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International Symposium

on

A]gel)raic Number Tl‘leory

The Exccutive Committee shall discuss the future program of con-
ferences each year on the basis of proposals received before February 1
(in 1954 before November 1). In setting up the programs the Executive
Committce must take into account the interest of the various subjects
from the point of view of the actual state of science, the scientific
circumstances in the countries in which the conference might take place,
and what conferences have taken place in recent years....

(From Art. 4 of the rules on Symposia of the International Mathemalical Union.)

I. - An International Symposium on Algebraic Number Theory was held
in Tokyo and Nikko, Japan on September 8-13, 1955. It was attended by
64 mathematicians, of whom 10 from foreign countries: France, Germany,
India and the United States of America. Professor T. Takagi, the founder
of the class field theory, attended it on September 9 as Honorary Chairman
of the Symposium. It was organized by an Organizing Committee under
the Science Council of Japan, with Professor S. Iyanaga as Chairman, Pro-
fessor Y. Akizuki as Secretary and with three foreign members nominated
by the International Mathematical Union: Professors K. Chandrasekharan,
C. Chevalley and S. Mac Lane. It was co-sponsored by the International
Mathematical Union, whose Executive Committee approved the proposal
of the Science Council of Japan to hold this Symosium, endorsed by the
decision of the Japanese Government at its Cabinet meeting on QOctober
22, 1955. Thus a financial aid was given by UNESCO through the Inter-
national Council of Scientific Unions and the International Mathematical
Union; it was also aided by a Society for Supporting the Symposium
formed principally with representative people in the financial and industrial
circles of Japan, as well as by the foreign governments and institutions
concerned, which contributed towards the travel expenses of the foreign
participants.

2. The Organizing Committee aimed at exchanging informations on

latest research results, with a view to further developing the Algebraic
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Number Theory, among the ranking mathematicians working in this field
all over the world in an atmosphere of friendship and cordiality. A special
emphasis was laid on possible extensions of the class field theory as well
as on the interplay of the algebraic geometry and the number theory.
It turned out, incidentally, that remarkable results had been obtained
by a number of participants from abroad and inside Japan, concerning
the generalization of the theory of complex multiplication, so that a notable
progress was marked in this field on this occasion. As the papers pre-
sented by Japanese mathematicians were so numerous, only a smaller part
of them could be read at the Symposium in full length. As for the selec-
tion of the papers to be read and the plan of the Symposium in general,
the whole responsibility was assumed by the Organizing Committee.

3. As Japan is situated in a remote corner of the world distant from
the western countries, and as this was the first symposium of its kind to
be held here, this was considered by the Japanese public interested in
mathematics as a particular good occasion to have contact with the ranking
mathematicians from abroad. A Public Lecture Meeting by three partici-
pant mathematicians, Professors E. Artin, A. Weil and C. Chevalley was
held on September 8 in response to the wish of the interested gencral
public. The contents of these lectures were translated into Japanese and
published in Japanese periodicals®. Morecover, the foreign participants
were invited to deliver lectures and to participate in seminars in universities
in various parts of Japan before their going home.

The following pages will reproduce the scientific content and the

atmosphere of the Symposium.

1) ““Sugaku” (edited by the Mathematical Society of Japan) vol. 7, no. 4, 1956,
and * Kagaku’ (published by Iwanami Shoten, Tokyo) vol. 25, no. 12, 1955.



Staﬂ

PRESIDENT OF THE SCIENCE COUNCIL OF JAPAN
Kava, Seij
OFFICERS OF THE SYMPOSIUM
HoNorArRY CHAIRMAN Takact, Teiji
CHAIRMAN SUETUNA, Zyoiti
ORGANIZING COMMITTEE
CHAIRMAN Ivanaca, Shokichi
SECRETARY AKI1zUKkI, Yasuo
MEeMBERS NOMINATED BY THE INTERNATIONAL
MaTtHEMATICAL UNION

CHANDRASEKHARAN, Komaravolu
Mac Lang, Saunders CHEVALLEY, Claude

MEMBERS NOMINATED BY THE ScCIENCE COUNCIL OF JAPAN

Fujioka, Yoshio Ho~xbpa, Hiroto
Hukunara, Masuo InADA, Seisuke
Isuizawa, Sadayoshi Kawapa, Yukiyosi
Kiracawa, Tosio Korani, Masao
Kunuar, Kinjiro Nozawa, Tadao
OxkanNo, Kiyoshi Sartro, Hitoshi
Suopa, Kenjiro SUETUNA, Zyoiti
Tamacawa, Tsunco Tannaka, Tadao
Yosuimoro, Motosuke Yosipa, Kosaku

PREPARATION COMMITTEE

CHAIRMAN SHopa, Kenjiro
MEMBERS
Axizukl, Yasuo Ivyanaca, Shokichi
Sarro, Hitoshi SUETUNA, Zyoiti

RECEPTION COMMITTEE

HukunArAa, Masuo Kunuci, Kinjiro
Nowmizu, Katsumi YamaBe, Hidehiko
YoNEDA, Nobuo Yosipa, Kosoku

EDITORIAL COMMITTEE

Ivyanaca, Shokichi Kawapa, Yukiyosi



Programme

Sept. 8 (Thursday)
10.30 - 11.30
Opening Ceremony (Conference Room, Daiichi Mutual Life In-
surance Co.)
14.00 - 16.30
Public Lectures (University of Tokyo)

Speakers:
Prof. E. ArTIN: Theory of braids
Prof. A. WEIL: On the breeding of bigger and better

zeta-functions

Prof. C. CuevaLLEY: A few remarks on mathematical journals

Sept. 9 (Friday)

9.30 - 12.00
(Conference Room, D.M.L.I.C.)
Chairman: Prof. C. CHEVALLEY
Communications:
Prof. E. ArRTIN: Representatives of the connected com-
poncnts of the id¢le class group
Prof. K. Iwasawa: Galois groups acting on the multiplicative
groups of local fields
Prof. A. WeiIL: On certain characters of ideéle class
groups
14.00 - 16.30
(Conference Room, D.M.L.I.C.)
Chairman: Prof. K. Suoba
Communications:
Prof. R. BRAUER: Number-theorctical  investigations on

groups of finite order

Prof. T. TANNAKA: On the gencralized principal ideal

theorem
Mr. T. KusoTa: Density in a family of abelian extensions
Short Communications:
Prof. F. TERADA: A generalization of the principal ideal
theorem
Prof. K. TAKETA: Uber die Struktur der metabelschen

Gruppen



Sept. 10 (Saturday)
9.00 - 11.45
(Conference Room, D.M.L.I.C.)
Chairman: Prof. R. BRAUER
Communications:

Prof. C. CHEVALLEY : Projective imbedding of a group variety

Mr. K. Yamazaki: Fibre spaces and sheaves in number
theory

Prof. D. Zerinsky: Cohomology of function fields and other
algebras

Prof. T. Nakavyama (Read by Prof. Y. KAwaApa):
A conjecture on the cohomology of al-
gebraic number fields and the proof of
its special case

Sept. 12 (Monday)
9.00 - 12.00

(Ball-room, Kanaya Hotel)
Chairman: Prof. E. ArRTIN

Commuications:

Mr. G. SHIMURA: On complex multiplications

Mr. Y. TANIYAMA: Jacobian varieties and number fields

Prof. A. WEIL: Generalization of complex multiplication

Short Communications:

Prof. E. Inaba: On cohomology groups in a field, which
is complete with respect to a discrete
valuation

Mr. M. lkeda: Cohomology theory for algebras

14.00 ~ 16.30

(Ball-room, K. H.)
Chairman: Prof. A. WEIL

Communications:
Prof. M. DEUrING:  On the zeta-function of an elliptic func-
tion field with complex multiplications
Mr. I. SATAKE: On Siegel’s modular functions

Prof. K. G. RamanaTHAN: Units of fixed points in involu-
torial algebras

16.30 - 17.30

Chairman: Prof. K. IwAsawaA
Short Communications:

Mr. T. Ono: On orthogonal groups over number fields



vi

Prof. T. TAMAGAWA :

Prof. T. TaTUuZAWA :

Prof. K. YAMAMOTO:

Mr. H. MORIKAWA :

Sept. 13 (Tuesday)
9.00 - 12.00
(Ball-room, K. H.)

On some extensions of Epstein’s Z-series
Additive prime number theory in the
totally real algebraic number field

Theory of arithmetic linear transforma-
tions and its application to an elementary
proof of Dirichlet’s theorem about the
primes in an arithmetic progression

Cycles on algebraic varieties

Chairman: Prof. Y. AK1ZUKI

Communications:
Prof. J.-P. SERRE:
Prof. A. NERON:

Prof. Y. NAKAI:

Mr. M. NAGATA:

14.00 - 16.00
(Ball-room, K. H.)

Syzygy theory in local rings
Arithmétique et classes de diviseurs sur
les variétés algébriques

Some results in the theory of the dif-
ferential forms of the first kind on
algebraic varieties

The theory of multiplicity in general
local rings

Chairman : Prof. S. Ivyanaca

Short Communications:
Mr. M. NARITA:

Mr. S. TAKAHASHI:

Prof. H. KuN1yosHr:

Mr. K. MASuUDA :
Prof. G. AzuMAYA:

Prof. Y. KAwADA:
Prof. M. MoRriva:

Prof. N. NAKANO:

Prof. T. MORISHIMA :

16.00 - 16.30

On the structure of complete local rings
On Fermat function field

Certain subficlds of rational function
fields

On the arithmetic on a Galois structure
An existence theorem of algebras
Some remarks on class formations

Zusammenhang zwischen 2-Kohomologie-
gruppe und Differente

Idealtheorie in unendlichen algebraischen
Zahlkoérpern

On Fermat’s last theorem

Closing Session (Ball-room, K. H.)



Participants

FRANCE
N£RON, André Assistant Professor
Department of Mathematics
University of Poitiers, Poitiers
SERRE, Jean-Pierre Assistant Professor
Department of Mathematics
University of Nancy, Nancy
GERMANY
DEeuRrING, Max Professor
Mathematical Institute
University of Goéttingen
Gottingen
INDIA
RamanaTHAN, K. G. Member
Tata Institute of Fundamental Research
Apollo Pier Road, Bombay 1
U. S. A
ArTIiN, Emil Professor

Department of Mathematics
Princcton University
Princeton, N. J.

BrAUER, Richard Professor
Department of Mathematics
Harvard University
Cambridge 38, Mass.

CHEVALLEY, Claude Professor
Department of Mathematics
Columbia University
New York 27, N. Y.

Iwasawa, Kenkichi Assistant Professor, University of Tokyo;
Associate Professor
Massachusetts Institute of Technology

Cambridge 39, Mass.

WEeIL, André Professor
Department of Mathematics

University of Ghicago
Chicago 37, 11L

ZELINSKY, Daniel Associate Professor
College of Liberal Arts
Northwestern University
Evanston, Ill.



JAPAN

AKIZUKI, Yasuo

AsaNo, Keizo

AzumAava, Goro

HatTori, Akira

Hiral, Atuhiro

HitorumaTu, Sin

IkEDA, Masatoshi

InaBA, Eizi

ITo6, Noboru

Iwanori, Nagayosi

Ivanaca, Shokichi

Kawabpa, Yukiyosi

KawaHARA, Y(saku

Professor
Faculty of Science
University of Kyoto, Kyoto

Professor
Institute of Polytechnics
Osaka City University, Osaka

Professor
Faculty of Science
Hokkaido University, Sapporo

Lecturer
Faculty of Science

Tokyo University of Education, Tokyo

Assistant
Faculty of Science
Osaka University, Osaka

Assistant Professor

Faculty of Science
Rikkyo Daigaku, Tokyo

Lecturer
Faculty of Science
Osaka University, Osaka

Professor
Faculty of Science
Ochanomizu University, Tokyo

Lecturer
Faculty of Science
Nagoya University, Nagoya

Assistant Professor
College of General Education
University of Tokyo, Tokyo

Professor
Faculty of Science
University of Tokyo, Tokyo

Professor
Faculty of Science
University of Tokyo, Tokyo

Graduate Student
Faculty of Science
Nagoya University, Nagoya



Kawai, Ryoichiro

Koizumi, Shoji

KusoTa, Tomio

Kuca, Michio

Kunivosui, Hideo

Masupa, Katsuhiko

MaTtsumura, Hideyuki

Mori, Shinziro

Morikawa, Hisasi

Morisuima, Taro

Moriva, Mikao

Nacal, Osamu

Nacao, Hirosi

NaGcATA, Masayoshi

1X

Lecturer
Faculty of Science
University of Kyoto, Kyoto

Assistant Professor
Faculty of Science
Tokyo University of Education, Tokyo

Assistant
Faculty of Science
Nagoya University, Nagoya

Lecturer
College of General Education
University of Tokyo, Tokyo

Assistant Professor
Faculty of Science
Tohoku University, Sendat

Lecturer
Faculty of Science and Literature
Yamagata University, Yamagata

Graduate Student
Faculty of Science
University of Kyoto, Kyoto

Professor
Faculty of Science
Hiroshima University, Hiroshima

Assistant
Faculty of Science
Nagoya University, Nagoya

Professor
Tokyo College of Science, Tokyo

Professor
Faculty of Science
Okayama University, Okayama

Assistant
Faculty of Science
Osaka University, Osaka

Assistant Professor
Institute of Polytechnics
Osaka City University, Osaka

Lecturer
Faculty of Science
University of Kyoto, Kyoto



Naxka1, Yoshikazu Assistant Professor
Faculty of Science
University of Kyoto, Kyoto

NakaNo, Noboru Assistant Professor
Faculty of Science
Hiroshima University, Hiroshima

NaxkanNo, Shigeo Assistant Professor
Faculty of Science
University of Kyoto, Kyoto

NARITA, Masao Assistant
International Christian University, Tokyo

Nisui, Mieo Assistant

Faculty of Science

University of Kyoto, Kyoto
NisHIMURA, Hajime Lecturer

Faculty of Science

University of Kyoto, Kyoto
Nowmizu, Katsumi Assistant Professor

Faculty of Science

Nagoya University, Nagoya
Oxkucawa, Kotaro Professor

I'aculty of Science

University of Kyoto, Kyoto
Ono, Takashi Assistant

IFaculty of Science

Nagoya University, Nagoya
Osima, Masaru Professor

Faculty of Science

Okayama University, Okayama
Satake, Ichiro Lecturer

College of General Education

University of Tokyo, Tokyo
SHIMURA, Goro Lecturer

College of General Education
University of Tokyo, Tokyo

Suopa, Kenjiro Member of Japan Academy
President
Osaka University, Osaka

SUETUNA, Zyoiti Member of Japan Academy
Professor
Faculty of Science
University of Tokyo, Tokyo



Takanasui, Shuichi

TakaHasi, Mutuo

TakeTA, Kiyosi

Tamacawa, Tsuneo

TAaNiyAMA, Yutaka

TANNAKA, Tadao

TaTuzawAa, Tikao

TerADA, Fumiyuki

Tsvuzuku, Toshiro

UcHiYAMA, Saburd

Yamase, Hidehiko

Yamamoro, Koichi

Y amazaki, Keijiro

x1i

Assistant
Faculty of Science
Tohoku University, Sendai

Assistant Professor
Institute of Polytechnics
Osaka City University, Osaka

Professor
Musashi Technical College, Tokyo

Assistant Professor
Faculty of Science
University of Tokyo, Tokyo

Assistant
Faculty of Science
University of Tokyo, Tokyo

Professor
Faculty of Science
Tohoku University, Sendai

Professor
Faculty of Science
Gakushuin University, Tokyo

Assistant Professor
Faculty of Science
Tohoku University, Sendai

Graduate Student
Faculty of Science
Nagoya University, Nagoya

Graduate Student
Faculty of Science
Tokyo Metropolitan University, Tokyo

Assistant Professor
Faculty of Science
Osaka University, Osaka

Assistant Professor
Faculty of Science
Kyushu University, Fukuoka

Assistant
College of General Education
University of Tokyo, Tokyo



Opening Ceremony

Message

Telegram of Professor H. Hopf, President of the International Mathematical

Union to the Chairman of the Organizing Committee

THE INTERNATIONAL MATHEMATICAL UNION CONVEYS ITS SINCEREST
WISHES FOR A FULL SUCCESS OF YOUR PRESENT COLLOQUIUM AND FOR
CONTINUED PROSPERITY OF MATHEMATICS IN JAPAN.

Opening Address

By Shokichi IYANAGA

Chairman of the Organizing Committee

First of all, I should like to welcome, on behalf of the Organizing
Committee, the distinguished mathematicians who have come a long way
from other countries to attend this Symposium and express my heartfelt
gratitude to my colleagues and all those who have collaborated in realizing
this event.

It is a policy of the International Mathematical Union to sponsor
international symposia on those branches of mathematics, which are actually
in a lively development, in countries where these branches are most vividly
studied. T feel it a great honour to us, therefore, that our proposal to
organize an International Symposium on Algebraic Number Theory was
favourably considered by the Union, which is now going to be opened by
this Ceremony.

In materializing the plan of this Symposium, our Organizing Committee
met with some difficulties. As you are well aware, we are remote from
European and American countries, and our financial resources did not
permit us to invite a large number of mathematicians from such countries.
We had also to restrict the number of Japanese speakers because of the
limited time available for the Symposium.

We are glad, however, to see assembled here the mathematicians from

all over the world well representing the present status of the science, and
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sincerely hope that their collaboration in our Symposium in a friendly
atmosphere will bear good fruits for the future advancement of our
science.

The Symposium is held under the co-sponsorship of the Science Council
of Japan and the International Mathematical Union. It is helped, however,
also by foreign governments and institutions as well as by private indi-
viduals and business and industrial circles in this country. I should like to
mention a number of school boys and girls loving mathematics, who have
contributed a part of their allowances to our Symposium. Availing myself

of this opportunity, may I express our deepest gratitude to one of all of
them.

Welcome Address

By Seiji KAYA

President of the Science Council of Japan

Representing all scientific circles in Japan, I sincerely wish to express
my welcome to you on this occasion of the International Symposium on
Algebraic Number Theory.

It is our great pleasure that the highest authorities in this field accepted
our invitation in oder to make this Symposium highly fruitful and have
attended from every part of the world far from Japan, and I am heartily
grateful for your attendance at the meeting.

Our mathematics has an old tradition and an originality in its de-
velopment. In less than one hundred years since modern mathematics
of the West was introduced into Japan, it has made a remarkable develop-
ment. I believe that it has made a great contribution for the world of
mathematics from the international standpoint.

It really has an epoch-making significance for our mathematical circle
that an International Symposium is going to be held in Japan for the first
time in this field, and that distinguished scholars meet together, report to
ecach other recent results of their studies and discuss various problems with
their erudite knowledge, and I firmly believe and expect that it will render
a remarkable contribution for the mathematical circles of the world.

Notwithstanding that Algebraic Number Theory, which is the main
subject of the Symposium, is very difficult to understand for people who

do not specialize in this field and sometimes gives them a feeling that it is
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unapproachable, great and sincere help has been given by UNESCO, the
Japahese Government and many people at home and abroad for the Sym-
posium, for whcih I should like to express my hearty thanks on this occasion.
As far as I know, all guests except Prof. Chevalley are visiting our
country for the first time. 1 hope that they have personal contact with
Japanese people and appreciate the Culture of Japan, for it will be of
great significance in promoting cultural exchange and international friendly
relations.

I heartily wish that the Symposium will achieve a great success from

the cultural standpoint as well as scientific.

Address

By Zyoiti SUETUNA

Chairman of the Symposium

It is a great pleasure and honour to me to have this opportunity of
saying a few words as Chairman of this International Symposium. All
the mathematicians in Japan have been waiting with great expectation for
the opening of the present Symposium, for this is the first international
gathering of mathematicians to be held in Japan.

In taking this chair I greatly regret that Prof. Takagi has been out of
health for some years and is not here with us today. His epoch-making
work on the class field theory: “Uber eine Theorie des relativ-Abelschen
Zahlkérpers” was published in 1920 in the Journal of the College of
Science, University of Tokyo. His next paper: “Uber das Reziprozitits-
gesetz in einem beliebigen algebraischen Zahlkorper” appeared after 2 years
in the same Journal. And in 1927 Prof. Artin proved the general law of
reciprocity, which he had already formulated during his investigation of
L-series with general group-characters. The class field theory was thus
completed. Since then the algebraic number theory made a great progress
and found remarkable applications in some other branches of mathe-
matics. It is, therefore, our great honour and sincere pleasure that the
International Symposium on Algebraic Number Theory is now opened
here in Tokyo.

On this occasion I should like to speak further a little about the old
mathematics in Japan. About the middle of the 6th century when the
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Chinese civilization was first introduced into this country, mathematics
was imported from the continent together with astronomy. In the second
half of the 17th century Seki Kowa, a contemporary of Newton and Leibniz,
made remarkable achievements in the Japanese mathematics. Among
them are the tenzan, an improvement of the Chinese algebra, and the
yenri or circle-principle. He found thus, for example, the determinant
sometime before Leibniz and accomplished something like what is now
known as integral calculus. Since then the Japanese mathematics made a
considerable development. This native mathematics of Japan, which had
stood out in complete isolation, yielded however to a strong influx of the
Western mathematics after the Meiji Restoration in 1868.

Here I have alluded to the old mathematics in Japan before the
middle of the 19th century, because I wish now at the opening of the
International Symposium first to remind you of the old tradition of mathe-
matics in Japan and secondly to show that for the due progress of science
international communication is necessary.

To all our friends—mathematicians and non-mathematicians—we can
say that this kind of an international meeting, which aims at the cultural
development of mankind regardless of all the political, social and racial
differences, will exert not a small influence on advancement of inter-
national co-operation and peace of the world. I hope and believe that
this Symposium on Algebraic Number Theory will be in every respect

successful with the collaboration of all the participants.

Address

By Claude CHEVALLEY

Member of the Organizing Committee

I have been kindly invited to tell you a few words on behalf of the
organizing committee. I was very glad to accept this invitation, because,
although I had very little work to do myself, it gives me a chance to
express my gratitude, and that of the other invited mathematicians, for
the splendid job which was accomplished by the organizers of this Sym-
posium in Japan, and particularly by Professor Iyanaga.

But in a mathematical conference, it is not only question of organiza-
tion; there are also some mathematics involved. No conference would be
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a success in a country where mathematical life ‘is not as ‘active ‘as it is in
Japan. It has been my privilege to live here for one year and to work in
close contact with the Japanese mathematicians. The intense severencss
with which mathematics is studied in this country is at the same time our
explanation for the already achieved results and a sure hope for the future.
I would like to conclude these few remarks by paying a tributc to the
young Japanese mathematicians. Although their names do not appcar on
committee lists or in ncwspaper articles, it is, after all, their devotion to

science which is the surest warrant of the success of this Symposium.

Greeting‘s

By Kenzo MATSUMURA

Minister of Education

It gave me a great pleasurc to have the opportunity to say a few words
of greeting at this Opening Ccremony of the International Symposium on
Algebraic Number Theory.

I am particularly happy, as onc of Japanese citizens as well as the
Minister of Education, to sec this Symposium being held in Japan for the
first time in the Oriental region, for it seems to mc that the sclection of
Japan as the site of the Conference is an indication that the standard of
mathematical studies of this country has come to be in such a high esti-
mation of the world academic circles. For this, my grateful acknowledge-
ment goes to the International Mathematical Union, whose kind and strong
recommendation has had a great deal to do with bringing this Symposium
to Japan.

In my humble opinion, mathematics is the science which builds up the
very foundation of scientific thinking, and its progress contributes in-
valuably to the promotion of many sciences and, cventually, to the welfare
of mankind. Therefore, international exchange and co-opcration in the field
of this basic science is of utmost importance. This is why I am looking
forward to this Symposium with the greatest expectation that the Sym-
posium where a number of foremost scholars of the world are mecting
together for discussion as well as friendly talks with each other will play
an important role in the advancement of this field of science.

On behalf of all the people of this country let me extend my warmest



xXvii
welcome to the distinguished mathematicians who have come over all the
way from different parts of the world to meet here. At the same time,
let me also express my wishes that all of them will kindly take this
opportunity for their better understanding of this country through their
first-hand observation of the actual state of things in Japan, where con-
struction is still under way.

In conclusion I wish to express my heartfelt appreciation again to the
International Mathematical Union for the support accorded in organizing
this Symposium in Japan and also to the Organizing Committee of this
Symposium for the unselfish devotion shown in preparing this Symposium.

May I wish every success of the Symposium.

Address

By Emil ARTIN

Representing the Participants

It is a great honour for me to be given the opportunity to specak in
the name of the invited guests and thus to be able to express our deeply
felt gratitude to the Science Council of Japan, to the International Mathe-
matical Union, to the Organizing Committec and to all our friends and
colleagues in this country for the invitation.

In a certain sense we are not strangers here. For a long time we have
found numerous friends among the Japanese mathematicians; for a long
time we have had opportunity to study and to admire their work in the
Japanese journals; for a long time these contacts have enabled us to come
to an understanding of the Japanese culture.

Japan is the ideal country for a conference on Algebraic Number
Theory. It was the great mathematician, Takagi, who created the modern
concept of class field theory. His work opened a certain domain of the
research in Algebraic Number Theory and most, if not all, of the later
progress in this field is based on his work. We are all infinitely indebted
to him.

The success of such conference depends to a large degree on whether
one feels at home. And all of us immediately felt at home. I do not
remember ever have I been in a foreign country where I had once such a

strong and lasting feeling of sympathy and understanding as in Japan,
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where I felt as much of the warmth and sincerity of the people as here.
Our gratitude should be expressed especially to Prof. Iyanaga who

worked relentlessly and did everything in his power to create the congenial

and friendly atmosphere. We are therefore looking forward to the con-

ference with confidence in its success and are convinced that the Science

Council of Japan has made a great contribution to the advancement of

our science.

Closing Address

By Kenjiro SHODA

Chairman of the Preparation Committee

I have the honour of delivering a closing address of the Opening Cere-
mony of this International Symposium. I sincerely wish to express my
hearty thanks for the colleagues who assembled here from all over the
world to take part in this international gathering for the coming four days,
and earnestly hope and expect the success of the Symposium.

At the same time, I hope you will enjoy your short stay in Japan to
the full extent and get something good whether it might be scenery or
antiquity as you may prefer.

In closing this Ceremony I also wish to express my thanks to our

guests for their kind attendance.



Closing Session

Address

By Zyoiti SUETUNA

Chairman of the Symposium

Our Symposium on Algebraic Number Theory was closed this after-
noon. Many fine results were brought forward and many important dis-
cussions made during this Symposium, and I wish to express here my
sincere thanks to all the participants. I hope and believe that the relation-
ship between Japan and other countries in the field of mathematics will
become closer and deeper after this Symposium.

To all our eminent guests from abroad I should like to say further a
few words. The success achieved by our Symposium is due, of course, to
the fact that you have come a long way to this country in the Far East
to attend it. We arc cordially grateful to you for your important contri-
butions to the Symposium. As you stay longer in Japan, you will see
further what Japan is and how it is like.

It was in the middle of the 6th century that the Chinese civilization
was first introduced into Japan together with buddhism, and the so-called
Japanese civilization has been gradually built up ever since. After the
Meiji Restoration in 1868, however, the Western civilization has been
introduced with overwhelming influences, so that you will observe, wherever
you may go in this country, a mixture of, and sometimes a struggle be-
tween the new and the old Japan. I wish, therefore, that when you see
things in Japan, you will look at them not from one point of view, but

from various angles.

Address

[ By Seiji KAYA

President of the Science Council of Japan

First of all, may I congratulate you on having successfully completed

the whole programme of the Symposium. Although I was unable to visit
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it during the session, I have read in newspapers about the achievements
you have made, and I have just been told by Prof. Suetuna how hard you
have worked for these 5 days. On behalf of the Science Council of Japan,
which has been the sponsor of this Symposium, I should like to express
my heartfelt thanks to you all for your collaboration and contributions.

Especially T wish to thank our distinguished guests from abroad for
having come such a long way to join the Symposium. Your participation
and your enlightening talks, I believe, have been, and still are a great im-
petus not only to those who have attended the Symposium but to all the
young mathematicians in this country. I understand that many of you are
going to stay for next few weeks to give lectures at various universitics,
and I hope that you will enjoy your tour and mceting with promising
young mathematicians.

Last but not least, may I express my sincere gratitude to Prof. Suctuna
who has acted as Chairman of the Symposium, Prof. Iyanaga, Chairman
of the Organizing Committee, and other members of the Committee for

their excellent work in organizing and operating the Symposium.



Statement by the Participants from abroad

We are deeply grateful to the Science Council of Japan, to our Japanese
colleagues, and to all the authorities and personalitics who have cooperated
in organizing the International Conference on Number Theory. Our stay
in Japan will remain in every way an unforgettable experience to every
onc of us.

For many years we have followed with great interest the work of the
Japanese mathematical school, which now stands in the forefront of modern
mathematical progress. Even before coming to Japan, we had met some
Japanese mathematicians staying or traveling in forcign countries, and we
were acquainted with the work of many more of them through their publi-
cations. We have found much to lcarn from the more intimate personal
contacts which this conference has brought about. We particularly wish
to record the decp impression made on us by the talent and earncstness
which we have noticed in the younger gencration.

It is a sad fact for Japan that a considerable proportion of the more
outstanding Japanese mathematicians between the ages of 30 and 45 are
now living in America; and we believe that this trend 1s likely to continue.
Having talked to most of thesc men, we are convinced that it 1s not be-
cause of any lack of patriotism or of affection for their country that they
have left it. They have done so, simply because the salaries which they
would earn in Japan are not sufficient for a scientist to live decently and
support a family; those who attempt to do so find it almost impossible to
maintain any kind of decent living standards, and they labor under such
financial worries as to affect adversely their scientific work.

In the modern world, which is dominated by science, no country, least
of all Japan, can afford to lose its best scientific talents to another. We
feel that we cannot show our gratitude to the country and the people of
Japan in any better way than by publicly uttering the present warning and
expressing our considered view that the situation requires urgent action.

We shall forever remain sincere friends of Japan; and we shall part
from its shores with the heartiest wishes for its well-being and with the
hope of forming ever closer ties with Japan and with our Japanese friends

and colleagues in the future.

E. ArRTIN M. DeurING J.-P. SERRE
R. BRAUER A. NERON A. WEIL
C. CHEVALLEY K. G. RAMANATHAN D. ZELINSKY






On a Certain Type of Characters of the Idéle-Class
Group of an Algebraic Number-Field

André WEIL

Notations will be the same as in my previous work on class-field
theory (Sur la théorie du corps de classes, J. Math. Soc. Japan, 3
(1951), pp. 1-35; cf. also Sur les *‘ formules explicites” de la théorie
des nombres premiers, Comm. Lund (M. Riesz jubilee volume), 1952,
pp. 252-265). If K is any field, K* denotes the multiplicative group
of non-zero elements of K. We consider an algebraic number-field
k: k, means its completion with respect to a valuation v; in particular,
ky, k(1=p=m), k(ri+1=¢=7+7;) denote the completions of k&
with respect to the prime ideal b, to the real archimedian valuation
v, and to the imaginary archimedian valuation v,, respectively; £k,
may be identified (canonically) with the real number-field R, and k.
may be identified (non-canonically) with the complex number-field C;
put 9, =[k,:R]. The idéle group I, is the subgroup of 11k} consisting
of the a=(a,) such that almost all @, (i.e., all except a finite number)
are units. We denote by P, the group of principal idéles, and by
C,=I,/P, the group of idéle-classes. Each idele a-=(a,) determines in
an obvious manner an ideal a—=(a) of k; we put:

la =N TT [ .

Then a—||a|| is a representation of I, into R* (in fact, into RI),
taking the value 1 on P,.

Group characters will be understood in the extended sense, i.e.
as continuous representations into C* (not necessarily of absolute value
1). The groups I,, C, will be topologized in the usual manner. A
character ¥ of C, may also be regarded as a character of I, taking
the value 1 on P,; because of the known structure of Cj, such a
character can always be written as x(a)||a]|]°, where o€ R and x;
is a character of absolute value 1.

The Hecke L-series attached to a character x of C, can be con-
structed as follows. Let f be the conductor of x; if a=(a,) i3 an
idele such that a,=1 for 1=<i=7r,+7r; and a,=1 for every prime
divisor b of f, x(a) depends only upon the ideal a=(a); under those
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circumstances, we put ¥(0)==x(a). Then the L-series attached to X
is S1x(a)Na~*, the sum being extended to all integral ideals a prime
to f. We shall denote by G(f) the group of the fractional non-zero
ideals in &k whose expression in terms of prime ideals does not involve
any prime divisor of f. We have thus attached, to every character
v of C, with the conductor f, a character x of G(f). Clearly X is
completely determined by its values at the prime ideals which do not
divide f.

At the same time, x induces on the subgroup ];Uo;‘ of I, a character
of that group; if we make use of the fact that x must be the product
of a character of absolute value 1 and of a character [[«||?, we see
that v, on that group, can be written as:

x (@)= 1}[ (apf] @, )| ay ot ion (1)

where the f, are integers and - and the ¢, are real numbers. Now
denote by k*(f) the subgroup of k* consisting of all elements «/«,
where a, o are integers in k such that @=«'=1 mod. {. Then x((a))
is a character of %*(f), which coincides on £*(f) with the character X
of k* given by the formula

Xa)= ];1 (cofl e [Yr ] ey |70 o0 (2)

in which a, denotes the image of « in k, (the latter being identified
with R or with C, as the case may be).

Conversely, assume that for some integral ideal m of k& we have
a character ¥ of the group G(m), and that there are integers f, and
real numbers o, ¢, such that ¥((«))=—X(a) for « e k*(m), X being de-
fined by (2). Let a be an idele; there is a &€ k* such that, if we
put b=*%a, then, for every prime divisor p of m, by is a unit in ky
and is =1 modulo the highest power of p dividing m; and & is uniquely
determined in %&* modulo the subgroup k*(m) of £*. Now put:

(@)=Y (B) T ,/18, )77 by [0

Our assumption on ¥ implies that the right-hand side does not depend
upon the choice of & when a is given; and one sees at once that x
is a character of I,, taking the value 1 on P, and satisfying (1), that
its conductor { divides m, and that the character ) of G (f) associated
with x coincides with ¥ on G(m).

It is clear that a—(«) defines a homomorphism of £*(im) into
G(m) whose kernel is the group E(m) of all units ¢ in k such that
¢==1 mod. m; E(m) is of finite index in the group £ of all units in
k. Notations being as above, we see that X takes the value 1 on
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E(f), so that, if m is the index of E(f) in K, X™ takes the value 1
on F. Conversely, let the f,, o, ¢, be given; let X be defined by
(2); and assume that there is an integer m >0 such that X™ is 1 on E.
Then X is 1 on a subgroup E’ of E of finite index. By a theorem
of Chevalley, this implies that there is an ideal m such that E'DE(mn);
then X is 1 on E(n) and therefore determines a character of the
image of k*(m) in G(m), which ean then be extended to a character
¥ of G(mm), hence, for a suitable divisor f of m, to a character x of
G(f) associated with a character x of C, with the conductor f.

A character x of C, is of finite order (in the group of all charac-
ters of C,) if and only if it is 1 on the connected component of 1 in
I, i.e. if and only if f,=0 for all ¢, »,—=0 for all 2, and o¢==0; by
class-field theory, such characters are those associated with the cyclic
extensions of k; for such a y, all values of ¥ are roots of unity. Our
purpose is now to show that all the values of ¥ may be algebraic
for certain characters x which are not of finite order. In fact,
assume that all the ¢, are 0 and that o is rational; then X((«)) has
algebraic values on k£*(f), i.e. X has algebraic values on the image of
k*(f) in G(f); as that image is of finite index in G(f), all the values
of X must be algebraic. The f, and ¢ being given, a necessary and
sufficient condition for the existence of such a character x is, as we
have seen, that there should be an integer m such that [](e,/| €, )™
=1 for all ¢ € £; replacing m by 2m, this can also by written as

1 (s feme=1. (3)

We shall say that x is of type (A) if all the @, are 0 and o is
rational; for such a character, the integers f, will be such that (3)
holds, for a suitable m, for all € ¢ E. Conversely, if the f, are given
integers, and if there is an m such that (3) holds for all € € £, then
there will be a character x of type (A) belonging to the f,; and all
such characters will be of the form x(a)x,(@)|la]l’, where x, is a
character of finite order and p is rational.

In particular, if % is a totally imaginary quadratic extension of
a totally real number-field %,, then, by Dirichlet’s theorem, the group
E, of the units in %, is of finite index in F'; if m is that index, &™
must then be totally real for every € ¢ E, so that (3) holds on F, for
that value of m and for arbitrary values of the f,.

More generally (as Artin pointed out to me during the symposium),
Minkowski’s theorem on units in absolutely normal number-fields makes
it possible to reduce the problem of finding all characters of type (A)
of a field & to an exercise in Galois theory, and it will be enough
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here to state the result. Let %, be the maximal totally real subfield
of %; then k contains at most one totally imaginary quadratic exten-
sion of k,; for two such extensions could be written as k(1 —a),
k,(V —B), with a, A totally positive in k,; then & contains the totally
real field &, (1/af), which must be the same as k,, so that the two
extensions must be the same. Now let us call ¢rivial those characters
of type (A) which are of the form x,(a)||a|®, with x, of finite order
and p rational. In order for a field & to have non-trivial characters
of type (A), it is necessary and sufficient that it should contain a
totally imaginary quadratic extension k; of its maximal totally real
subfield %,; and then all such characters are of the form

xX(@) = x:1 (N, (@)X o(@) (4)

where v, is of finite order, x, is a character of type (A) of k,, and
Ny, denotes the relative norm from I, to [, , which extends the relative
norm of elements of % over k&, in the obvious manner. Thus, in a
certain sense, all non-trivial characters of type (A) come from totally
imaginary quadratic extensions of totally real fields.

We shall say that a character x is of type (A,) if the character
X of k* associated with it according to (2) is of the form

X<CY) ==+ H a;\rka_{)\sl

where the 7,, s, are integers, and the sign may depend on «; such a
character is called trivial if it is of the form x.(a)|/a||", with x, of
finite order and m an integer. Non-trivial characters of type (A,)
are those non-trivial characters of type (A) for which 2+ is an integer
and f,=20 mod. 2 for all .. It is easily seen that the character x of
C, defined by (4) is of type (A,) if and only if the character x, of
C,, which appears in (4) is of type (A,).

