The Fundamental Group of the Projective Line Minus Three Points

Pierre Deligne

Last corrected June 30, 2024

Abstract

This is a translation of §5 and §6 of the classic article

Deligne, P. Le groupe fondamental de la droite projective moins trois points. Galois groups over ℚ (Berkeley, CA, 1987), 79–297, Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989.

It is available at <https://www.jmilne.org/math/Documents/index.html>. Corrections should be sent to the email address on that page.

5 Algebraic geometry in a tannakian category

5.1. Let X be a complex algebraic variety, $o \in X$, and Γ the largest torsion-free quotient of $\pi_1(X, o)$ of class N:

$$
\Gamma = \pi_1(X, o)^{[N]} \quad (0.3).
$$

For (X, o) defined over $k \subset \mathbb{C}$, we want to see Lie Γ as the Betti realization of a motive over k . In certain situations, we construct in every case a system of realizations over k of which Lie Γ is the Betti realization, relative to the inclusion $\sigma : k \hookrightarrow \mathbb{C}$. The Lie bracket must also be a morphism of motives.

Giving a nilpotent Lie algebra Γ is equivalent to giving a unipotent algebraic group $\Gamma^{alg,un}$, or simply Γ^{alg} , whose Lie algebra it is (9.1, cf. also 9.5), and we can regard Γ^{alg} as being "motivic". We will do it as follows: giving the algebraic group Γ^{alg} is equivalent to giving its Hopf algebra. The exponential Lie $\Gamma \rightarrow \Gamma^{\text{alg}}$ identifies this algebra with $\bigoplus_n \text{Sym}^n((\text{Lie } \Gamma)^\vee)$. This is the inductive limit over k of the algebras aıg
∕∩ $\lim_{n \leq k} \text{Sym}^n((\text{Lie } \Gamma)^\vee)$. Each of these finite sums is the Betti realization, relative to σ , of an ind-object of the category of motives. The product and coproduct are induced by morphisms in this category.

For $x \in X$, the homotopy classes of paths from *o* to *x* form a torsor (0.6) under $\pi_1(X, o)$. From $\pi_1(X, o) \to \Gamma^{\text{alg}}$, we deduce a Γ^{alg} -torsor $P_{x, o}^{(N)}$. For x defined over k, we want this torsor to be motivic over k . Interpretation: its affine algebra is the Betti realization relative to σ of an ind-object of the category of systems of Betti realizations relative to σ of an ind-object of the category of systems of realizations over k . In contrast to that which holds for $\varGamma^{\mathrm{alg}},$ where we have the Lie algebra Lie $\varGamma^{\mathrm{alg}},$ I know of no convenient way of expressing the motivic character of $P_{x,o}^{(N)}$ that avoids a detour through ind-motives. The purpose of this paragraph is to furnish a suitable language for these constructions.

5.2. Let k be a field and $\mathcal T$ a tannakian category over k. More generally (at least in 5.2–5.7), we could take $\mathcal T$ to be a rigid abelian tensor category with End(1) = k, i.e., a tensorial category over k. For our needs, it suffices to consider the case that $\mathcal T$ is equivalent (with its tensor product and associativity and commutativity constraints) to the category $Rep(G)$ of linear representations of finite dimension of an affine group scheme G over k. We can paraphrase, in \mathcal{T} , the rudiments of algebraic geometry. Here is how.

5.3. The category Ind $\mathcal T$ of ind-objects of $\mathcal T$ (4.1) is equipped with a tensor product deduced from that of $\mathcal T$. As in $\mathcal T$, it is exact.

A **ring** (always assumed to have a unity) A of Ind $\mathcal T$ is an object A of Ind $\mathcal T$ equipped with an associative product \cdot : $A \otimes A \rightarrow A$ and admitting a unity $1 \rightarrow A$ (which we denote also by 1) . "Associative" and "unity" are expressed by diagrams. If one prefers to express them by the usual formulas, one arrives at the following. Ind-objects of $\mathcal T$ can be identified with the ind-representable functors $\mathcal{T} \rightarrow$ Set (see 4.1.1),

$$
X \rightsquigarrow h_X: h_X(S) = \text{Hom}(S, X).
$$

The functor h_X even takes values in the category of k-vector spaces. Giving $X \otimes Y \to Z$ is equivalent to giving

$$
h_X(S) \times h_Y(T) \to h_Z(S \otimes T),
$$

bilinear and functorial in S and T. The associativity of $A \otimes A \rightarrow A$ becomes

$$
(xy)z = x(yz) \text{ for } x \in h_A(S), y \in h_A(T), z \in h_A(U)
$$

[therefore, $xy \in h_A(S \otimes T)$, $yz \in h_A(T \otimes U)$, $(xy)z$ and $x(yz) \in h_A(S \otimes T \otimes U)$]. That 1 : $1 \rightarrow A$ is a unity becomes $1x = x1 = x$ for $x \in h_A(S)$ [we have $1 \in h_A(1)$, whence $1x \in h_A(1 \otimes S) = h_A(S)$, and even for $x \cdot 1$.

