 1.2. Assume K possesses a local Artin
map, i.e., a homomorphism φK : K× → Gal(Kab/K) with the properties (a) and (b)
of Theorem 1.1, and that Theorem 1.2 holds.

As we just remarked, for any prime element π of K, φK(π)|Kun = FrobK . If
u ∈ UK , then πu is also a prime element, and so

φK(u)|Kun = φK(πu)|Kun · φK(π−1)|Kun = id .

Therefore, UK is in the kernel of a �→ φK(a)|Kun : K× → Gal(Kun/K), and

φK(a)|Kun = Frob
ordK(a)
K for any a ∈ K×. In other words, the map φK : K× →

Gal(Kun/K) factors into

K× ordK−−→ Z
n�→Frobn

K−−−−−→ Gal(Kun/K).
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If Km is the unramified extension of K of degree m, then

Nm(K×
m) = {a ∈ K× | m|ordK(a)} = UK · πmZ

because this is the kernel of a �→ φK(a)|Km.

Choose a prime element π inK. Then any element a ∈ K× can be written uniquely
a = u · πm, u ∈ UK , m ∈ Z. Thus

K× ≈ UK × Z, u · πm ↔ (u,m).

Because UK is both open and closed in K×, this is an isomorphism of topological
groups (discrete topology on Z). The subgroups 1 + mn, n ≥ 0, form a fundamental
system of neighbourhoods of 1 in K. Clearly therefore, the subgroups (1+mn)×mZ
are open of finite index in UK×Z, and every open subgroup of finite index contains one
of this type. For a finite abelian extension L of K, the smallest f such that Nm(L×)
contains 1 + mf is called the conductor of L/K, except that, when Nm(L×) ⊃ UK ,
the conductor is said to be 0. Thus L/K is unramified if and only if its conductor is
0, and it is tamely ramified if and only if its conductor is ≤ 1.

The homomorphisms

φL/K : K×/Nm(L×) → Gal(L/K)

form a projective system as L runs through the finite abelian extensions of K, ordered
by inclusion. On passing to the limit, we obtain an isomorphism

φ̂K : (̂K×) → Gal(Kab/K)

—in particular, there is a one-to-one correspondence between the set of closed sub-
groups of K̂× and the set of abelian extensions of K. Here K̂× is the completion
of K× with respect to the topology for which the norm groups form a fundamental
system of neighbourhoods of 1. This topology on K× is called the norm topology.
According to Theorem 1.2, the norm groups are the open subgroups of finite index in
K×. The norm topology is coarser than the usual topology on K×—for example, UK
is not open—but it induces the usual topology on UK . When we complete the terms
in the exact sequence

0 → UK → K× ordK−−→ Z → 0

with respect to the norm topology, we obtain an exact sequence

0 → UK → K̂× → Ẑ → 0.

Here Ẑ is completion of Z for the topology defined by the subgroups of finite index.
Loosely speaking, K̂× can be said to have been obtained from K× by completing Z.
(See Artin 1951, 9.3, for a detailed discussion of the norm topology on K×.)
The choice of a prime element π determines a decomposition

K̂× = UK · πẐ,
of K̂× into the product of two closed subgroups, and hence (by infinite Galois theory),
a decomposition

Kab = Kπ ·Kun
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where Kπ is the subfield of Kab fixed by φK(π) and Kun is the subfield of Kab fixed
by φK(UK). Clearly, Kπ is the union of all finite abelian extensions L/K (necessarily
totally ramified) such that π ∈ Nm(L×).

Aside 1.7. The composite of two totally ramified extensions need not be totally
ramified. Consider, for example, Q[

√
p] and Q[

√
pq] where p and q are odd primes

and q is not a square mod p. Then p is totally ramifed in each of these extensions,
but not in their composite Q[

√
p,
√
q] because it is unramified in the subfield Q[

√
q].

These statements remain true when Q is replaced by Qp.

Therefore, in contrast to the situation with abelian and unramified extensions, there
is no “largest” totally ramified extension of K in Kal; there are only the maximal
totally ramified extensions Kπ, each depending on the choice of π.

Outline of the proof of the main theorems. For m ≥ 1, let Km be the unique
unramified extension of K of degree m.

In Section 3 of this chapter, we shall prove:

(∗) For each prime element π of K, there is a totally ramified abelian
extension Kπ = ∪n≥1Kπ,n of K and a homomorphism

φπ : K
× → Gal(Kπ ·Kun/K)

such that
(a) φπ(π)|Kun = FrobK ;
(b) [Kπ,n : K] = (q − 1)qn−1;
(c) for all m and n, φπ(a)|Kπ,n ·Km = id for a ∈ (1 + mn)· <πm>.
(d) for all n, π is a norm from Kπ,n.

Moreover, both Kπ ·Kun and φπ are independent of the choice of π.

Both the fields Kπ,n and the homomorphisms φπ are explicitly constructed.

In Chapter III, we shall prove:

(∗∗) There exists a homomorphism φ : K× → Gal(Kab/K) satisfying
conditions (a) and (b) of Theorem 1.1.

In the remainder this section, we shall assume these two results, and prove that both
Theorem 1.1 and Theorem 1.2 hold, with the added precision that Kab = Kπ · Kun

and φ = φπ for all π.

Let K ′ be the subfield Kπ · Kun of Kab, and let φ′ = φπ—recall that both K ′ and
φ′ are independent of the choice of the prime element π.

Lemma 1.8. For all a ∈ K×, φ(a)|Kπ ·Kun = φπ(a).

Proof. For any prime element π of K, φ(π) acts trivially on Kπ,n because π is a
norm from Kπ,n, and φ′(π) acts trivially on Kπ,n because of condition (∗c) withm = 1
(we may assume that the prime element used in the definition of φ′ is π). Since φ(π)
and φ′(π) both act as FrobK on Kun, they must agree on K ′ = ∪Kπ,n ·Kun. But the
prime elements of K generate K× as a multiplicative group (a ∈ K× can be written
a = uπr = (uπ)πr−1 = π′πr−1), and so this proves the Lemma.

Now fix a prime element π of K, and let

Kn,m = Kπ,n ·Km,
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and

Un,m = (1 + mn)· <πm> .

We are given that φπ(a)|Kn,m = 1 for all a ∈ Un,m. Hence φ(a)|Km,n = 1 for all
a ∈ Un,m, and so Un,m ⊂ Nm(K×

n,m). But

(K× : Un,m) = (U : 1 + mn)(<π>:<πm>)

= (q − 1)qn ·m
= [Kπ,n : K][Km : K]

= [Km,n : K],

and we are given that φ induces an isomorphism

K×/Nm(K×
n,m) → Gal(Kn,m/K).

Therefore,

Un,m = Nm(K×
n,m).

Lemma 1.9. Let L be a finite extension of K, and assume that Nm(L×) is of finite
index in K×. Then Nm(L×) is open in K×.

Proof. Let UL = O×
L . Then UL is compact, and so Nm(UL) is closed in K×.

Since only units have norms that are units, UK/Nm(UL) ↪→ K×/Nm(L×). Therefore,
Nm(UL) is closed of finite index in UK , and hence is open in UK (and also in K×).
Thus Nm(L×) contains an open subgroup of K×, and so is itself open.

Now let L be a finite abelian extension of K. By assumption (∗∗) K×/Nm(L×) ≈
Gal(L/K), and so Nm(L×) is of finite index in K×. Because it is an open subgroup
of finite index in K×, Nm(L×), contains Un,m for some n,m ≥ 0. The map

φ : K× → Gal(L ·Kn,m/K)

is onto and, for a ∈ K×,

φ(a) fixes the elements of L ⇐⇒ a ∈ Nm(L×),

φ(a) fixes the elements of Kn,m ⇐⇒ a ∈ Nm(K×
n,m) = Un,m.

Because Nm(L×) ⊃ Un,m, this implies that L ⊂ Kn,m.

This completes the proof that Kab = Kπ ·Kun and that φ = φπ. To complete the
proof of the existence theorem, we have to show that every open subgroup H of K×

of finite index is a norm group, but, as we observed above, every such group contains
Un,m for some n and m, and Un,m = Nm(Kn,m). Let L be the subfield of Kn,m fixed
by φKn,m/K(H). Then H is the kernel of φ : K× → Gal(L/K), and so equals Nm(L×)
by (∗∗).
Finally, we prove that there exists at most one homomorphism φ : K× →

Gal(Kab/K) satisfying the conditions (a) and (b) of Theorem 1.1. Let π be a prime
element of K. For all n, π ∈ Nm(K×

π,n), and so condition (b) of the theorem implies
that φ(π) acts as the identity on Kπ,n. Therefore φ(π) acts as the identity on Kπ,
and this shows that φ(π) is uniquely determined by the conditions (a) and (b) of
the Theorem. Because the prime elements generate the group K×, this shows that φ
itself is uniquely determined by the conditions.
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Exercise 1.10. Use only results from algebraic number theory (e.g., Math 676)
to prove that a finite extension L/K of local fields is totally ramified if and only if
Nm(L/K) contains a prime element.

The reader not interested in the explicit generation of Kab, nor in the explicit
description of the local Artin map φK , can skip the rest of this chapter and go directly
to Chapters II and III.

2. Lubin-Tate Formal Group Laws

Power series. Let A be a ring (always commutative with 1). A power series with
coefficients in A is an infinite sequence

f = (a0, a1, a2, . . . ), ai ∈ A, i ∈ N.

Addition and multiplication are defined by

(a0, a1, . . . ) + (b0, b1, . . . ) = (a0 + b0, a1 + b1, . . . )

(a0, a1, . . . )(b0, b1, . . . ) = (a0b0, . . . ,
∑
i+j=k

aibj, . . . ).

These formulas are easier to remember if we write

f =
∑
i≥0

aiT
i.

The power series with coefficients in A form a commutative ring, which we denote
by A[[T ]]. Power series can be manipulated in the same way as polynomials, with a
few cautions. For example, in general we can not substitute an element c ∈ A into a
power series f(T ) ∈ A[[T ]], because computing f(c) =

∑
i≥0 aic

i requires us to sum
an infinite number of elements of A, which, not being analysts, we can not do. For
the same reason, we can not substitute one power series g(T ) into a second f(T ) if
g(T ) has a nonzero constant term. However, if the constant term of g(T ) is zero, then
f(g(T )) is defined—we denote it by f ◦ g.

Lemma 2.1. (a) For all f ∈ A[[T ]], g, h ∈ TA[[T ]], f ◦ (g ◦ h) = (f ◦ g) ◦ h.
(b) Let f =

∑∞
i≥1 aiT

i ∈ TA[[T ]]. There exists a g ∈ TA[[T ]] such that f ◦ g = T
if and only if a1 �= 0, in which case g is unique, and has the property that
g ◦ f = T .

Proof. (a) In general, (f1f2) ◦ g = (f1 ◦ g)(f2 ◦ g), and so fn ◦ g = (f ◦ g)n.
Therefore, when f = T n, both f ◦ (g ◦ h) and (f ◦ g) ◦ h equal (g ◦ h)n, and when
f =

∑
aiT

i, both equal
∑

ai(g ◦ h)i.

(b) We seek a g =
∑
i≥1 biT i such that

∑
i≥1

aig
i = T,
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i.e., such that

a1b1 = 1

a1b2 + a2b1 = 0

· · · · · · · · ·
a1bn + polynomial in a2, . . . , an, b1, . . . , bn−1 = 0

· · · · · · · · ·
The first equation shows that, in order for g to exist, a1 must be invertible. Conversely,
when a1 is invertible, the equations define the bi’s uniquely. Now, because b1 is
invertible, the same argument shows that there exists an h ∈ TA[[T ]] such that
g ◦ h = T . But

f = f ◦ T = f ◦ g ◦ h = T ◦ h = h,

and so g ◦ f = T .

Caution: f ◦ (g + h) �= f ◦ g + f ◦ h in general.

Power series in several variables can be defined similarly. If f(X1, . . . , Xn) ∈
A[[X1, . . . , Xn]] and g1, g2, . . . , gn ∈ A[[Y1, . . . , Ym]], then f(g1, . . . , gn) is a well-
defined element of A[[Y1, . . . , Ym]] provided that the constant terms of the gi are all
zero.

Remark 2.2. Let A be a complete discrete valuation ring, and let m be the max-
imal ideal in A. For any f =

∑
i≥0 aiT

i ∈ A[[T ]] and any c ∈ m, aic
i → 0 as i → ∞.

Therefore the series
∑
i≥0 aic

i converges to an element f(c) ∈ m.

We often abbreviate “+terms of degree ≥ m” to “+deg ≥ m”.

Formal group laws. A group is a nonempty set together with a law of composition
satisfying the group axioms. A formal group law is a law of composition (without the
set) satisfying the group axioms. More precisely:

Definition 2.3. Let A be a commutative ring. A one-parameter commutative
formal group law is a power series F ∈ A[[X, Y ]] such that

(a) F (X, Y ) = X + Y + terms of degree ≥ 2;
(b) F (X,F (Y, Z)) = F (F (X, Y ), Z);
(c) there exists a unique iF (X) ∈ XA[[X]] such that F (X, iF(X)) = 0;
(d) F (X, Y ) = F (Y,X).

To get an n-parameter group law, replace each of X and Y with sequences of n-
variables. Axiom (d) is the commutativity condition. Since we consider no other, we
shall refer to one-parameter commutative formal group laws simply as formal group
laws. We shall be especially interested in the case that A = OK , the ring of integers
in a nonarchimedean local field K.

Remark 2.4. Condition (a) ensures that F (X, Y ) has no constant term, and so
axiom (b) makes sense: we are comparing finite sums at each degree.

(b) On taking Y = Z = 0 in Axioms (a) and (b), we find that

F (X, 0) = X + deg ≥ 2, F (F (X, 0), 0) = F (X, 0).
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Denote the power series F (X, 0) by f(X). The first equality implies that there exists
a g such that f ◦ g = X, and the second equality says that f ◦ f = f . On composing
the second equality with g we find that f = X. Thus F (X, 0) = X, and similarly
F (0, Y ) = Y . Hence

F (X, Y ) = X + Y +
∑

1≤i<∞
1≤j<∞

ai,jX
iY j.

Exercise 2.5. Let F (X, Y ) be a power series such that F (X, 0) = X and
F (0, Y ) = Y . Show that there is a unique power series G(X) = −X +

∑∞
i=2 aiX

such that F (X,G(X)) = 0. Hence Axiom (c) is redundant.

Let A = OK , and let F =
∑∞
i,j aijX

iY j be a formal group law over OK. For any

x, y ∈ mK , aijx
iyj → 0 as (i, j) → ∞, and so the series

F (x, y) =
∑

aijx
iyj

converges to an element x+F y of mK . In this way, mK becomes a commutative group
(mK ,+F ). Similarly, mL acquires a group structure for any finite extension L of K,
and the inclusion (mK ,+F ) ↪→ (mL,+F ) is a homomorphism.

Example 2.6. (a) Let F (X, Y ) = X + Y . Then +F is the usual addition law on
mK .

(b) Let F (X, Y ) = X + Y +XY . The map

a �→ 1 + a : m → 1 + m

is an isomorphism (m,+F ) → (1 + m,×). Check:

(a, b) −−−→ (1 + a, 1 + b)
 

a +F b = a + b+ ab −−−→ 1 + a+ b+ ab.

(c) Let E be an elliptic curve over a nonarchimedean local field K, and let

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3

be a minimal Weierstrass model of E. Let T = X/Y . On expanding the group law
on E as a power series in T1, T2, we obtain a formal group law FE(T1, T2) over OK.
See J. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986, Chapter IV.

Definition 2.7. Let F (X, Y ) and G(X, Y ) be formal group laws. A homomor-
phism F → G is a power series h ∈ TA[[T ]] such that

h(F (X, Y )) = G(h(X), h(Y )).

When there exists a homomorphism h′ : G → F such that h ◦ h′ = T = h′ ◦ h, then
h is called an isomorphism. A homomorphism h : F → F is called an endomorphism
of F .

In the case A = OK , a homomorphism f : F → G defines a homomorphism

a �→ f(a) : (mL,+F ) → (mL,+G)

for any L ⊃ K.
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Example 2.8. Let F = X+Y +XY = (1+X)(1+Y )−1. Then f(T ) = (1+T )p−1
is an endomorphism of F , because

F (f(X), f(Y )) = (1 +X)p(1 + Y )p − 1 = f(F (X, Y )).

Note that the following diagram commutes,

m
f−−−→ m
a �→1+a 
a �→1+a

1 + m
a �→ap−−−→ 1 + m

i.e., when we identify (m,+F ) with (1 + m,×), f becomes identified with a �→ ap.

Let G be a formal group law. For any f, g ∈ TA[[T ]], we define

f +G g = G(f(T ), g(T )).

Because of the Axioms 2.3a,b,c,d, this composition law makes TA[[T ]] into a commu-
tative group. In particular,

f +G (iG ◦ f) = 0.

Lemma 2.9. (a) For any formal group laws F and G, the set Hom(F,G) of
homomorphisms from F to G becomes an abelian group with the addition f+G
g.

(b) For any formal group law F , the abelian group End(F ) of endomorphisms of
F becomes a ring with the multiplication f ◦ g.

Proof. Let f and g be homomorphisms F → G, and let h = f +G g. Then

h(F (X, Y ))
df
= G(f(F (X, Y )), g(F (X, Y )))

= G(G(f(X), f(Y )), G(g(X), g(Y ))).

Symbolically (at least), we can write this last power series as

(f(X) +G f(Y )) +G (g(X) +G g(Y )), (∗)
which associativity and commutativity allow us to rewrite as

(f(X) +G g(X)) +G (f(Y ) +G g(Y )), (∗∗)
that is, as G(h(X), h(Y )). More formally, the operations that carry (∗) into (∗∗),
also carry G(G(f(X), f(Y )), G(g(X), g(Y ))) into G(h(X), h(Y )). This proves that
h ∈ Hom(F,G). Similarly, one shows that iG ◦ f ∈ Hom(F,G). As 0 ∈ Hom(F,G),
this completes the proof that Hom(F,G) is a subgroup of (TA[[T ]],+G).

We showed in Lemma 2.1 that f, g �→ f ◦ g is associative. To show that End(F ) is
a ring, it remains to observe that, for f, g, h ∈ End(F ),

f ◦ (g +F h)
df
= f(F (g(X), h(Y ))) = F ((f ◦ g)(X), (f ◦ h)(Y )) = f ◦ g +F f ◦ h,

and that End(F ) has an identity element, namely, T .
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Formal group laws are similar to algebraic groups. The main difference is that,
because they are defined by power series rather than polynomials, their points must
have coordinates “close to 1” in order for products to be defined. There is a very
extensive theory of formal group laws—see, for example, M. Hazewinkel, Formal
Groups and Applications, Academic Press, 1978.

Lubin-Tate group laws. We now take A = OK , the valuation ring in a nonar-
chimdean local field K, and we choose a prime element π of A.

Definition 2.10. Let Fπ be the set of f(X) ∈ A[[X]] such that

(a) f(X) = πX + terms of degree ≥ 2;
(b) f(X) ≡ Xq mod π.

Example 2.11. (a) The polynomial f(X) = πX +Xq lies in Fπ.
(b) Take K = Qp, π = p; then

f(X) = (1 +X)p − 1 = pX +

(
p

2

)
X2 + · · ·+ pXp−1 +Xp ∈ Fp.

Lemma 2.12. Let f, g ∈ Fπ, and let φ1(X1, · · · , Xn) be a linear form with coeffi-
cients in A. There is a unique φ ∈ A[[X1, . . . , Xn]] such that{

φ(X1, . . . , Xn) = φ1 + terms of degree ≥ 2
f(φ(X1, . . . , Xn)) = φ(g(X1), . . . , g(Xn)).

Proof. We prove by induction on r that there is a unique polynomial
φr(X1, . . . , Xn) of degree r such that{

φr(X1, . . . , Xn) = φ1 + terms of degree ≥ 2
f(φr(X1, . . . , Xn)) = φr(g(X1), . . . , g(Xn)) + terms of degree ≥ r + 1.

The unique candidate for the first polynomial is φ1 itself. It certainly satisfies the
first condition, and, if we write φ1 =

∑
aiXi, the second says that

π(
∑

aiXi) =
∑

ai(πXi) + deg ≥ 2,

which is also true.

Suppose r ≥ 1 and we have defined φr. Because φr is unique, φr+1 must equal
φr +Q, where Q is a homogeneous polynomial of degree r+ 1 in A[X1, . . . , Xn]. We
need that

f(φr+1(X1, . . . , Xn))
?
= φr+1(g(X1), . . . , g(Xn)) + deg ≥ r + 2.

The left hand side is

f(φr(X1, . . . , Xn)) + πQ(X1, . . . , Xn) + deg ≥ r + 2,

while the right hand side is

φr(g(X1), . . . , g(Xn)) +Q(πX1, . . . , πXn) + deg ≥ r + 2.

As Q is homogeneous of degree r+1, Q(πX1, . . . ) = πr+1Q(πX1, . . . ), and so we need
that

(πr+1−π)Q(X1, . . . , Xn)
?
= f(φr(X1, . . . , Xn))−φr(g(X1), . . . , g(Xn))+deg ≥ r+2.
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Thus Q must be the unique polynomial such that

f(φr(X1, . . . , Xn))− φr(g(X1), . . . , g(Xn))

(πr − 1)π
= Q+ deg ≥ r + 2.

Note that, because of the simple form that binomial theorem takes in characteristic
p,

f ◦ φr − φr ◦ g ≡ φr(X1, . . . , Xn)
q − φr(X

q
1 , . . . , X

q
n) ≡ 0 mod π.

Because π divides f ◦φr−φr ◦ g and πr−1 is invertible in A, Q does have coefficients
in A, and because φr satisfies the induction hypothesis, it does have degree r + 1.

Having defined the φr for r = 1, 2, . . . and noted that

φr+1 = φr + deg ≥ r + 1,

we can define φ to be the unique power series such that

φ = φr + deg ≥ r + 1

for all r. Clearly, it has the first of the required properties, and for any r,

f(φ(X1, . . . , Xn)) = f(φr(X1, . . . , Xn)) +deg ≥ r + 1

= φr(g(X1, . . . , Xn)) +deg ≥ r + 1

= φ(f(X1, . . . , Xn)) +deg ≥ r + 1.

Since this holds for all r, φ also has the second required property.

Proposition 2.13. For any f ∈ Fπ, there is a unique formal group law Ff with
coefficients in A admitting f as an endomorphism.

Proof. According to Lemma 2.12, there is a unique power series Ff(X, Y ) such
that {

Ff(X, Y ) = X + Y + terms of degree ≥ 2
f(Ff(X, Y )) = Ff(f(X), f(Y )).

It remains to check that this is a formal group law.

Commutativity: Let G = Ff(Y,X). Then{
G(X, Y ) = X + Y + terms of degree ≥ 2

f(G(X, Y )) = f(Ff(Y,X)) = Ff(f(Y ), f(X)) = G(f(X), f(Y )).

Since Ff(X, Y ) is the unique power series with these properties, it follows that
G(X, Y ) = Ff(X, Y ).

Associativity: Let G1(X, Y, Z) = Ff(X,Ff (Y, Z)) and G2(X, Y, Z) =
Ff(Ff(X, Y ), Z). Then, for i = 1, 2,{

Gi(X, Y, Z) = X + Y + Z + terms of degree ≥ 2
Gi(f(X), f(Y ), f(Z)) = f(Gi(X, Y, Z))

and again Lemma 2.12 shows that there is only one power series satisfying these
conditions.

Example 2.14. Let K = Qp and π = p. Then f
df
= (1 + T )p − 1 ∈ Fp, and

F
df
= X + Y +XY admits f as an endomorphism (see 2.8). Therefore, F = Ff .
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The Ff ’s are the Lubin-Tate formal group laws. They are exactly the formal group
laws that admit an endomorphism reducing mod m to the Frobenius T �→ T q and
whose derivative at the origin is a prime element of K.

Proposition 2.15. For f, g ∈ Fπ and a ∈ A, let [a]g,f be the unique element of
A[[T ]] such that {

[a]g,f(T ) = aT + terms of degree ≥ 2
g ◦ [a]g,f = [a]g,f ◦ f.

Then [a]g,f is a homomorphism Ff → Fg.

Proof. Let h = [a]g,f—its existence is guaranteed by Lemma 2.12. We have to
show that

h(Ff (X, Y )) = Fg(h(X), h(Y )).

Obviously each = aX + aY + deg ≥ 2. Moreover,

h(Ff(f(X), f(Y ))) = (h ◦ f)(Ff(X, Y )) = g(h(Ff(X, Y ))),

Fg(h(f(X)), h(f(Y ))) = Fg(g(h(X)), g(h(Y ))) = g(Fg(h(X), h(Y ))),

and we can apply the uniqueness in Lemma 2.12 again.

Proposition 2.16. For any a, b ∈ A,

[a+ b]g,f = [a]g,f +Fg [b]g,f

and

[ab]h,f = [a]h,g ◦ [b]g,f.
Proof. In each case, the power series on the right satisfies the conditions charac-

terizing the power series on the left.

Corollary 2.17. For f, g ∈ Fπ, Ff ≈ Fg.

Proof. For any u ∈ A×, [u]f,g and [u−1]g,f are inverse isomorphisms.

In fact, there is a unique isomorphism h : Ff → Fg such that h(T ) = T + · · · and
g ◦ h = h ◦ f , namely, [1]g,f .

Corollary 2.18. For each a ∈ A, there is a unique endomorphism [a]f : Ff→ Ff
such that [a]f = aT + deg ≥ 2 and [a]f commutes with f . The map

a �→ [a]f : A ↪→ End(Ff )

is a ring homomorphism.

Proof. Take [a]f = [a]f,f—it is the unique power series aT + · · · commuting with
f , and it is an endomorphism of Ff . That a �→ [a]f is a ring homomorphism follows
from Lemma 2.16 and the obvious fact that [1]f = T .

Hence the abelian group (mL,+Ff
) has a natural A-module structure for any finite

extension L of K.
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Example 2.19. Let K = Qp and f = (1+T )p−1 ∈ Fp, so that Ff = X+Y +XY .
For any a ∈ Zp, define

(1 + T )a =
∑
m≥0

(
a

m

)
Tm,

(
a

m

)
=

a(a− 1) · · · (a−m+ 1)

m(m− 1) · · · 1 .

When a ∈ Z, these definitions agree with the usual ones, and if (ai)i≥1 is a sequence

of integers converging to a ∈ Zp, then
(
ai

m

)
→
(
a
m

)
as i → ∞. Therefore

(
a
m

)
∈ Zp. I

claim that
[a]f = (1 + T )a − 1.

Certainly, (1 + T )a − 1 = aT + · · · , and
f ◦ ((1 + T )a − 1) = (1 + T )ap − 1 = ((1 + T )a − 1) ◦ f

holds when a is an integer, which (by continuity) implies that it holds for all a ∈ Zp.

Under the isomorphism (m,+Ff
)
t �→1+t−−−→ (1 + m,×), the action of [a]f corresponds

to the map sending an element of 1 + m to its ath power.

Remark 2.20. (a) Note that [π]f = f , because f satisfies the two defining
conditions.

(b) The homomorphism a �→ [a]f : A �→ End(Ff ) is injective, because a can be
recovered as the leading coefficient of [a]f.

(c) The canonical isomorphism [1]g,f : Ff → Fg commutes with the actions of A
on Ff and Fg, because

[a]g ◦ [1]g,f = [a]g,f = [1]g,f ◦ [a]f .
Summary 2.21. For each f ∈ Fπ, there exists a unique formal group law Ff ad-

mitting f as an endomorphism. Moreover, there is a unique A-module structure
a �→ [a]f : A → End(Ff) on Ff such that

(a) [a]f = aT + deg ≥ 2, all a ∈ A;
(b) [a]f commutes with f .

We have [π]f = f . If g ∈ Fπ, then Ff ∼= Fg (by a canonical A-isomorphism).

3. Construction of the extension Kπ of K.

Again A = OK where K is a nonarchimedean local field with residue field A/m = k
having q (a power of p) elements. We fix a prime element π of K.

According to the discussion in Section 1, there should be a unique totally ramified
extension Kπ of K such that Kab = Kπ · Kun and π is a norm from every finite
subextension of Kπ, namely, the subfield Kπ of Kab fixed by φ(π).

It is easy to construct Kun. Let µm be the set of mth roots of 1 in Kal, i.e., µm
is the set of roots of Xm − 1. When m is not divisible by p, the discriminant of
Xm − 1 is a unit in OK , and so the field K[µm] generated by the elements of µm
is unramified over K; moreover, the residue field of K[µm] is the splitting field of
Xm − 1 over k, and so has qf elements where f is the smallest positive integer such
that m|pf−1. It follows that Kun = ∪p-mK[µm]. The Galois group Gal(Kun/K) ∼= Ẑ,
and a ∈ Ẑ acts Kun as follows: for any ζ ∈ µm and any integer a0 sufficiently close to
a, a ∗ ζ = ζa0 (= FrobaK(ζ)).
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In the case K = Qp and π = p, there is a similar construction for Kπ, namely,
(Qp)p = ∪Qp[µpn]—we shall prove later that this has the indicated properties. The
action

([m], ζ) �→ ζm : Z/pnZ × µpn → µpn

makes µpn into a free Z/pnZ-module of rank 1. Since Z/pnZ = Zp/pnZp, we can
regard µpn as a cyclic Zp-module, isomorphic to Zp/(pn). The action of Zp on µpn

induces an isomorphism (Zp/pnZp)× → Gal(Qp[µpn]/Qp), and, on passing to limit
over all n, we obtain an isomorphism

Z×
p → Gal((Qp)p/Qp).

Thus, for both the extensions Kun/K and (Qp)p/Qp, we have an explicit set of
generators for the extension, an explicit description of the Galois group, and an
explicit description of the Galois group on the set of generators. Remarkably, the
Lubin-Tate groups provide similar results for Kπ/K for any K and π.

The valuation | · | on K extends uniquely to any subfield L of Kal of finite degree
over K, and hence to Kal. Let f ∈ Fπ. For any α, β ∈ Kal with |α|, |β| < 1 and
a ∈ A, the series Ff(α, β) and [a]f(α) converge. Therefore, we can define Λf to be
the A-module with:

Λf = {α ∈ Kal | |α| < 1} (as a set),

α+Λf
β = α+Ff

β = Ff (α, β),

a ∗ α = [a]f(α).

We define Λn to be the submodule of Λf of elements killed by [π]nf .

Remark 3.1. Recall that [π]f(T ) = f(T ), and therefore Λn is the set of roots of

f (n)
df
= f ◦ f ◦ · · · ◦ f (n factors)

in Kal with valuation < 1. For simplicity1, we let f be a polynomial πT + a2T
2 +

· · ·+ T q—according to (2.17) it even suffices to take f = πT + T q. Then,

(f ◦ f)(T ) df= f(f(T )) = π(πT + · · ·+ T q) + · · ·+ (πT + · · ·+ T q)q = π2T + · · ·+ T q
2

,

and

f (n)(T ) = πnT + · · ·+ T q
n

.

From the Newton polygon (see Math 676, 7.35) of f (n), one sees that its roots all
have positive ordK , hence valuation < 1, and so Λn is the set of all roots of f (n) in
Kal endowed with the commutative group stucture

α+Ff
β = Ff(α, β) = α + β + · · · ,

and the A-module structure,

[a]fα = aα+ · · · .
1The p-adic Weierstrass preparation theorem (Washington, Introduction to Cyclotomic Fields,

Springer, 1982, 1997, 7.3) implies that any f ∈ Fπ factors into f1(T )u(T ) where f1(T ) is a polynomial
πT + · · ·+ aT q, a ≡ 1 mod m, and u(T ) is a unit in A[[T ]].
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Example 3.2. Take K = Qp and f = (T + 1)p − 1 ∈ Fp; then
Λn = {α ∈ Qal

p | (α − 1)p
n

= 1} ∼= {ζ | ζpn

= 1} = µpn .

The addition +F on Λn corresponds to multiplication on µpn , and the Zp-module
structure is as defined before. It follows that Λn ≈ Z/pnZ (as a Zp-module).

Because A is a principal ideal domain with only one prime element up to conjugates,
every finitely generated torsion A-module M decomposes into a direct sum of cyclic
modules

M ≈ A/(πn1)⊕ · · · ⊕ A/(πnr), n1 ≤ n2 ≤ . . . ,

and the sequence n1, . . . , nr is uniquely determined.

Lemma 3.3. Let M be an A-module, and let Mn = Ker(πn : M → M). Assume:

(a) M1 has q
df
= (A : (π)) elements, and

(b) π : M → M is surjective.

Then Mn ≈ A/(πn); in particular, it has qn elements.

Proof. We use induction on n. Because A/(πn) has order qn, condition (a) and
the structure theorem imply that M1 ≈ A/(π). Consider the sequence

0 −→ M1 −→ Mn
π−→ Mn−1 −→ 0.

Condition (b) implies that it is exact at Mn−1, and is therefore exact. It follows that
Mn has qn elements. Moreover, Mn must be cyclic, because otherwise M1 would not
be cyclic. Therefore Mn is a cyclic A-module of order qn, and every such module is
isomorphic to A/(πn).

Proposition 3.4. The A-module Λn is isomorphic to A/(πn). Hence EndA(Λn) =
A/(πn) and AutA(Λn) = (A/(πn))×.

Proof. An A-isomorphism h : Ff → Fg of formal group laws induces an isomor-
phism of A-modules Λf → Λg, and so it does not matter which f ∈ Fπ we choose.
We take f ∈ Fπ to be a polynomial of the form πT + · · ·+ T q. This is an Eisenstein
polynomial (Math 676, 7.46), and so has q distinct roots, each with valuation < 1.
Let α ∈ Kal have valuation < 1. From the Newton polygon of

f(T )− α = T q + · · ·+ πT − α

we see that its roots have valuation < 1, and so lie in Λf . Thus, we have verified the
hypotheses of the lemma for Λf , and so Λn ≈ A/(πn). It follows that the action of A
on Λn induces an isomorphism A/(πn) → EndA(Λn).

Lemma 3.5. Let L be a finite Galois extension of a local field K, with Galois group
G. For any F ∈ OK [[X1, ..., Xn]] and α1, . . . , αn ∈ mL,

F (τα1, . . . , ταn) = τF (α1, . . . , αn), all τ ∈ G.

Proof. If F is a polynomial, this follows from the fact that τ is a field isomorphism
fixing the elements of OK . We know (Math 676, 7.20 et seqq.) that τ preserves the
valuation on L, i.e., |τα| = |α| all α ∈ L, and so τ is continuous. Therefore it
preserves limits:

lim
m→∞αm = L =⇒ lim

m→∞ ταm = τL.
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Let Fm be the polynomial of degree m such that F = Fm + deg ≥ m+ 1. Then

τ (F (α1, . . . )) = τ ( lim
m→∞Fm(α1, . . . )) = lim

m→∞ τFm(α1, . . . ) = lim
m→∞Fm(τα1, . . . ).

Theorem 3.6. Let Kπ,n = K[Λn], the subfield of Kal generated over K by the
elements of Λn.

(a) For each n, Kπ,n/K is totally ramified of degree (q − 1)qn−1.
(b) The action of A on Λn defines an isomorphism

(A/mn)× → Gal(Kπ,n/K).

In particular, Kπ,n/K is abelian.

(c) For each n, π is a norm from Kπ,n.

Proof. Again, we may assume that f ∈ Fπ is a polynomial of the form πT + · · ·+
T q.

(a), (b). Choose a nonzero root π1 of f(T ) and (inductively) a root πn of f(T )−
πn−1. Consider the sequence of fields

K[Λn] ⊃ K[πn]
q⊃ K[πn−1]

q⊃ · · · q⊃ K[π1]
q−1⊃ K.

Each extension is Eisenstein (Math 676, 7.46) with the degree indicated. Therefore
K[πn] is totally ramified over K of degree qn−1(q − 1).

Recall that Λn is the set of roots of f
(n) in Kal, and so K[Λn] is the splitting field of

f (n). Therefore Gal(K[Λn]/K) can be identified with a subgroup of the group of per-
mutations of the set Λn, but Lemma 3.5 implies that each element of Gal(K[Λn]/K)
acts on Λn as an A-module isomorphism, and so the image of Gal(K[Λn]/K) in
Sym(Λn) is contained in

EndA(Λn) = (A/(πn))×.

Hence

(q − 1)qn−1 ≥ #Gal(K[Λn]/K) = [K[Λn] : K] ≥ [K[πn] : K] = (q − 1)qn−1.

We must have equalities throughout, and so Gal(K[Λn]/K) ∼= (A/mn)× and K[Λn] =
K[πn].

(c) Let f [n](T ) = (f/T ) ◦ f ◦ · · · ◦ f (n terms), so that

f [n](T ) = π + · · · + T (q−1)q
n−1

.

Then f [n](πn) = f [n−1](πn−1) = . . . = f(π1) = 0. Because f [n] is monic of degree (q −
1)qn−1 = [K[πn] : K], it must be the minimum polynomial of πn over K. Therefore,

NmK[Λn]/K πn = (−1)(q−1)q
n−2

π

= π unless q = 2 and n = 1.

In the exceptional case, K[Λ1] = K, and so π is certainly a norm.
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Summary 3.7. Let f(T ) = πT + · · ·+ T q, and let Λn be the set of roots of f (n) in
Kal. Define Kπ,n = K[Λn]. Then

Kπ = ∪Kπ,n

|
...
|

Kπ,n = K[πn] f(πn) = πn−1 mKπ,n = (πn)
q |

...
...

...
q |

Kπ,2 = K[π2] f(π2) = π1 mKπ,2 = (π2)
q |

Kπ,1 = K[π1] f(π1) = 0 mKπ,1 = (π1) π1 �= 0
q − 1 |

K

Moreover, the action

a ∗ λ = [a]f(λ), a ∈ A, λ ∈ Λn,

induces an isomorphism

(A/mn)× → Gal(Kπ,n/K).

On passing to the inverse limit, we obtain an isomorphism

A× → Gal(Kπ/K).

Example 3.8. Let K = Qp and f = (T +1)p−1. For each r, choose a prth root ζpr

of 1 in such a way that ζp is primitive and ζppr = ζpr−1 . Then πr = ζpr −1 and (Qp)p,n =
Qp[πr] = Qp[ζpr ]. Moreover, the isomorphism (Zp/(pn))× → Gal(Qp[ζpr ]/Qp) is the
standard one.

The local Artin map. We define a homomorphism

φπ : K
× → Gal(Kab/K)

as follows. Let a ∈ K×. Because Kπ ∩Kun = K and Kπ · Kun = Kab, it suffices to
describe the actions of φπ(a) on Kπ and Kun separately. Let a = uπm, u ∈ U . We
decree that φπ(a) acts on Kun as Frobm, and that it acts on Kπ according to the rule

φπ(a)(λ) = [u−1]f(λ), all λ ∈ ∪Λn.
The −1 is inserted so the the following theorem is true.

Theorem 3.9. Both Kπ ·Kun and φπ are independent of the choice of π.

Recall that Kal is not complete (see Math 676, Problems 10, #4); in fact even Kun

is not complete. We write K̂un for its completion, and B for the valuation ring of K̂un

(the valuation | · | on Kun extends uniquely to K̂un, and B is the set of elements with
value ≤ 1). We write σ for the Frobenius automorphism FrobK ofKun/K, and also for

its extension to K̂un. For a power series θ[[T ]] =
∑

biT
i ∈ B[[T ]], (σθ)(T )

df
=
∑

σbiT
i.
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Proposition 3.10. Let Ff and Fg be the formal group laws defined by f ∈ Fπ and
g ∈ F!, where π and > = uπ are two prime elements of K. Then Ff and Fg become
A-isomorphic over B. More precisely, there exists an ε ∈ B× such that σε = εu, and
a power series θ(T ) ∈ B[[T ]] such that:

(a) θ(T ) = εT + deg ≥ 2;
(b) σθ = θ ◦ [u]f;
(c) θ(Ff(X, Y )) = Fg(θ(X), θ(Y ));
(d) θ ◦ [a]f = [a]g ◦ θ.

The last two conditions say that θ is a homomorphism Ff → Fg commuting with
the actions of A, and the first condition implies that θ is an isomorphism (because ε
is a unit).

Lemma 3.11. The homomorphisms

b �→ σb− b : B → B, b �→ σb/b : B× → B×,

are surjective with kernels A and A× respectively.

Proof. Let R be the valuation ring in Kun, and let n be its maximal ideal. Then
R is a discrete valuation ring, and lim←−R/nn = B (see (5.7 below). We shall show by
induction that the sequence

0 → A/mn
K → R/nn

σ−1−−→ R/nn → 0 (∗)
is exact. For n = 1, the sequence becomes

0 → k → k̄
x �→xq−x−−−−−→ k̄ → 0.

Here k̄ is the algebraic closure of k. This is obviously exact. Assume that the sequence
is exact for n− 1, and consider the diagram

0 → R/n → R/nn → R/nn−1 → 0
↓ ↓ ↓

0 → R/n → R/nn → R/nn−1 → 0

in which all the vertical maps are induced by σ − 1. From the snake lemma, we find
that σ− 1 : R/nn → R/nn is surjective and that its kernel has qn elements. As A/nn

is contained in the kernel and has qn elements, it must equal the kernel. This shows
that (∗) is exact, and, when we pass to the inverse limit over n, the sequence becomes

0 → A → B
σ−1−−→ B → 0,

which is therefore exact (see Proposition 5.8 below).

The proofs for A× are similar.

The inverse of a power series h for composition will be denoted h−1. Thus h◦h−1 =
T = h−1 ◦ h.

The proof of the Proposition 3.10 has four steps:

Step 1. Show there exists a θ(T ) ∈ B[[T ]] satisfying (a) and (b).
Step 2. Show that the θ in Step 1 can be chosen so that g = σθ ◦ f ◦ θ−1.
Step 3. Show that the power series θ(Ff(θ

−1(X), θ−1(Y ))) has the properties charac-
terizing Ff(X, Y ), and therefore equals it.
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Step 4. Show that the power series θ ◦ [a]f ◦ θ−1 has the properties characterizing [a]g,
and therefore equals it.

Proof. (of Step 1). Choose an ε ∈ B× such that σε = εu—its existence is
ensured by Lemma 3.11. Starting with θ1(T ) = εT , we shall construct a sequence of
polynomials θr such that

θr(T ) = θr−1(T ) + bT r, some b ∈ B,
σθr = θr ◦ [u]f + deg ≥ r + 1.

Note, that for θ1(T ) = εT , the second equation becomes

σεT = ε(uT + · · · ) + deg ≥ 2,

which is true because of our choice of ε. Suppose that θr has been found, and we wish
to find θr+1(T ) = θr(T ) + bT r+1. Write b = aεr+1, a ∈ B. Then the second equation
becomes

(σθr)(T ) + (σa)(σε)r+1T r+1
?
= θr([u]f(T )) + aεr+1(uT )r+1 + deg ≥ r + 1.

Thus, we need

(σa− a)(εu)r+1
?
= c

where c is the coefficient of T r+1 in θr ◦ [u]f −σθr. We can choose a to be any element
of B such that σa− a = c/(εu)r+1.

Proof. (of Step 2). Define

h = σθ ◦ f ◦ θ−1 = θ ◦ [u]f ◦ f ◦ θ−1 = θ ◦ f ◦ [u]f ◦ θ−1.

Then, because f and [u]f have coefficients in A,

σh = σθ ◦ f ◦ [u]f ◦ σθ−1 = σθ ◦ f ◦ θ−1 = h.

For the middle equality, we used that [u]f ◦ σθ−1 = θ−1 which follows from θ ◦ [u]f ◦
σθ−1 = T. Because σh = h, it lies in A[[T ]]. Moreover,

h(T ) = σε · π · ε−1T + · · · = >T + deg ≥ 2,

and
h(T ) ≡ σθ ◦ (θ−1)q ≡ σθ(σθ−1(T q)) ≡ T q mod mK .

Therefore, h ∈ F!. Let θ′ = [1]g,h ◦ θ. Then θ′ obviously still satisfies condition (a)
of the proposition, and it still satisfies (b) because [1]g,h ∈ A[[T ]]. Moreover,

σθ′ ◦ f ◦ θ′−1 = [1]g,h ◦ h ◦ [1]−1g,h = g.

The proofs of Steps 3 and 4 are straightforward applications of Lemma 2.12.

Proof. (that Kπ · Kun is independent of π). Let π and > = πu be two prime
elements of K. From Proposition 3.10 we find that

(σθ) ◦ [π]f = θ ◦ [u]f ◦ [πf ] = θ ◦ [>]f = [>]g ◦ θ,

that is, that

(σθ)(f(T )) = g(θ(T )).
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Therefore, for any α ∈ Kal (recall that this is the separable algebraic closure of K),

f(α) = 0 =⇒ g(θ(α)) = 0,

and, similarly,

g(α) = 0 =⇒ f(θ−1(α)) = 0.

Therefore θ defines a bijection Λf,1 → Λg,1, and so

K̂un[Λg,1] = K̂un[θ(Λf,1)] ⊂ K̂un[Λf,1] = K̂un[θ−1(Λg,1)] ⊂ K̂un[Λg,1].

Therefore

K̂un[Λg,1] = K̂un[Λf,1].

Now the next lemma shows that

K̂un[Λg,1] ∩Kal = Kun[Λg,1], K̂un[Λf,1] ∩Kal = Kun[Λf,1],

and so

Kun[Λg,1] = Kun[Λf,1].

The argument extends without difficulty to show that

Kun[Λg,n] = Kun[Λf,n]

for all n, and so Kun ·K! = Kun ·Kπ.

Lemma 3.12. Every subfield E of Kal containing K is closed (in the topological
sense).

Proof. Let H = Gal(Kal/E). Then H fixes every element of E and so, by
continuity, it fixes every element in the closure of E. By Galois theory, this implies
that E equals its closure in Kal.

Proof. (that φπ is independent of π.) We shall show that, for any two prime
elements π and >,

φπ(>) = φ!(>).

Since π is arbitrary, this implies that for any other prime element π′ of K,

φπ′(>) = φ!(>) = φπ(>).

Since > is also arbitrary, and the prime elements generate the group K×, this implies
that φπ = φπ′.

On Kun, both φπ(>) and φ!(>) induce the Frobenius automorphism. It remains
to prove that they have the same effect on K!.

Let θ be an isomorphism Ff → Fg over K̂un as in Proposition 3.10. It induces an
isomorphism Λf,n → Λg,n for all n. By definition, φ!(>) is the identity on K!, and
since K!,n is generated over K by the elements θ(λ) for λ ∈ Λf,n, it remains to prove
that

φπ(>)(θ(λ)) = θ(λ), all λ ∈ Λf,n.

Write > = uπ. Then φπ(>) = φπ(u) · φπ(π) = τσ, say, where

σ =

{
FrobK on Kun

id on λ
τ =

{
id on Kun

[u−1]f on λ.
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Using that the series θ has coefficients in K̂un and (3.10), we find that

φπ(>)(θ(λ)) = τσ(θ(λ)) = (σθ)(τλ) = (σθ)([u−1]f(λ) = θ(λ).

Example 3.13. We describe the local Artin map φp : Q×
p → Gal(L/Qp) in the

case L = Qp[ζ] where ζ is a primitive nth root of 1.

(i) Suppose n is prime to p. Then L is unramified over Qp, with degree equal to the
degree of the residue field extension. The residue field is Fpf where pf is the smallest
power of p such that n|(pf − 1). The map φp : Q×

p → Gal(L/Qp) sends u · pt to the

tth power of the Frobenius element, and its kernel is Z×
p · <pf>,

(ii) Suppose n is a power pr of p. In this case, L is totally ramified of degree
(p − 1)pr−1 over K, and L = (Qp)p,n (see 3.8). The map φp : Q×

p → Gal(L/Qp)
can be described as follows: let a = upt, and let u0 ∈ Z represent the class of u in
(Zp/prZp)×; then φp(a) sends ζ to ζu

−1
. Its kernel is {upm | u ≡ 1 mod pr, m ∈ Z}.

(iii) In the general case, write n = m · pr with m prime to p. Then we have

Qp[ζn]
	 


Qp[ζpr ] Qp[ζm].

 	

Qp

The map Q×
p /Nm(Qp[ζn]

×) → Gal(Qp[ζn]/Qp) can be described as follows: write
a = upt, u ∈ Z×

p ; then a acts on Qp[ζm] by ζm �→ ζtm, and it acts on Qp[ζpn] by

ζpn �→ ζ
u−1
0
pn where u0 is an integer congruent to u mod pr .

4. The Local Kronecker-Weber Theorem

The main result proved in this section is that Kab = Kπ · Kun. Since this is not
needed for the proofs of the main theorems of local class field theory, and is implied
by them, this section may be skipped.

The ramification groups of Kπ,n/K. Let L/K be a finite Galois extension with
Galois group G. Recall (Math 676, 7.49 et seqq.) that the ith ramification group is
defined to be

Gi = {τ ∈ G | ordL(τa− a) ≥ i+ 1, all a ∈ OL}.
Moreover, for i ≥ 0,

Gi = {τ ∈ G0 | ordL(τΠ− Π) ≥ i+ 1}
where Π is a prime element for L. Here ordL is the normalized valuation L× � Z.
Then G/G0 = Gal(@/k), and there are inclusions:

(Π �→ τΠ/Π mod Π) : G0/G1 ↪→ @×

(Π �→ (τΠ− Π)/Πi+1 mod Π) : Gi/Gi+1 ↪→ @

where @ ⊃ k are the residue fields of L and K. Thus (G0 : G1)|q− 1 and (Gi : Gi+1)|q
for i ≥ 1. Moreover Gi = {1} for i sufficiently large.
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Let

U (0) = U = A×,

U (i) = 1 + mi, i ≥ 1.

Then we have a filtration

U/U (n) ⊃ U (1)/U (n) ⊃ · · · ⊃ U (n)/U (n) = 0

on A×/(1 + mn) = U/U (n).

Proposition 4.1. Under the isomorphism A×/U (n) ≈→ G of Theorem 3.6,
U (i)/U (n) maps onto Gqi−1.

Proof. We take f = πT + T q. Certainly G = G0, and U (0)/U (n) maps onto G0.
Now take i ≥ 1, and let u ∈ U (i) \ U (i+1). Then u = 1 + vπi with v ∈ A×, and

[u]f(πn) = [1]f(πn) + [v]f[π
i]f(πn) = πn + [v]f(πn−i) = πn + (unit)πn−i.

For any i ≥ 1, πi = ππi+1+πqi+1 = πqi+1(
ππi+1

πq
i+1

+1) = πqi+1×unit because ord( π

πq−1
i+1

) > 0.

Hence πn−i = πq
i

n × unit, and

[u]f(πn)− πn = πq
i

n × unit.

By definition, this means that [u]f ∈ Gqi−1, [u]f /∈ Gqi . Since this is true for all i, it
implies that U (i) maps onto Gqi−1.

Hence

G0 = G

Gq−1 = Gq−2 = · · · = G1

Gq2−1 = Gq2−2 = · · · = Gq

· · ·
Gqn−1 = 1

is a complete set of distinct ramification groups for Kπ,n/K.

Upper numbering on ramification groups. Let L be a finite Galois extension
of K with Galois group G. We extend the definition of Gu to all real numbers u ≥ −1,
by setting

Gu = Gi where i is the least integer ≥ u.

For u > 0,

Gu = {τ ∈ G0 | ordL(τΠ− Π) ≥ i+ 1}.
Define ϕ : R≥0 → R to be the unique continuous piecewise linear function such that{

ϕ(0) = 0
ϕ′(u) = (G0 : Gu)

−1 if u is not an integer.

Define Gv = Gu if v = ϕ(u), i.e., Gv = Gϕ−1(v).
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Example 4.2. Let L = Kπ,n. Then

(G0 : G1) = q − 1, G1 = G2 = · · · = Gq−1.

Thus ϕ′(u) = 1
q−1 for 0 < u < q − 1, and the first segment of the graph of ϕ runs

from (0, 0) to (q − 1, 1); hence G1 = Gq−1. Next

(Gq−1 : Gq) = q, Gq = Gq+1 = · · · = Gq2−1.

Thus ϕ′(u) = 1
q(q−1) for q− 1 < u < q2− 1, and the second segment of the graph of ϕ

runs from (q − 1, 1) to (q2 − 1, 2). Thus G2 = Gq2−1. Continuing in this fashion, we
arrive at the following picture:

G0

q−1⊃ Gq−1
q⊃ Gq2−1 ⊃ · · · ⊃ Gqn−1 = 1

‖ ‖ ‖ ‖
G0 G1 G2 Gn

Proposition 4.3. Under the isomorphism A×/U (n) → G,

U (i)/U (n) ≈→ Gi.

Proof. Immediate consequence of (4.1) and (4.2).

The upper numbering is defined so as to be compatible with the passage to the
quotient (whereas the lower numbering is compatible with passage to the subgroups).

Proposition 4.4. Consider Galois extensions M ⊃ L ⊃ K, and let G =
Gal(M/K) and H = Gal(M/L) (assumed normal) so that G/H = Gal(L/K). Then

(G/H)v = Im(Gv → G/H),

i.e., (G/H)v = GvH/H.

Proof. See Serre, 1962, Corps Locaux, IV.3, Pptn 14.

Now consider an infinite Galois extension Ω/K. Using (4.4) we can define a filtra-
tion on G = Gal(Ω/K):

τ ∈ Gv ⇐⇒ τ ∈ Gal(L/K)v, all L/K finite and Galois L ⊂ Ω.

Definition 4.5. For a finite Galois extension L/K, v is called a jump in the
filtration {Gv} if, for all ε > 0, Gv �= Gv+ε.

Theorem 4.6 (Hasse-Arf). If L/K is abelian, then the jumps are integers, i.e.,
if Gi �= Gi+1, then ϕ(i) ∈ Z.

Proof. See Serre, 1962, Corps Locaux, V.7. (The proof is fairly elementary, but
complicated. It is does not require that residue fields be finite, but only that the
residue field extension be separable.)

Thus, for a finite abelian extension L/K, the filtration on G0 = G0 is of the form

G0 � Gi1 � Gi2 . . . . ij ∈ N.
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Moreover Gn = {1} for n sufficiently large, and (Gij : Gij+1) divides q−1 or q. For an
infinite abelian extension, the same statements hold, except that the filtration need
not terminate: we can only say that

∩Gi = {1}.
Example 4.7. Let L = Kπ,n. If Gi �= Gi+1, then i = 0, q − 1, . . . , qn − 1, and

at those points ϕ takes the values 1, 2, 3, . . . , n. Thus we have verified the Hasse-Arf
theorem for all these extensions, and, because of (4.4), all subextensions.

The local Kronecker-Weber theorem. As usual, K is a local nonarchimedean
field, and all extensions of K will be required to be subfields of a fixed separable
algebraic closure Kal of K.

Theorem 4.8. For any prime element π of K,

Kπ ·Kun = Kab.

Lemma 4.9. Let L be an abelian totally ramified extension of K. If L ⊃ Kπ, then
L = Kπ.

Proof. Let G = Gal(L/K) and H = Gal(L/Kπ), so that G/H = Gal(Kπ/K).
Consider the diagram (of abelian groups)

1 1 1
 
 

1 −−−→ Gn+1 ∩H −−−→ Gn+1 −−−→ (G/H)n+1 −−−→ 1
 
 

1 −−−→ Gn ∩H −−−→ Gn −−−→ (G/H)n −−−→ 1
 
 

1 −−−→ Gn∩H

Gn+1∩H −−−→ Gn

Gn+1 −−−→ (G/H)n

(G/H)n+1 −−−→ 1
 
 

1 1 1

The columns are obviously exact, and Proposition 4.4 shows that the top two rows
are exact. Therefore, the third row is exact (by the snake lemma, for example) and
so

(Gn : Gn+1) = ((G/H)n : (G/H)n+1) (Gn ∩H : Gn+1 ∩H).
≤ q = q − 1 or q

From this we deduce that Gn ∩H = Gn+1 ∩H for all n. Thus

Gn+1 ∩H = Gn ∩H = · · · = G0 ∩H = H,

i.e., H ⊂ Gn+1 for all n. Since ∩Gn = 1, this shows that H = 1.

Lemma 4.10. Every finite unramified extension of Kπ is contained in Kπ ·Kun.
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Proof. Let L be an unramified extension of Kπ. Then L = Kπ · L′ for some
unramified extension L′ of Kπ,n for some n. Now apply (Math 676, 7.41) to see that
L′ = Kπ,n · L′′ for some unramified extension L′′ of K.

Lemma 4.11. Let L be a finite abelian extension of K of exponent m (i.e., τm = 1
all τ ∈ Gal(L/K)), and let Km be the unramified extension of K of degree m. Then
there exists a totally ramified abelian extension Lt of K such that

L ⊂ Lt ·Km = L ·Km.

Proof. For any τ ∈ Gal(LKm/K), τm|L = 1 = τm|Km, and so Gal(LKm/K) is
still abelian of exponentm. Let τ ∈ Gal(LKm/K) be such that τ |Km is the Frobenius
automorphism. Then τ has order m, and so

Gal(L/K) =<τ> ×H (direct product).

for some subgroup H. Let Lt = L<τ>; then Lt is totally ramified over K and L ·Km =
Lt ·Km.

Proof. (of Theorem 4.8). Let L be a finite abelian extension of K; we have to
show that L ⊂ Kπ ·Kun.

Lemma 4.9 holds with K replaced by Kπ. If we apply it to the extension L ·Kπ/Kπ

we find that there exists a totally ramified extension Lt of Kπ and an unramified
extension Lu of Kπ such that

L ·Kπ ⊂ Lt · Lu ⊂ (Lt ·Kπ) · Lu.
Now (4.9) implies that Lt ⊂ Kπ and (4.10) implies that Lu ⊂ Kπ ·Kun.

Corollary 4.12. Every finite abelian extension of Qp is contained in a cyclotomic
extension.

Example 4.13. A finite abelian extension L of K need not be of the form Lt · Lu
with Lt totally ramified over K and Lu unramified over K. Consider:

Q5[ζ5, ζ624]
	 | 


Q5[ζ5] L Q5[ζ624].

 | 	

Q5

The field Q5[ζ5] is totally ramified of degree 4 over Q5 with Galois group (Z/5)×,
which is cyclic of order 4. Note that 624 = 54 − 1, and so Q5[ζ624] is unramified of
degree 4 over Q5, and its Galois group is also cyclic. Clearly

Gal(Q5[ζ3120]/Q5) =<σ> × <τ>

where {
σ(ζ624) = ζ5624
σ(ζ5) = ζ5

{
τ (ζ624) = ζ624
τ (ζ5) = ζ25

.

Let L be the fixed field of <σ2τ>. Then L is a cyclic Galois extension of Q5 of degree
4. Its maximal unramified subfield

Lu = L ∩ Q5[ζ624] = Q5[ζ624]
<σ2> = Q5[ζ

25
624]
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which has degree 2 over Q5. If there existed field a Lt such that L = Lt · Lu, then
Gal(L/Q5) would be the product of two cyclic groups of order 2, contradicting the
fact that it is cyclic.

We recover the fact that Kπ · Kun is independent of π without using Proposition
3.10. However, this proposition is still required to show that φπ is independent of π.

Remark 4.14. The original Kronecker-Weber Theorem (proved by Hilbert in 1896
using an analysis of the ramification groups after earlier incomplete proofs by Kro-
necker and Weber) states that every finite abelian extension of Q is contained in a
cyclotomic extension. For Qp the same statement is called the Local Kronecker-Weber
Theorem, and Theorem 4.8 is usually referred to as the Local Kronecker-Weber The-
orem for K. It is in fact possible to give an elementary proof of the Local Kronecker-
Weber Theorem for Qp (see Cassels 1986, Local Fields, Cambridge, p 151).

Remark 4.15. In Chapter III, we shall deduce the Local Kronecker-Weber Theo-
rem from Theorem 1.1 without making use of the Hasse-Arf theorem—this was the
original approach of Lubin and Tate. The above proof follows R. Gold, Local class
field theory via Lubin-Tate groups, Indiana Univ. Math. Jour., 30, 1981, 795–798.
For a proof of the local Kronecker-Weber theorem for local fields of characteristic
zero that does not make use of the Hasse-Arf theorem or cohomology, see M. Rosen,
Trans. AMS 265 (1981), 599–605. As Iwasawa points out (Iwasawa 1986, p115), once
Proposition 4.4 and certain properties of the abelian extensions Kπ,n/K are taken for
granted, then the Local Kronecker-Weber Theorem for K and the Hasse-Arf Theorem
are essentially equivalent.

The global Kronecker-Weber theorem. Since it is now so easy, we might as
well prove the original Kronecker-Weber theorem.

Theorem 4.16. Every abelian extension of Q is contained in a cyclotomic exten-
sion.

Lemma 4.17. Let K be a finite Galois extension of Q with Galois group G. Then
G is generated by the inertia groups of the primes ideals p of K that are ramified in
the extension K/Q.

Proof. Let H be the subgroup of G generated by the inertia groups, and let M
be the fixed field of H. Then KI(p) ⊃ M for all prime ideals p of K, and so p ∩ M
is unramified in the extension M/Q. Therefore M is an unramified extension of Q,
and so equals Q (by Math 676, 4.8).

Proof. (of the Kronecker-Weber Theorem; following Cassels, 1986, p236). Let K
be an abelian extension of Q. Let p be a prime number, and let p be a prime ideal
of OK lying over it. From the local Kronecker-Weber theorem, Kp is contained in a
cyclotomic extension of Qp, say Kp = Qp[up, vp] where up is a pspth root of 1 and vp
is a root of 1 of order prime to p. Note that sp depends only on p (not p) because
Gal(Kp/Qp) acts transitively on the primes lying over p, and hence on the set of fields
Kp.

Let L be the cyclotomic extension of Q generated by the pspth roots of 1 for all
prime numbers p ramified in K, and let K ′ = K · L. Then K ′ is again abelian over
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Q, and for any prime p′ of K ′, we have

K ′
p′ ⊂ Qp[up, wp] (∗)

where wp is a root of 1 of order prime to p. Clearly it suffices to prove the theorem
with K replaced with K ′, and so we can assume K ⊃ L.

