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5 Algebraic geometry in a tannakian category
5.1. Let 𝑋 be a complex algebraic variety, 𝑜 ∈ 𝑋, and 𝛤 the largest torsion-free quotient
of 𝜋1(𝑋, 𝑜) of class 𝑁:

𝛤 = 𝜋1(𝑋, 𝑜)[𝑁] (0.3).

For (𝑋, 𝑜) defined over 𝑘 ⊂ ℂ, we want to see Lie𝛤 as the Betti realization of a motive
over 𝑘. In certain situations, we construct in every case a system of realizations over 𝑘 of
which Lie𝛤 is the Betti realization, relative to the inclusion 𝜎∶ 𝑘 → ℂ. The Lie bracket
must also be a morphism of motives.

Giving a nilpotent Lie algebra 𝛤 is equivalent to giving a unipotent algebraic group
𝛤alg,un, or simply 𝛤alg, whose Lie algebra it is (9.1, cf. also 9.5), and we can regard
𝛤alg as being “motivic” . We will do it as follows: giving the algebraic group 𝛤alg is
equivalent to giving its Hopf algebra. The exponential Lie𝛤 → 𝛤alg identifies this
algebra with

⨁
𝑛 Sym

𝑛((Lie𝛤)∨). This is the inductive limit over 𝑘 of the algebras⨁
𝑛≤𝑘 Sym

𝑛((Lie𝛤)∨). Each of these finite sums is the Betti realization, relative to 𝜎,
of an ind-object of the category of motives. The product and coproduct are induced by
morphisms in this category.

For 𝑥 ∈ 𝑋, the homotopy classes of paths from 𝑜 to 𝑥 form a torsor (0.6) under
𝜋1(𝑋, 𝑜). From 𝜋1(𝑋, 𝑜) → 𝛤alg, we deduce a 𝛤alg-torsor 𝑃(𝑁)𝑥,𝑜 . For 𝑥 defined over 𝑘,
we want this torsor to be motivic over 𝑘. Interpretation: its affine algebra is the Betti
realization relative to 𝜎 of an ind-object of the category of systems of Betti realizations
relative to𝜎 of an ind-object of the category of systems of realizations over 𝑘. In contrast to
that which holds for𝛤alg, where we have the Lie algebra Lie𝛤alg, I know of no convenient
way of expressing the motivic character of 𝑃(𝑁)𝑥,𝑜 that avoids a detour through ind-motives.
The purpose of this paragraph is to furnish a suitable language for these constructions.

1

https://www.jmilne.org/math/Documents/index.html


5 ALGEBRAIC GEOMETRY IN A TANNAKIAN CATEGORY 2

5.2. Let 𝑘 be a field and 𝒯 a tannakian category over 𝑘. More generally (at least in
5.2–5.7), we could take 𝒯 to be a rigid abelian tensor category with End(11) = 𝑘, i.e.,
a tensorial category over 𝑘. For our needs, it suffices to consider the case that 𝒯 is
equivalent (with its tensor product and associativity and commutativity constraints)
to the category 𝖱𝖾𝗉(𝐺) of linear representations of finite dimension of an affine group
scheme 𝐺 over 𝑘. We can paraphrase, in 𝒯, the rudiments of algebraic geometry. Here
is how.

5.3. The category Ind𝒯 of ind-objects of 𝒯 (4.1) is equipped with a tensor product
deduced from that of 𝒯. As in 𝒯, it is exact.

A ring (always assumed to have a unity) 𝐴 of Ind𝒯 is an object 𝐴 of Ind𝒯 equipped
with an associative product ⋅∶ 𝐴 ⊗ 𝐴 → 𝐴 and admitting a unity 1 → 𝐴 (which we
denote also by 1) . “Associative” and “unity” are expressed by diagrams. If one prefers
to express them by the usual formulas, one arrives at the following. Ind-objects of 𝒯 can
be identified with the ind-representable functors 𝒯 → 𝖲𝖾𝗍 (see 4.1.1),

𝑋 ⇝ ℎ𝑋 ∶ ℎ𝑋(𝑆) = Hom(𝑆, 𝑋).

The functor ℎ𝑋 even takes values in the category of 𝑘-vector spaces. Giving 𝑋 ⊗ 𝑌 → 𝑍
is equivalent to giving

ℎ𝑋(𝑆) × ℎ𝑌(𝑇)→ ℎ𝑍(𝑆 ⊗ 𝑇),
bilinear and functorial in 𝑆 and 𝑇. The associativity of 𝐴⊗𝐴 → 𝐴 becomes

(𝑥𝑦)𝑧 = 𝑥(𝑦𝑧) for 𝑥 ∈ ℎ𝐴(𝑆), 𝑦 ∈ ℎ𝐴(𝑇), 𝑧 ∈ ℎ𝐴(𝑈)

[therefore, 𝑥𝑦 ∈ ℎ𝐴(𝑆⊗𝑇) , 𝑦𝑧 ∈ ℎ𝐴(𝑇⊗𝑈), (𝑥𝑦)𝑧 and 𝑥(𝑦𝑧) ∈ ℎ𝐴(𝑆⊗𝑇⊗𝑈)]. That
1∶ 1 → 𝐴 is a unity becomes 1𝑥 = 𝑥1 = 𝑥 for 𝑥 ∈ ℎ𝐴(𝑆) [we have 1 ∈ ℎ𝐴(1), whence
1𝑥 ∈ ℎ𝐴(1⊗ 𝑆) = ℎ𝐴(𝑆), and even for 𝑥 ⋅ 1].