We define in an obvious way left and right A -modules, tensor products over A , and the commutativity of A. For example, a left A-module is an object of Ind $\mathcal T$ equipped with a morphism \cdot : $A \otimes M \rightarrow M$ with $(ab)m = a(bm)$ and $1m = m$ (for the meaning of such formulas, cf. above). We have

$$
M \otimes_A N = \operatorname{Coker}(M \otimes A \otimes N \rightrightarrows M \otimes N).
$$

Let $f: A \rightarrow B$ be a morphism of commutative rings in Ind \mathcal{T} . We say that B is *faithfully flat* over A if the functor $M \rightarrow B \otimes_A M$ from A-modules to B-modules is exact and faithful. The formalism of faithfully flat descent of modules (SGA1, VIII, 1) applies: the functor $M \rightarrow B \otimes M$ is an equivalence of categories of A-modules to that of B -modules N equipped with a desent datum

$$
(B\otimes_A B)\otimes_B N \xrightarrow{\simeq} N\otimes_B (B\otimes_A B).
$$

The proof in SGA 1, VIII, 1 still applies, or it can be reduced to the Barr-Beck theorem (cf., Deligne 1990, 4.1 and 4.2).

The structure morphism $1\otimes 1\to 1$ makes 1 into a ring in Ind $\mathcal T$ (even in $\mathcal T$), and for a ring (with unity) A of Ind $\mathcal T$, there is a unique morphism of rings (with unity) $\mathbf 1 \to A$. If $A \neq 0$, this morphism is non null, therefore is a monomorphism (DM 1.17), and the exact functor $M \rightarrow A \otimes_M M = A \otimes M$ is faithful because $M \hookrightarrow A \otimes M$. If $A \neq 0$, A is therefore faithfully flat over 1.

5.4. In order to have a geometric language at our disposal, we define the *category of* **affine schemes in** $\mathcal T$ to be the dual of that of commutative rings with unity in Ind $\mathcal T$. We also say affine $\mathcal T$ -scheme. We write Sp(A) for the affine $\mathcal T$ -scheme defined by A. Fibre products exist: they correspond to tensor products. An A -module M will be called a module over Sp(A), and for Sp(B) over Sp(A), the functor $M \rightarrow B \otimes_A M$ will be called the inverse image over $Sp(B)$. The formalism (SGA 1, VIII, 2) of faithfully flat descent for affine schemes applies.

We have initial and final schemes, $Sp(0)$ and $Sp(1)$ — they will be called the empty and point schemes. We say that $S = Sp(A)$ is nonempty if $A \neq 0$. If S is nonempty, S is faitfully flat over the point.

For X and S affine schemes in T, the set $X(S)$ of S-**points** of X is Hom(S,X).

An *affine* group \mathcal{T} -scheme is a group object of the category of affine \mathcal{T} -schemes.

Let *H* be an affine group scheme in $\mathcal T$. An *H*-torsor is a nonempty affine $\mathcal T$ -scheme P equipped with a right action ρ : $P \times H \rightarrow P$ such that, for all S, $P(S)$ is either empty or a torsor under $H(S)$. The condition "empty or a torsor" means that, for all S, (pr_1, ρ) : $P(S) \times H(S) \to P(S) \times P(S)$ is bijective, i.e., that (pr_1, ρ) : $P \times H \to P \times P$ is an isomorphism.

EXAMPLE 5.5 (VECTORIAL $\mathcal T$ -SCHEMES). For M in Ind $\mathcal T$, put $\Gamma(M) = \text{Hom}(1,M)$. For M a module over $S = Sp(A)$, we have

$$
\Gamma(M) = \text{Hom}(\mathbf{1}, M) \xleftarrow{\simeq} \text{Hom}_A(A, M),
$$

and we call $\Gamma(M)$ the global sections of M over S. Take care that the functor Γ need not be exact: for $\mathcal{T} = \text{Rep}(G)$, it is the functor of G-invariants.

An object X of T defines for each $S = Sp(A)$ a module $X_S = A \otimes X$, the inverse image of X by $S \to (\text{pt})$. The functor $S \to \Gamma(X_S)$ is representable,

$$
Hom(\mathbf{1}, A \otimes X) = Hom(X^{\vee}, A) = Hom_{rines}(Sym(X^{\vee}), A).
$$

We also call X the \mathcal{T} -scheme Sp(Sym(X^V)) representing this functor. This notation is parallel to the usage of identifying a finite-dimensional k -vector V with the scheme Spec(Sym^{*}(V^{\vee})) that has V for its points over k.

The functor $S \rightsquigarrow \Gamma(X_S)$ is a functor to groups. The $\mathcal T$ -scheme X is therefore a group scheme in $\mathcal T$. The group structure corresponds to the usual Hopf algebra structure on Sym^{*} (X^{\vee}) .

EXAMPLE 5.6 (AN AFFINE k-SCHEME IS AN AFFINE $\mathcal T$ -SCHEME). Since End(1) = k, the subcategory of $\mathcal T$ of sums of copies of 1 is naturally equivalent to that of vector spaces of finite dimension over k . We often identify the vector space V over k with the corresponding object of $\mathcal T$. When we need to be more precise, we write it $V \otimes \mathbf 1$. The choice of a basis $e_1, ..., e_n$ of V identifies $V \otimes \mathbf{1}$ with $\mathbf{1}^n$.