We now have

[K : Q] ≥ [L : Q] =
∏
p

ϕ(psp) (product over p ramifying in K).

Since the Galois group G of K/Q is commutative, the inertia group I(p) depends
only on the underlying prime p, and so we denote it I(p). From (*) we have

(I(p) : 1) ≤ ϕ(psp)

because I(p) is a quotient of the corresponding group for Qp[up, wp]. By (4.17), G is
generated by the groups I(p), and so there is a surjective map

∏
I(p) → G; thus

(G : 1) ≤∏
p

(I(p) : 1) ≤∏
ϕ(psp).

But (G : 1) = [K : Q] and so we have equality everywhere, and K = L.

Remark 4.18. At this point, it is not too difficult to complete the proofs of main
theorems of global class field theory (see the Introduction) in the case K = Q. From
the fact that L is contained in a cyclotomic extension we deduce that the Artin
map φL/Q has a modulus. Now use Dirichlet’s theorem on the density of primes in
arithmetic progressions to find that ϕL/Q is surjective. We know that Nm(ISL) is
contained in the kernel, and so the only thing that is lacking at this point is that

(ISK : Nm ISL · i(Km,1)) ≤ [L : Q].

This is the first inequality, which is not difficult by analytic methods (see Janusz,
1996, IV, 5.6). Once one has that, the existence theorem follows from the fact that
Q[ζm] has modulus (m)∞.

Where did it all come from? We have seen that the Lubin-Tate formal group
laws provide a remarkably simple solution to an apparently very complicated problem,
that of giving explicit generators for the largest abelian extension of a local field and
describing how the Galois group acts on them. The only mystery is how anyone ever
thought of them. The following speculations may help.

That such a theory might exist was suggested by the theory of complex multiplica-
tion of elliptic curves. Here one shows that, for a quadratic imaginary number field
K, there exists an elliptic curve E, unique up to isogeny, having OK as its endomor-
phism ring. For any n, the points of order dividing n on E form a cyclic OK-module,
and it is this fact that allows one to prove that adjoining their coordinates gives an
abelian extension.

In seeking an analogous theory for local fields, it is natural to replace the algebraic
group E by the local analogue, namely, by a formal group law. Thus we seek a
formal group law whose endomorphism ring is so large that its torsion points form a
cyclic module. The obvious candidate for the endomorphism ring is again the ring
of integers OK in K. Initially, it is natural to ask only that the formal group admit
an endomorphism corresponding to π, a prime element of OK . Considerations of the
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heights of formal group laws together with the desire for the torsion points to form
a cyclic module suggest that this endomorphism should be given by a power series
f(T ) such that f(T ) = T q mod m. Moreover, since we truly want the formal group
to depend on the choice of π (because the extension Kπ we wish to construct does),
it is natural to require that f(T ) = πT + · · · . Thus, we are led to the set Fπ, and
once we have that, the theory follows naturally.

Notes. The original source for the theory of Lubin-Tate extensions is:

Lubin, J., and Tate, J., Formal complex multiplication in local fields, Ann. of
Math., 81 (1965), 380–387.

The theory is also treated by Serre in his article in Cassels and Fröhlich 1967 and
in Iwasawa 1986 and Fesenko and Vostokov 1993.

5. Appendix: Infinite Galois Theory and Inverse Limits

We review two topics required for this chapter.

Galois theory for infinite extensions. Fix a field K.

Definition 5.1. A field Ω ⊃ K (not necessarily of finite degree) is said to be
Galois over K if

(a) it is algebraic and separable over K, i.e., every element of Ω is a simple root
of a polynomial with coefficients in K;

(b) it is normal over K, i.e., every irreducible polynomial with coefficients in K
having a root in Ω splits in Ω[X].

Proposition 5.2. A field Ω is Galois over K if and only if it is a union of finite
Galois extensions of K.

Proof. Suppose Ω is Galois over K. For any α ∈ Ω, the splitting field in Ω of
the minimum polynomial of α over K is a finite Galois extension of K, and Ω is the
union of such fields. Conversely, if Ω is a union of finite Galois extensions of K, then
it is algebraic and separable over K. Moreover, if f(X) ∈ K[X] has a root in Ω,
then it has a root in some finite Galois subextension E of Ω, and therefore splits in
E[X].

If Ω is a Galois extension of K, then the Galois group Gal(Ω/K) is defined to be the
group of automorphisms of Ω fixing the elements of K, endowed with the topology
for which the sets

Gal(Ω/E), Ω ⊃ E ⊃ K, [E : K] < ∞
form a fundamental system of neighbourhoods of 1. This means that two elements of
Gal(Ω/K) are close if they agree on some “large” field E, Ω ⊃ E ⊃ K, [E : K] < ∞.

Proposition 5.3. The group Gal(Ω/K) is compact and Hausdorff.

Proof. Consider the map

σ �→ σ|E : Gal(Ω/K) −→∏
Gal(E/K)

where the product runs over all E ⊂ Ω with E finite and Galois over K. Proposition
5.2 implies that the map is injective. When we endow each group Gal(E/K) with
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the discrete topology, and the product with the product topology, then the topology
induced on Gal(Ω/K) is the above topology. I claim that the image is closed. The
image is equal to

{(σE) | σE′|E = σE whenever E ′ ⊃ E}.
Suppose that (σE) is not in the image. Then there exists a pair of fields E2 ⊃ E1
such that σE2|E1 �= σE1. Let

U =
∏

E �=E1,E2

Gal(E/K)× {σE2} × {σE1}

This is an open neighbourhood of (σE), and U ∩ Im(Gal(Ω/K)) = ∅.

The topology on Gal(Ω/K) is discrete if and only if Ω is a finite extension of K.

Theorem 5.4. Let Ω be a (possibly infinite) Galois extension of K with Galois
group G. Then there is a one-to-one correspondence between the subfields of Ω and
the closed subgroups of G. More precisely:

(a) For a subfield E of Ω, H
df
= Gal(Ω/E) is a closed subgroup of G, and E = ΩH .

(b) If H is a subgroup of G, then Gal(Ω/ΩH) is the closure of H in Gal(Ω/K).

Moreover, the normal closed subgroups of G correspond to the Galois extensions of
K, and the open subgroups of G correspond to the finite extensions of K.

Proof. Let E ⊂ Ω be a finite extension of K. Because every K-homomorphism
E → Ω extends to Ω, the map σ �→ σ|Ω : Gal(Ω/K) → HomK(E,Ω) is surjective,
and so induces a bijection

Gal(Ω/K)/Gal(Ω/E) → HomK(E,Ω).

This shows that Gal(Ω/E) is of finite index [E : K] in Gal(Ω/E). Because it is closed
(by definition), it is also closed (its complement is a finite union of open cosets).

Let E ⊂ Ω be an arbitrary extension ofK. Then E = ∪Ei where the Ei run over the
finite extensions of K contained in E. Correspondingly, Gal(Ω/E) = ∩Gal(Ω/Ei),
which is therefore closed. Moreover, if α ∈ Ω is not fixed by Gal(Ω/E), then it is not
fixed by any Gal(Ω/Ei), and so does not lie in E. Thus E = ΩGal(Ω/E).

Let H be a subgroup of Gal(Ω/K), and let H ′ = Gal(Ω/ΩH ). It follows from
the Galois theory of finite extensions that, for any open subgroup U of Gal(Ω/K),
UH = UH ′, and so H̄ = ∩UH = ∩UH ′ = H ′.

Example 5.5. (a) Endow Z with the topology for which the subgroups of finite

index form a fundamental system of neighbourhoods, and let Ẑ be the completion.
Then Ẑ =

∏
) primeZ), and Ẑ/mẐ = Z/mZ for every m. Let F be the algebraic closure

of Fq. There is a canonical isomorphism

Ẑ → Gal(F/Fq)

sending 1 ∈ Ẑ to the automorphism x �→ xq. The extension of Fq of degree m

corresponds to the subgroup mẐ of Ẑ. Let σ be the automorphism of F/Fq such that

σ(x) = xq. For α ∈ Ẑ, define σα to be the element of Gal(F/Fq) such that, for any m,
σα|Fqm = σa where a ∈ Z is chosen to be close to α. The above isomorphism sends
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α to σα. (For a detailed description of Ẑ and the isomorphism Ẑ → Gal(F/Fq), see
Artin 1951, 9.2.)

(b) Let Ωp =
⋃
r Q[ζpr], where ζpr is a primitive prth root of 1. For u ∈ Z×

p , write
u = a0 + a1p + a2p

2 + · · · , 0 ≤ ai < p− 1, and define

ζupr = ζa0+a1p+···asps

pr , any s > r.

This defines an action of Z×
p on Ωp, and in fact an isomorphism of topological groups

Z×
p → Gal(Ωp/Q).

(c) Let Ω =
⋃

Q[ζn], where n is a primitive nth root of 1. Then

Ω = Ω2 ·Ω3 · Ω5 · · · , Ωp ∩ Ωp′ = Q, p �= p′.

Just as in the case of a finite number of finite Galois extensions, this implies that

Gal(Ω/Q) =
∏

Gal(Ωp/Q)

(topological product of closed subgroups). Thus there is an isomorphism

Ẑ× → Gal(Ω/Q).

It can be described as follows: if ζ is an nth root of 1 and u ∈ Ẑ×, then

ζu = ζm for any m ∈ Z with m ≡ u mod n.

(d) Let Ωp = ∪Q[ζpr ], as in (b). Then

Z×
p
∼= ∆p × Cp

where ∆p = (Z/(p − 1))× for p �= 2 and ∆2 = Z/2Z, and Cp ≈ Zp. Let Ω′
p = Ω∆p

p .
Then Gal(Ω′

p/Qp) ≈ Zp. Let
Ω′ = Ω′

2 · Ω′
3 · · ·

(composite inside Qal). Then Gal(Ω′/Q) ≈ ∏
Zp ∼= Ẑ.

(e) For any finite extension K of Q, K · Ω′ is a Galois extension of K with Galois

group isomorphic to a subgroup of finite index in Ẑ. But any such subgroup is again
isomorphic to Ẑ (because it is again the completion of a subgroup of Z of finite

index). Therefore Gal(K · Ω′/K) ≈ Ẑ. If we fix an isomorphism, and let Km be the

field corresponding to mẐ, then we see that:

(a) Km is cyclic of degree m;
(b) Km is cyclotomic, i.e., contained in an extension of K obtained by adjoining

roots of 1.

Remark 5.6. In general, there may exist subgroups of finite index in Gal(Ω/K)
which are not open2 (and hence not closed). For example, K = Fp((T )) has a Galois
extension Ω such that Gal(Ω/K) = FNp (product of an infinite countable number

copies of a cyclic group of order p)—see Remark 1.5. Let M be the subgroup of FNp
consisting of the elements (an) such that an = 0 for all but finitely many n. Thus M
is equal to a direct sum of a countable number of copies of a cyclic group of order p.
The closure of M is Gal(Ω/K), and so any subgroup H of finite index in Gal(Ω/K)
containing M is not closed (and hence not open).

2My recollection is that Gal(Qal/Q) has such subgroups, but I don’t know a reference.
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Inverse limits. A partially ordered set (I,≤) is said to be directed if, for any
α, β ∈ I , there exists γ ∈ I such that α, β ≤ γ. For example, the set of positive
integers ordered by divisibility, m ≤ n ⇐⇒ m|n, is directed.
An inverse system (or projective system) of sets is a family (Sα)α∈I of sets indexed

by a directed set I together with, for each pair α ≤ β, a map ϕα,β : Sβ → Sα such
that

(a) for all α ∈ I , ϕα,α is the identity map;
(b) for all α ≤ β ≤ γ in I , ϕα,β ◦ ϕβ,γ = ϕα,γ.

A set S together with, for each α ∈ I , a map ϕα : S → Sα such that ϕα = ϕα,β ◦ ϕβ
is said to be the inverse limit (or projective limit) of the inverse system (Sα), (ϕα,β)
if it satisfies the obvious universal property.

Every inverse system of sets, groups, or rings has an inverse limit. For example,
Ẑ = lim←−Z/mZ.

Example 5.7. The completion R̂ of a discrete valuation ring R is ∼= lim←−R/mn,
where m is the maximal ideal in R.

The profinite completion of a group G is defined to be lim←−G/H where H runs
through the normal subgroups of finite index in G.

Proposition 5.8. The inverse limit of an inverse system of exact sequences of
finite abelian groups is again exact.

Remark 5.9. The Galois group Gal(Ω/K) is the projective limit of the groups
Gal(E/K) where E runs over the subfields of Ω that are finite and Galois over K.
A topological group that is a projective limit of finite groups is called a profinite
group. They are precisely the compact totally disconnected topological groups. (A
topological space is totally disconnected if its connected components are the one-point
subsets.) See Serre, Cohomologie Galoisienne, Springer, 1964, or Shatz, Profinite
Groups, Arithmetic, and Geometry, Princeton, 1972.



CHAPTER II

The Cohomology of Groups

We take a respite from number theory and do some homological algebra. In an
appendix to the chapter, we review the general theory of derived functors.

1. Cohomology

The category of G-modules. Let G be a group. A G-module is an abelian group
M together with a map

(g,m) �→ gm : G×M −→ M

such that, for all g, g′ ∈ G, m,m′ ∈ M ,

(a) g(m+m′) = gm+ gm′;
(b) (gg′)(m) = g(g′m), 1m = m.

Equivalently, a G-module is an abelian group M together with a homomorphism of
groups G → Aut(M).

A homomorphism of G-modules (or a G-homomorphism) is a map α : M → N such
that

(a) α(m+m′) = α(m) + α(m′) (i.e., α is a homomorphism of abelian groups);
(b) α(gm) = g(α(m)) for all g ∈ G, m ∈ M .

We write HomG(M,N) for the set of G-homomorphisms M → N .

Remark 1.1. The group algebra Z[G] of G is the free abelian group with basis the
elements of G and with the multiplication provided by the group law on G. Thus the
elements of Z[G] are the finite sums∑

ngg, ng ∈ Z, g ∈ G,

and

(
∑

nigi)(
∑

n′
jgj) =

∑
nin

′
j(gigj).

To endow an abelian group M with a G-module structure is the same as to endow
it with a Z[G]-module structure. Thus the category ModG of G-modules can be
identified with the category of modules over the ring Z[G]. In particular, ModG is
an abelian category.

41
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If M and N are G-modules, then the set Hom(M,N) of homomorphisms ϕ : M →
N (regarded only as abelian groups) becomes a G-module with the structures

(ϕ+ ϕ′)(m) = ϕ(m) + ϕ′(m)

(gϕ)(m) = g(ϕ(g−1m)).

Induced modules. Let G be a group and H a subgroup. For an H-module M ,
we define IndGH(M) to be the set of maps1 ϕ : G → M such that ϕ(hg) = hϕ(g) for
all h ∈ H. Then IndGH(M) becomes a G-module with the operations

(ϕ+ ϕ′)(x) = ϕ(x) + ϕ′(x)

(gϕ)(x) = ϕ(xg).

A homomorphism α : M → M ′ of H-modules defines a homomorphism

ϕ �→ α ◦ ϕ : IndGH(M) → IndGH(M
′)

of G-modules.

Lemma 1.2. (a) For any G-module M and H-module N ,

HomG(M, IndGH(N)) ∼= HomH(M,N).

(b) The functor

IndGH : ModH → ModG

is exact.

Proof. (a) Given a G-homomorphism α : M → IndGH(N), we define β(m) =
α(m)(1G), where 1G is the identity element in G. The various definitions show that,
for any g ∈ G,

β(gm) = (α(gm))(1G) = (g(α(m)))(1G) = α(m)(g).

Because α(m) ∈ IndGH(M), when g ∈ H, α(m)(g) = g(α(m)(1G)) = g(β(m)). There-
fore, β is an H-homomorphism M → N .

Conversely, given an H-homomorphism β : M → N , we define α to be the map
M → IndGH(M) such that α(m)(g) = β(gm). Then α is a G-homomorphism.

Since the maps α �→ β and β �→ α are inverse, both are isomorphisms.

(b) Given an exact sequence

0 → M → N → P → 0,

we have to prove that

0 → IndGH M → IndGH N → IndGH P → 0

is exact. This is obvious except at the last position. Let S be a set of right coset
representatives for H in G, so that G = ∪s∈SHs, and let ϕ ∈ IndGH(P ). For each
s ∈ S, choose an n(s) ∈ N mapping to ϕ(s) in P , and define ϕ̃(hs) = h · n(s). Then
ϕ̃ ∈ IndGH(N) and maps to ϕ.

1The ϕ’s are not required to be homomorphisms.
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When H = {1}, an H-module is just an abelian group. In this case, we drop the
H from the notation IndGH. Thus

IndG(M0) = {ϕ : G → M0} (maps, not necessarily homomorphisms)

= Hom(Z[G],M0) (homomorphisms of abelian groups).

A G-module is said to be induced if it isomorphic to a IndG(M0) for some abelian
group M0.

Remark 1.3. Let G be a finite group. Then a G-module M is induced if and only
if there exists an abelian group M0 ⊂ M such that

M = ⊕g∈GgM0 (direct sum of abeliangroups).

Also, there is an isomorphism of G-modules

ϕ �→ ∑
g∈G

g ⊗ ϕ(g−1) : IndG(M0) → Z[G]⊗Z M0.

Here Z[G]⊗Z M0 is endowed with the G-structure such that

g(z ⊗m) = gz ⊗m.

Let H be a subgroup of G. An induced G-module is also induced when considered
as an H-module: let S be a set of right coset representatives for H in G, so that
G = ∪s∈SHs; if M = ⊕g∈GgM0, then M = ⊕h∈HhM1 with M1 = ⊕s∈SsM0.

Let M be a G-module, and let M0 be M regarded as an abelian group. Then

π : IndG(M0) → M, ϕ �→ ∑
g∈G

gϕ(g−1)

is a surjective homomorphism of G-modules. It corresponds to the map

Z[G]⊗M0 → M, (
∑

ngg) ⊗m �→∑
nggm.

Remark 1.4. Let M and N be G-modules. Then the rule

g(m⊗ n) = gm⊗ gn

defines a G-module structure on M⊗ZN . Let M0 be M regarded as an abelian group.
Then Z[G]⊗Z M = Z[G]⊗Z M0 as abelian groups, but their G-module structures do
not correspond. However, one checks easily that the map Z[G]⊗Z M0 → Z[G]⊗Z M
sending g ⊗m to g ⊗ gm is an isomorphism of G-modules.

Injective G-modules. A G-module I is said to be injective if every G-
homomorphism from a submodule of a G-module extends to the whole module, or,
equivalently, if HomG(·, I) is an exact functor.

Proposition 1.5. The category ModG has enough injectives, i.e., every G-module
M can be embedded into an injective G-module, M ↪→ I.

Proof. When G = {1}, so that ModG is the category of abelian groups, this is
proved in the Appendix (Proposition 4.3). Now let M be a G-module, and let M0 be
M regarded as an abelian group. We can embed M0 into an injective abelian group,
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say, M0 ↪→ I . On applying the functor IndG, we obtain an inclusion IndG(M0) ↪→
IndG(I) of G-modules. There is an inclusion of G-modules

M ↪→ IndG(M0), m �→ (function g �→ gm).

On composing these maps, we obtain an injective homomorphism M ↪→ IndG(I), and
so it remains to show that IndG(I) is an injective G-module, but this follows from the
fact that IndG has an exact left adjoint, namely, the forgetful functor (see Proposition
4.5).

Definition of the cohomology groups. For a G-module M , define

MG = {m ∈ M | gm = m all g ∈ G}.
The functor

M �→ MG : ModG −→ Ab

is left exact, i.e., if
0 −→ M ′ −→ M −→ M ′′ −→ 0

is exact, then
0 −→ M ′G −→ MG −→ M ′′G

is exact. Since the category of G-modules has enough injectives, we can apply the
theory of derived functors (see the appendix to this chapter) to this situation.

Let M be a G-module, and choose an injective resolution

0 −→ M −→ I0
d0−→ I1

d1−→ I2
d2−→ · · ·

of M . The complex

0
d−1−−→ (I0)G

d0−→ (I1)G −→ · · · dr−1−−→ (Ir)G
dr−→ (Ir+1)G −→ · · ·

need no longer be exact, and we define the rth cohomology group of G with coefficients
in M to be

Hr(G,M) =
Ker(dr)

Im(dr−1)
.

These groups have the following basic properties.

1.6. The zeroth group H0(G,M) = MG, because

0 −→ MG −→ I0G
d0−→ I1G

is exact, and H0(G,M)
df
= Ker(d0)

Im(d−1)
= Ker(d0).

1.7. If I is an injective G-module, then Hr(G, I) = 0 for all r > 0, because
0 → I → I → 0 → · · · is an injective resolution of I .

1.8. For any homomorphism α : M → N of G-modules and any injective resolu-
tions M → I · and N → J ·, α extends to a map of complexes

M → I ·

↓ α ↓ α̃
N → J ·

,

and the homomorphisms
Hr(α̃) : Hr(I ·) → Hr(J ·)
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are independent of the choice of α̃. On applying this statement to the identity map
id : M → M , we find that the groups Hr(G,M) are well-defined up to a canonical
isomorphism. The general statement then implies that M �→ Hr(G,M) is a functor
from the category of G-modules to the category of abelian groups.

1.9. A short exact sequence

0 −→ M ′ −→ M −→ M ′′ −→ 0

of G-modules gives rise to a long exact sequence

0 −→ H0(G,M ′) −→ · · · −→ Hr(G,M) −→ Hr(G,M ′′) δr−→ Hr+1(G,M ′) −→ · · ·
Moreover, the association

short exact sequence �→ long exact sequence

is functorial, i.e., a morphism of short exact sequences induces a morphism of long
exact sequences.

Remark 1.10. The family of functors (Hr(G, ·))r≥0 and coboundary maps δr are
uniquely determined by the properties (1.6, 1.8, 1.9).

Shapiro’s lemma. Let M be a G-module, and regard Z as a G-module with
the trivial action: gm = m for all g ∈ G, m ∈ Z. A homomorphism α : Z → M is
uniquely determined by α(1), and m ∈ M is the image of 1 under a G-homomorphism
Z → M if and only if it is fixed by G. Therefore

HomG(Z,M) ∼= MG.

Proposition 1.11 (Shapiro’s Lemma). 2 Let H be a subgroup of G. For any
H-module N , there is a canonical isomorphism

Hr(G, IndGH(N)) −→ Hr(H,N),

all r ≥ 0.

Proof. For r = 0, the isomorphism is the composite

NH ∼= HomH(Z, N)
1.2∼= HomG(Z, IndGH(N)) ∼= IndGH(N)G.

Now choose an injective resolution N → I · of N . On applying the functor IndGH,
we obtain an injective resolution IndGH(N) −→ IndGH(I

·) of the G-module IndGH(N),
(because IndGH is exact (1.2) and preserves injectives (proof of 1.5). Hence

Hr(G, IndGH(N)) = Hr((IndGH(I
·))G) = Hr(I .H) = Hr(H,N).

Corollary 1.12. If M is an induced G-module, then Hr(G,M) = 0 for r > 0.

Proof. If M = IndG(M0), then

Hr(G,M) = Hr({1},M0) = 0 for r > 0.

2For the origin of this elementary but very useful result see Weil, Oeuvres I, pp 577-578.
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Remark 1.13. Consider an exact sequence

0 → M → J → N → 0

of G-modules. If Hr(G, J) = 0 for all r > 0, then the cohomology sequence becomes

0 → MG → JG → NG → H1(G,M) → 0

and

Hr(G,N)
≈−→ Hr+1(G,M), r ≥ 1.

For example, let M be a G-module, and let M∗ be the induced module IndG(M0)
where M0 is M regarded as an abelian group. As we have already noted, M can
be identified with the G-submodule of M∗ consisting of maps of the form g �→ gm,
m ∈ M , and we let M† = M∗/M . On applying the above remark to the sequence

0 → M → M∗ → M† → 0

we find that

Hr(G,M†) ∼= Hr+1(G,M), all r ≥ 1.

More generally, if

0 → M → J1 → · · · → J s → N → 0

is exact and Hr(G, J i) = 0 for all r, i > 0, then there are canonical isomorphisms

Hr(G,N)
≈−→ Hr+s(G,M), all r ≥ 1.

To prove this, break the sequence up into short exact sequences

0 → M → J1 → N1 → 0
0 → N1 → J2 → N2 → 0

· · ·
0 → N s−1 → J s → N → 0

and note that we have isomorphisms

Hr(G,N) ∼= Hr+1(G,N s−1) ∼= Hr+2(G,N s−2) ∼= · · ·

Remark 1.14. Let

0 −→ M
ε−→ J0

d0−→ J1
d1−→ J2 −→ · · ·

be an exact sequence such that Hs(G, J r) = 0 for all s > 0 and all r. Then

Hr(G,M) = Hr(J ·G).

This remark applies to any resolution of M by induced modules.
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Description of the cohomology groups by means of cochains. Let M be
a G-module. Let Pr , r ≥ 0, be the free Z-module with basis the (r + 1)-tuples
(g0, . . . , gr) of elements of G, endowed the action of G such that

g(g0, . . . , gr) = (gg0, . . . , ggr).

Note that Pr is also free as a Z[G]-module, with basis {(1, g1, . . . , gr) | gi ∈ G}.
Define a homomorphism dr : Pr → Pr−1 by the rule

dr(g0, . . . , gr) =
r∑
i=0

(−1)i(g0, . . . , ĝi, . . . , gr)

where the symbol ·̂ means that · is omitted. Let P· be

· · · → Pr
dr−→ Pr−1 → · · · → P0

One checks easily that dr−1 ◦ dr = 0, and so this is a complex. Let ε be the map
P0 → Z sending each basis element to 1.

Lemma 1.15. The complex P·
ε−→ Z → 0 is exact.

Proof. Choose an element o ∈ G, and define kr : Pr → Pr+1 by

kr(g0, . . . , gr) = (o, g0, . . . , gr).

One checks easily that dr+1 ◦ kr + kr−1 ◦ dr = 1. Hence, if dr(x) = 0, then x =
dr+1(kr(x)).

Proposition 1.16. For any G-module M,

Hr(G,M) ∼= Hr(HomG(P·,M)).

Proof. This follows from the fact that P· → M is a projective resolution of M—
see Example 4.14.

An element of Hom(Pr,M) can be identified with a function ϕ : Gr+1 → M , and
ϕ is fixed by G if and only if

ϕ(gg0, . . . , ggr) = g(ϕ(g0, . . . , gr)) all g, g0, . . . , gr ∈ G.

Thus HomG(Pr,M) can be identified with the set C̃r(G,M) of ϕ’s satisfying this
condition. Such ϕ are called homogeneous r-cochains of G with values in M . The
boundary map d̃r : C̃r(G,M) → C̃r+1(G,M) induced by dr is

(d̃rϕ)(g0, . . . , gr+1) =
∑

(−1)iϕ(g0, . . . , ĝi, . . . , gr+1).

Proposition 1.16 says that

Hr(G,M) ∼= Ker(d̃r)

Im(d̃r−1)
.

A homogenous cochain ϕ : Gr+1 → M is determined by its values on the elements
(1, g1, g1g2, . . . , g1 . . . gr). We are therefore led to introduce the group Cr(G,M) of
inhomogeneous r-cochains of G with values in M consisting of all maps ϕ : Gr → M .
We set G0 = {1}, so that C0(G,M) = M . Define

dr : Cr(G,M) −→ Cr+1(G,M),
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by (drϕ)(g1, · · · , gr+1) =

g1ϕ(g2, . . . , gr+1) +
r∑
j=1

(−1)jϕ(g1, . . . , gjgj+1, . . . , gr+1) + (−1)r+1ϕ(g1, . . . , gr).

Define

Zr(G,M) = Ker(dr) (group of r-cocycles)

and

Br(G,M) = Im(dr−1) (group of r-coboundaries).

Proposition 1.17. The sequence of maps

C0(G,M)
d0−→ C1(G,M)

d1−→ · · · dr−1−−→ Cr(G,M)
dr−→ Cr+1(G,M) −→ · · ·

is a complex, i.e., dr ◦ dr−1 = 0, and there is a canonical isomorphism

Hr(G,M) ∼= Zr(G,M)

Br(G,M)
.

Proof. For ϕ ∈ C̃r(G,M), define

ϕ′(g1, . . . , gr) = ϕ(1, g1, g1g2, . . . , g1 · · · gr).
Then ϕ �→ ϕ′ is a bijection C̃r(G,M) → Cr(G,M) transforming the boundary maps
in C̃ ·(G,M) into the boundary maps in C ·(G,M).

Example 1.18. (a) A map ϕ : G → M is a crossed homomorphism if ϕ(στ ) =
σϕ(τ ) + ϕ(σ). For example, for any m ∈ M , the map σ �→ σm − m is a crossed
homomorphism—called a principal crossed homomorphism. According to the propo-
sition

H1(G,M) =
{crossed homomorphisms G → M}
{principal crossed homomorphisms} .

If the action of G on M is trivial (i.e, σm = m all σ ∈ G, m ∈ M), then a crossed
homomorphism is a homomorphism, and zero is the only principal crossed homomor-
phisms. Thus, in this case,

H1(G,M) = Hom(G,M).

(b) Let M be an abelian group (with the law of composition written as multiplica-
tion). An extension of G by M is an exact sequence

1 −→ M −→ E
π−→ G −→ 1.

If s(σ) ∈ E maps to σ ∈ G, then we set

σm = s(σ) ·m · s(σ)−1, m ∈ M.

Because M is commutative, σm depends only on σ, and so this defines an action of
G on M . Note that

s(σ) ·m = σm · s(σ), all σ ∈ G, m ∈ M.
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Choose a section s to π, i.e., a map (not necessarily a homomorphism) s : G → E
such that π ◦ s = id. Then s(σ)s(σ′) and s(σσ′) both map σσ′ ∈ G, and so they differ
by an element ϕ(σ, σ′) ∈ M :

s(σ)s(σ′) = ϕ(σ, σ′) · s(σσ′).

From

s(σ)(s(σ′)s(σ′′)) = (s(σ)s(σ′))s(σ′′)

we deduce that

[σϕ(σ′, σ′′)]ϕ(σ, σ′σ′′) = ϕ(σ, σ′)ϕ(σσ′, σ′′),

i.e., that ϕ ∈ Z2(G,M). If s is replaced by a different section, ϕ is replaced by
a cohomologous cocycle, and so the class of ϕ in H2(G,M) is independent of the
choice of s. Every such ϕ arises from an extension, and so H2(G,M) classifies the
isomorphism classes of extensions of G by M with a fixed action of G on M .

Example 1.19. Let G be a cyclic group of order m, and let M be a G-module.
Define NmG : M → M to be m �→ ∑

σ∈G σm. Choose a generator σ for G. I claim
that ϕ �→ ϕ(σ) defines an isomorphism

H1(G,M) −→ Ker(NmG)/(σ − 1)M.

Let ϕ be a crossed homomorphism. Observe that

ϕ(1) = ϕ(1× 1) = 1ϕ(1) + ϕ(1) = 2ϕ(1)

and so ϕ(1) = 0. Hence,

0 = ϕ(σm) = ϕ(σm−1σ) = σϕ(σm−1)+ϕ(σ) = σ2ϕ(σm−2)+σϕ(σ)+ϕ(σ) = NmG ϕ(σ),

and so ϕ(σ) ∈ Ker(NmG). Finally note that

ϕ is principal ⇐⇒ ϕ(σ) = σm−m some m ⇐⇒ ϕ(σ) ∈ (σ − 1)M.

Remark 1.20. Let

0 → M → N → P → 0

be an exact sequence of G-modules. The boundary map

δr : Hr(G,P ) → Hr+1(G,M)

has the following description: let γ ∈ Hr(G,P ) be represented by the r-cocycle
ϕ : Gr → P ; because N maps onto P , there exists an r-cochain ϕ̃ : Gr → N lifting
ϕ; because dϕ = 0, dϕ̃ takes values in M—it is the cocycle representing δrγ.

The cohomology of L and L×. Let L be a finite Galois extension of the field
K, and let G = Gal(L/K). Then both L (regarded as a group under addition) and
L× are G-modules.

Proposition 1.21. Let L/K be a finite Galois extension with Galois group G.
Then H1(G,L×) = 0.
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Proof. Let ϕ : G → L× be a crossed homomorphism, i.e.,

ϕ(τσ) = τϕ(σ) · ϕ(τ ).
For a ∈ L×, let

b =
∑
σ∈G

ϕ(σ) · σa.

Suppose b �= 0. Then

τb =
∑
σ

τϕ(σ) · τσa =
∑
σ

ϕ(τ )−1ϕ(τσ)τσa= ϕ(τ )−1b.

Hence

ϕ(τ ) = b/τb = τ (b−1)/b−1,

which shows that ϕ is principal.

It remains to show that there is an a for which b �= 0. Recall (Math 594f, 5.13):

(Dedekind’s theorem on the independence of characters.) Let L be a
field and H a group; then any finite set {fi} of distinct homomorphisms
H → L× is linearly independent over L, i.e.,∑

aifi(α) = 0 all α ∈ H =⇒ a1 = a2 = · · · = an = 0.

When we apply this with H = L× and
∑
σ∈Gϕ(σ)σ, we find that there exists an a

such that b �= 0.

Corollary 1.22. Let L/K be a cyclic extension, and let σ generate Gal(L/K).
If NmL/K a = 1, then a is of the form σb

b
.

Proof. We have 1 = H1(G,L×) = Ker(NmG)/(σ − 1)L×.

Corollary 1.22 occurs as Satz 90 of Hilbert’s book, Die Theorie der algebraischen
Zahlkörper, 1894/95, and Theorem 1.21 is Emmy Noether’s generalization. Both are
usually referred to as Hilbert’s Theorem 90.

Proposition 1.23. Let L/K be a finite Galois extension with Galois group G.
Then Hr(G,L) = 0 for all r > 0.

Proof. The Normal Basis Theorem (see below) states that L ≈ K[G] as a G-
module. But K[G] = IndG{1}K, and so Hr(G,L) = Hr({1}, K) = 1 for r > 0.

Lemma 1.24 (Normal Basis Theorem). Let L/K be a finite Galois extension
(of arbitrary fields) with Galois group G. Then there exists an α ∈ L such that
{σα | σ ∈ G} is a basis3 for L as a K-vector space.

Proof. We give two proofs, the first of which assumes that K is infinite and the
second that G is cyclic. Since every finite Galois extension of a finite field is cyclic,
this covers all cases.

Assume that K is infinite. This has the consequence that, for f(X1, . . . , Xm) ∈
K[X1, . . . , Xm],

f(a1, . . . , am) = 0 all a1, . . . , am ∈ K =⇒ f(X1, . . . , Xm) = 0.

3A basis of this form is said to normal.
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This can be proved by induction. For m = 1 it follows from the fact that a nonzero
polynomial in one variable has only finitely many roots. For m > 1, write

f =
∑

ci(X1, . . . , Xm−1)Xi
m.

When we substitute values a1, . . . , am−1 for the X1, . . . , Xm−1, the resulting polyno-
mial in Xm has infinitely many roots, and therefore each of its coefficients is zero, i.e.,
ci(a1, . . . , am−1) = 0. Since this holds for all (a1, . . . , am−1), the induction hypothesis
shows that ci(X1, . . . , Xm−1) is zero.
Now number the elements of G as σ1, . . . , σm (with σ1 = 1).

Let f(X1, . . . , Xm) ∈ K[X1, . . . , Xm] have the property that

f(σ1α, . . . , σmα) = 0

for all α ∈ L. For a basis α1, . . . , αm of L over K, let

g(Y1, . . . , Ym) = f(
∑m
i=1 Yiσ1αi,

∑m
i=1 Yiσ2αi, . . . ).

The hypothesis on f implies that g(a1, . . . , am) = 0 for all ai ∈ K, and so g = 0. But
the matrix (σiαj) is invertible (see Math 676, 2.25). Since g is obtained from f by an
invertible linear change of variables, f can be obtained from g by the inverse linear
change of variables. Therefore it also is zero.

Write Xi = X(σi), and let A = (X(σiσj)), i.e., A is the m ×m matrix having Xk

in the (i, j)th place if σiσj = σk. Let f(X1, . . . , Xm) = det(A). Then f(1, 0, . . . , 0) is
the determinant of a matrix having exactly one 1 in each row and each column and
its remaining entries 0. Hence the rows of the matrix are a permutation of the rows
of the identity matrix, and so its determinant is ±1. Hence f is not identically zero,
and so there exists an α ∈ L× such that f(σ1α, . . . , σmα) (= det(σiσjα)) is nonzero.
Now suppose ∑m

j=1 ajσjα = 0

for some aj ∈ K. On applying σ1, . . . , σm successively, we obtain a system of m-
equations ∑

ajσiσjα = 0

in the m “unknowns” aj. Because this system of equations is nonsingular, the aj’s are
zero. We have shown that the σjα’s are linearly independent over K. This completes
the proof of the lemma in the case that K is infinite.

Now assume that G is cyclic generated, say, by an element σ0 of order n. We regard
σ0 as an endomorphism of L considered as a K-vector space. The characteristic
polynomial P (X) of σ0 is the monic polynomial in K[X] of least degree such that
P (σ0) = 0 (as an endomorphism of L). It has the property that it divides every
polynomial Q(X) ∈ K[X] such that Q(σ0) = 0. Since σn0 = 1, P (X) divides Xn − 1.
On the other hand, Dedekind’s theorem on the independence of characters (see above)
implies that id, σ0, . . . , σ

n−1
0 are linearly independent over K, and so degP (X) >

n − 1. We conclude that P (X) = Xn − 1. Therefore, as a K[X]-module with X
acting as σ0, L is isomorphic to K[X]/(Xn − 1). For any generator α of L as a
K[X]-module, α, σ0α, . . . , σ0α

n−1 is a K-basis for L.
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The cohomology of products. A product M =
∏

Mi of G-modules becomes a
G-module under the diagonal action:

σ(. . . , mi, . . . ) = (. . . , σmi, . . . ).

Proposition 1.25. For any G-modules Mi,

Hr(G,
∏

Mi) =
∏

Hr(G,Mi).

Proof. A product of exact sequences of abelian groups is again exact. From this
it follows that a product I =

∏
Ii of injective G-modules is again injective, because

HomG(·, I) ∼= ΠiHomG(·, Ii)
is exact. Let Mi → I ·i be an injective resolution of Mi. Then

∏
Mi −→ ∏

I ·i is an
injective resolution of

∏
Mi, and

Hr(G,
∏

Mi) = Hr((
∏

I ·i)
G) = Hr(

∏
(I ·Gi )) =

∏
Hr(I ·Gi ) =

∏
Hr(G,Mi).

Remark 1.26. The formation of inverse limits of arbitrary abelian groups is not
exact. Therefore, in general, one can not expect cohomology to commute with inverse
limits.

Functorial properties of the cohomology groups. Let M and M ′ respectively
be G and G′ modules. Homomorphisms

α : G′ → G, β : M → M ′

are said to be compatible if

β(α(g)m) = g(β(m)).

Then (α, β) defines a homomorphism of complexes

C ·(G,M) −→ C ·(G′,M ′), ϕ �→ β ◦ ϕ ◦ αr ,

and hence homomorphisms

Hr(G,M) −→ Hr(G′,M ′).

Example 1.27. (a) Let H be a subgroup of G. For any H-module M , the map

β : IndGH(M) → M, β(ϕ) = ϕ(1),

is compatible with the inclusion H ↪→ G, and the induced homorphism

Hr(G, IndGH(M)) → Hr(H,M)

is the isomorphism in Shapiro’s Lemma.

(b) Let H be a subgroup of G. Let α be the inclusion H ↪→ G, and let β be the
identity map on a G-module M . In this case, we obtain restriction homomorphisms

Res: Hr(G,M) −→ Hr(H,M).

They can also be constructed as follows: let M → IndGH(M) be the homomorphism
sending m to the map ϕm with ϕm(g) = gm; the restriction map is the composite
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of the homomorphism it defines on cohomology with the isomorphism in Shapiro’s
Lemma,

Hr(G,M) → Hr(G, IndGH(M))
≈−→ Hr(H,M).

(c) Let H be a normal subgroup of G, let α be the quotient map G → G/H, and let
β be the inclusion MH ↪→ M . In this case, we obtain the inflation homomorphisms

Inf : Hr(G/H,MH ) −→ Hr(G,M).

(d) For any g0 ∈ G, the homomorphisms α : G → G, σ �→ g0σg
−1
0 , and β : M → M ,

m �→ g−10 m, are compatible. I claim that the homomorphisms

Hr(G,M) −→ Hr(G,M).

they define are each the identity map. For r = 0, the homomorphism is

m �→ g−1m : MG −→ MG,

which is obviously the identity. Let r > 0, and suppose the statement is known for
r − 1. From the sequence

0 → M → M∗ → M† → 0, M∗ = IndG(M0),

in (1.13) we obtain a diagram

Hr−1(G,M∗) → Hr−1(G,M†) → Hr(G,M) → 0
↓ ↓ ↓

Hr−1(G,M∗) → Hr−1(G,M†) → Hr(G,M) → 0.

The 0s at right result from the fact that M∗ is an induced module. The vertical maps
are those defined by the pair (α, β) (for the different modules). One checks easily
that the diagram commutes. By induction, the middle vertical map is the identity,
which implies that the third is also.

Remark 1.28. (a) The method of proof in (d) is called dimension shifting.

(b) Let H be a normal subgroup of G. For any G-module M , the recipe in (d)
gives an action of G on Hr(H,M), which the above result shows to factor through
G/H.

Example 1.29. We shall need one more functorial map of cohomology groups. Let
H be a subgroup of finite index of G, and let S be a set of left coset representatives
for H in G, G = ∪s∈SsH. Let M be a G-module. For any m ∈ MH ,

NmG/H m
df
=
∑
s∈S

sm

is independent of the choice of S, and is fixed by G. Thus NmG/H is a homomorphism

MH −→ MG.

This can be extended to a corestriction homomorphism

Cor : Hr(H,M) −→ Hr(G,M)

for all r as follows: for any G-module M , there is a canonical homomorphism of
G-modules

ϕ �→∑
sϕ(s−1) : IndGH M → M ;
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the map on cohomology which it defines, when composed with the isomorphism in
Shapiro’s lemma, gives Cor,

Hr(H,M)
≈−→ Hr(G, IndGH M) −→ Hr(G,M).

Proposition 1.30. Let H be a subgroup of G of finite index. The composite

Cor ◦ Res: Hr(G,M) −→ Hr(G,M)

is multiplication by (G : H).

Proof. The map Cor ◦Res is the map on cohomology defined by the composite
of

M → IndGH(M) → M, m �→ ϕm �→∑
s

sϕm(s
−1) =

∑
s

m = (G : H)m.

Corollary 1.31. If (G : 1) = m, then mHr(G,M) = 0 for r > 0.

Proof. According to the proposition, multiplication by m factors through
Hr({1},M) = 0,

Hr(G,M)
Res−−→ Hr({1},M)

Cor−−→ Hr(G,M).

Corollary 1.32. If G is finite and M is finitely generated as an abelian group,
then Hr(G,M) is finite.

Proof. From the description of Hr(G,M) as the group of cocycles modulo
coboundaries, it is clear that Hr(G,M) is finitely generated as an abelian group,
and we have just seen that it is killed by (G : 1). Therefore it is finite.

For any abelian group A and prime p, the p-primary component A(p) of A is the
subgroup consisting of all elements killed by a power of p.

Corollary 1.33. Let G be a finite group, and let Gp be its Sylow p-subgroup. For
any G-module M , the restriction map

Res : Hr(G,M) → Hr(Gp,M)

is injective on the p-primary component of Hr(G,M).

Proof. By definition, (G : H) is not divisible by p. The composite

Cor ◦Res : Hr(G,M) → Hr(Gp,M) → Hr(G,M)

is multiplication by (G : H), and so is injective on the p-primary component of
Hr(G,M).
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The inflation-restriction exact sequence.

Proposition 1.34. Let H be a normal subgroup of G, and let M be a G-module.
Let r be an integer > 0. If H i(H,M) = 0 for all i with 0 < i < r, then the sequence

0 → Hr(G/H,MH )
Inf−→ Hr(G,M)

Res−−→ Hr(H,M)

is exact.

Proof. We first prove this for r = 1—in this case, the hypothesis on Hr(H,M)
is vacuous. Let ϕ : G → M be a crossed homomorphism whose restriction to H
is principal, say, ϕ(h) = hm0 − m0. Define ϕ′(g) = ϕ(g) − (gm0 − m0). Then ϕ′

represents the same class in H1(G,M), but now ϕ′(h) = 0 for all h ∈ H, and so ϕ′

comes by “inflation” from a crossed homomorphism G/H → MH . This shows that
the sequence is exact at H1(G,M). The exactness at H1(G/H,MH ) is even easier to
prove.

Now assume that r > 1 and that the statement is true for r−1. Consider the exact
sequence (1.13)

0 → M → M∗ → M† → 0.

Then
Hi(H,M†) ∼= Hi+1(H,M), i > 0,

and so Hi(H,M†) = 0 for 0 < i ≤ r − 1. By induction, the sequence

0 → Hr−1(G/H,MH
† )

Inf−→ Hr−1(G,M†)
Res−−→ Hr−1(H,M†)

is exact, and this is isomorphic to the sequence

0 → Hr(G/H,MH )
Inf−→ Hr(G,M)

Res−−→ Hr(H,M).

Remark 1.35. For the experts, the Hochschild-Serre (alias Lyndon) spectral se-
quence has the form

Hr(G/H,Hs(H,M)) =⇒ Hr+s(G,M).

It defines a filtration on each of the groups Hr(G,M), and expresses each quotient
of the filtration in terms of the cohomologies of G/H and H. It implies the above
proposition. Without any hypotheses, one can show that there is an exact sequence

0 −→ H1(G/H,MH )
Inf−→ H1(G,M)

Res−−→ H1(H,M)G/H −→
H2(G/H,MH ) −→ H2(G,M)∗ −→ H1(G/H,H1(H,M))

where H2(G,M)∗ = Ker(Res : H2(G,M) → H2(H,M)).

Example 1.36. Let Ω/K and L/K be Galois extensions, with L ⊂ Ω. Then

H
df
= Gal(Ω/L) is a normal subgroup of G

df
= Gal(Ω/K). According to Proposition

1.21, H1(H,Ω×) = 0, and so there is an exact sequence

0 −→ H2(G/H,L×) −→ H2(G,Ω×) −→ H2(H,Ω×).

A direct proof (not involving dimension shifting) that this sequence is exact can be
found in Artin 1951, 6.4.
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Cup-products. Let G be a group. For G-modules M and N , we write M ⊗ N
for M ⊗Z N , regarded as a G-module with

g(m⊗ n) = gm⊗ gn, g ∈ G, m ∈ M, n ∈ N.

Proposition 1.37. There exists one and only one family of bi-additive pairings

(m,n) �→ m ∪ n : Hr(G,M) ×Hs(G,N) −→ Hr+s(G,M ⊗N),

defined for all G-modules M,N and all integers r, s ≥ 0, satisfying the following
conditions:

(a) these maps become morphisms of functors when the two sides are regarded as
covariant bifunctors on (M,N);

(b) for r = s = 0, the pairing is

(m,n) �→ m⊗ n : MG ⊗NG −→ (M ⊗N)G;

(c) if 0 → M ′ → M → M ′′ → 0 is an exact sequence of G-modules such that

0 → M ′ ⊗N → M ⊗N → M ′′ ⊗N → 0

is exact, then

(δm′′) ∪ n = δ(m′′ ∪ n), m′′ ∈ Hr(G,M ′′), n ∈ Hs(G,N).

Here δ denotes the connecting homomorphism Hr(G,M ′′) −→ Hr+1(G,M ′) or
Hr+s(G,M ′′ ⊗N) −→ Hr+s+1(G,M ′ ⊗N).

(d) if 0 → N ′ → N → N ′′ → 0 is an exact sequence of G-modules such that

0 → M ⊗N ′ → M ⊗N → M ⊗N ′′ → 0

is exact, then

m ∪ δn′′ = (−1)rδ(m ∪ n′′), m ∈ Hr(G,M), n′′ ∈ Hs(G,N ′′).

Proof. The uniqueness is proved using dimension shifting. For the existence,
one proves that the pairing defined as follows has the required properties: let m ∈
Hr(G,M) and n ∈ Hs(G,N) be represented by the cocycles ϕ and ψ; then m ∪ n is
represented by the cocycle

(g1, . . . , gr+s) �→ ϕ(g1, . . . , gr)⊗ g1 · · · grψ(gr+1, · · · , gr+s).

Proposition 1.38. The following formulas hold:

(a) (x ∪ y) ∪ z = x ∪ (y ∪ z) (in Hr+s+t(G,M ⊗N ⊗ P ));
(b) x ∪ y = (−1)rsy ∪ x if x ∈ Hr(G,M), y ∈ Hs(G,N);
(c) Res(x ∪ y) = Res(x) ∪ Res(y);
(d) Cor(x ∪ Res y) = Cor(x) ∪ y.

Proof. In each case, one verifies the formula when x, y, . . . have degree 0, and
then uses dimension shifting to deduce the general case. For example, the proof of
(d) is written out in detail in Cassels and Fröhlich, 1967, IV, Proposition 9.
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A pairing

x, y �→ (x, y) : M ×N → P

such that

g(x, y) = (gx, gy), all g ∈ G,

defines a homomorphism of G-modules

M ⊗N → P,

and hence maps

Hr(G,M ⊗N) → Hr(G,P ).

The composites of the cup-product pairings with these maps, namely, the pairings

Hr(G,M) ×Hs(G,N) → Hr+s(G,P ),

will also be referred to as cup-product pairings.

2. Homology; the Tate Groups

Definition of the homology groups. For a G-module M , let MG be the largest
quotient of M on which G acts trivially. Thus MG is the quotient of M by the
subgroup generated by

{gm−m | g ∈ G, m ∈ M}.
Note that this is the dual notion to MG, which is the largest subobject of M on
which G acts trivially. The definition of the cohomology groups dualizes to give us
homology groups.

In detail, the functor

M �→ MG : ModG −→ Ab

is right exact, i.e., if

0 −→ M ′ −→ M −→ M ′′ −→ 0

is exact, then

M ′
G −→ MG −→ M ′′

G −→ 0

is exact.

An object P of an abelian category is projective if for any object N and quotient
object M , every morphism P → M lifts to a morphism P → N . For example, any
free Z[G]-module is projective as a Z[G]- (equivalently, G-) module.

Let M be a G-module. Let (mi)i∈I be a family of generators for M as a Z[G]-
module, and let Z[G](I) be a direct sum of copies of Z[G] indexed by I . The map∑
i∈I γi �→

∑
γimi is a surjective G-homomorphism Z[G](I) → M . This shows that

every G-module is a quotient of a free G-module, i.e., that ModG has enough pro-
jectives.

Let M be a G-module, and choose a projective resolution

· · · −→ P2
d2−→ P1

d1−→ P0 −→ M −→ 0

of M . The complex

· · · −→ (P2)G
d2−→ (P1)G −→ (P0)G −→ 0
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need no longer be exact, and we set

Hr(G,M) =
Ker(dr)

Im(dr+1)
.

These groups have the following basic properties.

2.1. H0(G,M) = MG, because

P1G → P0G → MG → 0

is exact.

2.2. If P is a projective G-module, then Hr(G,P ) = 0 for all r > 0, because
· · · → 0 → P → P → 0 is a projective resolution of P .

2.3. Let P· → M and Q· → N be projective resolutions of G-modules M and
N . Then any homomorphism α : M → N of G-modules extends to a morphism of
complexes

P· → M
↓ α̃ ↓ α
Q· → N

,

and the homomorphisms

Hr(α̃) : Hr(P·) → Hr(Q·)

are independent of the choice of α̃. When we apply this to the identity map
id : M → M , we see that the groups Hr(G,M) are well-defined up to a canon-
ical isomorphism. The general statement then implies that M �→ Hr(G,M) is a
functor from the category of G-modules to the category of abelian groups.

2.4. A short exact sequence

0 −→ M ′ −→ M −→ M ′′ −→ 0

of G-modules gives rise to a long exact sequence

· · · −→ Hr(G,M) −→ Hr(G,M ′′) −→ Hr−1(G,M ′) −→ · · · −→ H0(G,M ′′) → 0.

Moreover, the association

short exact sequence �→ long exact sequence

is functorial, i.e., a morphism of short exact sequences induces a morphism of long
exact sequences.

Remark 2.5. The properties (2.1–2.4) determine the functors Hr(G, ·).

Just as in the case of cohomology, it is possible to give an explicit description of
Hr(G,M) as the quotient of a group of r-cycles by a subgroup of r-boundaries—see
the references later in this chapter.
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The group H1(G,Z). Using only the properties of the homology groups listed
above, we shall compute H1(G,Z).
The augmentation map is

Z[G] −→ Z,
∑

ngg �→ ∑
ng.

Its kernel is called the augmentation ideal IG. Clearly IG is a free Z-submodule of
Z[G] with basis {g − 1 | g ∈ G}, and

M/IGM = MG
df
= H0(G,M).

Consider the exact sequence:

0 −→ IG −→ Z[G] −→ Z −→ 0.

The G-module Z[G] is projective (because it is free, hence projective, as a Z[G]-
module), and so H1(G,Z[G]) = 0. Therefore we obtain an exact sequence of homology
groups

0 −→ H1(G,Z) −→ IG/I
2
G −→ Z[G]/IGZ[G] −→ Z −→ 0.

The middle map is induced by the inclusion IG ↪→ Z[G], and so is zero. Therefore
the sequence shows that

H1(G,Z) ≈−→ IG/I
2
G (∗)

and
Z[G]G = Z

i.e., Z is the largest quotient of Z[G] on which G acts trivially. Note that I2G
df
= IG · IG

is the Z-submodule of M generated by elements of the form

(g − 1)(g′ − 1), g, g′ ∈ G.

Lemma 2.6. Let Gc be the commutator subgroup of G, so that G/Gc is the largest
abelian quotient Gab of G. Then the map g �→ (g − 1) + I2G induces an isomorphism

G

Gc
−→ IG

I2G
.

Proof. Consider the map

g �→ (g − 1) + IG : G −→ IG/I
2
G.

This is a homomorphism because

gg′ − 1 = (g − 1)(g′ − 1) + (g − 1) + (g′ − 1) ≡ (g − 1) + (g′ − 1) mod I2G.

Since IG/I
2
G is commutative, the map factors through Gab. To prove it is an isomor-

phism, we construct an inverse. Recall that IG is freely generated by the elements
g− 1. Consider the homomorphism IG −→ Gab mapping g− 1 to the class of g. From
the identity

(g − 1)(g′ − 1) = (gg′ − 1) − (g − 1) − (g′ − 1)

we see that (g− 1)(g′ − 1) maps to 1. Since I2G is generated by elements of this form,
this shows that the map factors through IG/I

2
G. The two maps we have constructed

are inverse.

Proposition 2.7. There is a canonical isomorphism

H1(G,Z) −→ Gab.
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Proof. Combine the isomorphism (∗) with that in the lemma.

Remark 2.8. For any group G, there exists a topological space BG, called the
classifying space of G, such that G = π1(BG) and Hr(BG,Z) = Hr(G,Z) for all
r (J. Rosenberg, Algebraic K-Theory and Its Applications, Springer, 1994, 5.1.16,
5.1.27). Therefore the proposition simply states that H1(BG,Z) is the maximal
abelian quotient of the fundamental group of BG.

The Tate groups. For the remainder of this section, we require G to be finite.
For any G-module M , the norm map NmG : M → M is defined to be

m �→ ∑
g∈G gm.

Let g′ ∈ G. As g runs through the elements of G, so also do gg′ and g′g, and so

NmG(g
′m) = NmG(m) = g′(NmG(m)).

Hence
IGM ⊂ KerNmG, Im(NmG) ⊂ MG.

As H0(G,M) = M/IGM and H0(G,M) = MG, it follows that NmG defines a homo-
morphism

NmG : H0(G,M) −→ H0(G,M).

For any short exact sequence of G-modules

0 −→ M ′ −→ M −→ M ′′ −→ 0

we get a diagram

H1(G,M ′′) −−−→ H0(G,M ′) −−−→ H0(G,M) −−−→ H0(G,M ′′) −−−→ 0
NmG


NmG


NmG

0 −−−→ H0(G,M ′) −−−→ H0(G,M) −−−→ H0(G,M ′′) −−−→ H1(G,M ′) −−−→ · · ·
On applying the extended snake lemma (4.1) to the middle part of the diagram, we
get a (very) long exact sequence

· · · −→ Hr
T (G,M ′) −→ Hr

T (G,M) −→ Hr
T (G,M)

δ−→ Hr+1
T (G,M) −→ · · · −∞ < r < ∞.

where

Hr
T (G,M)

df
=


Hr(G,M) r > 0
MG/NmG(M) r = 0
Ker(NG)/IGM r = −1
H−r−1(G,M) r < −1.

Since it causes no ambiguity, we often omit the subscript T when r �= 0.

Most of the results we proved for the groups Hr(G,M) with r ≥ 0 extend to all
r. For example, Shapiro’s lemma and its consequences are true, and the maps we
defined in (1.27) and (1.29) extend to all the Tate cohomology groups. Specifically,
there are canonical homomorphisms:

Res: Hr
T (G,M) −→ Hr

T (H,M) (H a subgroup of G);

Cor : Hr
T (H,M) −→ Hr

T (G,M) (H a subgroup of G);

Inf : Hr
T (G/H,MH ) −→ Hr

T (G,M) (H a normal subgroup of G).

Moreover, there is a natural action of G/H on MH .
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The composite Res ◦Cor is still multiplication by (G : H). As Hr
T ({1},M) = 0 for

all r, the argument in the proof of (1.30) shows that Hr
T (G,M) is killed by m for all

r.

Note that H−2
T (G,Z) = H1(G,Z) ∼= G/Gc.

Proposition 2.9. Let H be a subgroup of G.

(a) The map Cor : H−2(H,Z) → H−2(G,Z) corresponds to the map H/Hc →
G/Gc induced by the inclusion H ↪→ G.

(b) The map Res : H−2(G,Z) → H−2(H,Z) corresponds to the Verlagerung map
G/Gc → H/Hc.

Proof. See E. Weiss, Cohomology of Groups, Academic Press, 1969, 3-5.

There is a uniform explicit description of all the groups Hr(G,M). In fact, there
is an explicit complex L. of G-modules (infinite in both directions) such that

Hr
T (G,M) = Hr(HomG(L.,M)).

For r > 0 this leads directly to the description we gave above of Hr(G,M) in terms
of inhomogeneous cocycles and coboundaries.

Cup-products. When the group G is finite, the cup-products extend in a unique
way to all the cohomology groups, and have the same list of properties.

The cohomology of finite cyclic groups. We first compute the cohomology of
Q, Z, and Q/Z, each regarded as a G-module with the trivial action.

Lemma 2.10. For any finite group G,

(a) Hr
T (G,Q) = 0 all r (Q regarded as a G-module with the trivial action);

(b) H0
T (G,Z) = Z/(G : 1)Z and H1(G,Z) = 0;

(c) there is a canonical isomorphism

Hom(G,Q/Z) −→ H2(G,Z).

Proof. (a) The group Q is uniquely divisible, i.e., for all integers m, multiplica-
tion by m : Q → Q is an isomorphism. Therefore the map Hr(m) : Hr

T (G,Q) −→
Hr
T (G,Q), which is also multiplication by m, is an isomorphism. Now take m =

(G : 1). Then multiplication by m on Hr
T (G,M) is both zero (see 1.30) and an

isomorphism—this is possible only if Hr
T (G,M) = 0.

(b) Because G acts trivially on Z, ZG = Z and the norm map is multiplication by
(G : 1). Hence H0

T (G,Z) = Z/(G : 1)Z. Moreover, H1(G,Z) = Hom(G,Z) (see 1.18),
but, because Z is torsion-free, there are no nonzero such homomorphisms.

(c) The cohomology sequence of

0 −→ Z −→ Q −→ Q/Z −→ 0

is an exact sequence

H1(G,Q) −−−→ H1(G,Q/Z) −−−→ H2(G,Z) −−−→ H2(G,Q).∥∥∥∥ ∥∥∥∥ ∥∥∥∥
0 Hom(G,Q/Z) 0
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Let G be a finite cyclic group of order m, with generator σ. Then, by definition,

H0
T (G,M) =

Ker(σ − 1)

Im(NmG)

and

H−1
T (G,M) = H0(G,M) =

Ker(NmG)

Im(σ − 1)
.

Note that H−1
T (G,M) = H1

T (G,M) (see 1.19). In fact, the cohomology groups are
periodic with period 2.

Proposition 2.11. Let G be a cyclic group of finite order, and let M be a G-
module. Then, for all r, there exists an isomorphism

Hr
T (G,M)

≈−→ Hr+2
T (G,M)

depending only on the choice of a generator for G.

Proof. Let σ generate G. Then the sequence

0 → Z m�→m1G−−−−−→ Z[G]
σ−1−−→ Z[G]

σi �→1−−−→ Z → 0

is exact. Because the groups in the sequence and the kernel IG of Z[G] → Z are free
Z-modules, the sequence remains exact after it is tensored with M . Thus

0 → M → Z[G]⊗Z M → Z[G]⊗Z M → M → 0

is an exact sequence of G-modules. Recall (1.4) that Z[G]⊗ZM ≈ Z[G]⊗ZM0, where
M0 is M regarded as abelian group, and so Hr(G,Z[G]⊗ZM) = 0 for all r. Therefore
(see 1.13), the sequence defines isomorphisms

Hr
T (G,M)

≈−→ Hr+2
T (G,M)

for all r.

Remark 2.12. Let γ be the element of H2(G,Z) corresponding under the isomor-
phism H2(G,Z) ∼= Hom(G,Q/Z) to the map sending the chosen generator σ of G to
1/m. Then the map Hr(G,M) → Hr+2(G,M) is x �→ x ∪ γ.