If x is of type (A,), the values taken by X on the image of £*(f)
in G(f), which are the values taken by X on k*(f), are all contained
in the compositum of % and of its conjugates over Q (the rational
number-field). As that image is of finite index in G(f), the values of
X on G(f) must all lie in a finite extension of this field. Thus:

If a character x of the idele-class group C, of the field k s of
type (A), the coefficients of the Hecke L-series associated with x are
algebraic numbers; if x ts of tyve (A,), these coefficients all lie wn a
Sfinite algebraic extension K of Q.

It is tempting to conjecture that the converse statements are also
true; but I have not examined this question. In the second state-
ment, it would be of interest to determine the smallest field K con-
taining all the coefficients of the L-series, i.e. containing all the

e U PR — L S |
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values taken by ¥ on G(f). If N is the index in G(f) of the image
of k*(f) in G(f), then it is clear at any rate that all the values taken
by x~ on G(f) lie in the field K, generated by the values taken by X on
k*. The determination of K, amounts to an exercise in Galois theory;
one should observe that K, need not contain k.

We now come back to the construction given above for xy when
the values of x are given on G(m), m being a multiple of f. It ob-
viously depends upon the following fact (which is equivalent to the
theorem on the independence of valuations on k): If I(m) is the group
of the ideéles a—=(a,) such that a,=1 for all 4, and a,=1 for every
prime divisor p of m, then the group P,I(n) is everywhere dense in
I,. It amounts to the same to say that the image of I(m) in C; is
everywhere dense in C,. This implies that a character of C, is com-
pletely determined by its values on I(m). We shall denote by I'(m)
the compact subgroup of I(mn) consisting of the idéles a € I(m) such
that (a)=1; then I(m)/I'(in) is discrete and may be identified with G(m).

Let ¢ be any representation of C, into a complete topological
group I'; as usual, we make no distinetion between ¢ and the corre-
sponding representation of I, into /I'. Assume that there is an m such
that ¢-==1 on I'(m). Then ¢ determines a representation ¢ of G(m)
into I', and ¢ is uniquely determined by @ since the image of I(m)
in C, is everywhere dense. We may now ask, conversely, whether,
if a representation @ of G(m) into [ is given, it determines a repre-
sentation @ of C, into I'. This will be so if and only if the repre-
sentation into I" of the image of I(m) in C, which is determined by
& is eontinuous for the topology induced on that image by the topol-
ogy of C,; for then it will be uniformly continuous, and can be
extended by continuity. This is easily seen to amount to the follow-
ing condition. To every neighborhood V of the neutral element in
I', there must be an integer N and an €>0 such that we have
#((a)) € V for every « ¢ k*(m") which satisfies the conditions | a;, —1]=2
for all A.

Now let x be a character of C, of type (A,); then X takes its
values in a subfield K of C, of finite degree over Q. If m is any
multiple of the conduetor of x, we have, for « € k*(m) and «,>0 for
all p:

X((a))=X(a)= 1;[ a, 2y
Let w be any valuation of K, and let K, be the completion of K

with respect to w; the above criterion shows that ¥ determines a
representation v, of C, into K, satisfying x.(a)=x((a)) for a e I(m),
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provided either w is a valuation at infinity or w is attached to an
ideal P and we take m=pf, where p is the rational prime which is
a multiple of ¥. As K is embedded in C, we may of course take for
w the valuation w, induced by the ordinary absolute value on C; then
Xw,=X+ Other valuations of K at infinity determine characters of C,
in the usual sense, i.e. representations of C, into C; the corresponding
L-series are the conjugates over Q of the series attached to the given x.

On the other hand, for each prime ideal § in K, we get a rep-
resentation xy of C, into Ky, invariantly associated with x. As the
connected component of 1 in the group K¢ is {1}, x4y takes the value
1 on the connected component of 1 in C,. As C, is the direct product
of its maximal compact subgroup and of a group isomorphic to R,
and as xyq takes the value 1 on the latter group, xy must map C;
onto a compact subgroup of Ky and therefore onto a subgroup of
the group Uy of units in Ky. Now let » be any character of the
compact group Uy; as Uy is the projective limit of finite groups, o
must be of finite order; therefore woxy is a character of finite order
of C,, which, by class-field theory, determines a cyclic extension £’
of k. If, for a given x and P, we make all possible choices of w,
these cyclic extensions will generate a certain abelian extension &(x, ¥5)
of k; the compositum of these for all  will be an abelian extension
k(x) of & which is thus invariantly attached to x. |

If ¥ is of finite order 7, its values on [, (not merely those on
some I(m)) are n-th roots of unity; then, for every w, x. 1S the
transform of x by an isomorphism into K} of the multiplicative
group of the n-th roots of unity; in that case, k(x) is the cyelic ex-
tension attached to x by class-field theory. In all other cases £(x)
will be an infinite extension of k. If x is the trivial character
x(@)=||a|], k(x) is the maximal cyclotomic extension of /&; more
generally, if x is any trivial character of type (A,), k(x) will be
contained in the maximal cyclotomic extension of a cyclic extension
of k£ of finite degree.

As to the non-trivial characters of type (A,), some of them arise
in connection with the theory of abelian varieties with complex multi-
plication; in fact, all the characters of type (A,) can be expressed in
terms of those which arise in that manner and of the trivial ones.
Taniyama has proved that the L-series attached to the characters of type
(A,) belonging to abelian varieties with complex multiplication are
precisely those which occur in the zeta-functions of such varieties;
and his recent work (done since the symposium) has shown that the
fields generated by the points of finite order on these varieties are
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closely related to the fields %(x) defined above. For more general
results, including these as rather special cases, the reader must be
referred to his forthcoming publications; all that can be said here is
that they tend to emphasize the importance of the characters which
we have discussed and of their remarkable properties.

UNIVERSITY OF CHICAGO






On the Theory of Complex Multiplication

André WEIL

I shall concentrate chiefly on those aspeets of my work which have
not been duplicated by the parallel and independent investigations of
Shimura and of Taniyama. A preliminary account of their results,
which are more complete than my own in several important respects,
appears in this same volume; it is understood that they will later
give a full exposition of the whole theory.

We need the concept of polarized variety; the word ‘polarization’’
is chosen s0 as to suggest an analogy with the concept of “‘oriented
manifold’” in topology. Let V be a complete non-singular variety;
X being a divisor on V, denote by ((X ) the class of all the divisors
X’ such that there are two integers m, m’, both >0, for which m'X’
is algebraically equivalent to mX. We say that the class C(X) deter-
mines a polarization of V if it contains at least one ample complete
linear system, or in other words if there exists a projective embedding
of V for which the hyperplane sections belong to C(X). Thus a
polarized variety may be regarded as a variety with a distinguished
class of projective embeddings. The class C(X) is uniquely determined
by any divisor in it; every divisor in ( (X) will be called a polar
divisor of V for the polarization determined by that class. It is clearly
the same to say that a variety is polarizable or that it is projectively
embeddable.

Let V be a variety, defined over a field .. Let X be a divisor
on V, defining a polarization of V. If the smallest field containing
k, over which X is rational, is not algebraic over %, then X belongs
to an algebraic family, defined over an algebraic extension of k, and
may be replaced by a member of that family, algebraically equivalent
to X and algebraic over k. Thus we may assume that X itself is
algebraic over k. Call Y the sum of all conjugates of X over k; if
p is the characteristic, then, for a suitable m, p”Y will be rational
over k; and one sees immediately that it determines a polarization of
V, although not necessarily the same as the original one. We say
that a polarized variety V is defined over k if V is defined over k
and if there is on V a polar divisor which is rational over k; this
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amounts to saying that V has a projective embedding which is defined
over k.

As an important example, we mention the case of the jacobian
variety J of a curve ['; the canonical divisor @ on J (canonical, that
is to say, up to a translation) determines a polarization of J which
will be called its canonical polarization. A classical result, due to
Torelli, and for which it would be worth while to give a modernized
proof covering the abstract case, asserts that two curves are isomor-
phic if and only if their canonically polarized jacobians are isomorphic.

Let A be an abelian variety; we denote by A* its dual, and by
Cl the canonical homomorphism of G(A) onto A*, with the kernel
G(A). Every divisor X on A determines a homomorphism ¢y of A into
A*, defined by ¢y u=—Cl(X,—X). If p-=0, the degree v(py) of @y 18
always the square of an integer. If X>0, v(py) is >0, ie. ¢y is
surjective, if and only if there is an m >0 such that mX determines
an ample complete linear system on A, i.e. if and only if X deter-
mines a polarization of A. Conversely, let A be polarized; then every
polar divisor X on A determines a homomorphism ¢ of A onto A*;
in the extension (4, A*)X Q by Q of the group of homomorphisms
of A into A*, ¢y is uniquely determined by the polarization of A up
to a positive rational factor. If ¥ is a homomorphism of A* onto A
such that v, is of the form md,, then ¥ '(X) determines a polari-
zation of A* which is canonically associated with that of A. In the
case p=0, there will be a polar divisor X on A such that every polar
divisor is algebraically equivalent to a multiple mX of X; such a
divisor will be called basic; if, for such a divisor X, we put »(py)=1%,
r is called the rank of the polarized variety A.

As usual, if A, B are abelian varieties, (9((A, B) will denote the
additive group of homomorphisms of A into B, J{,(A, B) its extension
by Q (i.e. the vector-space H(A, B)YK Q over Q), /(A) the ring of
endomorphisms of A4, A,(A) its extension by Q. If 1¢e %,(A, B) and
y()7=0 (which implies that A, B have the same dimension, gince the
‘““degree’” (1) of 2 is not defined otherwise), then 27' is defined and
is in (B, A). If 2 is a homomorphism of A into B, its transpose
*3 is the homomorphism of B* into A* defined by “4(Cl Z)=Cl (1"Y(4))
for every Z e G(B); this extends to an isomorphism of 4 (A, B) onto
H(B*, A*).

If A is a polarized abelian variety, and X is a polar divisor of
A, put, for every a ¢ J(A), «'=¢px'-‘a-px; then a—>a' is an in-
volutory antiautomorphism of the algebra ./,(A), canonically attached
to the polarization of A. The trace o being defined on 4,(A) as
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usual, we have a(aa’)>0 for every a0 in /(A). If A is the
(canonically polarized) jacobian of a curve, then «—«’ is no other
than the so-called ‘‘Rosati antiautomorphism’’.

Let 2 be a homomorphism of an abelian variety A onto an abelian
variety B of the same dimension; if Y is a divisor on B, and if we
put X=2"%(Y), we have @x-="2-p,-4; In particular, if Y determines
a polarization on B, so does X on A. If A is polarized and X is a
polar divisor of A4, and if « is an automorphism of the non-polarized
A, then it will be an automorphism of the polarized A if and only
if there are integers m, m’, both >0, such that mepy-=m"a-py-a;
taking degrees on both sides, we get m - m’. But this may be written
as o'« -8, and implies o(d'a) =a8,). As ola’«) is a positive non-
degenerate quadratic form on . /,(A), and the additive group of . /(A4)
is finitely generated, this shows that the group of automorphisms of
a polarized abelian variety is finite (a result originally due to Matsu-
saka, whose proof, based on a different idea, is to appear shortly).

From now on, A will be a polarized abelian variety of dimension
n; we usually write . 7, /1, instead of . /(A), . 1,(A); on . 4,, we have
the trace + and the antiautomorphism « —«’. For every prime [, not
equal to the characteristie, . / has a faithful representation R, of trace
o by endomorphisms of a free module of rank 2»n over the [-adic
integers; this can be extended to a representation £, of .7, by endo-
morphisms of a vector-space of dimension 2n over [-adic numbers. If
the characteristic is 0, ./ has a faithful representation K of trace «
by endomorphisms of a free abelian group of rank 2n (viz., the
fundamental group of the complex torus defined by A under any
embedding of its field of definition into C); this can be extended to a
representation K of . 4, in a vector-space of dimension 2n over Q; and
the representations R, can be derived from R by extending the group
(resp. the vector-space) on which R operates by the ring of [-adic
integers (resp. by the [-adic number-field). Moreover, . / may also be
considered as operating on the Lie algebra of A, i.e. on the tangent
vector-space to A at 0; if p—=0, this can be extended to a repre-
sentation K, of ./, by endomorphisms of a vector-space of dimension
n over any common field of definition for A and its endomorphisms.
By embedding such a field into C, one finds that B decomposes over
C into R, and the imaginary conjugate representation R,: if we call
a, the trace of E,, we have o==0,+ .

Let £,,---, ¢, be orthogonal idempotents in . 7,, i.e. elements such
that ¢} =¢; for all ¢+ and ¢,2;, =0 for 15%~J; put ¢, =8,—>¢&;; wWe can
write ¢,=a;/m, where m is an integer and «,,---, a, are in 4. Call
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A, the image of A by a,; then it is easy to see that A is isogenous
to A,x ---x A4,, and that o(¢;)==2 dim (A;).

Let C be a semi-simple commutative subalgebra of _/,; in terms
of suitable orthogonal idempotents ¢,,---,¢,, it ean be written as
C=31K,e;, where the K, are fields. As ./, has faithful representa-
tions with the rational-valued trace o, C has representations of the
same type; this implies that, if £§=>)&e; is in C, with & ¢ K, for
1<i=<h, we have a(§)=>)v, Tr (§;), where Tr is the ordinary trace
(taken in K, over Q for each ¢) and the »; are integers >0. If the A,
are defined as above, we have 2dim (A4,)=a(e,)=v;[ K;: Q], hence
SV K Q] =2n. Assume now that >1[ K;: Q1>2n; then the latter
inequality must be an equality, and we must have v;==1 for all 7.
That being so, a representation of 4, of trace + is equivalent (over
an algebraically closed field) to one in which all elements of (" appear
as diagonal matrices and in which the diagonal elements corresponding
to some element of C are all distinct; then the commutor C’ of C in
A, is also represented by diagonal matrices, which implies that it is
commutative and semi-simple; what we have said about C can now
also be applied to C’, and it easily follows from this that C'-=C.

In particular (as Shimura also proved), if 4, contains a field K
of degree =>2n, K must be of degree 2n, must contain &, and the
center of (/,, and is a maximal commutative subalgebra of (4,. When
that is so, A must be isogenous to a product BXx ---xB, where B
is simple; in fact, if this were not so, .4, would be the direct sum
of algebras 4,(A4;), the A; being proper subvarieties of A, at least
one of which would have to contain a field isomorphic to K, while we
have just shown that (/4,(A4,) cannot contain a field of degree
>2dim (A4,). Assume now that A is isogenous to a produet Bx -+ x B
of r factors B of dimension m, so that n—rm; then ./, is the ring
of matrices of order r over the division-algebra %B,=_/,(B). Call k
the center of %,, which we identify with the center of _7,, so that
KDk; call v the degree of %k, p* the dimension of %, as a vector-
space over k. As K is of degree 2n/v over k£ and is maximally com-
mutative in 4,, it is known that ./4,, as a vector-space over k&, must
be of dimension (2n/v)?; this gives rp=2n/v, hence 2m=py; therefore
a maximal subfield of %,, containing k, is of degree 2m. If now we
assume that p=0, B, must have a faithful representation by rational
matrices of order 2m; as it is known that the order of such a repre-
sentation must be a multiple of vp?, this gives p=1, $H,=k. More-
over, any polarization of B determines an automorphism §—¢&" of £k,
of order 1 or 2, such that Tr (§¢)>0; if %, consists of the elements
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of % invariant under that automorphism, this implies that &, must be
a totally real field, and that % is either k, or a totally imaginary
quadratic extension of k,. As before, call R, the representation of
A, determined by the Lie algebra of A; call S, the representation of
B, which is similarly defined; then the representation of % of trace
Tr,, decomposes into S, and S,; this implies that k=*k, and that S,
is the direct sum of m one-dimensional representations of 4, i.e. of
m isomorphisms ¢, of & into the universal domain, inducing on %, all
its distinet isomorphisms into the algebraic closure Q of Q. More-
over, F, induces on k the representation (n/m)S,; this implies that
R, induces on K the sum of the one-dimensional representations
pu(l==2=m, 1=1i--n/m), where, for each 4, the ¢,; are all the iso-
morphisms of K into Q which induce ¢, on k.

Still assuming p-=0, consider now any field K of degree 2n con-
taining a totally imaginary quadratic extension % of a totally real
field k,, the latter being of degree m. Let the v, be all the isomor-
phisms of %, into Q; for each 2, let ¢, be an isomorphism of % into
Q, inducing v, on k,, and let the ¢,;, for 1 =1 =_n/m, be all the isomor-
phisms of K into Q which induce ¢, on k. We ask for the abelian
varieties A of dimension » such that . /,(A) contains a field isomorphic
to K and that R, induces on K a representation which is the sum of
the ¢,. Taking C as universal domain, it is easily seen that A
is uniquely defined by these conditions up to an isogeny over C
and that it can be constructed as follows. Consider the mapping
&> (pu()) of K into C"; let M be the image under that mapping
of a “module” m in K, i.e. of a free abelian subgroup of rank 2n
of the additive group of K; then the complex torus C"/M defines an

abelian variety A with the required properties. If (&,---,&,,) is a
basis for K considered as a vector-space over k&, we may in particular
take m--=1&1n, where n is a module in %; then one finds that A is

the product of n/m varieties B of dimension m. This shows that A
cannot be simple unless n-—=m.

By a CM-extension of a totally real field K, of degre n over Q,
we shall understand a system (K; {¢,}) consisting of a totally imagi-
nary quadratic extension K of K, and of » isomorphisms ¢, of K

into Q, inducing on K, all the isomorphisms of K, into Q. If we
consider Q as embedded in C, K ecan then be written as K,(¢), where
¢ is such that —¢* is a totally positive element of K, and that all
the ¢,({) have a positive imaginary part; ¢ is uniquely determined
by that condition up to a totally positive factor in K, conversely,
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the CM-extension (K; {®,}) is uniquely determined by K, and ¢ and
will also be written as K,((0)). The CM-extension K ((£)) will be called
primitive if it cannot be written as Ky((%,)) with ¢t lying in a proper
subfield of K,; K,((£)) is primitive if and only if there is no conjugate
' of £ over Q, other than I, such that ¢’/Z is a totally positive
algebraic number. The proof given above shows that every CM-
extension of a totally real field of degree n determines a ‘‘category’’
of mutually isogenous abelian varieties of dimension 7, and that the
latter are simple if and only if the former is primitive.

In consequence, it seems reasonable to deal first with the simple
abelian varieties belonging to primitive CM-extensions, even though
some important results have already been obtained by Taniyama for
more general cases. From now on, let (k; {p,}) be a primitive CM-
extension, given once for all, of a totally real field k, of degree 7;
we consider the abelian varieties A of dimension » which belong to
it in the sense described above. This means that there is an isomor-
phism ¢ of k& onto 4,(A) such than R, decomposes into the sum
of the ¢,. As (k; {@,}) is primitive, it is easily seen that ¢ is
uniquely determined by this condition, so that it may be used to
identify k with 7,(A); this identification will be made from now on.
Then the ring JA(A) is identified with a subring t of the ring o of
all integers in k. If K is a field of definition for A and for all the
endomorphisms ef A, & will have a representation of trace >, by
matrices of order n over the field K. One finds that, for & to have
such a representation, it 1s mnecessary and sufficient that K should
contain the field %, generated over Q by the values taken by that
trace on k. Conversely, if K is a field of definition for A, containing
k, it must be a field of definition for all the endomorphisms of A.
One should observe that k, need not contain k.

We now consider polarized abelian varieties belonging to a given
CM-extension. The rank of such a variety, for p=0, has been defined
above as the integer r=u(py)* if X is a basic polar divisor. By
using the representation of our varieties as complex toruses when C
is taken as universal domain, one finds that, for @ given CM-extension
(k; {p,)), @ given ring of endomorphisms 1, and a given value of the
rank r, there is at most a finite number of distinct types of polarized
abelian wvarieties with respect to isomorphism over the universal
domain.

If A is such a variety, its group of automorphisms is the multi-
plicative group of the roots of unity in r. Call » a generator of that
group, and N its order. Let K be a field of definition for the polar-
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ized variety A and for its automorphism e; let X be a positive polar
divisor on A, of which we may assume that it is rational over K and
that it determines an ample complete linear system; after replacing
X, if necessary, by the sum of its transforms by the N automorphisms
of A, we may also assume that it is invariant by . Now identify
A with its image under the projective embedding of A defined by
the complete linear system determined by X; then o is induced on
A by an automorphism 2 of the ambient projective space which leaves
invariant the hyperplane H, such that H,-A=X. If we take the
homogeneous coordinates (X, -+, X,,) in that space so that H, is defined
by X,=0, 2 will appear as a linear substitution:

"

(XO; Xl} Y Xm> - (X.(n gcliXi) R ;: Cmin:)°

For any r>>m, let the P,, be a base for the space of homogeneous
polynomials of degree rN in the X, which are invariant under that
substitution; let U, be the locus of the point @(x) with the homo-
geneous coordinates P,(x), in a projective space of suitable dimension,
when « is a generic point of the ambient space of A. By adjoining
the N-th roots of unity, if necessary, to the groundfield, and writing
the substitution £ in diagonal form, one shows that all the varieties
U, are isomorphic to one another. Call U any one of them; call V
the image of A in U by @, and call F the mapping of A onto V
induced by @; we say that V, together with the mapping F, is the
quotient of A by the group generated by .

Now, for each one of the finitely many types of varieties belong-
ing to given data (k; {¢,}), v, r, we can construct a representative
A by means of a complex torus. A variety A obtained by this method
need of course not be defined over an algebraic number-field. How-
ever, I have given (in a paper just published in the Amer. J. of
Math®.) a criterion for a variety, defined over a field K, to be isomor-
phic to a variety defined over a subfield K, of K; by using this
criterion, it is easily seen that, for each type of varieties belonging
to the given data, there is a representative which is defined over an
algebraic number-field. As this is only a special case of some im-
portant unpublished results of T. Matsusaka on the field of moduli of
a polarized abelian variety, I need not give more details here; how-
ever, it will be worthwhile to consider more closely the case in which
A is defined over an algebraic number-field, even though Matsusaka’s
results could also be applied to that case. Let therefore A be a

1) A. Weil, The field of definition of a variety, Amer. J. of Math., 78 (1956), pp.
509-524.
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polarized abelian variety belonging to the given data and defined over
an algebraic number-field which we may assume to be a finite Galois
extension K of k,. Let K, be the field of the elements of K which
are invariant under all those automorphisms of K over %k, which trans-
form A into a variety isomorphic to A; the degree of K, over k, is
at most equal to the number of possible types of varieties belonging
to the given data. Let s be an automorphism of K over K,; there
is an isomorphism a, of A onto A°, uniquely determined up to an
automorphism of A and algebraic over K; therefore every conjugate
of a, over K is of the form a.,»’. Call V the quotient of A by its
group of automorphisms, and F the canonical mapping of A onto V;
then there is an isomorphism B, of V onto V°, uniquely determined
by the condition B,oF'=F’ca,; it must be the same as its conjugates
over K, and is therefore defined over K; and we have B.,= Blo3, for
any two automorphisms -, ¢ of K over K,. Applying the results of
the paper quoted above, we conclude from this that there is a variety
V, defined over K, and an isomorphism ¢ of V, onto V, defined over
K, such that 8,=¢%¢ '. Let now A, be any variety, isomorphic to
A, defined over an algebraic number-field K, containing %. If K,
does not contain K, there must be an automorphism - of the field of
all algebraic numbers over K, which does not leave invariant all
elements of K,; then, if «, is an isomorphism of A onto A, its trans-
form by r is an isomorphism of A® onto A,, so that A and A® must
be isomorphic; but this contradicts the definition of K,. Therefore
we have K, DK,. If now V, is the quotient of A, by its group of
automorphisms, F, the canonical mapping of A, onto V,, B, the
isomorphism of V onto V, such that 8,cF=Fioa;, and s any automor-
phism of KK, over K,, we have B¢=p,/3;", hence (8,;¢)°=B,p, which
shows that 3, is an isomorphism of V, onto V,, defined over K.
Call z a generic point of A over K, and w the corresponding
point on V,, i.e. w=¢ (F(2)). To each primitive N-th root of unity
£, we can associate the set of those functions ¢ on A, defined over
Q, which satisfy 6(wz)=26(2); for each such function, there is a func-
tion f on V, such that f(w)=6(z)"; call &, the set consisting of those
funections f on V,. If fe &., and &’ is another primitive N-th root of
unity, » being an integer prime to N, then . consists of the func-
tions f*hY, where A runs through the set of all functions on V,,

defined over Q; also, if an automorphism of Q over K, maps : onto
e’, it will transform the functions in &, into the functions in Y.
We say that V,, together with the sets of functions &, is the Kummer
variety attached to the given type of abelian varieties (for a more
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general definition, valid for arbitrary polarized abelian varieties, we
refer the reader to a forthcoming publication by Matsusaka); and we
say that this Kummer variety is defined over K,. It is clear that a
type of abelian varieties is completely determined by its Kummer
variety.

We can now formulate the basic problems of complex multipli-
cation for simple abelian varieties:

I. Characterize the fields K, for the types of abelian varieties
belonging to given data (k; {p,}), v and 7r.

II. For each such type, characterize the fields generated over K,
by the images on V, of the points of finite order on a variety A of
that type.

I1I. Determine the zeta-function of any abelian variety of the
given type, over a field of definition of that variety containing k, and
therefore K,.

For n-==1, the complete solution of problems (I) and (II) is given
by the classical theory of complex multiplication, and problem (III)
was solved recently by Deuring. For arbitrary n, Taniyama has now
solved a problem which includes the general case of (III) as a special
case: the independent and overlapping investigations of Shimura,
Taniyama and myself give the solution of (I) and (II) in the case
r—o; and one may hope that the general case will not offer insur-
mountable difficulties any more. The basic tool here is Shimura’s
theory of reduction modulo a prime ideal, by means of which our
problems can be reduced to problems on abelian varieties over finite
fields. I shall sketch briefly the main ideas involved here.

As above, let A be a variety of one of the given types, defined
over a field K containing %,. Shimura’s theory shows that, for almost
all prime ideals ¥ in K (i.e., for all except a finite number), one can
reduce A and its endomorphisms modulo ¥, obtaining an abelian variety
A(P) of dimension n defined over the finite field with N(}) elements
and an isomorphism of t==. /(4) into J(A($)). Then the Frobenius
endomorphism of A(R) (induced by the automorphism of the universal
domain which raises every element to its N(P)-th power) commutes
with every element of the image of v in 4(A(}})), since such an
element is an endomorphism of A($) which is defined over the field
with N(J}) elements. By the results proved above, this implies that
the Frobenius endomorphism can be identified with an element = of
the field k--. 1,(A), and more precisely with an integer in k£ (not
necessarily in 1r). The mapping N — 7 determines the zeta-function
of A over K; and Taniyama has shown that a more detailed study of
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the properties of this mapping leads directly to an expression of the
zeta-funetion in terms of Hecke L-functions attached to characters
of type (A,) of the field K (cf. p. 4 of this volume); as could be
expected, these are characters which come from the quadratic exten-
sion % of the totally real %, (in the sense of formula (4), p. 4). In
fact, the connection between characters ‘‘of type (4,)”" and abelian
varieties with complex multiplication appears to be so close that it
can hardly be accidental; and any future arithmetical interpretation
of the characters of type (A4,), corresponding to the interpretation
given by class-field theory for the characters of finite order of the
idele-class group, ought to take complex multiplication into account.

As to problems (I) and (IT), T will consider only the case t=o.
The method sketched below could perhaps be applied without sub-
stantial changes to a ring t such that r—t and that the classes of
ideals in v which belong properly to v (i.e. which consist of ideals m
such that, in Dedekind’s notation, m:m==t) form a group. If n=1,
all the subrings of v have these properties; for n>1, it does not seem
to be known whether any proper subring of o has them; in order to
treat the general case of problems (I) and (II), one will presumably

have to rely more heavily upon the l-adic representations I2, than is
done here.

We first have to look more closely into the relation between &
and %,. Taking C as universal domain, and taking % to be embedded
in it, call ¥’ the compositum of % and all its conjugates over Q; call
G the Galois group of % over ; call H, H, the subgroups of G
corresponding respectively to the subfields %, k, of &’; call o the auto-

morphism & & of k. Call S the set of those automorphisms of &’
over Q which induce on % one of the isomorphisms ¢,. Thus S 1is
the union of cosets with respect to H, i.e. we have HS=H: we have
G=S8“Ss: more generally, if ¢ is any transform of ¢ by an inner
automorphism of G, we have G—S-—=S¢"-=¢'S. The assumption that
(k; {p,}) is primitive amounts to saying that H consists of all the
elements v of G such that vS=S. On the other hand, H, consists of
the elements v’ of G such that Sy’—=S. The subgroup of G corresponding
to k, is H~ Hs: and one finds that H,“~+H, is a group, corresponding
to a totally real subfield of &' of which k, is a totally imaginary
quadratic extension. Write S as the union of distinet cosets u 'H,
with respect to H,; for each u, let ¢, be the isomorphism of %, into
k' induced by x on k,. Then (k; {¥,}) is a primitive CM-extension,
and the relation between (k; {¢,}) and (k; {¥,}) is symwmetric. This
suggests that one should look for a relation between the categories
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of abelian varieties belonging to these CM-extensions; as to what this
may be, I have no conjecture to offer. |

Before coming back to our problems, we must also observe that,
for any abelian varieties A and B, 4(A, B) is a right A(A)-module and
a left 4(B)-module. If ¢ is an isomorphism of a commutative subring
C of J(A) onto a subring of (4(B), and if one considers only those
2 ¢ Y((A, B) for which y=g¢(y)4 for all v e, the distinction between
right and left is not necessary. In particular, consider two abelian
varieties A, A’ of dimension %, belonging as above to the primitive
CM-extension (k; {¢,}). Then they are isogenous; and, by considering
the operation of #(A, A’) on the Lie algebra of A, one sees that
at—€q for all ae (A, A") and all £ ¢ k. Thus (A, A') is a vector-
space over k; as such, it is clearly of dimension 1; and H(A, A is
a module over the ring generated in k& by « 4(A) and  1(A"). If now we
assume that . 4(4)-=. 1(A)==v, then (A, A") is an o-module, isomor-
phic to an o-ideal whose class is uniquely determined; if « is a non-
zero element of J(,(A, A", and if a is the set of the ¢k such that
Ew e H(A, A", o is an ideal in that class. If we take a¢ H(A, A,
we have 1¢€a, so that a ' is an ideal in o.

In particular, the dual A* of A is isogenous to A; and, if A 1is
polarized and Y is a basic divisor on A4, ¢» is in J(A, A*). If we
assume A to have o as its ring of endomorphisms, the same will be
true of A*, and the set of the §¢k such that Sy e (A, A*) will
be an v-ideal in k. One finds, in fact, that it can be written as foto,
where f, is an ideal in the ring of integers of k,, and that the rank
r of A is r==N(f,). When that is so, we say that A belongs to f,; it
is clear that all the conjugates of A over k, will belong to f,. Thus,
in discussing our problems (I) and (II) for r=o, we may confine our
attention to those types which belong to (k; {®,}), r==0 and a fixed f,.

Let A, A’ be two such varieties; let Y, Y’ be basic divisors on
A, A'; if aed(A, A), and if we put Z=a (Y"), ¢v'pz will be in k;
one finds that in fact it must be a totally positive integer; call it
f(a). Takean a320 in H(A, A"), so that we can write 9((4, A)=aa,
where a is an o-ideal in %; then one finds that there is a totally posi-
tive pek, such that pai=o and that f(fa)= p&s for all éea. One may
call this a positive hermitian form on a. The form p&E, defined on

a, and the form plfé, defined on an ideal a,, will be called equivalent

b

if there isa A¢k such that a,—2"'a and p, =pai; the class determined

for this equivalence relation by the form p£€ on a will be denoted by
(a; p). That being so, the class of the form f(§«) on the ideal a deter-
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mined by (A4, A’)=aa is independent of the choice of « and will be
denoted by {A’: A}; A and A’ are isomorphic if and only if this class
is (v; 1). On the classes of forms, we define a group law by putting

(a; p)-(a'; ph)=(aa’; pp").
Then, if A, A’, A” all belong to the same type, we have:
{A": A}={A": A"}-{A": A};
and, if + is any automorphism of Q over k,, we have {A"": A"} = {A": A}.
It immediately follows from this that every field K, occurring in
problem (I) for t=bp is abelian over k, with a Galois group which is
isomorphic to a subgroup of the group of classes of forms (a; p).

Take a field of definition K for A, A’ and their endomorphisms
and homomorphisms; again by Shimura’s theory, we can reduce
all of these modulo almost all prime ideals in K. For such a
prime P, H(A, A’) is mapped isomorphically onto its image in
I =I((A(D), A'(D)) and may be identified with that image; simi-
larly we can identify .%,(A, A’) with its image in the extension of
9C(B) by Q. One sees at once that an element of the latter set is
in H,(A, A" if and only if it commutes with all elements of k. Now
put H' = (P ~I(A, A); this is eclearly an o-module containing
(A, A"); we show that H'=H(A, A"). In fact, assume that this is
not so; as both are v-modules, there will be a & in £ and not in »
such that £9((A, A’)=9’. But (e.g. by using a representation of
A, A’ as complex toruses over C) one can see that there are elements
a; of J((A, A") and elements o« of J((A’, A) such that &.=> al,
(this is a special case of the fact that, if A, A’, A" are three varie-
ties of the given type, J((A, A”) is no other than the tensor-product,
taken over o, of the o-modules J((A4, A") and 9((A’, A”")). This gives
E=>a;-(§a,), so that £ must be an endomorphism of A(Y¥), which is
absurd.

Now let p, be a prime ideal in k,; we assume that it is not rami-
fied in K, and also that it has in a suitable field K a non-exceptional
prime divisor P, i.e. one modulo which one can reduce A, all its
conjugates over %,, and the endomorphisms and homomorphisms of
these varieties. Put g==N(p,). Take for A’ the transform of A by

an automorphism - of Q over %, which induces on K, the Frobenius
substitution for p,. By what we have seen above, the Frobenius
homomorphism of A(P) onto A'(Y), induced by the automorphism
x— 2" of the universal domain, will be the image of an element @ of
JH(A, A"); and we have f(w)=q. Then, if we put H(A, A)=q 'w, g
is an ideal in o, such that qG—=¢o, and we have {A’': A}=(q7%; q).
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By class-field theory, an abelian extension 1s completely deter-
mined by the knowledge of the Frobenius substitution for almost all
prime ideals; therefore (I) will be solved if we determine the corre-
spondence b, —q. Let m be a multiple of the order of the Frobenius
substitution for p, in K,; then +™ transforms A into a variety A,
isomorphic to A. Call a, an isomorphism of A onto A,; this is uni-
quely determined up to an automorphism, i.e. up to a root of unity.
Then the automorphism z—2?" of the universal domain induces a
homomorphism of A(}) onto A,(L¥), which, as above, may be identified
with an element of J((A, A,); this can be written as ma, with = ¢eo; 7
is uniquely determined up to a root of unity. Proceeding as above,
we find that =m-—=¢™ and that =o--q™. One should observe that, if
NB)-=q¢" and m is a multiple of A, then A,(¥")-=-A(}), so that in that
case a,; can be determined uniquely by preseribing that it should
reduce to the identity mapping on A(Y); then = also is completely
determined. Now, in order to find q, it is enough to determine the
prime ideal decomposition of = in a suitable field for some suitable
choice of m, e.g. for m=—=h. But this has been done by Taniyama (cf.
§8 of his contribution to this volume). The econclusion is that, for
almost all p,, we have

q= I} (b))

provided of course ideals in subfields of %’ (the smallest Galois exten-
sion of Q containing k) are identified in the customary way with the
ideals they generate in k'.

This formula contains the solution of problem (I) for r=o. One
should observe that, while the prime ideal decomposition of =, together
with the relation ww=q™, determines == up to a root of unity, this
is not enough for the calculation of the zeta-function, where a more
vrecise result (also contained in Taniyama’s work) is required.

For t=bo, problem (II) can be treated by an entirely similar
method. We consider the pairs (4, a), where A is an abelian variety
of one of the types discussed above, and a is a point of finite order
on A. If n is the ideal in o, consisting of those & for which fa=0,
we say that a belongs to n. The type of the pair (4, a) will be considered
as given by the type of A, i.e. by the data (k; {g,}), r=0 and fo,
and by the ideal n in o. Consider two such pairs (A4, a) and (4’, a').
If we write, as above, (A, A')=aa and f(i-'a):pég, there will be
an element & of a such that &« maps a onto «'; it is determined
uniquely modulo an and is such that §o+an=a. That being so, we
define an equivalence relation between triplets a, p, &, where a, p
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are as before and &, is such that &po-+an==q, by defining two triplets
a, p, & and o, p’, & to be equivalent if there is a 4 ¢k such that
a’=21"'a, p'=pad and &=2"'¢, mod. a’'n; and we denote by (a; p; &) the
class of such a triplet. Then the class of the triplet a, p, &, attached
as above to the two pairs (4, a) and (4, @) is independent of the
choice of a; it will be denoted by {(A4’, a’}: (4, a)}; the two pairs are
ijsomorphic if and only if the class is (0; 1; 1). A group law between
equivalence classes is defined by putting

(a; p; &)- (5 p'; &)= (aa’; pp'; £o50)-
Proceeding as above, one finds that the Frobenius substitution

for p,, in the field generated over K, by the image of the point a on
V,, is (a7'; ¢; 1). This solves problem (II).

UNIVERSITY OF CHICAGO



On Complex Multiplications

Goro SHIMURA

It is well known that the theory of eclass-fields over imaginary
quadratic fields can be described in terms of the complex multiplication
of elliptic functions. In the classical treatment of this theory as well
as in the purely algebraic treatment by M. Deuring ([1]), the con-
gruence relation on elliptic functions, which was first given by L.
Kronecker, has played a central role. If one obtains some similar
relation on abelian funetions of higher dimension, then one can study
the arithmetic of such abelian functions particularly in connection
with class-field theory. In the present paper we shall give some
results in this direction. Using the notion of reduction modulo b of
algebraic varieties, we obtain a certain congruence relation for an
abelian variety A of dimension » whose endomorphism-ring containg
a subring isomorphic to the ring of integers of an algebraic number-
field K of degree 2n. By means of this congruence relation we can
prove that a field of definition for such an abelian variety A always
contains a certain class-field over K, and that the fields generated
by division points on A contain class-fields over K|, corresponding to
the ideal-groups determined by some relations which we can write
down, where K, denotes a certain algebraic number-field determined
by K and some isomorphisms of K. |

1. Let A be an abelian variety defined over a field k. We
shall denote by .7(A) the ring of all endomorphisms of A. Let K
be an algebraic number-field of degree 2n and R the ring of all
integers in K. By an abelian variety having R as operator-domain,
we shall understand a pair (4, ¢) of an abelian variety A of dimension
n and an isomorphism . of R into .4(A). We shall denote simply by
A such a pair (4, if there is no fear of misunderstanding. Let
(A’, ) be another abelian variety having R as operator-domain. We
shall understand by an RE-homomorphism of A into A" a homomorphism
2 of A into A’ such that 2«(u)x=:(u)ix for every u ¢ R and every z € A.
We shall say that (A4,:) is defined over a field k if % is a field of
definition for A and for every element of «([R).