Passing to the ind-objects, we obtain a functor from the category of (all) vector spaces over k to Ind $\mathcal T$. Under this functor, an affine scheme over k defines a scheme in $\mathcal T$. Similarly, for affine group schemes, torsors, ... The point $Spec(k)$ defines the \mathcal{T} -scheme (pt).

5.7. Let G be an affine group $\mathcal T$ -scheme and X an object of $\mathcal T$. To give an **action** of G on X is to give, for every S, an action of $G(S)$ on the S-module X_S , compatible with

base changes S'/S. Such an action is defined by the action of $\mathrm{id}_G \in G(G)$ on X_G . For $G = Sp(A)$, it is an A-linear morphism $A \otimes X \to A \otimes X$, defined by $X \to A \otimes X$. The morphism $X \to A \otimes X$ makes X a comodule over the Hopf algebra with counity A in Ind \mathcal{T} .

5.8 (THE CASE OF Rep(G)). Let G be an affine group scheme over k and $\mathcal{T} = \text{Rep}(G)$.

The ind-objects of $\mathcal T$ are the linear representations — not necessarily of finite dimension — of G (4.3.2). The affine $\mathcal T$ -schemes are the affine schemes over k equipped with an action of G, an affine group $\mathcal T$ -scheme H is an affine group scheme over k equipped with an action of G , an H -torsor is an G -equivariant H -torsor (in the usual sense), a vectorial $\mathcal T$ -scheme is the equivariant affine scheme of a finite-dimensional representation of G , and the inclusion of affine k -schemes into affine $\mathcal T$ -schemes is "equip with the trivial action of G ".

This interpretation allows us to routinely reduce questions on affine \mathcal{T} -schemes to questions in usual algebraic geometry.

5.9. Let $\mathcal T$ be a tannakian category over k. Recall that a fibre functor on $\mathcal T$ over a k-scheme S is a k-linear exact tensor functor from $\mathcal T$ to the vector bundles on S. For a scheme $\pi : S' \to S$ over S, the inverse image on S' of a fibre functor ω on S is the fibre functor $X \rightsquigarrow \pi^* \omega(X)$. Notation: $\omega_{S'}$ or $\pi^* \omega$.

If ω_1 and ω_2 are two fibre functors over S, the functor which to $\pi: S' \to S$ attaches the set of isomorphisms from $\pi^*\omega_1$ to $\pi^*\omega_2$ is representable by a scheme $\underline{\mathrm{Isom}}^\otimes_S(\omega_1,\omega_2)$ affine over S. For a fibre functor ω over S, we write $\underline{\mathrm{Aut}}_{S}^{\otimes}(\omega)$ or $\underline{\mathrm{Aut}}^{\otimes}(\omega)$ for the affine S-scheme $\underline{\text{Isom}}_S(\omega, \omega)$.

The main result of Saavedra 1972 (cf., DM 2.11) is the following. If ω is a fibre functor on $\mathcal T$ over k (i.e., over Spec (k)), ω induces an equivalence

$$
\mathcal{T} \to \mathsf{Rep}(\mathsf{Aut}(\omega)).
$$

The interpretation 5.8 is then available. It has the following inconveniences.

- (a) The group Aut(ω) is not often explicit, and to see the $\mathcal T$ -schemes as equivariant affine k -schemes is scarcely illuminating. See $\S7$ for other interpretations.
- (b) If one uses 5.8 to construct affine \mathcal{T} -schemes, it may not be obvious that the \mathcal{T} scheme constructed does not depend on the fibre functor chosen. For how to render it obvious, see 5.11.

EXAMPLE 5.10. Let G be an affine group scheme over k , X a linear representation of finite dimension of G , and let X also denote the corresponding vectorial group scheme Spec(Sym^{*} (X^{\vee})). An extension

$$
0\to X\to E\to k\to 0
$$

of the unity representation (k with the trivial action) by X defines an equivariant X torsor, namely, the inverse image of $1 \in k$ in E. This construction is an equivalence of categories.

We want to deduce that for $\mathcal T$ as in 5.9 and X in $\mathcal T$, we have an equivalence from the category of extensions of 1 by X to that of X -torsors,

(extensions of 1 by X) $\xrightarrow{\sim}$ (X-torsors).

We define a functor as follows. Let A be the vectorial \mathcal{T} -scheme defined by the identity object. It is also the image by 5.6 of the affine line Spec $k[T]$ over k, and the point $T = 1$ defines a point 1 : $(pt) \rightarrow A$. An extension of E of 1 by X defines a vectorial scheme E mapping onto A. The action by translation of E by itself induces an action of X on E stabilizing the fibre at 1, P, of $E \to A$: $P \stackrel{\text{def}}{=} E \times_A (pt)$, relative to 1 : $(pt) \to A$. This fibre is the torsor sought.

This description is independent of the choice of a fibre functor. The interpretation 5.8 shows that it is an equivalence.

5.11. Let $\mathcal T$ be a tannakian category over k. The essential results of Deligne 1990, already announced in Saavedra 1972, but proved there only when $\mathcal T$ admits a fibre functor over k , i.e., is of the form Rep(G) (5.9), are the following.