Let G be a finite cyclic group, and let M be a G-module. When the cohomology
groups Hr(G,M) are finite, we define the Herbrand quotient

h(M) =
#H0

T (G,M)

#H1
T (G,M)

.

Proposition 2.13. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of G-
modules. If any two of the Herbrand quotients h(M ′), h(M), h(M ′′) are defined, then
so also is the third, and

h(M) = h(M ′)h(M ′′).
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Proof. We can truncate the (very) long exact cohomology sequence as follows,

0 −→ K −→ H0(M ′) −→ H0(M) −→ H0(M ′′) −→ H1(M ′) −→ H1(M) −→ H1(M ′′) −→ K ′ −→ 0

where

K = Coker(H−1(M) −→ H−1(M ′′)) ≈ Coker(H1(M) −→ H1(M ′′)) ≈ K ′.

The first statement is now obvious, and the second follows from the next lemma.

Lemma 2.14. Let
0 −→ A0 −→ A1 −→ · · · −→ Ar −→ 0

be a finite sequence of finite groups. Then

#A0#A2 · · ·
#A1#A3 · · · = 1.

Proof. For a short exact sequence, that is, r = 3, this is obvious, but any exact
sequence can be broken up into short exact sequences,

0 −→ A0 −→ A1 −→ C1 −→ 0

0 −→ C1 −→ A2 −→ C2 −→ 0

· · ·
0 −→ Cr−1 −→ Ar−1 −→ Ar −→ 0.

Here Ci = Coker(Ai−1 → Ai) = Ker(Ai+1 → Ai+2). From these sequences we find
that

1 =
#A0#C1
#A1

=
#A0#A2
#A1#C2

= · · · .

Proposition 2.15. If M is a finite module, then h(M) = 1.

Proof. Consider the exact sequences

0 −→ MG −→ M
g−1−−→ M −→ MG −→ 0

and
0 −→ H−1(M) −→ MG

NmG−−−→ MG −→ H0(M) −→ 0

where g is any generator of G. From the first sequence we find that MG and MG have
the same order, and then from the second that H−1(M) and H0(M) have the same
order.

Corollary 2.16. Let α : M → N be a homomorphism of G-modules with finite
kernel and cokernel. If either h(M) or h(N) is defined, then so also is the other, and
they are equal.

Proof. Suppose h(N) is defined, and consider the exact sequences:

0 −→ α(M) −→ N −→ Coker(α) −→ 0

0 −→ Ker(α) −→ M −→ α(M) −→ 0.

From the first sequence, we find that h(αM) is defined and equals h(N), and from
the second sequence we find that h(M) is defined and equals h(αM).
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Tate’s Theorem. For the remainder of this section, all cohomology groups will
be the Tate groups, and so we drop the subscript T .

Theorem 2.17. Let G be a finite group, and let M be a G-module. If

H1(H,M) = 0 = H2(H,M)

for all subgroups H of G, then Hr(G,M) = 0 for all r ∈ Z.

Proof. If G is cyclic, this follows from the periodicity of the cohomology.

Assume now that G is solvable. We shall prove the theorem in this case by induction
on the order of G.

Because G is solvable, it contains a proper normal subgroup H such that G/H is
cyclic. Because H has order less than that of G, and the pair (H,M) satisfies the
hypotheses of the theorem, Hr(H,M) = 0 for all r. Therefore (see 1.34), we have
exact sequences

0 → Hr(G/H,MH ) → Hr(G,M) → Hr(H,M) (∗)
for all r ≥ 1. Because H1(G,M) = 0 = H2(G,M), H1(G/H,MH ) =
H2(G/H,MH ) = 0, and because G/H is cyclic, this implies that Hr(G/H,MH ) = 0
for all r. Therefore, the sequences (∗) show that Hr(G,M) = 0 for all r > 0. We next
show that H0(G,M) = 0. Let x ∈ MG. Because H0(G/H,MH ) = 0, there exists a
y ∈ MH such that NmG/H(y) = x, and because H0(H,M) = 0, there exists a z ∈ M
such that NmH(z) = x. Now

NmG(z) = (NmG/H ◦NmH)(z) = x.

Thus, we now know that Hr(G,M) = 0 for all r ≥ 0.

To proceed further, we use the exact sequence (1.13)

0 → M → M∗ → M† → 0.

Because M∗ is induced as an H-module (see 1.3), Hr(H,M∗) = 0 for all r and all
subgroups H of G, and so

Hr(H,M) = Hr−1(H,M†)

for all r and all H. Therefore, M† satisfies the hypotheses of the theorem, and so (by
what we have proved) Hr(G,M†) = 0 for r ≥ 0. In particular,

0 = H0(G,M†) = H−1(G,M).

The argument, when repeated, gives that H−2(G,M) = 0, etc.. This proves the
theorem when G is solvable.

Now consider the case of an arbitrary finite group G. If G and M satisfy the
hypotheses of the theorem, so also do Gp and M where Gp is a Sylow p-subgroup.
Therefore Hr(Gp,M) = 0 for all r and p, and so (see 1.33), the p-primary component
of Hr(G,M) is zero for all r and p. This implies that Hr(G,M) = 0 for all r.

Theorem 2.18. Let G be a finite group and let C be a G-module. Suppose that for
all subgroups H of G (including H = G),

(a) H1(H,C) = 0, and
(b) H2(H,C) is a cyclic group of order equal to (H : 1).
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Then, for all r, there is an isomorphism

Hr(G,Z) −→ Hr+2(G,C)

depending only on the choice of a generator for H2(G,C).

Proof. Choose a generator γ for H2(G,C). Because Cor ◦Res = (G : H), Res(γ)
generates Hr(H,C) for any subgroup H of G.

Let ϕ be a cocycle representing γ. Define C(ϕ) to be the direct sum of C with the
free abelian group having as basis symbols xσ, one for each σ ∈ G, σ �= 1, and extend
the action of G on C to an action on C(ϕ) by setting

σxτ = xστ − xσ + ϕ(σ, τ ).

The symbol “x1” is to be interpreted as ϕ(1, 1). This does define an action of G on
C(ϕ) because

ρσxτ = xρστ − xρσ + ϕ(ρσ, τ ),

whereas

ρ(σxτ) = ρ(xστ − xσ + ϕ(σ, τ ))

= xρστ − xρ + ϕ(ρ, στ )− (xρσ − xρ + ϕ(ρ, σ)) + ρϕ(σ, τ ).

These agree because ϕ satisfies the cocycle condition

ρϕ(σ, τ ) + ϕ(ρ, στ ) = ϕ(ρσ, τ ) + ϕ(ρ, σ).

Note that ϕ is the coboundary of the 1-cochain σ �→ xσ, and so γ maps to zero in
H2(G,C(ϕ)). For this reason, C(ϕ) is called the splitting module for γ.

We shall first show that the hypotheses imply that

H1(H,C(ϕ)) = 0 = H2(H,C(ϕ))

for all subgroups H of G.

Recall that we have an exact sequence

0 → IG → Z[G] → Z → 0

where IG is the free abelian group with basis the elements σ−1, σ ∈ G, σ �= 1 Because
Z[G] is induced, Hr(H,Z[G]) = 0 for all r, and so

H1(H, IG) ∼= H0(H,Z) ∼= Z/(H : 1)Z,
H2(H, IG) ∼= H1(H,Z) = 0

Define α to be the additive map C(ϕ) → Z[G] such that

α(c) = 0 for all c ∈ C(ϕ)

α(xσ) = σ − 1.

Clearly,
0 → C → C(ϕ)

α−→ IG → 0

is an exact sequence of G-modules. Its cohomology sequence reads

0 → H1(H,C(ϕ)) → H1(H, IG) → H2(H,C)
0−→ H2(H,C(ϕ)) → 0

The zeros at the ends use that H1(H,C) = 0 and H2(H, IG) = 0. The map
H2(H,C) → H2(H,C(ϕ)) is zero because H2(H,C) is generated by Res(γ), and
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this maps to the restriction of the image of γ in H2(G,C(ϕ)), which is zero. There-
fore, H1(H, IG) → H2(H,C) is onto, and hence is an isomorphism (because the two
groups have the same order). Its kernel and cokernel, namely, H1(H,C(ϕ)) and
H2(H,C(ϕ)), are therefore both zero

We deduce from the Theorem 2.17 that Hr(H,C(ϕ)) = 0 for all r. On splicing the
two short exact sequences together, we obtain an exact sequence

0 → C → C(ϕ) → Z[G] → Z → 0

with the property that Hr(G,C(ϕ)) = 0 = Hr(G,Z[G]) for all r. Therefore, the
double boundary map is an isomorphism (1.13)

Hr(G,Z) → Hr+2(G,C).

Remark 2.19. If M is a G-module such that TorZ1 (M,C) = 0, for example, if
either M or C is torsion-free as a Z-module, then one can tensor the above 4-term
sequence with M and obtain isomorphisms

Hr(G,M) → Hr+2(G,M ⊗ C).

Remark 2.20. The map Hr(G,Z) → Hr+2(G,C) is cup-product with the chosen
element γ ∈ H2(G,C).

Example 2.21. Let K be a local field. We shall prove that for any finite Galois
extension L of K with Galois group G, H2(G,L×) is cyclic of order [L : K] with a
canonical generator uL/K , called the (local) fundamental class. Moreover, in a tower
of fields L ⊃ K ′ ⊃ K, Res(uL/K) = uL/K′. Since we know H1(G,L×) = 0 (Hilbert’s
Theorem 90), Tate’s theorem shows that cup-product with uL/K is an isomorphism

Gab = H−2(G,Z) −→ H0(G,L×) = K×/NmL×.

The reverse map is the local Artin map. The global Artin map can be obtained by a
similar argument.

3. The Cohomology of Profinite Groups

Direct limits. A partially ordered set (I,≤) is said to be directed if for any two
elements i and j of I , there exists a k such that i, j ≤ k. Suppose that for every
element i of a directed set (I,≤) we have a set Ai, and for every inequality i ≤ j we
have a map αji : Ai → Aj. If

(a) αii = id for all i ∈ I , and
(b) αkj ◦ αji = αki whenever i ≤ j ≤ k,

then the family (Ai, αji) is called a direct system. On the disjoint union
∐

Ai of the
Ai, introduce the equivalence relation under which ai ∈ Ai is related to aj ∈ Aj if and
only if αki(ai) = αkj(aj) for some k ≥ i, j. The corresponding quotient set is called
the direct limit of the Ai (relative to the αji):

A = lim−→Ai.

There is for each i a canonical map

αi : Ai −→ A,
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possessing the following properties:

(a) αi = αj ◦ αji for j ≥ i;
(b) αi(ai) = αj(aj) ⇐⇒ αki(ai) = αkj(aj) for some k ≥ i, j;
(c) A =

⋃
αi(Ai).

The system (A, αi) has the following universal property: let T be a set and let (βi),
βi : Ai → T , be a family of maps such that βi = βj ◦ αji for i ≤ j; then there exists a
unique map β : A → T such that βi = β ◦ αi for all i.

If the Ai are abelian groups and the αij are homomorphisms, then A has a unique
structure of an abelian group for which the αi are homomorphisms.

Lemma 3.1. For any direct system of exact sequences

Ai −→ Bi −→ Ci,

the sequence
lim−→Ai −→ lim−→Bi −→ lim−→Ci

is again exact. Therefore the formation of direct limits commutes with passage to
cohomology in complexes.

Proof. Exercise for the reader.

Profinite groups. Let G be a profinite group. This means that G is a compact4

topological group for which the open normal subgroups form a fundamental system
of neighbourhoods of 1. Note that every open subgroup is of finite index (because its
cosets cover G). For example, a finite group with the discrete topology is profinite,
and every discrete profinite group is finite. A Galois group G = Gal(L/K) is a
profinite group—the open subgroups are exactly those fixing a finite extension of K
contained in L—and every profinite group occurs as a Galois group. For a profinite
group, we use the topology to modify our notion of cohomology group.

First, we consider only those G-modules for which the map

G×M −→ M

is continuous when M is endowed with the discrete topology, i.e., the topology in
which every subset is open. Equivalent conditions:

(a) M = ∪MH , H runs through the open subgroups of G;
(b) the stabilizer in G of any element of M is open.

A module satisfying these conditions is called a discrete G-module.

The discrete G-modules form an abelian category with enough injectives, and so
we can define cohomology groups Hr

cts(G,M) by taking injective resolutions, just
as before. Moreover, the groups can be calculated using continuous cocycles: let
Cr
cts(G,M) be the group of continuous maps Gr → M , and define dr : Cr

cts(G,M) →
Cr+1
cts (G,M) as before; then

Hr
cts(G,M) =

Zrcts(G,M)

Br
cts(G,M)

where Zrcts(G,M) = Ker(dr) and Br
cts(G,M) = Im(dr−1).

4Following Bourbaki, I require compact spaces to be Hausdorff.
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Let ϕ : Gr → M be a continuous r-cochain. Then ϕ(Gr) is compact, but M is
discrete, and so ϕ(Gr) is finite, and hence is contained in MH0 for some open normal
subgroup H0 of G. The inverse image ϕ−1(m) of each point m of ϕ(Gr) is open, and
so contains a translate of H(m)r for some open normal subgroup H(m) of G. Let
H1 = ∩m∈ϕ(Gr)H(m). This is again an open subgroup of G, and ϕ factors through
(G/H1)

r. Let H = H0 ∩ H1. Then ϕ arises by inflation from an r-cocycle on G/H
with values in MH .

Proposition 3.2. The maps Inf : Hr(G/H,MH ) → Hr
cts(G,M) realize

Hr
cts(G,M) as the direct limit of the groups Hr(G/H,MH ) as H runs through the

open normal subgroups H of G:

lim−→Hr(G/H,MH ) = Hr
cts(G,M).

Explicitly, the statement means that each element of Hr
cts(G,M) arises by inflation

from some group Hr(G/H,MH ) and if a ∈ Hr(G/H,MH ) and a′ ∈ Hr(G/H ′,MH ′
)

map to the same element in Hr
cts(G,M), then they map to the same element in

Hr(G/H ′′,MH ′′
) for some open subgroup H ′′ ⊂ H

⋂
H ′.

Proof. The above argument shows that

Cr
cts(G,M) = lim−→Cr(G/H,MH ).

The proposition then follows from the fact that passage to the direct limit commutes
with the formation of kernels and cokernels, and hence with the formation of coho-
mology.

Most of the theory concerning the cohomology groups Hr(G,M) for r ≥ 0 continues
to hold for the groups defined by continuous cochains. For example, if H is a closed
subgroup of G, there are maps Inf, Res, and Cor (the last requires H to be of finite
index), and there are cup-product maps.

In future, all cohomology groups will be defined using continuous cochains (and the
subscript cts will be dropped). In practice, this will mean that either G is an infinite
profinite group, and it matters that we take continuous cochains, or G is finite, in
which case it doesn’t (and the groups are defined for all r ∈ Z).

Proposition 3.3. Let G be a profinite group, and let M be a discrete G-module.
If M = lim−→Mi where Mi ⊂ M , then Hr(G,M) = lim−→Hr(G,Mi).

Proof. Because G is compact and M is discrete, the image of any r-cochain
f : Gr −→ M is finite. Since the Mi form a directed system of submodules of M (i.e.,
given Mi and Mj, there is an Mk containing both of them) and M =

⋃
Mi, any finite

subset of M is contained in an Mi. It follows that C
r(G,M) = lim−→Cr(G,Mi), and so

Lemma 3.1 shows that

Hr(C ·(G,M)) = lim−→Hr(C ·(G,Mi)).



APPENDIX: SOME HOMOLOGICAL ALGEBRA 69

Aside 3.4. (For the experts.) Let G be a profinite group, letM(G) be the category
of all G-modules, and C(G) the category of discrete G-modules. Then C(G) is a full
subcategory of M(G). Moreover, there is a functor

M �→ M∗ df
=

⋃
H open in G

MH : M(G) −→ C(G).

Clearly,

HomG(M,N∗) = HomG(M,N)

for M a discrete G-module. The inclusion functor i : C(G) → M(G) is exact, but
doesn’t preserve injectives—hence Hr(G,M) �= Hr(G, iM) in general. On the other
hand, M �→ M∗ preserves injectives, but is only left exact—hence C(M) has enough
injectives. Again Hr(G,M) �= Hr(G,M∗) (however, there is a spectral sequence . . . ).

Notes. In the mid-1930s, Hurewicz showed that the homology groups of an “as-
pherical space” X depend only on the fundamental group π of the space. Thus one
could think of the homology groups Hr(X,Z) of the space as being the homology
groups Hr(π,Z) of the group π. It was only in the mid-1940s that Hopf, Eckmann,
Eilenberg, MacLane, Freudenthal and others gave purely algebraic definitions of the
homology and cohomology groups of a group G. It was then found that H1 coin-
cided with the group of crossed homomorphisms modulo principal crossed homomor-
phisms, and H2 with the group of equivalence classes of “factor sets”, which had
been introduced much earlier (e.g., I. Schur, Über die Darstellung der endlichen. . .
, 1904; O. Schreier, Über die Erweiterungen von Gruppen, 1926; R. Brauer, Über
Zusammenhänge. . . , 1926). For more on the history, see S. MacLane, Origins of the
cohomology of groups, Enseign. Math. (2) 24, 1978, 1–29.

Our proof of Tate’s theorem follows Tate’s original proof (Ann. of Math., 56 (1952),
294–297). At that time, there was no published account of the Tate groups, and so
Tate proved his theorem only for r ≥ 0, but ended with an enigmatic promise to
extend the result to negative r and to recover the Artin map. The construction of
the Tate cohomology groups was first published in Cartan and Eilenberg, Princeton
Univ. Press, 1956, following Tate’s ideas.

The best source for the above material is Serre 1961, Part 3. There is a somewhat
abbreviated version of the same material in Cassels and Fröhlich 1967, Chapter IV.
See also Iyanaga 1975, Chapter I, and E. Weiss, Cohomology of Groups, Academic
Press, 1969. For the cohomology of profinite groups, see J.-P. Serre, Cohomologie Ga-
loisienne, Springer, 1964, and S. Shatz, Profinite Groups, Arithmetic, and Geometry,
Princeton University Press, 1972.

4. Appendix: Some Homological Algebra

Some exact sequences. 5

5Based on F. Lemmermeyer, The Snake Lemma.
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Lemma 4.1 (The Extended Snake Lemma). Every commutative diagram of
abelian groups

A
f−−−→ B

g−−−→ C −−−→ 0
α 
β 
γ
0 −−−→ A′ f ′−−−→ B ′ g′−−−→ C ′

with exact rows gives rise to an exact sequence

0 → Ker f → Kerα → Kerβ → Ker γ → Cokerα → Cokerβ → Coker γ → Coker g′ → 0.

Proof. Except for the first and last terms, this standard. A small diagram chase
shows that Ker f ⊂ Ker(α), from which exactness at Kerα follows. The proof of
exactness at Coker γ is similarly straightforward.

Lemma 4.2 (Kernel-Cokernel Lemma). Every pair of homomorphisms A
f−→

B
g−→ C of abelian groups gives rise to an exact sequence

0 → Ker f → Ker g ◦ f
f−→ Ker g → Coker f → Coker g ◦ f → Coker g → 0.

Proof. Apply the extended snake lemma to

A
f−−−→ B −−−→ Coker f −−−→ 0
g◦f 
g 


0 −−−→ C
id−−−→ C −−−→ 0

The language of category theory. A category C consists of a nonempty class
ob(C) of objects, a set Hom(A,B) for each pair of objects A,B (called the set of
morphisms from A to B), and a map

(α, β) �→ β ◦ α : Hom(A,B)× Hom(B,C)→ Hom(A,C)

for each triple of objects A,B,C , satisfying the following conditions:

(a) composition of morphisms is associative;
(b) for each object A, Hom(A,A) has an element idA that is a left and right

identity for composition.

It is understood that the sets Hom(A,B) are disjoint, so that a morphism determines
its source and target.

A covariant functor F : C → D is a “map” that with each object A of C associates
an object F (A) of D and with each morphism α : A → B a morphism F (α) : F (A)→
F (B) such that F (α ◦ β) = F (α) ◦ F (β) and F (idA) = F (idF (A)).

A functor F : C → D is left adjoint to the functor G : D → C if

HomD(F (A), B) ≈ HomC(A,G(B))

functorially.

If the sets Hom(A,B) are endowed with the structures of abelian groups in such a
way that the composition maps are bi-additive, and every finite collection of objects
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in C has a direct sum, then C (together with the structures) is called an additive
category. To say that A and B admit a direct sum means that there is an object A⊕B
in C and maps iA : A → A⊕B, iB : B → A⊕ B, pA : A⊕ B → A, pB : A⊕ B → B
such that:

pA ◦ iA = idA pB ◦ iB = idB

pA ◦ iB = 0 pB ◦ iA = 0

iApA + iBpB = 1A⊕B .

Let C be an additive category. A sequence

0 → A → B
α−→ C

is exact if the sequence of abelian groups

0 → Hom(T,A) → Hom(T,B) → Hom(T, C)

is exact for all objects T . A sequence

A
β−→ B → C → 0

is exact if the sequence of abelian groups

0 → Hom(C, T ) → Hom(B, T ) → Hom(A, T )

is exact for all objects T . When the first sequence is exact, A is called the kernel of
α, and when the second is exact, C is called the cokernel of β.

Let C be an additive category in which every morphism has both a kernel and a
cokernel. Let α : A → B be morphism. The kernel of the cokernel B → C of α is
called the image of α, and the cokernel of the kernel of α is called the coimage of α.
There is canonical map from the coimage of α to the image of α, and if this is always
an isomorphism, then C is called an abelian category.

Functors between additive categories will be assumed to be additive, i.e., such that
the maps Hom(A,B) → Hom(F (A), F (B)) are homomorphisms of abelian groups.
Such a functor is exact if it maps exact sequences to exact sequences.

For example, for any ring R, the category of R-modules is an abelian category,
and, for any topological space X, the category of sheaves of abelian groups on X is
an abelian category.

In the remainder of this section, C will be an abelian category. The reader will lose
little (so far as this course is concerned) by taking C to be the category of modules
over a ring, for example, the category of modules over a group ring Z[G].

Injective objects. Let C be an abelian category. An object I of C is injective if
Hom(·, I) is an exact functor, i.e., if

0 → A → B → C → 0

exact in C implies that

0 → Hom(C, I) → Hom(B, I) → Hom(A, I)→ 0

is exact. This sequence is automatically exact except at Hom(A, I), and so to say
that I is injective means that every homomorphism A → I extends to B.
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Proposition 4.3. The category of abelian groups has enough injectives.

Lemma 4.4. A module M over a principal ideal domain R is injective if and only
if it is divisible, i.e., the map x �→ rx is surjective for all r ∈ R, r �= 0.

Proof. Let m ∈ M , and consider the map x �→ xm : R → M . The map x �→ rx :
R → R is injective, and any extension of x �→ xm to R will send 1 to an element m′

such that rm′ = m. Therefore, if M is injective, it is divisible.

Conversely, suppose that M is divisible, and consider a homomorphism α : A → M
where A is a submodule of B. On applying Zorn’s lemma to the set of pairs (A′, α′)
where A′ is a submodule of B containing A and α′ extends α to A′, we obtain a
maximal such pair (A1, α1). If A1 �= B, there exists a b ∈ B \ A1, and we define
I = {r ∈ R | rb ∈ A1}. Because M is divisible, the map r �→ α1(rb) : I → M extends
to R, but this implies that α1 extends to A1 +Rb, which contradicts the maximality
of (A1, α1).

The lemma shows that Q/Z is an injectiveZ-module. For an arbitrary Z-moduleM ,
define M∨ = Hom(M,Q/Z). Check that the canonical map M → M∨∨ is injective,
and that M∨∨ is divisible.

Proposition 4.5. Any functor F : C → D that admits an exact left adjoint
preserves injectives.

Proof. Let F ′ be an exact left adjoint to F . For any injective object I in C, the
functor HomD(·, F (I)) is isomorphic to the functor HomC(F

′(·), I), which is exact
because it is the composite of two exact functors, namely, F ′ and HomC(·, I).

Right derived functors. Let C be an abelian category with enough injectives,
and let F : C → D be a left exact functor from C to a second abelian category. Thus,
a short exact sequence

0 → M ′ → M → M ′′ → 0

in C gives rise to an exact sequence

0 → F (M ′) → F (M) → F (M ′′)

in D. The theory of derived functors provides a natural extension of this last sequence
to a long exact sequence.

Let M be an object of C. A resolution of M is a long exact sequence

0 → M → I0 → I1 → · · · → Ir → · · · .
If the Ir’s are injective objects of C, then it is called an injective resolution. We
sometimes abbreviate this complex to M → I ·.

Lemma 4.6. An injective resolution M → I · of M exists, and if M → J · is a
second injective resolution, then there is a homomorphism from M → I · to M → J ·,
i.e., there is a commutative diagram:

0 −−−→ M −−−→ I0 −−−→ I1 −−−→ · · ·∥∥∥∥ 
 

0 −−−→ M −−−→ J0 −−−→ J1 −−−→ · · ·
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Proof. By assumption, there exists an injective morphism

0 −→ M −→ I0

with I0 injective. Let B1 be the cokernel of the map. Then we know that there is an
inclusion

0 −→ B1 −→ I1

with I1 injective. Now

0 −→ M −→ I0 −→ I1

is exact. Let B2 = Coker(B1 → I1), and continue in this fashion.

A morphism of resolutions can be constructed step by step, using the definition of
an injective object.

Let M → I · be an injective resolution of M . On applying the functor F , we obtain
a complex

F (I ·) : F (I0) → F (I1) → · · · → F (Ir)
dr−→ F (Ir+1) → · · ·

which may no longer be exact. Define

(RrF )(M) = Hr(F (I ·)) df=
Ker(dr)

Im(dr−1)
.

Proposition 4.7. Let α : M → N be a morphism of objects of C. For any
injective resolutions M → I · and N → J ·, there exists a morphism α· : I · → J ·

making
M −−−→ I ·
 

N −−−→ J ·

commute. The morphism Hr(I ·) → Hr(J ·) is independent of the choice of α·.

We discuss the proof below.

The proposition (applied to the identity map M → M) implies that the objects
(RrF )(M) are well-defined up to a canonical isomorphism. Moreover, a morphism
α : M → N gives rise to a well-defined morphism (RrF )(M) → (RrF )(N), and, in
fact, the RrF are functors. They are called the right derived functors of F .

Example 4.8. Because F is left exact,

0 → F (M) → F (I0)
d0−→ F (I1)

is exact. Therefore,

(R0F )(M)
df
= Ker(d0) = F (M).

In other words, R0F = F .

The next two lemmas prove something a little more precise than the proposition.
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Lemma 4.9. Let M → I · and N → J · be resolutions of objects M and N of C.
If N → J · is an injective resolution, then any morphism α : M → N extends to
morphism

M −−−→ I ·
 

N −−−→ J ·

of complexes.

Proof. Bucur and Deleanu 1968, 7.5.

Two morphisms α·, β · : I · → J · of complexes are said to be homotopic if there
exists a family of morphisms kr : Ir → J r−1 such that

αr − βr = dr−1 ◦ kr + kr+1 ◦ dr

for all r.

Note that, for any x ∈ Zr(I ·) df= Ker(dr),

αr(x)− βr(x) = dr−1(kr(x)) ∈ Br(I ·).

Therefore αr(x) and βr(x) have the same image in Hr(J ·), and so homotopic mor-
phisms define the same morphism on cohomology.

Lemma 4.10. Let M → I · be a resolution of M , and let N → J · be an injective
resolution N . Any two extensions α· and β · of morphisms M → N to I · → J · are
homotopic.

Proof. Ibid..

Proposition 4.11. A short exact sequence

0 → A → B → C → 0

in C gives rise to a long exact sequence

0 → F (A)→ F (B) → F (C) → R1F (A)→ · · ·
· · · → RrF (A)→ RrF (B) → RrF (C) → · · ·

and the association of the long exact sequence to the short exact sequence is functorial.

The second condition means that a commutative diagram

0 → A → B → C → 0
↓ ↓ ↓

0 → A′ → B ′ → C ′ → 0

gives rise to a commutative diagram

· · · → Rr−1F (C) → RrF (A) → RrF (B) → RrF (C) → · · ·
↓ ↓ ↓ ↓

· · · → Rr−1F (C ′) → RrF (A′) → RrF (B ′) → RrF (C ′) → · · ·

For the proof of the proposition, see Bucur and Deleanu 1968, 7.6.
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Remark 4.12. The right derived functors of F are characterized by the three prop-
erties:

(a) R0F = F ;
(b) RrF (I) = 0, r > 0, I injective;
(c) the property in (4.11).

Variants. By reversing the directions of some of the arrows, one obtains variants
of some of the above definitions, for example, projective objects, left derived functors,
etc.

The Ext groups. Let C be an abelian category.

Let A ∈ C. If C has enough injectives, then we can define the right derived
functors of the left exact functor Hom(A, ·). Denote the rth right derived functor by
Extr(A, ·). To compute Extr(A,B), we choose an injective resolution B → I · of B,
and set

Extr(A,B) = Hr(Hom(A, I ·)).

Let B ∈ C. If C has enough projectives, then we can define the right derived
functors of the left exact contravariant functor Hom(·, B). Denote the rth right de-
rived functor by Extr(·, B). To compute Extr(A,B), we choose a projective resolution
P · → A of A, and we set

Extr(A,B) = Hr(Hom(P ·, B).

Proposition 4.13. If C has enough injectives and enough projectives, then the
two definitions of Extr(A,B) coincide.

Proof. We define the Extr using projectives, and prove that they have the prop-
erties characterizing the right derived functors of Hom(A, ·).
First, certainly Ext0(A,B) = Hom(A,B).

To say that I is injective means that Hom(·, I) is exact. Therefore Hom(P ·, I) is
exact, and so

Extr(A, I)
df
= Hr(Hom(P ·, I)) = 0.

Finally, if

0 → B ′ → B → B ′′ → 0

is exact, then because P · → A is a resolution of A by projectives, the sequence of
complexes

0 → Hom(P ·, B ′) → Hom(P ·, B) → Hom(P ·, B ′′) → 0

is exact. By a standard procedure, we get out of this a long exact sequence

· · · → Hr(Hom(P ·, B ′)) → Hr(Hom(P ·, B)) → Hr(Hom(P ·, B ′′) → · · · .

Example 4.14. Let G be a group. Then ModG has both enough injectives and
enough projectives. For any G-module M , HomG(Z,M) = MG, and so the functors
Hom(Z, ·) and H0(G, ·) agree. Hence, so also do their right derived functors:

ExtrG(Z,M) = Hr(G,M).
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The last proposition allows us to compute these groups by choosing a projective
resolution P · → Z of Z and setting

Hr(G,M) = Hr(HomG(P
·,M)).

Remark 4.15. It would shorten the exposition in this chapter a little by adopting
the last formula as the definition of Hr(G,M)—this is the approach taken in Chapter
IV of Cassels and Fröhlich, 1967. However, it is not the natural definition.

References. For the general notion of derived functors, see Chapter 7 of

Bucur, I., and Deleanu, A., Introduction to Categories and Functors, Wiley, 1968,

or Chapter 4 of

Hilton, P.J., and Stammbach, U., A Course in Homological Algebra, Springer, 1971.



CHAPTER III

Local Class Field Theory: Cohomology and Completion of
the Proofs

We develop enough of the cohomological approach to local class field theory to com-
plete the proofs of the main theorems. Throughout this chapter, “local field” will
mean “nonarchimedean local field”. As before, Kal denotes an algebraic closure of
K (or separable algebraic closure in the case that K has characteristic p �= 0), and
“extension of K” means “subfield of Kal containing K”. All cohomology groups will
computed using continuous cochains (see II.3).

1. Introduction

Recall that, after Chapter I, to complete the proof of the main theorems of class field
theory, it remains to show that, for any local field K, there exists a homomorphism
(local Artin map)

φK : K× → Gal(Kal/K)

with the following properties:

(a) for any prime element π of K, φK(π)|Kun = FrobK ;
(b) for any finite abelian extension L of K, NmL/K(L

×) is contained in the kernel
of a �→ φK(a)|L, and φK induces an isomorphism

φL/K : K×/NmL/K(L
×) → Gal(L/K).

For a Galois extension of fields L/K (possibly infinite), set

H2(L/K) = H2(Gal(L/K), L×).

In the next chapter we shall see that H2(L/K) has an explicit interpretation as the
relative Brauer group of L/K. Because of Hilbert’s Theorem 90, there is an exact
sequence

0 → H2(L/K)
Inf−→ H2(E/K)

Res−−→ H2(E/L)

for any tower of Galois extensions E ⊃ L ⊃ K (II.1.36).

We shall prove:

Theorem 1.1. For any local field K, there exists a canonical isomorphism

invK : H2(Kal/K) → Q/Z.

77
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Moreover, if [L : K] = n < ∞, then the diagram

0 −−−→ H2(L/K) −−−→ H2(Kal/K)
Res−−−→ H2(Kal/L)
invK


invL

0 −−−→ 1
n
Z/Z −−−→ Q/Z n−−−→ Q/Z

commutes, and therefore defines an isomorphism

invL/K : H2(L/K) → 1

n
Z/Z.

The proof of Theorem 1.1 will occupy the next two sections. In the remainder of
this section, we shall explain how it (together with Proposition 1.6 below) implies the
existence of a local Artin map with the required properties.

Thus, assume Theorem 1.1. The element uL/K of H2(L/K) corresponding to 1
n

mod Z under the isomorphism invL/K is called the fundamental class of the extension
L/K.

Lemma 1.2. Let E ⊃ L ⊃ K be a tower of finite Galois extensions. Then

Res(uE/K) = uE/L,
Inf(uL/K) = [E : L]uE/K.

Proof. Consider

H2(Kal/K)
Res−−−→ H2(Kal/L)

Res−−−→ H2(Kal/E)
invK


invL


invE

Q/Z
[L:K]−−−→ Q/Z

[E:L]−−−→ Q/Z.

The vertical maps are isomorphisms. On applying the kernel-cokernel lemma to the
rows, we obtain a commutative diagram:

0 −−−→ H2(L/K)
Inf−−−→ H2(E/K)

Res−−−→ H2(E/L)
invL/K


invE/K


invE/L

0 −−−→ 1
[L:K]

Z/Z id−−−→ 1
[E:K]

Z/Z
[L:K]−−−→ 1

[E:L]
Z/Z.

The commutativity of the two squares implies the two equalities.

Now let L/K be a finite Galois extension of local fields with Galois group G. For
any subgroup H of G,

(a) H1(H,L×) = 0 (Hilbert’s theorem 90);
(b) H2(H,L×) is cyclic of order (H : 1), with a canonical generator uL/LH (=

Res(uL/K)).

The pair (G,L×) thus satisfies the hypotheses of Tate’s theorem (II.2.18).
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Corollary 1.3. Let L/K be a finite Galois extension of local fields with Galois
group G. For all r, there exists a canonical isomorphism

Hr
T (G,Z) → Hr+2

T (G,L×),

namely, cup product with uL/K. When r = 2, this becomes an isomorphism

Gab ∼= K×/NmL/K(L
×).

Corollary 1.4 (Norm Limitation Theorem). Let E be a finite Galois exten-
sion of K, and let L be the largest abelian extension of K contained in E; then
NmE/K(E

×) = NmL/K(L
×).

Proof. Because NmE/K = NmE/L ◦NmL/K, certainly NmE/K(E
×) ⊂

NmL/K(L
×). However, Gal(L/K) = Gal(E/K)ab, and so the preceding corollary

shows that the norm groups have the same index in K×. This implies that they are
equal.

Local class field classifies the abelian extensions of a local field by means of the
norm groups of the fields. The corollary shows that this approach fails to classify the
nonabelian extensions.

For a finite abelian extension L/K, we define the local Artin map

ϕL/K : K×/Nm(L×) → Gal(L/K)

to be the inverse of the isomorphism in Corollary 1.3.

Proposition 1.5. If E ⊃ L ⊃ K is a tower of finite abelian extensions of K, then
ϕE/K(a)|L = ϕL/K(a) for all a ∈ K.

Proof. This can be checked directly from the definition of the local Artin maps,
using that Inf(uL/K) = [E : L]uE/K.

Define ϕK : K× → Gal(Kab/K) to be the homomorphism such that, for every finite
abelian extension L/K, ϕK(a)|L = ϕL/K(a) all a ∈ K×—Proposition 1.5 shows that
this definition makes sense. By its very definition, ϕK satisfies condition (b) to be
the local Artin map, and the next proposition implies that it also satisfies condition
(a).

Proposition 1.6. When L/K is unramified, ϕL/K maps every prime element of
K to FrobL/K.

This will be proved in the next section.

Thus, to complete the proofs of the main theorems of local class field theory, it
remains to prove Theorem 1.1 and Proposition 1.6.

Remark 1.7. To a finite Galois extension L/K of local fields, we have attached
the groups K×/Nm(L×) and H2(L/K). When L/K is cyclic, they are canonically
(up to the choice of generator for G = Gal(L/K)) isomorphic, but not otherwise.
The first group is always isomorphic to Gab, and the second is always cyclic of order
[L : K]. Thus, when G is abelian but not cyclic, the two groups have the same order
but are not isomorphic, and when G is nonabelian, they have different orders.
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2. The Cohomology of Unramified Extensions

The cohomology of the units.

Proposition 2.1. Let L/K be a finite unramified extension with Galois group G,
and let UL be the group of units in L. Then

Hr
T (G,UL) = 0, all r.

Let π be a prime element of K. Then π is also a prime element in L, and

L× ∼= UL × πZ.

Therefore, Hr(G,UL) is a direct summand of Hr(G,L×) (see II.1.25). Since
H1(G,L×) = 0 (by Hilbert’s theorem 90), this shows that H1(G,UL) = 0. Because
G is cyclic, to complete the proof of the theorem, it suffices (by II.2.11) to show that
H0
T (G,UL) = 0. This is accomplished by the next proposition.

Proposition 2.2. For any finite unramified extension L/K, the norm map
NmL/K : UL → UK is surjective.

Let @ and k be the residue fields of L and K. The action of G on OL identifies G
with Gal(@/k).

Lemma 2.3. For m > 0, let U
(m)
L = 1 + mm

L . Then

UL/U
(1)
L

≈−→ @×

UL/U
(m)
L

≈−→ @

as G-modules.

Proof. Let π be a prime element of K. It remains prime in L, and

U
(m)
L = {1 + aπm | a ∈ OL}.

The maps

u �→ u mod mL : UL → @×

1 + aπm �→ a mod mL : U
(m)
L → @

induce the required isomorphisms.

Lemma 2.4. For all r, Hr
T (G, @×) = 0. In particular, the norm map @× → k× is

surjective.

Proof. By Hilbert’s Theorem 90, H1(G, @×) = 0, and because @× is finite, its
Herbrand quotient h(@×) = 1 (see II.2.15)). Therefore H2(G, @×) = 0, and this
implies that all the groups are zero (see II.2.11).

Lemma 2.5. The group Hr
T (G, @) = 0 for all r. In particular, the trace map @ → k

is surjective.

Proof. See Proposition II.1.23.
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We now prove Proposition 2.2. Consider u ∈ UK . Because the norm map @× → k×

is surjective, there exists a v0 ∈ UL such that Nm(v0) ≡ u mod U
(1)
K . Because the

trace map @ → k is surjective, so also is the norm map U
(1)
L /U

(2)
L → U

(1)
K /U

(2)
K , and

so there exists a v1 ∈ U
(1)
L such that Nm(v1) ≡ u/Nm(v0) mod U

(2)
K . Continuing in

this fashion, we obtain a sequence of elements v0, v1, v2, v3, . . . , vi ∈ U
(i)
K , such that

u/Nm(v0 · · · vi) ∈ U
(i+1)
K . Let v = limm→∞

∏m
j=1 vj. Then u/Nm(v) ∈ ∩U (i)

K = {1}.
Remark 2.6. Let L be an infinite unramified extension of K. Then L is Galois

over K, and, for r ≥ 0,

Hr(Gal(L/K), UL) = lim−→K′Hr(Gal(K ′/K), UK′)

where the limit is over the finite extensions K ′ of K contained in L. Therefore

Hr(Gal(L/K), UL) = 0

for all r > 0 (continuous cohomology).

The invariant map. Let L be an unramified extension of K (possibly infinite),
and let G = Gal(L/K).

From the cohomology sequence of G-modules

0 −→ UL −→ L× ordL−−→ Z −→ 0,

we obtain (using 2.6) an isomorphism

H1(G,L×) −→ H1(G,Z).

From the cohomology sequence

0 −→ Z −→ Q −→ Q/Z −→ 0

(trivial G-actions) we obtain an isomorphism

H1(G,Q/Z) δ−→ H2(G,Z).

Recall that

H1(G,Q/Z) = Homcts(G,Q/Z).
If [L : K] = n < ∞, then G is a cyclic group of order n with generator FrobL/K , and
the map

f �→ f(FrobL/K) : Hom(G,Q/Z) → Q/Z
is an isomorphism from Hom(G,Q/Z) onto the unique cyclic subgroup 1

n
Z/Z of Q/Z

of order n; if [L : K] = ∞, then G is generated in the topological sense by FrobL/K,

i.e., G is the closure of the group {FrobiL/K | i ∈ Z}, and f �→ f(FrobL/K) is an
isomorphism of Homcts(G,Q/Z) onto an infinite subgroup of Q/Z (in fact, the whole
of Q/Z if L = Kun, because the image contains 1

n
Z/Z for all n).

The composite of

H2(L/K)
≈−→ H2(G,Z) δ←−

≈
H1(G,Q/Z) = Hom(G,Q/Z)

f �→f(σ)−−−−→ Q/Z

is called the invariant map

invL/K : H2(L/K) → Q/Z.
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Now consider a tower of field extensions

E ⊃ L ⊃ K

with both E and L unramified (hence Galois) over K. Then

H2(L/K)
invL/K−−−−→ Q/Z

↓ Inf ‖
H2(E/K)

invE/K−−−−→ Q/Z

commutes, because all the maps in the definition of inv are compatible with Inf.

In particular, there is a canonical isomorphism

invK : H2(Kun/K) −→ Q/Z,

with the property that, for any L ⊂ Kun of finite degree n over K, invK induces an
isomorphism

invL/K : H2(L/K) −→ 1
[L:K]

Z/Z.

We next need to prove that the diagram in Theorem 1.1 commutes with Kal re-
placed by Kun. In fact, we shall prove a more general result.

Proposition 2.7. Let L be a finite extension of K of degree n, and let Kun and
Lun be the largest unramified extensions of K and L. Then the following diagram
commutes:

H2(Kun/K)
Res−−−→ H2(Lun/L)
invK


invL

Q/Z n−−−→ Q/Z.

Proof. To obtain the largest unramified extension of a local field, we only have to
adjoin the mth roots of 1 for m not divisible by the residue characteristic. Therefore,
Lun = L ·Kun, and so

τ �→ τ |Kun : Gal(Lun/L) −→ Gal(Kun/K)

is injective. The map denoted Res in the above diagram is that defined by the
compatible homomorphisms:

Gal(Kun/K) ←− Gal(Lun/L)
Kun× −→ Lun×.

Let ΓK = Gal(Kun/K) and ΓL = Gal(Lun/L). Consider the diagram:

H2(Kun/K)
≈−−−→ H2(ΓK ,Z) δ←−−−

≈
H1(ΓK ,Q/Z) −−−→ Q/Z
Res 
eRes 
eRes 
fe

H2(Lun/L)
≈−−−→ H2(ΓL,Z)

δ←−−−
≈

H1(ΓL,Q/Z) −−−→ Q/Z.
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Here e and f are the ramification index and residue class degree for L/K. The left
hand square is obtained from the commutative square

Kun× ordK−−−→ Z
 
e
Lun×

ordL−−−→ Z.

The second square expresses the fact that the restriction map commutes with the
boundary map. Apart from the factor “e”, the third square is

Hom(ΓK ,Q/Z)
ϕ �→ϕ(FrobK)−−−−−−−→ Q/Z
ϕ �→ϕ|ΓL


f
Hom(ΓL,Q/Z)

ϕ �→ϕ(FrobL)−−−−−−−→ Q/Z.

The Frobenius elements are determined by the fact that they induce x �→ xq and
x �→ xq

f
on the residue fields, where q = #k and qf = #@. Hence FrobL |K =

FrobfK . It is now clear that the square commutes, and since n = ef , this proves the
proposition.

Computation of the local Artin map. Let L be a finite unramified extension
of K with Galois group G, and let n = [L : K]. From the last subsection, we know
that (G,L×) satisfies the hypotheses of Tate’s theorem (II.2.18), and so we have a
canonical isomorphism

H−2(G,Z) → H0(G,L×)
‖ ‖
G K×/Nm(L×).

We now compute this map explicitly.

If π is a prime element of L, then every element of L× can be written uniquely in
the form α = uπm, u ∈ U , m ∈ Z; thus

L× = U × πZ ∼= U × Z.

Since L is unramified over K, we can choose π ∈ K. Then τα = τ (uπm) = (τu)πm

for τ ∈ Gal(L/K), and so the above decomposition is a decomposition of G-modules
(G acting trivially on πZ ≈ Z).

Lemma 2.8. For any group G and G-modules M , N ,

Hr(G,M ⊕N) = Hr(G,M)⊕Hr(G,N).

Proof. This was proved in Proposition II.1.25. Alternatively, to say that a module
P is a direct sum of modules M and N means that certain maps, and relations
between the maps, exist (see II.4). These maps and relations persist when we apply
the additive functor Hr(G, ·).
Thus

Hr(G,L×) = Hr(G,UL) ⊕Hr(G, πZ).



84 III. LOCAL CLASS FIELD THEORY CONTINUED

Choose a generator σ of G (e.g., the Frobenius generator), and let

f ∈ H1(G,Q/Z) = Hom(G,Q/Z)

be the element such that f(σi) = i
n

mod Z for all i. It generates H1(G,Q/Z).
From the exact sequence

0 → Z → Q → Q/Z → 0

and the fact that Hr(G,Q) = 0 for all r, we obtain an isomorphism

δ : H1(G,Q/Z) → H2(G,Z).

According to the description of δ in (II.1.20, to construct δf , we first choose a lifting

of f to 1-cochain f̃ : G → Q. We take f̃ to be the map σi �→ i
m
where 0 ≤ i < m− 1.

Then

df̃ (σi, σj) = σif̃ (σj)− f̃ (σi+j) + f̃(σi) =

{
0 if i+ j ≤ n− 1
1 if i+ j > n− 1.

When we identify Z with the subgroup πZ of L×, we find that the fundamental class
uL/K ∈ H2(G,L×) is represented by the cocycle:

ϕ(σi, σj) =

{
1 if i+ j ≤ n− 1
π if i+ j > n − 1

From the exact sequences

0 → I → Z[G] → Z → 0

0 → L× → L×(ϕ) → I → 0

(see the proof of II.2.18) we obtain boundary maps

H−2(G,Z) → H−1(G, I)

H−1(G, I) → H0(G,L×),

which are isomorphisms because Z[G] and L×(ϕ) have trivial cohomology. Here L×(ϕ)
is the splitting module L× ⊕⊕σ∈G,σ �=1 Zxσ of ϕ.

Finally, H−2(G,Z) df= H1(G,Z) ∼= G (II.2.7).

Proposition 2.9. Under the composite

H−2(G,Z) → H0(G,L×)
‖ ‖
G K×/NmGL×

,

of the above maps, σ maps to π mod Nm(L×).

Note that, because H0(G,UL) = 0, UL ⊂ NmL/K(L
×), and the class of π

mod Nm(L×) is independent of the prime element π. On the other hand, L×(ϕ)
and the map depend on the choice of the generator σ for G.
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Proof. From the construction of the isomorphism H−2(G,Z) ∼= G, we see that the
image of σ under the boundary mapH−2(G,Z) → H−1(G, IG) ⊂ IG/I

2
G is represented

by σ − 1.

The boundary map H−1(G, IG) → H0(G,L×) is that given by the snake lemma
from the diagram (we write I for IG):

H−1(G, I)

(L×)G −−−→ L×(ϕ)G −−−→ (I)G −−−→ 0
 
 


0 −−−→ L×G −−−→ L×(ϕ)G −−−→ IG

H0(G,L×).

The vertical maps connecting the rows are NmG =
∑n−1
i=0 σi. The element (σ−1)+ I2

is the image of xσ + I · L×(ϕ) in L×(ϕ)G, and NmG(xσ + I ·L×(ϕ)) is the sum of the
elements:

xσ = xσ
σxσ = xσ2 − xσ + ϕ(σ, σ)
σ2xσ = xσ3 − xσ2 + ϕ(σ, σ2)
· · · · · ·

σn−1xσ = ‘x1’− xσn−1 + ϕ(σ, σn−1)

.

On summing these, remembering that ‘xσ’= ϕ(1, 1) = 1 and that + on the factor L×

of L(ϕ) is actually ·, we find that

NmG(xσ) =
n−1∏
i=1

ϕ(σ, σi) = π.

This completes the proof.

Remark 2.10. The above proof of Proposition 2.9, using Tate’s original definition
of the isomorphism Hr(G,Z) → Hr+2(G,C), is simpler than that found in other
references, which uses the description of the map in terms of cup products.

3. The Cohomology of Ramified Extensions

Lemma 3.1. If L/K is Galois of finite degree n, then H2(L/K) has a subgroup of
order n.

Proof. Consider the diagram

0 −−−→ Ker(Res) −−−→ H2(Kun/K)
Res−−−→ H2(Lun/L)
 
Res 
Res

0 −−−→ H2(L/K) −−−→ H2(Kal/K)
Res−−−→ H2(Kal/L)
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Since the two restriction maps are injective, so also is the first vertical map, but (2.7)
shows that the kernel of the restriction map on the top row is 1

n
Z/Z.

To complete the proof of Theorem 1.1, it suffices to prove that the map 1
n
Z/Z ↪→

H2(L/K) is an isomorphism (see the last paragraph of this section). There are two
different approaches to proving this. In the next chapter on Brauer groups, we shall
show that H2(Kal/Kun) = 0; this implies that the restriction maps in the diagram
are isomorphisms, and hence also that the first vertical map is an isomorphism. The
second proof, which we now present, shows that #H2(L/K) ≤ n.

Lemma 3.2. Let L be a finite Galois extension of K with Galois group G. Then
there exists an open subgroup V of OL stable under G such that Hr(G, V ) = 0 all
r > 0.

Proof. Let {xτ | τ ∈ G} be a normal basis for L over K (see II.1.24). The xτ
have a common denominator d in OK (see Math 676, 2.4). After replacing each xτ
with d · xτ , we may suppose that they lie in OL. Take V =

∑OLxτ . Then

V ∼= OL[G] = IndGOL,

and so Hr(G, V ) = 0 for all r > 0.

Lemma 3.3. Let L, K, and G, be as in the last lemma. Then there exists an open
subgroup V of UL stable under G such that Hr(G, V ) = 0 for all r > 0.

Proof. (Assume charK = 0.) The power series

ex = 1 + x+ · · ·+ xn/n! + · · ·
converges for ord(x) > ord(p)/(p − 1). It defines an isomorphism of an open neigh-
bourhood of 0 in L onto an open neighbourhood of 1 in L×, with inverse mapping
log(x) = (x−1)− (x−1)2/2+(x−1)3/3−· · · . Clearly both maps commute with the
actions of G. If V ′ is an open neighbourhood of 0 as in (3.2), then πMV ′ will have the
same properties, and we can take V = exp(πMV ′) with M chosen to be sufficiently
large that the exponential function is defined on πMV ′.

Lemma 3.4. Let L/K be a cyclic extension of degree n; then h(UL) = 1 and
h(L×) = n.

Proof. Let V be an open subgroup of UL with Hr(G, V ) = 0 for all r. Because
UL is compact, the group UL/V is finite, and so h(UL) = h(V ) = 1 (see II.2.16).
Finally h(L×) = h(U) · h(Z) = h(Z), and

h(Z) = #H0
T (G,Z)/#H1(G,Z) = #H0

T (G,Z) = #(Z/nZ) = n.

Lemma 3.5. Let L be a finite Galois extension of K of order n, then H2(L/K) has
order n.

Proof. We know that the order of H2(L/K) is divisible by n, and that it equals
n when L/K is cyclic. We prove the lemma by induction on [L : K]. Because the
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group Gal(L/K) is solvable (see Math 676, 7.50), there will be a Galois extension
K ′/K with L 
 K ′ 
 K. From the exact sequence

0 −→ H2(K ′/K) −→ H2(L/K) −→ H2(L/K ′)

we find that

#H2(L/K) ≤ #H2(K ′/K)#H2(L/K ′) = n.

We now complete the proof of Theorem 1.1. From the diagram in the proof of
(3.1) we see that, for any finite Galois extension L of K, the subgroup H2(L/K) of
H2(Kal/K) is contained inH2(Kun/K). Since H2(Kal/K) =

⋃
H2(L/K), this proves

that the inflation map H2(Kun/K) → H2(Kal/K) is an isomorphism. Therefore, the
invariant map invK : H2(Kun/K) → Q/Z defines an isomorphism H2(Kal/K) →
Q/Z. It follows from (3.1) that this homomorphism has the property required for
Theorem 1.1. Moreover, Proposition 2.9 (with σ taken to be the Frobenius generator)
shows that the homomorphism has the properties required for Proposition 1.6. This
completes the proofs of the main theorems of local class field theory.

4. Complements

Alternative description of the local Artin map. Let L/K be a finite abelian
extension with Galois group G, and let uL/K ∈ H2(G,L×) be the fundamental class.
The local Artin map φL/K is the inverse to the isomorphism

x �→ x ∪ uL/K : H−2
T (G,Z) → H0

T (G,L×).

This definition is very difficult to work with because cup-products involving both
homology and cohomology groups have no very convenient description. Instead, we
re-interprete the map purely in terms of cohomology groups. Consider the cup-
product pairing

H0(G,L×)×H2(G,Z) −−−→ H2(G,L×)
invL/K−−−−→ Q/Z.

Given an element a ∈ H0(G,L×) = K× and a class c ∈ H2(G,Z) represented by
a cocycle f : G × G → Z, the cup-product class a ∪ c is represented by the cocycle
(σ, τ ) �→ af(σ,τ ). Recall also that we have an isomorphism

Hom(G,Q/Z) = H1(G,Q/Z) δ−→ H2(G,Z).

Proposition 4.1. For any χ ∈ Hom(G,Q/Z) and a ∈ K×,

χ(φL/K(a)) = invK(a ∪ δχ).

Proof. Omitted. (See Serre, Local Fields, “Annexe” to Chapter XI, and his article
in Cassels-Fröhlich, p140.)

Using this, we can get another proof of Proposition 1.6.

Lemma 4.2. If L/K is unramified, φL/K sends a ∈ K× to FrobordKa.
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Proof. Recall that invK is defined to be the composite

H2(G,L×) ord−→ H2(G,Z) δ←− Hom(G,Q/Z)
χ �→χ(σ)−−−−→ Q/Z.

Because of the functoriality of cup-products

ord(a ∪ δχ) = ord(a) ∪ δχ, a ∈ K×, χ ∈ Hom(G,Q/Z)

where, on the left ord denotes the map on H2 induced by ordL : L
× � Z, and on the

right it is the map itself. Let a ∈ H0(G,L×) = K×, and let m = ordL(a). For any
χ ∈ Hom(G,Q/Z), in the above diagram,

a ∪ δχ �→ ord(a) ∪ δχ �→ mχ �→ χ(σm), σ = Frob,

i.e., invK(a∪ δχ) = χ(σm). On combining this with the formula in (4.1) we find that

χ(φ(α)) = χ(σord(α))

for all χ ∈ Hom(G,Q/Z), and so φ(α) = σord(α).

For any character χ of G, we get a character a �→ invK(a∪δχ) ofK×. By duality we
get a map K× → G. Proposition 4.1 shows that this map is φL/K : K× → Gal(L/K).

The Hilbert symbol. Let a, b ∈ Q×
p with p a prime number or infinity (we let

Q∞ = R). The Hilbert symbol of a and b relative to Qp is defined by

(a, b)p =

{
1 if z2 = ax2 + by2 has a nonzero solution in Qp

−1 otherwise.

Then a, b �→ (a, b) is a nondegenerate bilinear pairing

Q×
p /Q

×2
p × Q×

p /Q
×2
p → {±1}.

It has many interesting properties, the most profound being the product formula
(proved by Hilbert). For fixed a, b ∈ Q, (a, b)p = 1 for all but finitely many primes p,
and ∏

p≤∞
(a, b)p = 1.

This proof of the product formula uses the quadratic reciprocity law. The product
formula has an interpretation in terms of Brauer groups (see the next chapter), and
has implications for the theory of quadratic forms over Q (see Chapter VIII).

We can define Hilbert symbols for any local field K. Let µn be the group of nth
roots of 1 in Kal (if the characteristic of K is p �= 0, then n should not be divisible
by p). Let G = Gal(Kal/K). There is an exact sequence of G-modules,

1 → µn → Kal× n−→ Kal× → 1,

and hence an exact cohomology sequence

K× n−→ K× → H1(G, µn) → 0 → 0 → H2(G, µn) → H2(Kal/K) → H2(Kal/K).

Thus:

H1(G, µn) ∼= K×/K×n

H2(G, µn) ∼= 1

n
Z/Z ∼= Z/nZ.
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There is a cup-product pairing

H1(G, µn)×H1(G, µn) → H2(G, µn ⊗ µn).

In the case that K contains an nth root ζ of 1, the cup-product pairing

H2(G, µn)×H0(G, µn) → H2(G, µn ⊗ µn)

defines an isomorphism

H2(G, µn)⊗ µn → H2(G, µn ⊗ µn),

and hence an isomorphism

H2(G, µn ⊗ µn) → H2(G, µn)⊗ µn → (Z/nZ) ⊗ µn = µn.

Therefore, in this case, the pairing becomes

a, b �→ (a, b) : K×/K×n ×K×/K×n → µn.

This pairing is again called the Hilbert symbol. Class field theory shows that it has
most of the properties of the first pairing defined above.

Proposition 4.3. The Hilbert symbol is related to the local Artin map by the for-
mula

φK(b)(a
1
n ) = (a, b)a

1
n .

Note that Galois theory tells us that, for any τ ∈ Gal(K[a
1
n ]/K), τa

1
n = ζa

1
n for

some nth root of one ζ (remember, we are assuming that K contains the nth roots
of 1), and so the point of the formula is that roots of 1 are the same. The proof of
the formula is an exercise in cup-products, starting from Proposition 4.1.

Other Topics. At this point, it would not be difficult to give a proof of the Local
Existence Theorem (I.1.2) that is independent of Chapter II—see Serre 1962, 11.5,
14.6.

The reader who is interested in understanding the (conjectural) statement of non-
abelian local class field theory should look first at Chapter VII of C.J. Moreno, Ad-
vanced Analytic Number Theory, Part I: Ramification Theoretic Methods, AMS,
1983.

Notes. It follows from Krasner’s lemma (see Math 676, 7.51) that every finite
abelian extension of local fields arises by completing a finite abelian extension of
global fields. In the 1930’s Hasse was able to deduce the main theorems of local class
field theory from those of global class field theory.

From the modern perspective, this seems a strange way to do things. In the 1940’s,
in his algebraic approach to class field theory Chevalley developed local class field
theory directly, and used it in the construction of global class field theory. F. K.
Schmidt also showed that local class field theory can be constructed independently
of global class field theory.

At that time, there was no good description of the local Artin map, and nor was
there an explicit way of constructing the maximal abelian extension of a local field
(except for Qp of course).

In 1958 Dwork gave an explicit description of the local Artin map, which is repro-
duced in Serre, Local Fields, but it was not very pleasant.
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In 1965 Lubin and Tate introduced the Lubin-Tate formal group laws, and gave
an explicit construction of Kab and an explicit description of the local Artin map.
However, they made use of the existence of the local Artin map (our Theorem I.1.1)
in their proofs.

In 1981 Gold and Rosen independently gave “elementary” proofs that Kab = Kπ ·
Kun. In his book (Local Class Field Theory, 1986), Iwasawa develops the whole
of local class field theory from the Lubin-Tate perspective, and also gives explicit
formulas (due to de Shalit and Wiles) for the Hilbert symbols etc..

Other noncohomological approaches can be found in (Hazewinkel, Local class field
theory is easy, Adv. Math. 18 (1975), 148–181), (Neukirch, Class Field Theory,
Springer, 1986), and (Fesenko and Vostokov, Local Fields and Their Extensions: A
constructive approach, AMS, 1993).

The disadvantage of the noncohomological approaches is, naturally, that they pro-
vide no information about the cohomology groups of local fields, which have important
applications to other topics, for example elliptic curves.

In this chapter, we have largely followed Serre 1962 and Serre’s article in Cassels
and Fröhlich 1967.



CHAPTER IV

Brauer Groups

In this chapter, we define the Brauer group of a field, and show that it provides
a concrete interpretation of the cohomology group H2(Kal/K). Besides clarifying
the class field theory, Brauer groups have many applications, for example, to the
representation theory of finite groups and to the classification of semisimple algebraic
groups over nonalgebraically closed fields.

Throughout the chapter, k will be a field, and all vector spaces over k will be finite
dimensional.

Terminology for k-algebras. By a k-algebra we mean a ring A containing k in
its centre and finite dimensional as a k-vector space. We do not assume A to be
commutative. For example, A could be the ring Mn(k) of n× n matrices over k. A
k-subalgebra of a k-algebra is a subring containing k. A homomorphism ϕ : A → B of
k-algebras is a homomorphism of rings with the property that ϕ(a) = a for all a ∈ k.
The opposite Aopp of a k-algebra A is the algebra with the same underlying set and
addition, but with multiplication · defined by α · β = βα. If A is a k-subalgebra of
a k-algebra E, then the centralizer of A in E, sometimes denoted C(A) or CE(A), is
the set of γ ∈ E such that γα = αγ for all α ∈ A. It is again a k-subalgebra of B.
For example, CA(A) is the centre of A. Let e1, . . . , en be a basis for A as a k-vector
space. Then

eiej =
∑
l

alijel

for some alij ∈ k, called the structure constants of A relative to the basis (ei)i. Once a
basis has been chosen, the algebra A is uniquely determined by its structure constants.