We define in an obvious way left and right 𝐴-modules, tensor products over 𝐴, and
the commutativity of 𝐴. For example, a left 𝐴-module is an object of Ind𝒯 equipped
with a morphism ⋅∶ 𝐴⊗𝑀 → 𝑀 with (𝑎𝑏)𝑚 = 𝑎(𝑏𝑚) and 1𝑚 = 𝑚 (for the meaning
of such formulas, cf. above). We have

𝑀 ⊗𝐴 𝑁 = Coker(𝑀 ⊗𝐴⊗𝑁 ⇉ 𝑀 ⊗𝑁).

Let 𝑓∶ 𝐴 → 𝐵 be a morphism of commutative rings in Ind𝒯. We say that 𝐵 is
faithfully flat over 𝐴 if the functor 𝑀 ⇝ 𝐵 ⊗𝐴 𝑀 from 𝐴-modules to 𝐵-modules is
exact and faithful. The formalism of faithfully flat descent of modules (SGA1, VIII, 1)
applies: the functor𝑀 ⇝ 𝐵 ⊗𝑀 is an equivalence of categories of 𝐴-modules to that of
𝐵-modules 𝑁 equipped with a desent datum

(𝐵 ⊗𝐴 𝐵)⊗𝐵 𝑁
≃,→ 𝑁 ⊗𝐵 (𝐵 ⊗𝐴 𝐵).

The proof in SGA 1, VIII, 1 still applies, or it can be reduced to the Barr-Beck theorem
(cf., Deligne 1990, 4.1 and 4.2).

The structure morphism 11⊗11→ 11makes 11 into a ring in Ind𝒯 (even in𝒯), and for
a ring (with unity) 𝐴 of Ind𝒯, there is a unique morphism of rings (with unity) 11→ 𝐴.
If 𝐴 ≠ 0, this morphism is non null, therefore is a monomorphism (DM 1.17), and the
exact functor𝑀 ⇝ 𝐴 ⊗1 𝑀 = 𝐴 ⊗𝑀 is faithful because𝑀 → 𝐴 ⊗𝑀. If 𝐴 ≠ 0, 𝐴 is
therefore faithfully flat over 11.
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5.4. In order to have a geometric language at our disposal, we define the category of
affine schemes in𝒯 to be the dual of that of commutative rings with unity in Ind𝒯. We
also say affine 𝒯-scheme. We write Sp(𝐴) for the affine 𝒯-scheme defined by 𝐴. Fibre
products exist: they correspond to tensor products. An 𝐴-module𝑀 will be called a
module over Sp(𝐴), and for Sp(𝐵) over Sp(𝐴), the functor𝑀 ⇝ 𝐵 ⊗𝐴 𝑀 will be called
the inverse image over Sp(𝐵). The formalism (SGA 1, VIII, 2) of faithfully flat descent
for affine schemes applies.

We have initial and final schemes, Sp(0) and Sp(1)— they will be called the empty
and point schemes. We say that 𝑆 = Sp(𝐴) is nonempty if 𝐴 ≠ 0. If 𝑆 is nonempty, 𝑆 is
faitfully flat over the point.

For 𝑋 and 𝑆 affine schemes in 𝒯, the set 𝑋(𝑆) of 𝑆-points of 𝑋 is Hom(𝑆, 𝑋).
An affine group𝒯-scheme is a group object of the category of affine 𝒯-schemes.
Let 𝐻 be an affine group scheme in 𝒯. An𝐻-torsor is a nonempty affine 𝒯-scheme

𝑃 equipped with a right action 𝜌∶ 𝑃 × 𝐻 → 𝑃 such that, for all 𝑆, 𝑃(𝑆) is either
empty or a torsor under 𝐻(𝑆). The condition “empty or a torsor” means that, for all 𝑆,
(pr1, 𝜌)∶ 𝑃(𝑆) ×𝐻(𝑆)→ 𝑃(𝑆) × 𝑃(𝑆) is bijective, i.e., that (pr1, 𝜌)∶ 𝑃 ×𝐻 → 𝑃 × 𝑃 is an
isomorphism.

Example 5.5 (Vectorial 𝒯-schemes). For𝑀 in Ind𝒯, put 𝛤(𝑀) = Hom(11,𝑀). For
𝑀 a module over 𝑆 = Sp(𝐴), we have

𝛤(𝑀) = Hom(11,𝑀) ≃←, Hom𝐴(𝐴,𝑀),

and we call 𝛤(𝑀) the global sections of𝑀 over 𝑆. Take care that the functor 𝛤 need not
be exact: for 𝒯 = 𝖱𝖾𝗉(𝐺), it is the functor of 𝐺-invariants.

An object 𝑋 of 𝒯 defines for each 𝑆 = Sp(𝐴) a module 𝑋𝑆 = 𝐴 ⊗ 𝑋, the inverse
image of 𝑋 by 𝑆 → (pt). The functor 𝑆 ⇝ 𝛤(𝑋𝑆) is representable,

Hom(11, 𝐴 ⊗ 𝑋) = Hom(𝑋∨, 𝐴) = Homrings(Sym(𝑋∨), 𝐴).

We also call 𝑋 the 𝒯-scheme Sp(Sym(𝑋∨)) representing this functor. This notation is
parallel to the usage of identifying a finite-dimensional 𝑘-vector 𝑉 with the scheme
Spec(Sym∗(𝑉∨)) that has 𝑉 for its points over 𝑘.

The functor 𝑆 ⇝ 𝛤(𝑋𝑆) is a functor to groups. The 𝒯-scheme 𝑋 is therefore a group
scheme in 𝒯. The group structure corresponds to the usual Hopf algebra structure on
Sym∗(𝑋∨).