- (a) The fibre functors form a gerbe $FIB(\mathcal{F})$ over the k-schemes for the fpqc topology. This means that they form a stack: possibility of patching a fibre functor given locally on S to a fibre functor on S, that if ω_1 and ω_2 are two fibre functors on S, there exist a T faithfully flat and quasi-compact over S on which ω_1 and ω_2 become isomorphic, and that there exists on some $S \neq \emptyset$ a fibre functor.
- (b) Each object X of T defines a morphism of stacks $\omega \rightsquigarrow \omega(X)$

(fibre functors over S variable) \rightarrow (vector bundles over S).

This construction is an equivalence of $\mathcal T$ with the category Rep(FIB $\mathcal T$) of these functors: it "amounts to the same" to give X in $\mathcal T$ or to give, for each fibre functor ω over a k-scheme S, a vector bundle over S, functorially in ω , and compatible with base change $S' \rightarrow S$.

(c) By passage to ind-objects, a fibre functor ω on S defines a tensor functor, again denoted ω , from Ind $\mathcal T$ into the category of quasi-coherent sheaves on S. Each object X of Ind $\mathcal T$ defines a morphism of stacks

(fibre functors over S) \rightarrow (sheaves quasi-coherent over S).

This construction is an equivalence of $\text{Ind } \mathcal{T}$ with the category of these functors.

It follows from (c) that it amounts to the same to give an affine $\mathcal T$ -scheme X (resp. an affine group $\mathcal T$ -scheme G, resp. a $\mathcal T$ -torsor under G) or to give, for each fibre functor ω over a k-scheme S, an affine scheme X_{ω} over S (resp. an affine group scheme G_{ω} , resp. a torsor under G_{ω}) functorially in ω and compatible with changes of base $S' \rightarrow S$. To $X = Sp(A)$, we attach the system $\omega(X) = Spec(\omega(A))$.

In particular, to construct a morphism $F: X \rightarrow Y$ between affine \mathcal{T} -schemes, it suffices for every fibre functor ω to construct functorially in ω a morphism from $\omega(X)$ to $\omega(Y)$. If ω is a fibre functor over S, it suffices for that, for every S-scheme T, to construct functorially in T an map from $\omega(X)(T) \stackrel{\text{def}}{=} \text{Hom}_S(T, \omega(X))$ into $\omega(Y)(T)$. To write such a construction, we "take the point of view of X", i.e., $x \in \omega(X)(T)$ and construct its image.

REMARK 5.12. For (X_{α}) as above, each X_{α}/S automatically has the following property (portant sur X/S).

(5.12.1) There exists an extension k' of k and $\pi : T \to S$ faithfully flat over S , such that the inverse image $\pi^* X = T \times_S X$ of X over T is the inverse image over T of a k' -scheme, by a morphism of T to k' .

Indeed, there exists a fibre functor ω_0 over an extension k' of k and, because ${\rm FIB}({\cal T})$ is a gerbe, there exists T faithfully flat over $S \times \mathrm{Spec}(k')$ over which ω and ω_0 become isomorphic. Over this T , X_{ω} and X_{ω_0} have isomorphic inverse images.

A similar statement holds for schemes equipped with additional data.

5.13. Let Ξ be a construction of the following form: to affine schemes over a k-scheme S , equipped with suitable additional data, it attaches an affine scheme over S , equipped with additional data. It suffices that Ξ be defined for schemes, equipped with additional data, satisfying 5.12.1. We assume that Ξ is compatible with base change.

By [5.11,](#page-4-0) it then makes sense to apply Ξ to affine $\mathcal T$ -schemes, equipped with additional data of the type required: to apply Ξ to the $\mathcal T$ -schemes X_i , we apply it to the $\omega(X_i)$; the system $Y_{\omega} = \Xi(\omega(X_i))$ define by [5.11](#page-4-0) a \mathcal{T} -scheme Y, which we call $\Xi(X_i)$.

Similarly, if P is a property of affine schemes over S equipped with additional structure, (satisfying 5.12.1 if one wishes) which is local for the fpqc topology, it makes sense to consider P "in \mathcal{T} ",

Rather that make precise the sense of "construction", of "additional data", of "property", we give some examples.

EXAMPLE 5.14. (a) Let G be an affine group scheme over S , $\Xi(G)$ the Nth subgroup $Z^N(G)$ of G for the central descending series, or the quotient $G^{(N)} \stackrel{\text{def}}{=} G/Z^N(G)$. This construction is not compatible with arbitrary bases changes for G/S , but it is for an affine group scheme G over S satisfying (5.12.1).

(b) Let *H* be a normal subgroup of *G* and $\Xi(G, H)$ is G/H . Even if *H* is not normal, we can consider G/H when it is affine. The same remark as in (a) applies.

(c) Let G be an affine group scheme over S , and the property " G is unipotent".

APPLICATION 5.15. Over an arbitrary base S, giving an extension $\mathcal E$ of $\mathcal O$ by a vector bundle $\mathcal V$ is equivalent to giving a torsor under the vectorial group scheme defined by ν . This construction is compatible with base change. It follows that in every tannakian category, giving an extension E of 1 by an object V is equivalent to giving a torsor under the $\mathcal T$ -vectorial scheme V. We have already proved this in [5.10](#page-3-0) for a neutral $\mathcal T$.