1. Simple Algebras; Semisimple Modules

Semisimple modules. By an A-module, we mean a finitely generated left A-
module V . In particular, this means that 1v = v for all v ∈ V . Such a V is also
finite-dimensional when considered as a k-vector space, and so to give an A-module
is the same as to give a (finite-dimensional) vector space over k together with a
homomorphism of k-algebras A → Endk(V ), i.e., a representation of A on V . The
module is said to be faithful if this homomorphism is injective, i.e., if ax = 0 for all
x ∈ V implies a = 0.

An A-module V is said to be simple if it is nonzero and contains no A-submodules
apart from the obvious two, namely, V and 0, and it is said to be semisimple if it can

91
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be written as a direct sum of simple A-modules. It is indecomposable if it can not be
written as a direct sum of two nonzero A-modules. Thus a simple module is semisim-
ple, and an indecomposable module is semisimple if and only if it is simple. Some
authors use “irreducible” and “completely reducible” for “simple” and “semisimple”
respectively.

Example 1.1. Let V = k2, and let A = k[α] for some α ∈ M2(k). The A-
submodules of V are the k-subspaces stable under α.

If α =

(
a 1
0 a

)
, then

{( ∗
0

)}
is an A-submodule of V . In fact, it is the only

nontrivial submodule, and so V is indecomposable, but not semisimple.

If α =

(
a 0
0 b

)
, a �= b, then the only lines stable under α are L1

df
=

{( ∗
0

)}
and

L2
df
=

{(
0
∗
)}

. Since V = L1 ⊕ L2 (as an A-module), it is semisimple.

If α =

(
a 0
0 a

)
, then V again decomposes as the direct sum of two lines, but the

decomposition is no longer unique.

Finally, if A = M2(k) then V is a simple A-module: there are no subspaces of k2

stable under M2(k) apart from 0 and V .

Theorem 1.2. Any A-module V admits a filtration

V ⊃ V1 ⊃ · · · ⊃ Vr = 0

whose quotients Vi/Vi+1 are simple A-modules. If

V ⊃ V ′
1 ⊃ · · · ⊃ V ′

r′ = 0

is a second such filtration, then r = r′ and there is a bijection i �→ i′ such that
Vi/Vi+1 ≈ V ′

i′/V
′
i′+1 for all i.

Proof. If V is simple, then V ⊃ 0 is such a filtration. Otherwise, V contains a
submodule W , V �= W �= 0, and we can apply the same argument to V/W and to W .
This procedure terminates after finitely many steps because V is a finite dimensional
k-vector space.

The uniqueness statement can be proved exactly as in the Jordan-Hölder theorem
(in fact, the statement is a special case of the Jordan-Hölder theorem with operators)
(see, for example, Math 594g, Section 6.4).

For example, the simple summands Si occurring in a decomposition V = ⊕Si of a
semisimple A-module are unique up to isomorphism and renumbering.

Proposition 1.3. Let V be a semisimple A-module, say V = ⊕ri=1Si with the
Si simple. For any submodule W of V , there is a subset I of {1, . . . , r} such that
V = W ⊕⊕i∈ISi.

Proof. For a subset I of {1, . . . , r}, define SI = ⊕i∈ISi. Let I be maximal among
the subsets of {1, . . . , r} such that W ∩ SI = 0. I claim that W + SI equals V . To
prove this, it suffices to show that each Si is contained in W + SI . Because Si is
simple, Si∩ (W +SI) equals Si or 0. In the first case, Si ⊂ W +SI , and in the second
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W ∩ (SI +Si) = 0, which contradicts the definition of I . Therefore V = W + SI , and
because W ∩ SI = 0, the sum is direct.

Corollary 1.4. Every submodule and every quotient module of a semisimple mod-
ule is semisimple.

Proof. The proposition shows that V/W ≈ SI and that W ≈ V/SI ≈ SI′ where
I ′ is the complement of I in {1, 2, . . . , r}.

Simple k-algebras. A k-algebra A is said to be simple if it contains no two-sided
ideals except for the obvious two, namely, 0 and A. We shall make frequent use of
the following observation:

The kernel of a homomorphism f : A → B of k-algebras is an ideal in
A not containing 1; therefore, if A is simple, then f is injective.

Example 1.5. Consider the matrix algebra Mn(k). For A,B ∈ Mn(k), the jth
column (A ·B)j of A ·B is A ·Bj where Bj is the jth column of B. Therefore, a given
matrix B,

Bj = 0 =⇒ (A · B)j = 0

Bj �= 0 =⇒ (A · B)j arbitrary.

It follows that the left ideals of Mn(k) are the sets of the form L(I) where I is a
subset of {1, 2, . . . , n} and L(I) is the set of matrices whose jth columns are zero for
j /∈ I . In particular, the minimal left ideals are the sets L({j0}). Similar statements
hold for the right ideals, from which it follows that any nonzero two-sided ideal in
Mn(k) is the whole ring: Mn(k) is a simple k-algebra.

Example 1.6. A k-algebra A is said to be a division algebra if every nonzero
element a of A has an inverse, i.e., there exists a b such that ab = 1 = ba. Thus
a division algebra satisfies all the axioms to be a field except commutativity (and
for this reason is sometimes called a skew field). Clearly, a division algebra has no
nonzero proper ideals, left, right, or two-sided, and so is simple.

If D is a division algebra, then, as in (1.5), the left ideals in Mn(D) are the sets of
the form L(I) and Mn(D) is simple.

Example 1.7. For a, b ∈ k×, let H(a, b) be the k-algebra with basis 1, i, j, κ (as a
k-vector space) and with the multiplication table:

1 i j κ
i a k aj
j −κ b −bi
κ −aj bi −ab

i.e., i2 = a, j2 = b, ij = κ = −ji ( =⇒ iκ = iij = aj etc.). Then H(a, b) is a k-
algebra, called a quaternion algebra over k. For example, if k = R, then H(−1,−1) is
the usual quaternion algebra. One can show (see 5.1) that H(a, b) is either a division
algebra or it is isomorphic to M2(k). In particular, it is simple.

Remark 1.8. Much of linear algebra does not require that the field be commu-
tative. For example, the usual arguments show that a finitely generated module V
over a division algebra D has a basis, and that all bases have the same number n of
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elements—n is called the dimension of V . Let V be a D-module of dimension 1, so
that V = De0 for some e0 ∈ V . A D-linear map ϕ : V → V is determined by its
value at e0, ϕ(e0) = ae0, and ϕ �→ a is a bijection EndD(V ) → D. If ϕ(e0) = ae0 and
ψ(e0) = be0, then

(ϕ ◦ ψ)(e0)
df
= ϕ(ψ(e0)) = ϕ(be0) = b(ϕ(e0)) = bae0,

and so ϕ �→ a is an isomorphism of k-algebras EndD(V ) → Dopp. Similarly, if V is a
D-module of dimension n, then the choice of a basis for V determines an isomorphism
of k-algebras EndD(V ) → Mn(D

opp).

Theorem 1.9. Any simple k-algebra is isomorphic to Mn(D) for some n and some
division k-algebra D.

Proof. Choose a simple A-module S, for example, any minimal left ideal of A.
Then A acts faithfully on S, because the kernel of A → Endk(S) will be a two-sided
ideal of A not containing 1, and hence is 0.

Thus, we can regard A as a subalgebra of E
df
= Endk(S), the ring of k-linear map

S → S. Note that the centralizer CE(A) of A in E is equal to EndA(S), the ring
of A-linear maps S → S, and that S can be regarded as a CE(A)-module. We shall
complete the proof of the theorem by proving:

(a) D
df
= CE(A) is a division algebra;

(b) A is the centralizer of D in E, i.e., A = EndD(S).

It will then follow from the Remark 1.8 that EndD(S) ≈ Mr(D
opp)

Lemma 1.10 (Schur’s Lemma). For any k-algebra A and any simple A-module
S, EndA(S) is a division algebra.

Proof. Let γ be an A-linear map S → S. Then Ker(γ) is an A-submodule of
S, and so it is either S or 0. In the first case, γ is zero, and in the second it is an
isomorphism, i.e., it has an inverse that is also A-linear.

Theorem 1.11 (Double Centralizer Theorem). Let A be a k-algebra, and
let V be a faithful semisimple A-module. Then C(C(A)) = A (centralizers taken in
Endk(V )).

Example 1.12. Let V = kn. In the following, centralizers will be taken in
Endk(V ) = Mn(k).

(a) Let A = k acting by left multiplication on V = kn. Then C(A) = Mn(k),
and C(C(A)) is the centre of Mn(k). To see this, let α = (aij) lie in the
centre of Mn(k). Let eij be the matrix with 1 in the (i, j)th position and zeros
elsewhere, so that

eijelm =

{
eim if j = l
0 if j �= l.

Then α =
∑
i,j aijeij, and so αelm =

∑
i aileim and elmα =

∑
j amjelj. If

αelm = elmα, then ail = 0 for i �= l, amj = 0 for j �= m, and all = amm. It
follows that the centre ofMn(k) is k (identified with the set of scalar matrices).

(b) Let A be the set of diagonal matrices in Mn(k), and let V = kn. Then
C(A) = A, and so C(C(A)) = C(A) = A.
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Proof. In the situation of the proposition, let D = C(A) and let B = C(D).
Clearly A ⊂ B, and the reverse inclusion follows from the next lemma when we take
v1, . . . , vn to generate V as a k-vector space.

Lemma 1.13. Under the hypotheses of the proposition, for any v1, . . . , vn ∈ V and
b ∈ B, there exists an a ∈ A such that

av1 = bv1, av2 = bv2, . . . , avn = bvn.

Proof. We first prove this for n = 1. Note that Av1 is an A-submodule of V ,
and so (see 1.3) there exists an A-submodule W of V such that V = Av1 ⊕W . Let
π : V → V be the map (av1, w) �→ (av1, 0) (projection onto Av1). It is A-linear, hence
lies in D, and has the property that π(v) = v if and only if v ∈ Av1. Now

π(bv1) = b(πv1) = bv1,

and so bv1 ∈ Av1.

We now prove the general case. Let W be the direct sum of n copies of V with A
acting diagonally, i.e.,

a(x1, . . . , xn) = (ax1, . . . , axn), a ∈ A, xi ∈ V.

Then W is again a semisimple A-module. The centralizer of A in Endk(W ) consists
of the matrices (γij)1≤i,j≤n, γij ∈ Endk(V ), such that (γijα) = (αγij) for all α ∈ A,
i.e., such that γij ∈ D. In other words, the centralizer of A in Endk(A) is Mn(D). An
argument as in the above example, using the matrices eij(δ) with δ in the ijth position
and zeros elsewhere, shows that the centralizer of Mn(D) in Endk(W ) consists of the
diagonal matrices 

β 0 · · · 0
0 β · · · 0
...

...
. . .

...
0 0 · · · β


with β ∈ B. We now apply the case n = 1 of the lemma to A, W , b, and the vector
(v1, . . . , vn) to complete the proof.

Modules over simple k-algebras. When we regard A as a k-vector space
and let A act on it by left multiplication, then we obtain a homomorphism A →
Endk−linear(A)—this is called the regular representation of A.

Proposition 1.14. For any simple k-algebra A, the simple submodules of A (re-
garded as a left A-module) are the minimal left ideals in A; any two such ideals are
isomorphic as left A-modules, and A is a direct sum of its minimal left ideals.

Proof. After Theorem 1.9, we may assume that A = Mn(D) for some division
algebra D. An A-submodule M of A is a left ideal, and M will be simple if and only
if it is minimal. We saw in (1.6) that the minimal left ideals in Mn(D) are those of
the form L({j0}). Clearly A = ⊕1≤j≤nL({j}) and each L({j}) is isomorphic to Dn

with its natural action of Mn(D).

Theorem 1.15. Let A be a simple k-algebra, and let S be a simple A-module.
Then any A-module V is isomorphic to a direct sum of copies of S. In particular, it
is semisimple.
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Proof. Let S0 be a minimal left ideal of A. The proposition shows that, as a left
A-module, A ≈ Sn0 for some n.

Let e1, . . . , er be a set of generators for V as an A-module. The map

(a1, . . . , ar) �→
∑

aiei

realizes V as a quotient of the A-module Ar, and hence as a quotient of Snr0 . Now
Proposition 1.3 shows that V ≈ Sm0 for some m.

Corollary 1.16. If A is a simple k-algebra, then any two simple A-modules are
isomorphic, and any two A-modules having the same dimension over k are isomor-
phic.

2. Definition of the Brauer Group

Tensor products of algebras. Let A and B be k-algebras, and let A ⊗k B be
the tensor product of A and B as k-vector spaces. There is a unique k-bilinear
multiplication on A⊗k B such that

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′, a, a′ ∈ A, b, b′ ∈ B.

When we identify k with k ·(1⊗1) ⊂ A⊗kB, then A⊗kB becomes a k-algebra. If (ei)i
and (fj)j are bases of A and B as k-vector spaces, then (ei⊗fj)i,j is a basis for A⊗kB,
and the structure constants for A⊗kB can be obtained from those of A and B by an
obvious formula. We shall use that tensor products are commutative and associative
in the sense that, for any two k-algebras A,B, there is a unique isomorphism

A⊗k B → B ⊗k A
sending a⊗ b to b⊗ a, and for any three k-algebras A,B,C , there is a unique isomor-
phism

A⊗k (B ⊗k C) → (A⊗k B)⊗k C
sending a⊗ (b⊗ c) to (a⊗ b)⊗ c.

Example 2.1. For any k-algebra A, A⊗k Mn(k) ∼= Mn(A). To see this, note that
a ring B containing a subring R is isomorphic to Mn(R) if and only if it admits a
basis (eij)1≤i,j≤n as a left R-module such that

eijelm =

{
eim if j = l
0 if j �= l.

If (eij) is the standard basis for Mn(k), then (1⊗eij) is an A-basis for A⊗Mn(k) with
the correct property. More generally, A⊗kMn(A

′) ∼= Mn(A⊗kA′) for any k-algebras
A and A′.

Example 2.2. For any m,n, Mm(k) ⊗ Mn(k) ∼= Mmn(k). To see this, note that
according to the preceding example, Mm(k)⊗kMn(k) ∼= Mm(Mn(k)), and an m×m-
matrix whose entries are n × n-matrices is an mn × mn-matrix (delete the inner
parentheses). Alternatively, let (eij) and (flm) be standard bases for Mm(k) and
Mn(k), and check that (eij ⊗ flm) has the correct multiplication properties.
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Centralizers in tensor products.

Proposition 2.3. Let A and A′ be k-algebras, with subalgebras B and B ′, and let
C(B) and C(B ′) respectively be the centralizers of B and B ′ in A and A′. Then the
centralizer of B ⊗k B ′ in A⊗k A′ is C(B)⊗k C(B ′).

Proof. Certainly C(B ⊗k B ′) ⊃ C(B) ⊗k C(B ′). Let (fi)i be a basis for A′ as
a k-vector space. Then (1 ⊗ fi)i is a basis for A ⊗k A′ as an A-module, and so an
element α of A⊗kA′ can be written uniquely in the form α =

∑
i αi⊗ fi, αi ∈ A. Let

β ∈ B. Then α commutes with β ⊗ 1 if and only if βαi = αiβ for all i. Therefore,
the centralizer of B ⊗ 1 in A ⊗ A′ is C(B)⊗ A′. Similarly, the centralizer of 1⊗ B ′

in C(B)⊗ A′ is C(B)⊗ C(B ′), which therefore contains C(B ⊗ B ′).

In particular, the centre of the tensor product of two k-algebras is the tensor product
of their centres: Z(A⊗k B) = Z(A)⊗k Z(B).

Corollary 2.4. The centre of a simple k-algebra is a field.

Proof. Obviously, the centre of a division algebra is a field, but Wedderburn’s
theorem (1.9) shows that every simple k-algebra is isomorphic to Mn(D) for some
division algebra D. Now Mn(D) ∼= Mn(k) ⊗k D, and so Z(Mn(D)) ∼= k ⊗k Z(D) ∼=
Z(D).

A k-algebra A is said to be central if its centre is k, and a k-algebra that is both
central and simple is said to be central simple. The corollary shows that every simple
k-algebra is central simple over a finite extension of k.

Primordial elements. Before continuing, it will be useful to review a little linear
algebra from the second edition of Bourbaki’s Algebra.

Let V be a k-vector space, and let (ei)i∈I be a basis for V . Any v ∈ V can be
written uniquely v =

∑
aiei, and we define J(v) to be the set of i ∈ I such that

ai �= 0. Let W be a subspace of V . An element w ∈ W is said to be primordial
(relative to V and the basis (ei)i∈I) if

(a) J(w) is minimal among the sets J(w′) for w′ a nonzero elements of W , and
(b) in the expression w =

∑
bixi, at least one bi = 1.

Proposition 2.5. (a) Let w ∈ W be primordial, and let w′ ∈ V . Then
J(w′) ⊂ J(w) if and only if w′ = cw for some c ∈ k, in which case w′ = 0 or
J(w′) = J(w).

(b) The set of primordial elements of W generates it.

Proof. (a) Let w =
∑
i∈J(w) aiei and w′ =

∑
i∈J(w′) a

′
iei be elements of W with

J(w′) ⊂ J(w). We may assume w′ �= 0, so that J(w′) �= ∅. Choose an i0 ∈ J(w′), and
set c = ai0 · a′−1i0 . Then J(w− cw′) ⊂ J(w) and i0 /∈ J(w − cw′), and so w− cw′ = 0.

(b) Let w =
∑
i∈J(w) aiei ∈ W . We shall use induction on the number n of elements

in J(w) to prove that w lies in the subspace generated by the primordial elements. For
n = 0 the statement is obvious, and so suppose n > 0. Among the nonzero elements
w′ of W with J(w′) ⊂ J(w), choose one w0 such that J(w0) has the fewest elements.
After replacing it by a scalar multiple, we may assume that w0 is primordial, say
w0 =

∑
biei with bi0 = 1. Then w − ai0w0 ∈ W but J(w − ai0w0) has at most n− 1
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elements. By induction, w−ai0w0 is a linear combination of primordial elements, and
so therefore is w.

The results (and proofs) of this section do not require V to be finite-dimensional
over k, and they do not require k to be commutative, i.e., k can be a division algebra.

Simplicity of tensor products.

Proposition 2.6. The tensor product of two simple k-algebras, at least one of
which is central, is again simple.

Proof. After (1.9), we may suppose that one of the algebras is Mn(D) where D
is a division algebra with centre k. Let A be the second simple k-algebra. If A⊗k D
is simple, say, A⊗k D ≈ Mm(D

′) with D′ a division algebra, then

A⊗k Mn(D) ∼= Mn(A⊗k D) ≈ Mn(Mm(D
′)) ∼= Mmn(D

′),

which is simple. Thus the proposition follows from the next lemma.

Lemma 2.7. Let A be a k-algebra, and let D be a division algebra with centre k.
Then any two-sided ideal A in A⊗D is generated (as a left vector space over D) by

a
df
= A ∩ (A⊗ 1).

Proof. We make A⊗k D into a left D-module by the rule:

δ(α⊗ δ′) = α⊗ δδ′, α ∈ A, δ, δ′ ∈ D.

The ideal A of A⊗k D is, in particular, a D-submodule of A⊗k D.

Let (ei) be a basis for A as a k-vector space. Then (ei ⊗ 1) is a basis for A ⊗k D
as a left D-vector space. Let α ∈ A be primordial with respect to this basis, say

α =
∑
i∈J(α)

δi(ei ⊗ 1) =
∑
i∈J(α)

ei ⊗ δi.

For any nonzero δ ∈ D, αδ ∈ A, and αδ =
∑

ei⊗δiδ =
∑
i∈I(δiδ)(ei⊗1). In particular,

J(δα) = J(α), and so αδ = δ′α for some δ′ ∈ D (Proposition 2.5a). As some δi = 1,
this implies that δ = δ′, and so each δi commutes with every δ ∈ D. Hence δi lies in
the centre k of D, and α ∈ A⊗ 1. We have shown that every primordial element of
A is in A⊗ 1, which completes the proof because A is generated (as a D-module) by
its primordial elements.

Corollary 2.8. The tensor product of two central simple k-algebras is again cen-
tral simple.

Proof. Combine Proposition 2.3 with Proposition 2.6.

Let A be a central simple algebra over k, and let V denote A regarded as a k-vector
space. Then left multiplicationmakes V into a left A-module, and right multiplication
makes it into a right A-module, or, what is the same thing, a left Aopp-module. These
actions identify A and Aopp with commuting subalgebras of Endk(V ). From the
universality of the tensor product, we obtain a homomorphism

a⊗ a′ �→ aa′ : A⊗k Aopp → Endk(V ).
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As A⊗k Aopp is simple and the kernel of the homomorphism does not contain 1, it is
injective. On counting degrees, we find that

[A⊗k Aopp : k] = [A : k]2 = n2 = [Endk(V ) : k],

and so the homomorphism is an isomorphism. We have shown:

Corollary 2.9. For any central simple k-algebra A,

A⊗k Aopp ∼= Endk(A) ≈ Mn(k), n = [A : k].

The Noether-Skolem Theorem.

Theorem 2.10 (Noether-Skolem). Let f, g : A → B be homomorphisms from
the k-algebra A to the k-algebra B. If A is simple, and B is central and simple over
k, then there exists an invertible element b ∈ B such that f(a) = b · g(a) · b−1 for all
a ∈ A.

Proof. If B = Mn(k) = Endk(k
n), then the homomorphisms define actions of A

on kn—let Vf and Vg denote kn with the actions defined by f and g. According to
(1.16), two A-modules with the same dimension are isomorphic, but an isomorphism
b : Vg → Vf is an element of Mn(k) such that f(a) · b = b · g(a) for all a ∈ A.

In the general case, we consider the homomorphisms

f ⊗ 1, g ⊗ 1 : A⊗k Bopp → B ⊗k Bopp.

Because B ⊗k Bopp is a matrix algebra over k, the first part of the proof shows that
there exists a b ∈ B ⊗k Bopp such that

(f ⊗ 1)(a⊗ b′) = b · (g ⊗ 1)(a⊗ b′) · b−1

for all a ∈ A, b′ ∈ Bopp. On taking a = 1 in this equation, we find that (1 ⊗ b′) =
b · (1⊗ b′) · b−1 for all b′ ∈ Bopp. Therefore (see 2.3), b ∈ CB⊗kBopp(k⊗Bopp) = B⊗k k,
i.e., b = b0 ⊗ 1 with b0 ∈ B. On taking b′ = 1 in the equation, we find that

f(a)⊗ 1 = (b0 · g(a) · b−10 )⊗ 1

for all a ∈ A, and so b0 is the element sought.

Corollary 2.11. Let A be a central simple algebra over k, and let B1 and B2 be
simple k-subalgebras of A. Any isomorphism f : B1 → B2 is induced by an inner
automorphism of A, i.e., there exists an invertible a ∈ A such that f(b) = aba−1 for
all b ∈ B1.

Proof. This is the special case of the theorem in which g is the identity map
B1 → B1.

Corollary 2.12. All automorphisms of a central simple k-algebra are inner.

For example, the automorphism group of Mn(k) is PGLn(k)
df
= GLn(k)/k

×In.



100 IV. BRAUER GROUPS

Definition of the Brauer group. Let A and B be central simple algebras over
k. We say that A and B are similar, A ∼ B, if A⊗k Mn(k) ≈ B ⊗k Mm(k) for some
m and n. This is an equivalence relation: it is obviously reflexive and symmetric, and
(2.2) implies that it is transitive. Define Br(k) to be the set of similarity classes of
central simple algebras over k, and write [A] for the similarity class of A. For classes
[A] and [B], define

[A][B] = [A⊗k B].

This is well-defined (i.e., if A ∼ A′ and B ∼ B ′, then A ⊗k B ∼ A′ ⊗k B ′), and the
associativity and commutativity of tensor products show that it is associative and
commutative. For any n, [Mn(k)] is an identity element, and because A ⊗k Aopp ≈
Mn(k) (see 2.9) [A] has [A

opp] as inverse. Therefore Br(k) is an abelian group, called
the Brauer group of k.

Example 2.13. (a) If k is algebraically closed, then Br(k) = 0, for let D be a
central division algebra over k. We have to show that D = k. Let α ∈ D,
and let k[α] be the subalgebra of D generated by k and α. Then k[α] is a
commutative field of finite degree over k (because it is an integral domain of
finite degree over k). Hence k[α] = k, and α ∈ k. Since α was arbitrary, this
shows that D = k.

(b) The Brauer group of R is cyclic of order 2. Its elements are represented by k
and the usual quaternion algebra. (See Section 4 below.)

(c) The Brauer group of a finite field is zero (Theorem 4.1).
(d) The Brauer group of a nonarchimedean local field is canonically isomorphic to

Q/Z (Proposition 4.3).
(e) If K is a number field, then there is an exact sequence

0 → Br(K) → ⊕v Br(Kv) → Q/Z → 0.

The sum is over all the primes of K (including the infinite primes). This
statement is of the same depth as that of the main theorems of class field
theory. (See Chapter VIII).

Remark 2.14. (a) Wedderburn’s theorem (1.9) shows that every central simple
algebra over k is isomorphic to Mn(D) for some central division algebra D. Moreover,
D is the opposite algebra of EndA(S) for any simple A-module S. Because any two
simple A-algebras are isomorphic (see 1.16), this shows that D is uniquely determined
by A (even by the similarity class of A) up to isomorphism. Therefore, each similarity
class is represented by a central division algebra, and two central division algebras
representing the same similarity class are isomorphic.

(b) We should verify1 that the similarity classes form a set, and not merely a
class. For each n > 0, consider the families (alij)1≤i,j,l≤n that are structure constants
for central division algebras over k. Clearly, these families form a set, each family
defines a central division algebra over k, and these division algebras contain a set of
representatives for the Brauer group of k.

1I once heard Brauer, who normally had a gentle manner, deliver a tirade against “modern”
mathematicians who ignored the distinction between sets and classes. As he pointed out, if you
ignore the distinction, then you obtain a contradiction (Russell’s paradox), and once you have one
contradiction in your system, you can prove everything.
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Extension of the base field.

Proposition 2.15. Let A be a central simple algebra over k, and let K be a field
containing k (not necessarily of finite degree over k). Then A⊗kK is a central simple
algebra over K.

Proof. The same argument as in the proof of Proposition 2.3 shows that the
centre of A ⊗k K is k ⊗k K = K (the argument does not require K to have finite
degree over k). Also, the proof of Lemma 2.7 does not use that D is finite-dimensional
over k. Therefore, when A is a division algebra, any two-sided ideal in A ⊗k K is
generated as an A-module by its intersection with K, and therefore is 0 or A ⊗k K.
A general A ≈ Mn(D), and

A⊗kK ≈ Mn(D)⊗kK ≈ Mn(k)⊗k (D⊗kK) ≈ Mn(D⊗kK) ≈ Mn(K)⊗K (D⊗kK)

which is simple.

Corollary 2.16. For any central simple algebra A over k, [A : k] is a square.

Proof. Clearly [A : k] = [A⊗k kal : kal], and A⊗k kal ≈ Mn(k
al) for some n.

Let L be a field containing k (not necessarily of finite degree). Then

Mn(k)⊗ L ∼= Mn(L),

and

(A⊗k L)⊗L (A′ ⊗k L) = A⊗k (L⊗L (A′ ⊗k L)) = (A⊗k A′)⊗k L.
Therefore the map A �→ A⊗k L defines a homomorphism

Br(k) → Br(L).

We denote the kernel of this homomorphism by Br(L/k)—it consists of the similarity
classes represented by central simple k-algebras A such that the L-algebra A⊗k L is
a matrix algebra.

A central simple algebra (or its class in Br(k)) is said to be split by L, and L is
called a splitting field for A, if A ⊗k L is a matrix algebra over L. Thus Br(L/k)
consists of the elements of Br(k) split by L.

Proposition 2.17. For any field k, Br(k) = ∪Br(K/k), where K runs over the
finite extensions of K contained in some fixed algebraic closure kal.

Proof. Let A be a central simple algebra over k. Then A⊗k kal ≈ Mn(k
al), i.e.,

there exists a basis (eij)1≤i,j≤n for A⊗k kal such that eijelm = δjleim for all i, j, l,m.
Because A⊗k kal = ∪[K:k]<∞A⊗kK, the eij ∈ A⊗kK for some K, and it follows that
A⊗k K ≈ Mn(K).

3. The Brauer Group and Cohomology

For a Galois extension L/k of fields, let H2(L/k) = H2(Gal(L/k), L×). We shall
show that there is a natural isomorphism H2(L/k) ≈ Br(L/k), but first we need to
investigate the maximal subfields of a central simple algebra.
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Maximal subfields. We need a variant of the double centralizer theorem.

Theorem 3.1. Let A be a central simple algebra over k, and let B be a simple
subalgebra over A. Then the centralizer C = C(B) of B in A is simple, and B is the
centralizer of C. Moreover,

[B : k][C : k] = [A : k].

Proof. Let V denote B regarded as a k-vector space. Then B and Bopp act on V ,
by right and left multiplication respectively, and each is the centralizer of the other
(see 1.8).

Consider the simple algebra A ⊗k Endk(V ). Proposition 2.3 shows that the cen-
tralizer of B ⊗ 1 in this algebra is C ⊗ Endk(V ) and that of 1⊗ B is A⊗ Bopp. On
applying the Noether-Skolem theorem to the two embeddings b �→ b ⊗ 1, 1 ⊗ b of B
into A ⊗k Endk(V ), we obtain an invertible element u of this k-algebra such that
b⊗ 1 = u(1⊗ b)u−1 for all b ∈ B. Clearly then

u · C(B ⊗ 1) · u−1 = C(1⊗ B)

(centralizers in A ⊗k Endk(V )), which shows that these centralizers are isomorphic.
Therefore C ⊗k Endk(V ) is simple because A ⊗k Bopp is simple (see 2.6), and this
implies that C itself is simple because, for any ideal a of C , a⊗k Endk(V ) is an ideal
in C ⊗k Endk(V ). As Endk(V ) has degree [B : k]2 over k,

[C ⊗k End(V ) : k] = [C : k][B : k]2,

and obviously
[A⊗Bopp : k] = [A : k][B : k].

On comparing these equalities, we find that

[A : k] = [B : k][C : k].

If B ′ denotes the centralizer of C in A, then B ′ ⊃ B. But after the above, [A : k] =
[C : k][B ′ : k]; so [B : k] = [B ′ : k] and B = B ′.

Remark 3.2. In the case that A = Endk(V ) for V a k-vector space, Theorem
3.1 follows from Theorem 1.11 because V will be a faithful semisimple B-module.
This observation can be used to give an alternative proof of the theorem, because A
becomes of this form after a finite extension of the base field (see 2.17).

Corollary 3.3. If in the statement of the theorem, B has centre k, then so also
does C, and the canonical homomorphism B ⊗k C → A is an isomorphism.

Proof. The centres of B and C both equal B ∩ C , and so B central implies
C central. Therefore the k-algebra B ⊗k C is central simple, which implies that
B⊗kC → A is injective. It is surjective because the algebras have the same dimension
over k.

Corollary 3.4. Let A be a central simple algebra over k, and let L be a subfield
of A containing k. The following are equivalent:

(a) L equals its centralizer in A;
(b) [A : k] = [L : k]2;
(c) L is a maximal commutative k-subalgebra of A.



THE BRAUER GROUP AND COHOMOLOGY 103

Proof. Because L is commutative, it is contained in its centralizer C(L), but

[A : k] = [L : k][C(L) : k],

and so C(L) = L if and only if [A : k] = [L : k]2.

The equivalence of (b) with (c) follows from the observation that any commutative
k-subalgebra of A containing L is contained in C(L).

Corollary 3.5. The maximal subfields containing k of a central division k-algebra

D are exactly those with degree
√
[D : k] over k.

Proof. Any commutative k-subalgebra of D is an integral domain of finite degree
over k, and hence is a field.

Corollary 3.6. Let A be a central simple algebra over k, and let L be a field of
finite degree over k. Then L splits A if and only if there exists an algebra B similar
to A containing L and such that [B : L] = [L : k]2.

Proof. Suppose L splits A. Then L also splits Aopp, say, Aopp ⊗k L = EndL(V ).
This equality states that Aopp ⊗k L is the centralizer of L in EndL(V ), and so L is
the centralizer of Aopp ⊗k L in EndL(V ) (see 3.1). Let B be the centralizer of Aopp

in Endk(V ). I claim that B satisfies the required conditions. Certainly, B ⊃ L, and
Corollary 3.3 shows that B is central simple and that B ⊗k Aopp ∼= Endk(V ). On
tensoring both sides with A and using that A ⊗k Aopp is a matrix algebra, we find
that B ∼ A.

For the converse, it suffices to show that L splits B. Because L is commutative,

L = Lopp ⊂ Bopp, and because [L : k] =
√
[B : k], L is equal to its centralizer in Bopp.

Therefore the centralizer of 1⊗L in B⊗kBopp is B⊗kL. When we identify B⊗kBopp

with Endk(B) (endomorphisms of B as a k-vector space—see 2.9), the centralizer of
L becomes identified with EndL(B) (endomorphisms as an L-vector space). This
completes the proof.

Corollary 3.7. Let D be a central division algebra of degree n2 over k, and let
L be a field of degree n over k. Then L splits D if and only if L can be embedded in
D (i.e., there exists a homomorphism of k-algebras L → D).

Proof. If L splits D, then there is a central simple algebra B over k containing
L, similar to D, and of degree [L : k]2. But B ∼ D implies B ≈ Mm(D) for some m
(see Remark 2.14a), and the condition on the degrees implies that m = 1.

Proposition 3.8. Any division algebra over k contains a maximal subfield sepa-
rable over k.

Proof. We omit the proof, because we are mainly interested in fields of charac-
teristic zero and finite fields, for which the problem doesn’t arise.

Corollary 3.9. For any field k, Br(k) = ∪Br(L/k) where L/k runs over the
finite Galois extensions of k contained in a fixed (separable) algebraic closure of k.

Proof. The proposition shows that every element of Br(k) is split by a finite
separable extension, and therefore by a finite Galois extension.
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Central simple algebras and 2-cocycles. First, we need a remark that should
have been made in Chapter II. Let G be a group, and let M be a G-module. For
m ∈ M , let ϕm : G → M be the constant map σ �→ ϕm. Then

(dϕm)(σ, τ ) = σm−m+m = σm.

In particular, (dϕm)(1, 1) = m. Therefore, every class in H2(G,M) is represented by
a 2-cocycle ϕ with ϕ(1, 1) = 0. Such a 2-cocycle is said to be normalized.

Fix a finite Galois extension L of k, and let G = Gal(L/k). Define A(L/k) to be the
class of central simple algebras A over k containing L and of degree [A : k] = [L : k]2

(hence, L equals its centralizer in A).

Fix an A ∈ A(L/k). For any σ ∈ G, Corollary 2.11 of the Noether-Skolem theorem
shows that there exists an element eσ ∈ A such that

σa = eσae
−1
σ for all a ∈ L (∗).

Moreover, eσ is determined by (∗) up to multiplication by an element of L×, because
if fσ has the same property, then f−1

σ eσ centralizes L. Note that (∗) can be written
as

eσ · a = σa · eσ for all a ∈ L (∗′)
which says that moving eσ past a ∈ L replaces it with σa. Clearly eσeτ has the
property (∗) for στ , and so

eσeτ = ϕ(σ, τ )eστ (∗∗)
for some ϕ(σ, τ ) ∈ L×. Note that

eρ(eσeτ ) = eρ(ϕ(σ, τ )eστ) = ρϕ(σ, τ ) · ϕ(ρ, στ ) · eρστ
and

(eρeσ)eτ = ϕ(ρ, σ)eρσeτ = ϕ(ρ, σ)ϕ(ρσ, τ ) · eρστ .
Therefore the associative law implies that ϕ is a 2-cocycle. It is even a normalized
2-cocycle if we choose e1 = 1. A different choice of eσ’s leads to a cohomologous
2-cocycle, and so we have a well-defined map A �→ γ(A) : A(L/k) → H2(L/k).

Theorem 3.10. The map A �→ γ(A) defines a bijection

A(L/k)/≈ → H2(L/k).

We first need a lemma.

Lemma 3.11. Let A ∈ A(L/k), and define eσ to satisfy (∗). Then the set (eσ)σ∈L
is a basis for A as a left vector space over L.

Proof. Note that

dimL(A) = dimk(A)/dimk(L) = n,

and so it suffices to show that the eσ are linearly independent. Suppose not, and let
(eσ)σ∈J be a maximal linearly independent set. If τ /∈ J , then

eτ =
∑

aσσ

for some aσ ∈ L. Let a ∈ L. When we compute eτa in two different ways,

eτa = τa · eτ =
∑
σ∈J

τa · aσeσ,
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eτa =
∑
σ∈J

aσeσa =
∑
σ∈J

aσ · σa · eσ
we find that τa · aσ = σa · aσ for all σ ∈ J . For at least one σ ∈ J , aσ �= 0, and
then the equation shows that τ = σ, contradicting the fact that τ /∈ J . Therefore
J = G.

Now A is uniquely determined by the following properties: A ⊃ L; (eσ)σ∈G is a
basis for A as an L-vector space; multiplication in A satisfies the equation (∗) and
(∗∗).
Let A′ ∈ A(L/k) and suppose that γ(A) = γ(A′). The condition implies that we

can choose bases (eσ) and (e′σ) for A and A′ satisfying (∗) and (∗∗) with the same
2-cocycle ϕ. The map

∑
aσeσ �→ ∑

aσe
′
σ : A → A′ is an isomorphism of k-algebras.

Next suppose that A and A′ are isomorphic elements of A(L/k). The Noether-
Skolem theorem allows us to choose the isomorphism f : A → A′ so that f(L) = L
and f |L is the identity map. If eσ satisfies condition (∗∗) for A, then f(eσ) satisfies
(∗∗) for A′. With the choices (eσ) and (f(eσ)), A and A′ define the same cocycle.

These remarks show that the map A �→ γ(A) defines a injection

A(L/k)/≈ → H2(L/k).

To show that the map is surjective, we construct an inverse.

Let ϕ : G × G → L× be a normalized 2-cocycle. Define A(ϕ) to be the L-vector
space with basis (eσ)σ∈G endowed with the multiplication given by (∗) and (∗∗). Then
e1 is an identity element for multiplication, and the cocycle condition (exactly) shows
that

eρ(eσeτ) = (eρeσ)eτ .

It follows that A(ϕ) is a k-algebra. We identify L with the subfield Le1 of A(ϕ).

Lemma 3.12. The algebra A(ϕ) is central simple over K.

Proof. Let α =
∑

aσeσ centralize L, and let a ∈ L. On comparing aα =
∑

aaσ ·eσ
with αa =

∑
aσ(σa) · eσ, we find that aσ = 0 for σ �= 1, and so α = a1e1 ∈ L.

Therefore, the centralizer of L in A(ϕ) is L.

Let α lie in the centre of A(ϕ). Then α centralizes L, and so α ∈ L, say α = ae1,
a ∈ L. On comparing eσ · α = (σa)eσ with α · eσ = aeσ, we see that α ∈ k. Thus
A(ϕ) is central.

Let A be a two-sided ideal in A(ϕ); in particular, A is an L-subspace of A(ϕ). If
A contains one element eσ, then (**) shows that it contains all, and so equals A(ϕ).
Suppose A �= 0, and let α =

∑
aσeσ be a primordial element of A, with say aσ0 = 1.

If aσ1 �= 0, σ1 �= σ0, then for any a ∈ L,

(σ1a) · α− α · a =
∑

aσ(σ1a− σa)eσ ∈ A.

If a is chosen so that σ1a �= σ0a, then this element is nonzero but has fewer nonzero
coefficients than α, contradicting its primordality. Therefore, α = eσ0, and we have
shown that A = A(ϕ).

Let ϕ and ϕ′ be cohomologous 2-cocycles, say,

a(σ) · σa(τ ) · ϕ′(σ, τ ) = a(στ ) · ϕ(σ, τ )
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for some map a : G → L×. One checks immediately that the L-linear map A(ϕ) →
A(ϕ′) sending eσ to a(σ)e′σ is an isomorphism of k-algebras. Therefore ϕ �→ A(ϕ)
defines a map H2(L/K) → A(L/k)/≈, which is clearly inverse to A �→ γ(A). This
completes the proof of Theorem 3.10.

The algebras A(ϕ) are called crossed-product algebra. Before group cohomology
existed, 2-cocycles ϕ : G×G → L× were called factor sets.

Theorem 3.13. For any finite Galois extension L/k, the map ϕ �→ [A(ϕ)] defines
an isomorphism of abelian groups H2(L/k) → Br(L/k).

To show that this map is bijective, it suffices (after Theorem 3.13) to show that
the map A �→ [A] : A(L/k)/≈ → Br(L/k) is bijective.

If A and A′ are similar central simple algebras over k, then (see 2.14) there exists
a central division algebra D such that A ∼ D ∼ A′, say, A ≈ Mn(D), A′ ≈ Mn′(D).
But if [A : k] = [A′ : k], then n = n′, and so A ≈ A′. This proves that the map
A(L/K)/≈ → Br(L/k) is injective, and 3.6 proves that it is surjective.

Lemma 3.14. For any two 2-cocycles ϕ and ϕ′, A(ϕ+ ϕ′) ∼ A(ϕ)⊗k A(ϕ′).

Proof. The proof is a little messy because we have to recognize A(ϕ)⊗kA(ϕ′), not
as a crossed-product algebra, but as matrix algebra over a crossed-product algebra.
I merely sketch the proof (see Blanchard, 1972, p94–95, or Farb and Dennis, 1993,
p126–128 for the details).

Set A = A(ϕ), B = A(ϕ′), and C = A(ϕ+ ϕ′). Regard A and B as left L-modules
(using left multiplication), and define

V = A⊗L B.

Concretely, V is the largest quotient space of A⊗k B such that

@a ⊗L b = a⊗L @b

holds for all a ∈ A, b ∈ B, @ ∈ L.

The k-vector space V has a unique right A⊗k B-module structure such that

(a′ ⊗L b′)(a⊗k b) = a′a⊗L b′b, all a′, a ∈ A, b′, b ∈ B,

and a unique left C-module structure such that

(@e′′σ)(a⊗L b) = @eσa⊗L e′σb, all @ ∈ L, σ ∈ G, a ∈ A, b ∈ B.

Here (eσ), (e
′
σ), and (e′′σ) are the standard bases for A = A(ϕ), B = A(ϕ′), and

C = A(ϕ+ ϕ′) respectively.
The two actions commute, and so the right action of A⊗k B on V defines a homo-

morphism of k-algebras

f : (A⊗k B)opp → EndC(V ).

This homomorphism is injective because A ⊗k B (and hence its opposite) is simple.
Since both (A⊗k B)opp and EndC(V ) have degree n4 over k, where n = [L : k], f is
an isomorphism. As we noted in (1.16), any two modules over a simple ring of the
same k-dimension are isomorphic, and it follows that V ≈ Cn as a C-module. Hence

EndC(V ) ≈ EndC(C
n) = Mn(C

opp),
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and on composing this isomorphism with f we obtain an isomorphism of k-algebras

(A⊗k B)opp → Mn(C)opp.

The same map can be interpreted as an isomorphism

A⊗k B → Mn(C).

Corollary 3.15. For any separable algebraic closure kal of k, there is a canonical
isomorphism Br(k) → H2(kal/k).

Proof. For any tower of fields E ⊃ L ⊃ k with E and L finite and Galois over k,
the diagram

H2(L/k)
Inf−→ H2(E/k)

↓ ↓
Br(L/k) ↪→ Br(E/k)

commutes (the vertical maps send ϕ to [A(ϕ)]. Now use that

Br(k) = ∪Br(L/k) (see 3.9),

and

H2(kal/k) = ∪H2(L/k)

where both unions run over the finite Galois extensions L of k contained in kal.

Corollary 3.16. For any field k, Br(k) is torsion, and for any finite extension
L/k, Br(L/k) is killed by [L : k].

Proof. The same statements are true for the cohomology groups.

4. The Brauer Groups of Special Fields

The results of the last section allow us to interpret the results of Chapter III as
statements concerning the Brauer group of a field. In this section, we shall derive the
same results independently of Chapter III (but not quite of Chapter II).

Finite fields. Let k be a finite field. We saw in Chapter III (see III.2.3) that, for
any finite extension L of k, H2(L/k) = 0, and hence Br(k) = 0. The following is a
more direct proof of this fact.

Theorem 4.1 (Wedderburn). Every finite division algebra is commutative.

Proof. LetD be a finite division algebra with centre k, and let [D : k] = n2. Every
element of D is contained in a subfield k[α] of D, and hence in a maximal subfield.
Every maximal subfield of D has qn elements. They are therefore isomorphic, and
hence conjugate (Noether-Skolem). Therefore, for any maximal subfield L, D× =
∪αL×α−1, but a finite group can not equal the union of the conjugates of a proper
subgroup (the union of the conjugates has too few elements), and so D = L.
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The real numbers. Let G = Gal(C/R) = {1, σ}. Then
H2(C/R) ≈ H0

T (G,C×) = R×/NmG(C×) = {±}
and so Br(C/R) is a cyclic group of order 2. The nonzero element of H2(C/R) is
represented by the 2-cocycle ϕ : G×G → C×,

ϕ(ρ, τ ) =

{ −1 if ρ = σ = τ
1 otherwise

.

Let H be the usual quaternion algebra over R. Then the C-linear map A(ϕ) → H
sending xσ to j is an isomorphism of R-algebras. It follows that every central simple
algebra over R is isomorphic either to a matrix algebra over R or to a matrix algebra
over H.

A nonarchimedean local field. Let K be a nonarchimedean local field.

Let K be a local field, and let D be a central division algebra over K. Let n2 =
[D : K].

For any subfield L of D containing K, the valuation | · | has a unique extension to
L. Since any element α of D is contained in such a subfield of D, for example, in
K[α], the valuation | · | has a unique extension to D. It is possible to verify that | · |
is a nonarchimedean valuation on D in the obvious sense, i.e.,

(a) |α| = 0 ⇐⇒ α = 0;
(b) for all α, β ∈ D, |αβ| = |α||β|;
(c) for all α, β ∈ D, |α+ β| ≤ max{|α|, |β|}.

Let q be the number of elements in the residue field k of K, and define ord(α) for
α ∈ D by the formula:

|α| = (1/q)ord(α).

Then ord extends the additive valuation ordK on K (normalized to map K× onto Z)
to D. For any subfield L of D containing K, [L : K] ≤ n, and so ord(L×) ⊂ n−1Z.
Hence also ord(D×) ⊂ n−1Z.
Let

OD = {α ∈ D | ord(α) ≥ 0}
P = {α ∈ D | ord(α) > 0}.

Then OD is a subring in D, called the ring of integers. For any subfield L of D
containing K, OD ∩ L = OL, and so OD consists precisely of the elements of D that
are integral over OK . Moreover P is a maximal 2-sided ideal in OD (obviously),
and the powers of it are the only 2-sided ideals in D (the proof is the same as in
the commutative case). Hence Pe = pOD for some e. Then ord(D×) = e−1Z, and
therefore e ≤ n.

Clearly, the elements of OD not in P are units. Therefore d =df OD/P is again a
division algebra, and hence a field. Let f be its degree over k. Write d = k[a]. We
can lift a to an element α of OD. Because [K[α] : K] ≤ n, we have f ≤ n.

The same argument as in the commutative case shows that n2 = ef , namely, OD

is a free OK-module of some rank m. Because OD ⊗OK
K = D, m = n2. Moreover,
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because OD⊗OK
k = OD/pOD, it also is free of dimension of n2 over k. Now consider

the filtration of k-vector spaces

OD ⊃ P ⊃ P2 ⊃ · · · ⊃ Pe = pOD.

From our definition of f , OD/P = d has dimension f as a k-vector space, and the
successive quotients are one-dimensional vector spaces over d. Hence OD/pOD has
dimension ef over k, and so ef = n2.

Because e ≤ n, f ≤ n, the equality ef = n2 implies that e = f = n. In particular,
every central division algebra �= K is ramified. Again write d = k[a], and lift a to
an element α ∈ D. Then K[α] is a field with residue field d, and so [K[α] : K] ≥
[d : k] = n. Therefore K[α] has degree n over K and is unramified. It is a maximal
subfield, and hence splits D. We have shown that every element of Br(K) is split by
an unramified extension, i.e., Br(K) is equal to its subgroup Br(Kun/K).

We next define the map
invK : Br(K) −→ Q/Z.

An element of Br(K) represented by a central division algebra D over K (unique
up to isomorphism). According to what we have just proved, there is a maximal
subfield L of D that is unramified over K. Let σ be the Frobenius automorphism of
L. According to the Noether-Skolem theorem, there is an element α ∈ D such that
σx = αxα−1 for all x ∈ L. If α′ also has this property, then α′ = cα for some c ∈ L,
and so

ord(α′) = ord(c) + ord(α) ≡ ord(α) mod Z.

We define
invK(D) = ord(α) mod Z.

It depends only on the isomorphism class of D.

Example 4.2. Let L be the unramified extension of K of degree n, and let σ be

the Frobenius automorphism of L/K, so that G
df
= Gal(L/K) = {σi | 0 ≤ i ≤ n− 1}.

Let ϕ be the 2-cocycle

ϕ(σi, σj) =

{
1 if i+ j ≤ n− 1
π if i+ j > n− 1,

where π is a prime element of K (see the discussion preceding III.2.9). The crossed-
product algebra A(ϕ) equals ⊕0≤i≤n−1Lei with the multiplication determined by

ei · a = σia · ei all a ∈ L,

and

eiej =

{
ei+j if i+ j ≤ n− 1

πei+j−n if i+ j > n− 1,

We identify L with a subfield of A(ϕ) by identifying e0 with 1. Because e1ae
−1
1 = σa

for a ∈ L, we can use e1 to compute the invariant of A(ϕ). According to the above
rules, en1 = en−1e1 = πe0 = π. Hence

invK(A(ϕ)) = ord(e1) =
1

n
ord(en1 ) =

1

n
ord(π) =

1

n
,

as expected.

Proposition 4.3. The map invK : Br(K) → Q/Z just defined is a bijection.
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Proof. Let L be the unramified extension of K of degree n (contained in a fixed
algebraic closure Kal of K), and let @/k be the corresponding extension of residue
fields. Because the norm maps @ → k, @× → k× are surjective, and UL has a filtration
whose quotients are @× or @ one finds that the norm map UL → UK is surjective (see
III.2.2). Therefore, H0

T (G,UL) = 0, and (because the cohomology of cyclic groups is
periodic) this implies that H2(G,UL) = 0. As L× = UL × πZ for any prime element
π of K,

H2(L/K) = H2(G, πZ).

Consideration of the cohomology sequence of

0 → Z → Q → Q/Z → 0

shows that H2(G, πZ) is cyclic of order n and is generated by the class of the cocycle
ϕ considered in the last example (see the discussion preceding III.2.9). Therefore,
Br(L/K) is cyclic of order n, and it is generated by [A(ϕ)]. It now follows that
invK : Br(Kun/K) → Q/Z is an isomorphism, and we saw above that Br(Kun/K) =
Br(Kal/K).

Remark 4.4. (a) The calculation in Example 4.2 shows that the invariant map
defined in this chapter agrees with that in the preceding chapter.

(b) A calculation as in Example 4.2 shows that invK(A(ϕ
i) = i

n
mod Z. I claim

that if i is relatively prime to n, then A(ϕi) is a division algebra. If not,
then A(ϕi) ∼ Mr(D) for a division algebra D of degree m2 some m < n, and
invK(A(ϕ

i)) = invK(D) ∈ 1
m

Z/Z, which is a contradiction. It follows that
each division algebra over K is isomorphic to exactly one division algebra of
the form A(ϕi) for some n ≥ 1 and some i relatively prime to n. In particular,

for a division algebra D, the order of [D] in Br(K) is
√
[D : K].

(c) Let D be a division algebra of degree n2 over K. Because the map Br(K) →
Br(L) multiplies the invariant by [L : K] (Theorem III.1.1), D is split by every
extension L of K of degree n. Therefore (3.7), every such L can be embedded
into D. Hence every irreducible polynomial in K[X] of degree n has a root in
D.

5. Complements

Semisimple algebras. A k-algebra A is said to be semisimple if every A-module
is semisimple. Theorem 1.15 proves that a simple k-algebra is semisimple, and (yet
another) theorem of Wedderburn shows that every semisimple k-algebra is a product
of simple k-algebras. For any finite group G, the group algebra k[G] is semisimple
provided (G : 1) is not divisible by the characteristic of k. For more on semisimple
k-algebras, see the references below.

Algebras, cohomology, and group extensions. Let A be a central simple
algebra of degree n2 over k, and assume that A contains a field L of degree n over
k (e.g., A a division algebra). Let E be the set of invertible elements α ∈ A such
that αLα−1 = L. Then each α ∈ E defines an element x �→ αxα−1 of Gal(L/K), and
the Noether-Skolem theorem implies that every element of Gal(L/K) arises from an
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α ∈ E. Because [L : k] =
√
[A : k], the centralizer of L is L itself, and so the sequence

1 → L× → E× → Gal(L/K) → 1

is exact. It is not difficult to show that the map sending A to this sequence defines
an isomorphism from A(L/K) to the set of isomorphism classes of extensions of
Gal(L/K) by L×, and hence to H2(L/k) (see II.1.18). See Serre 1950/51.

Brauer groups and K-theory. Let k be a field containing a primitive nth root ζ
of 1. To any elements a, b ∈ k×, one attaches the k-algebra A(a, b; ζ) having generators
i and j and relations

in = a, jn = b, ij = ζji.

It is a central simple algebra over k.

The (Milnor) K-group K2F of a field F is the quotient of F×⊗ZF
× by the abelian

group generated by the elements of the form u ⊗ (1 − u) with u an element of F×

such that 1 − u ∈ F×. Thus K2F has as generators pairs {a, b}, one for each pair of
elements in F×, and relations

{ab, c} = {a, c}+ {b, c}
{a, bc} = {a, b}+ {a, c}

{u, 1− u} = 0.

It is known that these relations imply that

{u, v} = {v, u}−1
{u,−u} = 1

(see J. Rosenberg, Algebraic K-Theory and Its Applications, Springer, 1994, p214).

It is not difficult to show that the A(a, b; ζ), considered as elements of Br(k) satisfy
these relations, and so there is a well-defined homomorphism

K2k → Br(k).

Remarkably, it has been proved (Theorem of Merkuryev-Suslin, early 1980s) that this
map defines an isomorphism from K2k/nK2k onto the subgroup of Br(k) of elements
killed by n, and so we have an explicit description of Br(k)n in terms of generators
and relations. This theorem is discussed in the book (Kersten, I., Brauergruppen von
Körpern, Vieweg, 1990).

Exercise 5.1. Let F be a field of characteristic �= 2, and define the quaternion
algebra H(a, b) as in (1.7). Thus H(a, b) has basis 1, i, j, k and i2 = a, j2 = b,
ij = −ji. It is a central simple algebra over F .

(a) Show that every 4-dimensional central simple algebra over k is isomorphic to
H(a, b) for some a, b ∈ F×.

(b) According to Wedderburn’s theorem, either H(a, b) ≈ M2(F ) or H(a, b) is a
division algebra. Show that the first case occurs if and only if w2 − a2x2 −
b2y2 + abz2 has a nontrivial zero in K. (Hint: for α = w + xi + yj + zk, let
ᾱ = w − xi− yj − zk, and note that αᾱ = w2 − a2x2 − · · · )

(c) Show that H(1, 1) ≈ M2(F ). (Hint: consider the matrices e12 + e21 and
e11 − e22.)

(d) Show that H(a, b) ≈ H(ax2, by2) any x, y ∈ F×.
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(e) Show that H(a, b)⊗F L is the quaternion algebra defined by a, b ∈ L×.
(f) Verify that H(a, b) is in fact central simple over F .
(g) Show that H(a, 1− a) ≈ M2(F ), provided a, 1− a ∈ F×.
(h) Show that H(1, b) ≈ H(a,−a) ≈ M2(F ) (Hint: consider j + k and i+ j.)
(i) Show that H(a, b) ≈ H(a, b)opp.
(j) Show that H(a, b) ≈ M2(k) if and only if a ∈ Nm(F [

√
b]).

(k) Show that the map {a, b} �→ [H(a, b)] : K2F → Br(F ) is well-defined.

Notes. Brauer groups were introduced and studied by R. Brauer, E. Noether, A.
Albert, H. Hasse, and others, starting in the nineteen-twenties. The classic accounts
are:

Deuring, M., Algebren, Springer, 1935.

Artin, E., Nesbitt, C., and Thrall, R., Rings with Minimum Condition, University of
Michigan. Press, 1944.

Apart from the quaint terminology (e.g., Kronecker products for tensor products),
the latter is still an excellent book.

Other books include:

Blanchard, A., Les Corps Non Commutatifs, PUP, 1972.

This gives a concise elementary treatment of material in the chapter.

Herstein, I., Noncommutative Rings, Carus, 1968.

Farb, B., and Dennis, R.K., Noncommutative Algebra, Springer, 1993.

These books include the Brauer group, but also cover much more (but no number
theory). The second has lots of exercises.

Much of this chapter is based on:

Serre, J-P., Applications algébriques de la cohomologie des groupes, I, II, Séminaire
Henri Cartan, 1950/51.



CHAPTER V

Global Class Field Theory: Statements of the Main
Theorems

La théorie du corps de classes a une réputation de difficulté qui est en partie justifiée.
Mais il faut faire une distinction: il n’est peut-être pas en effet dans la science de
théorie où tout à la fois les démonstrations soient aussi ardues, et les résultats d’une
aussi parfaite simplicité et d’une aussi grande puissance.

J. Herbrand, 1936, p2.

In this chapter, we state and explain the theorems of global class field theory. The
main theorems will be proved Chapter VII.

Throughout this chapter, K will be a number field, although most of the results
hold also for finite extensions of Fp(T ).
Recall that for a number field K, we define a prime of K to be an equivalence class

of nontrivial valuations of K. There are two types of primes: the finite primes, which
can be identified with the prime ideals of OK , and the infinite primes. A real infinite
prime can be identified with an embedding of K into R, and a complex infinite prime
can be identified with a conjugate pair of embeddings of K into C. We use p or v to
denote a prime, finite or infinite. We use S denote a finite set of primes of K, and
also the set of primes of a finite extension L of K lying over K. The set of infinite
primes is denoted by S∞.

The completion of K at a prime p (resp. v) is denoted by Kp (resp. Kv), and the
inclusion K ↪→ Kp (resp. K ↪→ Kv) is denoted a �→ ap (resp. a �→ av).

1. Ray Class Groups

Ideals prime to S. Let I = IK be the group of fractional ideals in K. For a finite
set S of primes of K, we define IS to be the subgroup of I generated by the prime
ideals not in S. Each element a of IS factors uniquely as

a = pn1
1 · · · pns

s , pi /∈ S, ni ∈ Z,

and so IS can be identified with the free abelian group generated by the prime ideals
not in S. Define

KS = {a ∈ K× | (a) ∈ IS} = {a ∈ K× | ordp(a) = 0 all finite p ∈ S}.
There is a natural map i : KS → IS sending an element a of KS to the ideal aOK.
For example, if K = Q and S is the set of prime numbers dividing n, then IS can be

113
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identified with

{r/s | r, s ∈ Z, r, s > 0, gcd(r, n) = 1 = gcd(s, n)}
and

QS = {r/s | r, s ∈ Z, gcd(r, n) = 1 = gcd(s, n)}.
In this case, the natural map QS → IS is surjective with kernel {±1}.

Lemma 1.1. For any finite set S of prime ideals in OK, the sequence

0 → UK → KS → IS → C → 0

is exact. (Here UK = O×
K and C is the full ideal class group I/i(K×).)

Proof. We first show that every ideal class C is represented by an ideal in IS.
Let a = bc−1 with b and c integral ideals. For any nonzero c ∈ c, c|(c), and so
a(c) = b(c)c−1 is an integral ideal. Therefore, C will be represented by an integral
ideal a. Write a =

∏
p∈S pn(p)b where b ∈ IS. For each p ∈ S, choose a πp ∈ p \ p2,

so that ordp(πp) = 1. By the Chinese Remainder Theorem, there exists an a ∈ OK

such that
a ≡ πn(p)

p
mod pn(p)+1

for all p ∈ S. These congruences imply that ordp(a) = n(p) for all p ∈ S, and so
(a) =

∏
p∈S pn(p)b′ with b′ ∈ IS. Now a−1a ∈ IS and represents the same class as a in

C .

We have shown that IS → C is surjective. If a ∈ IS maps to zero in C , then
a = (α) for some α ∈ KS, and α is uniquely determined up to a unit.

Remark 1.2. In fact, every class in C is represented by an integral ideal a in IS:
suppose the class is represented by a ∈ IS; write a = bc−1 with b and c integral ideals
in IS, choose a nonzero c ∈ c ∩KS (exists by the Chinese remainder theorem), and
note that ca is integral.

Moduli.

Definition 1.3. A modulus for K is a function

m : {primes of K} → Z

such that

(a) m(p) ≥ 0 for all primes p, and m(p) = 0 for all but finitely many p;
(b) if p is real, then m(p) = 0 or 1;
(c) if p is complex, then m(p) = 0.

Traditionally, one writes
m =

∏
p

pm(p).

A modulus m =
∏

pm(p) is said to divide a modulus n =
∏

p pn(p) if m(p) ≤ n(p) for
all p. In particular, a prime p divides a modulus m if and only if m(p) > 0.

A modulus m can be written
m = m∞m0

where m∞ is a product of real primes and m0 is product of positive powers of prime
ideals, and hence can be identified with an ideal in OK .
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The ray class group. For a modulus m, define Km,1 to be the set of a ∈ K× such
that {

ordp(a− 1) ≥ m(p) all finite p dividing m
ap > 0 all real p dividing m.