Example 5.6 (An affine 𝑘-scheme is an affine 𝒯-scheme). SinceEnd(11) = 𝑘, the
subcategory of 𝒯 of sums of copies of 11 is naturally equivalent to that of vector spaces
of finite dimension over 𝑘. We often identify the vector space 𝑉 over 𝑘 with the corre-
sponding object of 𝒯. When we need to be more precise, we write it 𝑉 ⊗ 11. The choice
of a basis 𝑒1,… , 𝑒𝑛 of 𝑉 identifies 𝑉 ⊗ 11 with 11𝑛.

Passing to the ind-objects, we obtain a functor from the category of (all) vector spaces
over 𝑘 to Ind𝒯. Under this functor, an affine scheme over 𝑘 defines a scheme in 𝒯.
Similarly, for affine group schemes, torsors, . . . The point Spec(𝑘) defines the 𝒯-scheme
(pt).

5.7. Let 𝐺 be an affine group 𝒯-scheme and 𝑋 an object of 𝒯. To give an action of
𝐺 on 𝑋 is to give, for every 𝑆, an action of 𝐺(𝑆) on the 𝑆-module 𝑋𝑆, compatible with
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base changes 𝑆′∕𝑆. Such an action is defined by the action of id𝐺 ∈ 𝐺(𝐺) on 𝑋𝐺 . For
𝐺 = Sp(𝐴), it is an 𝐴-linear morphism 𝐴⊗ 𝑋 → 𝐴⊗ 𝑋, defined by 𝑋 → 𝐴⊗ 𝑋. The
morphism 𝑋 → 𝐴⊗ 𝑋 makes 𝑋 a comodule over the Hopf algebra with counity 𝐴 in
Ind𝒯.

5.8 (The case of 𝖱𝖾𝗉(𝐺)). Let 𝐺 be an affine group scheme over 𝑘 and 𝒯 = 𝖱𝖾𝗉(𝐺).
The ind-objects of𝒯 are the linear representations — not necessarily of finite dimen-

sion—of𝐺 (4.3.2). The affine𝒯-schemes are the affine schemes over 𝑘 equippedwith an
action of 𝐺, an affine group𝒯-scheme𝐻 is an affine group scheme over 𝑘 equipped with
an action of 𝐺, an𝐻-torsor is an 𝐺-equivariant𝐻-torsor (in the usual sense), a vectorial
𝒯-scheme is the equivariant affine scheme of a finite-dimensional representation of 𝐺,
and the inclusion of affine 𝑘-schemes into affine 𝒯-schemes is “equip with the trivial
action of 𝐺”.

This interpretation allows us to routinely reduce questions on affine 𝒯-schemes to
questions in usual algebraic geometry.

5.9. Let 𝒯 be a tannakian category over 𝑘. Recall that a fibre functor on 𝒯 over a
𝑘-scheme 𝑆 is a 𝑘-linear exact tensor functor from 𝒯 to the vector bundles on 𝑆. For a
scheme 𝜋∶ 𝑆′ → 𝑆 over 𝑆, the inverse image on 𝑆′ of a fibre functor 𝜔 on 𝑆 is the fibre
functor 𝑋 ⇝ 𝜋∗𝜔(𝑋). Notation: 𝜔𝑆′ or 𝜋∗𝜔.

If 𝜔1 and 𝜔2 are two fibre functors over 𝑆, the functor which to 𝜋∶ 𝑆′ → 𝑆 attaches
the set of isomorphisms from 𝜋∗𝜔1 to 𝜋∗𝜔2 is representable by a scheme Isom⊗

𝑆 (𝜔1, 𝜔2)
affine over 𝑆. For a fibre functor 𝜔 over 𝑆, we write Aut⊗𝑆 (𝜔 or Aut

⊗(𝜔) for the affine
𝑆-scheme Isom𝑆(𝜔, 𝜔).

The main result of Saavedra 1972 (cf., DM 2.11) is the following. If 𝜔 is a fibre functor
on 𝒯 over 𝑘 (i.e., over Spec(𝑘)), 𝜔 induces an equivalence

𝒯 → 𝖱𝖾𝗉(Aut(𝜔)).

The interpretation 5.8 is then available. It has the following inconveniences.
(a) The group Aut(𝜔) is not often explicit, and to see the 𝒯-schemes as equivariant

affine 𝑘-schemes is scarcely illuminating. See §7 for other interpretations.
(b) If one uses 5.8 to construct affine 𝒯-schemes, it may not be obvious that the 𝒯-

scheme constructed does not depend on the fibre functor chosen. For how to
render it obvious, see 5.11.

Example 5.10. Let 𝐺 be an affine group scheme over 𝑘, 𝑋 a linear representation of
finite dimension of 𝐺, and let 𝑋 also denote the corresponding vectorial group scheme
Spec(Sym∗(𝑋∨)). An extension

0→ 𝑋 → 𝐸 → 𝑘 → 0

of the unity representation (𝑘 with the trivial action) by 𝑋 defines an equivariant 𝑋-
torsor, namely, the inverse image of 1 ∈ 𝑘 in 𝐸. This construction is an equivalence of
categories.

We want to deduce that for 𝒯 as in 5.9 and 𝑋 in 𝒯, we have an equivalence from the
category of extensions of 11 by 𝑋 to that of 𝑋-torsors,

(extensions of 11 by 𝑋) ∼,→ (𝑋-torsors).
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We define a functor as follows. Let 𝐴 be the vectorial 𝒯-scheme defined by the identity
object. It is also the image by 5.6 of the affine line Spec 𝑘[𝑇] over 𝑘, and the point 𝑇 = 1
defines a point 1∶ (𝑝𝑡)→ 𝐴. An extension of 𝐸 of 11 by 𝑋 defines a vectorial scheme 𝐸
mapping onto 𝐴. The action by translation of 𝐸 by itself induces an action of 𝑋 on 𝐸
stabilizing the fibre at 1, 𝑃, of 𝐸 → 𝐴: 𝑃 def= 𝐸 ×𝐴 (𝑝𝑡), relative to 1∶ (𝑝𝑡)→ 𝐴. This fibre
is the torsor sought.