5.16. Here is the relation between the points of view 5.8 and 5.11 for $\mathcal{T} = \text{Rep}(G)$. Let ω_0 be the forgetful fibre functor. For ω a fibre functor over S, Isom (ω_0, ω) is a G -torsor P over S . Conversely, a G -torsor P defines a fibre functor

 ω_P : $V \rightsquigarrow (V$ twisted by P)

over S. If $P(S) \neq \emptyset$, the twisted V^P is a vector bundle over S equipped, for each $p \in P(S)$, with $\rho(p)$: $V \otimes O_S \stackrel{\simeq}{\longrightarrow} V^P$, with $\rho(pg) = \rho(p)\rho(g)$ for all $g \in G(S)$. The general case can be treated by descent. We have an equivalence

$$
FIB(Rep(G)) \sim (G\text{-torsors over } S \text{ variable}).
$$

If X is a $\mathcal T$ -scheme, identified by 5.8 to a G -equivariant affine scheme, then for every fibre functor ω_P , $\omega_P(X)$ is the twist X^P of X by P.

We note for later use. Lemma (5.16.1). $\underline{\mathrm{Aut}}(\omega_P) = \underline{\mathrm{Aut}}(P)$ is G^P for the inner action of G on itself.

Proof: When $P(S) \neq \emptyset$, each $p \in P(S)$ defines an isomorphism $\rho(p)$ of P with the trivial G-torsor G, therefore of $Aut(P)$ with G (left translations of G). We have $\rho(pg) = \rho(p) \circ \text{inn}(g)$: the automorphism of P which sends $p \cdot g$ to $p \cdot gh$ sends p to $p \cdot ghg^{-1}$. This satisfies 5.16.1 for $P(S) \neq \emptyset$, and the general case follows by descent.

5.17. The passage 5.11 from $\mathcal T$ to FIB($\mathcal T$) has an inverse (D1990, 1.12 and §3). Let G be a gerbe with affine band over k -schemes: we assume that, for an object ω of G over S, the functor that to $\pi: S' \to S$ attaches $Aut(\pi^*\omega)$ is representable by an affine group scheme over S . Let $Rep(G)$ be the category of morphisms of stacks

 $G \rightarrow$ (vector bundles over *S* variable).

Then $Rep(G)$ is a tannakian category, and

 $G \longrightarrow$ FIB(Rep(G)).

5.18. From 5.11 and 5.17, we get a dictionary between tannakian categories over k and gerbes with affine band. We define the *tensor product* of two tannakian categories by

$$
\mathrm{FIB}(\mathcal{F}_1 \otimes \mathcal{F}_2) \sim \mathrm{FIB}(\mathcal{F}_1) \times \mathrm{FIB}(\mathcal{F}_2).
$$

Giving an object X of $\mathcal{T}_1 \otimes \mathcal{T}_2$ is equivalent to giving, for ω_1 and ω_2 fibre functors over S of \mathcal{T}_1 and \mathcal{T} , a vector bundle X_{ω_1,ω_2} on S, the formation of X_{ω_1,ω_2} being functorial in ω_1 and ω_2 and compatible with base change.

We have a tensor product

$$
\boxtimes\colon \mathcal{F}_1 \times \mathcal{F}_2 \to \mathcal{F}_1 \otimes \mathcal{F}_2,
$$

such that, for fibre functor ω_1 and ω_2 on \cal{T}_1 and \cal{T}_2 , there is a fibre functor on $\cal{T}_1\otimes\cal{T}_2$ sending $X_1 \boxtimes X_2$ to $\omega_1(X_1) \otimes \omega_2(X_2)$. In D1990, §5, it is shown that $\mathcal{F}_1 \otimes \mathcal{F}_2$ is the universal target of such a tensor product with suitable properties.

If \mathcal{T}_1 , \mathcal{T}_2 are Rep(G_1), Rep(G_2), then $\mathcal{T}_1 \otimes \mathcal{T}_2 \sim$ Rep($G_1 \times G_2$).

6 The fundamental group of a tannakian category

Let $\mathcal T$ be a tannakian category over k. For each fibre functor ω over a k-scheme S, $\underline{\mathrm{Aut}}_{S}^{\otimes}(\omega)$ (5.9) is an affine group scheme over S. Its formation is compatible with base change. By 5.11, the $\underline{\mathrm{Aut}}_{S}^{\otimes}(\omega)$ come from an affine ${\mathcal{T}}$ -scheme.

DEFINITION 6.1. The *fundamental group* $\pi(\mathcal{F})$ of \mathcal{F} is the affine group \mathcal{F} -scheme satisfying functorially

$$
\omega(\pi(\mathcal{F})) \simeq \underline{\mathrm{Aut}}^{\otimes}(\omega). \tag{1}
$$

Let $X \in ob \mathcal{T}$. For each fibre functor ω over S , $\omega(\pi(\mathcal{T})) = \text{Aut}^{\otimes}(\omega)$ acts on $\omega(X)$. We deduce an action (5.7) of $\pi(\mathcal{F})$ on X, functorial in X and compatible with tensor products. By passage to ind-objects, these actions furnish an action of $\pi(\mathcal{F})$ on all ind-objects. We deduce an action on all affine $\mathcal T$ -schemes. The action of $\pi(\mathcal T)$ on the $\mathcal T$ -scheme $\pi(\mathcal T)$ is the action of $\pi(\mathcal{F})$ on itself by inner automorphisms. Indeed, for any fibre functor ω , the action by functoriality of Aut[⊗](ω) on itself is its action by inner automorphisms.