Note that

ordp(a− 1) ≥ m(p) ⇐⇒ πm(p)|(ap − 1) ⇐⇒ a �→ 1 in (Op/p
m(p))× = (Ôp/p̂

m(p))×

where π is a prime element in the completion Kp at p. Let

S(m) = {primes dividing m}.
For any a ∈ Km,1 and prime ideal p dividing m, ordp(a− 1) > 0 = ordp(1), and so

ordp(a) = ordp((a− 1) + 1) = 0.

Therefore, for any a ∈ Km,1, the ideal i(a)
df
= (a) lies in IS(m). The quotient

Cm = IS(m)/i(Km,1)

is called the ray class group modulo m.

Example 1.4. The expression m = (2)3 · (17)2 · (19) · ∞ is a modulus for Q with
m0 = (2)3 · (17)2 · (19) and m∞ = ∞ (here ∞ denotes the unique infinite prime of Q).
Moreover, Qm,1 consists of the positive rational numbers a such that

ord2(a− 1) ≥ 3
ord17(a− 1) ≥ 2
ord19(a− 1) ≥ 1

.

The condition at 2 says that a is the quotient of two odd integers, a = b/c, and that
the image of bc−1 in (Z/8Z)× is 1. The other conditions can be expressed similarly.

Theorem 1.5. For any modulus m of K, there is an exact sequence

0 → U/Um,1 → Km/Km,1 → Cm → C → 0

and canonical isomorphisms

Km/Km,1
∼=

∏
p real
p|m

{±} × ∏
p finite

p|m

(OK/p
m(p))× ∼=

∏
p real
p|m

{±} × (OK/m0)
×,

where

Km = KS(m) = {α ∈ K× | ordp(α) = 0 for all p|m0}
U = O×

K, the group of units in K,

Um,1 = U ∩Km,1.

Therefore, Cm is a finite group of order

hm = h · (U : Um,1)
−1 · 2r0 · N(m0) ·

∏
p|m0

(1− 1

Np
)

where r0 is the number of real primes dividing m and h is the class number of K
(order of C).
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Proof. The inclusion IS(m) → I defines a homomorphism Cm → C . Consider the pair
of maps

Km,1
f−→ Km

g−→ IS(m).

According to the Lemma 1.1, the kernel and cokernel of g are U and C respectively.
The cokernel of g ◦ f is Cm (by definition) and its kernel is Km,1 ∩U = Um,1. Finally,
f is injective. Therefore, the kernel-cokernel sequence (see II.4.2) of the pair of maps
is

0 → Um,1 → U → Km/Km,1 → Cm → C → 0.

We next prove that Km is canonically isomorphic to the given groups.

Lemma 1.6. Let S be a finite set of prime ideals of K. Then any element α ∈ KS

can be written α = a/b with a, b ∈ OK ∩KS .

Proof. Because α ∈ KS, (α) = a/b with a, b integral ideals in IS. Clearly a and
b represent the same element C of the ideal class group, and according to Remark 1.2
we can choose an integral ideal c in IS to represent C−1. Now (α) = ac/bc = (a)/(b)
for some a, b ∈ OK ∩KS.

Let p be a prime dividing m. If p is real, we map α ∈ Km to the sign of αp (recall
that a real prime is an embedding K ↪→ R, and that αp denotes the image of α under
the embedding). If p is finite, i.e., it is a prime ideal in OK , then we map α ∈ Km to
[a][b]−1 ∈ (OK/p

m(p))× where a, b are as in the lemma. As a and b are relatively prime
to p, their classes [a] and [b] in OK/p

m(p) are invertible, and so this makes sense. The
weak approximation theorem (6.3) shows that the map Km → ∏{±}×∏(OK/p

m(p))×

is surjective, and its kernel is obviously Km,1.

The Chinese Remainder Theorem shows that there is an isomorphism of rings

OK/m0
∼= ∏

p|m
OK/p

m(p),

and hence an isomorphism of groups

(OK/m0)
× ∼=

∏
(OK/p

m(p))×.

This completes proof of the isomorphisms. It remains to compute the orders of the
groups. Note that OK/p

m is a local ring with maximal ideal p/pm (because its ideals
correspond to the ideals of OK containing pm), and so its units are the elements not
in p/pm. The filtration

(OK/p
m)× ⊃ (1 + p)/pm ⊃ · · · ⊃ (1 + pm−1)/pm ⊃ 0

has quotients isomorphic to

k×, k, . . . , k, k
df
= OK/p,

and so (OK/p
m)× has order (q − 1)qm−1, q = (OK : p)

df
= Np. This shows that

(Cm : 1) = (C : 1) · (Km : Km,1) · (Um : Um,1)
−1

is equal to the expression in the statement of the theorem. �
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Example 1.7. (a) If m = 1, then Cm = C .

(b) When m is the product of the real primes, Cm is the narrow class group and
there is an exact sequence

0 → U/U+ → K×/K+ → Cm → C → 1

where K+ is the group of totally positive elements (i.e., positive under all real em-
beddings) and U+ is the group of all totally positive units. Moreover, K×/K+

∼=∏
p real{±}, and so the kernel of Cm → C is the set of possible signs modulo those

arising from units.

For Q, the narrow class group is trivial. For Q[
√
d], d > 0, there are two real

primes, and U = {±εm | m ∈ Z} ≈ (Z/2Z) × Z where ε is a fundamental unit. Let
ε̄ be the complex conjugate of ε. Then hm = h or 2h according as ε and ε̄ have the
same or different signs. Note that Nm(ε) = +1 if the signs are the same and −1 if
they differ. For small values of d we have

d h ε Nm(ε)

2 1 1 +
√
2 −1

3 1 2 +
√
3 1

5 1 (1 +
√
5)/2 −1

6 1 5 + 2
√
6 1

Therefore, Q[
√
3] and Q[

√
6] have class number 1 but narrow class number 2, whereas

for Q[
√
2] and Q[

√
5] both class numbers are 1.

(c) For the field Q and the modulus (m), the sequence becomes

0 → {±1} → (Z/mZ)× → Cm → 0.

For the modulus ∞(m), the sequence becomes

0 → {±1} → {±} × (Z/mZ)× → Cm → 0.

Here −1 maps to (−, [−1]), and the subgroup (Z/mZ)× of the product maps isomor-
phically onto the quotient Cm.

The Frobenius element. Let K be a number field, and let L be a finite Galois
extension of K with group G. Let p be an ideal of K, and let P be an ideal of L
lying over it. The decomposition group D(P) (or G(P)) is defined to be

{τ ∈ G | τP = P}.
Equivalently, it is the set of elements of G that act continuously for the P-adic
topology, and so extend by continuity to an automorphism of the completion LP. In
this way we obtain an isomorphism

D(P) −→ Gal(LP/Kp).

Assume P is unramified over p. Then the action of Gal(LP/Kp) on OL induces an
isomorphism

Gal(LP/Kp) −→ Gal(l/k)
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where l and k are the residue fields. Pictorially:

P L — LP — l
f | | | D(P)

PD LD(P) — Kp — k
g | 	

p K

The group Gal(l/k) is cyclic with a canonical generator, namely, the Frobenius ele-
ment x �→ xq where q is the number of elements of k. Hence D(P) is cyclic, and the
generator of D(P) corresponding to the Frobenius element in Gal(l/k) is called the
Frobenius element (P, L/K) at P. It is the unique element σ of Gal(L/K) satisfying
the following two conditions:

(a) σ ∈ D(P), i.e., σP = P;

(b) for all α ∈ OL, σα ≡ αq mod P, where q is the number of elements the residue
field OK/p, p = P ∩K.

We now list the basic properties of (P, L/K).

1.8. Let τP be a second prime dividing p. Then D(τP) = τD(P)τ−1, and

(τP, L/K) = τ (P, L/K)τ−1.

Proof. If ρ ∈ D(P), then

τρτ−1(τP) = τρP = τP,

and so τρτ−1 ∈ D(τP). Thus τD(P)τ−1 ⊂ D(τP), and since they have the same
order, they must be equal.

Let α ∈ OL and let σ = (P, L/K); then

τστ−1(α) = τ ((τ−1α)q + a), some a ∈ P, and

τ ((τ−1α)q + a) = αq + τa ≡ αqmodτP.

As G acts transitively on the primes dividing p, this implies that

{(P, L/K) | P|p}
is a conjugacy class in G, which we denote (p, L/K). When L/K is abelian, (p, L/K)
contains a single element, and we regard it as an element of Gal(L/K) (rather than
a set consisting of a single element).

1.9. Consider a tower of fields

M Q
|
L P
|
K p

and assume that Q is unramified over p; then

(Q,M/L) = (Q,M/K)f(P/p) .
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Proof. Let k(Q) ⊃ k(P) ⊃ k(p) be the tower of residue fields. Then f(P/p)
df
=

[k(P) : k(p)], and the Frobenius element in Gal(k(Q)/k(P)) is the f(P/p)th power
of the Frobenius element in Gal(k(Q)/k(p)). The rest is straightforward.

1.10. In ( 1.9), assume that L is Galois over K; then

(Q,M/K)|L = (P, L/K).

Proof. Clearly (Q,M/K)|L satisfies the conditions characterizing (P, L/K).

Let L1 and L2 be Galois extensions of K contained in some field Ω, and let M =
L1 · L2. Then M is Galois over K, and there is an injective homomorphism

σ �→ (σ|L1, σ|L2) : Gal(M/K) → Gal(L1/K))×Gal(L2/K).

1.11. Let Q be a prime ideal of OM , and let Pi = Q∩OLi . Under the above map,

(Q,M/K) �→ (P1, L1/K) × (P2, L2/K).

Proof. Apply (1.10).

Note that p splits completely in L if and only if (P, L/K) = 1 for one (hence all)
primes P lying over it. Hence, in the situation of (1.11), p splits completely in M if
and only if it splits completely in L1 and L2.

2. Dirichlet L-Series and the Density of Primes in Arithmetic
Progressions

We begin by briefly reviewing the elementary theory of Dirichlet L-series (see, for
example, J.-P. Serre, Cours d’Arithmétique, PUP, 1970, Chapter VI).

Let m be an integer. A Dirichlet character modulo m is a homomorphism χ :
(Z/mZ)× → C×. Because (Z/mZ)× is finite, χ([n]) is a root of 1 for all n. A
Dirichlet character modulo m can be regarded as a multiplicative function on the
set of integers prime to m whose value at n depends only on n mod m. Often one
extends χ to a function on all the integers by setting χ(n) = 0 when gcd(m,n) �= 1.
The Dirichlet character modulo m that takes the value 1 for all integers prime to m
is called the principal Dirichlet character χ0.

To a Dirichlet character χ modulo m, one attaches a Dirichlet series

L(s, χ) =
∏
p-m

1

1− χ(p)p−s
=
∑
n>0

χ(n)/ns.

Both expressions converge for s a complex number with '(s) > 1—their equality is
the analytic expression of the unique factorization. Note that L(s, χ0) differs from the
Riemann zeta function ζ(s) only in that it is missing the factors 1

1−p−s for p dividing
m.

Theorem 2.1. (a) The zeta function ζ(s) extends to a meromorphic function on
the half-plane '(s) > 0, and

ζ(s) =
1

s− 1
+ ϕ(s)

where ϕ(s) is holomorphic for '(s) > 0.
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(b) If χ �= χ0, then the series for L(s, χ) converges for '(s) > 0 and L(1, χ) �= 0.

Proof. Serre, ibid. Propositions 10, 12, Théor̀eme 1.

On applying log to the equality in (a), one finds that∑
1/ps ∼ log

1

1− s
as s ↓ 1.

By this we mean that the quotient
∑
1/ps

− log(1−s) converges to 1 as s approaches 1 through

real numbers > 1. This result makes reasonable the definition that a set T of primes
has Dirichlet density δ if ∑

p∈T
1/ps ∼ δ log

1

1− s
as s ↓ 1.

Define fχ(s) =
∑
p-m χ(p)/ps. Then (2.1b) shows that, for χ �= χ0, fχ(s) is bounded

near s = 1. An elementary argument (Serre, ibid., Lemme 9) shows that, for any a
prime to m, ∑

p≡a mod m

1/ps =
1

ϕ(m)

∑
χ

χ(a)−1fχ(s),

where ϕ(m) = #(Z/mZ)× and the sum is over all Dirichlet characters modulo m.

Theorem 2.2. For any a prime to m, the primes in the arithmetic progression

. . . , a− 2m, a−m, a, a+m, a + 2m, . . .

have Dirichlet density 1/ϕ(m).

Proof. For χ �= χ0, fχ(s) remains bounded near s = 1, and so∑
p≡a mod m

1/ps ∼ 1

ϕ(m)
χ0(a)

−1fχ0(s) ∼
1

ϕ(m)
log

1

1− s
as s ↓ 1.

Corollary 2.3. For any m, the set of primes splitting in the cyclotomic field
Q[ζm] has Dirichlet density 1/ϕ(m).

Proof. A prime ideal (p) splits in Q[ζm] if and only if p ≡ 1 mod m.

We now explain how the above results generalize to arbitrary number fields. Proofs
will be given in Chapter VI.

Let K be a number field, and let m be modulus for K. A Dirichlet (or Weber)
character modulo m is a homomorphism χ : Cm → C×—again, its values are roots of
1. Alternatively, a Dirichlet character is a multiplicative function IS → C× that is
zero on i(Km,1) for some modulus m with S(m) = S. The principal Dirichlet character
modulo m is the function χ0 : Cm → C× taking only the value 1.

To a Dirichlet character χ modulo m, one attaches a Dirichlet series

L(s, χ) =
∏
p-m

1

1− χ(p)Np−s =
∑

(a,m0)=OK

χ(a)/Nas.
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The product is over the prime ideals relatively prime to m0, and the sum is over ideals
in OK relatively prime to m0. Again, both expressions converge for '(s) > 1, and
their equality is the analytic expression of the unique factorization of ideals. The
L-series L(s, χ0) differs by only a finite number of factors from the Dedekind zeta
function

ζK(s)
df
=
∏
p

1

1− χ(p)Np−s =
∑

a⊂OK

χ(a)/Nas.

Theorem 2.4. (a) The zeta function ζK(s) extends to a meromorphic function on
the half-plane '(s) > 0, and

ζK(s) ∼ 2r1(2π)r2Reg(K)

wK |∆K/Q|1/2 hK
1

s− 1
as s ↓ 1

where r1 and r2 are the numbers of real and complex primes of K respectively, Reg(K)
is the regulator of K (see Math 676), wK is the number of roots of 1 in K, ∆K/Q is
the discriminant of K/Q, and hK is the class number.

(b) If χ �= χ0, then the series for L(s, χ) converges for '(s) > 0 and L(1, χ) �= 0.

The proof of (b) uses the Existence Theorem (see 3.6).

Again, on applying log to the equality in (a), one finds that

∑
p

1/Nps ∼ log
1

1− s
as s ↓ 1,

and one says that a set T of prime ideals in T has Dirichlet density δ if∑
p∈T

1/Nps ∼ δ log
1

1− s
as s ↓ 1.

A similar argument to that in the previous case proves:

Theorem 2.5. For any ideal a relatively prime to m0, the prime ideals in OK

whose class in Cm is [a] have Dirichlet density 1/hm .

The analysis in the proofs of Theorems 2.4 and 2.5 is the same as in the case
K = Q, but the number theory is much more difficult.

3. The Main Theorems in Terms of Ideals

The Artin map. Let L/K be an abelian extension Galois group G. Recall that,
for a prime ideal p of K that is unramified in L, there is a Frobenius automorphism
σ = (p, L/K) of L uniquely determined by the following condition: for any prime
ideal P of L lying over p, σP = P, and σα ≡ αNp mod P.

For any finite set S of primes of K containing all primes that ramify in L, we have
a homomorphism

ψL/K : IS → Gal(L/K), pn1
1 · · · pnt

t �→∏
(pi, L/K)ni

called the global Artin map (or reciprocity map).
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Example 3.1. Let K = Q[
√
m] where m is a square-free integer. The set S of

finite primes ramifying in K consists of the primes dividing m if m ≡ 1 mod 4 and
the primes dividingm together with 2 otherwise. Identify Gal(K/Q) with {±1}. The
Artin map is the homomorphism determined by

p �→ (
m

p
) : IS → Gal(K/Q)

where (m
p
) is the quadratic residue symbol.

Example 3.2. Let L = Q[ζn] where n is a primitive nth root of 1. Assume that n
is odd or divisible by 4 (so that the primes ramifying in L are precisely the primes
dividing n). The map sending an integer m prime to n to the automorphism ζ �→ ζm

of L is an isomorphism Gal(L/Q)
≈−→ (Z/nZ)×. For p not dividing n, (p, L/K) = [p]

(see 0.8). If r and s are positive integers prime to n, then r/s defines a class [r/s] =
[r][s]−1 ∈ (Z/nZ)×, and the Artin map is the composite of

IS
(r/s) �→[r/s]−−−−−−→ (Z/nZ)×

[m] �→(ζ �→ζm)−−−−−−−→ Gal(L/Q).

Recall (Math 676, p63) that for any finite extension of number fields L/K, the
norm map NmL/K : IL → IK from the group of fractional ideals of L to the similar
group for K, is the unique homomorphism such that, for any prime ideal P of L,
NmL/K(P) = pf(P/p) where p = P ∩ OK. For any α ∈ L, NmL/K((α)) = (NmL/K α).

Proposition 3.3. Let L be an abelian extension of K, and let K ′ be any interme-
diate field: L ⊃ K ′ ⊃ K. Then the following diagram commutes:

ISK′
φL/K′−−−→ Gal(L/K ′)
Nm 
inclusion

ISK
φL/K−−−→ Gal(L/K).

Here S is any finite set of prime ideals of K containing all those that ramify in L,
and also the set of primes of K ′ lying over a prime in S.

Proof. Let p′ be any prime ideal of K ′ lying over a prime ideal p of K not in S.
Then NmL/K(p

′) = pf(p
′/p), and we have to show that ψL/K′(p′) = ψL/K(p

f(p′/p)), i.e.,

that (P, L/K ′) = (P, L/K)f(p
′/p) for any prime ideal P of L lying over p. But this

was proved in (1.9).

Corollary 3.4. For any abelian extension L of K,

NmL/K(I
S
L) ⊂ Ker(ψL/K : IS → Gal(L/K)).

Proof. Take K ′ = L in the above diagram.

Thus the Artin map induces a homomorphism

ψL/K : ISK/Nm(ISL) → Gal(L/K)

whenever L/K is an abelian extension. Note that IS/Nm(ISL) is still an infinite group,
and so ψL/K can not be injective.
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The main theorems of global class field theory. Let S be a finite set of
primes of K. We shall say that a homomorphism ψ : IS → G admits a modulus if
there exists a modulus m with S(m) ⊂ S such that ψ(i(Km,1)) = 0. Thus ψ admits a
modulus if and only if it factors through Cm for some m with S(m) ⊂ S.

Theorem 3.5 (Reciprocity Law). Let L be a finite abelian extension of K, and
let S be the set of primes of K ramifying in L. Then the Artin map ψ : IS →
Gal(L/K) admits a modulus m with S(m) = S, and it defines an isomorphism

I
S(m)
K /i(Km,1) · Nm(I

S(m)
L ) → Gal(L/K).

A modulus as in the statement of the theorem is called a defining modulus for L.

Note that the theorem does not imply that K has even a single nontrivial abelian
extension. Write ImK for group of S(m)-ideals in K, and ImL for the group of S(m)′-
ideals in L, where S(m)′ contains the primes of L lying over a prime in S. Call a
subgroup H of ImK a congruence subgroup modulo m if

ImK ⊃ H ⊃ i(Km,1).

Theorem 3.6 (Existence Theorem). For any congruence subgroup H modulo
m, there exists an abelian extension L/K such that H = i(Km,1) · NmL/K(I

m
L ).

Note that, for H and L as in the theorem, the Artin map ψL/K induces an isomor-
phism

IS(m)/H → Gal(L/K).

In particular, for each modulus m there is a field Lm, called the ray class field modulo
m such that the Artin map defines an isomorphism Cm → Gal(Lm/K). For a field
L ⊂ Lm, set Nm(CL,m) = i(Km,1) · Nm(ImL ) mod i(Km,1).

Corollary 3.7. Fix a modulus m. Then the map L �→ Nm(CL,m) is a bijection
from the set of abelian extensions of K contained in Lm to the set of subgroups of Cm.
Moreover,

L1 ⊂ L2 ⇐⇒ Nm(CL1,m) ⊃ Nm(CL2,m);

Nm(CL1·L2,m) = Nm(CL1,m) ∩Nm(CL2,m);

Nm(CL1∩L2,m) = Nm(CL1,m) · Nm(CL2,m).

In Section 5 below, we shall restate Theorems 3.5 and 3.6 in terms of idèles, and
in Chapter VII we prove the restated theorems.

As we discuss below, there is a rather simple analytic proof that the Artin map is
surjective. Thus the difficulty in proving the Reciprocity Law is in showing that the
Artin map admits a conductor and that

(IS(m) : i(Km,1) · Nm(I
S(m)
L ) = [L : K].

To prove the Existence Theorem we must construct a ray class field for each modulus.
Unfortunately, we don’t know how to construct the ray class field directly. Rather we
construct enough extensions to force the theorem to be true.
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Remark 3.8. Let L/K be an abelian extension with Galois group G. According
to the Reciprocity Law, there is a modulus m with support the set of primes of K
ramifying in L such that the Artin map ψL/K : IS(m) → G takes the value 1 on
i(Km,1). Consider the map in Theorem 1.5

(OK/p
m(p))× ↪→ Km/Km,1

i−→ Cm

ψL/K−−−→ G.

Clearly, there will be a smallest integer f(p) ≤ m(p) such that this map factors
through (OK/p

f(p))×. The modulus f(L/K) = m∞
∏

pf(p) is then the smallest mod-
ulus such that ψL/K factors through Cf—it is called the conductor of L/K.1 The
conductor f(L/K) is divisible exactly by the primes ramifying in L.

The subfields of the ray class field Lm containing K are those with conductor f|m.
Every abelian extension of K is contained in Lm for some m.

Example 3.9. The ray class group for the modulus m = 1 is the ideal class group,
and the corresponding ray class field is the Hilbert class field; it is the maximal abelian
extension of K that is unramified at all primes (i.e., such that each finite prime is
unramified in the usual sense, and each real prime remains real). For example, the
Hilbert class field of Q is Q itself (because Q has class number 1). The Hilbert class
field of Q[

√−5] is Q[
√−1,

√
5]—both 2 and 5 ramify in Q[

√−5], but only 2 ramifies
in Q[

√−1] and only 5 ramifies in Q[
√
5], from which it follows that the primes of

Q[
√−5] dividing 2 and 5 do not ramify Q[

√−1,
√
5].

Example 3.10. Let m be a positive integer which is odd or divisible by 4. The ray
class field for (m) is Q[ζm + ζ̄m], and the ray class field for ∞(m) is Q[ζm]. Thus the
Reciprocity Law implies the Kronecker-Weber theorem: every abelian extension of Q
has conductor dividing ∞(m) for some m, and therefore is contained in a cyclotomic
field.

Example 3.11. Let d be a square-free integer. We compute the conductor of
K = Q[

√
d] by finding the smallest integer m such that Q[

√
d] ⊂ Q[ζm].

First, consider an odd prime p. Then Gal(Q[ζp]/Q) ∼= (Z/pZ)× is cyclic of order
p − 1, and so has a unique quotient group of order 2. Therefore, Q[ζp] contains a
unique quadratic field, which because it can only be ramified at p, must equal Q[

√
p∗]

where p∗ = (−1)
p−1
2 p (the sign is chosen so that p∗ ≡ 1 mod 4).

Second, note that ζ8 = (1 + i)/
√
2, and so ζ8 + ζ̄8 =

√
2. Therefore Q[

√
2] ⊂ Q[ζ8]

(in fact, Q[
√
2] is the largest real subfield of Q[ζ8], and Q[ζ8] = Q[i,

√
2]).

Let n be the product of the odd primes dividing d (so d = ±n or ±2n). I claim
that

Q[
√
d] ⊂ Q[ζn] if d ≡ 1 mod 4,

Q[
√
d] ⊂ Q[ζ4n] if d ≡ 3 mod 4,

Q[
√
d] ⊂ Q[ζ8n] if d ≡ 2 mod 4

and that, in each case, this is the smallest cyclotomic field containing Q[
√
d]. For

example, note that d = p1 . . . pr, d ≡ 1 mod 4, implies that d = p∗1 · · · p∗r , and so

Q[
√
d] ⊂ Q[ζn]. Also note that if d is even, then Q[

√
d] is not contained in Q[ζ4n]

1Führer in German—in Germany in the 1930s, conversations in public on class field theory could
be hazardous.
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because otherwise Q[ζ4n] would contain i,
√
d,
√
d/2, and hence would contain i,

√
2,

and ζ8.

We conclude that the conductor of Q[
√
d] is |∆K/Q| or ∞|∆K/Q| depending on

whether d > 0 or d < 0—here ∆K/Q is the discriminant of K/Q.

Exercise 3.12. Compute the conductor of Q[
√
d]/Q by applying the quadratic

reciprocity law to find the smallest m such that i(Qm,1) is in the kernel of the Artin
map (cf. Exercise 0.1).

The field L corresponding to a congruence subgroup H is called the class field of
H, whence the name of the subject. Note that for a prime p of K not dividing the
conductor of L/K, the residue class degree f(P/p) for a prime lying over p is the order
of p in Im/H (because this is the order of the Frobenius element in Gal(k(P)/k(p))).
Thus we have obtained a classification of the abelian extensions of K in terms of the
ideal structure of K, and for each abelian extension we know the decomposition laws
of the primes in K.

Exercise 3.13. Verify the last row in the following table:

Discriminant −15 −20 −23 −24 −31
Class number 2 2 3 2 3
Hilbert class field X2 + 3 X2 + 1 X3 −X − 1 X2 + 3 X3 +X − 1

The first row lists the discriminants of the first five imaginary quadratic fields with
class number not equal to 1, the second row lists their class numbers, and the final
row lists the minimum polynomial of a generator of the Hilbert class field. (Note that
for a totally imaginary field, the class number and the narrow class number coincide.)

Exercise 3.14. This exercise explains what happens when we ignore a finite set
S of prime ideals of K. Let m be a modulus of K with S(m)∩S = ∅, and let H be a
subgroup of IS∪S(m) containing i(Km,1). Define an extension L of K to be an S-class
field for H if

(a) L is a finite abelian extension of K, and the prime ideals in S split completely
in L;

(b) m(p) = 0 =⇒ p does not ramify in L;
(c) the prime ideals not in S ∪ S(m) that split in L are precisely those in H.

Prove that an S-class field L exists for each group H as above, that it is unique, and
that IS∪S(m)/H ∼= Gal(L/K); moreover, every field L satisfying (a) is the S-class field
for some H.

Hint: Show IS∪S(m)/i(Km,1) ∼= IS(m)/ <S> ·i(Km,1), where <S> is the subgroup of
IS(m) generated by the primes in S.

The norm limitation theorem. In our classification of the abelian extensions
of K, we attach to L the group H = i(Km,1) ·Nm(I

S(m)
L ) for m a modulus sufficiently

large to be a defining modulus (and then (IS(m) : H) = [L : K]). One might hope
that something similar works for nonabelian extensions, but the following theorem
shows that it does not.
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Theorem 3.15 (Norm Limitation Theorem). Let L be a Galois extension of
K, and let L′/K be the maximal abelian subextension of L/K. For any defining
modulus m for L′/K,

i(Km,1) · NmL/K(I
S(m)
L ) = i(Km,1) · NmL′/K(I

S(m)
L′ ).

This indicates that, for a nonabelian extension L/K, Spl(L/K) is not described by
congruence conditions.

The principal ideal theorem. The following theorem was conjectured by Hilbert
about 1900.

Theorem 3.16. Every ideal in K becomes principal in the Hilbert class field of K.

I explain the idea of the proof. Recall that for a group G, the commutator (or
derived) subgroup G′ of G is the subgroup generated by the commutators ghg−1h−1,
g, h ∈ G. The quotient Gab = G/G′ is abelian, and it is the largest abelian quotient
of G. If L is a Galois extension of K with Galois group G, then LG

′
is an abelian

extension of K with Galois group Gab, and it is the largest abelian extension of K
contained in L.

Suppose we have fields

L ⊃ K ′ ⊃ K

with L Galois over K (not necessarily abelian). For any finite set of primes S of K,
a �→ aOK′ is a homomorphism ISK → ISK′. Consider:

ISK
ψL/K−−−→ Gal(L/K)ab
can. 
?

ISK′
ψL/K′−−−→ Gal(L/K ′)ab.

What is the map “?” making the diagram commute?

Before describing it, we need to explain a construction in group theory. Let H be
a group of finite index in a group G, and write G as a disjoint union of cosets,

G = Hg1 ∪Hg2 ∪ . . . ∪Hgn.

For g ∈ G, set ϕ(g) = gi if g ∈ Hgi, and define

V (g) =
n∏
i=1

gigϕ(gig)
−1 mod H ′

where H ′ is the commutator subgroup of H.

Proposition 3.17. The map g �→ V (g) is a homomorphism G → H/H ′, and it is
independent of the choice of the coset representatives gi.

Proof. The verification is straightforward—see, for example, M. Hall, The Theory
of Groups, Macmillan, 1959, 14.2.1.
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Thus, whenever we have a group G and a subgroup H of finite index, we have a
well-defined homomorphism

V : Gab → Hab,

called the Verlagerung (or transfer) map.

In the situation of the above diagram, Gal(L/K ′) is a subgroup of Gal(L/K), and
hence the Verlagerung is a homomorphism

V : Gal(L/K)ab → Gal(L/K ′)ab.

Emil Artin showed that this is the map making the above diagram commute (cf.
II.2.9b).

Consider the fields

K ′′ ⊃ K ′ ⊃ K

where K ′ is the Hilbert class field of K, and K ′′ is the Hilbert class field of K ′. Then

(a) K ′′ is normal over K (because any conjugate of K ′′ is again an abelian un-
ramified extension of K ′, and hence is contained in K ′′);

(b) K ′ is the maximal abelian extension of K contained in K ′′ (because every
abelian extension of K contained in K ′′ is unramified over K, and hence is
contained in K ′).

From (b) we find that Gal(K ′′/K)ab = Gal(K ′/K). Therefore, when L = K ′′, the
diagram becomes

CK
≈−−−→ Gal(K ′/K)
can. 
V

CK′
≈−−−→ Gal(K ′′/K ′),

where CK and CK′ are the class groups of K and K ′. Let G = Gal(K ′′/K) and
let H = Gal(K ′′/K ′). Because of (b), H is the commutator subgroup of G. The
next theorem (which was conjectured by Emil Artin) shows that V is zero in this
situation, and hence that the canonical map CK → CK′ is zero, i.e., that every ideal
of K becomes principal in K ′.

Theorem 3.18. Let G be a finite group, and let H be its commutator subgroup;
then

V : Gab −→ Hab

is zero.

Proof. This is a theorem in group theory. It was proved by Furtwängler in 1930.
For a simple proof, see: Witt, Proc. International Congress of Mathematicians,
Amsterdam, 1954, Vol 2, pp71–73.

Remark 3.19. It is in fact easy to see that there exists an extension L of K of
degree dividing the class number h of K such that every ideal in K becomes principal
in L: write the class group of K as a direct sum of cyclic groups; choose a generator
ai for each summand, and let hi be the order of ai in the class group; write ahi

i = (ai),
and define L to be the field obtained from K by adjoining an hith root of ai for each
i.
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However, a field constructed in this fashion will not usually be the Hilbert class
field of K—it need not even be Galois over K. There may exist fields of degree < h
over K in which every ideal in K becomes principal.

Remark 3.20. The principal ideal theorem does not, of course, imply that every
ideal in the Hilbert class field K ′ of K is principal, because not every ideal of K ′ is
in the image of the homomorphism IK → IK′. One can form the Hilbert class field
K ′′ of K ′, and so on, to obtain a tower

K ⊂ K ′ ⊂ K ′′ ⊂ · · · ⊂ K(n) ⊂ · · ·
in which K(n+1) is the Hilbert class field of K(n). Note that the same argument that
proved K ′′ is Galois over K shows that K(n) is Galois over K. The class field tower
problem (stated by Hasse in 1925) asks whether this tower is always finite, and so
terminates in a field with class number one. The answer was shown to be negative by
Golod and Shafarevich in 1964 (see Roquette’s article in Cassels and Fröhlich 1967).

For example, Q[
√−2.3.5.7.11.13] has infinite class field. In fact, Q[

√
d] has an infinite

class field tower whenever d has more than 8 prime factors.

The Chebotarev Density Theorem. Let L be a Galois extension of K with
Galois group G. Recall that, for any prime ideal p of K unramified in L,

(p, L/K)
df
= {(P, L/K) | P|p}

is a conjugacy class in G.

Theorem 3.21 (Chebotarev Density Theorem). Let L/K be a finite exten-
sion of number fields with Galois group G, and let C be a conjugacy class in G. Then
the set of prime ideals of K such that (p, L/K) = C has density #C/#G in the set
of all prime ideals of K. In particular, if G is abelian, then, for a fixed τ ∈ G, the
set of prime ideals p of K with (p, L/K) = τ has density (G : 1).

Proof. For an abelian extension L/K this follows from Theorem 2.5 and Theorem
3.5: the latter says that the map p �→ (p, L/K) induces a surjective homomorphism
Cm → Gal(L/K) for some modulus m, and the former says that the primes are
equidistributed among the classes in Cm. The nonabelian case is derived from the
abelian case by an ingenious argument—see Chapter VIII.

Corollary 3.22. If a polynomial f(X) ∈ K[X] splits into linear factors modulo
p for all but finitely prime ideals p in K, then it splits in K[X].

Proof. Apply the theorem to the splitting field of f(X).

For a finite extension L/K of number fields and a finite set S of primes of K, let
SplS(L/K) be the set of primes of K not in S that split in L.

Theorem 3.23. If L and M are Galois extensions of K, then

L ⊂ M ⇐⇒ SplS(L/K) ⊃ SplS(M/K).

Hence

L = M ⇐⇒ SplS(L/K) = SplS(M/K).
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Proof. As a consequence of (1.11),

SplS(LM/K) = SplS(L/K) ∩ SplS(M/K).

Hence
SplS(L/K) ⊃ SplS(M/K) =⇒ SplS(LM/K) = SplS(M/K),

which, by the Chebotarev density theorem, implies

[LM : K] = [M : K],

and so L ⊂ M . The reverse implication is obvious.

Remark 3.24. (a) Theorem 3.23 is not true without the Galois assumption (see
Cassels and Fröhlich 1967, p363).

(b) In the statement of Theorem 3.23, S can be replaced by any set of primes of
density 0.

(c) Let f(X) be an irreducible polynomial in K[X]. If f(X) has a root modulo p
for almost all prime ideals p, then f(X) has a root in K (ibid. p363, 6.2).

The conductor-discriminant formula. Two Dirichlet characters χ : IS → C×

and χ′ : IS
′ → C× are said to be cotrained if they agree on IS

′′
for some S ′′ ⊃ S

⋃
S ′.

This is an equivalence relation. In each equivalence class, there is a unique χ with
smallest S—such a χ is said to be primitive.

Let χ1 be the primitive character equivalent to χ. The smallest modulus m such
that χ1 is zero on Km,1 is called the conductor of f(χ) of χ. Set f(χ) = f∞(χ)f0(χ)
where f∞ and f0 are respectively divisible only by infinite primes and finite primes.

Theorem 3.25 (Führerdiskriminantenproduktformel). For any finite
abelian extension L/K of number fields with Galois group G,

disc(L/K) =
∏
χ∈G∨

f0(χ ◦ ψL/K), G∨ df
= Hom(G,C×);

f(L/K) = lcmf(χ ◦ ψL/K).

Clearly ∩Ker(χ : G → C×) = 0, from which the second statement follows. We
omit the proof of the first—it is really a statement about local fields.

Remark 3.26. Let H be the kernel of the character χ. Then f(χ) = f(LH/K). For
example, if χ is injective, then f(χ) = f(L/K).

Example 3.27. Let L = Q[
√
d]. Then G ≈ Z/2Z, and there are only two charac-

ters G → C×, one χ0 trivial and the other χ1 injective. Therefore, the theorem says
that ∆K/Q = f0(χ1) = f0(K/Q), as we showed in Example 3.11.

Example 3.28. Let L = Q[ζp], p an odd prime. Then G ∼= (Z/pZ)×, which is
cyclic of order p− 1. It therefore has p − 2 nontrivial characters. If χ is nontrivial,
then f(χ)|∞(p), but f(χ) = 1 or ∞ is impossible (because it would imply χ is trivial).
Therefore, f(χ) = (p) or ∞(p) if χ is nontrivial, and so the conductor-discriminant
formula shows (correctly) that ∆L/Q = ±pp−2.

Exercise 3.29. Verify the conductor-discriminant formula for the extension
Q[ζp2]/Q.
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Remark 3.30. Let L/K be a finite extension of number fields with Galois group
G (not necessarily abelian). To a representation ρ : G → GL(V ) of G on a finite-
dimensional vector space V , Artin attaches a Dirichlet L-series L(s, ρ) (see the intro-
duction). The analytic properties of these Artin L-series are still not fully understood.

When G is commutative, the Artin map IS → G identifies characters of G with
Dirichlet characters, and hence ArtinL-series with DirichletL-series. This was Artin’s
motivation for seeking the map (not, as seems natural today, in order to construct a
canonical isomorphism between the groups Cm and G, already known to be abstractly
isomorphic).

A part of Langlands’s philosophy is a vast generalization of this correspondence
between Dirichlet L-series and abelian Artin L-series.

The reciprocity law and power reciprocity. Assume K contains a primitive
nth root of 1, and let a ∈ K. If n

√
a is one root of Xn − a, then the remaining roots

are of the form ζ n
√
a where ζ is an nth root of 1. Therefore L

df
= K[ n

√
a] is Galois over

K, and σ n
√
a = ζ n

√
a for some nth root ζ of 1.

If p is a prime ideal of K that is relatively prime to n and a, then p is unramified
in L, and we can define an nth root (a

p
)n of 1 by the formula

(p, L/K)( n
√
a) =

(
a

p

)
n

n
√
a.

One can show that (
a

p

)
n

= 1 ⇐⇒ a is an nth power modulo p,

and so (a
p
)n generalizes the quadratic residue symbol. For this reason

(
a
p

)
n
is called

the power residue symbol. Artin’s reciprocity law implies all known reciprocity laws
for these symbols, and so, as Artin pointed out, it can be viewed as a generalization
of them to fields without roots of unity. We shall explain this in Chapter VIII.

An elementary unsolved problem. Let K be a number field, and let S be a
nonempty finite set of prime ideals of K. Does there exist for every prime number p
not divisible by any prime in S a sequence of fields . . . , Ln, Ln+1, . . . such that

(a) Ln is unramified outside the primes of S;
(b) pn|[Ln : K]?

A key case, for which the answer is unknown, is K = Q and S = {@}.
More explicitly (and slightly harder), fix a prime @ in Q. Does there exist for every

prime p �= @ a sequence of monic irreducible polynomials fn(X) ∈ Z[X] such that

(a) disc(fn(X)) is not divisible by any prime other than @;
(b) pn| deg fn(X).

See (Milne, Arithmetic Duality Theorems, Academic Press, 1986, p60/61) to find
where this problem turned up. It is certainly very difficult.
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Explicit global class field theory: Kronecker’s Jugentraum and Hilbert’s
twelfth problem. Unlike local class field theory, global class field theory does not
(in general) provide an explicit construction of the abelian extensions of a number
field K.

Gauss knew that the cyclotomic extensions of Q are abelian. Towards the end
of the 1840s Kronecker had the idea that the cyclotomic fields, and their subfields,
exhaust the abelian extensions of Q, and furthermore, that every abelian extension of
a quadratic imaginary number field E is contained in the extension given by adjoining
to E roots of 1 and certain special values of the modular function j. Many years later
he was to refer to this idea as the most cherished dream of his youth (mein liebster
Jugendtraum).

More precisely, Kronecker’s dream 2 is that every abelian extension of Q is contained
in the field obtained by adjoining to Q all values of the function e2πiz for z ∈ Q×,
and that every abelian extension of an imaginary quadratic field K is contained in
the field obtained by adjoining to K all values of the function j(z) for z ∈ K×.
Later Hilbert took this up as the twelfth of his famous problems: for any number

field K, find functions that play the same role for K that the exponential function
plays for Q and the modular function j plays for a quadratic imaginary field 3, Proc.
Symp. Pure Math. XXVIII, Part 1, AMS, 1976. The first part of Kronecker’s dream,
that every abelian extension of Q is a subfield of a cyclotomic extension, was proved
by Weber (1886, 1899, 1907, 1911) and Hilbert (1896).

The statement above of “Kronecker’s dream” is not quite correct. Let K be an
imaginary quadratic field. We can write OK = Z + Zτ with ((τ ) > 0. It is known
that K[j(τ )] is the Hilbert class field of K. Now adjoin to K all roots of unity and
all values j(τ ) with τ ∈ K, ((τ ) > 0. The resulting field K ′ is abelian over K, and
[Kab : K ′] is product of groups of order 2. To get the whole of Kab, it is necessary
to adjoin special values of other elliptic functions. These statements were partially
proved Weber (1908) and Feuter (1914), and completely proved by Takagi (1920).

From the modern point of view, special values of elliptic modular functions are
related to the arithmetic of elliptic curves with complex multiplication, and it is
results about the latter that allow one to prove that the former generate abelian
extension of a quadratic imaginary field.

Beginning with the work of Taniyama, Shimura, and Weil in the late fifties, the
theory of elliptic curves and elliptic modular curves has been generalized to higher
dimensions. In this theory, an elliptic curve with complex multiplication by an imag-
inary quadratic field is replaced by an abelian variety with complex multiplication by
a “CM-field”, that is, a quadratic totally imaginary extension K of a totally real field
F , and an elliptic modular function by an automorphic function.

Philosophically, one expects that (with the exception of Q), one can not obtain
abelian extensions of totally real fields by adjoining special values of automorphic
functions. However, it is known that, roughly speaking, one does obtain the largest
possible abelian extension of a CM-field K consistent with this restriction.

More precisely, let K be a CM-field and let F be the largest totally real subfield

2For a careful account of Kronecker’s idea and work on it, see Schappacher, N., On the history
of Hilbert’s twelfth problem, I, Paris 1900—Zürich 1932: The comedy of errors (preprint).

3See pp18-20 of Mathematical Developments arising from Hilbert’s Problems



132 V. GLOBAL CLASS FIELD THEORY: STATEMENTS

of K. Then G
df
= Gal(Qal/K) is a subgroup of index 2 in G′ df= Gal(Qal/F ), and the

corresponding Verlagerung is a homomorphism V : G′ab → Gab. In this case, V has
a very simple description.

Theorem 3.31. Let K be a CM-field, and let F be the totally real subfield of K
with [K : F ] = 2. Let H be the image of the Verlagerung map

Gal(F ab/F ) −→ Gal(Kab/K).

Then the extension of K obtained by adjoining the special values of all automorphic
functions (defined on canonical models of Shimura varieties with rational weight) is
(Kab)H · Qab.

Proof. See Wafa Wei’s thesis (Michigan 1993).

Notes. The relation between congruence groups and abelian extensions of K was
known before Artin defined his map. It emerged only slowly over roughly the period
1870–1920. The main contributors were Kronecker, Weber, Hilbert, and Takagi.
Chebotarev proved his theorem in (1926) (a less precise result had been proved much
earlier by Frobenius), and Artin defined his map and proved it gave an isomorphism
in 1927. (Earlier, it had been known that Im/H ≈ Gal(L/K), but no canonical
isomorphism was known.) The fact that analysis, in the form of Chebotarev’s (or
Frobenius’s) theorem was required to prove the main theorems, which are purely
algebraic in form, was regarded as a defect, and in 1940, after much effort, Chevalley
succeeded in giving a purely algebraic proof of the main theorems. (The difficult point
is proving that if L/K is an abelian extension of number fields of prime degree p, then
at least one prime of K does not split or ramify in L.) He also introduced idèles,
which make it possible to state class field theory directly for infinite extensions. Group
cohomology (at least 2-cocycles etc.) had been used implicitly in class field theory
from the 1920s, but it was used systematically by Nakayama, Hochschild, and Tate
in the 1950s. In 1951/52 in a very influential seminar, Artin and Tate gave a purely
algebraic and very cohomological treatment of class field theory. Since then there
have been important improvements in our understanding of local class field theory
(mainly due to Lubin and Tate). Nonabelian class field theory is a part of Langlands’s
philosophy, which is a vast interlocking series of conjectures, and some progress has
been made, especially in the local case and the function field case (Drin’feld). A
fairly satisfactory abelian class field theory for more general fields (fields of finite
transcendence degree over Q or Fp) has been created by Bloch, Kato, Saito, and
others. It uses algebraic K-theory (see W. Raskind, Abelian class field theory of
arithmetic schemes, Proc. Symp. Pure Math, AMS, Vol 58.1 (1995), 85–187).

4. Idèles

Theorems 3.5 and 3.6 show that, for any number field K, there is a canonical
isomorphism lim←− mCm → Gal(Kab/K). Rather than studying lim←− mCm directly, it
turns out to be more natural to introduce another group that has it as a quotient—
this is the idèle class group.
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Topological groups. A group G with a topology is called a topological group if
the maps

g, g′ �→ gg′ : G×G → G, g �→ g−1 : G → G

are continuous. The translation map

g �→ ag : G → G

is then a homeomorphism.

In general, to determine a topology on a set we have to give a fundamental system
of neighbourhoods of each point, i.e., a set of neighbourhoods of the point such
that every neighbourhood contains one in the set. Because the translation map is a
homeomorphism, the topology on a topological group is determined by a fundamental
system of neighbourhoods of 1.

We shall need to make use of various generalities concerning topological groups,
which can be found in many books. Fortunately, we shall only need quite elementary
things.

Let (Xi)i be a (possibly infinite) family of topological spaces. The product topology
on
∏

Xi is that for which the sets of the form
∏

Ui, Ui open in X for all i and equal to
Xi for all but finitely many i, form a basis. Tychonoff’s theorem says that a product
of compact spaces is compact. However, an infinite product of locally compact spaces
will not in general be locally compact: if Vi is a compact neighbourhood of xi in Xi

for all i, then
∏

Vi will be compact, but it will not be a neigbourhood of (xi) unless
Vi = Xi for all but finitely many i.

Idèles. We now often write v for a prime of K. Then:

| · |v = the normalized valuation for v (for which the product formula holds),

Kv = the completion of K at v,

pv = the corresponding prime ideal in OK , (when v is finite),

Ov = the ring of integers in Kv,

Uv = O×
v

p̂v = the completion of pv = maximal ideal in Ov.

Recall that, for all v, Kv is locally compact—in fact, Ov is a compact neighbourhood
of 0. Similarly K×

v is locally compact; in fact

1 + p̂v ⊃ 1 + p̂2v ⊃ 1 + p̂3 ⊃ · · ·
is a fundamental system of neighbourhoods of 1 consisting of open compact subgroups.

We want to combine all the groups K×
v into one big topological space, but

∏
K×
v

is not locally compact. Instead we define the group of idèles to be

IK = {(av) ∈
∏

K×
v | av ∈ O×

v for all but finitely many v}.
For any finite set S of primes that includes all infinite primes, let

IS =
∏
v∈S

K×
v × ∏

v/∈S
O×
v
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with the product topology. The first factor is a finite product of locally compact
spaces, and so is locally compact, and the second factor is a product of compact
spaces, and so is compact (by Tychonoff). Hence IS is locally compact. Note that

I =
⋃

IS.

We want to endow IK with a topology such that each IS is open in I and inherits the
product topology. We do this by decreeing that a basis for the open sets consists of
the sets of the form

∏
v

Uv =

{
Uv open in K×

v for all v;
Uv = O×

v for almost all v.

An intersection of two sets of this form contains a set of this form, and so they do
form a basis for a topology. It is clear that the topology does have the property we
want, and moreover that it endows I with the structure of a topological group. The
following sets form a fundamental system of neighbourhoods of 1: for each finite set
of primes S ⊃ S∞ and ε > 0, define

U(S, ε) = {(av) | |av − 1|v < ε, v ∈ S, |av|v = 1, all v /∈ S}.
4.1. There is a canonical surjective homomorphism id

(av) �→
∏

v finite

pordp(av)
v : IK → IK

whose kernel is IS∞ .

We can think of the idèles as an enlargement of the ideals: it includes factors for the
infinite primes, and it includes the units at the finite primes. Note that IK/IS∞ ≈ Z(N)
(direct sum of countably many copies of Z with the discrete topology), but that∏

K×
v /IS∞ ≈ ZN (product of countably many copies of Z, which is itself uncountable).

4.2. There is a canonical injective (diagonal) homomorphism

a �→ (a, a, a, . . . ) : K× → IK .

I claim that the image is discrete. Because we have groups, it suffices to prove that
1 ∈ K× is open in the induced topology. Let U = U(S, ε) with S any finite set
containing S∞ and 1 > ε > 0. For any a ∈ K× ∩ U ,{

|a− 1|v < ε for all v ∈ S
|a|v = 1 for all v /∈ S.

The second condition implies that

|a− 1|v ≤ max(|a|v, | − 1|v) ≤ 1.

Therefore, if a ∈ K× ∩U , then
∏
v |a− 1|v < ε#S < 1, which contradicts the product

formula unless a = 1.

The quotient C = I/K× is called the idèle class group of K. It maps onto the ideal
class group of K. It is not compact (see (4.4) below).
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4.3. There is a canonical injective homomorphism

a �→ (1, . . . , 1, a, 1, . . . 1) : K×
v −→ I

(a in the vth place). The topology induced on K×
v is its natural topology, because

U(S, ε) ∩K×
v =

{ {a | |a− 1|v < ε} v ∈ S
{a | |a|v = 1} v /∈ S

and such sets form a fundamental system of neighbourhoods of 1 in K×
v .

4.4. There is canonical surjective homomorphism

a = (av) �→ c(a) =
∏ |av|v : I → R>0.

The image of a is called the content of a. Define

I1 = Ker(c) = {a ∈ I | c(a) = 1}.
Note that, because of the product formula, K× ⊂ I1. The quotient I/K× can’t be
compact because it maps surjectively onto R>0, but one can prove that I1/K× is
compact.

Aside 4.5. Define If the same way as I, except using only the finite primes. We
call If the group of finite idèles. We have∏

v finite

O×
v ⊂ If ⊂

∏
v finite

K×
v .

The subgroup
∏O×

v is open and compact in If , and If/
∏O×

v = I (the group of ideals
of K).

Again there is a diagonal embedding of K× into If , but this time the induced

topology on K× has the following description: UK
df
= O×

K is open, and a fundamental
system of neighbourhoods of 1 is formed by the subgroups of UK of finite index
(nontrivial theorem). In particular, K× is a discrete subgroup of If ⇐⇒ UK is finite
⇐⇒ K = Q or an imaginary quadratic field.

Realizing ray class groups as quotients of I. We have seen that the class
group CK = I/i(K×) can be realized as the quotient of I. We want to show the same
for Cm.

Let m be a modulus. For p|m, set

Wm(p) =

{
R>0 p real
1 + p̂m(p) p finite.

Thus, in each case, Wm(p) is a neighbourhood of 1 in K×
p , and

Km,1 = K× ∩∏
p|m

Wm(p).
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Define

Im =

∏
p-m

K×
p
×∏

p|m
Wm(p)

⋂ I

Wm =
∏

p � m
p infinite

K×
p ×∏

p|m
Wm(p)×

∏
p � m

p finite

Up.

Thus

(ap) ∈ Im ⇐⇒ ap ∈ Wm(p) for all p|m,

(ap) ∈ Wm ⇐⇒ (ap) ∈ Im and ap is a unit for all finite p � m.

Note that Im ∩K× = Km,1 (intersection inside I).

Proposition 4.6. Let m be a modulus of K.

(a) The map id : Im → IS(m) defines an isomorphism

Im/Km,1 ·Wm

≈→ Cm.

(b) The inclusion Im ↪→ I defines an isomorphism:

Im/Km,1 → I/K×.

Proof. (a) Consider the pair of maps

Km,1 → Im
id−→ IS(m).

The first map is injective, and the second is surjective with kernel Wm, and so the
kernel-cokernel sequence (II.4.2) of the pair of maps is

Wm → Im/Km,1 → Cm → 1.

The proves (a) of the proposition.

(b) The kernel of Im → I/K× is K× ∩ Im (intersection in I) which, we just saw, is
Km,1. Hence the inclusion defines an injection

Im/Km,1 ↪→ I/K×.

For the surjectivity, we apply the weak approximation theorem (Theorem 6.3 below).
Let S = S(m) and let a = (av) ∈ I. If we choose b ∈ K to be very close to av in K×

v

for all v ∈ S, then av/b will be close to 1 in K×
v for all v ∈ S; in fact, we can choose

b so that av/b ∈ Wm(p) for all v ∈ S. For example, for a real prime v in S, we need
only choose b to have the same sign as av in Kv. Then a/b ∈ Im, and it maps to a in
I/K×.
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Characters of ideals and of idèles. Let S ⊃ S∞ be a finite set of primes of K,
and let G be a finite abelian group. A homomorphism

ψ : IS → G

is said to admit a modulus if there exists a modulus m with support in S such that
ψ(i(Km,1)) = 1. For example, for any abelian extension L/K, the Artin map

IS → Gal(L/K)

admits a modulus.

Proposition 4.7. If ψ : IS → G admits a modulus, then there exists a unique
homomorphism φ : I → G such that

(a) φ is continuous (G with the discrete topology)
(b) φ(K×) = 1;

(c) φ(a) = ψ(id(a)), all a ∈ IS df
= {a | av = 1 all v ∈ S}.

Moreover, every continuous homomorphism φ : I −→ G satisfying (b) arises from a ψ.

Proof. Because ψ is admits a modulus m, it factors through Im/i(Km,1) = Cm.
Hence we have the diagram:

Im −−−→ Cm

ψ−−−→ G$≈
Im/Km,1 −−−→ Im/Km,1Wm
≈

I −−−→ I/K×.

The isomorphisms are those in Proposition 4.6, and the remaining unnamed maps
are quotient maps. Define φ to be the composite I → G. It certainly has properties
(a) and (b), and it also has the property that

φ(a) = ψ(id(a)) for all a ∈ Im,

and so, a fortiori, it has property (c).

To prove that the map is uniquely determined by (a), (b), and (c), it suffices to
prove that ISK× is dense in I, but this follows from the weak approximation theorem
(Theorem 6.3): let a ∈ I; choose b ∈ K× to be very close to av for v ∈ S, and let a′

be the element of IS such that a′vb = av for all v /∈ S. Then a′b ∈ IS ·K and is close
to a in I.
For the converse, let φ : I → G be a continuous map. The kernel contains an open

neighbourhood of 1, and so U(S, ε) ⊂ Ker(φ) for some S and ε. Consider an infinite
prime v. The restriction of φ to K×

v is a continuous map R× → G or C× → G.
Clearly, the connected component of K×

v containing 1, namely, R>0 or C×, maps to
1, and so is in the kernel. On combining these remarks, we see that the kernel of φ
contains Wm for some m.

Now we can use the diagram at the start of the proof again. We are given a homo-
morphism φ : I/K× → G, which we can “restrict” to a homomorphism Im/Km,1 → G.
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This homomorphism is trivial on Wm, and hence factors through Im/Km,1Wm. The
homomorphism can now be transferred to Cm, and composed with I � Cm. This is
the ψ we are looking for.

Remark 4.8. Let G be a commutative topological group. Define a homomorphism
ψ : IS → G to be admissible if for every neighbourhood N of 1 in G, there exists
a modulus m such that ψ(i(Km,1)) ⊂ N . Then every admissible homomorphism
ψ defines a homomorphism φ : I → G satisfying conditions (a), (b), (c) of the
proposition. Moreover, if G is complete and has “no small subgroups” i.e., there
exists a neighbourhood of 1 containing no nontrivial subgroup, then every continuous
homomorphism φ : I → G satisfying (b) arises from an admissible ψ. The proof is
the same as that of the proposition (see Proposition 4.1 of Tate’s article in Cassels
and Fröhlich 1967).

The circle group G = {z ∈ C | |z| = 1} is complete and has no small subgroups.
The admissible ψ : IS → G, and the corresponding φ, are called Hecke characters.

Remark 4.9. Given ψ we chose an m, and then showed how to construct φ. In
practice, it is more usually more convenient to identify φ directly from knowing that
it satisifies the conditions (a), (b), (c). For this, the following observations are useful.

(a) Let a = (av) be an idèle such that av = 1 for all finite primes and av > 0 for
all real primes; then φ(a) = 1. To see this, note that the topology induced on∏
v|∞ K×

v as a subgroup of I is its natural topology. Therefore, the restriction
of φ to it is trivial on the connected component containing 1.

(b) Let a = (av) be an idèle such that av = 1 for all v ∈ S and av is a unit for all
v /∈ S; then φ(a) = 1. In fact, this follows directly from condition (c).

(c) If a is “close to 1”, φ(a) = 1. In fact, this follows directly from condition (a)
in view of the fact that G has the discrete topology.

(d) On combining (a), (b), (c), we find that if a = (av) is such that
av > 0 when v is real;
av is “close to 1” when v ∈ S is finite;
av is a unit when v /∈ S

the ψ(a) = 1. In fact, (a) and (b) say that we can multiply a with idèles of
certain types without changing the value ψ(a). Clearly, if av is close to 1 for
the finite v in S, we can multiply it by such idèles to make it close to 1.

Example 4.10. Let L = Q[ζp], and let ψ be the Artin map

IS → (Z/pZ)× → Gal(L/Q), S = {p,∞}.
Recall that first map sends the ideal (uniquely) represented by (r/s), r, s > 0,
(p, r) = 1 = (p, s), to [r][s]−1, and that the second sends [m] to the automorphism
ζ �→ ζm. Overall, for any prime number @ �= p, the map sends (@) to the Frobenius au-
tomorphism at @, ζ �→ ζ). Let φ : I → Gal(L/Q) be the homomorphism corresponding
to ψ as in the theorem. We wish to determine φ explicitly.

Let a = (a∞, a2, . . . , ap, . . . , a), . . . ) be an idèle of Q. If a∞ = 1 = ap, then
φ(a) = φ(id(a)). Thus φ(a) = ζmp where m =

∏
@ord�(a�).

Consider p = (1, . . . , 1, p, 1, . . . ) (p in the p-position). Then

p/p = (p−1, . . . , p−1, 1, p−1, . . . ).
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According to (d) of the above Remark, φ(p/p) = 1, and so

φ(p) = φ(p/p)φ(p) = 1.

In this, p denotes both the element p ∈ Qp and the principal idèle (p, p, . . . ).

Now consider a = (1, . . . , 1, u, 1, . . . ), u ∈ Z×
p , u in the p-position. Write

u−1 = a0 + a1p+ · · · + asp
s + · · · , 0 ≤ ai < p, ai ∈ Z,

and let c = a0 + · · · + asp
s ∈ Z. Then uc ∈ 1 + ps+1Zp, i.e., for large s it is “close to

1”. Write

ac = (c, c, . . . , c,
)|c
1 , c, . . . ,

p
u c, c, . . . )(1, . . . , 1,

)|c
c , 1, . . . ).

The first factor is ac except that we have moved the components at the primes @
dividing c to the second factor. For large s, φ(first factor) = 1 by (d) of the above
remark. The second factor lies in IS , and the description we have of φ|IS shows that
φ(second factor) maps ζ to ζc. In conclusion,

φ(a)(ζ) = ζc = ζu
−1

.

Because φ is a homomorphism, this completes the explicit description of it.

Remark 4.11. The map πm : I → Cm is the unique continuous homomorphism
such that

(a) πm(K
×) = 1;

(b) πm(a) = id(a) for all a ∈ IS(m).

If m|m′, then the composite of πm′ with the canonical homomorphism Cm′ → Cm satis-
fies the conditions characterizing πm. Therefore, the πm combine to give a continuous
homomorphism π : I → lim←−Cm. We wish to determine the kernel and image of this
map.

Because each map πm : I → Cm is onto, the image is dense. In fact, I1 → Cm is
onto, and so πm(I1) is dense. But πm(I1) is compact, because πm factors through the
compact group I1/K×, and therefore is complete. This shows that π is onto.

Let I+∞ be the set of idèles a such that av = 1 if v is finite and av > 0 if v is real.
Thus I+∞ is isomorphic to the identity component of (K ⊗Q R)× =

∏
v|∞ K×

v . The
kernel of I → lim←−Cm contains I+∞ ·K×, and hence its closure. In fact, it equals it.

Norms of idèles. Let L be a finite extension of the number field K, let v be a
prime of K. Recall from (Math 676, 8.2) that there is a canonical isomorphism

L ⊗K Kv →
∏
w|v

Lw.

It follows (ibid. 8.3) that for any α ∈ L,

NmL/K α =
∏
w|v

NmLw/Kv α (equality in Kv).

For an idèle a = (aw) ∈ IL, define NmL/K(a) to be the idèle b ∈ IK with
bv =

∏
w|vNmLw/Kv aw. The preceding remark shows that the left hand square in
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the following diagram commutes, and it is easy to see that the right hand square
commutes:

L× −−−→ IL
id−−−→ IL
NmL/K


NmL/K


NmL/K

K× −−−→ IK
id−−−→ IK.

Thus we get a commutative diagram:

CL −−−→ CL
NmL/K


NmL/K

CK −−−→ CK

(CK = idèle class group I/K×; CK =ideal class group I/i(K×)).

Proposition 4.12. If L/K is a finite extension of local fields of characteristic
zero, then

(a) NmL/K(L
×) = R>0 (case K = R, L = C);

(b) NmL/K(L
×) ⊃ 1 + pmK for some m (case K is nonarchimedean);

(c) NmL/K(L
×) ⊃ O×

K (case K is nonarchimedean and L/K is unramified).