Now let a be an ideal of R other than the zero-ideal. We shall
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denote by g(a, A) the set of all points ¢ of A such that {u)t=0 for
every uca. We shall call an element ? in g(a, A) a primitive element
in o(a, A) if «{p)t=—0 implies pea. Such an element exists if a is
prime to the characteristic of the ground field k. Let (4’,:) be an
abelian variety having R as operator-domain and 2 an R-homomorphism
of (A, ) into (4’, ), both defined over k. We shall call 2 an a-multi-
plication of A onto A’ if the following condition is satisfied: if = is
a generic point of A over k, then the field k(ax) is the composite of
all the fields A(«(u)x) such that pea. We shall call (A’, /) an a-trans-
form of A if there exists an a-multiplication of A onto A’. For
every ideal a of R, there exist an o-transform A" of A and an a-
multiplication 2 of A onto A’; the kernel of 2 is equal to g(a, A).
One may consider an o-multiplication an ““jdeal number’’ which
makes a principal. Let a and 0 be two ideals of R. Then, an a-
transform of A and a O-transform of A are R-isomorphic to each
other if and only if o and 0 belong to the same ideal-class. Let ¢
be an ideal-class of K. We shall call A" a c-transform of A if A’
is an a-transform of A for an ideal a in c¢. We can easily prove
the following proposition.

PROPOSITION 1. Let ¢ be an ideal-class of K and A" a c-transform
of A. Let m be an ideal of R and t a primitive element in g(u, A).
If t' eg(n, A"), then there exist an ideal a in ¢ and an a-multiplication
2, of A onto A’ such that t'=at; t s primitive in g(m, A") if and
only if a is prime tom. If t' is primitive in gQn, A", the ideal-class
of a modulo m is uniquely determined by .

Let ¢ be an isomorphism of the ground field & onto a field k.
Then we have an abelian variety A° defined over k°, the transform
of A by 0. Let u be an element of R and W the graph of «(w).
The transform W° of W by o is a subvariety of A°x A°; there exists
an endomorphism of A° having W¢ as its graph; denote by () that
endomorphism. Then the mapping p—>(n) gives an isomorphism of
R into 4(A°); thus we obtain an abelian variety having R as operator-
domain (A4°,:°) defined over k°. When k has a prime characteristic
p, we obtain an isomorphism ¢ of %, for any power qg—p’ of p, de-
fined by 2°=2? for every z in k. In this situation, we shall denote
(A°, ) simply by A%

2. Let k be a field with a discrete valuation and o be its
valuation ring; denote by b the maximal ideal of o and by « the
residue field o/p. Let V be a variety in the projective N-space P7,
defined over k& and 2 the set of all polynomials F(X) in o[ X, -+, Xy ]

such that F(x)=0 for every (x) on V. Let P” be the projective
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N-space defined over x and denote by V the algebraic set in Py
defined by the equations F(X y-=0 for F'e A where F denotes the

class of # modulo p. If V has the only one component and that
component has the multiplicity one ([3] p. 148), we say that V is
v-simple and call V the variety obtained from V by reduction modulo
». In [8], we have given a theory of reduction modulo p of alge-
braic varieties thus defined. As shown there, we can define reduc-
tion of an abstract variety. We gshall use the same terminologies
and notations as in [3].

Let V and W be two p-simple varieties defined over #k; denote
by V and by W the varieties obtained from V and W by reduction

modulo b, respectively. Then V and W are abstract varieties defined
over «. Let f be a rational mapping of V into W, defined over k;

denote by T the graph of f. Let & be a point on V. We shall say

that f ¢s defined at = if there exists a point » on W such that, for
some representatives V,, W,, T, &, and », of V, W, T, & and 7, we
have &, X%, € f_Z;al and the projection from 7,, to V, is regular at &,
(namely, if x,xy, is generic on T,, over k, the coordinates of y, are
all contained in the specialization-ring [x,—> &, ).

Now let A be an abelian variety defined over k. Denote by f
the rational mapping of Ax A into A such that f(x,y)=x+y for
xcA, yeA and by ¢ the rational mapping of A into A such that
g(x)=—x for x < A. We shall say that A has no defect for b if the
following conditions (1-4) are satisfied. (1) A s p-simple. Denote
by A the variety obtained from A by reduction modulo p. (2) A is
v-complete. (If A is a subvariety of a projective space, this is
always satisfied.) (3) f is everywhere defined on AxA. (4) g is
everywhere defined on A. If A has no defect for b, the variety A
obtained from A by reduction modulo » becomes an abelian variety
defined over «, in a natural manner. We shall call A the abelian
variety obtained from A by reduction modulo .

Let A and B be two abelian varieties defined over k, having no
defect for »; denote by A and by B the abelian varieties obtained from
A and from B by reduction modulo b, respectively. Denote by
I((A, B; k) the set of all homomorphisms of A into B, defined over
k, and by (A, B;«) the set of all homomorphisms of A into B,
defined over «. Then, for every 2¢ 9 (A, B; k), there exists a uniquely
determined element ie 9((A, B;«x) such that the graph of 2 is the
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variety obtained from the graph of 2 by reduction modulo p. The
correspondence 1—>2 defines an isomorphism of the additive group
Y((A, B; k) into the additive group I((A, B;k). If A-=B, this iso-
morphism is a ring-isomorphism.

Now as in 1, let R be the ring of integers in an algebraic
number-field K and (A4, ) an abelian variety having E as operator-
domain, defined over k. Suppose that A has no defect for p; denote
by A the abelian variety obtained from A by reduction modulo .
Let u be an element of E; put «(u)=u, and denote by u. the cor-
responding endomorphism of A. Then the mapping z of R into A(A)
defined by (u)==u, is an isomorphism. Hence we obtain an abelian
variety having R as operator-domain (4,7); we denote it also by A
and ecall the abelian wvariety having R as operator-domain obtained
from (A, ) by reduction modulo p. Let ¢ be an ideal-class of K and
A’ a c-transform of A, defined over k; let a be an ideal in ¢ and 2,
an a-multiplication of A onto A’ defined over k. Suppose that A’
has no defect for p. Then A’ is a c-transform of A and 2, is an
a-multiplication of A4 onto A’. Let m be an ideal of R which is prime
to the characteristic of the residue field «. Let ¢ be a primitive
element in g(m, A) and suppose that ¢ is rational over 4. Then the
point ¢ obtained from ¢ by reduction modulo b is a primitive element
in g(m, A).

If A is an abelian variety defined over an algebraic number-field,

then A has no defect for all but a finite number of prime divisors
of that field.

Let V be a p-simple variety defined over & and denote by V the
variety obtained from V by reduction modulo p. Let f be a function

on V defined over k& and denote by f the generalized function on Vv
obtained from f by reduction modulo b ([3] pp. 167-168). We shall

say that f is p-finite if f-~o». Let w be a differential form on V

defined over k. We shall say tat « is p-finite if » is written in a

form o=>) f,dg, ---dg, where the f, and the g, are p-finite
@

functions on V defined over k. We can prove that the differential

form o=3f.dg; - -dg, on V does not depend upon the choice of
€]

the f,,, and the g,. We shall call » the differential form obtarned

from o by reduction modulo p. If o is of the first kind, and if 1%
is a complete non-singular variety then « is of the first kind.
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3. Let E be a complete non-singular curve of genus one, defined
over a field %k, having a rational point over k. Then E becomes an
abelian variety of dimension one, defined over k. We shall under-
stand by an elliptic curve defined over a field k, an abelian variety
of dimension one, defined over k.

Let @ be an imaginary quadratic field, K the ring of integers in
@. Then there exists an elliptic curve E defined over an algebraic
number-field 4 such that 4(E) is isomorphic to K. Let o be a
differential form of the first kind on K. If y,e A(F), there exists a
number x such that Sugw—=puw, where Sy, denotes the differential of
the rational mapping x,. The correspondence u-—> u, is an isomorphism
of R onto J(&); this isomorphism does not depend upon the choice
of w; denote it by «. Thus we obtain an abelian variety having R
as operator-domain (&, :); we denote it also by FE.

THEOREM 1. Notations being as above, suppose that k contains
@. Let p be a prime tdeal of R and R a prime divisor of P in k.

Suppose that E has no defect for B and denote by E the elliptic curve
having R as operator-domain, obtained from E by reduction modulo .
Denote by = the rational mapping of E onto E™ such that wt=t"
for every te E. Then E™ is a p-transform of E; and = is a b-
multiplication of E onto E™.

This theorem is an algebro-geometric formulation of Kronecker’s
congruence relation on elliptic functions ([2] XI, §14), though our
theorem is concerned only with a singular modulus. From this we
can derive the law of reciprocity for Strahl-class-fields over imaginary
quadratic fields, with no use of the general class-field theory. Moreover
we can determine the ramification in case where the conductor is
prime to 2.

4. As in 1, let K be an algebraic number-field of degree 2n
and R the ring of all integers in K. Let (4, :) be an abelian variety
having R as operator-domain defined over the field of complex numbers.
Let K* be the smallest normal extension of the rational number field
® containing K; denote by G the Galois group of the extension K*/@
and by H the subgroup of G corresponding to K. Denote by D(A)
the set of all invariant differential forms on A of degree one. Let
w be an element of K and denote by Su the differential of the rational
mapping «u). Then 8u defines a linear endomorphism of the linear
space D(A). We can find n elements oy,: - +,0, in G such that u%,- -, u
are the characteristic roots of the linear endomorphism &u for every
we R, We ghall say that A has the type (K, o,,- - -, 5,) if the situation
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is as above. We can prove that if there exists an abelian variety of
the type (K, ay,--+,0,), there exists one defined over an algebraic
number-field of a finite degree. Now, notations being as above,
denote by H, the subgroup of G consisting of all the elements & such

that OH@(;: LNJHa]-. Then we can find elements =,---,, in G such
j=1 Jj=1

that Ga,;‘H:OHOT, and n[H:1]=s[H,:1]. Denote by K, the

subfield of K* corresponding to H,; then we have [K,:Q]=2s. For
this field K,, the following proposition holds.

PROPOSITION 2. Notations being as above, let (A, ) be an abelian
variety having R as operator-domain, of the type (K, o, -, 0,) defined
over an algebraic number-field k of a finite degree. Then k contains
K,. Furthermore, let o be an isomorphism of k. Then (A° °) 1s a
e-transform of (A, ) for some ideal-class ¢ of K if and only if o
fizes every element of K.

Now we have a congruence relation on the abelian variety A.

THEOREM 2. Notations being as in Proposition 2, let b be a prime
ideal of K, which is of the absolute degree one and B a prime divisor
of b in k; put Np-=p. Suppose that p is unramified in K* and A

has no defect for PB. Denote by A the abelian variety having R as
operator-domain obtained from A by reduction modulo P. Denote by
+ the rational mapping of A onto A? such that wt==1" for every LeA.
Then A? is @ Y-« -ps-transform of A and m is a b - -ps-multipli-
cation of A onto AP’.

By this theorem we obtain the following result.

THEOREM 3. Let the notations be as in Proposition 2. Then,

1) k contwins the class-field K, over K, which corresponds to the
ideal-group H,, consisting of all ideals a in K, such that a*-.--a% 28
principal n K;

9) let m be an ideal of R and t a primitive element in g, A);
then the field k(t) contains the class-field K, over K, which corresponds

m

to the ideal-group H, consisting of all ideals o in K, such that a®- - -a%

belongs to the Strahl modulo m in K.
The field K,,, and K,, are represented by means of Chow-points

m
as follows. Supposing that A is a variety in a projective space P,
let {A,---,A,} be the set of all the conjugates A of A over K,
quch that A’ is R-isomorphic to A. Denote by (@) the Chow-point
of the cycle A, +---+A, in P*. Then we have K, =K(a). Let

{t,,--+,t,} be the set of all the conjugates ¢’ of ¢ over K, such that
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there exists an isomorphism ¢ of k(¢) for which we have A°=A4, for
some ¢ and t°=t'=2¢ where a is an ideal belonging to the Strahl
modulo m and 2, is an a-multiplication of A onto A°. Denote by
(m) the Chow-point of the cycle ¢+ ---+¢, in PY. Then we have
I(m:Ko(a: m)

Now we shall sketch the proofs of Theorem 2 and Theorem 3.
Let b and ¥ be as in Theorem 2. It is easy to see that p=i-..pv ig
really an ideal of K and N, , (b™-.-p%)-=p". We can find » invariant
differential forms w;,---,w, on A such that Suw,-—u e, (1<7:=2n)
for every pe R. Moreover we can take the o, in such a way that
they are ¥'-finite and the forms w; obtained from the w, by reduction
modulo P’ form a basis of the linear space of linear differential forms
on A, where ¥ denotes a prime divisor of 1} in a field of definition
for the w,. If wx is contained in p=---p%, then pu* is divisible by P
for every ¢. Hence we have Suw;==pw—=0 (1=2--n) for every
wepse.-b% where a letter with a bar denotes an object obtained
from the corresponding one by reduction modulo ¥V'. This shows
that 8u=0 for every ue p™-.-p%,. Therefore, if ¥ is a generic point
of A over the residue field « of ¥, we have «(ux) C«(@") for every
poin p*r---p%,. From this we obtain Theorem 2.

Let mt and ¢ be as in Theorem 3. Let &* be a finite normal
extension of K, such that A* DAK*(¢) and that every homomorphism
of A into any conjugates of A over K, is defined over k*. Denote
by G* the Galois group of the extension £*/K,. If & is an element
of G*, then ¢° i3 a primitive element in g(m, A°). By Proposition 2,
A° is a c-transform of A for some ideal-class ¢ of K. Then, by
Proposition 1, there exist an ideal a in ¢ and an a-multiplication 4,
of A onto A° such that ¢°--2,¢. The correspondence s—a defines a
homomorphism of G* into the group of ideal-classes modulo m in K.
Denote by N* the kernel of that homomorphism and by K, the
subfield of £* corresponding to NV*. Then K, is an abelian extension
of K,. If an element ¢ of G* fixes every element of k({), then o is
contained in N* as we have A°=A, ¢°=¢. This shows that K, is a
subfield of %(¢). Now let p be a prime ideal of K, satisfying the
following conditions: i) p is of the absolute degree one, ii) Np--p
is unramified in £*, iii) the A° for all ¢ G* have no defect for
every prime divisor of b in k*. Let L be a prime divisor of p in k*

and + a Frobenius substitution of °¥; then + induces ( K‘“p/-- ") in K,.

For this ¢, we obtain an ideal a and an a-multiplication 4, of A onto



30 (G. SHIMURA

A° such that t°=2¢. Denoting by bars over letters the objects ob-
tained by reduction modulo ¥, we have A°=A” and t°=2t. On the
other hand, by Theorem 2, we have {*={’=mt where = denotes the
pei. - -pis-multiplication of A onto A" as in that theorem. Now if b
is prime to Nu, ¢ is a primitive element in g(n, A). By Proposition
1, the relation 2 1—=mnt implies that a and p=---p= belong to the same
ideal-class modulo m. Thus we have proved that a prime ideal of

the absolute degree one is contained in H,, if and only if (K‘“l{ K°>

is equal to the identity with a finite number of exceptions. By a
result of class-field theory, we have 2) of Theorem 3.

UNIVERSITY OF TOKYO
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Jacobian Varieties and Number Fields"

Yutaka TANIYAMA?

Introduction.

The classical theory of complex multiplication solves the problem
of construction of abelian extensions of imaginary quadratic fields.
Apart from this classical theory, E. Hecke [2] [3] has treated
successfully the problem of unramified abelian extensions of certain
imaginary biquadratic fields by means of Hilbert modular functions.

The main purpose of this work is to develop a theory comprizing
both eclassical theory of complex multiplication and the theory of
Hecke, by the method of algebraic geometry.

By the way, an arithmetic characterization of endomorphisms =
of an abelian variety with sufficiently many complex multiplications
is obtained. By means of this result we can prove in the affirmative
the conjecture of Hasse on zeta funetions of abelian varieties, and
of curves, in certain singular cases. On this subject, we have some
known results in special cases. A. Weil [14] proved namely that
the zeta function of a curve defined by ax"+by™+c¢--0 over a certain
algebraic number field £ can be expressed by the zeta function of &
and L-functions with ‘¢ Grossencharaktere’’. M. Deuring [1] proved
analogous result for singular elliptic curves. The result in this paper
contains that of Deuring, and of Weil in case n, m are different
prime numbers.

The same problem of construction of abelian extensions of alge-
braic number fields was also treated by G. Shimura and A. Weil (cf.
these proceedings pp. 23-30 and pp. 9-22). A. Weil pointed out

1) The following exposition is somewhat different from the text presented to the
symposium. The main differences are as follows.

i) The part in which special emphasis was made on jacobian varieties is omitted,
as this part contained a mistake. ‘

ii) The part concerning Galois theory of the field K’ is revised and simplified.

iii) Some results in § 3, especially Proposition 3, are generalized to contain the
case where [R,:Q]<g.

iv) In §5, existence theorem of Lefschetz is added.

2) This study was done with the help of subsidy from the Ministry of Eduecation
(1954, n° 10429).
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moreover some important properties of characters of idele class groups
in connection with the zeta functions of abelian varieties (ef. these
proceedings pp. 1-7). The complete exposition of the problem com-
prising the ideas and results of G. Shimura, A. Weil and myself
will be published elsewhere in a joint paper of G. Shimura and
myself.

Recently T have obtained a second proof of Hasse’s conjecture
in case of complex multiplications as a corollary of a theorem on
characters of idele class groups, which is in close connection with
the properties pointed out by A. Weil. This will be exposed in a
forthecoming paper of mine. Here I wish to express my hearty thanks
to Professor A. Weil for his kind discussions and valuable suggestions
on these subjects during and since the symposium and also to Professor
S. Iyanaga for his constant encouragement.

Notations and terminologies.

The varieties considered in this paper are always supposed to
be in some projective space or in a product of projective spaces.
Except for this, we use mainly the terminologies as in Weil’s books
(8], [9], [10] and Shimura’s paper [7].

Q denotes as usual the rational number field, C the complex
number field. o, denotes the complex conjugate automorphism of
C:oou=—=p for g in C. Algebraic number fields are always supposed
to be in C. By the Galois closure of an algebraic number field we
understand the smallest absolutely normal field containing that field.

N denotes always absolute norm. For any field £, k denotes the
algebraic closure of k.

A, A’, B mean always abelian varieties. The dimensions of A,
A’ are always supposed to be equal and are denoted by g. As in
Weil’s book [10], 7(A) denotes the ring of endomorphisms of
A, Y(A,B) denotes the module of homomorphisms of A into B.
A, II(A, B) denote the tensor products A(A)EQ, (A, B)XQ
respectively. « denotes always a generic point of A. The field over
which z is a generiec point will be clear from the context, so that we
shall need no reference to it. For any 1 in J{((A, B), (2 denotes
the degree [k(x): k(2x)] if this degree is finite, and otherwise we
put »(2)--0, where & is a common field of definition of A,B,2. In
case »()£0, v,(2) denotes the inseparability degree of k(z) over k(ix).
Let A be defined over % and R be a subring of «/7(A). Then /i,
denotes the smallest field containing %, over which all endomorphisms
w in R are rational.
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Let a be any point on A. In case A is defined over a finite
field k& of gq--p’ elements, we denote by a" the isomorphic image of
a by the isomorphism &-—&" of the universal domain. Then the
mapping a—a? for all ¢ on A determines an endomorphism of A,
which is denotes by ., or (k).

Now, let & be a field and v a discrete valuation of k, and P the
maximal ideal of the valuation ring 2 of v. Then we use the
symbol ~ to denote the object obtained from an object of the same

kind by the reduction mod. . For example, A denotes the variety
obtained from A mod. . The use of symbol A indieates implicitely

that this variety is also an abelian variety. k denotes therefore the
residue field Q/%. We do not use the syimbol ~ in ‘“ degenerate case .

Finally, let A be defined over an algebraic number field k of
finite degree, and L a ‘‘non-exceptional’” prime ideal in k for A
(ef. below Prop. 1, §1). If there is an endomorphism in A(A) from

which W}(E) is obtained by the reduction mod. ¥, then we denote
this endomorphism by .

& 1. Preliminaries from reduction theory.

Let V be a variety defined over a field &£ and ¥ a set of normalized
discrete valuations v on k. (a)-—(ay,---,«,) being a finite set of non-
zero elements in &, we denote by UB(a) the set of all v’s in ¥ such
that o(a;)-=0 for i--1,---,7. If an assertion holds for all v’s in
some union of B(a)’s, we say that it holds for almost all v in V.
Therefore, when % is an algebraic number field of finite degree and
W is the set of all normalized discrete valuations of %, ¢‘almost all”’
means ‘‘all but a finite number of .

Let V,, V., be two non-singular varieties and Z be the graph of
a mapping f of V, into V., everywhere defined on V,. Let V,, V., f
be defined over k. Then, Shimura’s theory [7] shows, together
with the arithmetic on algebraic varieties (Weil, [13]), that, for
almost all v, VI,VQ are non-singular varieties and f is a mapping,
everywhere defined over V, with graph 7. From this we see

PROPOSITION 1. Let A be an abelian variety defined over £,
and ¥ be arbitrary. Then, for almost all v in ¥, A is an abelian
variety such that «—d is a homomorphism of A onto A. This
homomorphism induces an isomorphism of the group of all points on
A with finite orders prime to the characteristic of the residue field

k. 1f, especially, A is a jacobian variety of a non-singular curve C
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of genus g with a canonical mapping ¢, all defined over k, then,
for almost all v in B, A is a jacobian variety of the non-sigular curve
¢ with the same genus g, and @ is a canonical mapping of C into
A. Moreover, let A, B be two abelian varietes defined over k. Then,
for almost all v in 9B, 1 is a homomorphism of A onto B for all 2 in
I (A, B), and 1—2 is an isomorphism of (A, B) into ﬂ[(ﬁ, 1§).
The same holds especially for the ring A(A).

We call v non-exceptional for A, if A is abelian variety and p—> g
is an isomorphism of (/(A) into A (A), and non-exceptional for (A, B)
if v is non-exceptional for A and for B and 11— 2 is an isomorphism
of (A, B) into ﬂ(’(ﬁ, E). We ecall v exceptional if it is not non-
exceptional.

The linear differentials of the first kind on A are just the linear
differentials invariant under translations on A, and they form a vector
space D(A) of dimension g over the universal domain. Let 2 be in
9((A,B). Then, 2 induces a linear transformation 82 of D(B) into
D(A). We denote by S(2) the representation-matrix of 82 with basis
of D(B) and of D(A). Especially, the ring .4(A) has an anti-represen-
tation p—S(u) as a linear transformation of D(A). Let now v be non-
exceptional for A. Then, the invariant property of a differential » In
D(A) shows that if o is defined at one point of }1, then it 18 every-
where defined on A, i.e. @ belongs to D(A). Thus, for any w0
rational over %k, we can find an « in 4 such that & belongs to D(A)
and is not 0. This shows that there is a basis (0)=(w;,"**,»,) of D(A)
such that (@)=(&,,---,®, forms a basis of D(A). Conversely, for
any basis (o) of D(A), (@) forms a basis of D(A) for almost all non-
exceptional v. Moreover, we have clearly

PROPOSITION 2. Let A, B and all 2 in J((A, B) be defined over X,
and (o), () be basis of D(A), D(B) respectively, rational over k. Let
v be a non-exceptional valuation of & for (A, B) such that (@), ()
form basis of D(A), D(B) respectively. Then we have é(zj;—S’(E) for
any 2 in J((A,B), where S, S denote the representations of 4 (A, B),
J((A, B) with basis (o), () and (&), (3) respectively. The same results
hold especially for anti-representations S, S of J(A), J(A) with basis
(w), (@) respectively.

COROLLARY. In the same situation, SO/)::O (i.e. S(2)=0mod. v)
if and only if %(@") Dk(%), p being the characteristic of .
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§ 2. Isogeneous abelian varieties.

We recall first some basic properties of abelian varieties (cf. Weil
[10]). Two abelian varieties A, A’ (of the same dimension g) are
called isogeneous if there is a homomorphism of A onto A’. This is
an equivalence relation, by which we classify all abelian varieties into
categories. We call A simple if the category of A is simple. Let
A, A’ be isogeneous. Then, the relation u*i=24u determines an iso-
morphism u—>u* of the algebra 4,(A) (over Q) onto the algebra
A (A". For a subring R of . 71(A), we denote by R* the image of
R by this isomorphism. [ being a prime number different from the
characteristic p of the universal domain, we denote by M, the [-adic
representation of (A, B) or of . 1(A) (cf. Weil [10] n° 81). For
A(A) this representation is of degree 2¢ and faithfull. For any u
in (A), the characteristic equation of M/(u) is the same for all
[*p, and has rational integral coefficients with the constant term
v(u). Thus, each element of . 7,(A) is of degree at most 2g over Q.
On the other hand, if A is simple, </, (A) is a division algebra, and
ASA X -+ - x A) is a matrix algebra over . /,(A). If A, B are simple
and not isogeneous, 4(,(A,B)=0. Hence in general if (/4,(A) contains
a field R, of degree 29, A must be isogeneous to Bx ---xB, B being
simple, and the commutor of R, in « 1,(A) is R, itself.

Now, let R be a subring of /(A) and k be a field of definition
for A and for all x in R. Then, for any left ideal a of R, there
exists an abelian variety B, and a 4. in (A, B), both defined over
k, with the property: k(ax)= U k(ux). Indeed, (1, *+» pr) being a

rEQ

set of generators of R, we can take as B the locus of wx X « -+« X u,® in
Ax---xA, and as A the homomorphism defined by Awx=p@ X *** X p,Zs
Clearly, B and i are determined by a up to isomorphisms, and the
kernel of 1. is the group g. of all points a such that pa=0 for all
p in a.  Moreover, if R, is a subring of (/(A) containing R, and @,
is the left R,-ideal R,a, then we can take A« as Za. It is clear that,

if v is a non-exceptional discrete valuation of & for A, then B is

~

also an abelian variety and J. is a homomorphism of A onto B,
which can be written as 43.

~ If pis in the right order of the left ideal A(A)a in A(A),
then the relation p*i-=Aw determines p* in A(B). If R,=R&®Q is
semi-simple, p— p* induces an isomorphism on R. Assume now that
@ contains an element a such that »(«)7%0. Then A and B are
isogeneous, p— p* is an isomorphism of (I A) onto A,(B) and /A(B)
contains the isomorphic image of the right order of I(A)a. If then
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b is a left ideal in 4(A) with this right order of (J(A) as its left
order, we have Aw==€4+A with an isomorphism £. Note that if a=(«)
is principal, we have =7« with an isomorphism 7.

If especially R is the principal order of a subfield R, (of A,(A))
of degree d, then we can prove easily

2(4) = (Nay*”¢,

where Na denotes the absolute norm of a in the field R,. Let further-
more R be the principal order of a field R, of degree 2¢g, and B be
isogeneous to A. Assume that R* is contained in /(B) for some 24
in J9((A,B), with »,(2)==1, and denote by 0 the kernel of 2. Then our
assumption implies that w)C ) for any p in R. Denote by o an ideal
in R consisting of all u in R such that w(h)-=0, then the kernel of 4
is LEJR;L\[), hence it is equal to ). Thus we see that 2 can be written
P

as .. On the other hand, if A is simple and R-=.4(A) is the principal
order of the field . 7,(A) of degree 2g, then we have clearly /(B)CR*
for any 4. If J(B) is also the principal order of . 7,(B), this shows
that p— u* induces an isomorphism of (4(A) onto . /(B). Hence in
this case, every 4 in JJ((A, B) with v,(2)=1 must be of the form A.

§ 3. Ideal decomposition of the endomorphism .
Let A be defined over k, and put %, =k ., For any automorphism

o of k,, A° is also an abelian variety and p— u° gives an isomorphism
of A(A) onto 4(A°), which is an automorphism of (/(A) if o fixes
all elements of %. From this we see that &, is a finite algebraic
normal extension of %, and its Galois group over k operates faith-
fully on A(A).

Assume now the characteristic of & to be zero. Let (») be a basis
of D(A), rational over k. Denote by S(u), S%(x°) the (faithfull) anti-
representation of .« 7,(A), A,(A°) with basis (w), (©°) respectively.
Given a commutative semi-simple subalgebra R, of «4,(A), S(x) can
clearly be transformed in % into diagonal forms S;(x) simultaneously
for all x in R,. If especially R, is a field, diagonal elements of S,(x)
must be of the form oyp,« - +,0,u, 0, -+, 0, where ¢ is an isomorphism
of R, into C and o, -+, 0, are isomorphisms of the field (R, into C,
determined uniquely by A, R, and .. Denote by K’ the Galois
closure of (R,, by G the Galois group of K’ over Q and by H the
subgroup of G corresponding to (R,. We consider «+, as an element

in G. Then the set H* of all ¢ in G such that EjaaiH:j o, H
i=1 i=1
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is a subgroup of G (uniquely determined by A and R,). Denote

by K* the subfield of K’ corresponding to H*. Then we can find

+,++,r in G for which X)o,H-=S1H*r, holds. Put R=R,~.A(A),
i=1 i=1

1=

then we see that &y always contains K*, as we have clearly S°(u°)=
o[ S(w)] for any p in A(A).

Here we shall recall some properties of endomorphisms = (ef.
Weil [91, [10]). Let C be a non-singular curve of genus g,J a
jacobian variety of C and ¢ a canonical mapping of C into J, all
defined over the finite field & of q=p’ elements. Then, the zeta-

funetion Z(x) of C over k is of the form [(1—u)(1—qu)]™" fgl (1—u),

where @, -+, @,, are characteristic roots of M/(m;) for [ p. The
‘“Riemann hypothesis’’ shows now that |=,|=¢"* for i=1,---, 29.
The same holds for general abelian variety A and =, if %k is large
enough, as, in case A is simple, there is a homomorphism of a
jacobian onto A, and in general case, as m, belongs to the centre of
J(A), which is isomorphic to the direct sum of centres of A(B)’s,
B being simple. However, as m(k")=m\(k)" if [k :k]-=v, we have
| @, |=¢"/? for any field of definition & of A.

Now, A and % being as above, let R, be a subfield of A,(A).
Assume that R=R,~.4(A) is the principal order of R,. By the
definition of 2., S(A)=0 if and only if kp(z")Dkn(pz) for all u in a,
where a is an ideal of R and z denotes a generic point of A over k.
Hence there is the largest ideal 2 in R such that S(2or)=0 with
some natural number r. Clearly, 2 contains no multiple factor.
Assume now some power = of =, belongs to R. Then 9 divides 'y
by definition. Conversely, for any » in Q, we have S(2")=0, that is,
kn(x?) Dkw(vx), and by induction, kn(r)=kr(a"") D kp(»/"x), which
shows that =% divides Q7. Hence, if we denote by b,,---,», all
the different prime factors of =% in R, we have Q=p,---p,. Remark
that if S(p) is diagonal for all p in R, this & can be characterized
as the largest ideal such that S(1q)=0.

On the other hand, for arbitrary ground field %, the algebra
J(A) has an involutorial anti-automorphism u—pu’ such that the
trace of M/(up’) is positive for any p#0 in J(A) (and for any
[ 5= characteristic of k) (ef. Weil [10]). Then, if an subfield R, of
(A) is invariant by u—>u’ as a whole, we have «u'=iu for each
isomorphism ¢ of R, into C and for uecR,, (cf. Morikawa [6]). Thus,
(R, is either a totally real field or a totally imaginary quadratic
extension of a totally real field.
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We now prove the following

PROPOSITION 8. Let A be defined over an algebraic number field
k' of finite degree. Let R, be a subfield of . /,(A), and put R=R, ~A(A),
K=R,. Assume that k&'=Fk}, that &' is absolutely normal, and con-
tains K'. Assume furthermore that, for any non-exceptional P’ in ¥/,
the endomorphism y exists and belongs to R. Denote by ay,- -, 0,
all the different isomorphisms among o, - -, o;, determined by A, R,
and .. Then, we have the following ideal decomposition:

(o) =Ny, k(o7 P+ - -0, 1P

in (R,, where o, are supposed to be extended to k'. Moreover [K:Q]=2r
and oy, +, 0, @01, ", 00, give all the 2r isomorphisms of K into C.
ProOOF. (Note that S(u) can be transformed simultaneously into
diagonal forms S,(p) in &' for all p in R, as ¥’ DK'".)
At first we assume that R is the principal order. The condition
S,(»)=0 mod. P’ for » in R is equivalent to w=0 mod. s; (") 2=1,
..,r. Then, as was seen above, the prime ideal p, in K divisible by
o7/(D") are all the prime divisors of ¢y in (R,. If 1" is of the first
degree, then ¢my -umrg —=p. If moreover 9 is unramified over Q, then
p,,- -+, b, are all different, hence (¢mrg)=p,-- b, and p=p,-- BSOS FRRRS (i
This shows that [K:Q]=2r and ay,--,0,, 0oy, ", 040, are all the

isomorphisms of K. Then, for general L', the relation fI [N, x(a7'P)
i=1

No (07 P)] = NP == (e1ry )(emmyy) Proves our proposition in this case.

In case of general order R, we take an ideal a of the principal
order, contained in R, and put B=2A. Then p— x* induces an
isomorphism on R, and maps the principal order of R, into .A(B).
B, R, / have the same system o;,---,0; as A, R,, « for ./ defined by
¢ p* =y, because non-zero characteristic roots of S(u) and of S(u*)
are equal. As 4 is defined over k, 7§ is just the my. for B. Then
the above result, applied to =, completes the proof.

Now assume that R, is of degree 29. Then r=j=g. Let k be
any field of definition of A and %' be an overfield of k satisfying the
condition of Prop. 8. For non-exceptional P in kp, my belongs to
the commutor of R,, hence to R, itself. Let %’ be an prime divisor
of § in ¥, and put N, . P'=%*, N, xPB=p'. Then, by Prop. 3, we
have (emry)’=(imrg) =N, (o7 P+ - 207 B )=(rp- - 7)Y, a8 2o H=
>YH*r;. Hence we have

COROLLARY 1. Assume that R, is of degree 2g9. Then, for non-
exceptional P in kn, with relative degree f over K*, we have

(o) =(ripe o7 '0)Y,
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where prime ideal b in K* is considered as an ideal in K'.
COROLLARY 2. Under the same assumption as in Cor. 1, all
conjugates of N, (o783 - +o;'3) have the same absolute values | N3 ['/*
for any B in k.
(This Cor. is evident, as we have (pemy)-(oopemy)="NP for any iso-
morphism p of K.)
Notations being as above, we make furthermore the assumption:
R, is a field of degree 2g, and there is no not-identical isomor-
(A) phism o of K over some imaginary subfield of it such that

o, Hr =) 0, H.
=1 1=1

Now, let b be a prime ideal of the first degree in K* such that
p—=Np is unramified in K’ and that a prime divisor P of p in
k. is non-exceptional. Then, as p=[l+p-I1= ', Tl is not
a real ideal. Moreover, for any o in G, not belonging to H, we
have o([1+ )5~ [1+'p. Indeed, if this is not the case, we should
have Slori'H* = S)+7'H*, hence >loHo=>l0H, and [[='p
should be real, a contradiction. This shows that .y generates K
for any k0. As 7} belongs to the centre of J(A) for some &,

we see that JO(A):RO. Thus, A, and a fortiori A, must be simple.
Moreover, for any not-identical automorphism o of K, we see that
SMooH 7o, H. This last assertion shows that, any automorphism
pu—> u* of R, is the identity if and only if S(x) and S(u*) have the
same characteristic roots. From this we see especially that &k, =k~ K*,
as kr Dk~ K* in general.

§4. Zeta functions.

In this § we assume that A is defined over an algebraic number
field k& of finite degree, and that 4, (A) contains a subfield R, ot
degree 29. We assume furthermore that & contains X' and k=kg,
where R=R, ~A(A).

At first, we assume that R is the principal order of R,. For an
ideal a in R, we call ““a division-point’’ on A a point a such that
pa=0 for all x in a.

The number of such points is just Na. We call a a division-point
b proper if it is no b division-point for any bza, that is, pb==vb
implies =y mod.a. Let b be fixed one proper a division-point.
Then all proper a division-points can be written as pb with x in R
prime to a, and conversely. KEspecially, for any isomorphism ¢ of
k®) over k, b°=pub with some u, in R, as k=Fk,. This shows that
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b° is rational over k(b), that is, k(b) is normal over k. Denote then
by & the Galois group of k(b) over k. Moreover, for any o in &,
the class of u,mod.a is determined uniquely by o, hence we denote
it by [o¢]. Notice that [s]=1 if and only if + is identity. As w,
is rational over k, s—[¢] is an isomorphism of & into the prime
residue class group mod.a in R, which shows that A(b) is abelian
over k. Therefore, k(b) is contained in some ‘‘Strahlklassenkorper ™’
mod. F' over %k, here F can be assumed to be a natural number
divisible by a.

Let now {® be a non-exceptional prime ideal in k4, prime to #,
and denote by oy the Frobenius automorphism of § in ®. Then we

have b°% = ;rqs‘b. Then Prop. 1, §1 shows that b°s==7yb, as the order
of b is prime to N¥. Put mg=my - my, for an ideal V==1,---F,
prime to any exceptional . If moreover ¥ is prime to /', denote
by os the Artin-simbol of B in ¢, Then the above result shows
b°® = 7rgb, that is, [os]>me. Hence, if 8 in & belongs to the ‘‘Strahl”’
mod. F, we have m,=11nod.a. But we have in general (irs)=
N, (a7 B+ -0,B), so especially for 8 in £k,

(1‘7"(@)):5(:8>Nk/1{(‘71_1/8' e ”1—18);

where £(3) is a unit in K. As |0e(8)|=1 for any ¢ in G by Cor. 2
of Prop. 3, &(8) must be a root of unity in K. Now, if B=1mod. F}
then 7g4=1mod.qa, so &(8)=1mod.a. This being true for any u,
we assume here that a is prime to twice the diseriminant of K. Then
we have ¢(8)=1 for B=1mod. F. Thus the symbol x(V)==imwy/|vrs]
is a ‘“ Grossencharakter” in k (ef. Hecke [4]). Similarly we see that
X°(B)=qurs/|oers| is also a ¢ Grossencharakter’’ for any o in G.