This description is independent of the choice of a fibre functor. The interpretation
5.8 shows that it is an equivalence.

5.11. Let𝒯 be a tannakian category over 𝑘. The essential results of Deligne 1990, already
announced in Saavedra 1972, but proved there only when 𝒯 admits a fibre functor over
𝑘, i.e., is of the form 𝖱𝖾𝗉(𝐺) (5.9), are the following.
(a) The fibre functors form a gerbe Fib(𝒯) over the 𝑘-schemes for the fpqc topology.

This means that they form a stack: possibility of patching a fibre functor given
locally on 𝑆 to a fibre functor on 𝑆, that if 𝜔1 and 𝜔2 are two fibre functors on 𝑆,
there exist a 𝑇 faithfully flat and quasi-compact over 𝑆 on which𝜔1 and 𝜔2 become
isomorphic, and that there exists on some 𝑆 ≠ ∅ a fibre functor.

(b) Each object 𝑋 of 𝒯 defines a morphism of stacks 𝜔 ⇝ 𝜔(𝑋)

(fibre functors over 𝑆 variable)→ (vector bundles over 𝑆).

This construction is an equivalence of 𝒯 with the category 𝖱𝖾𝗉(Fib𝒯) of these
functors: it “amounts to the same” to give 𝑋 in 𝒯 or to give, for each fibre functor
𝜔 over a 𝑘-scheme 𝑆, a vector bundle over 𝑆, functorially in 𝜔, and compatible
with base change 𝑆′ → 𝑆.

(c) By passage to ind-objects, a fibre functor 𝜔 on 𝑆 defines a tensor functor, again
denoted 𝜔, from Ind𝒯 into the category of quasi-coherent sheaves on 𝑆. Each
object 𝑋 of Ind 𝒯 defines a morphism of stacks

(fibre functors over 𝑆)→ (sheaves quasi-coherent over𝑆).

This construction is an equivalence of Ind𝒯 with the category of these functors.
It follows from (c) that it amounts to the same to give an affine𝒯-scheme 𝑋 (resp. an

affine group 𝒯-scheme 𝐺, resp. a 𝒯-torsor under 𝐺) or to give, for each fibre functor 𝜔
over a 𝑘-scheme 𝑆, an affine scheme 𝑋𝜔 over 𝑆 (resp. an affine group scheme 𝐺𝜔, resp. a
torsor under 𝐺𝜔) functorially in 𝜔 and compatible with changes of base 𝑆′ → 𝑆. To
𝑋 = Sp(𝐴), we attach the system 𝜔(𝑋) = Spec(𝜔(𝐴)).

In particular, to construct a morphism 𝐹∶ 𝑋 → 𝑌 between affine 𝒯-schemes, it
suffices for every fibre functor 𝜔 to construct functorially in 𝜔 a morphism from 𝜔(𝑋) to
𝜔(𝑌). If 𝜔 is a fibre functor over 𝑆, it suffices for that, for every 𝑆-scheme 𝑇, to construct
functorially in 𝑇 an map from 𝜔(𝑋)(𝑇) def= Hom𝑆(𝑇, 𝜔(𝑋)) into 𝜔(𝑌)(𝑇). To write such a
construction, we “take the point of view of 𝑋”, i.e., 𝑥 ∈ 𝜔(𝑋)(𝑇) and construct its image.

Remark 5.12. For (𝑋𝜔) as above, each 𝑋𝜔∕𝑆 automatically has the following property
(portant sur 𝑋∕𝑆).

(5.12.1) There exists an extension 𝑘′ of 𝑘 and 𝜋∶ 𝑇 → 𝑆 faithfully flat over 𝑆, such
that the inverse image 𝜋∗𝑋 = 𝑇 ×𝑆 𝑋 of 𝑋 over 𝑇 is the inverse image over 𝑇 of a
𝑘′-scheme, by a morphism of 𝑇 to 𝑘′.
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Indeed, there exists a fibre functor 𝜔0 over an extension 𝑘′ of 𝑘 and, because Fib(𝒯)
is a gerbe, there exists 𝑇 faithfully flat over 𝑆 × Spec(𝑘′) over which 𝜔 and 𝜔0 become
isomorphic. Over this 𝑇, 𝑋𝜔 and 𝑋𝜔0 have isomorphic inverse images.

A similar statement holds for schemes equipped with additional data.

5.13. Let Ξ be a construction of the following form: to affine schemes over a 𝑘-scheme
𝑆, equipped with suitable additional data, it attaches an affine scheme over 𝑆, equipped
with additional data. It suffices that Ξ be defined for schemes, equipped with additional
data, satisfying 5.12.1. We assume that Ξ is compatible with base change.

By 5.11, it thenmakes sense to applyΞ to affine𝒯-schemes, equipped with additional
data of the type required: to apply Ξ to the 𝒯-schemes 𝑋𝑖, we apply it to the 𝜔(𝑋𝑖); the
system 𝑌𝜔 = Ξ(𝜔(𝑋𝑖)) define by 5.11 a 𝒯-scheme 𝑌, which we call Ξ(𝑋𝑖).

Similarly, if 𝑃 is a property of affine schemes over 𝑆 equipped with additional struc-
ture, (satisfying 5.12.1 if one wishes) which is local for the fpqc topology, it makes sense
to consider 𝑃 “in 𝒯”,

Rather that make precise the sense of “construction”, of “additional data”, of “prop-
erty”, we give some examples.