Proof. Statement (a) is obvious. For (b), see (I.1.9), and for (c), see III.2.2.

Corollary 4.13. Let L/K be a finite extension of number fields. Then
NmL/K IL ⊃ Wm for some modulus m.

5. The Main Theorms in Terms of Idèles

The statement of the main theorems of class field theory in terms of ideals is
very explicit and, for many purposes, it is the most useful one. However, it has
some disadvantages. One has to fix a modulus m, and then the theory describes
only the abelian extensions whose conductor divides m. In particular, it provides
no description of the infinite abelian extensions of K. The statement of the main
theorems in terms of idèles allows one to consider infinite abelian extensions, or,
what amounts to the same thing, all finite abelian extensions simultaneously. It also
makes transparent the relation between the local and global Artin maps.

Let L be a finite abelian extension of K. Let v be a prime of K, and let w be
a prime of L lying over v. Recall that the decomposition group D(w) of w is the
subgroup

D(w) = {σ ∈ Gal(L/K) | σw = w}.
Its elements extend uniquely to automorphisms of Lw/Kv , and D(w) ∼= Gal(Lw/Kv).
Local class field theory provides us with a homomorphism (the local Artin map)

φv : Kv → D(w) ⊂ G.

Lemma 5.1. The subgroup D(w) of G and the map φv are independent of the choice
of the prime w|v.
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Proof. Any other prime lying over v is of the form σw for some σ ∈ G, and
σ : L → L extends by continuity to a homomorphism σ : Lw → Lσw fixing Kv. We
have

D(σw) = σD(w)σ−1,
which equals D(w) because G is commutative.

Let Ω and Ω′ be maximal abelian extensions of Kv containing Lw and Lσw respec-
tively. From Chapter III, we obtain local Artin maps φv : K× → Gal(Ω/Kv) and
φ′
v : K× → Gal(Ω′/Kv). The choice of an isomorphism σ̃ : Ω → Ω′ determines an

isomorphism
ρ �→ σ̃ ◦ ρ ◦ σ̃−1 : Gal(Ω/Kv) → Gal(Ω′/Kv)

which is independent of σ̃. Moreover, its composite with φv is φ
′
v (because it satisfies

the conditions characterizing φ′
v).

Proposition 5.2. There exists a unique continuous homomorphism φK : I →
Gal(Kab/K) with the following property: for any L ⊂ Kab finite over K and any
prime w of L lying over a prime v of K, the diagram

Kv
φv−→ Gal(Lw/Kv)

↓ ↓

IK
a �→φK(a)|L−−−−−−→ Gal(L/K)

commutes.

Proof. Let a ∈ I, and let L ⊂ Kab be finite over K. If av ∈ Uv and Lw/Kv is
unramified, the φv(av) = 1 (see III.1). Therefore, φv(av) = 1 except for finitely many
v’s, and so we can define

φL/K(a) =
∏
v

φv(av).

(product inside Gal(L/K)). Clearly, φL/K is the unique homomorphism making the
above diagram commute.

If L′ ⊃ L, then the properties of the local Artin maps show that φL′/K(a)|L =
φL/K(a). Therefore there exists a unique homomorphism φ : I → Gal(Kab/K) such
that φ(a)|L = φL/K(a) for all L ⊂ Kab, L finite over K.

Again, the properties of the local Artin maps show that, for any fields K ⊂ K ′ ⊂
L ⊂ Kab with L finite over K,

ISK′
φL/K′−−−→ Gal(L/K ′)
Nm 
inclusion

ISK
φL/K−−−→ Gal(L/K)

commutes. On taking K ′ = L, we find that NmL/K(IL) is contained in the kernel of
φL/K . In particular, the kernel of φL/K contains an open subgroup of IL (Corollary
4.13), and this implies that φK is continuous.

Theorem 5.3 (Reciprocity Law). The homomorphism
φK : IK → Gal(Kab/K) has the following properties:
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(a) φK(K
×) = 1;

(b) for every finite abelian extension L of K, φK defines an isomorphism

φL/K : IK/(K× · Nm(IL)) → Gal(L/K).

We saw in the proof of the proposition that φL/K(Nm(IL)) = 1, and so (assuming
(a) of the theorem) we see that φL/K does factor through IK/K× · Nm(IL). Part (b)
can also be stated as: φ defines an isomorphism

φL/K : CK/Nm(CL) → Gal(L/K).

Example 5.4. Statement (a) of the theorem says that, for any b ∈ K×,
∏

φv(b) =

1. On applying this to the extension K[a
1
n ]/K under the assumption that K contains

a primitive nth root of 1, one obtains the product formula for the Hilbert symbol:∏
v

(a, b)v = 1.

See (III.4.3).

Theorem 5.5 (Existence Theorem). Fix an algebraic closure Kal of K; for
every open subgroup N ⊂ CK of finite index, there exists a unique abelian extension
L of K contained in Kal such that NmL/K CL = N .

The subgroups N open and of finite index in CK are called the norm groups, and
the abelian extension L of K such that Nm(CL) = N , i.e., such that N = Ker(φL/K),
is called the class field of K belonging to N .

As stated, the Existence Theorem is valid for all global fields. In the number field
case, all subgroups of finite index in CK are open.

Corollary 5.6. The map L �→ Nm(CL) is a bijection from the set of finite abelian
extensions of K to the set of open subgroups of finite index in CK. Moreover,

L1 ⊂ L2 ⇐⇒ Nm(CL1) ⊃ Nm(CL2);
Nm(CL1·L2) = Nm(CL1) ∩Nm(CL2);
Nm(CL1∩L2) = Nm(CL1) · Nm(CL2).

Remark 5.7. (a) In the number field case, the map

φK : IK → Gal(Kab/K).

is surjective. For an infinite prime v of K, write K+
v for the connected component of

K×
v containing 1; thus K+

v ≈ C× or R>0 according as v is complex or real. Clearly∏
v|∞ K+

v ⊂ Ker(φK). By definition K× ⊂ Ker(φK), and so K× · (∏v|∞ K+
v ) ⊂

Ker(φK). But φK is a continuous homomorphism and Gal(Kab/K) is Hausdorff,
and so the kernel is a closed subgroup. Thus Ker(φK) contains the closure of K× ·
(
∏
v|∞ K+

v ). It is a theorem that this is precisely the kernel. The image of the closure
of K× · (∏v|∞ K+

v ) in CK is the connected component of CK containing 1.

(b) In the function field case, the Artin map φK : IK/K× → Gal(Kab/K) is
injective, but it is not surjective (its image is dense).
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Remark 5.8. Assume that the global Artin map φ : I → Gal(Kab/K) contains
K× in its kernel. Then, for every finite abelian extension L/K, φL/K : I → Gal(L/K)
arises (as in Proposition 4.7) from a homomorphism ψ : IS → Gal(L/K) admitting
a modulus. Moreover, because φ is the product of the local Artin maps, ψ must
be the ideal-theoretic global Artin map (which therefore admits a modulus). It is a
straightforward exercise to derive Theorems 3.5 and 3.6 from their idèlic counterparts,
Theorems 5.3 and 5.5. We shall prove Theorems 5.3 and 5.5 in Chapter VII.

Example.

Lemma 5.9. The map

(r, t, (up)) �→ (rt, ru2, ru3, ru5, . . . ) : Q× × R>0 ×
∏

Z×
p −→ IQ

is an isomorphism of topological groups (Q× with the discrete topology).

Proof. Any idèle a = (a∞, a2, . . . , ap, . . . ) can be written

a = a(t, u2, u3, u5, . . . ), a ∈ Q×, t ∈ R>0, up ∈ Z×
p ;

—take a = (sign(a∞))
∏

pordp(ap), t = a∞/a, up = ap/a. Moreover, the expression is
unique because the only positive rational number that is a p-adic unit for all p is 1.

The subsets

{1} × U × ∏
p finite

Up

with U,Up open neighbourhoods of 1 in R×,Q×
p , and U×

p = Z×
p for all but finitely

many p’s, form a fundamental system of neighbourhoods 1 on the left, and also on
the right.

Thus there is a canonical isomorphism of topological groups

CQ → R>0 ×
∏

p finite

Z×
p = R>0 × Ẑ×.

Let

Qcyc =
⋃

Q[ζn].

In this case, the global reciprocity map is

φ : IQ → Ẑ× → Gal(Qcyc/Q)

where IQ → Ẑ× is the above projection map, and Ẑ× → Gal(Qcyc/Q) is the canonical
isomorphism (see I.5.5c).

Exercise 5.10. Show that every subgroup of finite index in CK is open (K a
number field).

Hint: Use that every subgroup of K×
v of finite index is open.



144 V. GLOBAL CLASS FIELD THEORY: STATEMENTS

6. Appendix: Review of some Algebraic Number Theory

The weak approximation theorem. The theorem in this subsection should
have been proved in Math 676. Recall that a valuation on a field K is homomorphism
a �→ |a| : K× → R>0 such that |a + b| ≤ |a| + |b| for all a, b ∈ K×. We extend it to
K by setting |0| = 0. A valuation is trivial if |a| = 1 for all a �= 0. Two nontrivial
valuations | · |1 and | · |2 are equivalent if |a|1 < 1 implies |a|2 < 1, in which case
| · |2 = | · |r1 for some r ∈ R>0 (Math 676, 7.8). The statements in this section continue
to hold if we replace “valuation” with “positive power of a valuation” (which, in the
archimedean case, may fail to satisfy the triangle rule).

Lemma 6.1. If | · |1, | · |2, . . . , | · |n are nontrivial inequivalent valuations of K, then
there is an element a ∈ K such that{ |a|1 > 1

|a|i < 1, i �= 1.

Proof. First let n = 2. Because | |1 and | |2 are inequivalent, there are elements
b and c such that {

|b|1 < 1, |b|2 ≥ 1
|c|1 ≥ 1, |c|2 < 1.

Now a = c
b
has the required properties.

We proceed by induction assuming that the lemma is true for n − 1 valuations.
There exist elements b, c such that{

|b|1 > 1, |b|i < 1, i = 2, 3, . . . , n− 1
|c|1 < 1, |c|n > 1

If |b|n ≤ 1, then a = cbr works for sufficiently large r. If |b|n > 1, then ar =
cbr

1+br

works for sufficiently large r, because br

1+br
converges to 0 or 1 according as |b| < 1 or

|b| > 1.

Lemma 6.2. In the situation of the last lemma, there exists an element of K that
is close to 1 for | · |1 and close to 0 for | · |i, i = 2, . . . n.

Proof. Choose a as in (6.1), and consider ar =
ar

1+ar . Then

|ar − 1|1 = 1

|1 + ar|1 ≤ 1

|a|r1 − 1
→ 0

as r → ∞. For i ≥ 2,

|ar|i = |a|ri
|1 + a|ri

≤ |a|ri
1− |a|ri

→ 0

as r → 0.

Theorem 6.3. Let | · |1, | · |2, . . . , | · |n be nontrivial inequivalent valuations of a
field K, and let a1, . . . , an be elements of K. For any ε > 0, there is an element
a ∈ K such that |a− ai|i < ε for all i.
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Proof. Choose bi, i = 1, . . . , n, close to 1 for | |i and close to 0 for | |j, j �= i.
Then

a = a1b1 + · · ·+ anbn

works.

Let Ki be the completion of K for | · |i. The statement of the theorem also holds
with ai in Ki (rather than K)—choose a′i ∈ K very close to ai and a ∈ K very close
to each a′i. Thus K (embedded diagonally) is dense in

∏
Ki.

The theorem shows that there can be no finite product formula. More precisely:

Corollary 6.4. Let | · |1, | · |2, . . . , | · |n be nontrivial inequivalent valuations on
a field K. If

|a|r11 · · · |a|rnn = 1, ri ∈ R,

for all a ∈ K×, then ri = 0 for all i.

Proof. If any ri �= 0, an a for which |a|i is sufficiently large and the |a|j, j �= i,
are sufficiently small provides a contradiction.

The reader should compare the Weak Approximation Theorem with what the Chi-
nese Remainder Theorem gives.

Exercise 6.5. Let | · |1, . . . , | · |n be the valuations on a number field K corre-
sponding to distinct prime ideals pi, and let a1, . . . , an be elements of K. Let d be a
common denominator for the ai (so that dai ∈ OK). Show that, for any ε > 0, there
is an element a ∈ K such that |a − ai|i < ε for i = 1, . . . , n and |a| ≤ 1/|d| for all
valuations | · | corresponding to prime ideals other than the pi.

Hint: Apply the Chinese Remainder Theorem to the dai.

Notes: TheWeak Approximation Theorem first occurs in: Artin, E., and Whaples,
G., Axiomatic characterization of fields by the product formula for valuations, Bull.
AMS, 51, 1945, pp. 469–492. Our account follows the original.

The decomposition of primes. Recall the following theorems from Math 676.

Theorem 6.6. Let A be a Dedekind domain with field of fractions K, and let L be
a finite separable extension of K of degree n. Let B be the integral closure of A in K.

(a) Let p be a prime ideal of A and write

pB =
g∏
i=1

Pe
i , fi

df
= [B/Pi : A/pi].

Then
g∑
i=1

eifi = n.

If L is Galois over K, then Gal(L/K) acts transitively on the Pi, and the
numbers ei, fi are independent of i: n = efg.

(b) A prime p ramifies in L (i.e., at least one of the ei is > 1) if and only if
p| disc(B/A).
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Note that, for a Galois extension, except for the finitely many primes that ramify,
the type of the decomposition of pB into prime factors is described by the single
number f .

Theorem 6.7. Let K and A be as in the preceding theorem, and let f(X) be a
monic polynomial in A[X]. Let L = K[α] with α a root of f(X), and let B be the
integral closure of A in L. The following conditions on p are equivalent:

(a) p does not divide disc(f(X));
(b) p does not ramify in B and Ap[α] is the integral closure of Ap in L (here

Ap = {a/b | b /∈ p});
(c) there is a factorization

f(X) ≡ f1(X) · · · fg(X) mod p

with the fi distinct, monic, and irreducible modulo p.

When these conditions hold, the factorization of p into prime ideals in L is

pB = (p, f1(α)) · · · (p, fg(α)).
Thus class field theory is really about polynomials in one variable with coefficients

in a number field and their roots: abelian extensions of K correspond to monic
irreducible polynomials f(X) ∈ K[X] such that the permutations of the roots of
f(X) that give a field automorphism form an abelian group; Theorem 6.7 shows that
the factorization of all but finitely many prime ideals of K in an abelian extension L
corresponds to the factorization of a polynomial over a finite field.



CHAPTER VI

L-Series and the Density of Primes

Euler used the Riemann zeta function in rudimentary form to prove that there are
infinitely many prime numbers. In order to prove that the primes are equally dis-
tributed among the different arithmetic progressions modulo m, Dirichlet attached
L-series (regarded as functions of a real variable) to a character of (Z/mZ)×. Rie-
mann initiated the study of the Riemann zeta function as a function of a complex
variable. In this section, we shall (following Weber) extend Dirichlet methods to the
study of the distribution of the prime ideals among the classes in a ray class group.
Except for the definition of the ray class group, this chapter is independent of the
preceding chapters.

In this chapter, we shall need to use a little complex analysis. Recall that the power
series 1 + z + z2

2!
+ · · · converges for all z ∈ C to a holomorphic function, which is

denoted ez. For any positive real number n and complex number z, nz is defined to
be e(logn)z where log is the natural log (function R>0 → R inverse to er).

1. Dirichlet series and Euler products

A Dirichlet series is a series of the form

f(s) =
∑
n≥1

a(n)

ns
a(n) ∈ C, s = σ + it ∈ C.

An Euler product belonging to a number field K is a product of the form

g(s) =
∏
p

1

(1− θ1(p)Np−s) · · · (1− θd(p)Np−s)
, θi(p) ∈ C, s ∈ C,

in which p runs over all but finitely many of the prime ideals of OK.

Example 1.1. (a) The Riemann zeta function is

ζ(s) =
∑
n≥1

1

ns
=
∏
p

1

1− p−s
.

It is known that the behaviour of ζ(s), especially in the critical strip 0 ≤ '(s) ≤ 1,
is related to the distribution of the prime numbers.

(b) The Dedekind zeta function. For any number field K,

ζK(s) =
∑
a≥0

1

Nas
=
∏
p

1

1− Np−s .

147
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Here Na = (OK : a). The sum is over the integral ideals in OK , and the product is
over the prime ideals in OK .

(c) A Dirichlet character is1 a homomorphism

χ : Im −→ C×

whose kernel contains i(Km,1) for some modulus m, i.e., χ is a character of the ray
class group Cm. For such a character, the corresponding Dirichlet L-series is

L(s, χ) =
∑

a⊂OK , (m,a)=1

χ(a)

Nas
=

∏
(m,p)=1

1

1− χ(p)Np−s .

(d) A Hecke character (or Grössen character) is a continuous homomorphism

ψ : IK/K× −→ C×

with image in the unit circle. If it is 1 on the identity components of IK at the
infinite primes, then it factors through Cm for some m, and is a Dirichlet character;
conversely, a Dirichlet character defines a Hecke character with discrete image. A
Hecke character will take the value 1 on some set

∏
v/∈S Uv (S a finite set of primes

containing the infinite primes), and the corresponding Hecke L-series is

LS(s, ψ) =
∏
v/∈S

1

1− ψ(πv)Np−s
v

where πv is an idèle with a prime element in the v-position and 1 elsewhere.

(e) Let L be a finite Galois extension of K with Galois group G. Let V be a finite
dimensional vector space over C and let

ρ : G → GL(V )

be a homomorphism of G into the group of linear automorphisms of V . We refer to
ρ as a (finite-dimensional) representation of G. The trace of ρ is the map sending σ
to the trace of the automorphism ρ(σ) of V . For σ ∈ G, let

Pσ(T )
df
= det(1− ρ(σ)T | V ) =

dimV∏
i=1

(1− ai(σ)T ), ai ∈ C,

be the characteristic polynomial of ρ(σ). Because Pσ(T ) depends only on the conju-
gacy class of σ, for any prime p of K unramified in L, we can define Pp(T ) to be the
characteristic polynomial of (P, L/K) for any prime P of L dividing p. The Artin
L-series attached to ρ is

L(s, ρ) =
∏
p

1

Pp(Np−s)
=
∏
p

1

(1− a1(p)Np−s) · · · (1− adimV (p)Np−s)

(product over all unramified primes of K; ai(p) = ai((P, L/K))).

1In the case K = Q and m = ∞(m), so that Cm = (Z/mZ)×, these characters and L-series
were introduced by Dirichlet. For arbitary ray class groups, they were introduced by Weber. Some
authors restrict the terms “Dirichlet character” and “Dirichlet L-series” to the case Q and refer to
the more general objects as “Weber characters” and “Weber L-series”. Dirichlet used L to denote
his L-functions, and the letter has been used ever since.
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2. Convergence Results

We study the elementary analytic properties of Dirichlet series and Euler products.

Dirichlet series.

Proposition 2.1. Let

f(s) =
∑
n≥1

a(n)

ns
.

Write S(x) =
∑
n≤x a(n), and suppose there exist positive constants a and b such that

|S(x)| ≤ axb for all large x. Then the series f(s) converges uniformly for s in

D(b, δ, ε) = {'(s) ≥ b+ δ, | arg(s− b)| ≤ π

2
− ε}

for all δ, ε > 0, and it converges to an analytic function on the half plane '(s) > b.

Proof. Since every point s with '(s) > b has a neighbourhood of the form
D(b, δ, ε), the second part of the statement follows from the first. To prove the
first, we use Cauchy’s criterion for uniform convergence. For large integers n1 < n2,∣∣∣∣∣

n2∑
n=n1

a(n)

ns

∣∣∣∣∣ =

∣∣∣∣∣
n2∑
n1

s(n)− s(n− 1)

ns

∣∣∣∣∣
=

∣∣∣∣∣∣
n2∑
n1

s(n)

ns
−
n2−1∑
n1−1

s(n)

(n+ 1)s

∣∣∣∣∣∣
=

∣∣∣∣∣s(n2)ns2
− s(n1 − 1)

ns1
+
n2−1∑
n1

s(n)

(
1

ns
− 1

(n+ 1)s

)∣∣∣∣∣
≤ |s(n2)|

nσ2
+

|s(n1 − 1)|
nσ1

+
n2−1∑
n1

|s(n)|
∣∣∣∣∣s
∫ n+1
n

dt

ts+1

∣∣∣∣∣
≤ a

nσ−b2

+
a

nσ−b1

+
n2−1∑
n1

|s|anb
∣∣∣∣∣
∫ n+1
n

dt

ts+1

∣∣∣∣∣
≤ 2a

nσ−b1

+
n2−1∑
n1

|s|a
∣∣∣∣∣
∫ n+1
n

tbdt

ts+1

∣∣∣∣∣
≤ 2a

nσ−b1

+ |s|a
∫ ∞

n1

dt

tσ+1−b

≤ 2a

nσ−b1

− |s|a
σ − b

1

tσ−b

∣∣∣∣∣
∞

n1

≤ 2a

nσ−b1

+
|s|a

(σ − b)nσ−b1

.

But for s ∈ D(b, δ, ε),

|s|
σ − b

=
|s− b+ b|

σ − b
≤ |s− b|

σ − b
+

b

σ − b
=

1

cos θ
+

b

σ − b
≤ 1

cos θ
+

b

δ
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with θ = arg(s − b). Now because |θ| ≤ π
2
− ε, 1

cos θ
is bounded by some number M ,

and so ∣∣∣∣∣
n2∑
n=n1

a(n)

ns

∣∣∣∣∣ ≤ 2a

nσ−b1

+
(M + b

δ
)a

nσ−b1

.

The right hand side of this equation tends to zero as n1 → ∞, and so we can apply
Cauchy’s criterion to deduce the uniform convergence of f(s).

Remark 2.2. (a) For the Dirichlet series ζ(s), S(x) is [x], and so the series of ζ(s)
converges for '(s) > 1. For ζK(s), S(x) is the number of integral ideals in K with
numerical norm ≤ x. It is obvious that S(x) is finite, but in fact (see 2.8) S(x) ≤ Cx.
Therefore the series for ζK (and for L(s, χ)) converge for '(s) > 1. (It is also possible
to show directly that the Euler products converge for '(s) > 1, which implies that
the Dirichlet series converge. See Fröhlich and Taylor, Algebraic Number Theory,
CUP, 1991, VIII.2.2.)

(b) Let f(s) =
∑ a(n)

ns be a Dirichlet series with a(n) ≥ 0. If f(s) converges for
all s with '(s) > b, but does not converge on the half-plane {s | '(s) > b − ε} for
any ε > 0, then f(s) → ∞ as s → 1 through real numbers > 1. i.e., the domain of
convergence of f(s) is limited by a singularity of f situated on the real axis. (See
Serre, Cours..., 1970, III.2.3.) For example, the series for ζ(s) does not converge on
any half-plane '(s) > 1 − ε, ε > 0, and, as we shall see, ζ(s) does have a pole at
s = 1.

Lemma 2.3. The zeta function ζ(s) has an analytic continuation to a meromorphic
function on '(s) > 0 with its only (possible) pole at s = 1.

Proof. Define

ζ2(s) = 1− 1

2s
+

1

3s
− 1

4s
+ · · ·

For this Dirichlet series, S(x) = 0 or 1, and so ζ2(s) is analytic for s > 0. Note that

(1 +
1

2s
+

1

3s
+

1

4s
+ · · · )− 2(

1

2s
+

1

4s
+

1

6s
+ · · · ) = 1− 1

2s
+

1

3s
− 1

4s
+ · · · ,

that is,

ζ(s)− 2

2s
ζ(s) = ζ2(s),

or

ζ(s) =
ζ2(s)

1− 21−s
.

Thus ζ(s) is analytic for '(s) > 0 except possibly for poles where 2s−1 = 1. But

2s−1 = 1 ⇐⇒ e(log2)(s−1) = 1 ⇐⇒ (log 2)(s− 1) = 2kπi,

and so ζ(s) is analytic except possibly at

s = 1 +
2kπi

log 2
, k ∈ Z.

In fact, the only possible pole is s = 1. To see this, define

ζ3(s) = 1 +
1

2s
− 2

3s
+

1

4s
+

1

5s
− 2

6s
+ · · ·
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and observe (as for ζ2(s)) that ζ3(s) is analytic for s > 0, and

ζ(s) =
ζ3(s)

1− 31−s
.

Hence ζ(s) is analytic for s > 0, except possibly for poles at

s = 1 +
2kπi

log 3
.

Thus, at a pole for ζ(s), we must have

2kπi

log 2
=

2k′πi
log 3

,

or
2k

′
= 3k, k, k′ ∈ Z.

Because of unique factorization, this is possible only if k = 0 = k′.

Lemma 2.4. For s real and s > 1,

1

s− 1
≤ ζ(s) ≤ 1 +

1

s− 1
.

Hence ζ(s) has a simple pole at s = 1 with residue 1, i.e.,

ζ(s) =
1

s− 1
+ function holomorphic near 1.

Proof. Fix an s > 1, s real. By examining the graph of y = x−s, one finds that∫ ∞

1
x−sdx ≤ ζ(s) ≤ 1 +

∫ ∞

1
x−sdx.

But ∫ ∞

1
x−sdx =

x1−s

1− s

∣∣∣∣∣
∞

1

=
1

s− 1
,

which gives the inequalities. Because ζ(s) is meromorphic near s = 1,

ζ(s) =
c

(s− 1)m
+

g(s)

(s− 1)m−1

near s = 1 for some m ∈ N, c ∈ C, and g(s) holomorphic near s = 1. The inequalities
imply that m = 1 and c = 1.

Proposition 2.5. Let f(s) be a Dirichlet series for which there exist real constants
C and b, b < 1, such that

|S(n)− a0n| ≤ Cnb.

Then f(s) extends to a meromorphic function on '(s) > b with a simple pole at s = 1
with residue a0, i.e., near s = 1

f(s) =
a0

s− 1
+ holomorphic function

near s = 1.

Proof. For the Dirichlet series f(s)−a0ζ(s), we have |S(n)| ≤ Cnb, and therefore
f(s)− a0ζ(s) converges for '(s) > b.
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Euler products. Recall that an infinite product
∏∞
n=1 1 + bn, bn ∈ C, bn �= −1, is

said to converge if the sequence of partial products

Πm =
m∏
n=1

1 + bn

converges to a nonzero value. Moreover, the product is said to converge absolutely if∏∞
n=1 1+ |bn| converges. It is a standard fact that

∏∞
n=1 1+bn converges if it converges

absolutely, in which case, any reordering of the product converges (absolutely) to the
same value.

Lemma 2.6. The product
∏∞
1 1 + bn converges absolutely if and only if the series∑

bn converges absolutely.

Proof. We may suppose that bn ≥ 0 for all n. Then both Πm =df
∏m
1 1 + bn and

Σm =df
∑m
1 bn are monotonically increasing sequences. Since Πm ≥ Σm, it is clear

that Σm converges if Πm does. For the converse, note that

eΣm =
m∏
i=1

ebi ≥
m∏
i=1

(1 + bi) = Πm

and so, if the sequence Σm converges, then the sequence Πm is bounded above, and
therefore also converges.

Recall that a product of finite sums, say,

(
l∑
i=1

ai)(
m∑
i=1

bi)(
n∑
i=1

ci)

is a sum ∑
1≤i≤l
1≤j≤m
1≤k≤n

aibjck

of products, each of which contains exactly one term from each sum. Also that

1

1− t
= 1 + t+ t2 + · · · , |t| < 1.

Hence (formally at least),

∏
p

1

1− p−s
= (1 + 2−s + (22)−s + · · · )(1 + 3−s + (32)−s + · · · )(1 + 5−s + (52)−s + · · · ) · · ·

=
∑

n−s

because each positive integer can be written as a product of powers of primes in
exactly one way. This identity is sometimes referred to as the analytic form of unique
factorization. We now prove a more general result.

Proposition 2.7. Let χ be a Dirichlet character of a number field K. For all s
with '(s) > 1, the Euler product

∏
p-m

1
1−χ(p)Np−s converges to L(s, χ).
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Proof. For '(s) > 1,

1

1− χ(p)Np−s = 1 +
χ(p)

Nps
+

χ(p2)

(Np2)s
+ · · ·

Now ∏
(p,m)=1
Np≤t0

1

1− χ(p)Np−s =
∑ χ(a)

N(a)−s

where the second sum runs over all integral ideals expressible as a product of prime ide-
als with numerical norm ≤ t0. As t0 → ∞, the right hand side converges (absolutely)
to L(s, χ). Therefore the infinite product converges, and its value is L(s, χ).

Partial zeta functions; the residue formula. Let K be a number field, let m

be a modulus. For any class k in Cm

df
= Im/i(Km,1), we define the partial zeta function

ζ(s, k) =
∑

a≥0, a∈k

1

Nas
(sum over the integral ideals in k).

Note that for any character χ of Cm,

L(s, χ) =
∑
k∈Cm

χ(k)ζ(s, k).

In particular,

ζK(s) =
∑
k∈Cm

ζ(s, k).

Therefore, knowledge of the ζ(s, k) will provide us with information about L(s, χ) and
ζK(s).

Let

S(x, k) = #{a ∈ k | a integral Na ≤ x} ,

i.e., it is the S(x) for the Dirichlet series ζ(s, k). Recall from Math 676 that there is
a homomorphism

@ : U −→ Rr+s, u �→ (log |σ1(u)|, . . . , 2 log |σr+s(u)|)
whose kernel is the torsion subgroup of U and whose image is an r + s − 1 dimen-
sional lattice. The regulator reg(K) is defined to be the volume of a fundamental
parallelopiped for this lattice. Let Um,1 = U ∩Km,1. Then Um,1 has finite index in U ,
and we define reg(m) to be the volume of the fundamental parallelopiped for @(Um,1).
Thus reg(m) = reg(K)(U : U(m)).

Proposition 2.8. For all x ≥ 1,

|S(x, k)− gmx| ≤ Cx1−
1
d , gm =

2r(2π)sreg(m)

wmN(m)|∆K/Q| 12
, d = [K : Q],
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where

r = number of real primes,

s = number of complex primes,

wm = number of roots of 1 in Km,1,

N(m) = N(m0)2
r0 ,

r0 = number of real primes in m, and

∆K/Q = discriminant of K/Q.

Proof. First show that there is an integral ideal b0 ∈ k−1. Then for any a ∈ k,
a integral, ab0 = (α), some α ∈ OK . Now S(x, k) is the number of principal ideals
(α) such that α ∈ b0 ∩ Km,1 with |Nm(α)| ≤ xN(b0). Now count. The techniques
are similar to those in the proof of the unit theorem. For the details, see Lang 1970,
VI.3, Theorem 3. (A slightly weaker result is proved in Janusz 1996, IV.2.11).

Corollary 2.9. The partial zeta function ζ(s, k) is analytic for '(s) > 1 − 1
d

except for a simple pole at s = 1, where it has residue gm.

Proof. Apply Proposition 2.5.

Note that gm does not depend on k.

Lemma 2.10. If A is a finite abelian group, and χ : A → C× is a nontrivial char-
acter (i.e., homomorphism not mapping every element to 1), then∑

a∈A
χ(a) = 0.

Proof. Because χ is nontrivial, there is a b ∈ A such that χ(b) �= 1. But∑
a∈A

χ(a) =
∑
a∈A

χ(ab) = (
∑
a

χ(a))χ(b),

and so

(χ(b)− 1)
∑
a

χ(a) = 0,

which implies that
∑
a χ(a) = 0.

Corollary 2.11. If χ is not the trivial chaaracter, then L(s, χ) is analytic for
'(s) > 1− 1

d
.

Proof. Near s = 1,

L(s, χ) =
∑
k∈Cm

χ(k) · ζ(s, k) =
∑

k∈Cm χ(k)gm
s− 1

+ holomorphic function,

and the lemma shows that the first term is zero.

Later we shall see that L(1, χ) �= 0.
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Corollary 2.12. The Dedekind zeta function ζK(s) is analytic for '(s) > 1− 1
d

except for a simple pole at s = 1, where it has residue

2r(2π)sreg(K)

wK |∆| 12 hK

Proof. Recall that ζK(s) =
∑

k∈CK
ζ(s, k).

Example 2.13. (a) For K = Q, the last formula becomes 1 = 2
2
.

(b) For K = Q[
√
d], the formula becomes

lim
s→1(s− 1)ζ(s) =


2 log(u)

∆
1
2

hK , u > 1 a fundamental unit , d > 0
2π

wK |∆| 12
hK , d < 0.

It is possible to find a closed formula for the expression on the left, and this leads to a
very simple expression for the class number. Recall that the Artin map for K/Q can
be regarded as a character χ : IS → {±1} where S is the set of primes that ramify.
Rather than a map on ideals, we regard it as a map on positive integers, and we
extend it to all positive integers by setting χ(m) = 0 if m is divisible by a prime that
ramifies in K. Thus χ is now the multiplicative map on the set of positive integers
taking the values

χ(p) =


1 if p splits in K

−1 if p remains prime in K
0 if p ramifies in K.

For a quadratic imaginary field with discriminant < −4, the formula becomes

hK =
1

2− χ(2)

∑
(x,∆)=1
0<x<|∆|/2

χ(x).

For example, if K = Q[
√−5], then |∆| = 20, and

h =
1

2− 0
(χ(1) + χ(3) + χ(7) + χ(9)) =

4

2
= 2,

because 2 ramifies, and

−5 ≡ 1 ≡ 12 mod 3, −5 ≡ 2 ≡ 32 mod 7.

See Borevich and Shafarevich, 1966, Chapter 5, Section 4, for more details.

3. Density of the Prime Ideals Splitting in an Extension

For a set T of prime ideals of K, we define ζK,T (s) =
∏

p∈T
1

1−Np−s . If some positive

integral power ζK,T (s)
n of ζK,T (s) extends to a meromorphic function on a neigh-

bourhood of 1 having a pole of order m at 1, then we say2 that T has polar density
δ(T ) = m/n.

Proposition 3.1. (a) The set of all prime ideals of K has polar density 1.
(b) The polar density of any set (having one) is ≥ 0.
(c) Suppose that T is the disjoint union of T1 and T2. If any two of T , T1, T2 have

polar densities, then so also does the third, and δ(T ) = δ(T1) + δ(T2).

2Following Marcus, Number Fields, Springer 1977, p188.
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(d) If T ⊂ T ′, then δ(T ) ≤ δ(T ′) (when both are defined).

Proof. (a) We know that ζK(s) itself extends to a neighbourhood of 1, and has a
simple pole at 1.

(b) To say that T has negative density means that ζK,T (s) is holomorphic in a
neighbourhood of s = 1, and is zero there. But ζK,T (1) =

∏
p∈T

1
1−p−1 > 0.

(c) Clearly,

ζK,T (s) = ζK,T1(s) · ζK,T2(s).

Suppose, for example, that ζK,T (s)
m and ζK,T1(s)

m1 extend to meromorphic functions
in neighbourhoods of 1, with poles of order n and n1 at 1. Then ζK,T2(s)

mm1 =
ζK,T (s)

mm1/ζK,T1(s)
mm1 extends to a meromorphic function in a neighbourhood of 1,

and has a pole of order m1n−mn1 at 1. Therefore

δ(T2) =
m1n

mm1
− mn1

mm1
= δ(T )− δ(T2).

(d) Combine (c) with (b).

Proposition 3.2. If T contains no primes for which Np is a prime (in Z), then
δ(T ) = 0.

Proof. For p ∈ T , Np = pf with f ≥ 2. Moreover, for a given p, there are at
most [K : Q] primes of K lying over p. Therefore ζK,T (s) can be decomposed into
a product

∏d
i=1 gi(s) of d infinite products over the prime numbers each factor of a

gi(s) being 1 or of the form 1
1−pf with f ≥ 2. For each i, gi(1) ≤ ∑

n>0 n
−2 = ζ(2).

Therefore gi(s) is holomorphic at 1.

Corollary 3.3. Let T1 and T2 be sets of prime ideals in K. If the sets differ only
by primes for which Np is not prime and one has a polar density, then so does the
other, and the densities are equal.

Theorem 3.4. Let L be a finite extension of K, and let M be its Galois closure.
Then the set of prime ideals of K that split completely in L has density 1/[M : K].

Proof. A prime ideal p ofK splits completely in L if and only if it splits completely
in M . Therefore, it suffices to prove the theorem under the assumption that L is
Galois over K. Let S be the set of prime ideals of K that split completely in L, and
let T be the set of prime ideals of L lying over a prime ideal in S. Corresponding
to each p in S, there are exactly [L : K] prime ideals P in T , and for each of them
NmL/K P = p, and so NP = Np. Therefore, ζK,S(s) = ζL,T (s)

[L:K]. But T contains
every prime ideal of L that is unramified in L/K for which NP = p. Therefore T
differs from the set of all prime ideals in L by a set of polar density 0, and so T has
density 1. This implies that ζK,S(s) has the property signifying that S has density
1/[L : K].

Corollary 3.5. If f(X) ∈ K[X] splits into linear factors modulo p for all but
finitely many prime ideals p, then f splits into linear factors in K.

Proof. Apply the theorem to the splitting field of f .
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Corollary 3.6. For Galois extensions L and M of a number field K,

L ⊂ M ⇐⇒ Spl(L) ⊃ Spl(M).

Hence
L = M ⇐⇒ Spl(L) = Spl(M),

and
L �→ Spl(L)

is an injection from the set of finite Galois extensions of K (contained in some fixed
algebraic closure) to the set of subsets of {p ⊂ OK}.

Proof. See the proof of (V.3.23).

Example 3.7. Let f(X) be an irreducible polynomial of degree 3. The density
of the set of primes p for which f(X) splits modulo p is 1/3 or 1/6 depending on
whether f(X) has Galois group C3 or S3.

Corollary 3.8. For any abelian extension L/K and any finite set S ⊃ S∞ of
primes of K including those that ramify in L, the Artin map ψL/K : IS → Gal(L/K)
is surjective.

Proof. LetH be the image of ψL/K. For all p /∈ S, (p, LH/K) = (p, L/K)|LH = 1,
which implies that p splits in LH. Hence all but finitely many prime ideals of K split
in LH , which implies that [LH : K] = 1.

4. Density of the Prime Ideals in an Arithmetic Progression

Let f(s) and g(s) be two functions defined (at least) for s > 1 and real. We write

f(s) ∼ g(s) as s ↓ 1

if f(s)− g(s) is bounded for

1 < s < 1 + ε, s real, some ε > 0.

Note that

f(s) ∼ δ log
1

s− 1
as s ↓ 1

implies

lim
s↓1

f(s)

log 1
s−1

= δ.

When f(s) and g(s) are functions holomorphic in a neighbourhood of s = 1 except
possibly for poles at s = 1,

f(s) ∼ g(s) as s ↓ 1

if and only if f(s) and g(s) differ by a function that is holomorphic on a neighbourhood
of 1.

Let T be a set of primes of K. If there exists a δ such that∑
p∈T

1

Nps
∼ δ log

1

s− 1
ass ↓ 1,

then we say that T has Dirichlet density δ.
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If the limit

lim
x→∞

number of p ∈ T with Np ≤ x

number of p with Np ≤ x

exists, then we call it the natural density of T .

Proposition 4.1. (a) If the polar density exists, then so also does the Dirichlet
density, and the two are equal.

(b) If the natural density exists, then so also does the Dirichlet density, and the
two are equal.

Proof. (a) If T has polar density m/n, then

ζK,T (s)
n =

a

(s− 1)m
+

g(s)

(s− 1)m−1

where g(s) is holomorphic near s = 1. Moreover, a > 0 because ζK,T (s) > 0 for s > 1
and real. On taking logs, we find that

n
∑
T

1

Nps
∼ m log

1

s− 1
as s ↓ 1,

which shows that T has Dirichlet density m/n.

(b) See Goldstein 1971, p252.

Remark 4.2. (a) A set T may have a Dirichlet density without having a natural
density. For example, let T be the set of prime numbers whose leading digit (in the
decimal system) is 1. Then T does not have a natural density, but its Dirichlet density
is log10(2) = ·3010300 . . . (statement in Serre 1970, Cours..., VI.4.5). Thus it is a
stronger statement to say that a set of primes has natural density δ than that it has
Dirichlet density. All of the sets whose densities we compute in this course will also
have natural densities, but we do not prove that.

(b) By definition, polar densities are rational numbers. Therefore any set having a
natural density that is not rational will not have a polar density.

Recall that the exponential function

ez =
∑ zn

n!
= ex(cos y + i sin y), z = x+ iy,

defines an isomorphism from

{z ∈ C | −π < ((z) < π}
onto the complement of the negative real axis

{z ∈ R | z ≤ 0}
in C whose inverse is, by definition, the (principal branch of) the logarithm function
log. With this definition

log z = log |z|+ i arg z

where the log on the right is the function defined in elementary calculus courses and

−π < arg z < π.
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With this definition

log
1

1− z
= z +

z2

2
+

z3

3
+ · · · , |z| < 1.

Lemma 4.3. Let u1, u2, . . . be a sequence of real numbers ≥ 2 such that

f(s)
df
=

∞∏
j=1

1

1− u−s
j

is uniformly convergent on each region D(1, δ, ε), δ, ε > 0. Then

log f(s) ∼∑ 1

usj
ass ↓ 1.

Proof. We have

log f(s) =
∞∑
j=1

log
1

1− u−s
j

=
∑
j

∞∑
m=1

1

musmj

=
∑
j

1

usj
+
∑
j

∞∑
m=2

1

musmj

=
∑
j

1

usj
+ g(s),

where

|g(s)| ≤
∞∑
j=1

∞∑
m=2

∣∣∣∣∣ 1

musmj

∣∣∣∣∣ =
∞∑
j=1

∞∑
m=2

1

mumσj
, σ = '(s).

Estimate the inner sum by using (u ≥ 2, σ > 1)

∞∑
m=2

1

mumσ
≤

∞∑
m=2

1

2

(
1

uσ

)m
=

1

2

{
1

1− u−σ − u−σ − 1
}
=

1

2

u−2σ

1− u−σ <
1

u2σ
.

Hence
|g(s)| ≤ f(2σ).

Because f(s) is holomorphic for '(s) > 1, f(2s) is holomorphic for '(s) > 1
2
, and so

g(σ) is bounded as σ ↓ 1.

Proposition 4.4. (a) The set of all prime ideal of K has Dirichlet density 1.
(b) The Dirichlet density of any set (having one) is ≥ 0.
(c) If T is finite, then δ(T ) = 0.
(d) Suppose that T is the disjoint union of T1 and T2. If any two of δ(T1), δ(T2),

δ(T ) are defined, so is the third, and δ(T ) = δ(T1) + δ(T2).
(e) If T ⊂ T ′, then δ(T ) ≤ δ(T ′) (assuming both are defined).

Proof. (a) The set of all primes ideals even has polar density 1.

(b) For s > 0 real, 1
Nps > 0, and for s = 1 + ε, log 1

s−1 = − log ε, which is positive
for 0 < ε < 1.

(c) When T is finite,
∑

p∈T
1
Nps is holomorphic for all s and hence bounded near any

point.
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(d) Clearly ∑
p∈T

1

Nps
=
∑
p∈T1

1

Nps
+
∑
p∈T2

1

Nps
'(s) > 1.

Therefore, if, for example,∑
p∈T1

1

Nps
∼ δ1 log

1

s− 1
,

∑
p∈T2

1

Nps
∼ δ2 log

1

s− 1
,

then ∑
p∈T

1

Nps
∼ (δ1 + δ2) log

1

s− 1
.

(e) If both δ(T ) and δ(T ′) exist, then so also does δ(T ′ \ T ), and

δ(T ′)− δ(T )
(c)
= δ(T ′ \ T )

(a)

≥ 0.

Proposition 4.5. Let T be the set of prime ideals of K having degree 1 over Q,
i.e., such that the residue class degree f(p/p) = 1. Then δ(T ) = 1.

Proof. The complement of T has polar density 1 (Proposition 3.2)

Corollary 4.6. Let T be as in the Proposition. For any set S of primes of K
having a Dirichlet density

δ(T ∩ S) = δ(S).

Proof. The complement T ′ of T has density 0, and it follows easily that δ(S∩T ′) =
0. Because S is the disjoint union of S ∩ T and S ∩ T ′, this implies that δ(S ∩ T ) is
defined and equals δ(S).

Lemma 4.7. Let A be a finite abelian group, and let a ∈ A. Then∑
χ∈A∨

χ(a) = .

Here A∨ is the group of characters of A, i.e., A∨ = Hom(A,C×).

Proof. If a = 1, then χ(a) = 1 for all χ, and so the statement follows from the
fact that A∨ has the same number of elements as A (it is in fact noncanonically
isomorphic to A). If a �= 1, there is a character χ1 such that χ1(a) �= 1. Then∑

χ∈A∨
χ(a) =

∑
χ∈A∨

(χ1χ)(a) =
∑
χ∈A∨

χ1(a)χ(a) = χ1(a)
∑
χ∈A∨

χ(a).

Since χ1(a) �= 1, this implies that
∑
χ∈A∨ χ(a) = 0.

Alternatively, identify A with A∨∨ by means of the isomorphism

a �→ (χ �→ χ(a)) : A −→ (A∨)∨,

and apply (2.10).
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Theorem 4.8. Let m be a modulus for K, and let H be a congruence subgroup for
m:

Im ⊃ H ⊃ i(Km,1).

Then

δ({p ∈ H}) =
{

1/(IS(m) : H) if L(1, χ) is nonzero for all characters χ �= χ0 of I
S(m)/H;

0 otherwise.

Proof. Let χ be a character of Im trivial on H, and let

L(s, χ) =
∏
p-m

1

1− χ(p)Np−s .

Then the argument in the proof of (4.3) shows that

logL(s, χ)−∑
p-m

χ(p)

Nps

is holomorphic for '(s) > 1
2
. In particular,

log(L(s, χ)) ∼∑
p-m

χ(p)

Nps
as s ↓ 1.

But (see 4.7) ∑
χ

χ(p) =

{
h p ∈ H
0 p /∈ H,

and so, on summing over all χ, we find that∑
χ

logL(s, χ) ∼ h
∑
p∈H

1

Nps
as s ↓ 1.

If χ �= χ0, then L(s, χ) is holomorphic near s = 1, say L(s, χ) = (s−1)m(χ)g(s) where
m(χ) ≥ 0 and g(1) �= 0. Thus

logL(s, χ) ∼ m(χ) log(s− 1) = −m(χ) log
1

s− 1
.

If χ = χ0, then L(s, χ) = ζK(s)/
∏

p|m
1

1−Np−s , and so

logL(s, χ0) ∼ log ζK(s) ∼ log
1

s− 1
as s ↓ 1.

On combining these statements, we find that

h
∑
p∈H

Np−s ∼ (1− ∑
χ �=χ0

m(χ)) log
1

s− 1
,

and hence

δ({p ∈ H}) = 1−∑χ �=χ0
m(χ)

h
.

This shows that δ({p ∈ H}) = 1
h
if L(1, χ) �= 0 for all χ �= χ0, and δ({p ∈ H}) = 0

otherwise (and at most one L(s, χ) can have a zero at s = 1, and it can only be a
simple zero).
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The Second Inequality.

Theorem 4.9. For any Galois extension L of K and modulus m of K,

(IS(m) : i(Km,1) · Nm(I
S(m)
L )) ≤ [L : K].

Proof. Let H = NmL/K ImL ·K×. From Theorem 4.8, we know that δ({p ∈ H}) =
1/(IS(m) : H) or 0, and that the first case holds exactly when, for all nontrivial
characters χ of IS/H, L(1, χ) �= 0.

If p splits in L, i.e., f(P/p) = 1 for all P|p, then p is the norm of any prime ideal
of OL lying over it, and so {p ∈ H} contains the set of prime ideals splitting in L.
Hence, Theorem 3.4 shows that

δ({p ∈ H}) ≥ [L : K]−1 �= 0.

On combining the two statements we find

(a) δ({p ∈ H}) �= 0;
(b) that for all nontrivial characters χ of IS/H, L(1, χ) �= 0;
(c) (IS : H) = δ({p ∈ H})−1 ≤ [L : K].

Corollary 4.10. Let χ be a nontrivial character of Cm, and suppose that there is
a Galois extension L of K such that NmL/K Cm,L ⊂ Ker(χ). Then L(1, χ) �= 0.

Proof. This was shown in the course of the proof of the theorem.

The Reciprocity Law (Theorem V.3.5) implies that the hypothesis of the corollary
holds for all χ. It is possible to prove that L(1, χ) �= 0 without using class field theory,
but, at this point we prefer to return to class field theory. We shall complete the proof
of the Chebotarev Theorem in Chapter VIII.



CHAPTER VII

Global Class Field Theory: Proofs of the Main Theorems

In this chapter we prove the main theorems of global class field theory, namely,
the Reciprocity Law and the Existence Theorem (Theorems V.5.3, V.5.5), following
the method of Tate’s article in Cassels and Fröhlich 1967 (see also Artin and Tate
1951/52). Throughout, we work with idèles rather than ideals.

This chapter is independent of Chapter VI, except that Theorem VI.4.9 can be used
to replace Section 6. We shall need to refer to Chapter V only for the definitions of
the idèle class group and the the definition of the global Artin map φ : I → Gal(L/K)
as the “product” of the local Artin maps (Section 5). On the other hand, we shall
make frequent use of the results in Chapters II and III.

1. Outline

Let L/K be a finite Galois extension of number fields with Galois group G. The

idèle class group CL
df
= IL/L× plays the same role for global class field theory that the

multiplicative group L× plays for local class field theory. In particular, when L/K is
abelian, we shall prove that there is a isomorphism

φ : CK/NmL/K(CL) → G

whose local components are the local Artin maps, i.e., such that for any prime v of
K and prime w of L lying over it, the following diagram commutes,

K×
v

φv−−−→ Gal(Lw/Kv)
 

IK

φ−−−→ Gal(L/K)

where φv is the local Artin map of Chapters II and IV.

According to Tate’s theorem II.2.18, to obtain such an isomorphism, it suffices to
prove that, for every finite Galois extension L/K with Galois group G,

(a) H1(G,CL) = 0;
(b) H2(G,CL) is cyclic of order [L : K] with a canonical generator uL/K ;
(c) if E ⊃ L ⊃ K are two finite Galois extensions of K, then Res(uE/K) = uL/K .

The isomorphism φL/K is then the inverse of that defined by uL/K,

H−2
T (G,Z) → H0

T (G,CL).

163
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Once the fundamental class uL/K has been shown to be compatible with the local
fundamental classes, φL/K will be a product of the local Artin maps.

In fact, we adopt a slightly different approach. We shall define the global Artin
map CK → Gal(L/K) to be the “product” of the local Artin maps, and we shall use
results slightly weaker than (a) and (b) to deduce that it has the correct properties.

In Section 2, we express the cohomology of the idéles in terms of the cohomology
of the local fields,

H0(G, IL) = IK ; Hr
T (G, IL) = ⊕vHr

T (G
v, Lv×)

(sum over the primes v of K; for some choice of a prime w|v, Gv is the decomposition
group of w and Lv = Lw). After computing the Herbrand quotient of the group of
S-units in Section 3, we prove the first inequality,

For any cyclic extension L/K, (CK : NmL/K CL) ≥ [L : K].

in Section 4. We also prove in Section 4 that, for any abelian extension, the Galois
group is generated by the Frobenius elements. In Section 5 we state the theorem,

For any Galois extension L/K of number fields,
(a) (CK : NmL/K CL) ≤ [L : K] (second inequality);
(b) H1(G,CL) = 1;
(c) H2(G,CL) has order ≤ [L : K].

and we prove it using Theorem VI.4.9. In the following section, we give a different
proof of the theorem that avoids the use complex analysis.

After some preliminaries on Brauer groups, in Section 7 we complete the proof of
the reciprocity law by showing that, for any abelian extension L/K, K× is contained
in the kernel of φL/K : IK → Gal(L/K). Because we already know that NmL/K(IL)
is contained in the kernel of φL/K and that φL/K is surjective (because Gal(L/K) is
generated by the Frobenius elements), the second inequality implies that φL/K is an
isomorphism.

We prove the Existence Theorem in Section 9 by showing the every (open) subgroup
of finite index in CK contains the norm group of some subextension of the extension
obtained by first adjoining a root of unity toK and then making a Kummer extension.

To some extent, the cyclic cyclotomic extensions of K play the same role as the
unramified extensions of a local field. For example, a key point in the last step of
the proof of the Reciprocity Law is that every element of Br(K) is split by a cyclic
cyclotomic extension.

2. The Cohomology of the Idèles

Let L/K be a finite Galois extension of number fields with Galois group G. Recall
that σ ∈ G acts on the primes w of L lying over a fixed prime v of K according to
the rule |σa|σw = |a|w. Therefore σ is an isomorphism of valued fields

(L, | |w) −→ (L, | |σw),



THE COHOMOLOGY OF THE IDÈLES 165

and so extends to the completions: there is a commutative diagram

Lw
σ−−−→ Lσw$iw $iσw

L
σ−−−→ L.

Fix a prime v of K, and let w0 be a prime of L lying over v. The map σ �→ σw0
defines a bijection

G/Gw0 −→ {w|v},
where Gw0 is the decomposition group of w0.

We wish to extend the action of G on L to an action of G on
∏
w|v Lw. Recall (Math

676, 8.2) that the map

a⊗ b �→ iw(a)b : L⊗K Kv −→
∏
w|v

Lw

is an isomorphism. The group G acts on L ⊗K Kv through its action on L, and we
use the isomorphism to transfer this action to

∏
w|v Lw. Thus,

(a) the elements of G acts continuously on
∏
w|v Lw;

(b) all elements of the form (a, . . . , a), a ∈ Kv, are fixed by G;
(c) for any a ∈ L, σ(. . . , iw(a), . . . ) = (. . . , iw(σa), . . . ).

These conditions determine the action uniquely.

Lemma 2.1. For σ ∈ G and α = (α(w)) ∈ ∏w|v Lw,
(σα)(w) = σ(α(σ−1w)). (∗)

Proof. The rule (∗) does define a continuous action of G on
∏

Lw, and so it
suffices to check that it satisfies (b) and (c). Condition (b) is obvious. For (c), let
α(w) = iw(a), a ∈ L. Then (by (∗))

(σα)(w) = σ(iσ−1w(a)).

When we replace w with σ−1w in the commutative diagram above, we obtain the
formula σ ◦ iσ−1w = iw ◦ σ. Therefore

(σα)(w) = iw(σa),

as required.

In more down-to-earth terms, (σα)(σw) = σ(α(w)): if α has the element a in the
w-position, then σα has the element σa in the σw-position.

Note that the action of G on
∏
w|v Lw induces an action of G on the subsets

∏
w|v L

×
w

and
∏
w|v Uw of

∏
w|v Lw.

Proposition 2.2. Choose a w0|v, and let Gw0 be its decomposition group. For
α ∈ ∏w|v Lw and σ ∈ G, define fα(σ) = σ(α(σ−1w0)). Then fα ∈ IndGGw0

(Lw0), and
the map

α �→ fα :
∏
w|v

Lw → IndGGw0
(Lw0)
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is an isomorphism of G-modules. Similar statements hold with Lw replaced with L×
w

and with Uw.

Proof. Recall (II.1) that

IndGGw0
(Lw0) = {f : G → Lw0 | f(ρσ) = ρf(σ), all ρ ∈ Gw0}

and that τ ∈ G acts on f ∈ IndGGw0
(Lw0) according to the rule (τf)(σ) = f(στ ). For

ρ ∈ Gw0 ,
fα(ρσ) = ρσ(α(σ−1ρ−1w0)) = ρσ(α(σ−1w0)) = ρfα(σ),

and so fα ∈ IndGGw0
(Lw0). Moreover,

(τfα)(σ) = fα(στ ) = στ (α(τ−1σ−1w0)) = σ(τα)(σ−1w0) = fτα(σ),

and so α �→ fα is a homomorphism of G-modules
∏
w|v Lw → IndGGw0

(Lw0). Given

f ∈ IndGGw0
(Lw0), set

αf(w) = σ(f(σ−1)), w = σw0.

Then f �→ αf is an inverse to α �→ fα.

Proposition 2.3. For all r,

Hr(G,
∏
w|v

L×
w)

∼= Hr(Gw0 , L
×
w0
).

In particular,
H0(G,

∏
w|v

L×
w)

∼= K×
v .

Similar statements hold with L×
w replaced with Uw.

Proof. We have

Hr(G,
∏
w|v

L×
w) = Hr(G, IndGGw0

L×
w0
) = Hr(Gw0 , L

×
w0
)

by Shapiro’s lemma (II.1.11).

Remark 2.4. The group Hr(Gw0 , L
×
w0
) is independent of the prime w0 dividing v

up to a canonical isomorphism, for let w be a second such prime. Then we can write
w = σw0, and we have a compatible pair of isomorphisms

τ �→ στσ−1 : Gw0 → Gw, x �→ σ−1x : Lw → Lw0 ,

and hence isomorphisms

Hr(Gw, L
×
w) −→ Hr(Gw0 , L

×
w0
)

for each r (see II.1).

If w = σ′w0, then σ′ = στ with τ ∈ Gw0 . The maps defined by σ and σ′ differ by
the automorphism of Hr(Gw0 , L

×
w0
) defined by τ , which is the identity map (II.1.27d).

Therefore Hr(Gw0 , L
×
w0
) and Hr(Gw, L

×
w) are canonically isomorphic. This suggests

the following notation: choose a prime w|v and set,

Gv = Gw, Lv = Lw, Uv = Uw.

These objects are defined only up to noncanonical isomorphisms, but Hr(Gv, Lv×)
and Hr(Gv, Uv) are defined up to canonical isomorphisms.
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We endow IL with the action of G such that the inclusions∏
w|v

L×
w → IL

are G-homomorphisms. Thus if α has aw in the w-position, then σα has σaw in the
σw-position.

Proposition 2.5. (a) The map IK ↪→ IL induces an isomorphism IK → IGL .
(b) For all r ≥ 0, Hr

T (G, IL) = ⊕vHr
T (G

v, Lv×).

Proof. (a) Clearly α = (aw) is fixed by G if and only if each subfamily (aw)w|v is
fixed by G. But (aw)w|v is fixed by G only if aw is independent of w and lies in K×

v .

(b) For each finite set S of primes of K, let

IL,S =
∏
v∈S

(
∏
w|v

L×
w)×

∏
v/∈S

(
∏
w|v

Uw).

Then IL,S is stable under the action of G, and IL is the directed union of the IL,S as
S runs over the finite sets of primes of K containing all infinite primes and all primes
that ramify in L. Hence (see II.3.3),

Hr(G, IL) = lim−→Hr(G, IL,S).

On applying (II.1.25) and (2.3), we find that

Hr(G, IL,S) =
∏
v∈S

Hr(G,
∏
w|v

L×
w)×

∏
v/∈S

Hr(G,
∏
w|v

Uw)

=
∏
v∈S

Hr(Gv, Lv×)× ∏
v/∈S

Hr(Gv, Uv).

Because of (III.2.1), the second factor is zero when r > 0, and so

Hr(G, IL) = lim−→ SH
r(G, IL,S) = lim−→ S ⊕v∈S Hr(Gv, Lv×) = ⊕all vH

r(Gv, Lv×).

The same argument works for r ≤ 0 when one uses the Tate groups.

Corollary 2.6. (a) H1(G, IL) = 0;

(b) H2(G, IL) ≈ ⊕v
(
1
nv

Z/Z
)
, where nv = [Lv : Kv].

Proof. (a) Apply Hilbert’s theorem 90.

(b) From Theorem III.1.1 we know that the invariant map gives an isomorphism

H2(Gv, Lv×) ≈−→ 1

nv
Z/Z.

Proposition 2.7. Let S be a finite set of primes of K, and let T be the set of
primes of L lying over primes in S. If L/K is cyclic, then the Herbrand quotient

h(IL,T ) =
∏
v∈S

nv, nv = [Lv : Kv].
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Proof. We have

IL,T =

∏
v∈S

(
∏
w|v

L×
w)

×
∏
v/∈S

(
∏
w|v

Uw)

 .

The Tate cohomology of the second factor is zero, and so the Herbrand quotient

h(G, IL,T ) =
∏
v∈S

h(G,
∏
w|v

L×
w) =

∏
v∈S

h(Gv, Lv×) =
∏
v∈S

#H2(Gv, Lv×) =
∏
v∈S

nv.

The norm map on idéles. Let L/K be a finite Galois extension of number fields.
As for any G-module, there is a norm map

x �→ ∏
σ∈G

σx : IL → IGL = IK .

We need to examine this map. Recall (Math 676, 8.3) that there is a commutative
diagram:

L× −−−→ ∏
w|v L

×
w
NmL/K


(aw) �→
∏
NmLw/Kv

aw

K× −−−→ K×
v .

For any w, NmL×
w is open in K×

v (for example, because it is of finite index), and for
any unramified w, the norm map sends Uw onto Uv (see III.2.2). The image of the
right hand vertical map in the diagram is just NmL×

w for any w|v (because any two
Lw’s are Kv-isomorphic). We denote it by NmLv×.
Let S ⊃ S∞ be a finite set of primes of K containing those that ramify, and let T

be the set of primes lying over a prime of S. The above remarks show that

NmL/K IL,T =
∏
v∈S

Vv ×
∏
v/∈S

Uv

where Vv is an open subgroup of finite index K×
v . This is an open subgroup in IK,S

and IK,S is open in IK . We have proved:

Proposition 2.8. For any finite Galois extension L/K of number fields,
NmL/K IL contains an open subgroup of IK and therefore is itself open.

Consider
0 −−−→ L× −−−→ IL −−−→ CL −−−→ 0
NmL/K


NmL/K



0 −−−→ K× −−−→ IK −−−→ CK −−−→ 0.

The left hand square commutes, and so the norm map IL → IK induces a norm map
CL → CK . From the snake lemma, we find that the quotient map IK → CK induces
an isomorphism IK/K× · Nm(IL) → CK .
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3. The Cohomology of the Units

Let L/K be a finite extension of number fields with Galois group G. Let S ⊃ S∞
be a finite set of primes of K, and let T be the set of primes of L lying over a prime
of K in S. Because T is stable under the action of G, the group of T -units

U(T )
df
= {α ∈ L | ordw(α) = 0 all w /∈ T}

is also stable under G.