The ease where R is not the principal order can be treated just
as in the second half of the proof of Prop. 8. Then, as the charac-
teristic roots of M,(my) and of M/(=) are equal, we have the same
conclusion in this case also.

Now, let B’ be an abelian variety defined over the finite field «
of ¢g=p’ elements. Denote by «, the finite field of ¢" elements, and
by N, the number of rational points of A over «,. Then the zeta

function Z(x) of B is defined by dd log Z()—= SN, (ef. Weil [127]).
U n=1

Clearly, N, is the number of (7;—1) division-points. As =3—1 is
prime to m, we have v, (7mi—1)=1 for any n. Thus N,=u(wi—1)=
29
[l (w}—1), where w,,---,®,, are characteristic roots of M,(m;) for
=1

{7 p. From this we see, by a simple calculation, that
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Z(o) 11 I[ 1w, - m,0)] ",

V=0 iy

where i,,---,%, run over all combinations of 1,---, 2g.
Coming back to original A defined over %, let Zy(s) be the zeta

function of A (mod. P) over 75, with (NP)*=u. We define as usual
the zeta funection of A over & by

Sals)= Tal Zy(s),

where ' runs over all non-exceptional P’s for A. Then we have
proved,

THEOREM 1. The zela function Ca(8) of A has the form:

C\(8)~~¥’(83HO[ I L(S— ,x”.zv)]‘ v,
v Py
where L(s,x,...) are L-functions of k with *‘Grissencharaktere”
Xiyty =X x%, ¥ is a product of rational functions of q7° for a
ﬁmte number of q—=N¥q, and Tipyttty 0, run over all combinations of
1somorphisms of K.

We have similarly,

THEOREM 1'. Let C be a non-singular curve. Assume that C and
a jacobian wvariety J of C and a canonical mapping » of C into J
are defined over k, and that J, k satisfy the conditions of this 8.
Then the zeta function (. of C (defined similarly as & A) has the form:

ZA8)=V(s)C(s)s(s—1) ﬁ L(s—%, x,)7,

where L and @ are as in Theorem 1, and C(s) is the zeta function
of k.

Remark finally that, if in general there is an abelian variety B’
of characteristic zero, whose ring _/,(B) contains a field R, of degree
29 with a system ¢, 0,,---,0, then there is an A defined over an
algebraic number field of finite degree, whose ring A(A) contains a
field isomorphic to R, with the same system gy, +, 0, Indeed, B
can be defined over a finitely generated field «=Q,," -, ¥y,) with tran-
scendency degree d. Then, denote by V the locus of (Y1, -, Y,) over

Q. Taking ¥ as the set of all divisorial valuations of «, Prop. 1
shows that there is an abelian variety B’, with the same property
as B and defined over a field «’ of transcendency degree d—1. Re-
peating this process d times, we arrive at a disired A.
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§ 5. Lemmas from analytic theory.

In this §, we consider only the case of universal domain C.

Let K be a totally imaginary quadratic extension of a totally
real field K, of degree g, and let a4,- -, gy be a system of isomorphisms
of K, inducing all the g isomorphisms of K,. Then, o, commutes
with all automorphisms of the Galois closure of K, hence we see
from Lefschetz’s criterion (cf. Lefschetz [5]) that there is an abelian
variety A, whose ring A(A) contains a subfield R, isomorphic to K
with an isomorphism ¢, and oy,---,0, are exactly the system of iso-
morphisms of K determined by A, R, e

Now, let 'A have this property, and let £ be a period matrix
of A. Then we have S(u)2==2C(n) for p in J(A), where C(p) is a
rational integral matrix of degree 2g. Transforming S(x) into diagonal
form for u in R, we see that © can be isomorphically transformed
into the form (w;;), where w;;=o,0; and w,,- -+, ws, form a basis of
an ideal of «R). Therefore, if A, A’ have the above property with
the same system ay,- -+, d,, they must be isogeneous.

Finally, we remark the following facts: Let A be simple and
A(A)=R the principal order of the field A, (A) of degree 29. Assume
that there is an positive divisor X whose all elementary divisors are
1, ice. U(X)=1 (cf. Weil [11]). Then, for an ideal a of R, 2.A has
also a positive divior Y with (Y)=1 if and only if aa'=(a) and
is a totally positive number in K,. The proof is omitted here.

§ 6. Unramified extension k.

In the following &S 6, 7, we assume that A is defined over an
algebraic number field & of finite degree, and the condition (A) In
& 8 is satisfied. Hence A is simple. We assume furthermore that
R=.4(A) is the principal order of AN(A) and that &k contains K*.
This implies kx—=k. Let finally &’ be the Galois closure of k£ and &
the Galois group of k" over K*.

Let A, A’ satisfy these conditions with the same K—=(R=/R" and
the same system a,,- -+, 0, for these ¢ /. Then they are isogeneous
(§5), and we can write A'=%A with an ideal a in R (§2). Con-
versely, for any ideal b in R, A has the same property as A with
the same K and o,,-++,0,. Thus, for a given K and oy, -, 0,, there
are just £ non-isomorphic A,,---, A, 4 being the class number of K.

Let o be an automorphism of 4. If there is an automorphism
+ of K such that S)eo,H=30,Hr, then S%(u®)=a[ S(u)] has charac-
teristic roots {oawtm,- -+, oou} = {orTep, ", o,rep}.  Thus, if we define
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/by ru=du’, A, R, and A° R°, ./ have the same system oy,---,q,.
Hence o permutes the isomorphism-classes of A, -+, A, among them-
selves. The relation A°=~j,A (==denoting the isomorphism of abelian
varieties) determines the class of a uniquely, so we can write this
class as (o). Consider now + in &, then we have > oo H=>)0,H,
hence (s> can be defined. Moreover, as S°(u’)=a[S(x)] has the
same characteristic roots as S(u), hence as S(p*), and as u°— p* is
an automorphism of R,==. 4,(A), we see u*=p°. Let + be also in &
and put A*=nA. Then we have (A™)° = JA° = iwdeA = A ag 0°=0%,
This shows that ¢— (s) is a homomorphism of & into the ideal class
group of K. Denote by £k, the subfield of &' corresponding to the

kernel of this homomorphism. Then, any automorphism « of k& over
K* fixes all elements of k, if and only if A°>~A. Clearly k, is
contained in %, and is abelian over K*. If finally there is a positive
divisor X on A with /(X)--1, then there are just %’ abelian varieties
among A,,---,A,, having X, with {(X,)-=1, where &' denotes the
number of classes in K, whose norm to K, are the principal class
in the narrower sence. Remark that [(X°)-=1 if {(X)=1.

Let now b be a prime ideal of the first degree in K* such that
a prime divisor P of p in k is non-exceptional for A and Np is
unramifield in k,. Denote by o, the Frobenius automorphism of
pin k,/K*, and put c=+p---7 . Congidering mod., we have
k(Z") D k(27%), as all prime divisors of (vmp) in K divide c. As Ne=p?,
we have moreover k(Z")=k(1:%), that is, A%=~2:A. Now, A being
simple, we have J(A)==R. As we have A=A with ae {ap), this
shows that ce{s,). We have seen therefore that (r/'p---r7'b)’ is a
principal ideal in K if and only if o{ is the identity. Summing up,
we have,

THEOREM 2. Let K be a totally imaginary quadratic extension
of a totally real field K of degree g, and o,---,q, be a set of iso-
morphisms of K into C, inducing all the g tsomorphisms of K,. Assume
that oy,+++,0, satisfy the condition in (A). Then there are just h
non-tsomorphic abelian varieties A, ---, A,, defined over an algebraic
number field k of finite degree such that ¢ A(A)) ts the principal
order of K, and A,, JA(A)), ¢; have the system oy,---,0,, where +; are
isomorphisms: ¢ A(A)=K. Then, the field k, defined as above for
these A 1is the class field of K* for the ideal group I= {b|(+7 b+ 7;0)~1
m K}, and ¢« {o) gives an explicit form of Artin’s reciprocity law.

COROLLARY. DNotations and assumptions being the same as in the
theorem 2, if some A, has a positive devisor X, with I(X,)=1, then
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just B’ As have X, with I(X,)==1. If moreover each one of h' classes
in K, whose norms to K are the principal class in the narrower sense,
contains an ideal of the form = '0---7,'0 with b in K*, then iso-
morphism-classes of these h' A’s are conjugate to each other over K*.

§ 7. Field of division-points.

Let O be a non-exceptional prime ideal in k—=Fkr for A, and put
N, xR =p’. By the Cor. 1 of Prop. 8, 3, we have (emy) = (P e o P)
Moreover any conjugate of wry has absolute value (Np)'%. Now, take
a system of ideal numbers in K* (ef. Hecke (4]), and denote by

@, /§, %, -+, the ideal numbers representing ideals a,0,b,--- in K*.

Then, as in §3, we see that any conjugate of H +7'a has the absolute
i=1

N
value |Na|'*==|Na|"%,  Thus, 11 +7'a is determined up to a root of
-1

unity factor (not necessarily in K) by a only. This shows especially :
1’77-?13:7] [_i 'Ti_l;(;&fy
i=1

where » is a root of unity.
Denote by E the group of all roots of unity in R. For any point
b on A, we denote by Eb the 0-cycle >)(¢b) on A, and by A(Ed)

cels
the smallest field containing %, over which the cycle Eb is rational.

a being an ideal in R, let b be a proper a division-point on A.
Assume that Nb is prime to «a, and that A(Eb) (mod. ) is equal to

k(Eb), which is certainly the case for almost all . Let now f, be
the smallest exponent such that the congruence 5 [f} 7 '@ |To=1¢ mod. «a
i=1

holds, with some roots of unity 7, :€, the latter being in K. Denote
then F=l.c.m.[f, f,]. As mj leaves Eb invariant if and only if
mp=¢ mod. a, ek, and as b is a proper d division-point on ;&, the
above expression for .ry shows that F' is equal to the relative degree
of any prime divisor of ¥ in k(Eb) over K*. This implies that k(Eb)
is equal to the composite field of % and the class field k. over K*

for the ideal group I.={(8) |y 1 18=1& mod. «1; 5 a root of unity
and ¢cE). Evidently, this class field contains %,. Hence we have
proved

THEOREM 8. For proper a division-point b, we have k(Eb)=Fk™ k.
If especially A is defined over k, then we have k(Eb)=/Ka.
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On the Zeta-Function of an Elliptic Function Field
with Complex Multiplications

Max DEURING

Let us consider an algebraic curve of genus one

E o f(x, y)-=0
defined over an algebraic number field k. Take any prime divisor p
of & and consider the curve

Efy : f(@, )0
where f(z,y) denotes the residue class of f(x,y) modulo p. I shall
call £/p the reduction of £ modulo p. If the reduced curve E/p is
again a curve of genus one defined over the residue field %/v, I shall
say that F is regular for p. We know that E is regular for almost
all prime divisors of k. The zeta-function of the curve E is defined
by
(s, B, k)= I;[ L(s, E/D)

where (s, £/p) denotes the zeta-function of the curve K/ and the
product is taken over all prime divisors of & for which £ is regular.

In the case where E has complex multiplications, it ean be proved
that

( 1 ) C(é, E, k)l-: C(S, ]C)‘:(S——l, k) B
L<S_%‘; X ) L(s—1, X i)

where {(s, k) is the zeta-function of %, x, is a  Grossencharacter’’
of £ and L(s, x,) is the L-function defined by the character y e

Now a question arises, whether it is possible to change the
definition of the zeta-function in such a way that we get in the
representation (1) the L-function in the strict sense, namely, whose
character x is defined exactly modulo the conductor. In fact, when
the character is defined modulo the conductor, the functional equation
of L-series has a simple form; otherwise it is not so simple. Further-
more, it is an interesting problem to find out the meaning of prime
factors of the conductor of x for the given elliptic curve £. In
order to find this, it is necessary to take into account also the cor-
responding funection field K of rational functions on the curve £ and



48 M. DEURING

to define the zeta-funetion which is attached to the field K rather
than to the curve £. When we take the curve E modulo b, this
has the following meaning for the field K: to consider a certain
extension p* of b in K and to take the residue field K/p*. If FE is
regular for p, K/p* is again elliptic and is the function field of the
curve E/p. When such a curve FE exists for the given function
field K (that amounts to saying that such an extension p* of p exists),
I shall say that K is regular for p. There are infinitely many ways
to extend b in K; but it can be proved that if K is regular for p
there is only extension p* of p for which K/p* is elliptic.
Now I shall define the zeta-function of X by

(s, K)== ];31 (s, K, 0)

where the product is taken over all prime divisors b of k, (s, K, D)
is the zeta-function of K/p or the zeta-function of genus 0 over k/p
according as K is regular or is not regular for p. Defining (s, K)
in this way we have

C(s, k)Y(s—1,k)
L(s—3%, xx) L(s—%, xx)

where x, is a ‘‘ Grossencharacter’’ defined exactly modulo its con-
ductor and L(s, x,) is the L-function defined by the character yx .
It is clear that L(s, x ) differs from L(s,x,) only in a finite number
of factors in the Euler product. Moreover, the prime factors of the
conductor f of x, are those prime divisors of % for which K is not
regular. This is the main result.

I shall now go a little into the detail of the proof. To prove
that there exists either no or exactly one extension b* of b in K for
which K/p* is elliptic is rather easy in the case where b does not
divide 2 or 3. This is done by taking a suitable equation for K in
Weierstrass” form: y*—=42*—gax—g,. We can treat the case |3
similarly by taking an equation of the form #* -2’4+ ax’*+RBx+vy. If
b |2 the matter gets more complicated.

A question arises whether this is true for curves of higher genus,
but I shall not formulate any conjecture about this. I should not be
surprised if it is not true for curves of higher genus."

For our purpose it is necessary to consider two elliptic function
fields which are birationally equivalent in the algebraic closure of %
but not in k. Let K and K’ be two elliptic function fields defined

(s, K)=

1) Dr. E. Lamprecht informed me, that he found a proof for the corresponding
fact in the case of higher genus.
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over &k which are birationally equivalent over the algebraic closure
of k. Then we can represent X and K’ as follows:

K=k, y), y*=4%*—g.5~g,,
K'=k(', y), v*—-4a*—gx—9g",

where g., 9,, 95, 9; are numbers in k.
K and K’ have the same invariant

j —95.98 9; 96,93 9.’

9—27g; 95 —21g

For simplicity, we shall restrict ourselves to the case g.g, 7 0, namely
770, #2°.3°. Since K and K’ are birationally equivalent, there
exists an element ¢ of & such that ¢;--g.c*, g;==¢,c*. K and K’ are
birationally equivalent over k£ if and only if ¢ is the square of a
number in k. -

Now the following two theorems hold. .

THEOREM 1. Suppose that K is reqular for v. Then K' 1s regular
Sfor v of and only if v is unramified in k(1 ¢).

THEOREM 2. Suppose that K has complex multiplications. De-
noting by x and by x' respectively the Grossencharacter of k obtwined
from K and from K’', we have

x’(b)::< f) >;IX(D)

where <f > s the quadratic residue symbol in k.
)

Now supposing that K has complex multiplications, denote by E
the ring of endomorphisms of K and by 3 the quotient field of R;
we can regard X as-a subfield of k. To find out the meaning of the
prime factors of the conductor of x, we proceed as follows.

First we prove that we can find a function field K’, determined
by a certain prime divisor ¢, of 3, with the following properties:
1) if K is regular for p and )} q, then K’ is also regular for b; ii)
X 18 defined modulo an ideal m’-=q,0’ where o’ is an ideal having
only those prime divisors for which K is not regular. We can
take g, in infinitely many ways; so that we ean conclude that the
conductor f of x, is composed of only those prime divisors for which
K is not regular.

To prove that f must contain every prime divisors for which K
is not regular, we need the following theorem.

THEOREM 8. Let j be a singular invariant and k be an algebraic
number field containing j. For any prime divisor b of k, there exists
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an elliptic curve E having the invariant j, defined over k, which ts
regular for b.

In the case where b } 2, } 8, we take as E the curve defined by
an equation

(2) yr=4w’—3j(j—2°-8)'w—j(j—2°- 3¢

If we can take ¢ such that 4-=2°-3%%5—2°%-8%¢°2%=0 mod. p, then the
curve defined by (2) is regular for p. When p fj it suffices to put
¢=1. If p|j, the number j is divisible exactly by a power of b
whose exponent is a multiple of 8 and if p|j—2°-8°, the number
j—2°.8% is divisible by a power of p whose exponent is a multiple
of 2. Hence we can choose a number ¢ in % in such a way that
470 mod p; this proves the existence of the curve E, defined over
k, which is regular for b, in case pf2, ¥8. In case p|2 or p|3, the
matters are much more complicated. In these cases one has to
investigate the first two or three members in the p-adic expansion
of the number j.

Finally I call your attention to a problem which is closely con-
nected with the above. K, 3, R being as above, take any integral
ideal a of R and consider the subfield K" of K which is the composite
of all fields K* where « runs over all elements of a. Then it is well-
known that the invariant ;' of K° is a conjugate of the invariant j
of K over the rational number field. The problem is whether there
exists an isomorphism of K onto K® which maps 7 onto j. This is
in general not true. But we can prove that for any singular invariant
J there exists a function field K with the invariant j for which an
isomorphism of K onto K° exists. Such a funection field is deter-
mined by taking a suitable ¢ in the equation (2).

A detailed account has been given in three papers: Die Zeta-
funktion einer algebraischen Kurve vom Geschlechte Eing, Part 1,
Nachr. d. Akad. d. Wiss. Gottingen, 1953, p. 85, Part 2, ibid., 1955,
p. 13, Part 3, ibid., 1956, p. 37.

GOTTINGEN



Representatives of the Connected Component of
the Idéle Class Group

Emil ARTIN

André Weil has determined the structure of the connected com-
ponent of the group of idéle classes of a number field, by describing
the structure of the dual of this group. In view of the importance
of the connected component it is maybe not without interest to give
a direct deseription by exhibiting a system of representing ideles.

We shall use the following notations:

Let %© be an algebraic number field which has 7r, real infinite
primes and 7, complex infinite primes. As usual we put r=r,+7,—1.

Let ¢,, 2,,--+, ¢, be a given system of independent totally positive
units, not necessarily a system of fundamental units. By () we
denote the group of units generated by the ¢, and by d the index of
the group (¢) in the group of all units.

An idéle shall be denoted by «, its components by a, and we set:
P(a)::]’p[ |a,l,. Let J be the group of all ideles, C the group of idele
classes and P(a)==P(n), if the idéle class is represented by the idéle a.

By JJ, resp C, we mean the kernels of the maps P.

Let U be the subgroup of those idéles of J, which have local
units as components for every finite prime, and have a positive
component at every real infinite prime.

U is the group of those idéles of U which have component 1 at
every infinite prime.

U is the group of all ideéles of U which have component 1 at all
finite primes. It is the connected component of the group ./,.

If ae U, then a-=dd denotes the unique decomposition: @ e U,
de U. For the principal idéle ¢, we have therefore ¢,=£z,.

R denotes the additive reals and Z the additive group of ordinary

integers, endowed with the topology where the ideals of Z form a
fundamental system of neighborhoods of 0.

7 is the completion of Z. Z is isomorphic to the direct product
of all Z,, where Z, is the group of all p-adic integers.
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Set V:R@Z and imbed the integers m by the diagonal map.
Thus an element ¢ V is a pair 2=(s, ) with se R, x¢Z and the
integer m is identified with the pair (m, m).

The group U has a fundamental system of neighborhoods of 1
consisting of subgroups of finite index. This allows us to extend the
exponentiation a™ of an element a ¢ U by an integer m to an exponentia-
tion @ where z ¢ Z.

If s is a real number we mean by & the idéle in U which is
obtained from £, by raising each infinite component into the power s
(defining it in some fixed way but taking care that we obtain a real
number for a real infinite prime).

For any 2==(s,x) e V we define &}--£5¢7 and notice that for an
integer this exponentiation has the usual meaning.

Our first contention is the following: If

€621,  wmeZ
then x,=x,—--.=x,—-0. Since Z is Hausdorff it suffices to show that

the x; are arbitrarily close to 0 and this means in the topology of Z
that they are divisible by any given integer m. To prove this let y,
be an integer, approximating x, with the accuracy 2dm

Y, =z, (mod 2dm).

v (A K/ .
n==€,'e,*++-¢" i3 a unit and we have
- —Yi Yo .. -~y x /N
77 €11€40 "'€/‘—€11 1"'&:7.) !

This shows that 5 is a 2dm-th power of an element of the local field
ky, for every finite prime p. It is well known that this guarantees
that 7 is a dm-th power of an element « ¢ %. This « is a local unit
at every finite prime, hence of a unit of #. The element «" lies in the
group (2):

and from 7==a" we deduce that ¥, is divisible by m. Hence z,=y,=0
(mod m) and this is what we wanted to prove.

Let ¢,() be the idéle which has component ¢*=“ at the j-th com-
plex prime and all other components equal to 1. We contend next
that a product

(1) €V ER e (L) ult) - bt

with 4, ¢ V, ¢, ¢ R is a principal idéle « if and only if all 2; and all
t; are ordinary integers.
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Indeed, if « ¢ k& then we find:

S8 PR Y - 7
G B BT x, e/, A (85, @),

« 1s a unit at all finite primes hence a unit of k. Its d-th power a*
lies in (¢) and we can write

at=z"e) .. el y, € Z.
We obtain &' "' --.&" =1 and consequently dx,—=y,. This implies
that the integer y, is divisible by d and proves that each z, is an

— pzl ”

ordinary integer. Set 7 =¢,'€,%---¢€,”, we have w=7 so that in each
local field & and » are equal; even if we knew this only in one loeal
field we would already deduce «--3. Substituting this in (1) and

&
7

cancelling the terms €, we get

~8 .-:.’I’I ~To X

611522 .. gia-qu(tl). . '<}5r.~,(tr2):61 GRS
The independence of the absolute values of the ¢, at the infinite primes

allows us to conclude that s,—=wx,, that each 2, is an integer. We are
left with

¢1(t1> © '(f)r:(trﬂ) =1
which is only possible if each ¢; is an integer.
We take now a direct sum »V+7r,Z of r terms V and »., terms
Z and map this group by (1) into J,. We follow this map by the
canonical map J,—C, and have a continuous map of the group »V +r.Z
into C,. We have seen that the kernel of this map is rZ+4r.Z.
Factoring out this kernel we obtain a continuous isomorphism into:

(2) rViZ+r, R|IZ—>C,.

It is well known that the group V/Z is compact, connected and
infinitely and uniquely divisible. This group is called the solenoid.
Each circle R/Z is compact, connected and infinitely (but not uniquely)
divisible. The left side of (2) is compact, our map is bicontinuous.
The image D, is compact connected and infinitely divisible.

We contend now that every infinitely divisible idéle eclass @ of C,
belongs to D,. Since D), is closed it will be enough to show that a
lies in the closure of D,. ILet A be the class number of 4 and m any
integer. Since « is divisible we may write a=b0*". The class b" can be
represented be an idele which has unit components at all finite primes,
the class b*" therefore by an idéle ¢ of U. The class a is represented
by ¢*=t".¢". By suitable (highly divisible) choice of m we can bring
™ as close to 1 as we like. If we can prove that the class of t™=b
belongs to D, we will have shown the contention.
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This amounts to prove that every idéle » ¢ U has the form (1).

Since P(d)-=1 and since the absolute values of the ¢, at the infinite
primes are independent we can find real numbers s;, S, --+, s, such
that the idéle

S, a0, 0)

has at each prime the same absolute value as 9. At a real infinite
prime the components are positive, no adjustment is necessary. At
a complex prime we can use the idéle ¢,(¢;) to adjust the argument
of the complex number. Thus

Ap Lt

Cob=elte e () Dl ()
and this completes the proof.
We have also seen that the compact set I, contains the image of
the connected component U of the group J,. The group D, contains
therefore the connected component of C,; since D), is connected, it is

itself the connected component of C,. The map (1) gives the desired
explicit representation.

The connected component of C differs from D, merely by a line.
Its topological structure is therefore that of a direct product of r
solenoids, 7. circles and one real line.

PRINCETON UNIVERSITY



Number Theoretical Investigations on Groups
of Finite Order

Richard BRAUER

Consider a group G of finite order n. If K is a given field, we
can form the group algebra [’ of G with regard to K. This is an
associative algebra such that there exists a basis whose elements
form a group G, isomorphic with G under multiplication. If we
identify G, with G, then I’ consists of the elements
(1> szangs Cl_,,GK.

ges

If K is an algebraic number field, the elements v with integral a,
form an ‘order’ J in I'. Here, orders are defined by the following
properties. (I) J is a subring of ', 1e¢J. (II) If o is the ring of
integers in K, J is an o-module which can be generated finitely. (III)
The ring J does not belong to any proper subalgebra /. We may
then study the number theory in J, and in particular its relationship
with group theoretical properties of G. If n>1, J is not a maximal
order in /.

The main purpose of this talk is a discussion of a number of
conjectures and open problems. I know the great interest Japanese
mathematicians have taken as well in the theory of arithmetics of
algebras as in group theory, and perhaps I should say that I have
come here to ask for help, since I would like very much to know
the answers to my questions.

In order to formulate the conjectures, I have to give some defini-
tions and simple remarks. When I speak of an ideal of J, I shall
always mean a two-sided ideal which contains elements different from
0 of K. If §is a prime ideal of J, then $} ~K-=p is a prime ideal of
pand J OB 2DpJ. The prime ideals § dividing a fixed b are in one-
to-one correspondence with the prime ideals P* of J/bJ. Now, J/bJ
may be identified with the group algebra I'* of G formed over the
residue class field K*-=o/p. Again, the prime ideals £* of /™ are in
one-to-one correspondence with the irreducible revresentations F' of
I'* in the field K* such that ¥* is the kernel of F. FEach repre-
sentation F is obtained from a representation F, of G in K* by linear
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extension. If ¢(g) is the trace of Fi(g), g ¢ G, and if F is absolutely
irreducible, it is seen easily that the prime ideal ¥ of J corresponding
to P* consists of the elements (1) such that

S arp(gh)=0* (for all 2 ¢ G).

Here, af is the residue class of a, €0 (mod D).
We next write pJ as intersection of ideals V.=,

(2) DS =B ~AB,~ e ~Y,

such that ¥, and 9. are relatively prime for o5, ie., (B, B)=J.
If none of the ¥_ can be written as the intersection of two relatively
prime ideals, we call ¥, ¥,,---, ¥, the block ideals of vJ. They are
uniquely determined. Actually, pJ is the produet of the ¥, and any
two of the ¥. commute. Each prime ideal ¥ dividing pbJ divides
®,%B,- .-, and hence L divides exactly one of the ¥.. Let B. be the
set of the prime ideals ¥ dividing 3.. Replace now each prime ideal
0 by the corresponding modular representation F. Thus, the irre-
ducible modular representations F of G are distributed into disjoint
sets B,, B.,---, B, which are called the ‘blocks’ of representa-
tions.”

We shall assume that the algebraic number field K is a splitting
field of the semisimple algebra [', i.e., that the irreducible representa-
tions X, X.,--+, X, of G in K are absolutely irreducible. This as-
sumption is certainly satisfied, if K contains the n-th roots of unity.

If X, is an ordinary irreducible representation of G in K, we can
always find coordinate systems such that the coefficients of each X(9),
g€ G, are local integers for p. Then the residue class map carries
X, into a modular representation X;* of G in K*. Here, X;* is not
uniquely determined by X,. However, if F,, F.,---, F) are the different
modular irreducible representations of G in K*, then the multiplicity
d,; of F, as irreducible constituent of X is uniquely determined.
These d,; are the decomposition numbers. For each X all F'; actually
appearing in X;* belong to the same block B. We shall count X, as
a member of the block B in this case. Thus, the ordinary irreducible

representations X, X.,---, X, of G in K are also distributed into our
blocks B,, B.,---, B,.
Set
k
(3) Cij— >y dy;.

p=1

1) For a discussion of blocks, I may refer to the book by G. Azumaya and T.
Nakayama, ‘¢ Daistigaku I’ (Algebra II), Iwanami-Shoten, Tokyo (1954).
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If F; and F, belong to different blocks, then ¢,;~0. If ¢ and j range
over the indices for which F'; and F, belong to a fixed block B, the
numbers ¢,; represent the Cartan invariants of the algebra J/% ..

Finally, for each block B we define the ‘defect’ & of the block.
If p is the rational prime divisible by b, & is the largest integer such
that p° divides n/Dg X, for some X, ¢ B. Equivalently, we may say
that & is the largest integer such that p° divides some n/DgF'; with
F.eB.

I now come to the discussion of the conjectures mentioned
above.

(I). Given p and 8, consider all blocks B of defect & for all
finite groups G. The conjecture is that the decomposition numbers
d;, eorresponding to the block lie below a bound depending only on p
and 6. Because of (8), this is equivalent with the corresponding
statement concerning the Cartan invariants ¢;;» Our conjecture
means that for given p and given defect 8, representations X* cannot
split into too many irreducible modular constituents.

Let me discuss some known results in support of this conjecture.
If 8=0, the block consists of one X, and one F; and d,,=1, ¢,;=1.
The conjecture is still true for §-=1. A number of years ago, I studied
groups whose order is divisible only by the first power of a prime p.”
The results obtained for blocks of defect 1 in this case hold in general
for blocks of defect 1. We have here d,, <1, ¢;;=p. We may make
our conjecture more precise by asking: Is it true that

C;=p°

for the Cartan invariants of a block B of defect §?

In the case 6=1, we can describe exactly which systems d;,)
can occur and can give relations between the types which occur and
group theoretical properties of G. Tt would be highly desirable to
have analogous results for higher defects. For §=2, it is no longer
true that d,, <1.

There is a result weaker than the conjecture above which can be
proved for arbitrary defect. The Cartan invariants ¢;; belonging to
a block B of defect 8§ may be taken as the coefficients of a quadratic
form H which is positive definite. Then it can be shown that, for
given p and 8 and all finite groups G, the form H belongs to a finite
number of classes. This is proved by showing that if B consists of

2) R. Brauer, Investigations on group characters, Ann. of Math. 42 (1941), 936
958.
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« ordinary representations X; and 8 modular representations /), we
have®

(a) det (¢,)=p*  with  p=8+{B—1)(E—D).
(b) B < a for § > 0.
(e) a=p*’* for §>1.

For our present purposes, an inequality weaker than (¢) would suffice
which I have given a number of years ago. In the form stated here,
it was obtained by W. Feit and myself improving the inequality

a = }lp% which we had given recently.”

]

For 8§ <2, we have a <p°. Probably, this is true for all 6. There
is one way in which this inequality might be proved. The quadratic
form belonging to the matrix p°(c;;)”* has integral coefficients. If it
could be shown that B is the smallest integer 0 represented by
this form, this would yield the inequality a = p°. This method works
for §—=2 and in some special cases; however I feel somewhat doubtful
about the general case.

(I1). We have the problem of determining the number of blocks
of a fixed defect & for a given group G. Let me mention first that
this can be done at once when the characters of G are known. How-
ever, this is not what we want, since our aim is to obtain new pro-
perties of the group characters.

The situation is here opposite to that in (I), where small defects
could be handled while the case of large defects seems difficult. For
§>0, we have a satisfactory treatment of (II) in form of a reduction
to groups of smaller order.” However, the problem remains to charac-
terize the number of blocks of defect 0 of a group G by group theo-
retical properties. If a complete answer to the problem of the exact
number of representations in a block could be given, this would answer
our question. This process is feasible in the case g=0 (mod p), 970

3) The fact that det (c¢;;) is a power of p and the inequality in (b) are well known
facts in the theory of modular representations of finite groups. The inequality in (a)
is a consequence of the fact that 4 is the largest elementary divisor of (¢;;) and that
it appears with multiplicity 1.

Cf. R. Brauer, On the arithmetic in a group ring, Proc. Nat. Acad. Sci. 30 (1944),
109-114; M. Osima, Notes on blocks of group characters, Math. J. of Okayama Univ.
4 (1955), 175-188; R. Brauer, Zur Darstellungstheorie der Grappen endlicher Ordnung,
(to appear in Math. Zeitschr.).

4) Cf. R. Brauer, On the structure of groups of finite order, to appear in the
Proc. Internat. Congress of Math. Amsterdam 1954.

5) Cf. the papers quoted in 3).
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(mod p°). Let P be a Sylow-subgroup of G of order p and let N be
its normalizer. Then the number of blocks of defect 0 of G is k—Kk'
where % is the class number of G and %’ that of N. In particular,
k=Fk. 1 don’t know a direct proof for this inequality which does
not involve representation theory. Actually, it would be of interest
to know the mnecessary and sufficient conditions for % and %’ to be
equal.

(III). Suppose that p” is the exact power of p in g. By defini-
tion of the defect & of a block B, the degrees of the ordinary repre-
sentations in B are all divisible by p* ¢ while some of these degrees
are not divisible by p***'. The problem arises to determine when
degrees divisible by p*¢*' occur in a block B. Let us call this the
case of a raised degree.

In the work mentioned in (II), a subgroup D of G of order p° is
associated with a block B of defect 8. This is the defect group of
the block. Each conjugate group may be taken; apart from this, the
defect group D is uniquely determined. The simplest conjecture is
that raised degrees occur, if and only if I is abelian. If this con-
Jecture is true, it would furnish a generalization of the known fact
that no raised degrees are possible, if g0 (mod p*). The conjecture
is trivially true in the case of p-groups. In order to test the con-
jecture further, 1 have studied the ecase =2, g=0 (mod 8), g=%0
(mod 16) in which special methods are available. While the answer
1s not complete, I like to state the results obtained, since they are
helpful in studying special groups. As above, let P denote the Sylow
subgroup of G so that here P has order 8. Let B be a block of
defect 3; D-—=P. We then have the following cases.

(A) P the quaternion group of order 8.

CASE 1. The block consists of four characters of odd degrees z,, 2., 23, 2,
and three characters of even degress. We have an equation

€81+ ERo+ 425+ €,2,—=0
where each ¢, is +1 and where
€2 =E€x:=52,=¢2,+4 (mod 8).
The three even degrees are given by
2= (812 + %), 2= (8,2, +242y), 2= +(£,2, + £,2,).
Actually, these are special cases of relations available for the values

of the characters.
As an example, I mention the extended icosahedral group of order
120 which has a block B with the degrees
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2=8, 2,38, 2,75, z,==1, 2,26, 2,=2, 2,=2.

CASE 2. The block consists of four equal odd degrees z and one even

degree 22.
For instance, this case arises for G—=P, 2=1.

(B) P the dihedral group of order 8.

The block consists of four characters of odd degrees zi, 2., 25, 2,
and one of an even degree z; and we have equations

8121 + €2Z2: 53.23 + 6424225

with ¢,-==+1. For instance, for the alternating group A, we have
2, =1, 2,=9, 235, 2,-=5, 2,=10; for A;: 2,-=1, 2, =15, 2,==21, 2,7 3b,
2.—14; for the simple group of order 168: z, =1, 2,=T, =38, 2,3,
Z5:6.

(C) P abelian of type (2,2, 2).

CASE 1. B consists of eight odd degrees z,, 1=t=38 which satisfy
a relation >)¢ez,-0 with ¢;—==1.

Example. The simple group of order 504 where we have the degrees
1,7,7,7,7,9,9,9 in a block.

CASE 2. B consists of four characters of odd degrees zi, 2, 23, 24 and
one even degree z;, with an equation

22y = €121 + Eoy 1+ €923 + E4Ry, (g;==1).

(D) and (E) P abelian of type (4,2) or of type (8).
Here, B consists of eight equal odd degrees.

I do not know whether the ease 2 in (C) can occur. Apart from
this, our conjecture is true for the groups considered here.

In principle, one can obtain a finite number of similar types for
each given defect group by combining the known relations for charac-
ters. However, in general, the number of cases to be distinguished
will be large and it will not be clear which cases can actually occur.
Still it might be useful to work out further cases.

Our special results lead to the following question: If the charae-
ters of a finite group G are known, how much information about the
structure of the Sylow groups P can be obtained from this knowledge
of the characters? FEven if the conjecture (III) is not true in general,
it seems that results in this direction could be obtained.

(IV). In the case of defect 8-=1, the structure of the residue
class ring J/B of J modulo a block ideal ¥ can be described rather
completely. The question arises whether analogous results exist for
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higher defects. Still more generally, it may be possible to investigate
the rings J/¥", r=1. This would lead to a deeper study of the
number theory of J. In particular, from our point of view we would
be interested in connections with group theorectical properties.

There are some known facts concerning the structure of the
indecomposable components of the modular regular representation
which might be understood more clearly by such an investigation.
Also there would be hope that this work would lead to results in
connection with the questions asked above.

(V). I mention some questions concerning modular representa-
tions which have remained unanswered. The degrees of the ordinary
irreducible representations X, divide the order » of the group. The
corresponding fact is not true for the degrees f; of the modular irre-
ducible representations #,. However, it seems possible that at least
the power of the fixed prime p dividing f ; always divides n.

If I'* now denotes the group algebra of G with respect to an
arbitrary field K* of prime characteristic p, I'* is semi-simple, if and
only if p does not divide n. If p|n, the problem arises to determine
the radical N of /™. It is not very difficult to give necessary and
sufficient conditions that an element

Y= D169, ¢, € K*

oeld

of I'* belongs to V. Let p” denote the highest power of p for which
there exist elements of order p” in G. If A is an arbitrary element
and ¢ a p-regular element of G, let Z(h, t) denote the set of all ele-
ments g of G for which the p’-th powers of %¢g and of ¢ are conjugate
in ¢. Then necessary and sufficient conditions are given by the
equations in K*

¢,~0

0670, )
for all ~,t e G and ¢ p-regular.

However, in this form the equations are too complicated to be of
much value. For instance, except in the simplest cases, they cannot
be used to find the rank of the radical.® The question is whether it
1s possible to obtain simpler conditions which really enable us to study
the radical. There would be some interest in having formulas for the
ranks of the powers of N and for the exponent of N.