Example 5.14. (a) Let 𝐺 be an affine group scheme over 𝑆, Ξ(𝐺) the 𝑁th subgroup
𝑍𝑁(𝐺) of 𝐺 for the central descending series, or the quotient 𝐺(𝑁) def= 𝐺∕𝑍𝑁(𝐺). This
construction is not compatible with arbitrary bases changes for 𝐺∕𝑆, but it is for an
affine group scheme 𝐺 over 𝑆 satisfying (5.12.1).

(b) Let𝐻 be a normal subgroup of 𝐺 and Ξ(𝐺,𝐻) is 𝐺∕𝐻. Even if𝐻 is not normal,
we can consider 𝐺∕𝐻 when it is affine. The same remark as in (a) applies.

(c) Let 𝐺 be an affine group scheme over 𝑆, and the property “𝐺 is unipotent”.

Application 5.15. Over an arbitrary base 𝑆, giving an extension ℰ of 𝒪 by a vector
bundle 𝒱 is equivalent to giving a torsor under the vectorial group scheme defined by
𝒱 . This construction is compatible with base change. It follows that in every tannakian
category, giving an extension 𝐸 of 11 by an object 𝑉 is equivalent to giving a torsor under
the 𝒯-vectorial scheme 𝑉. We have already proved this in 5.10 for a neutral 𝒯.

5.16. Here is the relation between the points of view 5.8 and 5.11 for 𝒯 = 𝖱𝖾𝗉(𝐺). Let
𝜔0 be the forgetful fibre functor. For 𝜔 a fibre functor over 𝑆, Isom(𝜔0, 𝜔) is a 𝐺-torsor 𝑃
over 𝑆. Conversely, a 𝐺-torsor 𝑃 defines a fibre functor

𝜔𝑃 ∶ 𝑉 ⇝ (𝑉 twisted by 𝑃)

over 𝑆. If 𝑃(𝑆) ≠ ∅, the twisted 𝑉𝑃 is a vector bundle over 𝑆 equipped, for each 𝑝 ∈ 𝑃(𝑆),
with 𝜌(𝑝)∶ 𝑉 ⊗ 𝒪𝑆

≃,→ 𝑉𝑃, with 𝜌(𝑝𝑔) = 𝜌(𝑝)𝜌(𝑔) for all 𝑔 ∈ 𝐺(𝑆). The general case
can be treated by descent. We have an equivalence

Fib(𝖱𝖾𝗉(𝐺)) ∼ (𝐺-torsors over 𝑆 variable).

If 𝑋 is a 𝒯-scheme, identified by 5.8 to a 𝐺-equivariant affine scheme, then for every
fibre functor 𝜔𝑃, 𝜔𝑃(𝑋) is the twist 𝑋𝑃 of 𝑋 by 𝑃.

We note for later use.
Lemma (5.16.1). Aut(𝜔𝑃) = Aut(𝑃) is 𝐺𝑃 for the inner action of 𝐺 on itself.
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Proof: When 𝑃(𝑆) ≠ ∅, each 𝑝 ∈ 𝑃(𝑆) defines an isomorphism 𝜌(𝑝) of 𝑃 with
the trivial 𝐺-torsor 𝐺, therefore of Aut(𝑃) with 𝐺 (left translations of 𝐺). We have
𝜌(𝑝𝑔) = 𝜌(𝑝)◦ inn(𝑔): the automorphism of 𝑃 which sends 𝑝 ⋅ 𝑔 to 𝑝 ⋅ 𝑔ℎ sends 𝑝 to
𝑝 ⋅ 𝑔ℎ𝑔−1. This satisfies 5.16.1 for 𝑃(𝑆) ≠ ∅, and the general case follows by descent.

5.17. The passage 5.11 from 𝒯 to Fib(𝒯) has an inverse (D1990, 1.12 and §3). Let 𝖦
be a gerbe with affine band over 𝑘-schemes: we assume that, for an object 𝜔 of 𝖦 over
𝑆, the functor that to 𝜋∶ 𝑆′ → 𝑆 attaches Aut(𝜋∗𝜔) is representable by an affine group
scheme over 𝑆. Let 𝖱𝖾𝗉(𝖦) be the category of morphisms of stacks

𝖦 → (vector bundles over 𝑆 variable).

Then 𝖱𝖾𝗉(𝖦) is a tannakian category, and

𝖦 ∼,→ Fib(𝖱𝖾𝗉(𝖦)).

5.18. From 5.11 and 5.17, we get a dictionary between tannakian categories over 𝑘 and
gerbes with affine band. We define the tensor product of two tannakian categories by

Fib(𝒯1 ⊗𝒯2) ∼ Fib(𝒯1) × Fib(𝒯2).

Giving an object 𝑋 of 𝒯1 ⊗𝒯2 is equivalent to giving, for 𝜔1 and 𝜔2 fibre functors over
𝑆 of𝒯1 and𝒯, a vector bundle 𝑋𝜔1,𝜔2on 𝑆, the formation of 𝑋𝜔1,𝜔2 being functorial in 𝜔1
and 𝜔2 and compatible with base change.

We have a tensor product

⊠∶ 𝒯1 ×𝒯2 → 𝒯1 ⊗𝒯2,

such that, for fibre functor 𝜔1 and 𝜔2 on 𝒯1 and 𝒯2, there is a fibre functor on 𝒯1 ⊗𝒯2
sending 𝑋1 ⊠ 𝑋2 to 𝜔1(𝑋1) ⊗ 𝜔2(𝑋2). In D1990, §5, it is shown that 𝒯1 ⊗ 𝒯2 is the
universal target of such a tensor product with suitable properties.