This analogue, and that of Galois groups and π_1 (SGA 1, V, 8.1) led Grothendieck to define $\pi(\mathcal{T})$ and, for $\mathcal T$ the category of motives over k, he called it the *motivic Galois group* of *k*.

EXAMPLE 6.3. Let G be an affine group scheme over k and $\mathcal{T} = \text{Rep}(G)$. After 5.16.1, the fundamental group $\pi(\mathcal{F})$, seen as an equivariant affine group scheme, is G equipped with the inner action on itself. The action of $\pi(\mathcal{T})$ on a representation V of G is the given action of G . It is G -equivariant,

 $h(gv) = hgh^{-1} \cdot hv.$

6.4. Let $u : \mathcal{T}_1 \to \mathcal{T}$ be an exact k-linear tensor functor between tannakian categories over k. For any fibre functor ω on $\mathcal T$ over a k-scheme, $\omega \circ u$ is a fibre functor on $\mathcal T_1$ over S. We have

$$
\underline{\mathrm{Aut}}^{\otimes}(\omega) \to \underline{\mathrm{Aut}}^{\otimes}(\omega \circ u) \tag{2}
$$

The group \mathcal{T}_1 -scheme $\pi(\mathcal{T}_1)$ defines, through the map u , a group \mathcal{T} -scheme $u\pi(\mathcal{T})$ and [\(2\)](#page-7-0) is a morphism, functorial in ω , of $\omega(\pi(\mathcal{T}))$ into $\omega \circ u(\pi(\mathcal{T})) = \omega(u(\pi(\mathcal{T}_1)))$. By [5.11,](#page-4-0) it defines a morphism of $\mathcal T$ -schemes

$$
\pi(\mathcal{T}) \to u\pi(\mathcal{T}_1) \tag{3}
$$

For any object X_1 of \mathcal{T}_1 , the action 6.1 of $\pi(\mathcal{T}_1)$ on X_1 induces an action of $u\pi(\mathcal{T}_1)$ on uX_1 . Via [\(3\)](#page-7-1), this action induces the action of $\pi(\mathcal{T})$ on the object uX_1 of \mathcal{T} : this is indeed the case after the application of any fibre functor.

PROPOSITION 6.5. *With the preceding notation, u induces an equivalence of* \mathcal{T}_1 with the c ategory of objects of $\mathcal T$ equipped with an action of $\mathfrak{u}\pi({\mathcal T}_1)$ extending the action of $\pi({\mathcal T})$.

PROOF. We give the proof only in the neutral case. The general case follows by Deligne 1990, 8.17

Let $\mathcal{T} = \mathsf{Rep}(G)$. Let ω be the forgetful functor. Let $G_1 = \underline{\mathrm{Aut}}^{\otimes}(\omega \circ u)$. The morphisms [\(2\)](#page-7-0) define

$$
f: G \to G_1,\tag{4}
$$

equally deduced from [\(3\)](#page-7-1) by applying ω . Via the equivalences $\mathcal{T} \sim \mathsf{Rep}(G)$, $\mathcal{T}_2 \sim \mathsf{Rep}(G_1)$, the functor u is the restriction to G (by f) of the action of G_1 , and [6.5](#page-7-2) reduces to the following triviality. For a vector space V, giving an action of G_1 on V is equivalent to giving an action of G plus a G -equivariant action of G_1 factoring through the action of $G.$

6.6. While it is not necessary, assume again that $\mathcal T$ is neutal. After Saavedra 1972, II, 4.3.2 (g) , if u is fully faithful and identifies ${\mathcal T}_1$ to a full subcategory of ${\mathcal T}$ stable under subquotients, the morphisms (2) and (3) are epimorphisms $(=$ are faithfully flat). If $H = \text{Ker}(\pi(\mathcal{T}) \to u\pi(\mathcal{T}_1))$, [6.5](#page-7-2) identifies \mathcal{T}_1 to the subcategory of \mathcal{T} formed of the objects on which the action [6.1](#page-6-0) of $\pi(\mathcal{F})$ induces the trivial action of H.

EXAMPLE 6.7. (i) For \mathcal{T}_1 the category of *k*-vector spaces, we have $\pi(\mathcal{T}_1) = \{e\}$ and the category of k-vector spaces can be identified by $V \rightsquigarrow V \otimes 1$ [\(5.6\)](#page-2-0) with that of objects of $\mathcal T$ on which $\pi(\mathcal T)$ acts trivially.

(ii) If k has characteristic 0 and ω_0 is a fibre functor with values in k, the semisimple objects of the abelian category of representations of the affine group scheme $\underline{\mathrm{Aut}}^\otimes(\omega_0)$ are the representations on which the unipotent radical $R_u\underline{\mathrm{Aut}}^\otimes(\omega_0)$ acts trivially. The subcategory $\mathcal{T}_1 \subset \mathcal{T}$ of semisimple objects is therefore stable under tensor products. The corresponding morphism [\(3\)](#page-7-1) is

$$
\pi(\mathcal{T}) \to \pi(\mathcal{T})/R_u\pi(\mathcal{T})
$$

(for the definition of the second member, see [5.13\)](#page-5-0).