Proposition 3.1. In the above situation, assume that G is cyclic. Then the Her-
brand quotient h(U(T )) is defined, and satisfies

n · h(U(T )) =
∏
v∈S

nv

where n = [L : K] and nv = [Lv : Kv].

We first show that any two G-stable full lattices1 in the same real vector space have
the same Herbrand quotient. Then we construct two such lattices, one with Herbrand
quotient n · h(U(T )) and the other with Herbrand quotient

∏
nv.

Lemma 3.2. Let G be a finite group, and let k be an infinite field. Let M and
N be k[G]-modules that are of finite dimension when regarded as k-vector spaces. If
M ⊗k Ω and N ⊗k Ω are isomorphic as Ω[G] modules for some field Ω ⊃ k, then they
are already isomorphic as k[G]-modules.

Proof. First note that if V is the space of solutions for a system of homogeneous
linear equations over k, then the solution space for the same system of equations over
Ω admits a basis with coordinates in k. In fact, the standard algorithm for finding a
basis for the solution space yields the same result when carried out over k or Ω.

A k-linear map α : M → N is a G-homomorphism if α(σm) = σα(m) all m ∈ M ,
σ ∈ G. Once bases have been chosen for M and N , giving a k-linear map α : M → N
is the same as giving a matrix A, and the condition that α be a G-homomorphism
takes the form A · B(σ) = C(σ) · A for certain matrices B(σ) and C(σ). This is
a linear condition on the coefficients of A, and so the remark shows that there are
k[G]-homomorphisms α1, . . . , αr : M → N that form an Ω-basis for the space of
Ω[G]-homomorphisms M ⊗k Ω → N ⊗k Ω.
Because M ⊗k Ω and N ⊗k Ω are isomorphic as Ω[G]-modules, there exist

a1, . . . , ar ∈ Ω such that
∑

aiαi is an isomorphism, and hence has nonzero deter-
minant. But det(

∑
aiαi) is a polynomial in the ai with coefficients in k, and the

preceding sentence shows that not all of its coefficients are zero. As k is infinite,
there exist ai’s in k such that

∑
aiαi has nonzero determinant (see the proof of the

Normal Basis Theorem II.1.24), and hence is a k[G]-isomorphism M → N .

Remark 3.3. (For the experts). It is possible to give an alternative proof of the
lemma (at least when k has characteristic zero). The group H of automorphisms of
M as a k[G]-module is a product of groups of the form GLd(D), D a division algebra
over k. The functor of isomorphisms M → N is a principal homogeneous space for H

1Recall that a subgroup M of a real vector space V is called a full lattice if M is the Z-submodule
generated by a basis for V ; equivalently, if the canonical map R⊗Z M → V is an isomorphism. The
definition of a full lattice in a Q-vector space is similar.
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(nonempty, because there exists an isomorphism over some field containing k), and
hence defines an element of H1(k,H). Now a generalization of Hilbert’s theorem 90
shows that H1(k,H) = 1.

Lemma 3.4. Let G be a finite cyclic group, and let M and N be G-modules that are
finitely generated as Z-modules, and such that M ⊗Z Q and N ⊗Z Q are isomorphic
as G-modules. If either h(M) or h(N) is defined, so also is the other, and the two
are equal.

Proof. After (II.2.16), we may assume that M and N are torsion free. Choose
an isomorphism

α : M ⊗ Q −→ N ⊗ Q.

Then α(M) and N are lattices in the same Q-vector space, and so α(M) ⊂ n−1N for
some n ∈ N (express the elements of a basis for α(M) in terms of a bases for N , and
let n be a common denominator for the coefficients). After replacing α with nα, we
have that α(M) ⊂ N . Now we have an exact sequence

0 −→ M
α−→ N −→ N/α(M) −→ 0

with N/α(M) finite, and we can apply (II.2.16) again to deduce that h(M) =
h(N).

Lemma 3.5. Let G be a finite cyclic group, and let V be a real vector space on
which G acts linearly (i.e., V is an R[G]-module). Let M and N be two G-stable full
lattices in V . If either h(M) or h(N) is defined, then so is the other, and they are
equal.

Proof. Because M and N are full lattices in V , the canonical maps

M ⊗Z R → V, N ⊗Z R → V

are isomorphisms. These maps are G-homomorphisms, and therefore (3.2) M⊗ZQ ≈
N ⊗Z Q as Q[G]-modules, and we can apply Lemma 3.4.

We now complete the proof of the Theorem. Let V be a product of copies of R
indexed by the elements of T , i.e.,

V = Hom(T,R).

We let G act on V according to the rule:

(σf)(w) = f(σ−1w), σ ∈ G, w ∈ T.

The first lattice in V is N
df
= Hom(T,Z). For each v ∈ S, choose a w lying over v,

and let Gv be the decomposition group of w. The sets Gv · w, v ∈ S, are the orbits
of G acting on T . In particular, T is a disjoint union of these sets, and so

Hom(T,Z) = ⊕vHom(G/Gv ,Z).

But Hom(G/Gv ,Z) = IndGGv(Z) (Z regarded as a trivial Gv-module). Therefore,

h(G,N) =
∏
v

h(G, IndGGv(Z)) =
∏

h(Gv,Z) =
∏

nv.

We now define the second lattice. Let λ : U(T ) → V be the map a �→
(. . . , log |a|w, . . . ), and let M0 to be the image of λ. Note that λ commutes with



COHOMOLOGY OF THE IDÈLE CLASSES I: THE FIRST INEQUALITY 171

the action of G. The kernel of λ consists of the elements a of L× such that |a|w = 1
for all w (including the infinite primes). These are the roots of 1 in L, and so
h(U(T )) = h(M0). The product formula shows M0 is contained in the subspace

V 0 :
∑

xw = 0,

of V , and the proof of the T -unit theorem shows that M0 is a lattice in V 0 (cf. Math
676, 5.7). The vector e = (1, 1, . . . , 1) is stable under G, and we define M = M0+Ze.
Then M ⊗Z R = V 0 + Re = V , and so M is a lattice in V . Moreover,

h(M) = h(M0) · h(Z) = h(M0) · n.
This completes the proof Proposition 3.1.

4. Cohomology of the Idèle Classes I: the First Inequality

Let L/K be a finite Galois extension of number fields with Galois group G. We
have a commutative diagram of G-modules with exact rows,

0 −−−→ K× −−−→ IK −−−→ CK −−−→ 0
 
 

0 −−−→ L× −−−→ IL −−−→ CL −−−→ 0,

That the rows are exact is the definition of the idèle class groups. The vertical arrows
in the left hand square are the natural inclusions. The square therefore commutes,
which shows that the right hand vertical arrow exists.

Lemma 4.1. The canonical map CK → CL induces an isomorphism

CK −→ CG
L = H0(G,CL).

Proof. From the bottom row of the above diagram, we obtain a cohomology
sequence

0 −−−→ H0(G,L×) −−−→ H0(G, IL) −−−→ H0(G,CL) −−−→ H1(G,L×)∥∥∥∥ ∥∥∥∥ ∥∥∥∥ ∥∥∥∥
L×G I×GL CG

L 0

which can be identified with

0 −→ K× −→ IK −→ CK −→ 0.

The ideal class group of a number field is finite, and it is generated by the classes
of prime ideals. Therefore, it is generated by a finite number of prime ideals.

Lemma 4.2. Let K be a number field, and let S ⊃ S∞ be a finite set of primes of
K containing a set of generators for the ideal class group of K. Then

IK = K× · IS.
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Proof. The condition that S contains a set of generators for the ideal class group
of K means that every fractional ideal a can be written

a = b · (c)
with b in the group generated by the prime ideals in S and c ∈ K×. Therefore,
a = (c) in the quotient group IS = I/ <S>, and so IS/i(K×) = 0.

For any finite set S ⊃ S∞ of primes of K, the natural map I → IS defines an
isomorphism I/IS

≈−→ IS. On dividing out by K× on both sides, we find that I/K× ·
IS ∼= IS/i(K×) ∼= 0.

Recall that we want to prove that for any abelian extensionL/K, CK/NmL/K CL
∼=

Gal(L/K) and that for any Galois extension H1(G,CL) = 1. For a cyclic extension,
the two statements imply that the Herbrand quotient

h(CL)
df
=

(CK : NmCL)

#H1(G,CL)
= [L : K].

As a first step, we verify this equality.

Theorem 4.3. For any finite cyclic extension L/K of number fields, h(CL) = [L :
K].

Proof. Let S any finite set of primes of K such that:

(a) S ⊃ S∞, the set of infinite primes of K;
(b) S contains all primes that ramify in L;
(c) S contains the prime ideals P∩OK for a set of generators P of the ideal class

group of L.

Let T be the set of primes of L lying over a prime in S. Condition (c) implies that
IL = IL,T · L×, and so

CL
df
= IL/L× = L× · IL,T/L× ∼= IL,T/L× ∩ IT .

Note that
L× ∩ IT = {α ∈ L | ordw(α) = 0, ∀w /∈ T} = U(T ),

and so
h(CL) = h(IL,T )/h(U(T )).

The theorem now follows from Proposition 2.7 and Proposition 3.1.

Corollary 4.4 (First inequality). If L/K is cyclic of degree n, then

(IK : K× · Nm(IL)) ≥ n.

Proof. Since h(CL) = n, its numerator must be ≥ n.

We now give some application of the First Inequality.

Lemma 4.5. Let L be a finite solvable extension of K (i.e., a finite Galois extension
with solvable Galois group). If there exists a subgroup D of IK such that

(a) D ⊂ NmL/K IL; and
(b) K× ·D is dense in IK

then L = K.
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Proof. If L �= K, then the exists a subfield K ′ of L that is cyclic over K and
�= K. Then

D ⊂ NmL/K(IL) = NmK′/K(NmL/K IL)) ⊂ NmK′/K(IK′).

Therefore, K× · NmK′/K IK′ is dense in IK . Because it is a union of translates of
NmK′/K IK′, it is open (2.8), and because it is a subgroup of IK , it is also closed.
Therefore, K× · NmK′/K IK′ = IK , and the first inequality implies that K ′ = K.

Proposition 4.6. Let L be a finite solvable extension of K. If L �= K, then there
are infinitely many primes of K that do not split completely in L.

Proof. Suppose there are only finitely many, and let S ⊃ S∞ be a finite set of
primes of K including all those that do not split completely. We shall apply the
lemma with

D = IS df
= {(av) | av = 1 for all v ∈ S}.

For w|v /∈ S, Lw = Kv, and so clearly D ⊂ Nm(IL). Let a = (av) ∈ I. By the Weak
Approximation Theorem (V.6.3), there is an element b ∈ K× that is very close to av
in Kv for all v ∈ S. Choose a′ to be the element of IS such that the v component of
ba′ is equal to av for all v /∈ S. Then ba′ is close to a in IK . Hence K× · D is dense
in IK .

Proposition 4.7. For any finite solvable extension L/K with Galois group G, and
any finite set of prime ideals T of L including those that ramify from K, the Frobenius
elements (P, L/K) for P /∈ T generate G.

Proof. Let H be the subgroup generated by the Frobenius elements at the P /∈ T ,
and let E = LH . Recall (V.1.10) that

(P, E/K) = (P, L/K)|E ,
which is the identity map. Therefore all primes p /∈ S split in E, which shows that
E = K. By the main theorem of Galois theory, this implies that H = G.

Corollary 4.8. For any abelian extension L/K and finite set of primes S ⊃ S∞
of K including the primes that ramify in L, the map

p �→ (p, L/K) : IS −→ Gal(L/K)

is surjective. (Recall that IS is the group of fractional ideals generated by prime ideals
not in S.)

Proof. The image contains the Frobenius elements (P, L/K) for all P|p ∈ S, and
these generate Gal(L/K).

Remark 4.9. Of course, Proposition 4.6 is much weaker than the result available
using complex analysis—see Theorem VI.3.4—but it suffices for the proof of the
Reciprocity Law.
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5. Cohomology of the Idèle Classes II: The Second Inequality

Theorem 5.1. Let L/K be a Galois extension of number fields with Galois group
G. Then

(a) (second inequality) the index (IK : K× ·Nm(IL)) is finite, and divides [L : K];
(b) the group H1(G,CL) = 0;
(c) the group H2(G,CL) is finite, and its order divides [L : K].

Lemma 5.2. If G is cyclic, then statements (a), (b), and (c) of the theorem are
equivalent (and (IK : K× · Nm(IL)) = (H2(G,CL) : 1) = [L : K]).

Proof. Without restriction on G,

IK/K× ·NmL/K(IL) ∼= CK/NmL/K(CL) = H0
T (G,CL).

If G is cyclic, its cohomology is periodic, and so H0
T (G,CL) ≈ H2(G,CL). This

proves that (a) and (c) are equivalent. Theorem 4.3 states that the Herbrand quotient
h(CL) = [L : K], and so each of (a) and (c) is equivalent to (b).

Lemma 5.3. It suffices to prove the theorem in the case that G is a p-group, p
prime.

Proof. Recall (II.1.33), that if H is the Sylow p-subgroup of G then, for any
G-module M , the maps

Res : Hr
T (G,M) → Hr

T (H,M)

are injective on the p-primary components. Therefore, if the theorem holds for L/LH ,
then p does not divide the order of H1

T (G,CL) and the power of p dividing the orders
H0
T (G,CL) and H2

T (G,CL) is less than the power of p dividing [L : K]. On applying
this for all p, we obtain the lemma.

Lemma 5.4. It suffices to prove the theorem in the case that G is a cyclic group of
prime order p.

Proof. After the last lemma, we may assume that G is a p-group. We shall prove
the theorem for G by induction on (G : 1). Because G is a p-group, it has a normal
subgroup H of index p (see Math 594g, 4.15). Consider the exact sequence (II.1.34)

0 −→ H1(G/H,CK′ )
Inf−→ H1(G,CL)

Res−−→ H1(H,CL)

whereK ′ = LH . By assumptionH1(G/H,CK′ ) = 0 and by inductionH1(H,CL) = 0.
Therefore H1(G,CL) = 0—statement (b) is true.

Because H1(H,CL) = 0, the sequence

0 −→ H2(G/H,CK′ ) −→ H2(G,CL) −→ H2(H,CL)

is exact, from which it follows that statement (c) is true.

Finally, note that

(CK : NmL/K(CL)) = (CK : NmK′/K(CK′))(NmK′/K(CK′) : NmL/K(CL)),

which divides p[L : K ′] because NmK′/K defines a surjection

CK′/NmL/K′(CL) → NmK′/K(CK′)/NmL/K(CL).
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It therefore remains to prove that the Second Inequality holds for a cyclic extension
of characteristic p, but in (VI.4.9 we proved that the Second Inequality holds for all
finite Galois extensions. (For the translation between the idealic and the idèlic form
of the statement, see Proposition V.4.6). In the next section, we give an algebraic
proof of the Second Inequality, independent of Chapter VI.

Remark 5.5. To a finite Galois extension L/K of number fields, we have attached
the group CK/Nm(CL) and H2(G,CL). When L/K is cyclic, they are canonically
(up to a choice of a generator for G) isomorphic, but not otherwise. The first group
is always isomorphic to Gab, and the second is always cyclic of order [L : K]. Thus,
when G is abelian but not cyclic, the two groups have the same order but are not
isomorphic, and when G is nonabelian, they have different orders.

6. The Algebraic Proof of the Second Inequality

We shall prove the Second Inequality in the case that L/K is cyclic of prime degree
p.

Lemma 6.1. It suffices to prove the Second Inequality in the case that K contains
a pth root of 1.

Proof. Let ζ be a primitive pth root of 1 (in some fixed algebraic closure of K
containing L), and let K ′ = K[ζ] and L′ = K ′ · L = L[ζ]. Then [K ′ : K] = m|p− 1,
and so is relatively prime to p. Hence K ′ ∩ L = K, and we have the picture:

L
m
— L′

|p |p
K

m
— K ′.

The map
Gal(L′/K) −→ Gal(L/K) ×Gal(K ′/K)

is an isomorphism. Consider the diagram:

CL

NmL/K−−−−→ CK −−−→ CK/NmCL −−−→ 0
iL 
iK 

CL′

NmL′/K′−−−−−→ CK′ −−−→ CK′/NmCL′ −−−→ 0
NmL′/L


NmK′/K



CL

NmL/K−−−−→ CK −−−→ CK/NmCL −−−→ 0

Here iL and iK are the maps induced by the inclusions IL ↪→ IL′ and IK ↪→ IK′,
NmL/K and NmL′/K′ are the maps

x �→∑
σx, σ ∈ Gal(L/K) = Gal(L′/K ′),

and NmL′/L and NmK′/K are the maps

x �→∑
σx, σ ∈ Gal(L′/L) = Gal(K ′/K).
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Clearly the squares at left commute, and this implies that the rest of the diagram
exists. The composites

NmL′/L ◦iL and NmK′/K ◦iK
are both multiplication by m. Therefore the composite

CK/NmCL −→ CK′/NmCL′ −→ CK/NmCL

is also multiplication bym, and hence is an isomorphism (clearly, pth powers in CK are
norms, and so CK/NmCL is killed by p). In particular, the second map is surjective,
and so

(CK : NmCL) divides (CK′ : NmCL′),

which by assumption, divides p.

We shall prove the Second Inequality in the case the K contains a primitive pth
root of 1, and L is a finite abelian extension of K of exponent p with Galois group
G. Let [L : K] = pr, so that G ≈ (Z/pZ)r . By Kummer theory (see the appendix to
this chapter),

L = K(a
1
p

1 , . . . , a
1
p
r ).

Let S be a finite set of primes of K such that

(a) S contains the infinite primes;
(b) S contains all divisors of p;
(c) S is so large that all ai are S-units.
(d) S contains a set of generators for the ideal class group of K, and so IK =

IK,S ·K× (see 4.2).

Note that, by (10.5), (b) and (c) imply that S contains all primes that ramify in
L.

As usual, we write U(S) for the group of S-units, i.e., the group of elements of K×

that are units for all primes outside S. Recall that the unit theorem says that

U(S) ≈ Zs−1 × U(S)tors, s = #S,

and U(S)tors is a finite cyclic group. In our case, the order of U(S)tors is divisible by
p (because it contains µp), and so

U(S)/U(S)p ≈ (Z/pZ)s.

Let M = K[U(S)
1
p ]. This is the Kummer extension corresponding to the group

U(S) ·K×p/K×p ≈ U(S)/U(S) ∩K×p = U(S)/U(S)p ≈ (Z/pZ)s.

We therefore have extensions

M
pt

⊃ L
pr

⊃ K, r + t = s.

Lemma 6.2. There exists a set of primes T of K, disjoint from S, such that
{(pv,M/K) | v ∈ T} is a basis for Gal(M/L) (regarded as an Fp-vector space).
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Proof. Note that if w′|v /∈ S, then Mw′ is an unramified extension of Kv. Hence
Gal(Mw/Kv) is cyclic, and it has exponent p (because it is a subgroup of Gal(M/K)).
Therefore it is either cyclic of order p or trivial. In particular, if Mw′ �= Lw, then
Lw = Kv.

According to (4.7), there is a finite set {w1, . . . , wt} of primes of L, none lying
over a prime in S, such that the Frobenius elements (pwi,M/L) form a basis for
Gal(M/L). Let vi be the prime of K lying under wi. Then, according to the above
observation, Lwi = Kvi , and therefore (pwi,M/L) = (pvi,M/K). We can take T to
be {v1, . . . , vt}.
Note that the order of T is t where pt = [M : L], and that for any w|v ∈ T ,

Lw = Kv.

Lemma 6.3. With the above notations,

L×p ∩ U(S) = {a ∈ U(S) | a ∈ K×p
v , all v ∈ T}.

Proof. ⊂: If a ∈ LHS, then it is in U(S) and it becomes a pth power in L.
Therefore it is a pth power in L×

w for all w, but if w|v ∈ T , then Lw = Kv, and so it
is a pth power in Kv.

⊃: If a ∈ U(S), then a
1
p ∈ M . If further a is a pth power in Kv for v ∈ T , then a

1
p

is fixed by (pv,M/K). Since these Frobenius elements generate Gal(M/L), a
1
p lies in

L, and so a ∈ Lp.

Lemma 6.4. The subgroup

E =
∏
v∈S

K×p
v × ∏

v∈T
K×
v × ∏

v/∈S∪T
Uv

of IK is contained in NmL/K(IL).

Proof. Let a = (av) ∈ E. We have to show that each component av of a is a
norm.

v ∈ S: From local class field theory, we know that

K×
v /NmL×

w
≈−→ Gal(Lw/Kv).

Because the second group is killed by p, so also must be the first group, which means
that K×p

v ⊂ NmL×
w .

v ∈ T : Here Lw = Kv, and so every element of Kv is a norm from Lw.

v /∈ S ∪T : Because Lw is unramified over Kv, the norm map Uw → Uv is surjective
(see III.2.2)

Now
(CK : NmCL) = (IK : K× · Nm IL),

which divides (IK : K×E), and so it remains to show that

(IK : K×E)|pr.
But IK = K× · IS = K× · IS⋃ T , and so

(IK : K×E) = (K×IS∪T : K×E).
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Lemma 6.5. Let A, B, and C be subgroups of some abelian group, and assume that
A ⊃ B. Then

(AC : BC)(A ∩ C : B ∩ C) = (A : B)

in the sense that, if two of the indexes are finite, so is the third, and the equality
holds.

Proof. In the following commutative diagram, the columns and the top two rows
are obviously exact, and it follows (from the snake lemma for example) that the
bottom row is exact. This implies the statement.

0 0 0
 
 

0 −−−→ B ∩ C −−−→ B −−−→ BC/C −−−→ 0
 
 

0 −−−→ A ∩ C −−−→ A −−−→ AC/C −−−→ 0
 
 

0 −−−→ A ∩ C/B ∩ C −−−→ A/B −−−→ AC/BC −−−→ 0
 
 


0 0 0

On applying the lemma with A = IS∪T , B = E, and C = K× we find that

(IK : K×E) =
(IS∪T : E)

(U(S ∪ T ) : K× ∩E)
.

Lemma 6.6. With the above notations:

(IS∪T : E) = p2s.

Lemma 6.7. With the above notations:

(U(S ∪ T ) : K× ∩E) = ps+t.

Since r + t = s, this will prove the boxed formula.

Proof. (of 6.6). Obviously (IS∪T : E) =
∏
v∈S(K×

v : K×p
v ). Since there are s

primes in S and K contains p distinct pth roots of 1, the next proposition shows that

(IS∪T : E) =
p2s∏

v∈S ‖p‖v
.

By assumption, S contains all the primes for which ‖n‖v �= 1, and so∏
v∈S

‖n‖v =
∏
all v

‖n‖v,

which equals 1 by the product formula.
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Proposition 6.8. Let K be a local field of characteristic zero, and let U be the
group of units in K. Then

(U : Un) =
(µn : 1)

|n| , (K× : K×n) = n
(µn : 1)

|n|
where µn is the group of nth roots of 1 in K×.

Proof. For an abelian group M , we write

hn(M) = (M : nM)/(Mn : 1), Mn = {x ∈ M | nx = 0}.
Then hn(M) is the Herbrand quotient of M regarded as a Z/nZ-module with trivial
action, and so we may apply the results in II.2.

As we saw in the proof of (III.3.3), the exponential map defines an isomorphism
from a subgroup of finite index in OK onto a subgroup of finite index in U . Therefore

hn(U) = hn(OK) = (OK : nOK)
df
= |n|−1.

Hence

(U : Un) =
(Un : 1)

|n|
and Un = µn. Since K× ≈ U × Z, we have

(K× : K×n) = (U : Un)(Z : nZ) =
#µn
‖n‖ n.

Proof. (of 6.7.) Clearly K× ∩ E ⊃ U(S ∪ T )p. It follows from the unit theorem
(as before) that (U(S ∪ T ) : U(S ∪ T )p) = ps+t, and so it remains to prove that

K× ∩ E ⊂ U(S ∪ T )p.

This is accomplished by the next two lemmas (the first shows that the second may
be applied to prove the inclusion).

Lemma 6.9. With the above hypotheses, the obvious map

U(S) −→ ∏
v∈T

Uv/U
p
v

is surjective.

Proof. Let H be the kernel of the map. To prove that the map is surjective, we
shall show that

(U(S) : H) =
∏
v∈T

(Uv : U
p
v ).

Because T is disjoint from S, ‖p‖v = 1 for all v ∈ T , and so (6.8) shows that the right
hand side is pt. On the other hand, by Lemma 6.3, H = U(S) ∩ L×p, and so

U(S)/H = U(S)/U(S) ∩ L×p ∼= U(S) · L×p/L×p.

This last group corresponds by Kummer theory (see 10.3) to the extension M/L, and
hence has order [M : L] = pt.
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Proposition 6.10. Let K be a number field containing a primitive nth root of 1.
Let S be a set primes containing the infinite primes, the divisors of n, and a set of
representatives of the ideal class group of K. Let T be a set of primes disjoint from
S and such that

U(S) −→ ∏
v∈T

Uv/U
n
v

is surjective. Suppose that b ∈ K× is an nth power in Kv for all v ∈ S and a unit
outside S ∪ T . Then b ∈ K×n.

Proof. Let L = K[b
1
n ]—we have to show that L = K. Put

D =
∏
v∈S

K×
v × ∏

v∈T
Unv × ∏

v/∈S∪T
Uv.

By Lemma 4.5, in order to show that L = K, it suffices to shows that

(a) D ⊂ NmL/K IL, and
(b) D ·K× = IK .

(a) Let d = (dv) ∈ D. We have to check that dv is a norm from Kv[b
1
n ] for all v.

v ∈ S: In this case Kv[b
1
n ] = Kv, and so every element of Kv is a norm.

v ∈ T : By local class field theory, the index (K×
v : NmKv[b

1
n ]×) is equal to the

degree [Kv[b
1
n ] : Kv], which divides n. Hence every nth power in Kv is a norm.

v /∈ S ∪ T : Because nb is a unit at v, the field Kv[b
1
n ] is unramified over Kv, and

hence every unit is a norm.

(b) Obviously IS/D =
∏
v∈S Uv/U

n
v , and by hypothesis U(S) → ∏

v∈S Uv/U
n
v is

surjective. Hence IS = D · U(S), and therefore

IK = IS ·K× = D · U(S) ·K× = D ·K×.

This completes the proof of Theorem 5.1 (the Second Inequality).

7. Application to the Brauer Group

Readers, especially those who skipped Chapter IV, may interprete the nota-
tion Br(L/K) as shorthand for H2(Gal(L/K), L×) and Br(K) as shorthand for
H2(Gal(Kal/K), Kal×).

Theorem 7.1. For any Galois extension L/K of number fields (possibly infinite),
the canonical map

Br(L/K) → ⊕v Br(Lv/Kv)

is injective.

Proof. Assume initially that L/K is a finite Galois extension with Galois group
G. Because H1(G,CL) = 0, the cohomology sequence of

0 −→ L× −→ IL −→ CL −→ 0

is
0 −→ H2(G,L×) −→ H2(G, IL) −→ · · · .
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But
H2(G,L×) = Br(L/K)

and (see 2.5)
H2(G, IL) = ⊕H2(Gv, Lv×) = ⊕Br(Lv/Kv),

and so this proves the theorem in this case. To obtain the theorem for an infinite
extension, pass to the limit over the finite Galois subextensions.

An extension L/K of fields is said to be cyclotomic if L ⊂ K[ζ] for some root ζ of
1. The next proposition will play a role in the proof of the global reciprocity law

Proposition 7.2. For any β ∈ Br(K), there exists a cyclic cyclotomic extension
L of K such that β maps to zero in Br(L).

Proof. The theorem shows that β is determined by its images in Br(Kv), and
hence by the invariants invv(βv) ∈ Q/Z (see Theorem III.1.1). For any finite extension
L of K and prime w|v of L, invw(β|L) = [Lw : Kv] · invv(β) (ibid.), and so we have
to find a cyclic cyclotomic extension L/K such that

[Lv : Kv] · invv(βv) = 0 mod Z

for all v. Note that, because Br(L/K) maps into the direct sum of the local Brauer
groups, invv(βv) = 0 for almost all v. Hence there exists an integer m such that
m invv(βv) = 0 for all v. The existence of an L with the correct properties is ensured
by the next lemma.

Lemma 7.3. Given a number field K, a finite set S of finite primes of K, and an
integer m > 0, there exists a totally complex cyclic cyclotomic extension L of K such
that m|[Lv : Kv] for all v ∈ S.

Proof. It suffices to prove this for Q and m · [K : Q]. Hence we can simply assume
K = Q.

Let @ be a prime, and let ζ be a primitive @rth root of 1 with r > 2. Then
Gal(Q[ζ]/Q) ∼= (Z/@rZ)×, and

(Z/@rZ) ≈
{

∆× C(@r−2) @ odd
∆×C(2r−3) @ = 2

where ∆ is of order @− 1 and 2 in the two cases and C(t) denotes a cyclic group of

order t (Serre 1970, Cours..., II.3.2). Therefore L(@r)
df
= Q[ζ]∆ is a cyclic cyclotomic

extension of Q of degree @r−2 or @r−3.
Next consider Qp[ζ]. If p = @, then Q[ζ] is totally ramified over p, and so [Qp[ζ] :

Qp] = [Q[ζ] : Q] = ϕ(@r). If p �= @, then Q[ζ] is totally unramified over p, and
[Qp[ζ] : Qp] is the smallest integer t such that @r|pt − 1. In either case, we see that
[Qp[ζ] : Qp] → ∞ as r → ∞. Thus, for any p, [L(@r)p : Qp] is a power of @ that tends
to ∞ as r tends to ∞.

A product of cyclic groups of distinct prime power orders is again cyclic. Therefore,
for distinct primes @1, . . . , @s, L = L(@r11 ) · · ·L(@rss ) will be cyclic, and clearly, by
choosing @r11 . . . @rss to be sufficiently large, we can ensure that the local degrees m|[Lp :
Qp] are divisible by m for all p ∈ S.

In more concrete terms, the two results say that:
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If a central simple algebra over K splits over Kv for all v, then it splits
over K.

and

Every central simple algebra over K splits over a cyclic cyclotomic
extension of K.

8. Completion of the Proof of the Reciprocity Law

Recall that, for a finite abelian extension L/K of number fields with Galois group
G, we have defined a homomorphism φL/K : IK → G such that φL/K(a) =

∏
v φv(av).

Theorem 8.1. (a) Let L/K be a finite abelian extension of number fields.
Then φL/K takes the value 1 on the principal idèles K× ⊂ IK .

(b) Let L/K be a finite Galois extension of number fields. Then
∑

invv(α) = 0
for all α ∈ Br(L/K).

Before proving this theorem, we explain why (a) implies the Reciprocity Law for
L/K. Statement (a) says that φL/K : IK → Gal(L/K) contains K× in its kernel.
We know already that it contains NmL/K(IL) in its kernel2, and therefore it defines a
homomorphism

IK/K× · NmL/K IL → Gal(L/K) (∗).
For any finite prime v of K unramified in L, φL/K maps the idèle with a prime
element in v-position to the Frobenius element (pv, L/K), and so (4.7) shows that
φL/K is surjective. On the other hand, the Second Inequality (5.1) states that

(IK : K× · NmL/K IL) ≤ [L : K]

and so the homomorphism (∗) is an isomorphism.

Example 8.2. We verify (8.1a) for the extension Q[ζm]/Q, where ζm a primitive
mth root of 1. We identify Gal(Q[ζm]/Q) with (Z/mZ)×. Thus, for n an integer
relatively prime to m, [n] denotes the automorphism of Q[ζm] sending ζm to ζnm. It
suffices to show that φ(a)|Q[ζ)r] = 1 for all @|m. Thus, we may assume that m = @r,
m �= 2.

The homomorphism φ∞ : R×/Nm(C×) → Gal(Q[ζm]/Q) sends any negative real
number to complex conjugation. Therefore φ∞(a) = [sign(a)].

Let a = ups ∈ Q×
p . If p �= @, then p is unramified in Q[ζm], and φp(a) acts as the

sth power of the Frobenius at p:

φp(up
s) = [ps].

The prime @ is totally ramified in Q[ζm] and

φ)(a) = [u−1]

(see I.3.13)

2Because this is true locally.
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It suffices to show that φ(a) = 1 in the three cases: a = −1, a = @, a = a prime
q �= @. We have:

φp(−1) =


[−1] if p = ∞
[−1] if p = @
[1] if p �= @,∞.

φp(@) =

{
[1] if p = @
[1] if p �= @

φp(q) =


[q] if p = q

[q−1] if p = @
[1] if p �= @, q.

In each case,
∏

φp(a) = 1.

Remark 8.3. In Example V.4.10, we showed that the homomorphism φ : IQ →
Gal(Q[ζm]/Q) attached to the Artin map φ : C∞(m) → Gal(Q[ζm]/Q) has local com-
ponents equal to the local Artin maps. Since, by definition, φ(Q×) = 1, this gives an
alternative proof of (8.1a) in the case Q[ζm]/Q.

Lemma 8.4. (a) If ( 8.1a) holds for L/K, then it holds for any subextension.
(b) If ( 8.1a) holds for L/K, then it holds for L · K ′/K ′ for any number field

K ′ ⊃ K.

Proof. (a) Suppose L ⊃ K ′ ⊃ K. Then φK′/K is the composite of φL/K and
the restriction map Gal(L/K) → Gal(K ′/K) (because this is true for the local Artin
maps).

(b) Let L′ = L ·K ′. For each prime w of K ′, we have a commutative diagram

K ′×
w

φw−−−→ Gal(L′w/K ′
w)
Nm 
inclusion

K×
v

φv−−−→ Gal(Lv/Kv).

On combining them, we get a commutative diagram:

I′K
φL′/K′−−−−→ Gal(L′/K ′)
Nm 
inclusion

IK
φL/K−−−→ Gal(L/K).

Because the norm map on idèles carries K× into Q×, we see that this lemma follows
from the previous one.

From the example and the lemma, we find that (8.1a) holds for all cyclotomic
extensions3 of a number field K.

We next need to relate the two statements in Theorem 8.1.

Lemma 8.5. Let L/K be an abelian extension of number fields. If ( 8.1b) holds for
L/K, then so also does ( 8.1a). Conversely, if L/K is cyclic and ( 8.1a) holds for
L/K, then so also does ( 8.1b).

3An extension L/K is said to be cyclotomic if L ⊂ K[ζ] for some root ζ of 1.
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Proof. Let χ ∈ Hom(G,Q/Z). We can regard χ as an element of H1(G,Q/Z),
and then its image under the boundary map arising from the sequence

0 → Z → Q → Q/Z → 0

is an element δχ ∈ H2(G,Z). Consider the diagram:

K× −−−→ IK
φL/K−−−→ G
∪δχ 
∪δχ 
χ

H2(G,L×) −−−→ H2(G, IL) −−−→ Q/Z.

The first two vertical arrows are cup-product by δχ: if δχ is represented by the 2-
cocycle nσ,τ then the image of x is represented by the 2-cocycle σ, τ �→ xnσ,τ . Clearly,
the left-hand square commutes. The right-hand vertical map is χ itself. That the
right hand square commutes follows from (III.4.1). Now assume 8.1b is true for
L/K. Then χ(φL/K(a)) = 0 for all characters χ of G, and so φL/K(a) itself is zero.
Conversely, when G is cyclic, we can choose χ to be injective, and then (a) implies
(b).

Since we know 8.1a for cyclotomic extensions, it follows that we know 8.1b for
cyclic cyclotomic extensions. Moreover, we will have proved the whole theorem once
we have proved (b) of the theorem. Thus, the next result completes the proof of the
theorem

Lemma 8.6. If ( 8.1b) is true for cyclic cyclotomic extensions, then it is true for
all finite Galois extensions.

Proof. Let β ∈ Br(K). We are given that, if β ∈ Br(L/K) for some cyclic
cyclotomic extension L/K, then

∑
invv(β) = 0, where βv is the image of β in Br(Kv),

but Proposition 7.2 says that every β in Br(K) lies in Br(L/K) for some cyclic
cyclotomic extension L/K.

9. The Existence Theorem

In this section we prove the Existence Theorem: every open subgroup of finite index
in the idèle class group is a norm group. A large part of the proof can be extracted
from Section 6. However, at the cost of some repetition, I give a proof independent
of Section 6 (except for some elementary statements).

Lemma 9.1. If U is a norm group, and V ⊃ U , then V also is a norm group.

Proof. Suppose U = NmCL. According to the Reciprocity Law, the Artin map
defines an isomorphism

φ : CK/U −→ Gal(L/K).

If M is the fixed field of φ(V ), then φ defines an isomorphism

CK/V −→ Gal(M/K),

but, according to the Reciprocity Law, the kernel of φ : CK → Gal(M/K) is
NmM/K CM .
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It is obvious from its factorization into primes, that a rational number a is an nth
power if and only if it is an nth power in R and in Qp for all primes p|a. The proof of
the analogous statement for number fields requires the Reciprocity Law (or complex
analysis).

Proposition 9.2. Let K be a number field containing a primitive nth root of 1,
and let S ⊃ S∞ be a finite set of primes of K containing all those dividing n and
enough primes to generate the class group of K. Any a ∈ K× such that

a is an nth power in Kv for all v ∈ S;
a is a unit in Kv for all v /∈ S.

is an nth power in K.

Proof. Let L = K[a1/n]—because ζn ∈ K, this is an abelian extension of K. For
any prime v ∈ S, Xn − a splits completely in Kv[X], and so Lw = Kv for all w|v.
Hence the norm map L×

w → K×
v is onto. On the other hand, L is unramified over

K at any prime v /∈ S, and so the norm map NmL/K : Uw → Uv is onto. Therefore,
NmL/K(IL) ⊃ IS , and so

K× · NmL/K(IK) ⊃ K× · IS = IK .

The Reciprocity Law now shows that L = K, and so a is an nth power in K.

Lemma 9.3 (Key case of the Existence Theorem). Let K be a number
field containing a primitive pth root of 1 (p prime). Then every open subgroup V
of CK such that CK/V is a finite group killed by p is a norm group.

Proof. Let S ⊃ S∞ be a finite set of primes of K containing the infinite primes,
those dividing p, and enough primes so that IK = K× · IS. Let L be the extension

of K corresponding by Kummer theory to the group U(S) ·K×p, i.e., L = K[U(S)
1
p ],

and let
E =

∏
v∈S

K×p
v × ∏

v/∈S
Uv.

We shall prove that K× · E = K× · Nm(IL) by verifying that

(a) E ⊂ Nm(IL);
(b) (IK : K× · E) = ps = (IK : K× ·NmL/K(IL)).

For any prime v of K and prime w of L lying over it, the local Artin map is an
isomorphism

K×
v /Nm(L×

w) → Gal(Lw/Kv).

Because L/K is has exponent p, Nm(L×
w) ⊃ K×p

v .

For any prime v ∈ S, L is unramified overK and v, and so the norm map Uw → Uv
is onto.

On combining the statements in the last two paragraphs, we obtain (a).

From the Reciprocity Law,

(IK : K× · Nm(IL)) = [L : K],

and from Kummer theory,

[L : K] = (U(S) ·K×p : K×p).
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But
U(S) ·K×p/K×p ≈ U(S)/U(S) ∩K×p.

If ap ∈ U(S), then a ∈ U(S), and so U(S) ∩ K×p = U(S)p. Now, by the Dirichlet
Unit Theorem (Math 676, 5.9),

U(S) ≈ U(S)torsion⊕ Zs−1,

and U(S)torsion is the group of roots of 1 in K, which is a cyclic group whose order is
divisible by p. Hence (U(S) : U(S)p) = ps.

On the other hand,

(IK : K× · E) = (IS ·K× : E ·K×),

which, by (6.5), equals
(IS : E)/(IS ∩K× : E ∩K×).

Therefore (see 6.8),

(IS : E) =
∏
v∈S

(K×
v : K×p

v ) =
∏
v∈S

p

|p|v p = p2s.

Here, we have used that K contains a primitive pth root of 1 and that S contains all
v for which |p|v �= 1, and so

∏
v∈S |p|v =

∏
all v |p|v = 1 by the product formula. It

follows that K× · E = K× · Nm IL.
Now let V be an open subgroup of CK such that CK/V is killed by p, and let U

be the inverse image of V in IK . Then U is open in IK and so there is a finite set of
primes S such that U ⊃ ∏

v∈S 1×∏v/∈S Uv. Moreover, IK/U has exponent p, and so
U ⊃ IpK . Hence U ⊃ E ·K×, and because E ·K×/K× is a norm group, so also must
be U/K× = V .

For simplicity, in the proof of the next lemma, we assume the Norm Limitation
Theorem, which is not proved until the next chapter. For a proof avoiding that
theorem, see p202 of Tate’s article in Cassels and Fröhlich, 1967.

Lemma 9.4. Let U be an open subgroup of finite index in CK . If there exists a
finite extension K ′/K such that Nm−1

K′/K(U) is a norm group, then so also is U .

Proof. Write U ′ for Nm−1
K′/K(U), and let L be the abelian extension of K ′ with

NmCL = U ′. If M is the maximum abelian subextension of L/K, then we have

NmM/KCM = NmL/K CL = NmK′/K U ′ ⊂ U

and we can apply Lemma 9.1.

Theorem 9.5. Every subgroup U of finite index in CK is a norm group.

Proof. We prove this by induction on the index of U . If the index is 1, then
there is nothing to prove. Otherwise, there exists a prime p dividing (CK : U). After
(9.4) we may assume that K contains a pth root of 1. Choose a subgroup U1 of CK

containing U and of index p in CK . After (9.3), there exists an abelian extension
K ′ of K such that NmK′/K IK′ = U1; moreover K ′ is cyclic of degree p over K. Put

U ′ = Nm−1
K′/K U . The map

NmK′/K : CK′ −→ CK/U
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has image U1/U and kernel U ′. Hence

(CK′ : U ′) = (CK : U)/p

and so, by induction, U ′ is a norm group. Now we can apply (9.4) to deduce that U
is a norm group.

10. Appendix: Kummer theory

Throughout this subsection, K is a field containing a primitive nth root of 1, ζ. In
particular, K either has characteristic 0 or characteristic p not dividing n. Write µn
for the group of nth roots of 1 in K. Then µn is a cyclic subgroup of K× of order n
with generator ζ.

Consider a field L = K[α] generated by an element α whose nth power is in K.
Then α is a root ofXn−a, and the remaining roots are the elements ζ iα, 1 ≤ i ≤ n−1.
Since these are all in L, L is a Galois extension of K, with Galois group G say. For
any σ ∈ G, σα is also a root of Xn−a, and so σα = ζ iα for some i. Hence σα/α ∈ µn.
The map

σ �→ σα/α : G −→ µn

doesn’t change when α is replaced by a conjugate, and it follows that the map is a
homomorphism: στα

α
= σ(τα)

τα
τα
α
. Because α generates L/K, the map is injective. If

it is not surjective, then G maps into a subgroup µd of µn, some d|n, d < n. In this
case, (σα/α)d = 1, i.e., σαd = αd, for all σ ∈ G, and so αd ∈ K. Thus the map is
surjective if n is the smallest positive integer such that αn ∈ K. We have proved the
first part of the following statement.

Proposition 10.1. Let L = K[α] where αn ∈ K and no smaller power of α is in
K. Then L is a Galois extension of K with cyclic Galois group of order n. Conversely,
if L is cyclic extension of K of degree n, then L = K[α] for some α with αn ∈ K.

Proof. It remains to prove the second statement. Let σ generate G and let ζ
generate µn. It suffices to find an element α ∈ L× such that σα = ζ−1α, for then
αn ∈ K, and αn is the smallest power of α that lies in K. According to the Normal
Basis Theorem (II.1.24), there exists an element γ ∈ L such that {γ, σγ, . . . , σn−1γ}
is a basis for L/K as a K-vector space. Form the sum

α =
∑

ζ iσiγ.

Then α �= 0 because the σiγ are linearly independent and the ζ i ∈ K, and σα =
ζ−1α.

Proposition 10.2. Two cyclic extensions K[a
1
n ] and K[b

1
n ] of K of degree n are

equal if and only if a = brcn for some r ∈ Z relatively prime to n and some c ∈ K×,
i.e., if and only if a and b generate the same subgroup of K×/K×n.

Proof. Only the “only if” part requires proof. We are given that K[α] = K[β]
with αn = a and βn = b. Let σ be the generator of the Galois group with σα = ζα,
and let σβ = ζ iβ, (i, n) = 1. We can write

β =
n−1∑
j=0

cjα
j, cj ∈ K,
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and then

σβ =
n−1∑
j=0

cjζ
jαj.

On comparing this with σβ = ζ iβ, we find that ζ icj = ζjcj for all j. Hence cj = 0 for
j �= i, and therefore β = ciα

i.

The last two results give us a complete classification of the cyclic extensions of K
of degree n (recall that we are assuming K contains a primitive nth root of 1). It is
not difficult to extend this to a classification of all abelian extensions of exponent n.
(We say that a group G has exponent n if σn = 1 for all σ ∈ G. A finite abelian group
of exponent n is isomorphic to a subgroup of (Z/nZ)r for some r.)

Let L/K be a finite Galois extension with Galois group G. From the exact sequence

1 −→ µn −→ L× x �→xn−−−→ L×n −→ 1

we obtain a cohomology sequence

1 −→ µn −→ K× x �→xn−−−→ K× ∩ L×n −→ H1(G, µn) −→ 1.

The 1 at the right is because of Hilbert’s Theorem 90. Thus we obtain an isomorphism

K× ∩ L×n/K×n −→ Hom(G, µn).

This map can be described as follows: let a be an element of K× that becomes an nth

power in L, say a = αn; then a maps to the homomorphism σ �→ σα
α
. If G is abelian

of exponent n, then
#Hom(G, µn) = (G : 1).

Theorem 10.3. The map

L �→ K× ∩ L×n/K×n

defines a one-to-one correspondence between the finite abelian extensions of K of
exponent n contained in some fixed algebraic closure Ω of K and the finite subgroups
B of K×/K×n. The extension corresponding to B is K[B

1
n ], the smallest subfield of

Ω containing K and an nth root of each element of B. If L ↔ B, then [L : K] = (B :
K×n).

Proof. For any finite Galois extension L of K, define B(L) = K× ∩ L×n. Then

L ⊃ K[B(L)
1
n ], and for any group B containing K×n as a subgroup of finite index,

B(K[B
1
n ]) ⊃ B. Therefore,

[L : K] ≥ [K[B(L)
1
n ] : K] = (B(K[B(L)

1
n ]) : K×n) ≥ (B(L) : K×n).

If L/K is abelian of exponent n, then [L : K] = (B(L) : K×n), and so equalities hold

throughout: L = K[B(L)
1
n ].

Next consider a group B containing K×n as a subgroup of finite index, and let
L = K[B

1
n ]. Then L is a composite of the extensions K[a

1
n ] for a running through

a set of generators for B/K×n, and so it is a finite abelian extension of exponent n.
Therefore

a �→ (σ �→ σa
1
n

a
) : B(L)/K×n → Hom(G, µn), G = Gal(L/K),
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is an isomorphism. This map sends B/K×n isomorphically onto the subgroup

Hom(G/H, µn) of Hom(G, µn) where H consists of the σ ∈ G such that σa
1
n/a = 1

for all a ∈ B. But such a σ fixes all a
1
n for a ∈ B, and therefore is the identity

automorphism on L = K[B
1
n ]. This shows that B(L) = B, and hence L �→ B(L) and

B �→ K[B
1
n ] are inverse bijections.

Example 10.4. (a) The quadratic extensions of R are in one-to-one correspon-
dence with the subgroups of R×/R×2 = {±1}.
(b) The finite abelian extensions of Q of exponent 2 are in one-to-one correspon-

dence with the finite subgroups of

Q×/Q×2 ≈ {±1} × Z/2Z × Z/2Z × · · ·
(copies of Z/2Z indexed by the prime numbers).

After this excursion into algebra, we return to some number theory.

Proposition 10.5. Let K be a number field (containing a primitive nth root of 1,

as always in this subsection), and let L = K[a
1
n
1 , · · · , a

1
n
n ]. Then L is unramified at a

finite prime v of K if nai is a unit in Kv for all i.

Proof. We need only consider a cyclic extension K[a
1
n ], which (see 10.1) we can

assume to have degree n. Let α = a
1
n and f = Xn − a. Then

disc f = ±NmL/K f ′(α) = ±NmL/K nαn−1 = ±nnan−1.

Thus if pv does not divide na, it does not divide disc f , and, a fortiori, it does not
divide disc(OL/OK). (See Math 676, 2.33, 2.22.)

Remark 10.6. Determining the ramification in K[a
1
n ]/K at prime p dividing n

can be quite complicated. The following summarizes what happens when n = p, a
prime, and K contains a primitive pth root ζ of 1. Let π = ζ − 1, and let a ∈ K× be
relatively prime to p and not a pth power in K.

(a) A prime p|p splits completely in the extension K[a
1
p ]/K if and only if Xp ≡ a

mod pπp has a nonzero solution in OK (a is then said to be hyperprimary at
p).

(b) A prime p|p is unramified in the extension K[a
1
p ]/K if and only if Xp ≡ a

mod pπ has a nonzero solution in OK (a is then said to be primary at p).

(c) The extension K[a
1
p ]/K is unramified at all finite primes of K if and only if

a is primary and (a) = ap for some ideal a.

For hints of proofs of these statements, see L. Washington, Introduction to Cyclotomic
Fields, Springer, 1982/1997, Exercise 9.3, and Cassels and Fröhlich 1967, Exercise
2.12, p353. In the case K = Q[ζ], see also J. Cassels, Local Fields, Cambridge, 1986,
pp 139–140, and A. Fröhlich and M. Taylor, Algebraic Number Theory, Cambridge,
1991, III.3.11.
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CHAPTER VIII

Complements

In this Chapter, we add some complements to the theory of class fields, and we give
some applications. In particular, we extend all results proved in Serre, Cours..., 1970,
Chapters I–IV, VI to arbitrary number fields.

1. The Local-Global Principle

The local-global (or Hasse) principle asks whether a statement is true over a number
field K whenever it is true over each of the completions of K. In this section, we give
three cases where class field theory allows us to prove that the principle holds.

nth Powers.

Theorem 1.1. Let K be a number field containing a primitive nth root of 1, and
let S be a finite set of primes of K. An element a of K× is an nth power in K if and
only if it is an nth power in Kv for all primes v.

Proof. Only the sufficiency needs to be proved. Consider L = K[a
1
n ]. This is an

abelian extension of K, and a prime v splits in L if and only if a is an nth power in
Kv. Therefore, every prime not in S splits in L, and Proposition VII.4.6 implies that
L = K.

Remark 1.2. (a) If we use (VI.3.4) rather than (VII.4.6), we obtain the stronger
result: under the hypothesis of the theorem, a is an nth power in K if it an nth power
in Kv for all v in a set of density > 1/2.

(b) In 1933, Grünwald proved Theorem 1.1 without the assumption that K con-
tain a primitive nth root of 1 (Grünwald’s theorem). In 1942, Whaples gave an-
other proof of Grünwald’s theorem. Then in 1948, Wang gave a counterexample to
Grünwald’s theorem (see the exercise below), and later gave a proof of a corrected
theorem (Grünwald-Wang theorem). The correct theorem states:

Let K be a number field, and let n be a positive integer. Let a ∈ K×,
and suppose that a ∈ K×n

v for all but finitely many primes v. Then at
least one of the following is true:
(a) a ∈ K×n;
(b) n = 2tn′ for some odd n′, Gal(K[ζ2t ]/K) is not cyclic, and a2 ∈

K×n.

See Cassels, Local Fields, 1968, Exercise on p248, and Artin and Tate 1951/52, p96.
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Example 1.3. Show that 16 is an 8th power in R and Qp for all odd p (but not in

Q). (Hint: Show that Q[ζ8] = Q[i,
√
2] is unramified at all odd p, and deduce that,

for p odd, Qp contains at least one of 1 + i,
√
2, or

√−2.)

Norms.

Theorem 1.4. Let L/K be a cyclic extension of number fields, and let a ∈ K×.
Then the image of a in Kv is a norm from Lv for all but finitely many v, and if it is
a norm for all v, then it is a norm in K.

Proof. According to Theorem VII.5.1,H1(G,CL) = 0. Because of the periodicity
of the cohomology of cyclic groups, this implies thatH−1

T (G,CL) = 0. Therefore, from
the cohomology sequence of

1 → L× → IL → CL → 0

we find that

H0
T (G,L×) → H0

T (G, IL)
is injective. But (see VII.2.5), this is

K×/Nm(L×) → ⊕vK×
v /Nm(Lv×).

Remark 1.5. The proof fails for noncyclic extension, and, in fact, the statement
is not true for noncyclic extensions. For example, 2 is a local norm from Q[

√
13,

√
17]

at all primes but is not a global norm.

Quadratic Forms. Recall that a quadratic form on a vector space V over a field
k is a map Q : V → k such that

(a) Q(av) = a2Q(v);

(b) B(v, w)
df
= Q(v + w)−Q(v)−Q(w) is a bilinear form on V .

The quadratic form Q is said to be nondegenerate if its associated bilinear form B is
nondegenerate. Let c ∈ k. A nondegenerate quadratic form Q is said to represent c
if there exists a nonzero v ∈ V such that Q(v) = c.

Lemma 1.6. If a nondegenerate quadratic form Q represents 0, then it represents
all c ∈ k.

Proof. Note that, for t ∈ k,

Q(tv + w) = t2Q(v) + tB(v, w) +Q(w).

If v0 is a nonzero vector such that Q(v0) = 0, then, because B is nondegenerate, there
exists a vector w0 such that B(v0, w0) �= 0. As t runs through all values of k, so also
does Q(tv0 + w0) = tB(v0, w0) +Q(w0).

When k has characteristic �= 2, there exists a basis {e1, . . . , en} for V such that
B(ei, ej) = 0 for i �= j. Then

Q(
∑

xiej) =
n∑
i=1

aix
2
i , n = dimV.
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Henceforth, we shall write the quadratic form as

q(X1, . . . , Xn) = a1X
2
1 + · · ·+ anX

2
n,

and keep in mind that an invertible change of variables will change none of our
statements.

Lemma 1.7. A nondegenerate quadratic form q(X1, . . . , Xn) represents a if and

only if r
df
= q − aY 2 represents 0.

Proof. If q(x1, . . . , xn) = a, the r(x1, . . . , xn, 1) = 0. Conversely, suppose
r(x1, . . . , xn, y) = 0. If y = 0, then q represents 0 and hence represents every el-
ement in k. If y �= 0, then q(x1

y
, · · · , xn

y
) = q(x1, . . . , xn)/y

2 = a.

Theorem 1.8. Let q be a nondegenerate quadratic form in n variables with coeffi-
cients in a number field K.

(a) If n ≥ 3, then q represents 0 in Kv for all but finitely many v.
(b) The form q represents 0 in K if it represents 0 in Kv for all v.

Before beginning the proof, we note a consequence.

Corollary 1.9. Let c ∈ K. A nondegenerate quadratic form q with coefficients
in K represents c in K if and only if it represents c in Kv for all v.

Proof. Let r = q − cY 2. Then r represents 0 if and only if q represents c.

We begin the proof with a purely algebraic result.

Proposition 1.10. Let k be a field of characteristic �= 2.

(a) The form q = X2 does not represent 0.
(b) The form q = X2 − aY 2 represents 0 if and only if a is a square.
(c) The form q = X2− aY 2− bZ2 represents 0 if and only if b is a norm from the

field k[
√
a].

(d) The form q = X2 − bY 2− cZ2+ acT 2 represents 0 in k if and only if c, as an
element of k[

√
ab], is a norm from k[

√
a,
√
b].

Proof. (a) This is obvious.

(b) According to Lemma 1.7, X2− aY 2 represents 0 if and only if X2 represents a.

(c) According to 1.7, X2−aY 2−bZ2 represents 0 if and only if X2−aY 2 represents
b, i.e., if and only if b is a norm from k[

√
a].

(d) Clearly,

q(x, y, z, t) = 0 ⇐⇒ c =
Nmk[

√
b]/k(x+

√
by)

Nmk[
√
a]/k(z +

√
at)

.

Because the inverse of a norm is also a norm, this shows that q represents zero if and
only if c is the product of norm from k[

√
a] and a norm from k[

√
b]. Thus (d) follows

from the next lemma.

Lemma 1.11. Let k be a field of characteristic �= 2. An element c ∈ k× is the
product of a norm from k[

√
a] and a norm from k[

√
b] if and only if, as an element

of k[
√
ab], it is a norm from L = k[

√
a,
√
b].
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Proof. We leave the degenerate cases, in which one of a, b, or ab is a square in
k to the reader. Thus, we may suppose that Gal(k[

√
a,
√
b]/k) = {1, σ, τ, στ} where

each of σ, τ , and στ is of order 2, and fix respectively
√
a,

√
b, and

√
ab. The first

condition asserts,

(∗) There exist x, y ∈ k[
√
a,
√
b] such that σx = x, τy = y, and xy ·

στ (xy) = c.

and the second asserts,

(∗∗) There exists z ∈ k[
√
a,
√
b] such that z · στ (z) = c.

Clearly, (∗) =⇒ (∗∗). For the converse, note that

z · σz = Nmk[
√
a,
√
b]/k[

√
a] z ∈ k[

√
a].

Moreover,

Nmk[
√
a]/k(z · σz) = z · σz · τz · στz ∈ k.

As z · στz = c ∈ k, this implies that σz · τz ∈ k, and so

σz · τz = σ(σz · τz) = z · στz = c.

Therefore,
Nmk[

√
a]/k(z · σz) = c2.

Now Hilbert’s theorem 90 (II.1.22), applied to z · σz/c ∈ k[
√
a], shows that there

exists an x ∈ k[
√
a]× such that τx/x = z · σz/c. Let y = στz/x. Then

τy = σz/τx = c/z · x = z · στz/z · x = y

(use: definition of y; definition of x; definition of z; definition of y) and

xy · στ (xy) = στz · στ (στz) = στz · z = c

(use: definition of y; (στ )2 = 1; definition of z) as required.

Proof of (a) of the Theorem. If q = q1(X1, . . . , Xm) + q2(Xm+1, . . . , Xn) and
q1 represents zero, then so also does q. Therefore, it suffices to prove (1.8a) for
a quadratic form in 3 variables. After multiplying q by a nonzero scalar, we may
suppose q = X2 − aY 2 − bZ2, and for such a quadratic form, the statement follows
from (1.10) and Theorem 1.4. �
Proof of (b) of the TheoremWe prove this by induction on the number n of variables.

When n = 1, there is nothing to prove, because the hypothesis is never fulfilled.

When n = 2, then, after multiplying q by nonzero scalar, we may suppose that
q = X2 − aY 2, and for such a quadratic form, the statement follows from (1.10) and
Theorem 1.1.

When n = 3, 4 the statement follows in a similar fashion from (1.10c,d) and Theo-
rem 1.1.

Before proving the general case, we make some elementary observations.

(a) A nondegenerate quadratic form q1(X1, . . . , Xm) − q2(Xm+1, . . . , Xn) repre-
sents 0 in a field k if and only if there is a c ∈ k such that both q1 and q2
represent c.

(b) If q represents c in k×, then q represents every element in the coset c · k×2.
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(c) The subgroup K×2
v of K×

v is open. When v is real or complex, this is obvious.
When v is nonarchimedean, Newton’s Lemma (Math 676, 7.23) shows that 1
can be refined to a root of X2 − a for any a with |1− a|v < |2|2v.

On combining (b) and (c), we see that a quadratic form q with coefficients in Kv

represents the elements in a nonempty open subset of K×
v .

Assume now that n ≥ 5 and that Theorem 1.4b has been proved for n − 1. Let

q(X1, . . . , Xn) = aX2
1 + bX2

2 − r(X3, . . . , Xn), n− 2 ≥ 3.

From (a) of the theorem, we know that, except for v in a certain finite set S, R
represents 0 in Kv. Let v ∈ S. Because q represents 0 in Kv, there exists an element
cv ∈ K×

v that is represented by both aX2
1 + bX2

2 and r, i.e., there exist xi(v) ∈ Kv

such that

ax1(v)
2 + bx2(v)

2 = cv = r(x3(v), . . . , xn(v)).

Now apply the weak approximation theorem, to find elements x1, x2 ∈ K that are
close to x1(v), x2(v) in Kv for all v ∈ S. Then

c
df
= ax21 + bx22

will be close to cv for each v ∈ S; in particular, we may suppose that c/cv ∈ K×2
v for

all v ∈ S.

Consider the quadratic form cY 2 − r. It represents 0 in Kv for v /∈ S because r
represents zero in Kv, and it represents 0 in Kv for v ∈ S because r represents c in
Kv. By induction, cY 2 − r represents zero in K. It follows that q represents 0 in K
because each of aX2

1 + bX2
2 and r represents c in K. �

Proposition 1.12. A nondegenerate quadratic form q in 4 variables over a finite
extension K of Qp represents every nonzero element of K×.

Proof. If q represents 0, then it represents every element of K. We assume the
contrary. After multiplying q by a nonzero element of K, we may suppose that

q = X2 − bY 2 − cZ2 + acT 2.

Because q does not represent 0 in K, neither b nor a is a square.

If K[
√
a] �= K[

√
b], then (by local class field theory, Theorem I.1.1), Nm(K[

√
a]×)

and Nm(K[
√
b]×) are distinct subgroups of index 2 in K×2, and therefore K× =

Nm(K[
√
a]×) · Nm(K[

√
b]×). Since the inverse of a norm is also a norm, this means

that we can write c as

c =
x2 − by2

z2 − at2
,

some x, y, z, t ∈ K. On multiplying out, we find that q represents 0, contradicting
our assumption. Therefore K[

√
a] = K[

√
b], and a = b× (square) (see VII.10.1). The

square may be absorbed into the T 2, and so we may write

q = X2 − bY 2 − cZ2 + bcT 2.