If 𝒯1, 𝒯2 are 𝖱𝖾𝗉(𝐺1), 𝖱𝖾𝗉(𝐺2), then 𝒯1 ⊗𝒯2 ∼ 𝖱𝖾𝗉(𝐺1 × 𝐺2).

6 The fundamental group of a tannakian category
Let 𝒯 be a tannakian category over 𝑘. For each fibre functor 𝜔 over a 𝑘-scheme 𝑆,
Aut⊗𝑆 (𝜔) (5.9) is an affine group scheme over 𝑆. Its formation is compatible with base
change. By 5.11, the Aut⊗𝑆 (𝜔) come from an affine 𝒯-scheme.

Definition 6.1. The fundamental group 𝜋(𝒯) of 𝒯 is the affine group 𝒯-scheme
satisfying functorially

𝜔(𝜋(𝒯)) ≃ Aut⊗(𝜔). (1)

Let𝑋 ∈ ob𝒯. For each fibre functor𝜔 over 𝑆, 𝜔(𝜋(𝒯)) = Aut⊗(𝜔) acts on𝜔(𝑋). We
deduce an action (5.7) of𝜋(𝒯) on𝑋, functorial in𝑋 and compatible with tensor products.
By passage to ind-objects, these actions furnish an action of 𝜋(𝒯) on all ind-objects. We
deduce an action on all affine 𝒯-schemes. The action of 𝜋(𝒯) on the 𝒯-scheme 𝜋(𝒯) is
the action of 𝜋(𝒯) on itself by inner automorphisms. Indeed, for any fibre functor 𝜔,
the action by functoriality of Aut⊗(𝜔) on itself is its action by inner automorphisms.
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6.2. Let 𝑋 be a topological space, connected, locally connected, and locally simply
connected. The vocabulary 6.1 provides the following analogy.

𝒯 𝑋

object of 𝒯 covering of 𝑋

(=locally constant sheaf=local system on 𝑋)

fibre functor 𝜔0 point 𝑥0 ∈ 𝑋

Aut⊗(𝜔0) 𝜋1(𝑋, 𝑥0)

𝜋(𝒯) local system of the 𝜋1(𝑋, 𝑥)

action of 𝜋(𝒯) on 𝑌 in 𝒯 action of the local system of the 𝜋1(𝑋, 𝑥)

on a locally constant sheaf.

This analogue, and that of Galois groups and 𝜋1 (SGA 1, V, 8.1) led Grothendieck to
define 𝜋(𝒯) and, for 𝒯 the category of motives over 𝑘, he called it themotivic Galois
group of 𝑘.

Example 6.3. Let 𝐺 be an affine group scheme over 𝑘 and 𝒯 = 𝖱𝖾𝗉(𝐺). After 5.16.1,
the fundamental group 𝜋(𝒯), seen as an equivariant affine group scheme, is 𝐺 equipped
with the inner action on itself. The action of 𝜋(𝒯) on a representation𝑉 of 𝐺 is the given
action of 𝐺. It is 𝐺-equivariant,

ℎ(𝑔𝑣) = ℎ𝑔ℎ−1 ⋅ ℎ𝑣.

6.4. Let 𝑢∶ 𝒯1 → 𝒯 be an exact 𝑘-linear tensor functor between tannakian categories
over 𝑘. For any fibre functor 𝜔 on 𝒯 over a 𝑘-scheme, 𝜔◦𝑢 is a fibre functor on 𝒯1 over
𝑆. We have

Aut⊗(𝜔)→ Aut⊗(𝜔◦𝑢) (2)

The group 𝒯1-scheme 𝜋(𝒯1) defines, through the map 𝑢, a group 𝒯-scheme 𝑢𝜋(𝒯) and
(2) is a morphism, functorial in 𝜔, of 𝜔(𝜋(𝒯)) into 𝜔◦𝑢(𝜋(𝒯)) = 𝜔(𝑢(𝜋(𝒯1))). By 5.11,
it defines a morphism of 𝒯-schemes

𝜋(𝒯)→ 𝑢𝜋(𝒯1) (3)

For any object 𝑋1 of 𝒯1, the action 6.1 of 𝜋(𝒯1) on 𝑋1 induces an action of 𝑢𝜋(𝒯1)
on 𝑢𝑋1. Via (3), this action induces the action of 𝜋(𝒯) on the object 𝑢𝑋1 of 𝒯: this is
indeed the case after the application of any fibre functor.

Proposition 6.5. With the preceding notation, 𝑢 induces an equivalence of𝒯1 with the
category of objects of𝒯 equipped with an action of 𝑢𝜋(𝒯1) extending the action of 𝜋(𝒯).

Proof. We give the proof only in the neutral case. The general case follows by Deligne
1990, 8.17

Let 𝒯 = 𝖱𝖾𝗉(𝐺). Let 𝜔 be the forgetful functor. Let 𝐺1 = Aut⊗(𝜔◦𝑢). The mor-
phisms (2) define

𝑓∶ 𝐺 → 𝐺1, (4)
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equally deduced from (3) by applying𝜔. Via the equivalences𝒯 ∼ 𝖱𝖾𝗉(𝐺),𝒯2 ∼ 𝖱𝖾𝗉(𝐺1),
the functor 𝑢 is the restriction to 𝐺 (by 𝑓) of the action of 𝐺1, and 6.5 reduces to the
following triviality. For a vector space 𝑉, giving an action of 𝐺1 on 𝑉 is equivalent to
giving an action of 𝐺 plus a 𝐺-equivariant action of 𝐺1 factoring through the action of
𝐺. 2

6.6. While it is not necessary, assume again that 𝒯 is neutal. After Saavedra 1972, II,
4.3.2 (g) , if 𝑢 is fully faithful and identifies 𝒯1 to a full subcategory of 𝒯 stable under
subquotients, the morphisms (2) and (3) are epimorphisms (= are faithfully flat). If
𝐻 = Ker(𝜋(𝒯) → 𝑢𝜋(𝒯1)), 6.5 identifies 𝒯1 to the subcategory of 𝒯 formed of the
objects on which the action 6.1 of 𝜋(𝒯) induces the trivial action of𝐻.