(iii) Let T be an object of dimension 1 of T. A representation ρ of \mathbb{G}_m is the same thing as a graded vector space $V = \bigoplus V^j$, with $(\lambda)v^j = \lambda^j v^j$ for $v^j \in V^j$, and we define

$$
u: \mathsf{Rep}(\mathbb{G}_m) \to \mathcal{F}
$$

by $V \rightsquigarrow \bigoplus (V^j \otimes T^{\otimes j}).$ From there, we get a morphism

$$
\pi(\mathcal{F}) \to \mathbb{G}_m \tag{5}
$$

such that the action of $\pi(\mathcal{T})$ on T factorizes through \mathbb{G}_m , with λ acting as multiplication by λ . In [\(5\)](#page-8-0), we regard \mathbb{G}_m as a group $\mathcal T$ -scheme by [5.6.](#page-2-0)

If, for all $n > 0$, we have Hom(1, $T^{\otimes n}$) = 0, we can apply [6.6](#page-8-1) to see that [\(5\)](#page-8-0) is an epimorphism.

(iv) If the $T^{\otimes n}$ ($n \in \mathbb{Z}$) are the only simple objects of \mathcal{T} , and no two are isomorphic, we conclude from (ii) and (iii), at least in characteristic 0, that [\(5\)](#page-8-0) makes $\pi(\mathcal{T})$ an extension of \mathbb{G}_m by a unipotent group.

6.8. Let $\mathcal T$ be a tannakian category over a field k of characteristic 0 and, to simplify, suppose again that $\mathcal T$ is neutral. Let $\mathcal T^{\text{ss}}$ be the category of semisimple objects of $\mathcal T$. The group $\mathcal F$ -scheme $R_u\pi(\mathcal F)$ acts trivially on ${(R_u\pi(\mathcal F))}^{ab},$ which is a group $\mathcal F^{\rm ss}$ -scheme. It is commutative and unipotent, and we can identify it with a pro-object \mathcal{T}^{ss} (either by Lie, cf. 4.8, or by writing it as a projective limit of vectorial group \mathcal{T} -schemes.

PROPOSITION 6.9. *With the preceding notation, for* X *semisimple in* \mathcal{T} *, we have*

$$
Ext1(1, X) \xrightarrow{\simeq} Hom((R_u \pi(\mathcal{F}))^{ab}, X).
$$
 (6)

DEFINITIONS

In [\(6\)](#page-8-2), on the left X is an object of $\mathcal T$ and on the right it is the corresponding vectorial \mathcal{T} -scheme. We have

 $Hom(R_u \pi(\mathcal{T}), X) \stackrel{\simeq}{\longrightarrow} Hom(R_u \pi(\mathcal{T}))^{ab}, X) \stackrel{\simeq}{\longrightarrow} Hom(Lie(R_u \pi(\mathcal{T}))^{ab}, X).$

If a group G acts on an extension E of A by B and acts trivially on A and B, the maps $\rho(g) - 1$: $E \rightarrow E$ factor through morphisms from A to B. The principle [5.11,](#page-4-0) [5.13](#page-5-0) allow us to repeat this "in \mathcal{T} ".

If *E* is an extension of 1 by *X*, the action 6.1 of $R_u\pi(\mathcal{F}) \subset \pi(\mathcal{F})$ on *E* is trivial on 1 and X [\(6.7\(](#page-8-3)ii)). It defines a morphism

$$
R_u \pi(\mathcal{T}) \to \text{Hom}(\mathbf{1}, X) = X.
$$

This construction defines the arrow [\(6\)](#page-8-2).

PROOF. Injectivity: if the class of an extension E has trivial image under [\(6\)](#page-8-2), the action of $R_u \pi(\mathcal{T})$ on E is trivial: E is semisimple and the extension is trivial.

Surjectivity: we may suppose that $\mathcal{T} = \mathsf{Rep}(G)$. Write G as a semi-direct product of a proreductive group scheme \overline{G}^{ss} by R_uG (Levi decomposition). For (X,ρ) a representation of $G^{ss} = G/R_uG$ and a a G^{ss} -morphism of R_uG^{ab} into X, we define an extension E of the trivial representation by the representation X by making act $u \cdot g$ ($g \in G^{ss}$, $u \in R_u$ G) on

1
$$
\otimes
$$
 X by $\begin{pmatrix} 1 & 0 \\ a(u) & \rho(g) \end{pmatrix}$. Its image by (6) is the morphism a.

6.10 (NOTATION). For V a vector space over k and X in \mathcal{T} , Hom(V,X) is the pro-object of $\mathcal T$, projective limit of the $W^{\vee} \otimes X$ for W a subspace of finite dimension of V.