Consider the quaternion algebra H(b, c) (see IV.5.1). For

α = x+ yi+ zj + tk
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we define

ᾱ = x− yi− zj − tk

so that

Nm(α)
df
= αᾱ = x2 − by2 − cz2 + bct2.

The map α �→ Nm(α) : H(b, c)× → K× is a homomorphism, which we must show to
be surjective.

For any α ∈ H(b, c),

Pα(X)
df
= (X − α)(X − ᾱ) = X2 − (α+ ᾱ)X +Nm(α) ∈ K[X].

Therefore, Pα(X) is the characteristic polynomial of α in the extension K[α]/K. In
particular,

Nm(α) = NmK[α]/K(α).

Now (see IV.4.4), H(b, c) contains copies of every quadratic extension of K, for ex-
ample, the unramified quadratic extension of K and a totally ramified quadratic ex-
tension of K. Therefore Nm(H(b, c)×) contains the norm groups of these two distinct
quadratic extensions, and so (as above) equals K×.

Corollary 1.13. Every nondegenerate quadratic form q in ≥ 5 variables over a
finite extension of Qp represents 0.

Proof. We can write q = r(X1, . . . , X4) − aX2
5 + q′(X6, . . . ), where r is a non-

degenerate quadratic form in 4 variables and a �= 0. Then r represents a and so q
represents 0.

Corollary 1.14. A nondegenerate quadratic form q in ≥ 5 variables over a num-
ber field K represents 0 if and only if it represents 0 in every real completion of
K.

Proof. Combine (1.13) with (1.8).

Remark 1.15. The proof of Proposition 1.12 also for K = R down to the last step:
the only quadratic extension of R is C, and so

Nm(H(b, c)×) = Nm(C×) = R>0.

It shows therefore, that a nondegenerate form in 4 variables over R that does not
represent zero represents all strictly positive real numbers.

2. The Fundamental Exact Sequence and the Fundamental Class

For a Galois extension L/K, we write

Br(L/K) = H2(Gal(L/K), L×),

and for a Galois extension L/K of number fields, we write

H2(L/K) = H2(Gal(L/K),CL).

Because H1(G,L×) = 0 (see II.1.21) and H1(G,CL) = 0 (see VII.5.1), for any tower
of Galois extensions E ⊃ L ⊃ K, we get exact sequences

0 → Br(L/K) → Br(E/K) → Br(E/L)



THE FUNDAMENTAL EXACT SEQUENCE AND THE FUNDAMENTAL CLASS 197

and

0 → H2(L/K) → H2(E/K) → H2(E/L).

On passing to the direct limit over larger fields E ⊂ Kal, we obtain exact sequences

0 → Br(L/K) → Br(K) → Br(L)

and

0 → H2(L/K) → H2(Kal/K) → H2(Kal/L).

Thus, we can regard Br(L/K) as the subgroup of Br(K) of elements split by L, and
similarly for H2(L/K).

Let L/K be a Galois extension of number fields of finite degree n, and consider the
diagram:

H2(L/K)
↗

0 → Br(L/K) → ⊕Br(Lv/Kv)
↘

Q/Z

The top row is part of the cohomology sequence of

0 → L× → IL → CL → 0.

The zero at left comes from the fact that H1(G,CL) = 0. The top row is exact, but
the map ⊕v Br(Lv/Kv) → H2(L/K) will not in general be surjective—we denote its
image by H2(L/K)′.
Recall (III.1.1), that for each prime v, we have a homomorphism

invv : Br(Kv) → Q/Z.

If v is nonarchimedean, it is an isomorphism of Br(Kv) onto Q/Z, and if v is real,
it is an isomorphism of Br(Kv) onto

1
2
Z/Z. Moreover, if Lw/Kv has degree nv, then

invw(β) = nv · invv(β), and so invv defines an isomorphism

invv : Br(Lw/Kv) → 1

nv
Z/Z.

The southeast arrow in the diagram is

Σ : ⊕Br(Lv/Kv) → Q/Z, (βv) �→
∑

invv(βv).

The image of invv is the cyclic subgroup of order nv in the cyclic group 1
n
Z/Z, and

therefore the image of Σ is the cyclic subgroup 1
n0

Z/Z, where n0 = lcm(nv).

According to Theorem VII.5.1, the order of H2(L/K) divides n. According to
Theorem VII.8.1, the bottom row of the diagram is a complex, and so the maps in
the diagram induce a surjective homomorphism

H2(L/K)′ → 1

n0
Z/Z.

The lcm n0 of the local degrees always divides n, but need not equal it (see Example
2.5 below). Suppose, however, that the extension L/K has the property that n = n0.
Then:
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(a) The map H2(L/K)′ → 1
n0

Z/Z is an isomorphism. (It is surjective, and

(H2(L/K)′ : 1) ≤ (H2(L/K) : 1) ≤ n.)
(b) H2(L/K)′ = H2(L/K), and each has order n.
(c) The bottom row is an exact sequence

0 → Br(L/K) → ⊕v Br(Lv/Kv)
Σ−→ 1

n
Z/Z → 0

(because it is isomorphic to the top row).

Lemma 2.1. If L/K is cyclic, then n = n0.

Proof. Let S ⊃ S∞ be a set of primes of K including all those that ramify in
L. For v /∈ S, (pv, L/K) is an element of Gal(L/K) of order nv (= fv), and so the

image of the Artin map IS → Gal(L/K) has order n0
df
= lcm(nv). According to , the

Artin map is onto, which implies that n0 = n. [Using complex analysis, one can show
more, namely, that for all v in a set of density ϕ(n)/n, Lv/Kv is cyclic of order n: let
m be the modulus of L/K, and let a be an ideal in IS such that (a, L/K) generates
Gal(L/K); then the set of prime ideals p ≡ a in Cm has density 1/n.]

Let Qc be the infinite cyclic cyclotomic extension of Q defined in (I.5.5d) (see also
(VII.7.3)), and let Ω = Qc · K. For every n, Ω contains a unique cyclic extension of
Ωn of degree n. The preceding lemma and remarks show that

0 → Br(Ωn/K) → ⊕Br(Ωvn/Kv)
Σ−→ 1

n
Z/Z → 0

is exact. On passing to the direct limit (actually, directed union) over all n, we obtain
an exact sequence

0 → Br(Ω/K) → ⊕v Br(Ωv/Kv) → Q/Z → 0.

Theorem 2.2. For any number field K, the sequence

0 −→ Br(K) −→ ⊕v Br(Kv)
Σ−→ Q/Z −→ 0

is exact.

Proof. According to Proposition VII.7.2, Br(Ω/K) = Br(K). Moreover,
Br(Ωv/Kv) = Br(Kv) because, in the nonarchimedean case, [Ωvn : Kv] → ∞ as
n → ∞ (see VII.7.3).

The sequence in the theorem is called the fundamental exact sequence (of global
class field theory).

Corollary 2.3. For any finite extension L/K, the sequence

0 −→ Br(L/K) −→ ⊕v Br(Lv/Kv)
Σ−→ 1

n0
Z/Z −→ 0, n0 = lcm(nv),

is exact.

Proof. Apply the snake lemma to the diagram obtained by mapping the funda-
mental exact sequence for K to that for L.
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Example 2.4. (a) For a finite cyclic extension of number fields L/K, the funda-
mental exact sequence becomes identified with

0 → K×/Nm(L×) → ⊕K×
v /Nm(Lv×) → 1

n
Z/Z → 0, n = [L : K].

(b) Let D be a division algebra over a number field K, and let iv = invv(D⊗KKv).
Then: iv = 0 for all but finitely many v; iv = 0 if v is complex; iv ∈ 1

2
Z/Z if v

is real; and
∑

iv ≡ 0 mod v. The family (iv) determines the isomorphism class of
D, and any family (iv) satisfying the conditions is the family of invariants of the
division algebra. Clearly, the order of the class of D in Br(K) is the least common
denominator n of the iv. One can also prove that [D : K] = n2. For example, to give
a quaternion algebra over Q is the same as to give a set of primes of Q having an
even finite number of elements.

Example 2.5. Let L = Q[
√
13,

√
17]. Clearly n = 4, but I claim that nv = 1 or

2 for all v. Because both 13 and 17 are congruent to 1 modulo 4, 2 is unramified in
L. Therefore, for w|p, p �= 13, 17, Lw is an unramfied extension of Qp. In particular,
its Galois group is cyclic. Since it is a subgroup of Gal(L/Q), it is killed by 2, and

therefore has order 1 or 2. On the other hand,
(
17
13

)
= 1 (obviously) and

(
13
17

)
=(

17
13

)
= 1. Hence, 17 is a square modulo 13, and Hensel’s lemma implies that it is a

square in Q13. Similarly, 13 is a square in Q17.

The fundamental class. It follows from the above discussion that there is an
isomorphism

invK : H2(Ω/K) → Q/Z

uniquely characterized by having the property that the composite

⊕v Br(Kv) −→ H2(Ω/K)
invK−−→ Q/Z

is (βv) �→ ∑
invv(βv).

Lemma 2.6. For any finite extension L/K of number fields and γ ∈ H2(Ω/K),
invL(γ) = n invK(γ), n = [L : K].

Proof. Use that the sum of the local degrees is the global degree.

Therefore, for any L/K finite and Galois, we obtain an isomorphism

invL/K : H2(L/K) → 1

n
Z/Z.

On passing to the direct limit over all L ⊂ Kal, we obtain an isomorphism

invK : H2(Kal/K) → Q/Z.

Theorem 2.7. For every finite Galois extension L/K of number fields, H2(L/K)
is cyclic of order n = [L : K] having a canonical generator uL/K.

Proof. Take uL/K to be the element such that invL/K(uL/K) =
1
n

mod Z.
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The generator uL/K of H2(L/K) is called the fundamental class. One shows as in
the local case (see III.1.2) that for any tower E ⊃ L ⊃ K of finite Galois extensions,

Res(uE/K) = uE/L

Inf(uL/K) = [E : L]uE/K.

Therefore, one may apply Tate’s theorem (II.2.18) to obtain an isomorphism

Gal(L/K)ab → CK/Nm(CL).

That this is inverse to the global Artin map φL/K defined in the last chapter fol-
lows from the fact that the global fundamental classes are compatible with the local
fundamental classes.

The norm limitation theorem.

Theorem 2.8. Let E be a finite extension of K (not necessarily Galois), and let
M be the maximal subextension of E such that M/K is an abelian Galois extension.
Then

NmE/KCE = NmM/KCM .

Proof. Let L be a Galois extension of K containing E, and let G = Gal(L/K)
and H = Gal(L/E). Consider the commutative diagram

H−2
T (H,Z) ≈−−−→ H0

T (H,CL)
Cor 
Cor
H−2
T (G,Z) ≈−−−→ H0

T (G,CL)

in which the horizontal arrows are cup-product with the fundamental classes. This
can be identified with the commutative diagram:

Hab ≈−−−→ CE/NmL/E CL
 
NmE/K

Gab ≈−−−→ CK/NmL/K CL

Hence the cokernel of Hab → Gab is isomorphic to CK/NmE/K(CE). But the cokernel
is equal to Gal(M/K), which is isomorphic to CK/NmM/K(CM ). Since Nm(CM ) ⊃
Nm(CE), the two groups must be equal.

3. Higher Reciprocity Laws

For an odd prime p and integer a not divisible by p, one defines (Legendre symbol,
quadratic residue symbol)(

a

p

)
=

{
1 if a is a square modulo p

−1 otherwise.
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The group F×
p is cyclic of order p − 1 with −1 as its unique element of order 2.

Therefore, for u ∈ F×
p , u

p−1
2 is 1 or −1 according as u is a square or not, and so

(
a
p

)
is the unique square root of 1 such that(

a

p

)
≡ a

p−1
2 mod p.

The quadratic reciprocity law says that, for odd primes p and q,(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

The supplement to the quadratic reciprocity law says that(−1

p

)
= (−1)

p−1
2 ,

(
2

p

)
= (−1)

n2−1
8 .

For α a Gaussian integer (i.e., element of Z[i]) and π an odd Gaussian prime (i.e.,

prime element of Z[i] not dividing 2), Gauss defined
(
α
π

)
(quartic residue symbol) to

be the unique 4th root of 1 such that(
α

π

)
≡ α

Nπ−1
4 mod π

and proved a quartic reciprocity law for these symbols. Later Eisenstein proved a cubic
reciprocity law. Emil Artin remarked that his theorem (V.3.5) implied all possible
such reciprocity laws, and therefore can be considered as a “reciprocity law for fields
not containing an nth root of 1”. In the remainder of this section, we explain this
remark.

The power residue symbol. Let K be a number field containing a primitive nth
root of 1. For any finite set a, b, . . . of elements of K, we define S(a, b, . . . ) to be the
set of prime ideals of K such that ordp(n) �= 0, or ordp(a) �= 0, or ordp(b) �= 0,... . In
particular, S itself consists only of the divisors of n.

Recall that the discriminant of Xn − 1 is divisible only by the primes dividing n.
Therefore Xn − 1 has n distinct roots in Falp for any p � n, and the map

ζ �→ ζ mod p : µn(K) → µn(OK/p)

is bijective for any prime ideal p � n. For such a prime p, let q = Np
df
= (OK : p).

Then F×
q is cyclic of order q − 1, and so n|q − 1 and u

q−1
n ∈ µn ⊂ F×

q .

For a ∈ K× and p ∈ S(a), define
(
a
p

)
to be the unique nth root of 1 such that(

a

p

)
≡ a

Np−1
n mod p.

3.1. For any a, b ∈ K× and p ∈ S(a, b),(
ab

p

)
=

(
a

p

)(
b

p

)
.

This is obvious from the definition.

3.2. For a ∈ K× and p ∈ S(a), the following are equivalent:
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(a)
(
a
p

)
= 1;

(b) a becomes an nth power in OK/p;
(c) a becomes an nth power in Kp.

The equivalence of (a) and (b) follows from the exactness of

1 → F×n
q → F×

q
x �→xq−1/n−−−−−−→ µn → 1, q = Np.

If Xn− a has a solution modulo p, then Hensel’s lemma (Math 676, 7.24) shows that
it has a solution in Kp. Conversely, if a = αn, α ∈ Kp, then ordp(α) =

1
n
ordp(a) = 0,

and so α ∈ OKp . The map OK → OKp/p is surjective, and so there is an α0 ∈ OK

mapping to α modulo p.

We extend the mapping p �→
(
a
p

)
to IS(a) by linearity: thus, for b =

∏
prii ∈ IS(a),(

a

b

)
=
∏(

a

pi

)ri
.

We abbreviate
(
a
(b)

)
to
(
a
b

)
.

For an abelian extension L/K in which the primes in S ′ do not ramify, ψL/K : IS →
Gal(L/K) denotes the Artin map (see Chapter V).

3.3. For any a ∈ K× and b ∈ IS(a),

ψ
K[a

1
n ]/K

(b)(a
1
n ) =

(
a

b

)
a

1
n .

From Galois theory, we know that there is an nth root ζ(b) of 1 such that

ψ(b)(a
1
n ) = ζ(b) · a 1

n and that the map b �→ ζ(b) is a homomorphism. Therefore, it
suffices to prove the equality with b = p, a prime ideal. By definition,

ψ(p)(x) ≡ xNp mod p.

From

ψ(p)(a
1
n ) = ζ(p) · a 1

n

we find that

ζ(p) · a 1
n ≡ x

Np

n mod p,

from which it follows that ζ(p) =
(
a
p

)
.

3.4. Let a ∈ OK, and let b be an integral ideal in IS(a). If a′ ∈ OK, a
′ ≡ a mod b,

then b ∈ IS(a
′) and (

a

b

)
=

(
a′

b

)
.

For any prime ideal p dividing b, a′ ≡ a mod p, and so
(
a
p

)
=
(
a′
p

)
.

The Artin Reciprocity Law allows us to prove a similar, but weaker, result for
(
a
b

)
regarded as a function of b.

3.5. Let a ∈ K×. There exists a modulus m with support in S(a) such that
(
a
b

)
depends only on the class of b in the ray class group Cm.
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According to Proposition VII.10.5, S(a) contains all primes ramifying in K[a
1
n ].

Therefore, Artin’s Reciprocity Law (V.3.5) shows that there exists a modulus m with
support in S(a) such that ψ(b) depends only on the class of b in the ray class group
Cm.

The Hilbert symbol. Let Kv be a local field containing a primitive nth root of
1. The Hilbert symbol is a pairing

a, b �→ (a, b)v : K
×/K×n ×K×/K×n → µn

where µn is the group of nth roots of 1 in Kv. Probably the most natural way of
defining this as the cup-product map

H1(G, µn)×H1(G, µn) → H2(G, µn ⊗ µn), G = Gal(Kal/K),

followed by the isomorphism

H2(G, µn ⊗ µn) = H2(G, µn)⊗ µn → µn

defined by the invariant map invv. However, in the spirit of the 1920s and 1930s, I’ll
define it in terms of central simple algebras.

Recall (IV.5) that for any a, b ∈ K×
v , we define A(a, b; ζ) to be the Kv-algebra with

generators elements i, j and relations

in = a, jn = b, ij = ζji.

It is a central simple algebra of degree n over Kv. In the case that n = 2, A(a, b;−1)
is the quaternion algebra H(a, b). We define

(a, b)v = ζ−n·invv([A(a,b;ζ)])

where [A(a, b; ζ)] is the class of A(a, b; ζ) in Br(Kv). Because A(a, b; ζ) is split by a
field of degree n (in fact, by any maximal subfield, for example, Q[i]), its invariant is
an element of 1

n
Z/Z, and hence n · invv([A(a, b; ζ)]) is an element of Z/nZ. Clearly

the isomorphism class of A(a, b; ζ) depends only on a and b as elements of K×
v /K

×n
v ,

and so we do have a pairing

K×
v /K

×n
v ×K×

v /K
×n
v → µn.

However, it is not obvious from this perspective that the pairing is bilinear.

Example 3.6. Consider the case Kv = Qp, p an odd prime, and n = 2. Then
(a, b)p = ±1, and

(a, b)p = 1 ⇐⇒ H(a, b) ≈ M2(Kv);

⇐⇒ X2 − aY 2 − bZ2 + abT 2 represents 0 in Kv;

⇐⇒ b is a norm from K[
√
a];

⇐⇒ X2 − aY 2 − bZ2 represents 0 in Kv.

To prove the equivalences use (respectively) that: a quaternion algebra has invariant
1
2
if and only if it is a division algebra; Exercise IV.5.1; Proposition 1.10d; Proposition

1.10c. The last condition shows that our definition of the Hilbert symbol agrees with
that, for example, in Serre, Cours..., 1970, III.
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3.7. For any a, b,

A(b, a; ζ) ≈ A(a, b; ζ−1) ≈ A(a, b; ζ)opp.

Therefore
(b, a)v = (a, b)−1v .

By definition A(b, a; ζ) is the Kv-algebra with generators i′, j′ and relations i′n = b,
j′n = a, and i′j′ = ζi′j′. The map i′ �→ j, j′ �→ i is an isomorphism A(b, a; ζ) →
A(a, b; ζ−1). The map i �→ i, j �→ j is an isomorphism A(a, b; ζ)opp → A(a, b; ζ−1).

3.8. Let a, b ∈ K×. For any v ∈ S(a), (a, b)v =
(
a
pv

)ordv(b)
.

For simplicity, we assume that A(a, b; ζ) is a division algebra. Recall (IV.4) that,
to compute the invariant of a central division algebra D over a local field Kv, we

(a) choose a maximal unramified field L ⊂ D;
(b) find an element β ∈ D such that α �→ βαβ−1 is the Frobenius automorphism

of L (such an α exists by the Noether-Skolem Theorem);
(c) set invv([D]) = ordv(α).

We apply this with L = Kv[i] = Kv[a
1
n ]. Note that, because v ∈ S(a), this extension

is unramified. Let
(
a
pv

)
= ζr, so that (p, L/Kv)(i) = ζri. Since jij−1 = ζ−1i, we see

that we can take β = j−r . Then βn = b−r, and so ordv(β) = − r
n
ordv(b). Hence

(a, b)v
df
= ζ−n invv(A(a,b;ζ)) = ζr·ordv(b) =

(
a

pv

)ordv(b)

.

Remark 3.9. In fact,

(a, b)v =
φv(b)(a

1
n )

a
1
n

for all a, b, v. See III.4.3.

3.10. For a, b ∈ K×, ∏
v

(a, b)v = 1.

In the course of proving the Reciprocity Law, we showed that, for any β ∈ Br(K),∑
invv(β) = 0. In particular,

∑
invv(A(a, b; ζ)) = 0, and this implies the formula.

For a, b ∈ K×, define (
a

b

)
=

∏
v/∈S(a)

(
a

v

)ordv(b)

=

(
a

(b)S(a)

)

where (b)S(a) is the ideal in IS(a) generated by b. The symbol
(
a
b

)
is multiplicative in

b, but
(
aa′
b

)
=
(
a
b

) (
a′
b

)
will not always hold unless S(b) ∩ S(a, a′) = S.

Theorem 3.11 (Power Reciprocity Law). Let a and b be elements of K×

such that S(a) ∩ S(b) = S (for example, a and b could be relatively prime). Then(
a

b

)(
b

a

)−1
=
∏
v∈S

(b, a)v.
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Moreover, if S(c) = S, then (
c

b

)
=
∏
v∈S

(c, b)v.

Proof. Let S ′(a) = S(a) \ S and S ′(b) = S(b) \ S. Our assumption is that S ′(a)
and S ′(b) are disjoint. Then(

a

b

)
=

∏
v∈S′(b)

(
a

pv

)ordv(b)

=
∏

v∈S′(b)
(a, b)v

and (
b

a

)
=

∏
v∈S′(a)

(
b

pv

)ordv(a)

=
∏

v∈S′(a)
(b, a)v.

Therefore (
a

b

)(
b

a

)−1
=

∏
v∈S′(a)∪S′(b)

(a, b)v.

For v /∈ S∪S ′(a)∪S ′(b), (a, b)v = 0 (by 3.8 for example), and so the product formula
shows that ∏

v∈S′(a)∪S′(b)
(a, b)v ×

∏
v∈S

(a, b)v = 1.

This completes the proof of the first equality, and the second is obvious.

To obtain a completely explicit formula, it remains to compute the Hilbert symbol
for the v ∈ S. For the infinite primes, this is easy: if v is complex, then (a, b)v = 1
always, and if v is real, then

(a, b)v = 1 ⇐⇒ X2 − aY 2 − bZ2 represents 0 ⇐⇒ a > 0 or b > 0.

For K = Q and n = 2,

(u2r, v2s)2 = (−1)
u−1

2
v−1
2
+r v2−1

8
+su2−1

8

where u and v are 2-adic units, and the exponent is to be interpreted modulo 2. For an
elementary proof of this, see Serre, Cours..., 1970, III.1.2. On applying this formula
successively to the pairs (p, q) with p and q odd primes, (2, p) with p an odd prime,
and to (−1, p) with p an odd prime, one obtains the classical quadratic reciprocity
law (including the supplements).

For p an odd prime and K = Q[ζ] with ζ a primitive pth root of 1, one can make
the Hilbert symbol (a, b)p completely explicit. Recall that p is totally ramified in K
and (p) = (π)p−1 where π = 1 − ζ. Let Kπ denote the completion of K at (π), and
let Ui denote the group of units in Kπ congruent to 1 mod πi. We have a filtration

O×
Kπ

⊃ U1 ⊃ U2 ⊃ · · · ⊃ Up+1 ⊃ · · · .
If u ∈ Up+1, then u is a pth power in Kπ (see VII.10.6a). From this, one can deduce
that K×

π /K
×p
π is freely generated (as an Fp-vector space) by the elements

π, ζ, 1− π2, . . . , 1− πp.

Let ηi = 1− πi, i ≥ 1 (e.g., η1 = ζ).
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Proposition 3.12. The Hilbert pairing

a, b �→ (a, b)π : K
×
π ×K×

π → µp

is the unique skew-symmetric pairing satisfying

(a) (ηi, ηj)π = (ηi, ηi+j)π(ηi+j, ηj)π(ηi+j , π)
−j
π for all i, j ≥ 1;

(b) (ηi, π)π =

{
1 if 1 ≤ i ≤ p− 1
ζ if i = p.

(c) (·, ·)π = 1 on Ui × Uj if i+ j ≥ p + 1.

For hints, see Cassels and Fröhlich 1967, p354.

Example 3.13. (Cubic reciprocity law; Eisenstein). Let p = 3, so that K = Q[ζ],

ζ = −1+√3
2

, and π = −ζ
√
3. Then OK = Z[ζ], and every nonzero element of OK can

be written in the form ζ iπja with a ≡ ±1 mod 3OK . In this case, the reciprocity
law becomes: (

a

b

)
=

(
b

a

)

if a and b are relatively prime and congruent to ±1 mod 3OK , and
(
ζ
a

)
= ζ−m−n(

π
a

)
= ζm

if a = ±(1 + 3(m+ nζ)).

Note that, if a ∈ Z, then a ≡ ±1 mod 3OK is automatic.

Exercise 3.14. Let p ∈ Z be a prime congruent to 1 modulo 3 (so that Fp contains
the cube roots of 1). Show that 2 is a cube modulo p if and only if p is of the form
x2 + 27y2, x, y ∈ Z.

Application. Fix an odd prime p and a primitive pth root ζ of 1. If x, y, z are
integers such that xp + yp = zp, then

p−1∏
i=0

(x+ ζ iy) = zp.

We may suppose that x, y, z have no common factor. If p � xyz, then the elements
x + ζ iy of Z[ζ] are relatively prime (Math 676, 6.9). Therefore, each generates an
ideal that is a pth power, and the same is true of

α =
x+ ζy

x+ y
= 1− yπ

x+ y
, π = 1− ζ.

Hence
(
α
β

)
= 1 for all β ∈ Z[ζ] relatively prime to α.

Theorem 3.15. Let x, y, z be relative prime positive integers such that p � xyz and
xp + yp = zp. For any prime q dividing xyz, qp−1 ≡ 1 mod p2.
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Proof. In this case, the Power Reciprocity Law becomes

(
β

α

)(
α

β

)−1
= ζTrQ[ζ]/Q(η)

where η = β−1
p
α−1
π
. We apply this equation with β = qp−1. Without loss of generality,

we may assume that q|y, so that α ≡ 1 mod q and
(
α
q

)
= 1. Moreover,

Tr(η) =
qp−1 − 1

p
Tr(

α− 1

π
),

but

Tr
α − 1

π
= Tr− yπ

x+ y
= − y

x+ y
(p− 1),

which is not divisible by p. Therefore qp−1−1
p

is divisible by p.

Corollary 3.16 (Wieferich’s Condition). If Xp+Y p = Zp admits a solution
x, y, z with x, y, z positive integers none of which is divisible by p, then 2p−1 ≡ 1
mod p2.

Proof. If xp + yp = zp, then at least one of x, y, or z must be even.

A similar argument (with a different β) proves Mirimanoff’s condition: 3p−1 �≡ 1
mod p2.

The only primes < 3 × 109 satisfying Wieferich’s condition are 1093 and 3511,
and they fail Mirimanoff’s condition. Thus this proves the first case of Fermat’s last
theorem for p < 3× 109.

Notes: Theorem 3.15 was proved by Furtwängler (see Hasse 1970, II, 22); see also
Koch 1992, II.6.3, and Herbrand 1936, p47. Class field theory also allows one to
simplify the proof of Kummer’s second criterion when the second case of Fermat’s
theorem holds (J. Herbrand, Sur les classes des corps circulaires, J. Math. Pures
Appl., IX. Sér. 11, 417–441.

4. The Classification of Quadratic Forms over a Number Field

Earlier we showed that a nondegenerate quadratic form over a number field repre-
sents 0 in the field if and only if it represents zero in every completion of the field. In
this section, we completely classify the quadratic forms over a number field. Specifi-
cally, we shall:

(a) Show that two quadratic forms over a number field K are equivalent if and
only if they are equivalent over every completion of K.

(b) Give a complete list of invariants for the quadratic forms over a local field.
(c) Determine which families of local invariants arise from a global quadratic form.
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Generalities on quadratic forms. In this subsection, k is an arbitrary field of
characteristic �= 2. Let (V,Q) be a quadratic space over k with corresponding bilinear
form B, and let U1 and U2 be subspaces of V . If every element of V can be written
uniquely in the form v = u1+u2 with u1 ∈ U1 and u2 ∈ U2, then we write V = U1⊕U2.
If, addition, B(u1, u2) = 0 for all u1 ∈ U1 and u2 ∈ U2, then we write V = U1 ⊥ U2.
For any subspace U of V ,

U⊥ = {v ∈ V | B(u, v) = 0 for all u ∈ U}.
If Q|U is nondegenerate, then V = U ⊥ U⊥.
Let (V,Q) and (V ′, Q′) be quadratic spaces over k. A morphism s : (V,Q) →

(V ′, Q′) is a linear map s : V → V ′ of k-vector spaces such that Q′(s(v)) = Q(v)
for all v ∈ V . A morphism is an isomorphism if it admits an inverse that is also
morphism. An isomorphism (V,Q) → (V ′, Q′) will also be called an isometry.

Proposition 4.1. Let (V,Q) be a quadratic space. If Q represents a ∈ k×, then
there exists an e ∈ V with Q(e) = a and a subspace U of V such that V = U ⊥ k · e.

Proof. Because Q represents e, there does exist an e ∈ V such that Q(e) = a,
and we can take U to be the orthogonal complement of k · e.
Let (V,Q) be a quadratic space. For any y ∈ V with Q(y) �= 0, we define the

symmetry with respect to y (or with respect to the line k · y) to be the map

τy(x) = x− 2B(x, y)

Q(y)
y.

Note that τy is a morphism (V,Q) → (V,Q) and that τy◦τy id, and so τy is an isometry.
It reverses every vector in the line k · y, and leaves every vector in the hyperplane
(k · y)⊥ fixed. It is therefore reflection in the hyperplane (k · y)⊥.

Proposition 4.2. Let U and W be isometric subspaces of a quadratic space (V,Q)
and assume that Q|U is nondegenerate. Then U⊥ and W⊥ are isometric.

Proof. We prove this by induction on the dimension of U . Suppose first that U
and W are lines, say U = ku and W = kw. Then Q(u) �= 0, Q(w) �= 0, and we may
suppose that Q(u) = Q(w). From

Q(u+ w) +Q(u− w) = 2Q(u) + 2Q(w) = 4Q(u)

we see that at least one of Q(u+ w) or Q(u− w) is nonzero, and, after replacing w
with −w if necessary, we may suppose that it is the latter. Therefore the symmetry
τu−w is defined:

τu−wx = x− 2B(x, u−w)

Q(u− w)
(u− w).

Then τu−w(u) = w, because

Q(u− w) = Q(u) +Q(w)− 2B(u, w) = 2Q(u)− 2B(u, w) = 2B(u, u− w),

and so τu−w maps U⊥ isometrically onto W⊥.
Thus, we may suppose that dimU ≥ 2, and so admits a nontrivial decomposition

U = U1 ⊥ U2. Because W ≈ U , there is a decomposition W = W1 ⊥ W2 with U1 ≈
W1 and U2 ≈ W2. Note that Q|U1 will be nondegenerate, and that U⊥

1 = U2 ⊥ U⊥.
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The induction hypothesis implies that U2 ⊥ U⊥ is isometric to W2 ⊥ W⊥, and the
choice of an isometry defines a decomposition U2 ⊥ U⊥ = X ⊥ Y with X ≈ W2

and Y ≈ W⊥. But then X ≈ U2, and the induction hypothesis shows that Y ≈ U⊥.
Hence W⊥ ≈ U⊥.

On choosing a basis ei for a quadratic space (V,Q), we obtain a quadratic form

q(X1, . . . , Xn) =
∑

aijXiXj, aij = B(ei, ej).

Conversely, a quadratic form q defines a quadratic space (kn, q).

Two quadratic forms q and q′ are said to be equivalent, q ∼ q′, if they define
isomorphic quadratic spaces, i.e., if one can be obtained from the other by an invertible
change of variables. If q and q′ are quadratic forms in distinct sets of variables, then
we denote q + q′ by q ⊥ q′; then (km+n, q ⊥ q′) = (km, q) ⊥ (kn, q′).
From Proposition 4.2 we find that:

Let q = r ⊥ s and q′ = r′ ⊥ s′ be two quadratic forms, and assume
that r is nondegenerate. If q ∼ q′ and r ∼ r′, then s ∼ s′.

From Proposition 4.1 we find that

A nondegenerate quadratic form q in n variables represents a if and
only if q ∼ r ⊥ aZ2 where r is a quadratic form in n− 1 variables.

The rank of a quadratic space (V,Q) is defined to be the rank of the ma-
trix (B(ei, ej)) for some basis ei of V . The rank of a quadratic form q is the
rank of the corresponding quadratic space. When q is written in diagonal form,
q = a1X

2
1 + · · · + arX

2
r , then the rank of q is the number of nonzero coefficients ai,

i.e., the number of variables actually occurring in q.

The local-global principle.

Theorem 4.3 (Hasse-Minkowski). Let q and q′ be quadratic forms over a num-
ber field K. If q and q′ become equivalent over Kv for all primes v, then q and q′ are
equivalent over K.

Proof. We may suppose that q and q′ are nondegenerate. We use induction on
the common rank n of q and q′. If n = 0, both forms are zero, and there is nothing to
prove. Otherwise, there exists an a ∈ K× represented by q. Then q(X1, . . . , Xn)−aZ2

represents 0 in K, and hence in Kv for all v. On applying Theorem 1.8, to q′ − aZ2,
we find that q′ represents a in K. Therefore, q ∼ q1 ⊥ aZ2 and q′ ∼ q′1 ⊥ aZ2 for
some quadratic forms q1 and q2 of rank n− 1. Now (4.2) shows that q1 ∼ q2 over Kv

for all v, and so (by induction) they are equivalent over K. This implies that q and
q′ are equivalent over K.

Remark 4.4. Let (V,Q) be a quadratic space over a field k, and let O be its group
of isometries. Theorem 4.3 says that

H1(K,O) →∏
v

H1(Kv, O)

is injective.



210 VIII. COMPLEMENTS

The classification of quadratic forms over a local field. The archimedean
case. Any quadratic form over C (as for any algebraically closed field of characteristic
�= 2) is equivalent to a unique quadratic form

X2
1 + · · ·+X2

n.

Thus two quadratic forms over C are equivalent if and only if they have the same
rank n.

According to Sylvester’s theorem, a quadratic form q over R is equivalent to a
unique quadratic form

X2
1 + · · ·+X2

r −X2
r+1 − · · · −X2

r+t.

The number t of −1s is the index of negativity. Thus, two quadratic forms over R are
equivalent if and only if they have the same rank n and the same index of negativity
t.

The nonarchimedean case. Let K be a local field. Recall that the Hilbert symbol
(·, ·) can defined for a, b ∈ K× by

(a, b) =

{
1 ⇐⇒ X2 − aY 2 − bZ2 represents 0 ⇐⇒ aY 2 + bZ2 represents 1

−1 otherwise.

Lemma 4.5. The Hilbert symbol has the following properties:

(a) it is bi-multiplicative and (ac2, bd2) = (a, b) for all a, b, c, d ∈ K×;
(b) for any nonsquare a ∈ K×, there exists a b ∈ K× such that (a, b) = −1;
(c) (b, a) = (a, b)−1 = (a, b);
(d) (a,−a) = (1, a) = 1.

Proof. Obviously, (a, b) does not change when a or b is multiplied by a square.
Also, (c) is obvious.

Note that (a, b) = 1 if and only if b is a norm from K[
√
a]. From local class field

theory, we know that if a is not a square in K, then Nm(K[
√
a]×) is a subgroup of

index 2 inK×, and therefore b �→ (a, b) is an isomorphismK×/Nm(K[
√
a]×) → {±1}.

This completes the proof of (a) and (b). Finally, aX2−aY 2 = a(X2−Y 2), andX2−Y 2

represents a−1 because it represents 0.

If q ∼ a1X
2
1 + · · ·+ anX

2
n with a1, . . . , an ∈ K×, then we set

n(q) = n

d(q) = a1 · · · an (in K×
v /K

×2
v )

S(q) =
∏

1≤i≤j≤n
(ai, aj) =

∏
1≤i≤n

(ai, di) (in {±1})

where di = a1 . . . ai. Thus n(q) is the rank of q and d(q) is the discriminant of q.
Both depend only on the equivalence class of q. We shall prove that the same is true
of S(q). It is called the Hasse invariant of q.

Remark 4.6. Serre, Cours..., 1970, defines

ε(q) =
∏

1≤i<j≤n
(ai, aj) =

∏
(ai, di−1).
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Note that

S(q) = ε(q)
n∏
i=1

(ai, ai) = ε(q)
n∏
i=1

(−1, ai)(−ai, ai) = ε(q)(−1, d(q)).

Thus the knowledge of (d(q), S(q)) is equivalent to the knowledge of (d(q), ε(q)).

Proposition 4.7. The element S(q) depends only on the equivalence class of q.

Proof. It suffices to prove that ε(q) depends only on the equivalence class of q.
When q has rank 1, there is nothing to prove: ε(q) = 1 (empty product) for all q.

Next suppose that q ∼ aX2 + bY 2 ∼ a′X2 + b′Y 2. Because they are equivalent,
either both aX2 + bY 2 and a′X2 + b′Y 2 represent 1 or neither represents 1, and so
(a, b) = (a′, b′).
Next suppose that n > 2 and that

q ∼ a1X
2
1 + · · ·+ aiX

2
i + ai+1X

2
i+1 + · · · ∼ a′1X

2
1 + · · ·+ a′iX

2
i + a′i+1X

2
i+1 + · · ·

with aj = a′j except possibly for j = i, i+ 1. We then have to prove that

(ai, di−1)(ai+1, di) = (a′i, d
′
i−1)(a

′
i+1, d

′
i).

But

(ai, di−1)(ai+1, di) = (ai, di−1)(ai+1, di−1)(ai+1, ai) = (aiai+1, di−1)(ai, ai+1)

and aiai+1 differs from a′ia
′
i+1 by a square, and so it remains to show that (ai, ai+1) =

(a′i, a
′
i+1). According to Proposition 4.2, aiX

2
i + ai+1X

2
i+1 ∼ a′iX

2
i + a′i+1X

2
i+1, and we

already shown that this implies (ai, ai+1) = (a′i, a
′
i+1).

The following elementary lemma now completes the proof.

Lemma 4.8. Let B and B ′ be orthogonal bases for a nondegenerate quadratic space
(V,Q). Then there exists a chain of orthogonal bases B1, B2, . . . , Bm such that B1 = B
and Bm = B ′, and each Bi is obtained from Bi−1 by altering at most two adjacent
elements.

Proof. See O. O’Meara, Introduction to Quadratic Forms, Springer, 1963, Lemma
58.1.

Proposition 4.9. Let q be a nondegenerate quadratic form in n variables over a
nonarchimedean local field K, and let a ∈ K×. Then q represents a if and only if

(a) n = 1 and a = d(q) (in K×/K×2);
(b) n = 2 and (a,−d)(−1, d) = S(q) (equivalently, (a,−d) = ε(q));
(c) n = 3 and either a �= −d(q) (modulo squares) or a = −d(q) (modulo squares)

and (−1,−1) = S(q);
(d) n ≥ 4.

Proof. (a) Clearly dX2 represents a if and only if a = d (in K×/K×2).
(b) Let q = bX2+ cY 2. Clearly bX2 + cY 2 represents a if and only if abX2+ acY 2

represents 1, i.e., if and only if (ab, ac) = 1. But

(ab, ac) = (a, a)(a, b)(a, c)(b, c) = (a,−1)(a, d(q))(b, c) = (a,−d(q)) · ε(q)
and so the condition is that

ε(q) = (a,−d(q)).
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(c) Let q = a1X
2
1 + a2X

2
2 + a3X

2
3 . Then q represents a if and only if there exists an

e ∈ K× for which the equations

a1X
2
1 + a2X

2
2 = e = a3X

2
3 − aX2

4

have solutions. According to (b), this will be so if and only if

(e,−a1a2) = (a1, a2), (e, a3a) = (a3,−a). (∗)
Consider two linear forms f, g : V → F2 on an F2-vector space V of dimension ≥ 2.

The simultaneous linear equations f(x) = ε1, f(x) = ε2 will have a solution unless
they are inconsistent, i.e., unless f = 0 and ε1 = −1; or g = 0 and ε2 = −1; or f = g
and ε1 = −ε2.

When we apply this observation to the linear forms (·,−a1a2), (·, a3a) : K×/K×2 →
{±1}, we find that there will exist an e satisfying (∗) unless−a1a2 = a3a (inK×/K×2)
and (a1, a2) = −(a3, a). The first equality says that a = −d(q) (mod squares), and
(when a = −d(q)) the second says that (−1,−1) = S(q).

(d) In this case, q(X1, . . . , Xn)− aZ2 has rank ≥ 5, and therefore represents 0 (see
1.13).

Theorem 4.10. Two quadratic forms over a nonarchimedean local field are equiv-
alent if and only if they have the same rank, the same discriminant, and the same
Hasse invariant.

Proof. We showed in Proposition 4.7 that equivalent forms have the same invari-
ants. For the converse, we use induction on the common rank n of the two forms q
and q′. Two quadratic forms of rank 1 are obviously equivalent if they have the same
discriminant, and so we may suppose n > 1. From Proposition 4.9, we see that q
and q′ represent the same elements in K×. In particular, there is an a ∈ K×

v that is
represented by both q and q′. Thus,

q ∼ q1 + aZ2, q′ ∼ q′1 + aZ2

with q1 and q′1 quadratic forms of rank n− 1. Now

d(q) = a · d(q1), S(q) = (a, d(q1)) · S(q1)
and similarly for q′ and q′1. Therefore, q1 and q′1 have the same invariants, and the
induction hypothesis shows that q1 ∼ q′1.

Proposition 4.11. Let q be a quadratic form of rank n over a nonarchimedean
local field K.

(a) If n = 1, then S(q) = (−1, d).
(b) If n = 2, then d(q) = −1 (mod squares) implies S(q) = (−1,−1).

Apart from these constraints, every triple n ≥ 1, d ∈ K×/K×2, s = ±1, occurs as the
set of invariants of a quadratic form over K.

Proof. Case n = 1. Then q = dX2, and S(q) = (d, d) = (−1, d).

Case n = 2. For q = aX2 + bY 2, S(q) = (a, a)(b, d), and so

d = −1 =⇒ S(q) = (−1, a)(−1, b) = (−1, d) = (−1,−1).

Conversely, the form X2 − Y 2 has d = −1 and S = (−1,−1).
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Now suppose d �= −1 and s are given. We seek an a ∈ K× such that q
df
= aX2+adY 2

has S(q) = s. But

S(q) = (a, a)(ad, d) = (a,−1)(a, d)(d, d) = (a,−d)(d, d).

Because −d �= 1 (in K×/K×2), we can choose a so that (a,−d) = s · (d, d).
Case n = 3. Choose an a ∈ K× such that a �= −d in K×/K×2. Because of the

condition on a, there exists a quadratic form q1 of rank 2 such that

d = d(q1)a, s = S(q1)(a, d).

Take q = q1 + aZ2.

Case n ≥ 4. There exists a quadratic form with the shape

q1(X1, X2, X3) +X2
4 + · · ·+X2

n

having the required invariants.

Generalities. We define the Hasse invariant for a quadratic form q over R or C by
the same formula as in the nonarchimedean case. For C, S(q) = 1 always, and for R,
S(q) = (−1)t(t+1)/2 where t is the index of negativity (because (−1,−1) = −1). Note
that in the second case, d(q) = (−1)t (in R×/R×2), and that d(q) and S(q) determine
t when r ≤ 3 but not for r > 3.

We say that a system (n, d, s, . . . ), n ∈ N, d ∈ K×/K×2, s ∈ {±1},... is realizable
there exists a quadratic form q having n(q) = n, d(q) = d, S(q) = s, . . . .

(a) For a nonarchimedean local field K, (n, d, s) is realizable provided s = 1 when
n = 1 and s = (−1,−1) when n = 2 and d = −1.

(b) For R, (n, d, s, t) is realizable provided 0 ≤ t ≤ r, d = (−1)t, s = (−1)t(t+1)/2.

Classification of quadratic forms over global fields.

Theorem 4.12. Let n ∈ N, and suppose that for each prime v of the number field
K there is given a nondegenerate quadratic form q(v) of rank n over Kv. Then there
exists a quadratic form q0 over K such that (q0)v ∼ qv for every v if and only if

(a) there exists a d0 ∈ K× such that d0 ≡ d(qv) mod K×
v
2 for all v;

(b) S(q(v)) = 1 for almost all v and
∏
v S(q(v)) = 1.

The conditions are obviously necessary. In view of Proposition 4.11 and the follow-
ing remarks, we can restate the theorem as follows. Suppose given:

• an n ≥ 1 and a d0 ∈ K×/K×2;
• for each prime v, finite or real, an sv ∈ {±1};
• for each real prime v, an integer tv.

Then, there exists a quadratic form q over K of rank n, discriminant d0, Hasse
invariant Sv(q) = sv for all v, and index of negativity tv(q) = tv for all real v if and
only if

(a) sv = 1 for all but finitely many v and
∏
v sv = 1;

(b) if n = 1, then sv = (−1, d)v; if n = 2, then either d �= −1 in K×
v /K

×2
v or

sv = (−1,−1)v;
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(c) for all real v, 0 ≤ tv ≤ n, dv = (−1)tv (modulo squares), and sv =
(−1)tv(tv+1)/2.

Proof. In the case n = 1, qv = d(qv)X
2, and we can take q0 = d0X

2 where d0 is
the element of K× whose existence is guaranteed (a).

The key case is n = 2, and for that we need the following lemma, whose proof
requires class field theory.

Lemma 4.13. Let T be finite set of real or finite primes of K, and let b ∈ K×. If
T has an even number of elements and b does not become a square in K×

v for any
v ∈ T , then there exists an a ∈ K× such that

(a, b)v =

{ −1 for v ∈ T
1 otherwise.

Proof. (Following Tate, 1976, 5.2). Let L be the composite of all abelian exten-
sions of K of exponent 2, and let G = Gal(L/K). By class field theory,

G ∼= CK/2CK
∼= I/K× · I2.

The cohomology sequence of

0 → µ2 → L× x �→x2−−−→ L×2 → 0

is an exact sequence

K× x �→x2−−−→ K× ∩ L×2 → Homconts(G, µ2) → 0.

Every element of K× becomes a square in L, and so we have an isomorphism

K×/K×2 → Homconts(I/K× · I2, µ2).

This map sends a ∈ K× to the continuous homomorphism

(cv) �→
∏

(a, cv)v

(because of the relation between the Hilbert symbol and the local Artin map). Thus,
finding a is equivalent to finding a homomorphism f : I/I2 → µ2 such that

(a) f = 1 on principal idèles;

(b) f(1, . . . , 1, iv(b), 1, . . . , 1) =

{ −1 for v ∈ T
1 otherwise.

where iv is the inclusion K ↪→ Kv. For each v, let Bv be the F2-subspace of K×
v /K

×2
v

generated by iv(b), and let B =
∏

Bv ⊂ I/I2. Because iv(b) is not a square for v ∈ T ,
there exists a linear form (automatically continuous) f1 : B → µ2 satisfying condition
(b), and f1 will extend to a continuous linear form on I/I2 satisfying (a) if and only
if f1 takes the value 1 on every principal idéle in B. The value of f1 on the principal
idéle of b is

∏
v∈T −1, which is 1 because of our assumption that T contains an even

number of elements. Let c ∈ K× be such that its idéle lies in B. Then, for every v,
iv(c) = 1 or iv(b) in K×

v /K
×2
v . Therefore, iv(c) becomes a square in Kv[

√
b] for all v,

which (by 1.1) implies that c is a square in K[
√
b]. Hence c = 1 or b in K×/K×2, and

so f1 takes the value 1 on its idèle.
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We now prove the case n = 2 of the theorem. We are given quadratic forms
q(v) = a(v)X2 + a(v)d(v)Y 2 for all v, and we seek q = aX2 + ad0Y

2 such that
q ∼ q(v) over Kv for all v. Thus, we seek an a ∈ K× such that

Sv(q)
df
= (a, a)v(ad0, d0)v = S(q(v))

for all v. Now

(a, a)v(ad0, d0)v = (a,−1)v(a, d0)v(−1, d0)v = (a,−d0)v(−1, d0)v.

We apply the lemmawith T equal to the set of primes for which S(q(v))(−1, d0)v = −1
and with b = −d0. The set T is finite because of condition (b) of the theorem, and it
has an even number of elements because∏

v

S(q(v))(−1, d0)v =
∏
v

S(q(v)) ·∏
v

(−1, d0)v = 1× 1 = 1.

Moreover,

S(q(v)) · (−1, d0)v = (a(v),−d(v))v

and so −iv(d0) = −d(v) �= 1 in K×
v /K

×2
v when v ∈ T . Thus the lemma gives us the

required element a.

We next prove the case n = 3. For a form q = q1 + aZ2, a ∈ K×,

n(q1) = n(q)− 1, d(q1) = a · d(q), Sv(q1) = (a, d(q))v · Sv(q).

We seek an a for which the invariants (2, a · dv, (a, dv)v · sv) are realizable for all v,
i.e., such that iv(a)dv = −1 =⇒ (a, dv)v · sv = 1. Let T = {v | sv �= 1}—by
hypothesis, it is a finite set. By the weak approximation theorem, there exists an
a ∈ K× such that, for all v ∈ T , iv(a)dv �= −1. Now, for v ∈ T , d(q1) �= −1, and
so (2, dv, sv) is realizable. For v /∈ T , (a, dv) · sv = (a, dv), and iv(a)dv = −1 implies
(a, dv)v = (−dv, dv)v = 1. Hence, for such an a, there exists a quadratic form q1 of
rank 2 such that q1 + aZ2 has the required invariants.

We prove the case n ≥ 4 by induction. If tv < n for all n, we can find a quadratic
form with shape q1(X) + Z2 with the correct local invariants. If no tv = 0, then we
can find a quadratic form with shape q1(X) − Z2 with the correct invariants. In the
general case, we use the weak approximation theorem to find an element a that is
positive at the real primes where tv < n and negative at the real primes where tv = 0.
Then the induction hypothesis allows us to find a q1(X) such that q1(X) + aZ2 has
the correct invariants.

Applications.

Proposition 4.14 (Gauss). A positive integer n is a sum of three squares if and
only if it is not of the form 4a(8b− 1) with a, b ∈ Z.

Proof. Apply the above theory to the quadratic form X2
1 +X2

2 +X2
3 − aZ2—see

Serre, Cours..., 1970, Chap. IV.
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5. Density Theorems

Throughout this section, K is a number field.

Theorem 5.1. For any modulus m of K and any nontrivial Dirichlet character
χ : Cm → C×, L(1, χ) �= 0.

Proof. As we noted at the end of Chapter VI, this follows from the proof of
Theorem VI.4.9 once one has the Reciprocity Law.

Theorem 5.2. Let m be a modulus for K, and let H be a congruence subgroup for
m: Im ⊃ H ⊃ i(Km,1). For any class k ∈ Im/H, the set of prime ideals in k has
Dirichlet density 1/(Im : H).

Proof. Combine Theorem 5.1 with Theorem VI.4.8.

Corollary 5.3. Let L/K be a finite abelian extension with Galois group G, and
let σ ∈ G. Then the set of prime ideals p in K that are unramified in L and for which
(p, L/K) = σ has Dirichlet density 1

[L:K]
.

Proof. The Reciprocity Law V.3.5 says that the Artin map defines an isomor-
phism Im/H → Gal(L/K) for some modulus m and some H ⊃ i(Km,1), and we can
apply the theorem to the inverse image of σ in Im/H.

Theorem 5.4 (Chebotarev). Let L be a finite Galois extension of the number
field K with Galois group G, and let C be a subset of G stable under conjugation,
i.e., such that

x ∈ C, τ ∈ G =⇒ τxτ−1 ∈ C.

Let

T = {p | p unramified in L, (p, L/K) ⊂ C}.
Then T has Dirichlet density

δ(T ) =
number of elements in C

number of elements in G
.

Proof. It suffices to prove this in the case that C is the conjugacy class of a single
element σ,

C = {τστ−1 | τ ∈ G}.
Let σ have order f , and let M = L<σ>. Then L is a cyclic extension of M of degree
f , and therefore the Artin map gives an isomorphism

Cm/H −→< σ > .

for some modulus m of M and for H = M× · NmL/M CL,m. We use the notations

P|q|p
for primes P of OL, q of OM , and p of OK . Let d = [L : K] = (G : 1), and let c be
the order of C . We have to show that

δ(T ) =
c

d
.

In the proof, we ignore the (finitely many) prime ideals that are not prime to m.
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Let

TM,σ = {q ⊂ OM | (q, L/M) = σ, f(q/p) = 1}.
The Chebotarev density theorem for abelian extensions (5.3 shows that the set of
primes satisfying the first condition in the definition of TM,σ has density 1

f
, and it

follows (see 4.5) that TM,σ itself has density 1
f
.

Let

TL,σ = {P ⊂ OL | (P, L/K) = σ}.
We shall show:

(a) the map P �→ q = P ∩OM defines a bijection TL,σ → TM,σ;
(b) the map P �→ p = P ∩OK : TL,σ → T sends exactly d

cf
primes of TL,σ to each

prime of T .

On combining these statements, we find that the map q �→ p = q∩OK defines a d
cf

: 1

map TM,σ → T . For such a q, NmM/K q = p and so Nq = Np; hence

∑
p∈T

1

Nps
=

cf

d

∑
q∈TM ,σ

1

Nqs
∼ cf

d

1

f
log

1

s− 1
=

c

d
log

1

s− 1

as required. It remains to prove (a) and (b).

Let P ∈ TL,σ, and let q = P ∩ OM and p = P ∩ OK . Then the Galois group of
LP/Kp is generated by σ, but σ fixes Mq, and so Mq = Kp. Therefore f(q/p) = 1,
which shows that q ∈ TM,σ, and so we have a map

P �→ q =df P ∩OM : TL,σ −→ TM,σ.

This is injective because f(P/q) = f(q/p)−1f(P/p) = 1 × f , and so P is the only
prime of L lying over q. It is surjective because, for any prime P lying over q ∈ TM,σ,

(P, L/K) = (P, L/K)f(q/p) = (P, L/M) = σ

(first condition for q to lie in TM,σ), and so P ∈ TL,σ. This proves (a).

Fix a p0 ∈ T , and let P0 ∈ TL,σ lie over p. Then, for τ ∈ G,

(τP0, L/K) = τ (P0, L/K)τ−1

and so

τ (P0, L/K)τ−1 = σ ⇐⇒ τ ∈ CG(σ)

(centralizer of σ in G). Therefore the map τ �→ τP0 is a bijection

CG(σ)/G(P0) −→ {P ∈ TL,σ | P ∩OK = p0}
The decomposition group G(P0) equals <σ>, which has order f , and CG(σ) has
order d

c
because there is a bijection

τ �→ τστ−1 : G/CG(σ) −→ C.

Therefore (CG(σ) : G(P0)) =
d
cf
, and we have shown that, for each p ∈ T , there are

exactly d
cf

primes P ∈ TL,σ lying over p. This proves (b) and completes the proof of

the theorem.



218 VIII. COMPLEMENTS

Remark 5.5. For effective forms of the Chebotarev density theorem, see Lagarias
and Odlysko (Algebraic Number Fields, Ed. Fröhlich, 1977). Let L be a finite Galois
extension of K, and let

πC(x) = #{p|(p, L/K) = C, Np ≤ x}.
Then

πC(x) =
c

d

x

log x
+ specific error term.

6. Function Fields

We should also include the class field theory of function fields (finite extensions of
Fp(T ) for some p). For this, one can either mimic proofs in the number field case (see
Artin and Tate 1951/52) or (better) one can base the proofs on Tsen’s theorem (see
J. Milne, Arithmetic Duality Theorems, Academic Press, 1986, Appendix to Chapter
I).

7. Cohomology of Number Fields

We should also include proofs of the theorems of Nakayama and Tate (e.g., J. Tate,
The cohomology groups of tori in finite Galois extensions of number fields, Nagoya
Math. J., 27, 1966, 709–719) and Poitou and Tate (e.g., J. Milne, ibid., Chapter I).

8. More on L-series

Let χ be a Dirichlet L-series. Then there exist constants A(χ) ≥ 0, a(χ), b(χ) ∈ C,
such that

Φ(s, χ) =df A(χ)sΓ(
s

2
)a(χ)Γ(

s + 1

2
)b(χ)L(s, χ)

satisfies the functional equation

Φ(s, χ) = W (χ)Φ(1− s, χ̄) |W (χ)| = 1.

See W. Narkiewicz, Elementary and Analytic Theory of Numbers, PWN, 1974.

Artin L-series. Let L be a finite Galois extension of K with Galois group G. Let
V be a finite dimensional vector space over C and let

ρ : G → AutC(V )

be a homomorphism of G into the group of linear automorphisms of V . We refer to
ρ as a (finite-dimensional) representation of G over C. The trace of ρ is the map

σ �→ χ(σ) = Tr(ρ(σ)).

(Recall that the trace of an m × m matrix (aij) is
∑

aii, and the trace of an endo-
morphism is the trace of its matrix relative to any basis.) For σ ∈ G, let

Pσ(T ) = det(1− ρ(σ)T | V ) =
dimV∏
i=1

(1− aiT ), ai ∈ C,

be the characteristic polynomial of ρ(σ). Note that Pσ(T ) depends only on the con-
jugacy class of σ, and so for any prime p of K unramified in L, we can define

Pp(T ) = Pσ(T ), σ = (P, L/K) some P|p.
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For such a p, let

Lp(s, ρ) =
1

Pp(Np−s)

and let

L(s, ρ) =
∏

Lp(s, ρ).

For example, if L/K is abelian, then the representation is diagonalizable1

ρ ≈ χ1 ⊕ · · · ⊕ χm,

where each χi is a homomorphism G → C×. When composed with the Artin map

Cm −→ G,

χi becomes a Dirichlet character, and so the Artin L-series becomes identified with a
product of Dirichlet L-series. This was the original reason Artin defined his map.

One can show that if (V, ρ) = IndGH(V0, ρ0), then

L(s, ρ) = L(s, ρ0).

To handle more general Artin L-series, Artin proved that every character of a finite
group G is a linear combination (over Q) of induced characters from cyclic subgroups.
Hence

L(s, ρ) =
∏

(Dirichlet L-series)ri, ri ∈ Q.

Later Brauer proved a stronger theorem that allows one to show that

L(s, ρ) =
∏

(Dirichlet L-series)ri, ri ∈ Z.

Artin conjectured that, provided ρ does not contain the trivial representation, L(s, ρ)
extends to a holomorphic function on the whole complex plane. The last formula
implies that this is true if the ri are all positive integers. Little progress was made
in this conjecture until Langlands succeeded in proving it in many cases where V has
dimension 2 (see R. Langlands, Base Change for GL(2), Princeton, 1980).

Hecke L-series. A Hecke (or Grössen) character is a continuous homomorphism
from I into the unit circle in C× such that ψ(K×) = 1 and, for some finite set S, ψ
is 1 on a set {(av) | av = 1 for v ∈ S, av =unit for all v}

Example 8.1. Let D ∈ Z, cube-free, and let ζ be primitive cube root of 1. If
p ≡ 2 mod 3, then p remains prime in Q[ζ], and we set ψ(p) = 1. If p ≡ 1 mod 3,
then p = ππ̄ in Q[ζ], and we choose π to be ≡ 1 mod 3. Then π = 1

2
(a + 3b

√−3)
and 4p = 4ππ̄ = a2 + 27b2. Now there exists a Hecke character such that ψ(p) = 1

for all odd p �≡ 1 mod 3 and ψ(p) = π√
p

(
D
π̄

)
.

1By this we mean that, relative to suitable basis for V ,

ρ(g) =


χ1(g) 0 · · · 0

0 χ2(g) · · · 0
...

...
. . .

...
0 0 · · · χm(g)

 , g ∈ G.
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For such a character, we define

L(s, ψ) =
∏
v/∈S

1

1− ψ(πv)Np−s
v

where πv is an idèle having a prime element in the v position and 1 elsewhere. The
basic analytic properties of Hecke L-series (meromorphic continuation, functional
equation etc.) are well understood (e.g., J. Tate, Fourier analysis in number fields
and Hecke’s zeta function, thesis, 1950; reprinted in Cassels and Fröhlich 1967).

Weil groups and Artin-Hecke L-series. For this topic, see J. Tate, Number
theoretic background, pp 3–26, in: Automorphic Forms, Representations, and L-
Functions, AMS, 1979.

A theorem of Gauss. Having begun the course with theorem first proved by
Gauss, namely, the quadratic reciprocity law, it seems appropriate to end it with
another theorem of his.

Consider the elliptic curve E : X3 + Y 3 + Z3 = 0. Let Np be the number of points
on E with coordinates in Fp. Gauss showed:

(a) if p �≡ 1 mod 3, then Np = p+ 1;
(b) if p ≡ 1 mod 3, then Np = A, where A is the unique integer ≡ 1 mod 3 for

which 4p = A2 + 27B2.

See J. Silverman and J. Tate, Rational Points on Elliptic Curves, Springer, 1992,
IV.2.

Gauss’s theorem implies that the Weil conjecture for E/Fp, namely, that

|Np − p− 1| < 2
√
p.

It also implies the Taniyama conjecture for E/Q, because it shows that the L-series
L(s, E) equals L(s − 1

2
, ψ) where ψ is the Hecke character in the above example

associated with D = −1.

He wrote to me that algebraic number theory was the most beautiful topic he had
ever come across and that the sole consolation in his misery was his lecturing on class
field theory.... This was indeed the kind of mathematics he had admired most: the
main results are of great scope, of great aesthetic beauty, but the proofs are technically
extremely hard.

A. Borel, in: Current Trends in Mathematics and Physics: A Tribute to Harish-
Chandra, Editor S.D. Adhikari, Narosa Publishing House, New Dehli, Madras, 1995,
p213.
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