Example 6.7. (i) For 𝒯1 the category of 𝑘-vector spaces, we have 𝜋(𝒯1) = {𝑒} and the
category of 𝑘-vector spaces can be identified by 𝑉 ⇝ 𝑉 ⊗ 11 (5.6) with that of objects of
𝒯 on which 𝜋(𝒯) acts trivially.

(ii) If 𝑘 has characteristic 0 and 𝜔0 is a fibre functor with values in 𝑘, the semisimple
objects of the abelian category of representations of the affine group scheme Aut⊗(𝜔0)
are the representations on which the unipotent radical 𝑅𝑢Aut⊗(𝜔0) acts trivially. The
subcategory 𝒯1 ⊂ 𝒯 of semisimple objects is therefore stable under tensor products.
The corresponding morphism (3) is

𝜋(𝒯)→ 𝜋(𝒯)∕𝑅𝑢𝜋(𝒯)

(for the definition of the second member, see 5.13).
(iii) Let 𝑇 be an object of dimension 1 of 𝒯. A representation 𝜌 of 𝔾𝑚 is the same

thing as a graded vector space 𝑉 =⨁𝑉𝑗, with (𝜆)𝑣𝑗 = 𝜆𝑗𝑣𝑗 for 𝑣𝑗 ∈ 𝑉𝑗, and we define

𝑢∶ 𝖱𝖾𝗉(𝔾𝑚)→ 𝒯

by 𝑉 ⇝⨁(𝑉𝑗 ⊗ 𝑇⊗𝑗). From there, we get a morphism

𝜋(𝒯)→ 𝔾𝑚 (5)

such that the action of 𝜋(𝒯) on 𝑇 factorizes through 𝔾𝑚, with 𝜆 acting as multiplication
by 𝜆. In (5), we regard 𝔾𝑚 as a group 𝒯-scheme by 5.6.

If, for all 𝑛 > 0, we have Hom(11, 𝑇⊗𝑛) = 0, we can apply 6.6 to see that (5) is an
epimorphism.

(iv) If the𝑇⊗𝑛 (𝑛 ∈ ℤ) are the only simple objects of𝒯, and no two are isomorphic, we
conclude from (ii) and (iii), at least in characteristic 0, that (5) makes 𝜋(𝒯) an extension
of 𝔾𝑚 by a unipotent group.

6.8. Let 𝒯 be a tannakian category over a field 𝑘 of characteristic 0 and, to simplify,
suppose again that 𝒯 is neutral. Let 𝒯ss be the category of semisimple objects of 𝒯. The
group 𝒯-scheme 𝑅𝑢𝜋(𝒯) acts trivially on (𝑅𝑢𝜋(𝒯))

ab, which is a group 𝒯ss-scheme. It
is commutative and unipotent, and we can identify it with a pro-object 𝒯ss (either by
Lie, cf. 4.8, or by writing it as a projective limit of vectorial group 𝒯-schemes.

Proposition 6.9. With the preceding notation, for 𝑋 semisimple in𝒯, we have

Ext1(11, 𝑋) ≃,→ Hom((𝑅𝑢𝜋(𝒯))ab, 𝑋). (6)
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Definitions

In (6), on the left 𝑋 is an object of 𝒯 and on the right it is the corresponding vectorial
𝒯-scheme. We have

Hom(𝑅𝑢𝜋(𝒯), 𝑋)
≃,→ Hom(𝑅𝑢𝜋(𝒯))ab, 𝑋)

≃,→ Hom(Lie(𝑅𝑢𝜋(𝒯))ab, 𝑋).

If a group 𝐺 acts on an extension 𝐸 of 𝐴 by 𝐵 and acts trivially on 𝐴 and 𝐵, the maps
𝜌(𝑔) − 1∶ 𝐸 → 𝐸 factor through morphisms from 𝐴 to 𝐵. The principle 5.11, 5.13 allow
us to repeat this “in 𝒯”.

If 𝐸 is an extension of 11 by 𝑋, the action 6.1 of 𝑅𝑢𝜋(𝒯) ⊂ 𝜋(𝒯) on 𝐸 is trivial on 11
and 𝑋 (6.7(ii)). It defines a morphism

𝑅𝑢𝜋(𝒯)→ Hom(11, 𝑋) = 𝑋.

This construction defines the arrow (6).

Proof. Injectivity: if the class of an extension 𝐸 has trivial image under (6), the action
of 𝑅𝑢𝜋(𝒯) on 𝐸 is trivial: 𝐸 is semisimple and the extension is trivial.

Surjectivity: we may suppose that𝒯 = 𝖱𝖾𝗉(𝐺). Write 𝐺 as a semi-direct product of a
proreductive group scheme𝐺𝑠𝑠 by 𝑅𝑢𝐺 (Levi decomposition). For (𝑋, 𝜌) a representation
of 𝐺𝑠𝑠 = 𝐺∕𝑅𝑢𝐺 and 𝑎 a 𝐺𝑠𝑠-morphism of 𝑅𝑢𝐺ab into 𝑋, we define an extension 𝐸 of the
trivial representation by the representation 𝑋 by making act 𝑢 ⋅ 𝑔 (𝑔 ∈ 𝐺𝑠𝑠, 𝑢 ∈ 𝑅𝑢𝐺) on

11⊗𝑋 by ( 1 0
𝑎(𝑢) 𝜌(𝑔)). Its image by (6) is the morphism 𝑎. 2

6.10 (Notation). For 𝑉 a vector space over 𝑘 and 𝑋 in𝒯,Hom(𝑉,𝑋) is the pro-object
of 𝒯, projective limit of the𝑊∨ ⊗𝑋 for𝑊 a subspace of finite dimension of 𝑉.