Example: Let $\mathcal T$ be the category Rep(\mathbb{G}_m). Let $T(n)$ be the k-vector space on which $\lambda \in \mathbb{G}_m$ acts by multiplication by λ^n . For any pro-object X of T, if we put $V(n) =$ $Hom(X, T(n))$, then we have

$$
X = \prod_{n} \underline{\text{Hom}}(V(n), T(n)).
$$
 (7)

6.11. Let $\mathcal T$ be a neutral tannakian category over k of characteristic 0 and $T \in ob \mathcal T$. We assume that T has dimension 1 and we put $T(n) = T^{\otimes n}$. We assume that the morphism [6.7\(](#page-8-3)iii) of $\pi(\mathcal{T})$ into \mathbb{G}_m is an epimorphism with unipotent kernel, i.e., that the conditions of 6.7(iv) are fulfilled. Let $U = \text{Ker}(\pi(\mathcal{T}) \to \mathbb{G}_m)$. Applying [6.9](#page-8-4) and [6.10](#page-9-0) and identifying U^{ab} to its Lie algebra, we find,

6.12. With the hypotheses and notation of [6.11](#page-9-1)

$$
U/U^{\text{ab}} = \prod \underline{\text{Hom}}^{\otimes}(\text{Ext}^1(\mathbf{1}, T(n)),
$$

[Should be U^{ab} .]

6.13. To two fibre functors ω_1 , ω_2 of $\mathcal T$ over S, we attach the affine scheme over S, Isom $^{\otimes}_{S}(\omega_2, \omega_1)$. This construction is compatible with change of base. By [5.18](#page-6-1) and [5.11,](#page-4-0) it defines a $\mathcal{T} \otimes \mathcal{T}$ -scheme $G(\mathcal{T})$, with

$$
(\omega_1 \otimes \omega_2)(G(\mathcal{T})) = \underline{\text{Isom}}_S^{\otimes}(\omega_2, \omega_1).
$$

It is the *fundamental groupoid* of \mathcal{T} .

For any mapping between finite sets $\varphi : I \to J$, we define $T(\varphi) : \mathcal{T}^{\otimes I} \to \mathcal{T}^{\otimes J}$ by

$$
T(\varphi)(\boxtimes X_i) = \boxtimes_j \Big(\bigotimes_{\varphi(i)=j} X_i\Big),
$$

where the tensor product is over the $i \in \varphi^{-1}(j)$ is taken in \mathcal{T} , and is 1 if $\varphi^{-1}(j) = \varphi$. Put $j_{a,b} = T(\varphi)$ for

$$
\varphi: \{1, 2\} \to \{1, 2, 3\}, \quad 1 \mapsto a, \ 2 \mapsto b.
$$

Composition of isomorphisms defines

$$
j_{1,2}(G(\mathcal{F})) \times j_{2,3}(G(\mathcal{F})) \to j_{1,3}(G(\mathcal{F}))
$$
\n(8)

in $\mathcal{T} \otimes \mathcal{T} \otimes \mathcal{T}$. For $\varphi : \{1,2\} \to \{1\}$, $T(\varphi)$ is $T : \mathcal{T} \otimes \mathcal{T} \to \mathcal{T}$, $X \boxtimes_i Y \mapsto X \otimes_{\mathcal{T}} Y$. We have

$$
T(G(\mathcal{F})) = \pi(\mathcal{F}).\tag{9}
$$

For any fibre functor ω over S , $(pr_1^*\omega, pr_2^*\omega)$ defines a fibre functor $\omega\boxtimes\omega$ on $\mathcal{T}\otimes\mathcal{T}$ over S × S. The image of $G(\mathcal{F})$ by $\omega \boxtimes \omega$ is the groupoid $\underline{\mathrm{Aut}}_k^{\otimes}(\omega) \stackrel{\text{def}}{=} \underline{\mathrm{Isom}}_{S \times S}(\mathrm{pr}_2^* \omega, \mathrm{pr}_2^* \omega)$ over S , and the groupoid structure is deduced from (8) .

6.14. We give in Deligne 1990, the following deseription of the algebra Λ of Ind($\mathcal{T} \otimes \mathcal{T}$) of which $G(\mathcal{T})$ is the spectrum (0.5): as ind-object, it is the target of the universal morphism

$$
X^{\vee} \otimes_k X \to \Lambda \quad (X \text{ in } \mathcal{F}) \tag{10}
$$

rendering, for all $f : X \to Y$ the following diagram commutative

$$
Y^{\vee} \otimes X \xrightarrow{f^t \otimes 1} X^{\vee} \otimes X
$$

\n
$$
\downarrow 1 \otimes f \qquad \qquad \downarrow \qquad (6.14.2)
$$

\n
$$
Y^{\vee} \otimes Y \xrightarrow{\qquad \qquad \wedge
$$

For any fibre functor ω over S, the groupoid $\underline{\text{Aut}}_k^{\otimes}(\omega) \stackrel{\text{def}}{=} \underline{\text{Isom}}_{S \times S}^{\otimes}(\text{pr}_2^* \omega, \text{pr}_1^* \omega)$ is therefore the spectrum of $\omega \boxtimes \omega(\Lambda)$: the quasi-coherent sheaf of algebras L on $S \times S$ which, as a quasi-coherent sheaf, is the universal target of morphisms

$$
\operatorname{pr}_1^* \omega(X)^\vee \otimes \operatorname{pr}_2^* \omega(X) \to L
$$

(*X* in \mathcal{T}), satisfying a compactibility analogous to (6.14.2) for all $f : X \to Y$.