(VI). It must be emphasized that it is much easier to ask
questions than to answer them. In this connection, I mention the

6) Of course, if the irreducible representations of ( in K* have the degrees
fiy fop- -+, this rank is given by n—fi*—fo*—--- .
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two well known problems: (1) What are the necessary and sufficient
conditions that a square array A of complex numbers represents the
table of characters of a finite group G? (2) How much additional
information is required in order that G be uniquely determined?
The answer to these questions seems to be very difficult. Perhaps,
it may be worthwhile to study these questions for special types of
groups.

(VII). There are various applications of the results obtained to
group theoretical questions. However, these applications are still
rather scattered and for this reason, I shall not attempt to give a
summary. In many cases, we can get information about the charac-
ters of groups G of which only little is known. For instance, if the
order n is given and if G is assumed to be simple, it is often possible
to show that the known relations lead to contradictions and hence
that no simple group of that order » can exist. For other values of
n, the results enable us to find the characters and, on the basis of
this, determine G. I think that it is possible to determine all simple
groups up to some rather high order » in this manner, possibly with
the exception of a few values.

In concluding, I would like to mention one particular type of
problem. Given a group H of finite order and a set S of elements
h=-1 of H. What are the groups G which contain H as a subgroup
such that the centralizers of the elements Z ¢S in G lie in H ?  For
instance, we may take for .S the elements 51 of one or several Sylow
groups of H and then the theory of blocks gives us at least some
results concerning G. There are many ways in which our question
can be modified.

Perhaps, [ can describe the situation best by taking up a simple
example. Let H be the cyclic group of order 3 and let S be the set
consisting of a generating element of H. Here, the order n of G
must have the form n:=3f(f+1)m* where f and m are natural inte-
gers, f=1 (mod 8), m70 (mod 3). There exist infinitely many
groups G which satisfy the conditions. Each such G has a unique
maximal normal subgroup G,5*G and the group G/G, is simple and
satisfies the same conditions. Two simple groups G of this type are
known, the simple groups of order 60 (with f-==4 and m==1) and of
order 168 (with f-=7 and m==1). I don’t know whether any further
simple groups exist. In general, one can ask whether conditions of
this type can ever be satisfied by infinitely many simple groups.

HARVARD UNIVERSITY



Galois Groups Acting on the Multiplicative
Groups of Local Fields

Kenkichi IWASAWA

Let & be a finite extension of degree m over @,, the field of p-adic
numbers, and £ a finite tamely ramified Galois extension of k. Let
F be the inertia field of E/k and let [K:F |=e, [F:k]=f. The Galois
group G(E/F') is then a normal subgroup of the Galois group G(E/k),
and, G(E/F) and G(E/k)/G(E/F)=G(F[k) are both cyclic groups. In
the following, we assume that the group G{(K/k) contains an element
o of order f which induces the Frobenius automorphism on the unrami-
fied extension F/k. G{(F/k) is then generated by ¢ and a generator
+ of G(E/F), and the defining relations are given by

o’=1, =1, oro” =14

where ¢ is the number of elements in the residue class field of F£.
Let p* be the highest power of p dividing the order of any root of unity
in £ and let w be a primitive p*-th root of unity in £. We, then,
further assume that «>>=1 and that [ £:k(w)] is divisible by p, and
even by 4 when p--2. Under these assumptions, the action of the
Galois group G(E/k) on the multiplicative group U,, consisting of all
units ¢ in £ with a=1mod. = (w= a prime element in £), can be
explicitly described as follows.

We first notice that for any ¢ in U, and for any p-adic integer
a, a* is defined as usual and is again an element of U,. Therefore,
if we denote by O, the ring of p-adic integers and by R the group
ring of G(E/k) over O,, R can be considered as an operator domain
of U, in an obvious way, and for our purpose, it is sufficient to
determine the structure of the R-group U,. Then, as an E-group, U,
contains m+1 generators «,, @&, -+, ®, over K with the following
fundamental relations:

- L — K =
a5 ’=al"?, al~ " =, a; *=1.

Here, ¢ is a rational integer satisfying w°—=w’, { is a root of unity
in 0, uniquely determined by w*—=w®, and 2 and u are elements in
R defined by
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18 5 __(ffi P i1
A= " E C T /L*\Eog(f A.
e i=

Now, let @ be an algebraic closure of k and V the ramification
field of the extension 2/k, i.e. composite of all finite tamely ramified
extensions of % in £. Furthermore, let A be the maximal abelian
extension of V in 2. As the Galois group G(A/V) is an abelian
normal subgroup of the Galois group G(A/k) with the factor group
G(V k), the latter acts on G(A/V) in a natural way. Using the result
mentioned above, we can, then, explicitly give the action of G(V/k)

on G(A/V) as follows: let @, denote the factor group of the additive
group of Q, modulo the additive group of O, and C the set of all
continuous functions on the compact group G(V/k) (in its Krull to-

pology) with values in the discrete group @,. Cisthen an O,module
in an obvious way. But we can also make C a G(V/k)-module by
putting

(ph)(w)==N(p~ @),
for any p in G(V/k) and any h=h(e) in C. Let X be the direct sum
of @,, and m copies of the module C. For any p in G(V/k) and any
x-=(a, hyy- -+, k) in X, where a ¢ Q,, h.cC, we put

PIE:(b, Ph1, M) th,)’

with a suitable b in Qi, depending on p, @ and /;, of which precise
definition is, however, omitted here. X is thus also made a G(V/k)-
module. Now, the compact abelian group G(4/V) is, as a G(V/k)-
group, isomorphic with the character group of the discrete G(V/k)-
group X as defined above®.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

1) For the details, c.f. K. IwAsawa, On Galois groups of local fields: Trans.
Amer. Math. Soc., 80 (1955), pp. 448-469.



On the Generalized Principal Ideal Theorem

Tadao TANNAKA

In the following lines I am intending to give several remarks
concerning principal ideal problem, which I have obtained recently.
Ag is well known prinecipal ideal theorem, which asserts that every
ideal a in an algebraic field & becomes principal in its absolute class
field K, was first formulated by D. Hilbert, and was proved by
Ph. Furtwangler, employing Artin’s general law of reciprocity.
Hurtwangler’s result was in substance of group-theoretical nature.
S. Iyanaga generalized the arithmetical part of the principal ideal
theorem to the case of ‘“Strahl’’ class field, and his theorem runs as
follows:

If K is “Strahl”’ class field over %k, and {-—=f{(K/k), &-=~(K/k) its
conductor and modulus of genus respectively, then every ideal a of
k which is prime to f becomes principal in K and moreover it belongs
to the ‘“Strahl”” R, (:¥) modulo .

If K/k is (in general ramified) cyelic field, so the situation is
quite simple and we have the following formula by direet computa-
tion

(1)

where
a: ambigous class number,
h: absolute class number of %,
p: number of ramifying infinite spots of %,
ey:  exponent of ramification of p,
n: relative degree of K/k—(K:k),
€: units in £,
6: elements of K whose norm %(#) are units in k.

If we assume further that K is absolute class field, so we have
immediately a-=1 and this is a generalized form of principal ideal
theorem. From this fact we are naturally lead to the following con-
jecture: If K is the absolute class field over %, and  is an ambigous
ideal in the suitable sense, then % is a principal ideal in K, and
this is the main object of present investigation. I have introduced

W b2 lle,
n-(e : N(O))
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a concept of ambigousness in my paper [17. I called namely an

ideal A in K ambigous, if it satisfies the following conditions:

AAT L
G B e

Our main theorem, which I have obtained recently, is now

MAIN THEOREM 1. If K is the absolute class field over k, then
every ambigous ideal in K s principal .

Now we shall proceed to the proof of this theorem. Most essential
part of our proof is the following lemma, which was first proved by
Dr. Terada.

LEMMA. ‘Let K be the absolute class field over k and 2[k its
cyclic intermediate field, then every (in ordinary sense) ambigous 1deal
in Q becomes principal in K.

This lemma was conjectured by myself and proved to be true for
several groups of lower degrees. First complete proof resting on the
basis of Furtwingler’s method was, as was already mentioned, given
by Terada (see Bibliography [2]), after a rather complicated and
elaborate computation. Afterwards I was also able to give an alter-
native proof which depends upon Artin’s splitting group, and is much
simpler than that of Dr. Terada. We shall give a brief sketch of my
own proof of this lemma.

Let K be the (absolute) class field over k, K the second class

field, and G the Galois group G(K]Jk) of Kjk, then K belongs to the
commutator subgroup G’ of G, in the sense of Galois theory. If a

W (4),

prime ideal L in K is a divisor of g and » in K and k respectively, then

we have for the Frobenius automorphism - F Igé k J following relations
L.

< KZK >"j N (0)==p7

\

where parenthesis ( ) means Artin symbol, and

(K)o, o) T1S.5857
P ]

(S,-=1, S.: representatives for the factor group G/G'=1I', V: Ver-
lagerung).

Our lemma can then be stated as the following purely group-
theoretical theorem:

LEMMA. Let G be a metabelian group with commutator subgroup
G', H be an snvariant subgroup of G with the cyclic quotient group
G/H, and A an element of H with ASA™'S™' ¢ H’' (S being a genera-
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tor of G/H) then the ‘‘Verlagerung’’ V(A)=Vu,e(A)== ];[TATA‘1
from H to G is the wuit element of G. Thereby T runs over a fixed
representative system of H|G', and TA means the representative cor-
responding to the coset TAG'.

Now we introduce Artin’s splitting group ﬁ, which is generated
by l==G’ and the symbols A s71) (s ¢ I'==G/G") with I" as operator
domain which acts on 1l as

U°--S,US;! (UeG'==1)
As=AG' A D
(A,=1, S:S55s:"==Ds,z)s
We have then
A, =AAS mod 11
so that the splitting group Il is symbolically generated by 1l and
A=A, (1=1,2,--+)
where o,, a.,--- are generators of the group /I'. We have also
(UsS)US)UsSs) (USo)™
U U AT AL
—(UUL WU, U2 WA A).
From these facts we have the following results. Using the additive
manner of writing every element of G’ can be represented in the

form
S1A4,,.4,C,

where A, ,—~—A,,, A,,—0, 4,==1—8, (S, denotes the representative
of G/G' which corresponds to a fixed system of generators of I'=G/G’
or the elements of G’) and C, the elements which correspond to S,.

Now we can transform our lemma in the form:

LEMMA. Let M be an additive group (with the group algebra
Z[G] as operator domain) with the (not necessarily independent)
base elements C,, Cy,++-,C, and C and

Nici: A%L_J‘ Ag‘l,gd'rca—*" ﬁ]B;DSj (7’;1> 2) Tty n)’
J=1

r8=1

8[:.:JC,£—JL.C,
‘Ji::]'——Si) J:—l—S,
Mdi:O;

AD=— 4D, AR=0,

M:z‘:l +S,+SL2+ ¢ +S:i-l
re,: order of S; modulo G', so that )
(eizl, N,=1 if S, represents the element of U=G’ )
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If then
=R, 00 s —F, F=0)
we have
NN, 321 C.=0.

Key points of the proof of this lemma is firstly the identity

(2) PIVERNIE
and secondly an identity of the form
(8) ‘ N,---N,C,-= A8, (2--1,2,-++,n).

From the last identity we have
N1 © NnZ /'riCI::’4A§._‘1 I'igi
T:A Z E',S JrCs

so that our lemma is now reduced to
(4) A(4,C;— 1,C)=0.

Concerning the detail of the proof of the identities (2) (3) and
(4), we refer to my notes [3] and [4].

I have also obtained a genéralization of this lemma, to the case
of ““Strahl’’ class field, which contains Iyanaga’s theorem as a special
case. I have obtained namely the following theorem:

THEOREM 2. Let K be the “Strahl’ class field mod. {(K/k) over
k, and Q a eyclic intermediate field of Klk. Let also M-—{(K, £, k)
denote the ideal Max ({(K/Q), 3(R2/k)} in Q. If a is an tdeal of 2 m
ambigous class modulo M, then a lies in the “Strahl’ modulo F(K/k),
when considered as an ideal in K. Thereby F(K/k) denotes the modulus
of genus of K with respect to k.

After these preliminaries we shall now proceed to the PROOF OF
OUR MAIN THEOREM. For the sake of completeness we shall repeat our
assertion once more: Let K be the absolute class field over k, then if
sl[l—o:(AG)’ AT'AE

Ao

To make the situation of our proof clearer we shall prove our
theorem in a more general form.

THEOREM 8. If K is the “Strakl’ class field mod{ over k and

:.':50,1;:___81)0 we can ?;’)’[,fe’r tha,t S)[ ~ 1 ]LOldS.

@1 . G—'*<A6>, AZ ‘4’; :—:;g-;mT»r:aT’GEl (HIOd f)

then D is a principal ideal.
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Let o, (i-=1, 2,---, n) be the basis of the Galois group G(K/k) and
put Ai:AC,L, theh we have
(5) A'=e,=1 (modf), A'/=Aj"

From the norm theorem concerning everywhere splitting algebra,
we have

(6) £, =N, (A}
where A/ is an element of the field L, belonging to the group
{o} X e 0o X {ai_]} X {IT.H_l} X+ X {a,}.
It then follows from the principal genus theorem
Ai=B"  (mod {/D(L,))
so that if we write A, instead of A//B' ° we have
(7) ai:NLi<Az{>’ “Ai=1 (mod {/D(L,)).

From ei:N,‘i(A,ﬁ):A;?”' we have by classical norm theorem of
Hilbert

(8) A=AAY, Al e K.

Now for the principal ideal (A;) in L, we have

(9) N, (AD)=(1)

so that it holds again by Hilbert’s norm theorem concerning ideals
(10) (AN=%, A, ideal in L,

and |

(11) A= (AY =T (AT

(A= T120,).

As we can prove easily {/D(L,)>{(K, L,, k), we have by the author’s
principal ideal theorem %, € R () (= “Strahl”” mod % in K). (Thereby
we should notice that every factor of 9, can be so chosen that it is
unramified in K, though it is not proved here in detail).
We have by further computations
W, = (A", A’=1 (mod %),
A=(A)=11 (4", A--1] A]"=1 (mod7),
(AD==U=(4)™,
D= (A)M(A".
We can now start from D/(A) instead of D, because A/ i satisfy
the conditions

ArY=1 (mod®)  (by A,=AIAY™Y)
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and
(A7) =(A4]")",
(A =1,

B,=B,, — A/* ean then be extended to an one-dimensional Galois
cocycle, so that it holds by Speiser-Noether’s norm theorem

A,,{,/A'::B i,,
and
ibx 3 Ay
() =@,

D=(AB) (c: k-ideal).

By Iyanaga’s general principal ideal theorem ¢ belongs to the
“Strahl’’ modulo &, so we have D~1 as was desired.

Now we shall return once more to the case of absolute class field.

By the correspondence

D (ambigous) —¢,,.

we obtain an isomorphism from the group of ambigous classes onto
the subgroup H"*(G, E) of H*(G, E) (2-dimensional cohomology group
of G with units group E as coefficients), which consists of cohomology
classes of H?*(G, E) containing cocycles with ¢,.=¢€., That this
isomorphism is ‘““onto’’ follows from norm theorem concerning every-
where splitting algebra. Thus from our MAIN THEOREM, we can
deduce the following theorem, which would be in itself of some
interest.

THEOREM 4. If K s absolute class field over k, then we have
H”(G, E)=1.

»

TOHOKU UNIVERSITY
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A Conjecture on the Cohomology of Algebraic Number
Fields and the Proof of its Special Case

Tadasi NAKAYAMA

Let & be an algebraic number field and K be its Galois extension
with Galois group G. There exists then a certain canonical (or funda-
mental) 2-cohomology class a of G in the idéle-class group Cxr of K
(Weil [10], Nakayama [7 ], Hochschild-Nakayama ! 8 ]), which generates
the 2-cohomology group H*G, Cx) of G in C, and whose properties
practically cover the class field theory. By means of this canonical
2-cohomology class a Tate’s fundamental theorem reduces the problem
of determining cohomology groups of G in Ck, in various dimensions,
to a purely algebraic problem (Tate [8], Artin-Tate [1], Chevalley
[2]); for every n =0 the cup multiplication of « gives an isomorphism
of H" G, Z) and H"(G, Cy), where Z is the module of rational inte-
gers (operated by G trivially) and where the cup product is with
respect to the natural pairing of Z and C,. Similar phenomena
prevail for the idéle group J, and the group K* of non-zero elements
of K too, instead of the idele-class group Cy, with Z replaced by some
other modules (which are however not purely algebraic) (Tate [9]).

Now, in the present paper, we wish to study the Galois coho-
mology of algebraic number fields in an a little more general setting.
Thus, in view of the fact that (matrix) representations of the Galois
group are quite important for the structure of the Galois extension of
an algebraic number field, we consider the (representation-) module M
of a representation of the Galois group G in the ring Z of rational
integers, and construect the tensor product MX)C. of M and C,, over
Z, which may be regarded as a G-module in natural way. So we
consider the cohomology of G is MK Cy. If we turn to the contra-
variant representation, our problem is equivalent to to consider the
cohomology groups of G in the G-module Hom (M, Cr) of Z-homo-
morphisms of a representation-module M of G over Z into Cr. Now,
in view of various indications, the author is led to dare to conjecture®
the following: 7The cup multiplication of the canonical 2-cohomology

1) Cf. the end of the paper.
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class «, in the sense of the natural pairing of M and C, to MK Cx,
gives an 1somorphism

(1) NG, MRCx) = H* (G, M)

However, the author has been able to confirm this only in the speecial
case when M belongs to an ‘‘ essentially abelian’ (integral) representa-
tion of G. The last is defined as follows: If G=1, any representation
of G in Z is called essentially abelian. Assume G =~1 and assume that
the notion of essentially abelian representation is defined for its proper
subgroups. Then a representation M(s) (¢ G) of G in Z is called
essentially abelian, when and only when it is equivalent, in Z, to a
direct component of a representation of form

(Ml(a) ‘ 0 )
© o Mo)

where each M,(s) is either an abelian representation of G or a direct
component of a representation of G' induced, in the sense of Frobenius,
by an essentially abelian representation of a proper subgroup of G.
Except perhaps a methodological, the author does not claim any parti-
cular importance on this special type of integral representations.

In spite of this restriction on the type of representation, our
result gives a quite natural generalization of the result of Artin-Tate.
However, since again the canonical 2-class « is the only essentially
arithmetic factor in it, else being rather algebraic, it is doubtful that
it will give much new for the arithmetic of Galois extensions of
algebraic number fields. Nevertheless, it seems true that, besides its
own interest, it gives something in the way of applications too; for
instance, it gives us some information about the behaviour of systems
(vectors, e.g.) of idele-classes under the operation of Galois group.

In terms of the groups of Tate [9] we (make similar conjectures
and) obtain similar results for the cohomology in M) Jx and MG K*.

One difficulty in our problem seems to lie in that little is known
about group representations in Z. Thus the author is led to try to
make transition to representations in (rational) /-adic integers Z,, {
running over rational primes, in taking advantage of the fact that
the connected component of 1 of the ideéle-class group Cx has com-
paratively simpler cohomological properties as is shown in Weil [10].
Now, in order to give a sketeh of this process, it is perhaps con-
venient, and of some interest, to start with the case of (generalized)
Galois cohomology of finite fields. Thus let & be, meantime, a finite
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Jield and K be its Galois (cyclic) extension with Galois group G. Here
we consider the group K* of non-zero elements of K, and we contend
that

(2) HYG, MO K*)-=0  (n=0)

for any representation module M of G over Z, which is naturally a
far-going generalization of a theorem of Wedderburn. To prove this,
we first replace K*, as we are allowed, by a finite G-module A
satisfying

(3) H"(G, A)=0 (n=0).

Further, by means of the fundamental exact sequences (for dimen-
sions 0, 1, say) for the cohomology of subgroups and factor groups,
Sylow group argument in cohomology, Shapiro’s theorem, and a lemma
(Osima-Mackey) on the tensor product of induced modules, among
others, we may reduce the problem to the case where G is a cycelie
group of prime order I, A is of order a power of [, and M belongs
to a faithful irreducible representation of G in Z. Now, if we pass
from Z to Z, there is only one such representation, given by the
cyclotomie polynomial of /-th roots of 1;

0 —1
(4) a generator o— e _Ml
0O 1 —1,

The transition from Z to Z, is indeed allowed because of the [-group
property of A; more precisely ME A--M, X, A, where M, is obtained
from M by coefficient extension from Z to Z, and ), means tensor
product over Z,. Now, the representation module M over Z of
(4) is the dimension shifter of Chevalley [2] and Tate [8]. So,
H"G, MK A)=H"""(G, A) whence-=0. (This simplified argument,
which has replaced the writer’s original somewhat complicated compu-
tation, is due to a remark by J.-P. Serre).

In this proof we may replace our finite G-module A with a
totally disconnected compact G-module A, satisfying (8), since Z, may
be considered as an operator ring of the ‘‘{-component’’ of such a
module. Our way of reduction allows us also to replace the cyclic G
by any finite group provided that its representation belonging to M is
‘““essentially abelian’’ as defined above. These observations we want
to apply on returning to the case of algebraic number field %, to
some factor-module of the Artin splitting module A of the canonical
2-class a for KJ/k. It is shown by Tate [8] that A satisfies (3).
However, since it is not totally disconnected, nor compact, we consider
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instead the splitting module A* of the natural image a* of « in the
factor-group Cx/Dx of Cx with respect to its connected component
Dy of 1. Suppose first that the degree [ K:k](--[G]) is odd. Then
the cohomology of D is trivial; indeed, if D) denotes the natural
image in Cx of the compact part of the connected component of 1 in
Jx, then Dy/DY is of unique division while D is a regular (G-)module

(Weil [10]). It follows that also A* satisfies (3). Let A be the
completion (compactification) of A*. As A/A* is seen to be of unique
division, A too satisfies (3). To A we can apply the above considera-

tion, to find H"(G, M) A)=0 (n=0) provided that M belongs to an
essentially abelian representation. Because of the cited properties of

AJA*, DDy, Di, this entails further
(5) HYG, MQA)=0  (n=0).

Now that this is secured, we can show by an argument quite similar
to that of Tate [8] that (1) is the case (under the same assumption
on M) and the isomorphism may indeed be obtained by the cup multi-
plication of a.

Let us next turn to the general case where [K (k=[G ] 1is,
perhaps, even. Then D', is no more cohomologically trivial, but is a
direct sum of tori which are in correspondence to complex valuations
of K (Weil [10]). Here the tori corresponding to complex valuations
of K which are prolongation of a real valuation of %k are to be studied,
and naturally only the 2-components of cohomology groups are to be

investigated. Although now H"(G, M ) A)=0 does not hold, in general,
we are able to prove, by virtue of the above concrete structure
of D), and by means of some rather troublesome arguments on
induced modules, cup multiplication and cohomology sequences, that
(5) remains valid, which entails again the isomorphism (1) by the
cup multiplication of «, all under the same assumption on M. The
author regrets that this proof to the case of even [K:k] must be
left here, since it is rather lengthy. He regrets also to have to leave
the case of MRJ,, MQK*, but wants to note that it depends,
naturally, on the result of Tate 197 strongly and its proof includes
much of the reproduction of his argument, as the author presumes
from the brief indication in [9], in a somewhat generalized setting.

The above proof to a special case of our conjecture makes much
use of the fact that the connected component Dy of 1 in Cx can be
‘‘handled’’. The argument may be applied to other sort of ‘‘class
formation’’, in the sense of Artin, if the situation is similar. Need-
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less to say that it can be applied to the ease when the belonging G-
module is a totally diseonnected compaet group; thus, for instance,
to the case of Kummer extension as has been studied in Kawada [5],
to the case of class field theory of function fields (of one variable)
over a finite field, and, with the help of completion argument, to
local class field theory, the case which ought to have been mentioned
earlier. Unfortunately it seems to fail to be applied to the case of
unramified extensions of classical function fields as in Kawada-Tate
[6]; however it is hoped to be able to approach this case since we
have here the concrete structure of ‘‘connected part’’.

In spite of the powerlessness of his above method, the author is
tempted to dare to conjecture that the theorem is true for any class
formation, even without any restriction on M either. This would be
confirmed if (5) be true (with any M) for any G-module A4 satisfying
(3). In particular, he is tempted to conjecture that (2) is true for
any field K which splits no non-commutative (not necessarily central)
division algebra over the invariant field of G (ef. Hochschild-Naka-
vama [3], Hochschild-Serre [4]). However, instead of going too far
in conjecturing, the author has to, as he wishes to, try to reduce
his ignorance and powerlessness in representation theory, cohomology
and arithmetic, to find his way.

Addendum. By virtue of a remark of J. Tate it has become
possible to prove (5) for any G-module A satisfying (3) and for a
module M of essentially abelian representation, to remove the con-
nected component consideration in our proof, and thus to extend the
result to general class formations (including the case of unramified
extensions of classical function fields in Kawada-Tate [6]) (under the
same restriction on M however).

Added in proof: The author has recently been able to confirm
the conjecture, in its strongest form and indeed for any [G ]-torsion
free G-module M.

THE INSTITUTE FOR ADVANCED STUDY AND
NAGOYA UNIVERSITY
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Density in a Family of Abelian Extensions

Tomio KUBOTA

Let © be a finitely algebraic number field and 9 be a finite
abelian group of order n. Let ¥ be a family of abelian extensions
over £ whose Galois groups are all isomorphic to 2. Denote by £y
the conductor of K¢ over £, and, for an ideal a of @, denote by
Na the absolute norm from £ of a. Then the density in & of a
subfamily &, of ¥ is defined by

1

DI

(1) w(?}o; 8); lim RER‘()NfKV.
s>1, s>1 Z 1

Keffo;(

In §8, §4 and §6, this density will be studied in connection with
the arithmetical properties of field extensions.

Denote now by & the family of all abelian extensions K over
such that the Galois group of K/ is isomorphic to 9. Then we see that

the series 3] 1 ~ converges and therefore defines an analytic function
£er Nfy

A(s) for s=>1. A property of A(s) will be derived in §5.

NOTATIONS. Together with defined above, the following notations
will hold the same meanings henceforward.

n,: exponent of A, i.e., the L.C.M. of the orders of elements
of .,

I: the idele group of 9.

G, : the Galois group of the full abelian extension over Q.

«: (continuous) homomorphism of G, into (discrete) 2. Under
the reciprocity law of class field theory, we can also consider « to be
a mapping of I into .

f«: conductor of the idéle group determined as the kernel of «.

p: prime ideal of 2.

U: the group of elements of I whose components are all units.

2,.: field obtained by adjunction to £ of a primitive m-th root
of unity.

For every number field L, L* will stand for the multiplicative
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group of non zero elements of L or the group of principal ideles of
L, and L*™ will stand for the group of all m-th powers of elements
of L*.

If @ is an integer and p is a prime number, then we shall mean
by p’||@ that we have simultaneously p‘|a and p**' | «. This notation
will similarly be applied to ideals, while, in the following, we shall
exclusively make use of integral ideals.

§1. Preliminaries.

LEMMA 1. (Hasse) Let 1%1* > 2) be a power of a prime number [
and let Py be the field obtained by adjunction, to the rational number
field, of a primaitive I-th root of unity. Then an element « of L% with
we Q% is in general, already in 2*". Only in the case where 1-=2
and Q~Py is the largest real subfield of P..(u"v), the group of all
e Q% with «c Q% is generated by 2% and an element 2}, of £
such that

9V -1

[ Ao A<y,

)qf,v e f()?" _ Aoy - (::wﬂ‘ C.;LI) + 2,
IMZZ;NI JTEER

where Cq s determined by Spo-—-1 and by Coprr=-Cons

PrROOF. See Hasse [4], §1.

For every abelian group A, we shall denote by A" the group of
all m-th powers of elements of A. The assertions of following three
lemmas are elementary properties of finitie abelian groups.

LEMMA 2. Let A and C be finite abelian groups, B a subgroup
of A and e, the exponent of C. Then, in order that a homomorphism
' of B into C can be extended to a homomorphism ¢ of A into C,
it is necessary and sufficient that we have ¢'(A*~B)CC? for every
d|c,.

PrOOF. Let «,,---, a, be a basis of A modulo B and let m,; be the
order of ¢, modulo B. Assume that the condition is satisfied. Then,
we can choose o, € C such that ¢'(a?)-—c. Set ¢pla)-—=ait---a7rp'(h)
for a==al---arbc A (beB, 0=z, <m,. Then ¢ is well-defined on
A and extends ¢’'. The necessity is obvious.

LEMMA 8. Let A and C be finite abelian groups, C' be @ subgroup
of C and ¢,, ¢, be exponents of C, C' respectively. For every power
I">1 of a prime number l|¢), denote by p(l, r) the highest power of
[ both with ol,r)|e, and with C'"CC*"™,  Furthermore, let b be an
element of A. Then, in order that the set of images of b by all
homomorphisms of A into C contains C', it is necessary and suflicient
that we have b & A¥C" for every U with lp(l, r)|c,.
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PROOF. Let N, N’ be such that (||c,, 7 "lle; respectively.
Suppose that the condition is satisfied. Then we have b ¢ AV for
every I’ with r < N’, which shows that the order of b modulo A% is
divisible by ¢, whence the order of b itself is divisible by ¢;. There-
fore it gives a homomorphism ¢’ into C of the cyclic group generated
by b such that ¢'(b) is an arbitrary element of C’. Now, consider
a power b" of b. Then, for every d|¢,, we see that »’'(b™) belongs
to C¢ whenever b” belongs to A‘. In fact, if {"||m and r<N’, then
¢, is divisible by Ilp(l, r) and therefore we have b" ¢ Al while we
have ¢@'(b™)eC**™. If IV'|m, then we have obviously 4'(b") ¢ C*. On
the other hand, for every prime factor [, of ¢, which does not divide
¢, ¢®™) belongs to Co", where [,*°||¢,. Thus, by lemma 2, ¢’ can
be extended to a homomorphism ¢ of A into C. Conversely, suppose
that the condition is not satisfied. Then it gives an [” such that
lpl, r)|e,, b e A", Moreover, we can choose an element ¢’ of C"
with ¢ e C#*™ &,  Therefore it follows from lemma 2 that
there is no homomorphism ¢ of A into C with ¢(b)-=¢’, which
completes the proof.

LEMMA 4. Let A, C be finite abelian groups and c, be the exponent
of C. For every prime number l|c,, denote by C, the group of all
elements ¢ of C with ¢'--1, and, for every d|c,, let there be gien a
subgroup A of A with following properties: a) APTDAY b)) of
d'|d, then A >’DAY. ¢) if (d,d)=1, then AP A~AC -2 AT d)
for every power l'|c,, AU DA s of the type (I, 1,--+). Then, N
being such that 1¥||c,, the number g of all homomorphisms ¢ of A
wmto C s [] f] (AP Ay times the number gy of all ¢ satisfying

Heg i1 .
P(AYCTC for every d|c,, where w, is the rank of C"A~C(0:27:=N).
ProoF. Under condition c¢), it is sufficient to prove the case
where ¢,--[¥ is a power of a prime number. Now, we have
N-1 i T+ I\l N-L by (it Lyyut
g= 14" A"H g T (A AT
=0 =0
Therefore we have
g vat (A AUy o (A AT A ADY
g~ cave aveoy T IE G arysas ave oy

v-1 (A(1£+1) . AZ.L'Jrl)ui N (A((i): Aliy‘i—%
== 1 (A(/z): 11”)”’ *;[7];- (A(zi): Ali)ui ’
which is to be proved.
Let a be an ideal of £ and m be a natural number. Then we

denote by U, the group of all u < U such that the p-component u,=1
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(mod )°) for every p°|la (no condition for every bfa). Furthermore
we set QU ~Q%, Q0= 1" ~2* and (Q*1" ~U)=- Vi, where
t, 13 a natural homomorphism of U into V,— V. P==U/U,.

LEMMA 5. V™V r=0m /o,

PrROOF. The isomorphism is given by Q93 «a < 1 (u), where a--ua
with ue¢U, acl. For, this correspondence is obviously ‘‘onto’’
and multiplicative. And from 1-==ua" follows u ¢ U"” and therefore
((u) e V. Conversely, from «(u)-=1 follows ue U, and therefore
a € UJ" ~2% =0, which proves the lemma.

LEMMA 6. If m, m' are integers, then we have V™ C V™,
If further (m, m')-=1 then we have V™ A~V mo-= Y mm?,

PROOF. The first assertion follows at once from the definition.
To prove the second, it is sufficient to show that V™~V C Vi"”.
Let v—taa™)=e(a’a’™) be an arbitrary element of V™A~V
Choose integers z, y such that max+m'y--1. Then (aa”)""(«'a'™ )"
o (ala™)" 18 also an element of U and we have v--
tolaa™)" (o™ )" = 1 (" P (@ a Yy € VO,

Let ¢, be the number of all homomorphisms of V. into A and
let », be the number of all homomorphisms of I/Q*U, into A. n, I8
then the number of all « with f,|a.

LEMMA 7 There are positive constants vy,, v. depending only on
2 and on A such that v,c. < n, < y.cq.

ProOOF. It follows from lemma 2 that a homomorphism « of
U/U, into ¥ ig extended to a homomorphism « of L/2*U, into U if
and only if «'(V{¥) iz contained in A’ for every d|n,. But, by lernma
5, V&IV is a factor group of /%', Since the latter group is
independent of a, our lemma is proved.

n

. . - c .
Now we congider the series ) N“ , where the sum is extended
a af

over all ideals a of . Since (a, b)--1 implies ¢, -c,c, and since c¢m

is bounded for all powers of prime ideals, we see that ]‘I( ! I\(I?Um )
P oLm=0 p’“"'

converges (absolutely) for every s>1 and therefore is equal to

>) 1\?‘11\_ . 1t follows from this fact that every infinite series or product
Q (1

observed in the following converges absolutely for s>1.
Let fi(s), fu(s) be functions defined for s>1. Then we mean by
Fils)~fus) that y-— lim ; 1ES> exists and is different from 0. If
s>Ls>1 fo(s
especially - -1, then we write fi(s)= f.u(s). Moreover, we mean
lim fi(s

m (Sz =0 by fi(s)<fus). For example, if M is a set of prime
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ideals of @, then we have

2 > Cpm ;‘ - Cy W\ .

(2) I e (1 )

If further m,’s are integers defined and bounded for all p e M, then
we have

, | 1 \™
(3) (1 o L (1 g )

veM

§2. Fundamental lemmas.

Two fundamental lemmas will be deduced in this paragraph
from the results of §1 and from Tschebotareff’s density theorem.

LEMMA 8. Let m be an ideal of £ and let b be an idele of £
with b-component 1 for every pym. Let ) be an ideal of £ divisible
only by powers of prime factors tn 2 of 2 and such that (O, m)=1,
and let W' be the subgroup of W formed by all «(b)e N such that
(fu, M)==1 and that, for every prime factor | in £ of 2, f. is not
dwvisible by any higher power of | than ). Furthermore, a betng an
vdeal of Q weth (a, 2m)=1, let M be the set of all a such that the set
of all x(b) with f,|ha does not coincide with W. Then we have

c SN
S Goos G
cem Na* + Na

PrOOF. let n, be the exponent of . Then lemma 8 shows
that we have a ¢ M if and only if we have

(4) bH' € !QXUIJ(II.'{)(Z,T)

for some " with lp(l, r)|n,, where p(l, r) is defined for ¥, U’ instead
of C, C' in lemma 3. Now, (4) is equivalent with

(5) b"Upl™" ~ Q2%=~¢ (¢: the empty set).

If b"Ugd™ ™ ~Q* is empty, then there is no a with (5). If not,
then b"Upl™"” ~ Q% is a coset of £* modulo 2{""" and therefore
we can choose a system {f3},, of representatives of b"Uyl'"""” ~ Q%,
modulo £**“"” and (5) is equivalent with that

( 6 ) g e berUaI;P(z,,m

is satisfied for some B¢ {8},,. Since B is in b"U,**" and since
we have (m, ha)-=1, (6) is again equivalent with that

(7 ) /8 € Uallpfl./r)

is satisfied for some B¢ {8},,. Now, it follows from the assumption



82 T. KUuBOTA

in the theorem that there is at least one a such that the set of all
«(b) with f,|ba coincides with %’. Since (7) is not satisfied for such
a, every S is not an lp(l, r)-th power in . Therefore, by lemma 1,
B is, in general, not an lp(l, )-th power in ,q,,. Only in some
special cases of (p(l, ry=2">2, 8 may be one of Ai,. Since, however
A u<v) is a 2-th power residue of every ideal a with (g, 2)=1, B
cannot be any 1%, with u<v. Thus in every case we can conclude
that, if (7) holds, then a cannot be divisible by any prime ideal b with
following properties: a) p is prime to n. b) in the case where
lp(l, r)==2" and B==2% 3% with 8’ € % p is not decomposed in 20/ B),
while, in any other case, b is completely decomposed in £,,..,, but is
not completely decomposed in 2y (*"7V'B). Let Fi.; be the set
of all v with a) and b), and let M, , , be the set of all a such that
pfa for every pe By, ;. Then, by (2), we have following relations:
Ca — Ca
acem Na’ =T A€W, , 4 Nas

o~ H (1+ Cpx),

aed, ., Na' PEI, o Np
o~ )
za} Na* rvl Np*

On the other hand, Tschebotareff’s theorem implies that we have

Cy Cy
MI;ZIW,B(1+ Np* ><I}<\1+ Np* >’
which completes the proof.

LEMMA 9. Let m, 1 be ideals of  such that (n, 2m)=1 and let b
be an ideal of @ divisible only by powers of prime factors in £ of
2 and such that (h, m)y=1. Then, o being an ideal of 2 such that
(a, 2mn)=1, there exists the largest positive constant 2 with Ny = ACyma
for every a. 2 depends only on 2, U and b, and, if we denote by M
the set of all a with My > Ay, then we have

Ca Ca
2 Ne S Ne

PrROOF. Let [ be a prime factor of n,. Set c=fhna. Then it
follows from lemma 4, lemma 6 and from what stated in the proof
of lemma 7 that " is determined by the indices (V& : V), where

Ce
[*|n. Since we have (V&b V=771 2¢7) by lemma 5, all (VI VY
are made largest possible whenever we choose ¢ such that all

(9 : QU9 gre largest possible. Now, for such ¢, A= e
Ce

is the required
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constant. For, since we have (n, 2)=1, an element 8 of 2 which

does not belong to 2¢° can only be z;‘iv:—ﬁﬂ of lemma 1 whenever
B is an [-th power in £,. Therefore it gives infinitely many prime
ideals p of £ such that we have B¢ Q¢", and, consequently, we can
choose an ideal b of © such that (2" : & ;'g>) (9" : £¢°) and such that
b is prime to any given ideal of £, which shows that 2 is independent
Ne-
Cer
with (¢/, 2nn)=1. Then we have (& @by Uy (Y 1 9¢P) for some 1,
whence Qi’,i)?:gifi). This shows that, {8} being a system of repre-
sentatives of !2‘1”)/!2%)’4), we have Be Udl”, ¢ U.I" for some I, ¢ and
Be {B}. Now, the last assertion of the lemma is obtained in a
similar way to the last part of the proof of lemina 8.

of n and of m. Next, assume that we have >2 for some ¢ =hHna’

§3. Density and the reciprocity law.