Example: Let 𝒯 be the category 𝖱𝖾𝗉(𝔾𝑚). Let 𝑇(𝑛) be the 𝑘-vector space on which
𝜆 ∈ 𝔾𝑚 acts by multiplication by 𝜆𝑛. For any pro-object 𝑋 of 𝒯, if we put 𝑉(𝑛) =
Hom(𝑋, 𝑇(𝑛)), then we have

𝑋 =
∏

𝑛
Hom(𝑉(𝑛), 𝑇(𝑛)). (7)

6.11. Let𝒯 be a neutral tannakian category over 𝑘 of characteristic 0 and 𝑇 ∈ ob𝒯. We
assume that 𝑇 has dimension 1 and we put 𝑇(𝑛) = 𝑇⊗𝑛. We assume that the morphism
6.7(iii) of𝜋(𝒯) into𝔾𝑚 is an epimorphismwith unipotent kernel, i.e., that the conditions
of 6.7(iv) are fulfilled. Let 𝑈 = Ker(𝜋(𝒯)→ 𝔾𝑚). Applying 6.9 and 6.10 and identifying
𝑈𝑎𝑏 to its Lie algebra, we find,

6.12. With the hypotheses and notation of 6.11

𝑈∕𝑈ab =
∏

Hom⊗(Ext1(11, 𝑇(𝑛)),

[Should be 𝑈ab.]

6.13. To two fibre functors 𝜔1, 𝜔2 of 𝒯 over 𝑆, we attach the affine scheme over 𝑆,
Isom⊗

𝑆 (𝜔2, 𝜔1). This construction is compatible with change of base. By 5.18 and 5.11, it
defines a 𝒯 ⊗𝒯-scheme 𝐺(𝒯), with

(𝜔1 ⊗𝜔2)(𝐺(𝒯)) = Isom⊗
𝑆 (𝜔2, 𝜔1).
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It is the fundamental groupoid of 𝒯.
For any mapping between finite sets 𝜑∶ 𝐼 → 𝐽, we define 𝑇(𝜑)∶ 𝒯⊗𝐼 → 𝒯⊗𝐽 by

𝑇(𝜑)(⊠𝑋𝑖) =⊠𝑗
( ⨂

𝜑(𝑖)=𝑗
𝑋𝑖
)
,

where the tensor product is over the 𝑖 ∈ 𝜑−1(𝑗) is taken in 𝒯, and is 11 if 𝜑−1(𝑗) = 𝜙.
Put 𝑗𝑎,𝑏 = 𝑇(𝜑) for

𝜑∶ {1, 2}→ {1, 2, 3}, 1↦ 𝑎, 2↦ 𝑏.

Composition of isomorphisms defines

𝑗1,2(𝐺(𝒯)) × 𝑗2,3(𝐺(𝒯))→ 𝑗1,3(𝐺(𝒯)) (8)

in 𝒯 ⊗ 𝒯 ⊗ 𝒯. For 𝜑∶ {1, 2} → {1}, 𝑇(𝜑) is 𝑇∶ 𝒯 ⊗ 𝒯 → 𝒯, 𝑋 ⊠𝑗 𝑌 ↦ 𝑋 ⊗𝒯 𝑌. We
have

𝑇(𝐺(𝒯)) = 𝜋(𝒯). (9)

For any fibre functor 𝜔 over 𝑆, (pr∗1 𝜔, pr
∗
2 𝜔) defines a fibre functor 𝜔⊠𝜔 on𝒯⊗𝒯

over 𝑆×𝑆. The image of𝐺(𝒯) by𝜔⊠𝜔 is the groupoidAut⊗𝑘 (𝜔)
def= Isom𝑆×𝑆(pr

∗
2 𝜔, pr

∗
2 𝜔)

over 𝑆, and the groupoid structure is deduced from (8).

6.14. We give in Deligne 1990, the following deseription of the algebra Λ of Ind(𝒯⊗𝒯)
of which 𝐺( 𝒯) is the spectrum (0.5): as ind-object, it is the target of the universal
morphism

𝑋∨ ⊗𝑘 𝑋 → Λ (𝑋 in 𝒯) (10)

rendering, for all 𝑓∶ 𝑋 → 𝑌 the following diagram commutative

𝑌∨ ⊗𝑋 𝑋∨ ⊗𝑋

𝑌∨ ⊗𝑌 Λ

←→𝑓𝑡⊗1

←→ 1⊗𝑓 ←→

← →

(6.14.2)

For any fibre functor 𝜔 over 𝑆, the groupoid Aut⊗𝑘 (𝜔)
def= Isom⊗

𝑆×𝑆(pr
∗
2 𝜔, pr

∗
1 𝜔) is

therefore the spectrum of 𝜔 ⊠ 𝜔(Λ): the quasi-coherent sheaf of algebras 𝐿 on 𝑆 × 𝑆
which, as a quasi-coherent sheaf, is the universal target of morphisms

pr∗1 𝜔(𝑋)
∨ ⊗ pr∗2 𝜔(𝑋)→ 𝐿

(𝑋 in 𝒯), satisfying a compactibility analogous to (6.14.2) for all 𝑓∶ 𝑋 → 𝑌.
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