Let m, b be as in lemma 8 and let x be a character of . Then

S x(b))
n,(f%‘n)::l N fa
then we set Aw(s, 1)—= Aw(s). Every Auwm(s, x) is defined whenever we
have s>1.

Let next [ be a prime factor of 2 in £ which does not divide n,
then there exists the lowest exponent o such that an element « of
© is an nm-th power in the [-adic field of 2 whenever we have a=1
(mod [*). Let b,,---, 0, be all ideals of £ which divide III [*, where we

we set An(s, x)= . If especially x--1 is a unit character,

may assume 0h;--1 and 0§, = H [*. Then, to each 0),, there corresponds

a subgroup 2, of % in such a way as ¥’ corresponds to § in lemma 8.
THEOREM 1. If there is an element of ae, with x(a)71,
then we have Aw(s, x) < Au(s), iof xQ)=1, then Aw(s, x)~An(s) and
if espectally x(A,)=1, then we have Awm(s, X)=—= Am(s).
PROOF. Set Zu(s)=T1A—=Np)1,  Cu(s)Auls, x)=Juls, x) and

pim

S x((b))=- -n/. Then we have Ju(s)-= > ' and

K Ilec e, n =1 NL
n’ n.
-]m(S, X)‘— Z ¢ —‘—z Z L‘
(¢,m)=1 N UNNCR R N¢*
) ’ N
SO (T @-NeyTe Sy A )
Hhpmes L LIw D {w2n =1 N([)[ﬂ)'\'

Moreover, it follows from lemma 7 and lemma 8 that we have
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( — Nyia . .
- Ny it x)=1,
(ayhzn)=l N(f)iﬂ)s x( )

< ny;a < Ju(s) otherwise
(aa%):l N(r)ia>s == m( ) ’

z n/ma _
(wamd=1 N(f)iﬂ)"' t

while lemma 9 implies >} Mhia ~ ~Jw(s). This proves the first
wm-1 N(§2)°

and the second assertion of the theorem. The third assertion is
obvious because from x(2,)=-1 follows 7n¢=-n.

Let & be a set of homomorphisms « and &, be a subset of &,
Then we set analogously to (1)

1
(o, §)-- lim "™ N
s>1,5>1 Z ].
vew Nfx

LEMMA 10. Let m be an ideal of 9 and let 8 be the set of all
« with (f, m)=—=1. Let K, be the subset of N which consists of all
e c © such that the set of all «(a) (acl) does mot coincides with W

Then we have o(K;, ®)=0.

PrROOF. Let 9’ be any proper subgroup of order »n' of 2. For
an ideal a of £, let ¢, be the number of all homomorphisms of V.
into %’ and let %, be the number of all homomorphisms of 1/2*U. into
9. Then it follows from (2) and from lemma 7, applied to e, N,

instead of c¢., 7., that we have

/

sy (S @ Y~ (14 8,

(a,n=1 Na* pim N me=0 Np™ pim Np*
where v is a positive constant. Furthermore, by (2) and by lemma

A ' 1 c
9, we have {,(s =, (8) ~ 1+ % ). Now, let M b
( )< > > (s) vl;}lﬂ( N ) ow, le e

nen NSy
the set of all p with (b, n)=1 and (“Q"“/ 2
D

and c¢{=n'. Therefore, by (2) any by Tschebotareff’s theorem, we
have

>:1. Then we have cy==n

4 !/

(149 ) 14+ "

— vl;{m< Np’ . Ny

0= lim "™ 7L< lim ] N
s>1,8>1 1+ ) ) s>1,5>1 pym ped 1+

1—)1:{[111< Np* pr

S lim T (140 ) =0

s>1,8>1 y fwm pes ND
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On the other hand, we have obviously

1 n.
OISR ES S >IN
" KESR, Nf,: % (a,m>=1 N(’f»'S
where 2’ runs over all proper subgroups of 2. Our lemma is thereby
proved.

THEOREM 2. m, b being as in lemma 8, let & be the set of all

’

« with (f,, m)=1 and let %, be the subset of & which consists of all

ke with «(b)=1. Then (8, 8) exists and is not less than 1 .
n

PRrROOF. Notations being as in theorem 1, we have

1 lim Am(S, X) .

w R , f)=
(8, ) N sr1,s>1 X Am(3>

The theorem follows immediately from this and from theorem 1.

COROLLARY. i, b being as in lemma 8, let & be the family of
all abelian extensions K over @ with following conditions: a) the
Galois group of K over £ 1is isomorphic to A. b) the conductor of
K over £ 1is prime to m. Furthermore, let &, be the subfamily of &
which consists of all Ke& with (b, K/2)=1 (symbol of Chevalley
[1]). Then the density o(%,; &) exists and s equal to w(Ny; B of
theorem 2.

ProoF. Besides notations in lemma 10 and theorem 2, let n* be
the number of automorphisms of A. Then, by lemma 10, we have

1
2]
- . N7
oy ; ) lim "= N
s>1,8>1 2 1 )
KER Nf,Z
1
> ,
. KRER, €Ky pri
—= lim
s>1,8>1 Z ].77 )
en e, Nfo
n*
>
. ren, Nfy
~tim YN e,
s51,8>1 Z n
ree Nfi

which proves our assertion.
THEOREM 8. Notations being as in theorem 2, let especially b be
an ideéle of L with p-component 1 for every b=~r and with such 1-
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component br that we have r||b:, where r is a prime ideal of 2 with
rjm and rf2. Then we have w(fy; )= L
n

PrOOF. Under the assumption of the theorem, we can show
that the group ¥, of theorem 1 coincides with . In fact, let 8 be
an element of b'UI' ' ~9%, where {"*!|n,. Then, since the ideal (&)
generated by /3 satisfies (B)=2"6""" for some ideal b of £, 2 cannot be
equal to 2%, of lemma 1 even if {=2. It gives therefore an ideal a
of © such that (a, 2m)=1 and that B¢ U for all I, r and 8, which
shows A=, (see the proof of lemma 8). Now, the theorem follows
immediately frqm theorem 1.

This proof does not require that part of theorem 2 which is due
to lemma 7.

COROLLARY. Let 1 be an ideal of £ which does not divide 2 and
let m be an ideal of £ which s divisible by r. Furthermore, & being
as in corollary to theorem 2, let R, be the subfamily of & which
consists of all Ke & with (K/‘Q>::1. Then we have o(8,; 8)—= 1 .

S n

PrROOF. Similar to the proof of corollary to theorem 2.

84. Ramifications.

THEOREM 4. Let m, n, §) be as wn lemma 9 and let 0 be the
product of all prime factors tn 2 of (2, m). Then there is a constant
2" depending only on 2, U, ) and ) such that

Ne . o Ce
cb,r;mzu>=1 Ne' A <b,m%>=1 Net’
where c=hHnb,

PrROOF. Let §,, | and o be as in the beginning of §3. Then it
follows from lemma 9 that there is a constant 2y, such that

<a.2mn>,—1N7(Zf;)gjrlﬁz)s Ao m.mzmﬂ N(Cf:)f?,l;;aa) '
This shows that
Sr=n s

& Ne Ty N

- s (I oa-Ney s e )

57, 59>=1 N 1w | p; @omm-1 N(B;na)*

= Z ( H (I—NI_S)_I'ZM),; Z Chh;na

6 HHI =1 V11w | by (a2 =1 (Nf)l’)in(’()"’ /
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S I €N | SR (GO S B

(g, hyo=1" N(Hh;n)* Liw D, =1 Na*
> Cym
Set now ay(s)= > . » . Then we have
m=0 Npm‘S
Ce __ X Cc _  Cm
Z s 1—1 (Tv(b), Z P \ ¢ Z ()'v(S>
(@omm=1 Na* P 2amn 26, hmmd =1 Ne¢ N(fm)' p {hmn
and therefore
Ne
(b, =1 N¢* A00:Ch; e e\
. ~ 2 < i s),, H (1——N[ s) 1>. H 0_1(1) 1)’
¢ ap-1~ NOT rrory, LY1Yh

(b, hmnd=1 N¢*

which proves the theorem.

THEOREM 5. Let X be a finite set of prime ideals of 2, and, for
each t e X, let there be given an integer ux=0. Let R be the set of
all « and let &, be the set of all « ¢ 8 with “c||f. for every reX.
Then o(R,; ®) exists.

PrOOF. Set [ r=m, T[] re=nand J] ":=0. Denote by

TEX, =0 IEX, L2 reX, rl2
7. the number of all x with f,—c. Then, for any d with d|in, we have

P <CI)mn(S) ST o >_~ > Tba

\ . = . 2
' 1d (a, hmud=1 N([)rm)-‘ (a, hmw=1 N(r)lltl)"

where Cymi(s) is as in the proof of theorem 1. Therefore, denoting
by w( ) the Mobius’ function for the ideals of 2, we have

pma(s) 31
’ (@, hmmd—1 N(Ona)*

o r)n \ Nva )
b%}n<'u< D )((I,I)l%)fl N(bna)* )

Thus, by theorem 4, we have

1 %Iua
3 = N b
(8) nezs%o Nfi I)mil_l‘)=1 N(hna)*

i 2 (LT 2 )

Slpn = N D hn Ca, huud =1 N(bda)*

=Gt 33 (e TN 2 )

pljn ™ N bn Ca, Hru =1 Na*

where 2, is a constant. On the other hand, it follows from theorem
4 that there is a constant A, such that
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1 Ca
9 ) ""2() (9
(9) SNy R

where £,(s) is the Dedekind’s zeta-function of £ and a runs over all
ideals of £. Now, our theorem follows immediately from (8) and (9).

COROLLARY. X and u, being as in theorem 5, let & be the family
of all abelian extensions K over £ such that the Galois group of K over
O 1s isomorphic to A. Let 8, be the subfamily of S which consists
of all Ke& with vt||fr. Then the density o(\,; &) exists and s

equal to m(\‘o, ﬁ) of theorem 5.
PrOOF. Similar to the proof of corollary to theorem 2.
EXAMPLE 1. Let r be a prime ideal of £ which does not divide 2.
Assume that X of theorem 5 consists of only one prime ideal r
with %,=u>0. Then we have m=1, n=1" and )=1. Set oy(s)=

“™ _ Then, by (8), we have

m=0 Np"”

st b ) e —ce N S O

ren Ny @on-1 Na*
whence

(W,: )= lim O] 1,(3)( N

w !‘\‘(; tt\, C,l"/’_cr7’_1 ‘1.‘“ Hs

) s>1, 61 Ca(*S)TI p(_s)
Cllt—-(‘ln 1

o, (1 —Nr )N

If the family &', of corollary to theorem 5 consists of all K with
Sx=1", then (§,; &) has also the same value.
EXAMPLE 2. Next assume rf2n and u#,—0. Then we have

me=y, n=1, h=1, >} =~ 2,-C(s) ! “  and
HESRY, an B &( > (a%ﬂ Na*

Cy cr—1° e
o(8) = o1 r 1—Nr !
ZOED) N (1+ e SN
whence
— _ Csz(s) TT ‘7&‘(8>
w(My; W)= lim iy
o1t G(s) [ ay(s)

er—1\7!

=(1—Nr" ) (1) = (1 )

Nrv
Nr+e¢—1"
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Nr

NJ~+CA—1
theorem 5 consists of all K unramified at r.

We have therefore w(i,; &)= if &, of corollary to

§5. The order of A(s) at s=1.
A(s) is defined, as in §3, by >} N:; _, where the sum is extended

over all homomorphisms « of G, into .

LEMMA 11. Let n, be the number of elements of U with order d
and 5 be the number of irreducible representations of N wn Q. Then
we have n—= >1n,/(2,:2).

d|ng
PrROOF. There are just n, characters of order d of 2.  be one
of them. Then, ¢ running over all automorphisms of 2, over 2,
the representation
XO

2
c

X

is equivalent with an irreducible representation of 2 in 2. Conversely,
every irreducible representation of % in £ is obtained in such a way,
from which follows easily the lemma.
THEOREM 6. A(s)~(s—1)" ",
ProOF. Since from (2) and from theorem 4 follows
Cy
CA AW ~ 1 ( e )
it suffices to prove
1+ & >~ s—1)7".
]1:[ (\ Np* ( )
Now, for every d|n,, denote by M, the set of all prime ideals p of

£ such that ( e ';/ 2 \)jl. Then, Tschebotareff’s theorem shows that
N ) /
/ 1 ~ __ —1/(Qd:S2)
I (14 Nw> (s—1) .
Therefore, making use of (3), we have
> Mg
1+ Cy >~ <1+ a, Mg>p
II;I< Np* I;[ Np* )
~IUTL (1+ 0 ) =TT IT (14 &)
poai,sp\ Np* a peM, Np*

~ H (S_1>—n’L/<$)'l: (03] 7:(8—1)—31:”"/(&1": Q).
d
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The theorem follows immediately from this and from lemma 11.

§6. Further results.

In this paragraph, we shall denote by & the family of all abelian
extensions K over @ such that the Galois group of K/ is isomorphic
to 2.

THEOREM 7. Let £, be an arbitrary subfield of £ and let K, be
the family of all Ke& such that there exists a normal extension k
of 2, with K=8k. Then we have

1
~ ]. and (\“ ; SL = O.
KE?(\ Nf;( w( " ‘)

PrROOF. Let £ be a normal extension of £, which contains 2.
Then we have foio—=faye for every automorphism o of 2 over £,,
and fos o= fi~a for every automorphism e, of £k~ over 2,. There-
fore we have fgaia="Po1P00" Vo, T and fi pno=Po P2+ Py, to, where b, ,
is a prime ideal of £, which divides neither » nor the relative dis-
criminant 5(2/9,), while t, v, are ideals of 2, k~Q respectively, which
are composed of prime factors of » and of 2(2/2,). This shows that
Forsa=PoPoss P, where T|r and v|v,. Therefore, by lemma 7,
there is a constant  such that

1 : Cpy Sy Cypm
10 < 1+ % ( v )
(10) gsjs%o Nf% 7 Tv»I ( Nb; / 1;[ 20 Niw™* )

where the former product is extended over all prime ideals b, of £,
witn Dy} nd(2/2,), and the latter over all prime ideals w of £ with
w | nd(2/2,). Moreover, Np, is at least an (£ : 2,)-th power of a prime
number. Hence the left side of (10) is ~1. Sinee &, is not empty,
the first assertion of the theorem is proved. The second assertion
follows immediately from the first and from theorem 6.

COROLLARY 1. Let 2, be a subfield of £ over which £ is normal
and let 8, be the family of all Ke& such that K is normal over 2.
Then we have o(ft,; {)=0.

Proor. This follows immediately from theorem 7.

COROLLARY 2. Let @, be an arbitrary subfield of 2. Then there
are infinitely many extensions K over Q with following properties:
a) the Galois group of over 2 is tsomorphic to A. by there is no
normal extension k over 9, such that K—Qk.

Proor. This follows from theorem 6, theorem 7 and lemma 10.
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Fibre Spaces and Sheaves in Number Theory

Keijiro YAMAZAKI

Part 1

0. A. Weil '5] has introduced successfully the concept of the
fibre space into algebraic geometry. We have tried in [6] to establish
an analogous theory on number fields. We shall sketch the results
in (6] in Part 1.

1. Let & be any algebraic number field of a finite or an infinite
degree and S(k) the set of all finite prime divisors of k. If k is of
a linite degree, we introduce the weakest T,-topology into S(k). If
k is of an infinite degree, then the topological space S(k) will be
determined as the projective limit of S(k,) where k, runs over all
subfields of finite degrees of k. Hereafter we fix an algebraic number
field k£ of a finite degree.

Let W be the group of all roots of unity; we denote by W the
set of all elements of W and the symbols 0 and . We introduce

the weakest T,-topology into W, and new operations in W as follows:
00--0, o=, 0 'sioo, oo le(), £0:205-20, Coo- 0l-2c0 for all
Ce W. But we do not define 0o and 0.

LEMMA. Let K be an algebraic number field containing all roots
of unity and K(b)* the multiplicative group of the residue class field
modulo a finite prime divisor p of K. Then there exists one and
only one isomorphism ¢, of K(p)* into W such that for all ¢« K(p)*
the residue class of t,(¢) modulo b is identical with e.

Applying this lemma to k(W) -K, we define JS) for fek* and
peS(k(W)) as follows: (| |, means a valuation representing p, and f
i3 the residue class of f mod p.)

0 if If]p< 1,
f<p>--—{ o if [fh=1,
‘p(f) if lflp’:l'

Next we introduce an equivalence relation of S(k(W)) as follows:
Let b be equivalent to q if and only if J@)=f(q) for all fek*. We
denote by S‘(/ﬁ) the quotient space of S(&(W)) with respect to this
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relation. Then S(k) is provided with the weakest T',-topology and the
assignment b— f(p) induces a W-valued function on S(k) for each
fek*. If peSKk(W)) induce p' e S(k), then v’ depends only upon
the equivalence class p of b, and P ¢ S(k) will be said to lie above .

Moreover D, q € §(lﬁ) will be said to be conjugate with each other if
and only if they lie above the same v e S(k).

2. Now we state a general definition.

DEFINITION. Let S be a topological space and R(S) a set of W-
valued functions defined on some non-empty open subsets of S; we
denote by D(f) the domain of definition of FfeNS). We call the
pair (S, SR(S))‘ a W-variety, if the following conditions are satisfied.

1) Any two non-empty open subsets of S always intersect with
each other.

2) Any feR(S) does not take identically the value 0 or . If
FeR(f) is not a continuous function, then f takes a constant value
on some non-empty open subset of S, and f(x)70, o for all x e D(f).

3) For any two functions f and g in N(S), there exists one and
only one function h in N(S) such that f@)g@) and h(x) are defined
and coincide with each other for all x tn some non-empty open subset
of S. We denote by fy this function h. Whenever f(x)g(x) is defined,
(fo)@) is defined and f(x)g(@)==(fg)x).

4) There exists a function e n N(S) such that D(e)--S and
e(x)=1 for all x€S.

5) For any f e N(S), there exists a function f "an N(S) such that
D YT D(f) and f'(x)==f(x)"" for all xeD(f").

EXAMPLES of W-varieties.

1) S=W, R(W)==the set of all assignments of {* to e W for
all integers n.

2) Let m be an integral divisor of k. which may contain real

primes; we denote by |m| the set of all points in 5(10) lying above

finite primes contained in . S=S(k)—|m|, N(S)-=the set of all
elements f ¢ k* such that f=1 modm. We regard any element of
R(S) as a W-valued function on S as in 1.

Now we can define some general concepts analogously to algebraic
geometry, open subvarieties, rational mappings, direct products under
a suitable condition, and group W-varieties.

3. We define fibre spaces over a W-variety. Here we define
only principal fibre spaces (Cf. [6]).

DEFINITION. A principal fibre W-space is a collection as follows:
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1) A W-variety B,

2) o W-variety S called the base W-variety,

3) @ rational mapping of B onto S,

4) a group W-variety G called the structural group which operates
on B.

Assume that there exist an open covering {U,} of S and a bira-
tional mapping @, of U,x G onto = U, for each i such that

@z, 9))—x Sfor all xe U, and g ¢ @G,
D@, 0)g' =Dz, 99') for all xe U, and ¢, 9 €G.
In particular we shall consider the case that the base W-variety
S is S(k)—|m| (example 2) in 2.) and the structural group is W
(example 1) in 2.). We call a principal fibre W-space B over S
rational, if and only if the following additional condition is satisfied
about {U,} in the above definition: For each 1, every conjugate element
of any element in U, is contained in U,. Now all classes of isomor-
phic rational principal fibre W-spaces of group W over S form a
group B(S) similarly as in topology. Then the following fact holds.
The group V(S) defined in the above is 1somorphic to the factor
group An/Sy, where A,, is the group of all ideals in k prime to m
and S, s the group of all principal ideals generated by elements
fek* such that f=-1 mod m.

Part 1I

0. In Part T we have concerned ourselves exclusively with the
multiplicative structure of algebraic number fields. In order to take
the additive structure of these fields also into account, we shall define
“variety over integers’ (Cf. [41) analogously to the definition of
algebraic varieties by J.-P. Serre [1] and generalize the concept of
fibre space.

1. Let v be a diserete valuation in any field K. We shall denote
by o,, b, and «, the valuation ring, its maximal ideal and the residue
field o,/p,. Let F(X) be in the polynomial ring o,[X] of indeter-

minates (X) with coefficients in o,. We shall denote by F“”(X ) the
polynomial in «, X ] which is the class of #(X) modulo b..

Let & be a field and N a set of infinitely many non-equivalent
discrete valuations in % such that the following conditions are satisfied.

1) o= o, 23 a Noetherean ring.
veyN

2) ks the quotient field of vo.
3) FEwvery element of k other than zero is p-unit for almost all
Y} N.
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Let K be a universal domain over & (in Weil’s sense [3]) and
T a maximal subset of independent variables of K over &£. We fix
k, N, K and T once for all.

For any discrete valuation » in %, there exists one and only one
discrete valuation o in A(T) which is a prolongation of v such that
all elements of T are pi-integral and their residue classes modulo P
are also independent variables over the residue field o,+ b;/b; which
may be identified with «,=0/b,. We denote by &, the algebraic
closure of the residue field «y==v3/b; for each ve NV, then &, is a
universal domain over «, by the above identification of the subfield
0,4 be/b; with «,=0,/p, for every veN. We denote by S" and S the
n-space over K and &, respectively.

2. An N-set is a set {&] of elements with an associated funetion
of the elements whose values are diserete valuations in N, the ground
discrete valuation of &, denoted by &.

Any subset of an N-set is an N-set with the same ground
diserete valuations. The direct product of any two N-sets Ul and ¥,
denoted by 11x ¥, is the set of all pairs (§, ») such that £e¢ I, e
and &=7; we define the ground discrete valuation of (&, 7) in UxY
as follows: (£, )=&-==5. Then IIxY is an N-set.

EXAMPLE. We denote by &%, or simply by &", the set-theoretical
direct sum of n-spaces & for all ve N. We define the ground discrete
valuation of an element in & to be v. Then <) is an N-set. We
may identify &"x S" with & by the indentifications of the &' X <}
with the &»+*. &° may be identified with N.

Let 1l and ¥ be two N-sets. An N-mapping of 1l into ¥ is a
mapping ¢ of Il into ¥ such that p(&)-<¢ for all Eell. By a function
on an N-set 1l we understand an N-mapping of 1l into S'.

We shall define the sheaf F() of germs of functions on a non-
empty N-gset 1l when 1l is provided with a topology. Let Fy be the
ring of all functions on ¥ for any open subzet ¥ of 1l and pyy the
homomorphism of Fy into F, defined by the restrictions of the
domains of definition of funections for each pair of non-empty open
subsets ¥ and ¥ of Il such that ¥ is contained in ¥'. Then the
system {Fl, pug} defines a sheaf F(Il) of rings F(ll). over 1l; F(ll). is
the direct limit of Fy where ¥ runs over all open subsets of U
containing &, for each &ell.

It is easily seen that the canonical homomorphism of Fy into the
ring ['(¥, FQ)) of all sections of F(Il) on ¥ is an onto-isomorphism
for every non-empty open subset ¥ of ll, therefore we may identify
the functions on ¥ with the sections of F(ll) on ¥ for every non-
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empty open subset ¥ of ll. Any section f of F(ll) on a neighborhood
of £ in 1l determines an element of F(ll),; we denote by f. this
element and call f. the function element of the function f at &. For
any non-empty subset ¥ of 1l we have the canonical homomorphism
ey of the sheaf, denoted by F(Ul)| ¥, induced by F(ll) on ¥ into F(Y)
by the restrictions of the domains of definition of functions; if ¥ is
open in 1, then the homomorphism &y of F(II)|¥ into F(¥) is an
onto-isomorphism.

Now we state a temporary definition. An N-variety is a non-
empty N-set 1l provided with a topology and a sheaf O of subrings
O. of F(Il), over ll; O is said to be the sheaf of germs of regular
Sfunctions on 1l and a section of O on a non-empty open subset ¥ of
Il is said to be regular function on ¥ which is a function on ¥ by the
above identification.

Let 1l and ¥ be two N-varieties. An N-mapping ¢ of 1l into ¥
is said to be regular if the following conditions are satisfied.

1) ¢ s continuous.

2) If &€is in W and f is a regular function on a neighborhood
of p(&), then the function fop is regular on some neighborhood of &.

Moreover an N-mapping ¢ of 1l onto ¥ is said to be biregular
if f is one-to-one mapping of 1l onto ¥ and the both ¢ and ™' are
regular. Let ¥ be a non-empty subset of an N-variety 1l which is
an intersection of an open subset and a closed subset of 1l and Oy the
image of O|Y by the canonical homomorphism &y of F(11)[¥ into F(¥).
Then the N-variety ¥ with the sheaf Oy is said to be a subvariety”
of L.

3. Let A be any subring of o[T]. We define a structure of
N-variety on 3" as follows. If F(X) is a polynomial of n indeter-

minates (X) with coefficients in o[ T ], we shall denote F*(X) simply
by ﬁm(X) and F—:’W(E) simply by F(¢) if (§)e¢3" and (§)--v. First
we introduce into S" a topology in which the family of all the
(8); (5)eS", F(£)=:0} such that the F(X) are in A[X] is a base of
all closed sets; we denote by 3" the N-set " provided with this
topology.

Next we define a sheaf ,O" of subrings ,O! of F(,&"). over ,o&"
as follows. Let an element u of F(,S"). be contained in ,0% if there
exist two polynomials F(X) and G(X) in A[X] such that G(&)F#0

1) For any non-empty subset $ of an N-variety 1t the structure of N-variety can

be defined and the concept of regular mappings of © into an N-variety also can be
defined similarly.
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and the function f; »— F—’(n)/ﬁ(n) defined on some neighborhood of &
determines the function element f.=wu at £&. Thus we have defined
an N-variety ,&" provided with the sheaf ,O"; we call this N-variety
the affine n-N-space provided with A-structure. If A is the ring
o[ T], then we shall omit the term ““A— .

A subvariety Ul of 3" is said to be an affine N-variety and S"
to be the ambient N-space for 11, if 1l is identical with a subvariety of
,&", denoted by ,ll, as a point set for some subring 4 of o T] finitely
generated over o; ,ll is said to be an affine N-variety provided with
A-structure and Wl to be defined over A.

DEFINITION. A prealgebraic N-variety s an N-variety 1l such that
the following ‘condition (1) is satisfied.

(1) There exist a finite open covering {1} of U and a biregular
mapping ¢, of W, onto an affine N-variety B, for every «.

We call a pair of an open subvariety l, of Il and a biregular
mapping ¢ of l, onto an affine N-variety a coordinate system; a
coordinate system (11, @) is said to be defined over A if (1)) is
defined over A. If suitable systems {(ll,, ¢,)} defined over A satisfy
(I), we say that the prealgebraic N-variety 1l is defined over A and
A is a ring of definition for 11; any prealgebraic N-variety is defined
over some subring A of ol T] finitely generated over o. For any
prealgebraic N-variety 1l defined over A, there exists one and only
one structure of N-variety on ll, denoted by U, such that for every
coordinate system (ll,, ) of 1l defined over A, I, is open in ,Il and
¢ is a biregular mapping of ll, provided with the structure of the
open subvariety of Il onto the affine N-variety ,o(ll,) provided with
A-structure. We denote by ,O the sheaf of germs of regular func-
tions on LUl if O is the sheaf of germs of regular functions on li;
4O: may be identified with a subring of O. for every & in L

Let 1l and ¥ two prealgebraic N-varieties defined over A and ¢
an N-mapping of Il into B, If ¢ is a regular mapping of ,ll into
43, then ¢ is a regular mapping of Il into ¥; such a regular map-
ping 1l into ¥ is said to be defined over A. Let B be a non-empty
open subset of a prealgebraic N-variety Ul and f a funection on <U.
Then f is a regular function on ,¥ if and only if f is a regular
mapping of ¥ into ,S'. Any regular funection f on ¥ is said to be
defined over A if f is regular on 3.

Let Il and ¥ be any two prealgebraic N-varieties such that
I x B is non-empty. Then there exists one and only one structure
of prealgebraic N-variety on the direct product 1lx ¥ such that, for
every pair of coordinate systems (ll,, ) and (%, ¥) of 1l and 3,
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(I, x B, px¥) is a coordinate system in lx V. If a prealgebraic
N-variety 1l satisfy the following additional condition (II), then we
say that U is an algebraic N-variety.

(II) The diagonal subset 4y of WxI1 s closed in Wx 1.

It is easily seen that the direct product of any two algebraic
N-varieties is also an algebraic N-variety or empty and any affine
N-variety is an algebraic N-variety.

4. Let Il be an algebraic N-variety defined over A. If U is
irreducible, that is, any two non-empty open subsets always intersect
with each other, then we can define the rational funection on 1l as
follows: Tt is easily seen that the ring ['(O, ¥) is an integral domain
for every non-empty open subset ¥ of 1l; we denote by Ry the
quotient field of I'(O, ¥). The natural homomorphism pgy of 1'(O, ¥)
into 1'(O, ¥) induces an onto-isomorphism pyy of R, onto Ry for
each pair of non-empty open subsets ¥, % such that BC ¥, and the
system {Ry, puy ) defines a simple sheaf R(1l) over Il; we may identify
the field R(1)==I"(R(ll), ) with the R(ll).. Moreover we may canoni-
cally identify O, with a subring of R(ll). and therefore may identify
O. with a subring of R(ll); we call an element of the field £(ll) a
rational function on U. R(l), is the quotient field of O.; we denote
by ,R(l). the quotient field of ,O. in R(ll). and denote by ,R(ll) the
sheaf of rings ,R(l). over . The field ,RQ)-=1'(,R(D), LD may be
identified with a subfield of R(ll); a rational function in LR is said
to be defined over A.

EXAMPLE. Let % be the field of all rational numbers and [V the
set of all non-equivalent non-archimedean valuations denoted by prime
rational integers, p,q,-+-. Then we call a N-variety “ Z-varvety’’
and shall generally use the term ‘‘Z-"’ instead of ‘“N-?’. Moreover
we denote by Z the ring of all rational integers. Let K be any
algebraic number field of a finite degree and Z|w ] the ring of all
integers in K where (») is in some S". We define an affine Z-variety
., in " to be {(£); F(&)=0 for all F(X)e Z[ X] such that F(w)=0}.
Then we see that ., is defined over Z and is irreducible and the
field ,R(ll.,,) of rational functions on Il defined over Z is isomorphic
to K. Moreover we see that if we denote by (p) the subvariety of
S" defined by the equation p=0, then the number of irreducible
components of ,U.,~(p) is equal to the number of diserete valuations
in K which are prolongations of p. Furthermore let L be a finite
extension of K, Z{w, n] the ring of all integers in L where () is in
some S™ and ., ., the affine Z-variety in &"x 3" defined by (w,7)
as above:; we denote by = the projection of &"x 3" onto S". Then
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7 maps ., ., onto U, and for any irreducible component p of ., ~(p),
7 '(b) has the irreducible components P,, P,,---, P, where g is the
number of discrete valuations in L which are prolongations of the
discrete valuation in K corresponding to p.

5. Let & be an algebraic N-variety and » in N. Then we shall
denote by ®, the set of all those elements in (% whose ground discrete
valuation is ». Now let &, be provided with a structure of group or
empty for every v in N, and then we define the mapping of & x® onto
& which coincides with the group operation (g, 9")— g9’ on ®,x &, for
every v in N and the mapping of & onto itself which coincides with
the inversion mapping on &,. We denote by 1, the identity of G,.
If the N-mapping v—1, is regular” wherever 1, is defined and the
above N-mappings & x -6 and &G are regular, then we say that
& is an algebraic group N-variety.

DEFINITION. A principal fibre N-space is a collection as follows:

1) an algebraic N-variety 9,

2) an algebraic N-variety S, called the base N-variety,

3) a regular mapping = of B onto S,

4) an algebraic group N-variety & which operates on 2.

Assume that there exist a finite open covering (I} of S and a
biregular mapping @; of W, x 6 onto = (1) for each © such that

(@&, 9)-—& for all (& g)ell,x,
(I)L(g’ g).(]/::(pi(gy []{]/) for all (S, q, g’)el[i x (85 % 3,

We can also define general (non-principal) fibre N-space analogously
to the case of W-variety (Cf. [6)).

EXAMPLE. Let S be the affine Z-variety 1., defined in 4. and
& the open subvariety of &' defined by the equation X+£0; © is
an algebraic group Z-variety. Then classes of isomorphic principal
Jibre Z-spaces of the group & over S correspond to all ideal classes
of R, )=K. In order to prove this fact we define an analogue
P of the projective n-space and treat sections of fibre space of the
fibre ' and of the above group Z-variety ¢ over ll.,, analogously to
the case of W-variety (Cf. [6]).

Moreover we can generalize this result to the case of the group
Z-variety GL(n, S') (an analogue of GL(n, %)) so that we have the
concept of generalized ideal class analogously to the case of an alge-
braic curve over the complex number field (Cf. [2]).

In the above example we have not treated any archimedean
prime of a number field. In order to supplement this point it seems
necessary to clarify the relation between the algebraic varieties over
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rational numbers and the algebraic Z-varieties, especially in the
opposite direction to the process of ‘‘reduction modulo p for all
discrete valuation bh’’.

UNIVERSITY OF TOKYO
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Units of Fixed Points in Involutorial Algebras

K. G. RAMANATHAN

§1. Let A be a simple algebra of finite rank over the field I" of ra-
tional numbers. Let A have an involutorial anti-automorphism * so that

(a+B)* =a*+B*, (aB)* =B*a*, ()** =a. (1)
An element & of A is said to be a fixed point under the involution
if £=&*. & is also then said to be symmetric. If &—=—&* we eall

& skew symmetric.

Let © be an order in A relative to the ring of rational integers.
An element u# in 9O is said to be a unit if v and u! belong to .
u is said to be a unit of the fixed point & if w*&u—£&. The units of
§ obviously form a group [7'(¢), called the unit group of & The
object of this note is to outline proofs of two theorems, the first
one being

THEOREM 1. Let & be symmetric or skew symmetric and let norm
of € over I' be not zero. Then I'(§) has a finite set of generators.

In order to prove this one has to develop first the reduction

theory of positive forms over a semi-simple algebra over /", the
field of real numbers.

§2. Let 4 be a division algebra of finite rank g over /'. Let Z be
its centre so that (Z:I')=h, (4:2)=s and ¢g—hs’. Let 4 denote
the Kronecker product 4®)/'. By taking a basis, called normal basis,
of 4/I" constituted by the simple components of the semi-simple

algebra i, any element £ in J can be represented by the ¢ rowed
matrix

& ‘”2.. (2)

consisting of blocks of real, complex and quaternion matrices, complex
numbers and quaternions being represented respectively by 2 rowed
and 4 rowed real matrices. The matrix algebra of regular represen-

tation has the involution é-»é’, ’ denoting the transposed of a matrix.
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We say £ in 4 is positive and denote §>0 if 1) £—£ and 2) the
characteristic roots of & are all positive.
Let o be an order in 4 relative to [’ and let 8,---,§, be a

minimal base of o over I'. §,---,8, is also a base of 4/I". For

2c4 let & denote the matrix representing & by means of the regular
representation with regard to the basis &,,--+,8,. Then there exists

a g-rowed matrix v with elements in [’ such that

E= vy, (3)
If &% is the element in A such that £x—y 18y then £—>&* is an
involution in' 4. If A=M(4) is the algebra of square matrices over
4 the involution £— & in 4 can be extended to A=A " in a trivial

way. An element S-=(a,) in A is said to be positive if S-=S* and
all the characteristic roots of S are positive. The set P of posi-
tive matrices of S constitutes a symmetric Riemannian space of
(hns+r,—1;)-n-s/2 real dimensions, (with obvious meanings for 7,
and 7,) and with the metric ds*=o(S™'-dS-S™"-dS).

Let O denote the order in A constituted by matrices V with
elements in 0. V is a unit of © if V and V' belong to it. The
unit group 1'(9) is represented in P as a discontinuous group of
mappings S—S[V ]=V*SV. One can, by a combination of the
methods of Siegel and Weyl construct a fundamental region R in P
for 1I'(9).

& 3, Let now 4 be an involutorial division algebra with an involution
(x). On Z, the centre of 4, * is an automorphism, so either * leaves
7 fixed or there is a subfield Z, of Z with (Z:Z,)=2 which is left
fixed. Accordingly the involution is said to be of the first or the
second kind. For the sake of simplicity, we consider only involutions
of the first kind. Albert has shown that in this case 4-=Z2 or is a
quaternion algebra over Z. Since the first case has already been
studied by us, let us consider the case where 4 is a quaternion algebra
over Z. Let Z, be a completion of Z by an archimedian valuation of
Z and put 4,—~4& Z,. The involution * in 4 can be trivially extended
to 4,. But 4, itself has an involution as can be easily seen. If
Xed, then X and X* can have the following three forms
X=(D %), Xr=VOXV
)

\ \ T3 X4
X=(T @) xroVIX'V (4)
x3 x4/ b ==

X =z, X*=a

~
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where V= ( _?1 (1)

jugate matrix is taken. The three cases occur according as Z; is
the completion of Z at a real infinite prime spot at which 4 is un-
ramified, eomplex infinite prime spot, or real infinite prime spot at
which 4 is ramified.

Let S=S* be an element of the matrix algebra A=(4) and
let S be non-singular. We associate with S a topological space » in

the following manner: Consider A,-=A3Z,. Then we can write
S=Cj}C, for every ¢ such that 4 is unramified at Z,. If 4 is ramified

> and the bar below means that the complex con-

Z,;, then S=C%* (E;)“’L 0 )Ci where E, denotes the unit matrix of
~E,
order r. Let now H, denote the positive matrix

H,
Ho:< I . ) (5)
H

t

where H,=C/C,. Let H denote the matrix in A obtained by taking
the components in (5) each taken s times (s*=(4:Z)). Then H is a

positive matrix in A in the sense of §2. © is now the space con-
stituted by the different H. It can be shown that $ again is a
symmetric Riemannian space with the metric ds*=o(H 'dH-H 'dH).
Let dw denote the volume element corresponding to this metric.
A simple calculation shows that $ has the topological dimension,

rn(n+1)+2rm*+4 23] D:Q;e
i=1

Let us denote by S itself the matrix corresponding to S by the

regular representation of A over I'. The matrices VeA satisfying
V*SV =S

constitute the orthogonal group 2(S) of S. It has a representation
H->V'HV in the $ space. The unit group 7'(S) of S constituted
by matrices V in A with elements in o is a disecontinuous subgroup
of ©2(S). One can construct by using the ideas in § 2 a fundamental
region F' for I'(S) in . The properties of F show the truth of
theorem 1 in the case S is symmetric. If S is skew symmetric we
follow again the same method. The computations here are slightly
more cumbersome if » is odd than if n is even.

The second theorem concerns the measure of F measured with
dw. The theorem is

THEOREM 2. If S is non-singular and is either symmetric or
skew symmetric
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{dw

is finite except for a trivial case.
The proof of this is rather long and depends on ideas which have

been developed recently by Siegel. Detailed proofs of these theorems
will appear later.

We remark that in the statement of theorem 1 we had not
stipulated any condition on the involution. But in the proof above
we had considered a special involution which arises from an involution
in the division algebra. By the results of Albert one can show that
this is no restriction of generality.

The integers (p,,q;) Wwhich ocecur in the definition of H; in (5)
are said to form a system of signutures of S.

TATA INSTITUTE OF FUNDAMENTAL RESEARCH,
BoMBAY, INDIA

REFERENCES

[1] A. A. Albert: Structure of Algebras, New York, 1939.

2] K. G. Ramanathan: Units of quadratic forms, Annals of Math, 56 (1952)
pp- 1-10.

[3] C. L. Siegel: Discontinuous groups, Annals of Math., 44 (1943), pp. 674-689.

[4] C. L. Siegel: Indefinite quadratische Formen und Funktionentheorie II, Math.
Annalen, 124 (1952), pp. 364-387.

(5] H. Weyl: Fundamental domains for lattice groups in division algebras, Fest-
schrift. A. Speiser, Ziirich, 1945.



On Siegel’s Modular Functions

Ichiro SATAKE

Introduction.

Let ©, be the generalized upper half-plane of degree %, namely
the space of all complex symmetric matrices Z=X+tY of degree n
with the imaginary parts Y >0, and M, be the modular group of
degree n operating on 9,. Siegel’s modular function F(Z) is an
analytic function on £, invariant under the modular transformations
o €M, so that it may be regarded as a function defined on the
quotient space M,\9,. But M,\9, is not compact and it was reason-
able that Siegel defined modular funetion as a quotient of two modular
forms which are regular even in the points at infinity in the sense
that they possess eonvergent regular Fourier expansions.

To clarify the behaviors of modular functions in such points at
infinity of M,\9,, let us first introduce the notion of complex analytic
manifold with ramifications or briefly V-manifold. A V-manifold ¥
is, roughly spoken, a topological space such that each point p € ¥ has
a system of neighbourhoods U, homeomorphic to the quotient spaces

G,\ f]p, ﬁp being domains in the complex n-space C", G, finite groups
of analytic automorphisms of f}'p, and these systems of f]p, G, and

the maps ¢, from U, onto U, satisfying some consistency conditions.
On such a V-manifold we can define without any difficulties the notions
of differential forms, holomorphic or meromorphic functions, divisors,
...ete and translate the usual theories of them in our case. Especially
we can prove de Rham’s theorem and if the V-manifold is compact
Poincaré’s duality theorem on Betti groups.

Now the quotient space U,=DM,\9, is of course a V-manifold.
It is very plausible that by joining some V-manifolds of lower dimen-

sions ¥, can be completed to a compact V-manifold B,. In §§3-5
we shall actually carry out this compaectification in the case of n=2.
For that purpose we shall use some sorts of theta-functions as the
uniformizing parameters at the point at infinity.

After these preparations the modular functions of degree % can
be defined (at least in the case of n=2) simply as meromorphic func-
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tions on B,. Also the modular forms of degree n of weight m can
be regarded as sections of faisceau 4, of germs of automorphic

forms of weight m on B,. This faisceau 4, being a coherent analytic
faisceau, it would be possible to apply the theory recently developed

by Serre [3] to <A,, if B were proved to be a projective variety.
Then the formula of dimension of the space of modular forms would
be obtained, which is of particular importance for the arithmetic
theory of quadratic forms. But we could not decide whether it is
possible or not.

§1. The definition of V-manifold.

Let 8 be a (Hausdorff) topological space. A local wuniformizing

system (abbreviated in the following as l.u.s.) {(7, G, ¢} for an open
set U in O is by definition a collection of the following objects:

U: a domain in the complex n-space C",
G : a finite group of analytic automorphisms of (~J,

@ : a continuous map from U onto U such that @os=g¢ for
all & € G, so that it induces a map from the quotient

space G\U onto U, which we shall assume to be a
homeomorphism.

Two l.u.s. {ﬁ, G, ¢}, {ff’, G', ¢’} are said to be equivalent, if there
exists an analytic isomorphism 2 from U onto U’ such that

| G'=20Gor™, @ =gor ',
Then A4 is called an dsomorphism from {U, G, @} onto {(7’, G, p'}.
More generally we shall call an injection from (U, G, e} into
(U, G, '} an analytic isomorphism 2 from U onto an open submani-

fold of U’ such that for any o< G there exists « ¢ G’ satisfying the
relation Aco=0"0d (then o is uniquely determined by o) and that
p=¢'o. Of course such an injection exists only if U=gp(U) is
contained in U'=q¢ (U).

LEMMA 1. Let 2 be an injection from (U, G, @) into (v, G, ¢'}.
If dWON~AT)£S for an element o €G', then o AU))=xT).
Denoting by G, the subgroup of G' consisting of all such o' €¢G’, G 18
isomorphic to G by the correspondence o— o' defined by the relation
doog=0"ol.

PROOF. Assume that o’((U))~A(U)=£¢. Then there exist p, Ge U
such that ¢’«A(®)=2Q). Then, since p(p)=¢(d), we have +(p)=g for
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some +¢G. By the definition there exists =" € G’ such that Aor=+"0A.
Hence we have o(AD)=+((P)). As the fixed points of G’ in U’
form a submanifold of U’ of complex dimension less than n, we can
assume that A(p) is not a fixed point of G'. Then we have ¢'=+" and
50 oAU N=AHU)==A(U). We have proved at the same time that

o €@’ such that o(A(U))==4U) belongs to the image of the corre-
spondence &—> o', which is clearly an isomorphism of G into G'. The
remainder of the lemma is now obvious.

LEMMA 2. Let 2, u be two injections from (U, G, ¢} into
(U, G, '}, Then there exists a uniquely determined o € G’, such that
pw=a ol

Proor. Let pecU. As we have ¢'(u(D)=¢(d)=¢ (D)), there
exists o' € G' such that w()=a(A(P)). Choosing A(P) not to be a fixed
point of G’, the automorphism o € G’ is uniquely determined. As the
set of non-fixed points of G’ in 2((7) is connected and everywhere
dense in A(U), the same relation holds for all peU. Hence p=a'od
for a uniquely determined o ¢ G’, q.e.d.

Now let 2 be an injection from {U, G, ¢} into (v, G, o'} and
2 be one from {(U,G’, ¢’} into {U’,G”,9"}. Then we can see
easily that 2.2 is an injection from (U, G, ¢} into (U”,G", »"}. In
particular, let 2 be an injection from {U, G, ¢} into {(7’, G', ¢’} and
A" one from (U, G, '} into {U, G, ¢}. Then, 22 being an injection
from {f], G, ¢} into itself, we have by Lem. 1 2'oi=0¢ for some sc¢ G
and similarly 101’ =4" for some o' ¢ G'. Then it follows that Ace==0"02,
and that (6 '0d)od=1, Ao(s7'od)=1. Thus 2 being an isomorphism,
{U, G, ¢} and {U, G, ¢’} are equivalent.

That being said, we shall give the definition of V-manifold.

DEFINITION. A V-manifold s a composite concept formed of o
topological space B and a family ¥ of l.u.s. for open subsets in B
satisfying the following conditions.

(1) If (U, G, ¢}, (U,G, ¢} ed and U=p(U) is contained in
U=¢'(U), then there exists an injection from {U,G,p} into
v, G, ).

(2) The uniformized open sets, namely the open sets U for which
there exist lu.s. (U, G, p} in ¥, form a basis of open sets in 2.

By what we have mentioned above, two l.u.s. in & for one and
the same open set in ¥ are always equivalent by the condition (1).
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Also if (U, G, ¢}, (U, G, ¢}, (", G", "} are l.u.s. in & such that
qy(f])Cgo’(ﬁ')Cga”(ff”), then the injection from (U, G, o} into
(U”,G", ¢} is given by the composition of those from {U, G, ¢}
into (07, G", '} and from (U, G', »'} into {U", G", 9"},

Two families %, & of lu.s. are said to be equivalent if Fy
satisfies the condition (1). Equivalent families are regarded to define
one and the same V-manifold structure on the space B, In the
following, when we are concerned with a V-manifold B, we shall
consider exclusively l.u.s. in the family @& defining the V-manifold
structure of ¥; so we shall call them simply l.u.s. of B,

Let & be a V-manifold and p<®. For a Lus. (U,G, 9} for
Usp, take a peU such that ¢(®)=p. Then for any lL.u.s. {fj’p, G,, »,}
for U, such that pe U,C U, there exists an injection 2 from
{INII,, G,, ¢,} into (U, G, ¢} such that z‘)ex(ﬁp). It follows from

Lemma 1 that for sufficiently small U, the inverse image ¢, '(p) of
p consists of only one point and the group G, is isomorphic to the

isotropy group of » in G. Such a lus. {Up, G,, ¢,} is called a

sufficiently small l.u.s. around p. For such a lLu.s. {f]p, G,, ,} the
group structure of G, is uniquely determined by » so that we shall
call G, simply the isotropy group of p.

The ordinary complex analytic manifold is nothing other than a
V-manifold for which the isotropy group of each point reduces to
the unity group. On a V-manifold ¥, the set X of all ramified points,
namely the points where the isotropy groups are not trivial, forms
a subvariety of complex dimension less than %n.” ¥—X is an ordinary
(connected) complex analytic manifold.

PROPOSITION 1. Let D be a domain in C" and & be a properly
discontinuous group of analytic automorphisms of D. Then the quo-
tient space B\D possesses a canonical V-manifold structure.

PROOF. Let @ be the canonical map from D onto B-—-=G\D. For
pe DB, take e D such that @(p)=p and let G, be the isotropy group

of p in &, Let further ﬁp be a connected open neighbourhood of p
such that o(T,)=U, for s ¢ G, and o(U,)~U,=¢ for c¢G,. Then,
denoting by ¢, the map induced by & on ﬁp, we have a lu.s.
(u,,G,, p,} for U,=¢,(U,). Since it is clear that the neighbour-

1) An analytic subvariety ¥ of © is a (closed) subset of ® such that for any l.u.s.

{ U, G, ¢} for U, o~ (x~U) is a (G-invariant) analytic subvariety of U in the usual
sense.
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hoods of p which are uniformized in this sense form a complete system
of mneighbourhoods, the condition (2) is satisfied. If {ﬁp, G,, ¢},
{f]pr, G,,p,} are two L.u.s. defined as above such that (D(ﬁp)ccﬁ(ﬁ;),
then there exists 1¢® guch that z(ﬁp)cﬁ;, which defines an injec-

tion from {(7],, G,, ¢,} into (U, G, ,}. Hence the condition (1) is
also satisfied by our family of l.u.s.

§2. The V-manifolds 3, and W, _,.

Let 9, be the generalized upper half-plane of degree n, namely
the space of all complex symmetric matrices Z—=X+1tY of degree n
with the imaginary part Y >0. Siegel’s modular group M, is the
group of all symplectic transformations
(2 7)
0'__.
.C D.
of degree 2n with rational integral coefficients, acting on §, in the
following form

H(Z)—=(AZ+ B)(CZ + D).

Then, M, being a properly discontinuous group of analytic automor-
phisms of ©,, the quotient space 3B,=M,\D, becomes a V-manifold
canonically. As is shown easily ¥, is not compact, and the purpose
of the following considerations is to construct suitable compactification

B of B, which is also a V-manifold.

For that purpose, we shall first construct a V-manifold ¥, ,
which can be regarded as the set of all classes w.r.t. M, of the limit
points of the sequences Z®=(z{{) such that y{”—> o (k— o), while
all the other 2P and z” remain in some bounded domain, P yF
denoting the real and the imaginary parts of 2{°-==z5, respectively.
The subgroup & of M, leaving fixed the totality of such limit points
will be as follows: |

0 0
(B: a:(AB); A:; *k : , C'_‘ *k : "
CD 0 0
1

PROPOSITION 2. Put

A* 0 B* 0
, 010 0 _ [ A* B*
M=o~ g g o[ 7 =(Gr po) S Mosh
0 0 0 1
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I* 0 0 H&s*
- ty % 13 %
%:{a: % i(l) ;* ;q* ; g%, 3% s integral},

0 0 0 =1
I* denoting the unit matriz of degree n—1. Then M,_, is a subgroup
of & isomorphic to M,_,, N is a normal subgroup of & and we have
G=M, -R. M,  ~%={I}.
PrOOF. Let us write ¢ € & as follows
A* 0 B* b,
‘a, =1 ', b

L ", — W, —b
Py A

O C, t A* a,

0 0 =1

Hence we have
,=0,=0, d==1,
tA*D*—tC*B*:I*,
LA*C* —1O* A% :O,
zB*D*___tD*B*:O’
LA*bliag— tC*f’l::O,
*B*d, 0, —tD*b, =0,

which imply in particular
(A B Yo,

C* D*
It follows easily that the correspondence ¢ : o— o* is a homomorphism

from & into M,_, and that % is the kernel of this homomorphism.
On the other hand, the correspondence

A* 0 B* 0
. [ A* B* /0 1 0 0
Vo :(C* D*)ﬂ@ ot 0 D o
0O 0 o0 1

is an isomorphism from M, ; into ® such that @o¥--1. Hence ¢ is
a homomorphism onto M, , and & splits into N and M, , as stated
in the Proposition.
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Writing Z ¢ ©,, in the form
55 2z

. z—(C*Z*_*_D*)_lC*[s]) or oc¢ n-1y

we have

A7) (

a(Z):<Z* 3+ 279" + 3 ) for o ¢ M.
22830 + Z*[g* |+
If can be seen easily that
‘00
%:{a:( 0s|. g integral}
0 I

is a normal subgroup of & contained in % and that Mn_lz@/% can
be regarded as an effective, properly discontinuous group of analytic
automorphisms 9, ,xC" '={(Z*,3)}. Let us put

%n—lz Vi n-—l\(‘bn—l X Cn—l)'

W,_, has a structure like a fibre space in the following sense.
There exists a natural projection = from ®,_; onto B, =M, \D,_,
which projects the class of (Z*,3) w.r.t. M, , to that of Z* w.r.t.
M, , Z*e9,, let us denote its class w.r.t. M, , by [Z*]. Then
for any [Z*] e ¥, ,

m [ Z*] = A[Z¥]\C"!,

4[Z* ] being the group of all translations of the space C"'={(3)} of
the form

§—> 3+ Z*g* + 8%, g*, 8% : integral.

Hence, denoting by A[Z*] the abelian variety with the period matrix
(I*, Z*), w '[Z*] may be written as {==I*}\U[Z*].

§3. Junction of ¥, and B, _,.

Let ¥, W be V-manifolds of dimension », m and n>m. If we
can define a V-manifold structure on VW (supposing B~W=¢)
such that 8 becomes an open V-submanifold of B W and W a regu-
larly imbedded V-submanifold of 8- ®, then we shall say that we
have joined W to BV, or we have defined a junction of T and W. Here
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the meaning of open V-submanifold will be obvious. A regularly
tmbedded V-submanifold ® of a V-manifold 8 is a subspace of B such

that for any l.u.s. {ﬁq, G, »,} of B around q ¢ W there exist a lL.u.s.
(V,, Hy, ¥} of W around q and a regular injection p from (V,, H,¥,}
into {U,, G, #,}, namely an analytic isomorphism from 174 onto a

regularly imbedded analytic submanifold of ﬁq such that for any
+ € H, there exists a o € G, satisfying the relation por=sop and that
¥, =@,op. For such regular injections we have the following lemmae
which can be proved quite similarly as Lem. 1 and 2.

LEMMA 3. Let p be a regular injgection from {17,,, H, ¥, ] into
{ﬁq, G, v,}- " Put
Gi=1o; 0 G, o(p(V))==p(V))},
N,={0; 0 @G,, o(p@))=p@) for all ¥ ¢ V,}.
Then N, ts a normal subgro@p of G,. For re H, o¢G, satisfying

the relation por=aop belongs to G, and is uniquely determined modulo

N,. The correspondence +—aN, is an tsomorphism from H, onto
G,/N,.

LEMMA 4. Let p, « be two regular injections from {V'q, H, v}
wnto {ﬁq, G, ¢,}+ Then there exists o€ G, such that k=oop. If o’ is
an other element of G, satisfying the same relation, then there exists
o' € M such that o' -=cod” .

Now let us consider the junction of ¥, and B, ;. Let qe W, _,
and {T7q, H, .} be alu.s. of &, ; around q such that VQCS;:)n_I xC" !
and that H, is the isotropy group of v,!(q)=q=(Z*°3"). in M, ..
Let ﬁq be a connected open neighbourhood of (Z*°, 3%, 0) in the space
D,.1xC" 'xC such that

U,~(D,..x C"1x {0})= TV, x {0},
PT g,y x Cr=t U=V,
Let us operate M, ,—=®/M on H, ,x C* 'xC in the following way:
3
o being the class of o ¢ & modulo ER.' Then. the isotropy group G, of

(Z*°, 3, 0) can be identified with H, and we can take U, so as to be
invariant under G,.
Let us put

E(Z*’ 3 627:2'z):(Z*/’ 3/, ez,ﬂz;) if 0( 7* z‘):(Z*
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~

U, :{Z:<Z* 2), (Z*,3,7%) € ffq}

Then taking ﬁq sufficiently small we can prove the following
PROPOSITION 3. (1) ﬁq ts an (unramified) covering space of
U,— V,x {0} w.r.t. the map

Z:<Z* 5>_§(Z*’ 3’ eZm:iz).
Vg

The group of covering transformations is ‘R.

(2) If a(ﬁq)r\ﬁq:/:qo Jor ae M,, then o¢® and the class of o
modulo N belongs to G,. ‘

The assertion (1) is evident. To prove (2) we shall use the
reduction theory of Siegel.”

We shall call Z=X+1Y € 9, reduced wn Siegel’s sense if the
following conditions are satisfied.

(I) abs|CZ+D|=>1,
{C, D} being any coprime symmetrie pair of matrices.
(II) Y is reduced in Minkowski’s sense, namely
Y[ﬂk] =Yy (1 = k = n): '
ylc,k+1£0 (lékén—l);
Y., being the (%, l)-compohent of Y and y,—y,,, and g, being vectors
with integral components ¢,,- - -, g,, of which g, (k <1 <n) are coprime:

(1) abs z,, < ;

1=k, [ <n),

x,, being the (k, /)-component of X.

It is known that these conditions are not independent, but only a
finite number of them are sufficient. Siegel has proved that the set
of all reduced matrices in §, forms a fundamental region of M,.

LEMMA 5. For any Z::( Z* 3

) there exists o€ ® such that
\ 2

a(Z):Z’:(Z " 5/> satisfies the following conditions.
Z

() Z* s reduced.

(IT') Y*[g*]+2%0* =0, ¥ 1,20,
Y*', v being the imaginary parts of Z*', ¥, respectively, and g* any
wntegral (n—1)-vector.

1

(IT1") abs z,, < 2 Ak=n).

2) VC}'.ASiVegelr [1]
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PROOF. Since M. ,C® we can choose ¢ ¢ M,_, such that ¢*(Z*)
=7*" is reduced. Hence we can assume at first that Z* is reduced.

Letting g* be arbitrary integral (n—1)-vectors, we shall consider
the following function

Y*[g*]+29* =Y *[g*+ Y* "'y - Y*[Y* "yl.
Let g be the (integral) value of ¢* at which this function attains
its minimum. Then, putting v'==+=(Y *gf +1vy) we have
Y*[g* ]+ 20 e* =Y *[g* 4 gF + Y * 'y - Y *[g¥ + Y*'p]
=0

for all integral (n—1)-vectors g*. Hence if we put

L
_ o
- wr g |©0
0 1
we can see that Z’:a(Z):( 2 =@+Z%) > satisfies the condi-
V2200 + 2760

tions (x) and (II').

Since M ® contains also the translations.

(773 (2 345,

z \ 2+s
it is easy to see that we can choose o ¢ @ so that Z'=a(Z) satisfies
the conditions (x), (II") and (I1I").

Let us remark that if Z*, 3 and the real part x of z are in some
bounded domain then the possibilities of such o are of only finite
numbers.

LEMMA 6. Let Z*, 3 be in some bounded domain and the tmagi-
nary poart y of z be sufficiently large. Then there exists o & such

that a(Z):a(Z ’ ;’) 18 reduced wn Siegel’s sense.

PROOF. By the above lemma and remark, it is sufficient to show
that if Z*, 3 and the real part x of 2z satisfy the conditions (x), (II') and
(IIT") and Z* lies in some bounded domain, then the conditions (I),
(IT) and (III) are satisfied by Z if we take y sufficiently large.

(I) We can take {C, D} of the following form

_{C, 0V _<D0 0" >_1
C—(o o/(Q *>’ D={"4 [)(Q *)
{Cy, Dy} being a coprime Symmetric pair of matrices of degree r

A1=r=mn), |C,|7#0 and Q an (n, r)-matrix such that (Q %) is uni-
modular. Then putting
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Sy =X[Q]+C;i'D,, T,=Y[Q],
we have

abs|CZ+D|=abs|C,Z Q]+ D,]|

=abs | C, |abs|S,+ T |.
As abs|C,| =1, abs|S,+¢T,|=|T,|, we have
abs|CZ+D|=|T,|=|Y[Q]].

Denoting by Y *(i1,+ <, T,_1; J1,* =y Jr_1) the (4, -, 0, 45 J1, -+, 5,4)-th
minor of degree r—1 of Y'*, the coefficient of ¥ in |Y[Q]] is

Qg Qi |

....... ‘[ e » a0 e 0 0
1
I
|

e I PP R P ’
@ G QG
which is >0 unless (¢, "+, ¢,,)=(0,---,0). Hence if (¢, ", @..)F
(0,---, 0) the condition (I) is satisfied by taking y sufficiently large.
If (Qu, ), q,)=00,--+,0), then r<<n—1 and we may assume that
{C, D} is of the form

o~(§"8) (3 9)

{C*, D*} being a coprime symmetric pair of matrices of degree n—1.
Hence the condition (I) is satisfied since Z* is reduced so that

abs|CZ+ D |=abs |C*Z* + D* | > 1.

2 Y (’1/1,"',@7_1, .71,"‘,37_1)
15 <y =1
1, <o <y gzm—1

(II) Writing g,;:(f >, the first part of the condition (II) ean

be written as follows:

Y9 1=Y*[g¥ ]+ 29,095 + 97y =Y
Hence, if k<n—1, 9,50, it is satisfied by taking y sufficiently large.
If g,=0, then k<n—1 and Z satisfies this condition since Z* is
reduced. If k=n, then g,—==+1 and this condition is nothing other
than the first part of (II").

The second part of (II) is also satisfied since Z* is reduced and
3 satisfies the second part of (IT').

(III) This condition coincides with the corresponding part of (x)
and (IIT").

Now the assertion (2) of Pro~p. 8 follows easily. Assuming ﬁq to
be sufficiently small, let a(ﬁq)mﬁq¢¢> for ¢ € M,. Then there exist
Z, Z'eU, such that o(Z)=2'. By Lem. 6 we can take r, r'¢® such
that +(Z), +(Z") are reduced. Then r'or”'(+(Z2))=+'(Z’). Taking Z
such that ~(Z) lies in the interior of Siegel’s fundamental region, it
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follows that +'or '=1. Hence s—=+""1r¢®. Then by the definition

U, it follows that o modulo % belongs to G..
It follows from Prop. 3 (2) that defining the map ¢, by

the class of (Z*,3) w.r.te M, 1,

7, 3, w) if w=0,

s 3y w)— X 4

P the class of <Z ;) w.r.t. M,
if w=¢"*",

the system {f]q, G, ¢, satisfies the condition of l.u.s. Also it can
be seen easily from Prop. 3 (1) that these l.u.s. together with the
natural .injections satisfy the conditions of l.u.s. defining a junction
of ¥, and W, ;. Thus we have constructed the V-manifold 3,~%, ,
which is a junction of ¥, and ¥, ;.

§4. The compactification of the case of n=2.

The V-manifold T,~3, , construeted in the preceding section is
not yet compact. It is necessary that %, , is completed to a compact
V-manifold ¥, , and this ®, , is joined to ¥,. But in general this
procedure is much complicated and we could not decide whether it is
possible or not. So in the following we shall limit ourselves only to
the case of n-2 and show the possibility of the compactification of ¥..

The structure of ¥, is known by the classical theory of elliptie
functions. Namely the V-manifold structure of QSSI:MI\.SI)IXC is
trivial® and ®, is homeomorphic to C xC by the analytic mapping

the class of (2, 212) > (49(21), P (225 1, 21))s
C=Cw—{} being the complex sphere, j the absolute invariant of

elliptic curve and £ the Weierstrass’ elliptic function.
The compactification of W, will be as follows:

W, = Ox C=(Cx C)~({eo} x Oy ({eo] X {0 }).
We shall show in the following that we can actually join ;.= {0} xC,
V= {0} x {e0} to VoW, so that B, = B, W, W, B, becomes a
compact V-manifold.

®,, can be regarded as the set of all classes w.r.t. M, of the
o k> 0D\
limit points of the sequences Z“’z(z ! 'z ;,‘i)) such that 2%’ and the real
2

parts x(®, x$F of 2(°, 2i® are bounded and the imaginary parts y{*,

3) A V-manifold structure of ® is said to be trivial if the corresponding faisceau
of germs of holomorphic functions coincides with that of some usual complex analytic
structure of B.
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Yy of 2P, 2{* tend to infinity. The subgroup & of M, leaving fixed
the set of all such limit points will consist of the transformations of
the form

(8)  ZZ[U+S,

where ,
U=(" w1 (a1 o)

S: symmetric matrix with integral components.

Let W' be the normal subgroup of &’ formed of all transformatlons
of the form (§) with

o-a(} O =(0) 5-(5 1)

Then &'=6'/N’" can be considered as an effective group of analytic
automorphisms of the space C= {(z,,)} congisting of the transformation

Rio—> 2+ 812, S integral.
The V-manifold ®,, is defined as the quotient space G\C.
Let q € W,, be the class of §—(2%) w.r.t. & and {17,,, H,9,} be
a lLu.s. of ®,, around ¢ such that (2%) ¢ V,CC and that H, is the
isotropy group of (2),) in &’. Let ﬁq be a connected open neighbour-
hood of (0, 2}, 0) in CxCxC such that
(0} x V,x {0ycU,cCx V,xC.

Now let N, be the normal subgroup of ' formed of all trans-
formations of the form (§) with

U= +(0 1) 57 \o sg,)'
Then we can make &' —=@'/N, operate on the space CxCxC as an
effective group of analytic automorphisms in the following way:

27012 270125\ —— [ p27iz,’ 4 2512y
a(€™, 2yy, €7)=(€7", 2y, €7

: 21 212\ _ 2 z{2>
if a( 2o ) < 2y )’
o being the class of o ¢ ® modulo %,. Then the isotropy group G, of

(0, 2%, 0) in @' is the inverse image of H,C®’ \by the canonical homo-

morphism G’ =6'/N,—>G" =6"/N". We can take ﬁq so as to be invariant
under G,.

In the similar way as 1n the precedlng section we can prove that
taking Uq sufficiently small and putting
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the class of (2;;) w.r.t. ¢,
if w,=w,=0,
the class of (2, 245 wW.r.t. M,
¢q(w1’ 219y wg): if wlze%cizl’ wﬁzo’ or w1:0, wg__:e%czﬁzl,
2, %ie
the class of ( ! 1“> w.r.t. M,,
Zo
Lif W, =N, W= e,

{(7,1, G, ¢,} satisfies the condition of lLu.s. of VW, W, around ¢
and these l.u.s. together with the natural injections define a junction
of B, W, and W,.

Next let us consider B,=~ {c x oo}. This point can be regarded

27 2

z§’°>> such that the real parts
of 2®, 2, 25 are bounded and denoting by y®, y®, y$ the imaginary
parts of them respectively y¥—yi¥, y§*—y®, i’ tend to infinity.
The subgroup &”=N" of M, leaving fixed this limit point will consist
of the transformations of the form

Z->Z[U]J+S,

U being an arbitrary unimodular matrix and S an arbitrary integral
symmetric matrix.

Let Ny be the normal subgroup of " formed of all transfor-
mations of the above form with

U=I (mod 2).

Then the factor group &”’=O"/N. is, as is seen easily, isomorphic to
the symmetric group of three letters. This isomorphism will be given
an explicit form by the following considerations.

Let us introduce the theta functions (Theta-Nullwert) of the
following type:

as the limit of the sequences Z““’:(

MB=__ 3 e

g=m (mod 2>
m being the integral vectors which are determined modulo 2 and the
star attached to the summation symbol denotes that the summation
is taken over all non-associated primitive integral vectors g satisfying
the relation g=m (mod 2). Two primitive integral g, ¢’ are said to
be associated if ¢'==+g. ‘
We can prove easily the following transformation formulae:
InZ [ U ])=84u(2) for any unimodular matrix U,
IXZ+8)=(—1)mu*m29%(Z) for any integral symmetric matrix

.
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Since we have Um=m (mod 2) for U=I (mod 2), the funections 4},
¢, %5 are all invariant or two of them change their signs by the
transformations of N!. It follows easily that putting
_MPND) 9NN, DN
Wz W2 *i4)

these functions are all invariant under %, and that &”—=@"/N} aets
on them as the symmetric permutation group.

The behavior of these funections around the point at infinity is
deseribed in the following

LEMMA 7. The functions w,, w,, w, are expressed by the conver-
gent power series of u;=eT TN Yy, = Yy, =@ @ % of the
following from

)

w,

w; =u, +(terms of higher order),
wy=1Uu;+ (terms of higher order),
w;=u; + (terms of higher order).
291+1

, > , we have
29,

Proor. Putting q= (
9 ;l:)( Z) — Z* emZ[Q]
=S @™ (20, F 1R 42215020, +1D20,” + 7580577
— ™1 E* ATz (91 2491/ ) 42190201 97 + 957 ) + 200,/
— g™ S g, 209124017 gy 2(9Y 4953+ (97 +9570} Uy 207>
=™ {1+ (terms of order =>1)}.
Similarly we have
Z%‘i(Z) = g™ 2 SV, 2012 gp., 2409y 19,157+ gy +9575} Us 2009”2 +0,")

=e”™"2 {1+ (terms of order >1)},
lyikl(Z) — ™I 27y S, 29,72 497) gp Aoy 0y +1F U, 2095 2 +957)

=™t {1 4 terms of order =>1)}.
Lemma follows easily from these expressions, g.e.d.

Now let U., be a connected open neighbourhood of (0, 0, 0) in the
space CxCx C= {(w,, W, w,)} invariant under the permutations of the
coordinates and let US be the set of all Ze 9, such that y,—y,.,
Ys— Y19, Y10 are sufficiently large. Then the above lemma shows that
if U, is sufficiently small then we can take U such that U° is
mapped onto {(w,, w,, wsle Us.; w,-ws+w,70} by the map Z—>(wy, Ws, W;).
0., ﬁ,‘l being so, let U.. be the set of all Ze 9, equivalent with
AR (70‘2, w.r.t. the group #”. Then we can prove the following propo-
sition.
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~
~

PROPOSITION 4.
{(wy, W, Ws) € U.: w,-ws-ws70} wort. the map
Z_> (wly wﬂ’ 'I/U3),
AL K29 Z) R OALHA
wl—" T y ’ w2 — ) w3 - .
() I(Z) I(Z)

The group of covering transformations s o

(2) If o(O)~UuFod for oM, then o
The proof will be given in the next section.

Next, let Z be in % and y,— . Then the functions i, x[gmin

J& e converge uniformly as follows:
(D)~ 7™,

= 2
IR €™ — e HE ) N u12(g"+o’)u22(,g'+1)~

g/ =—00

o o]
Z em{zl(w’—y1)2+2z12(2g'+17}

¢/ =—°

-= '(92 (2212 ; 1; 4z1>7

ﬂ(ﬁ(Z)/esz—? Zoo] ulgqﬂ ugg(gm)rgr)
g/ —= -
o

jze

¢/=-o0

=1y (2212 ’ 1’ 421)-

f7v:’i(514(1’2+27-'1 220"

Hence we have
ﬂﬁ,(Z)z?ﬁ(Z) BN (2205 1, 4z,)

35(2) 922,55 1, 42,)
z?&(Z)z?%(Z)l — o™ 952255 1, 421)

% Z) 92255 1, 42,)
SHALH AN

VA

Let V2 be the set of all (z,, 2;) € D, x C such that Z:(Z1 zw> e U

if y, is sufficiently large. Let V. be the set of all (zl,zlg)‘e H, xC
formed of all the

equivalent with (21, 2,) € V° w.r.t. the group 9"
transformations of the form

(21, z12)“)‘<z1+31, '—'_812+z1g1+312)’
Sy, 01, Sz being rational integers.
be proved by the theory of elliptic theta functions.
section.)

PROPOSITION 5. (1) V. is an (unramified) covering space O f

{(w, wy); (wy, W, 0) € (NL,, w,-w;~=0} w.r.t. the map

(1) U s an (unramified) covering space of

Then the following proposition can
(See the next

(0

ta

to
be

an
C:
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(24, 212) = (wy, W),
e #(22y5; 1, 4zy) I #5(2242; 1, 4z1)7.
94(22,05 1, 4z,)’ #9(22405 1, 42,)
The group of covering transformations consists o f the transformations
of the form
(215 212) > (2, + 81, 215+ 2,9; + 8,0)
with g,=0 (mod 2).
(2) If (r(V )/\V ¢ for aeMl, then o€ 9.
Finally, let (z,,2,) be in V;L and y,—~> . Then the functions
/€™, 9, converge uniformly as follows:
Fo(2215; 1, 42,)/€™"1—> @212 4 @ 2mi1y
35(2245; 1, 4z2,)~>1,
so that we have

erimn B 222155 1, 42,)
%(22y5; 1, 42,)

-, $4(2240; 1, 4z1) 1
94(2215; 1, 42,) e2"i212+e‘2””12 )

Let W0 be the set of all 2y, € C such that (z,, 2,,) ¢ V if y, is

sufficiently large. Then W" cons1sts of all z,, Wlth the imaginary

parts y,, sufficiently large. Put W {F20; 20 € W"} ﬁfm is clearly
invariant under the transformations

-0,

e’}C’L

Rig—> =25+ 8y
with s, integral, which constitute the group we have formerly denoted
by 6,
Now the following proposition is obvious.
PROPOSITION 6. I/szw ts an (unramified) covering space of {w,;
(0, w., 0) € U.,, w,F 0} w.ar.t. the map
1

212"‘)@00: S -,
92'7”212—-[— 8-27:1212

The group of covering transformations is &',
From these considerations it will be now clear how we should

take the l.u.s. {INLO, G, P} around the point at infinity p. in order

to define the junction of B,={p.} to V,—W, “®,,. Namely, let U,
be an e-cube with sufficiently small ¢ in the space C*= {(wy, w,y, w,))
and G. be the symmetric permutation group of the coordinates, in
C® Let ¢, be as follows
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Doy if Wy=w;=w3=0
the class of 2. € W., w.r.t. &,
if w,=w,=0 and w; ii as in Prop. 6,
Poo Wy, W, wa):T the class of (2, #q2) € Vmw.r.t. M,

if w;=0 and w,, W, are as in Prop. 5,
the class of Z e U., w.r.t. M,
\if w,, ws, w, are as in Prop. 4.

We have to complete this definition of ¢. taking care of its Ge-
invariance. Then it can be proved easily by Prop. 4, 5, 6 that the
system {Usy Guy P} satisfies the condition of l.u.s. and that there
exist natural injections between these l.u.s. and the l.u.s. we have
formerly defined. Thus we have established the junction of By W ~W,,
and %,.

The compactness of W, =B, W, v W,,~B, will be proved in the
next section.

§5. The compactification of the case of n=2 (continued).

Let us put
I',=the group of all unimodular matrices of degree 2,
I'\(2)={U; Uel'y,, U=I (mod 2)}.

N\,

Let Y:( Y1 Z”) be a positive definite symmetric matrix of degree 2.

We shall call “Y reduced w.r.t. 1',(2) if the following conditions are
satisfied :

(1) Y(g]l=us
for all primitive integral vectors gz<(1)> (mod 2),
(ii) Y(gl=vs
for all integral vectors q:<gl>z<(1)> (mod 2) with g,==1,

(iit) Yo = 0.
Now I',(2) can be regarded as a discontinuous group of trans-
formations of the space of all Y >0 in the following way:
U:Y->Y[U].

Then we can prove analogously to the reduction theory of Minkowski
that the totality of Y reduced w.r.t. [I'y(2) forms a fundamental
region of the group of transformations I"(2).
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We shall first prove the following lemma.
LEMMA 8. Y is reduced w.ri. I'(2) if and only if
0=y.=<y, and y,.

REMARK. It is known that Y is reduced in the sense of Minkowski,
namely w.r.t. [y if and only if

0§2y12§y1§y2-

PROOF. Putting $]:<2g21;1> . (i) can be written as follows.

Y97+ 90) + 11229190+ 02) + 1007 = 0.
We have, in particular, for ¢/-=0, g,— =1
=Y. +Yy,=>0.
Similarly we have from (ii)
Y17y, = 0.
Hence we have 0 <y,, <y, and Ys
Conversely, assume that 0<y,, < ¥, and y,. Then (i) is satisfied
since
Y91+ 90 +Y12(29:95 + 95) + 1.9
= Y191+ 90) + ¥1:(20:90 + 92 + y1:05°
=Y {91+ 92"+ (91 +9)} =0.

Similary (ii) is also satisfied, q.e.d.

Now we shall proceed to the proofs of the propositions in the
preceding section.

PROOF OF PROP. 4. (1) Let T be the group of all translations

Z—>7Z+S
with integral S. Then T is a normal subgroup of &", N/ and &, N’
split into T and the subgroups isomorphic to I, I «(2), respectively.

Now, since U., is sufficiently, small, it follows from Lem. 7 that
the correspondence

(Uyy Us,y U) - (wy, w,, w;)
1s one-to-one. Hence for Z, 7' ¢ (7;2, we have w,(Z)—w,(Z") (1 =<17=38)
if and only if u(Z2)=u,(2") (1<1%=<3), namely
Z'=Z+8S
with integral S. Therefore {(w,, Wy, wy) e U, W, Wy w; 70} is homeo-
morphic to the quotient space \U°.
On the other hand, 5000 is invariant under the transformations
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7 Z[U]

) =71 7o),

o-s(5 ). (.
+(95) =75 T1) =1 -7)
2z

which form the isotropy group of Z :(\ - 22) € ﬁi. Since these trans-
formations from a_complete system of representatives of &"/%t) =
' I'y2), we have U.=0"UL=WTk.

It follows easily that for Z, Z’eﬁw, we have w,(Z)=w{Z")
(1=<i=83) if and only if Z'=0o(Z) with oce3;'. Hence (W, Ws, W) € Uss;
W, Wy Wy F 0} 18 homeomorphic_to the quotient space ‘R{)’\ﬁw. More-
over %t/ has no fixed point in U.. For if it were not so, Jt; would

have a fixed point in ﬁ&. Suppose that

Z=oZ)=2Z[U]+S
for Z ¢ 5’3,, s e M. Then we have Y=Y[U ]. But by the definition of
UL, Y,—Y1sy Yo— Y12 Y12 are sufficiently large. Hence by Lem. 8 Y is
in the interior of the fundamental domain of [ '(2) constructed above.

Hence U=I and so S=0. This completes the proof of (1).

(2) For any ZeH, we can choose o ¢ ®” such that Z'—=qa(2%)
satisfies the following conditions:

(II) Y’ is reduced in Minkowski’s sense. Namely

02y, <y =i,

with

H+

I+

O O
R

(IIT) abs z}, < ; A<k, 1=2).

In the similar way as in §3 it is sufficient to show that if Z satisfies
(I1), (IIT) and ¥, is sufficiently large, then Z is reduced in Siegel’s
sense. Hence we have only to prove the condition (I) stated in §3
under these assumptions.

The notations being the same as in the proof of Lem. 6, we have

abs|CZ+D|=|Y[Q]].

Hence it is sufficient to show that for any Q, 1Y[Q]| =1, if K=2y;:
<y, <y, with sufficiently large K. If Q is a unimodular matrix, it

is evident. Let Q be a primitive integral vector <gl> Then
2
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YQ]= Y1 + 212015 + Y205
= (Y1 — Y1) + Y12(q; + g.)*+ (Y= Y12)Q5

> sz{qi+<q1+q2>2+qz} > ’2‘

This proves our assertion.
PrROOF OF ProOP. 5. (1) Let " be the group of all transfor-
mations of the form
(21, 210) > (21 + 84, 25+ 2,91+ S12)

with integral s,, g,, s;» and £, be the subgroup of $" formed of all
transformations of the above form with g,=0 (mod 2).

It is clear that w,(2,, z.)=w,(21, 21.) (1=1,2) if (2], 21,)=0(24, 25)
for o ¢ ). The converse can be proved in the similar way as above,

but it ean be proved also as follows.
By the well-known formula in the theory of elliptic function we

have
9522455 1, 42y) :,793 . P (2255 1, 42))— ¢
U220 1, d2) % £ (2205 1, d2)—e
where

91::§)<513 0 1, 4z1>, egzﬁ)< 1 +2z; 1, 4z1>,
P =—=13:(0; 1, 4z,), P, —=13,(0; 1, 4z,).
The values of e,, e, ¥./e™™, ¥, depend only on z; modulo 1 .
Suppose that w,(2,, z12) =w(2}, 21,) (¢=1,2). Then since
W, (24, 21s) c We(2y, 21) — €77
we have z,=z2, (mod 1). Hence the corresponding values of e, e,
9%, 9% coincide. Since
Wi(21, B1z) 9522105 1, 42y)
We(Ry, Z12)  H (22495 1, 42y)
we have by the above formula
£ 2z 1, 42)= £ (221,; 1, 4z)).
It follows, as is well-known, that
221, = 22, + m 4z, +m,
with integral m,, m.. But if so, we have
(21, 212) =W1(2y, 212) =(— 1) W, (21, 210),
whence follows that m,=0 (mod 2). This proves that (21, 2i,) =0o(2, #12)
with o€ 7.
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~

Now, V. is invariant under the transformation
(21, 212) > (21, —212+21),

which leaves invariant the points of the form (2z,z). Since this
transformation together with the identity forms a complete system
of representatives of /9", we have ﬁw:eb”i%:r 3’17&. Hence it
follows from what we have said above that {(w,, w,); (w;, ws, 0) € U.,
w,-w,70} is homeomorphic to the quotient space -@3’\%00.

Since the fixed points (24, 2;.) of 9 is of the form

213:—"21'(“:721 + 2“

with g,, s, integral and g,=0 (mod 2), we have ym:ylgz 1 with integral
9;. But for (z,zy) € V2 we have Y, >4;.>0. Therefore V9 has no

fixed point of O;’, hence so is also ﬁo. This proves (1).

(2) It can be proved easily that a fundamental region of ]lNL is
given by the totality of (zi, z,,) satisfying the following conditions:
(%) 2, is reduced,

(IT") 0=2y.=y,
(111" abs ., =< é .

For any (z,, 2;:) € 9; x C we can choose ¢ € 9" such that (2], 21,)— (2, 212)
satisfies (II') and

(III) abs x,, abs z;,, =< ; .
Hence (2) follows from the fact that if (2, 2;,) satisfies the conditions
(II') (III) and ¥,. is sufficiently large, then it satisfies also the condi-
tion (*).

PROOF OF THE COMPACTNESS OF ¥,. Let {p,} be a seguence in
WB,, p, being the class of Z® ¢, w.r.t. M,. We may assume Z“ to
be reduced in Siegel’s sense. Then we have, in particular,

(II') 0 < 2yP <y <y,

If ¥ is bounded, then Z“ is bounded so that we can choose a subse-
quence of {Z®} which is convergent in .. Then the corresponding
subsequence of {p,} converges in ¥,.

If %% is bounded but not i, then we can choose a subsequence
{Z'*} such that {(z{?, 2/*)} converges to (2, 2;5) € ;X C and y;P— oo,



On Siegel’s Modular Functions 129

Then the corresponding subsequence {p;} of {»,} converges to the
class of (z,, 2;,) in &,.

If % is bounded but not y¥*, then we can choose a subsequence
{Z"®} such that {z°} converges to z,,¢C and ¥/ —> o, Y > o,
Then the corresponding subsequence {p;} of {p.} econverges to the class
of 2z, In B,s.

If ¥ is not bounded, then we can choose a subsequence {Z'*®}
of {Z®} such that yif’ > co. Then by (II) we have also y|®—y/§ - oo,
Y:® —y¥—> 0. Hence the corresponding subsequence {pr} of [p.}
converges to p. € J,.

Similarly, we can prove that any sequence from W, B,
W, B, has a convergent subsequence. In fact we have, as was
stated at the beginning of §4,

W v W, v B, = CxC,
%W, B, ~ C.
Hence the V-manifold 8B,=B,~ W, W, ~TB, is compact.

We have thus established the following theorem.
THEOREM 1. B,=M,\$, can be completed to a compact V-mansfold

B,. B, is a junction of B, und W, homeomorphic to CxC.
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Plongement Projectif d’une Variété de Groupe

Claude CHEVALLEY

Soit V une variété définie sur un corps K et qui admet une loi
de composition normale définie sur K. Il a été établi par M. Barsotti
quil y a une variété projective définie sur K, birationnellement
équivalente & V, dont une partie ouverte convenable est une variété
de groupe (relativement a la loi normale donnée). Nous nous proposons
d’indiquer le schéma d’une nouvelle démonstration de ce fait; cette
démonstration fait usage de la technique des spécialisations de cycles,
a laquelle nous nous proposons de consacrer prochainement une étude.
Cette étude mn’étant pas encore publiée, nous nous abstiendrons
d’entrer ici dans le détail de certaines démonstrations.

Faisant usage des travaux de A. Weil sur la théorie des variétés
de groupes, on sait d’une part que V est birationnellement équivalente
4 une variété de group G définie sur un sur-corps K' de K, d’autre
part qu’il y a une partie ouverte V, de V, définie sur K, qui est un
““morceau de groupe’’ (group chunk); on peut supposer sans restric-
tion de généralité que V,==V, que V est une variété affine définie
sur K et que V est une partie ouverte de G.

Montrons d’abord qu’on peut supposer que K’ est la fermeture

algébrique K de K (dans le domaine universel). Soit V, l’ensemble
des points de V algébriques sur K. Alors tout u e G peut se mettre
sous la forme st, avec se¢ Vi, t e V; en effect, uV " est une partie
ouverte de G, et V~uV ' est une partie ouverte non vide de V,
qui contient done au moins un point de Vi, ce qui démontre notre
assertion. De plus, il y a un nombre fini de points s, A=i<h)
de Vi tels que G soit la réunion des s,V, comme il résulte tout de
suite du fait que tout ensemble non vide de parties ouvertes de G
admet au moins un élément maximal. Soint &,---, &, les coordonnées
affines sur V. Pour chaque ¢ (1<i=<h), soient & les fonctions
sur s,V définies per &7(sw)—=E&,(x); ces fonctions définissent sur s,V
une structure de variété affine définie sur K. Soit z, un point
générique de V sur K. Pour chaque ¢, x, appartient a s,V et

est un point rationel sur K(x,) de cette variété affine. Soit T la
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fonction sur V a valeurs dans s;V, définie sur K, telle que T (x,)==2,;
¢’est une correspondance birationnelle. Si ¢, ¢’ sont des indices quel-
conques entre 1 et 4, il y a une fonetion 7', sur s,V & valeurs dans

s, V, définie sur K, telle que T,,(x,)=z,. Les correspondances T,
sont partout birégulieres: elles définissent sur G= U?., s,V une struc-

ture de variété de groupe définie sur K, ce qui démontre notre as-
sertion. Supposons done & partir de maintenant la variété G définie

sur K.
Ceci dit, le principe de la démonstration consiste & construire un

diviseur D de V, rationnel sur K, qui posséde la propriété suivante:
I’application qui & tout seG fait correspondre la trace sur 'ouvert V
de G du diviseur translaté s de D est injective. On associera alors
a s le point de Chow dans I’espace projectif P ambiant de V (qui est
affine) de la trace de sD sur V (considérée comme définissant un cycle
de P).

LEMME 1. Soit s un élément de G rationnel sur K qui posséde
la propriété suivante: pour tout x e Vi, tel que sx e V, st est conjugué
de x par rapport a K. Alors s est [’élément neutre I.

On peut évidemment supposer dim G =>0. Il existe des fonctions

rationnelles f,---,f, en n lettres a coefficients dans K (n étant la
dimension de I’espace affine ambiant de V) telles que, pour tout point
a=(a,---,a,) de V tel que les f, soient définies en @, sa soit dans
V et que l'on ait &(sa)—f(a,---,a,) (les & étant les fonctions co-
ordonnées sur V). Soit ¢ un indice tel que &, ne soit pas constante.
Soit w, un point générique de V sur K, et soit F la fonction

sur V, a valeurs dans le plan affine, définie sur K, telle que
F(vy)= (&), fi(&:(vy), -+ -, £.(v,))); soit C le lieu de F(v,) par rapport a

K. Soit U Pensemble des points a ¢ V en lequel toutes les f, sont
définies; il existe une partie ouverte non vide I' de C telle que tout
point (x, ¥) € /' qui est rationnel sur K soit I'image par F' d’un point
de U~Vyg; il en résulte que, si (x,y)el', ¥ est conjugué de « par
rapport & K. Montrons que C est une courbe. Puisque & n’est pas
constante, la premiére fonction coordonnée n’est pas constante sur C;
il suffit done de montrer que C n’est pas le plan tout entier; or, dans

le cas contraire, pour tout point (z, )¢ [' rationnel sur K, il y aurait
une infinité de points y’ ¢ K tels que (x,y") ¢ F(U), ce qui n’est pas.

Soit P(X, Y)=-0 une équation de C. Il y a une partie finie A de
K telle que, pour « ¢ K — A, tout point de C d’abeisse x appartienne a
F(U). Supposons d’abord K infini. II y a une infinité de points
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xe K— A tels que I’équation P(x, Y)-—=0 ait au moins une solution dans

K: cette solution étant conjuguée de x par rapport & K est égale &
z; comme P(x, x)=0 pour une infinité de valeurs de x, on a P(X, X)=0
et C est la diagonale du plan. On a done f,(&,---, §,)=&, pour tout
indice ¢ tel que &, ne soit pas constant. La méme formule subsiste
évidemment si &, est constant. On a donc sx=x pour tout z e U,
d'ou s=1. Supposons maintenant que K soit un corps fini a ¢ éléments.
Pour tout N >0, soit Ky le corps fini & ¢*¥ éléments. Il y a un
nombre fixe ¢ tel que, exception faite pour au plus ¢ valeurs de z,
la condition x ¢ Ky entraine que 1’équation P(x, Y)-=0 ait une racine
de la forme 29¥(0 <y =<2N-—1). Nous allons montrer qu’il y a un m
tel que ’on ait ou bien P(X, X“*)=0 ou bien P(X*, X)=0. Supposons
le contraire. Désignons par e le degré de P. Le nombre de solutions
de I’équation P(x, ") est au plus eq’. Supposons v >N, et évaluons
autrement le nombre de solutions de 1’équation proposée en éléments
de Ky. Soit P’ le polynome déduit de P en élevant ses coefficients
4 la puissance ¢*¥; si P, #”)—=0, z ¢ Ky, on a aussi P'(z”" 7, 2)=0;
cette équation a au plus eg*” > solutions. Le nombre des v ¢ Ky tels
que P(z, Y)=0 ait une solution conjuguée de x par rapport a K est
done =<2e(1+---+q")=2e(qg""'—1)g—1)""; la différence entre ce
nombre et ¢V devient >¢ pour N assez grand, d’ou contradiction.
On conelut de 1a que, si & n’est pas constante, il y a un automorphisme

fixe », de K/K tel que, pour tout ve Vi~U, on ait &(sv)=a,5,®)).
Ceci dit, l’ensemble V—U n’a qu’un nombre fini de composantes
irréductibles, et eces composantes sont définies sur K. On en déduii
que Dintersection U de U et de ses conjugués par rapport & K est
une partie ouverte non vide de V'; si ve V,~U’, on voit par récur-
rence sur k que les s sont tous conjugués de v par rapport a K et
appartiennent a U’; comme v n’a qu’un nombre fini de conjugués
par rapport & K, il en résulte que s est d’ordre fini. On a alors,
pour tout ve U~V &@)=E(sv)=(5)*, si r est tel que s"=1.
Or, si & n’est pas constante, il y a des points ve U~V tels que
K(,(v)) soit une extension de degré arbitrairement grand de K on
en conclut que o est I'automorphisme identique de K. Mais il est
bien connu qu’aucun automorphisms distinet de l’identité de K/IK
n’est d’ordre fini; #, est donc l’identité, et le lemme est démontré.

Ceci dit, il nous sera commode dans la suite de pouvoir supposer
que r>=>2. Nous allons d’abord traiter séparément le cas ou r=1.

L’adhérence de V dans l’espace projectif P est alors une courbe V;
on en déduit par le processus de normalisation par rapport & K une
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courbe V, normale sur K, définie sur K. Cette courbe n’est pas
nécessairement absolument normale, mais on en déduit une courbe

absolument normale V, par le processus de normalisation par rapport
a4 un sur-corps K, de K, que I’on peut supposer purement inséparable

sur K la courbe V, n’est définie que sur K.. Comme V. et G sont
des courbes sans singularité, et comme V., est compléte, il y a une

bijection de G sur une partie ouverte V, de V, qui est une corres-
pondance birationnelle partout biréguliére; V, est donc une variété de

groupe. Soit V, son image dans V,; comme V, est définie sur K, il
suffira d’établir que V, est une variété de groupe. Or cela résultera
de Dl’assertion guivante, qui nous sera encore utile dans la suite:

PROPOSITION 1. Soit V wune variété définie sur un corps K,
normale sur K et munie d’une lot de composition normale définie sur K.
Soit V' une variété (absolument) normale déduite de V par normali-
sation sur un sur-corps K' de K algébrique et purement inséparable
sur K. Si V' est une variété de groupe, il en est de méme de V.

Soient =,, ¥, des points génériques indépendants de V sur K, et
soient x,y des points quelconques de V. Comme V, et par suite
aussi V'x V, est normale sur K, il suffira, pour montrer que la multi-
plication dans le groupe est définie au point (z,y), d’établir qu’il y a
une extension et une seule de la spécialisation (z,, y,)—(x,y) en une
spécialisation de (x,, ¥,, ,%,). Soit T le graphe de la correspondance
birationnelle entre V et V’; comme V’ se déduit de V par normali-
sation sur K’, T est une variété qui est compléte au-dessus de tout
point de V'; comme K’ est purement inséparable sur K, T définit une
bijection de V'’ sur V. Soient s,,%,,s,t¢ les points de V' qui corres-
pondent & =, ¥, ®,y. Comme K’ est purement inséparable sur K,
(2o, Yo)—> (2, ¥) est une spécialisation sur K’; T étant définie sur K il
résulte tout de suite de ce que nous avons dit que (Zy, Y, So, to)—> (2, 9, 8, t)
est une spécialisation sur K’; il en est donec de méme de
(@0, Yo 805 Loy Solo)>(, Y, 8, ¢, st); on en déduit que, si z est le point de
V tel que (z,st) € T, (,, Yy, %)~ (, ¥, 2) est une spécialisation sur
K. Soit réciproquement z, tel que (x,, Yo, ToYo)—> (2, ¥, 2,) soit une
spécialisation sur K, donc aussi sur K’. Utilisant toujours le fait
que T est compléte au-dessus de tout point de V, on voit que cette
spécialisation se prolonge en une spécialisation de (@0, Yo, ZoYos So, o),
done aussi de (%, Yo, ToYo, So, Lo, Sot), d’ot il résulte tout de suite que
(25, st) € T, d’ou 2,=2. Ceci démontre la prop. 1.

Retournons aux notations utilisées plus haut, et supposons 2
partir de maintenant que la dimension r de la variété affine V est
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>2. Tout eycle Z de V définit un eycle Z de la variété projective
V adhérence de V dans l’espace projectif P. Par ailleurs, Z définit
aussi un cycle Z dans la variété G; si s € G, nous désignerons par

F(s, Z) 1a trace sur V du cycle sZ de G.
LEMME 2. Sott n un entier >0, et soit s un élément <1 de G

rationnel sur K. Il existe alors un diviseur positif premier rationnel
sur K, soit D, de V qui possede les propriétés suivantes: on a
| D|5=| F(s, D)|, et les composantes de D sont des variétés de degré

>n, rationnelles sur K.
(Nous désignons par |Z| le support d’un cycle Z; nous appelons

degré d’un cycle Z sur V le degré du cycle Z de P). Pour tout
m >0, les diviseurs positifs de degré m de P sont représentés par
les points d’un espace projectif @Q,. Soit E, I’ensemble des points

de Q,, qui représentent des diviseurs A de P tels que ou bien V C|A|

ou bien V-A ne soit pas une variété irréductible prise avee le coef-
ficient 1; K, est une partie fermée de Q,, et, comme > 2, il résulte
d’un lemme de Nakai que dim Q,,—dim £, augmente indéfiniment
avee m, donc est =2 pour m assez grand. Soit  un point de Vi
tel que sx soit dans V mais ne soit pas conjugué de x par rapport
a K (lemma 1). Les points représentatifs des diviseurs dont les
supports contiennent un point donné de P forment une sous-variété
de codimension 1 de @,,; prenant donc m assez grand, il y a un point
ae®,—F, qui représente un diviseur A tel que x¢|A| mais
qu’aucun conjugué de sxr par rapport & K mn’appartienne a |A|[; on
peut de plus supposer a rationnel sur K. La trace sur V de V-4
est de la forme 1-D,, ou D, est une variété rationnelle sur K, de
degré =m; de plus, si ¢ est un automorphisme de K/K, o-D, ne
contient pas le point s-x; soit D le cycle premier rationnel sur K
déterminé par D;; on a donec x€|D|, sx¢|D|; comme sx ¢ | F(s, D),
on a |F(s,D)|7#|D]|; si on a pris m=n, D posséde les propriétés
requises.

Tenant compte de ce que G—V ne contient qu’un nombre fini
de variétés de dimension r—1, on voit facilement qu’il y a un m,>0

qui posséde la propriété suivante: si A est une sous-variété de dimen-
sion r—1 de V de degré =m,, et si s est élément quelconque de G,

sA rencontre V. Si D est un diviseur positif de V dont toutes les
composantes sont de degrés =m,, une condition nécessaire et suffisante

pour que F(s, D)=F(s’, D) est que 'on ait sD=s'D, i.e. s~ 's’D=D.
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En effet, si on avait F(s, D)= F(s’, D), 35:/5 s’ﬁ, il y aurait au moins
une composante A de D telle que I'une au moins des variétés s[f,
s’A soit dans G—V, ce qui est impossible.

Si 4 est un diviseur positif sur @, rationnel sur K, 1’ensemble
des s € G tels que sd4—=4 est évidemment un ensemble fermé rationnel

sur K (car si A et B sont des sous-variétés de G rationnelles sur K,

I’ensemble des s tels que sA=PB est fermé et rationnel sur K).

LEMME 8. Il existe un diviseur positif D de V rationnel sur K
tel que s— F'(s, D) soit une application injective de G dans I’ensemble
des diviseurs de V.

Nous construirons par récurrence une suite finie (D,) de diviseurs
positifs rationnels sur K de V dont toutes les composantes sont de
degrés >=m, (m, ayant la propriété indiquée ci-dessus). Nous partons
d’un diviseur premier rationnel sur K,, soit I),, dont les composantes
sont de degrés =m, Si D, est construit, et si s— F(s, D,) est
injective, nous arrétons notre construction. Sinon, ’ensemble £, des

se G tels que sﬁk:ﬁk, qui est fermé et rationnel sur K, contient
au moins un point s, rationnel sur K, puisque les composantes de

D, sont de degrés =>m,. Les degrés des cycles F'(s, D,) pour tous les
s € G sont bornés; soit m,,, un entier strictement supérieur & tous
ces degrés. Il existe un diviseur positif A,,; de V, rationnel sur X,
dont les composantes sont de degrés = max(m,.,,m, tel que
E(s, Avi)F A,y soit D,.,—D,+A,.,. On voit alors facilement
que, si se G est tel sD,.;=D,.,, on doit avoir sD,=D,, d’ou se F,,
et sd,.,,=A,.,;, Aol ss¥s,; I'ensemble F,,, est donc contenu dans
mais -+ E,. Comme les £, sont des ensembles fermés, notre construction
s’arréte au bout d’un nombre fini de pas, ce qui démontre le lemme.

Soit D un diviseur qui posséde la propriété du lemme 8. Soit
v, un point générique de V par rapport a K, et soit Z, le cycle

F(v,, D) de I’espace projectif P. Nous désignerons par v, le point de
Chow de ce cycle.

Le cycle F(v,, D) est rationnel sur K(v,); c’est en effet 'image de
D par la fonction f sur V a valeurs dans V telle que f(x)=v,x pour
tout x ¢ V tel que v e V, et f est définie sur K(v,). Il résulte de
12 que Z, est rationnel sur K(v,), d’ou K(v,) ©K(v,). Par ailleurs,
K(v,) est purement inséparable sur K(v,). Soit en effet ¢ un auto-
morphisme du domaine universel qui laisse fixes les points de K(v,),
donc aussi les cycles Z, et F(v,, D); comme o transforme F(v,, D) en
F(s-v,, D), il résulte du caractére injectif de I’application s— F{s, D)
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que ¢-v,=7v,, ce qui démontre notre assertion.

Soit I', le lieu de v, par rapport & K. On sait qu’il existe une
variété projective /', définie sur K, un point générique v, de [', par
rapport & K et une application ¢ de ['; sur /', qui possédent les pro-
priétés suivantes: on a K(v,)=K(,), ¢(v:)=1v,; ['; est normale sur
K; ¢ est définie sur K, est partout définie sur ', et 'image réci-
proque par ¢ de tout point de /', est un ensemble fini.

Soit /', une variété projective absolument normale déduite de [/,
par normalisation sur une extension algébrique purement inséparable
K’ de K. 1ly adone une application bijective ¥ de /. sur /', définie
sur K', qui est partout définie, qui est une correspondance birationnelle
entre [', et [',. Soit v, le point de I, tel que ¥ (y,)=r,; ¢’est un point
générique de /', sur K, et K(y.)==K(v,). Ily a done une fonetion g sur
G, a valeurs dans [',, définie sur K, telle que 9(v,)=v.. Nous allons
montrer que g est partout définie. Soit s € G; comme /', est compléte,
il y a au moins un 8§, € I', tel que (v,, v,)—(s, §.) soit une spécialisation
sur K; G étant normale, pour montrer que g est définie en s, il
suffit de montrer qu’il n’y qu’un nombre fini de points 8. possédant
cette propriété. Comme 1’image réciproque de tout point de ', par
po¥r est finie, il suffit de montrer qu’il n’y qu’un nombre fini de
points v, de I', tels que (v, v,)—(s, §,) soit une spéeialisation sur K,
done qu’il n’y qu’un nombre fini de eycles Z de l’espace projectif
tels que (v,, Z,)— (s, Z) soit une spécialisation sur K. Or, soit Z un
pareil cycle. La théorie des spécialisations de ecycles montre qu’il
existe un cycle X sur V tel que (v, Z,, F(v,, D))~ (s, Z, X) soit une
spécialisation sur K. Or la spécialisation v,—>S$ se prolonge d’une

maniére et d’une seule en une spécialisation de (v,, v,])) qui spécialise
v,D en sD; comme F(v,, D) est la trace de v,D sur V, on en conclut

que X est la trace de sD sur V, d’ou X=F(s, D). Par ailleurs, X
est aussi la trace sur V du cycle Z de ’espace projectif; Z est donc
la somme de F(s, D) et d’un cycle de V dont les composantes ne

rencontrent pas V. Mais V—V ne contient qu’un nombre fini de
variétés de dimension r—1; comme par ailleurs Z est du méme degré
que Z,, on voit qu’il n’y qu’un nombre fini de possibilités pour Z,
et notre assertion est établie. De plus, on voit que (po¥)(g(s)) est
le point de Chow d’un cycle dont la trace sur V est F(s, D), ce qui
montre que g est une application bijective de G sur ¢(G). Soit % la

fonetion sur 7", & valeurs dans G, définie sur K , telle que A(v,)=v,.
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Si 8,=g(s), avec un se G, (vs, v,) > (3, s) est une spécialisation sur K;
comme g est injective et définie sur K, s est le seul point de G pos-
sédant cette propriété; comme /', est normale, il en résulte que h est
définie en tout point de I',. De plus, ~ ne peut évidemment étre
définie en un point de ['; n’appartenant pas a g(G); ce dernier
ensemble est done ouvert dans [’y et est une variété de groupe. Il
résulte alors de la proposition 1 que ¥(g9(G)) est un variété de groupe.
Comme I', est définie sur K, le théoréme est démontré.

CoLUMBIA UNIVERSITY



Arithmétique et Classes de Diviseurs sur
les Variétés Algébriques

André NERON

1.— Introduction.

Pour toute variété algébrique V, nous désignons par G(V) le
groupe des V-diviseurs, par G,V) le groupe des V-diviseurs algé-
briquement équivalents a zéro, par G(V) le groupe de V-diviseurs
lindairement équivalents & zéro. Pour tout corps k de définition de
V, nous désignons par G* V') le groupe de V-diviseurs rationnels sur
k et par GYV) et G{(V) les intersections de ce groupe avee G, (V)
et G,(V) respectivement. Rappelons les résultats suivants, valables
pour toute variété V projective normale.

(A)-—Le groupe G, (V)/G(V) est ‘‘ birationnellement isomorphe ’’
au groupe des points d’une variété abélienne appelée variété de Picard
de V (voir [1], [2], [8], [6]).

(B)—Le groupe G(V)/G,(V) est un groupe de type fini ([9], [4]).

I’une des méthodes les plus fréquement utilisées pour étudier
ces deux derniers groupes consiste & ‘“fibrer’” V par une famille de
courbes paramétrée par une variété algébrique B. Il est commode
d’autre part d’introduire un ‘‘demi-domaine universel’’ F' (Cf [5)),
¢’est-a-dire un sous-corps F' algébriquement fermé du domaine uni-
versel, de degré de transcendance infini sur le corps premier, et tel
que le domaine universel soit lui-méme de degré de transcendance
infini sur F. L’étude des groupes G(V), G.(V), G(V) se ramene,
par transport de structure, a celle des groupes G"(V), GL(V), GI'(V).
On peut alors considérer un point générique M de B sur F' et la
courbe C de paramétre M. Pour tout X e G*(V), l'intersection X-C
est définie. IL’application 6:X—> X-C est un homomorphisme de
G"(V) sur G"*(C). Soit H"(V,C) le noyau de cet homomorphisme,
¢’est-a-dire le groupe composé des V-diviseurs rationnels sur F' et dont
aucune composante ne rencontre C. Posons H{(V,C)=G{(V)+ H*(V,C).
On montre sans difficulté queles relations X ¢ H{(V,C)et X-C € G{*(C)
sont équivalentes. Done HY(V, C)=6"YG{"”(C)), et on a I'isomorphisme

G'(V)HI(V, C)=G" /(O G (C).
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Or il est possible, en raisonnant par récurrence sur la dimension de
V, de ramener I'’étude de la structure du groupe G"(VH/GF(V) a
celle du groupe G"(V)/HF(V,C). On voit ainsi apparaitre ’analogie
entre le probléme de la détermination de la structure de G(V)/G(V)
et le probléme arithmétique traité par Weil dans sa thése [10], & savoir
celui de la détermination de la structure du groupe GHC)H/GIC), ou
% un corps de nombres algébriques et C une courbe définie sur k.
Compte tenu de I’isomorphisme préeédent, le premier probleme ne
différe essentiellement du second que par la substitution du corps de
fonetions F(M) au corps de nombres k.

En exploitant cette analogie, j’ai obtenu dans ma thése [4] une
démonstration de (B) et, en méme temps, de certains résultats de
nature partiellement arithmétique. En particulier, le groupe G*(C)/G/(C)
est de type fini pour tout corps k de type fini et toute courbe C
définie sur k" (Dans le cas particulier ou k& est un corps de nombres,
c’est le théoréme de Weil). ‘

Cependant, il est possible de mettre en évidence, plus nettement
qu’il n’apparait dans ces démonstrations, le parallélisme entre le cas
des corps de nombres et celui des corps de fonetions. On peut en
effet adapter de facon explicite au cas des corps de fonetions 1'une
des théories qui jouent chez Weil un role essentiel, celle nommeée
par lui théorie des ‘‘distributions’’. Rappelons que celle-ci, initiale-
ment introduite et développée par Weil dans le premier chapitre de
sa thése, a été reprise et développée par Northeott ([6], [7]), puis
4 nouveau par Weil sous une forme plus abstraite dans un mémoire
des Anmals of Mathematics [12'. En prenant ce dernier mémoire
comme point de départ, je me propose déssayer de montrer comment
on peut réaliser I’adaptation annoncée et, en méme temps, obtenir une
simplification de la derniére partie (celle qui concerne la ‘‘descente
infinie”’) de la démonstration de (B) que j’ai donnée dans [4 .

2.—La théorie des “distributions” pour les points a coordonnées
dans un corps de fonctions algébriques.

Dans les deux premiers paragraphes, nous allons retranscrire
quelques définitions et résultats du mémoire de Weil [12] auquel nous
renvoyons pour des détails plus complets, et en particulier pour les
démonstrations.

1) Il semble possible d’étendre assez facilement ce résaltat au cas du groupe
GV)/G¥(V) attaché a un corps de type fini k et & une variété V quelconque définie
sur k, en atilisant la variété de Picard de V au lieu de la jacobienne de C.
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1. Fonctions de valuation.

Soit K un corps. Notons V(K) I’ensemble des valuations canoni-
ques non triviales de K. Pour tout sous-anneau de K notons V(K/A)
le sous-ensemble de V(K) formé des valuations de V(K) qui sont
=0 sur A (donc en particulier nulles sur A si A est un corps).
Notons K* le groupe multiplicatif des éléments non nuls de K et
considérons le groupe F'(K)=1II cyro(K*) des ‘“fonctions’ qui font
correspondre a toute valuation de K* une valeur de cette valuation.
A tout x € K* correspond un élément de F'(K) noté [x] et défini par
[ ](w)=w(x). Or puisque les w(K*) sont des groupes totalement
ordonnés, F'(K) est un groupe réticulé. Le sous-groupe minimal de
F'(K) contenant les [x] et fermé pour les opérations sup et inf est
un groupe réticulé que nous notons F(K). Ses éléments s’appellent
les fonctions de valuation attachées a K. D’aprés les propriétés des
opérations sup et inf, tout X ¢ F(K) se met sous la forme

( 1 > X: infu Supﬁ [xa[;]

ou {xy} (I=<a<m, 1=B=n,) est un sous-ensemble fini de K*.
La restriction de F(K) & V(K/A) est notée F(K/A). La restriction
de [x] & V(K/A) est encore notée [z ].

2. Fonctrons de valuation et diviseurs.

Soit V une variété algébrique normale de dimension » définie sur
un corps k et soit K le corps des fonetions sur V qui sont rationnelles
sur k.

Il existe des liens étroits entre les V-diviseurs et les fonetions de
valuation attachées & K. Commencons par remarquer que le groupe
G(V) (resp. GXV')) posséde une structure de groupe réticulé et est
engendré au moyen des opérations sup et inf par les éléments de G,(V)
(resp. G(V)), ¢’est-a-dire par les diviseurs des fonctions sur V (resp.
des fonctions sur V rationnelles sur k). On constate immédiatement
Pexistence d’un homomorphisme naturel du groupe réticulé F(K/k)
sur le groupe réticulé G* V) obtenu en faisant correspondre &
X=inf,sup; [2.;] le V-diviseur inf, sup, (z,;)) ol (x,;) désigne le divi-
seur de la fonction x,, sur V.

Différents critéres permettent de comparer dans certains cas,
deux fonctions de valuation données sous la forme (1) en utilisant
des propriétés géométriques simples des diviseurs (x,) des x,, corres-
pondants. Ces criteres ([12], Th. 8 et Coroll. 1 et 2) se déduisent
facilement du suivant ‘ '

Pour que inf, [2,]1<0, o suffit que les (x,), sotent sans point
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commun (D’aprés homomorphisme précédent, il faut que les (x,),
goient sans composante commune).

Un autre résultat important du mémoire de Weil fait intervenir
le groupe des V-diviseurs ‘‘partout localement intersection complete’
(ou ‘‘partout localement linéairement équivalents & zéro’’). Rappelons
qu'un V-diviseur est dit partout localement intersection compléte si a
tout PeV on peut faire correspondre un z,¢€K tel que P n’appartienne
3 aucune des composantes de T'—(x,). L’ensemble de ces V-diviseurs
est stable pour les opérations du groupe réticulé G(V). C’est donc
un sous-groupe réticulé de ce dernier que nous noterons G.(V).
L’ensemble GXW)~G.(V), qui est encore un groupe réticulé, sera
noté GE(V'). Dans le cas particulier ou V est projective non singuliere
on a, comme on sait, G.(V)=G(V).

Désignons, pour tout point P de V, par A, 'anneau local de P
sur V et associons & P un x, comme plus haut. Pour toute valuation
we V(KA w(x,) ne dépend que de T, P et o, mais non du choix
particulier de xz,. On peut donc noter cette expression w,. Le
résultat de Weil annoncé plus haut ([12], Th. 13) est le suivant:

Soit T un V-diviseur rationel sur k, partout localement inter-
section compléte. Alors il existe une et une seule fonction de valuation
X, ¢ F(K/k) telle que sa restriction & F(K/Ap) soit, pour tout PeV,
définie par X o)=wy. L application T—X, est un tsomorphisme du
groupe réticulé GE(V) dans le groupe réticulé F (K k).

Weil donne en outre une caractérisation simple de I'image de
cet isomorphisme.

3. Distributions.

Les notations étant les mémes que dans le paragraphe précédent,
supposons maintenant que & est un corps de fonetions algébriques sur
un corps de constantes k,, c’est-a-dire que k est de degré de trans-
cendance fini sur k, et %, algébriquement fermé dans 4. On désignera
par B un modéle projectif normal de I'extension k& de k, ¢’est-a-dire
une variété projective normale définie sur k, et telle que % soit le
corps des fonections sur V définie sur k.

A T'ensemble G(B) des diviseurs sur B, nous adjoindrons deux
éléments notés (0) et (), qui seront considérés respectivement comme
les diviseurs des fonctions 0 et c. Pour tout B-diviseur D nous
conviendrons que (©)<D<(0), que (0)+D=(0) et ()+D=().
I’ensemble obtenu sera noté G(B). C’est encore un ensemble réti-
culé (ou un treillis). Les éléments (0) et (o) seront considérés
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comme rationels sur k,. Le résultat de leur adjonction & G*(B) sera
noté G*o(B).

Soit X=inf, sup, [z,;] un élément de F(K/k) et considérons 1’ap-
plication 4 de I’ensemble des places k-valuées f de K dans é"O(B)
définie par

A(f )=inf, sup; (f (Zs)))

ou (f(ws)) désigne le diviseur de la fonction f(x,) sur B. Une telle
application 4 sera appellée une distribution attachée a la fonction de
valuations X. En réalité, 4 n’est pas exactement définie par la donnée
de X, mais dépend du choix particulier des z,. Cependant, nous
allons montrer que si 4 et 4’ sont deut distributions attachées au
méme X, on peut trouver deux B-diviseurs D, et D, tels qu’on ait,
quel que soit f,

A+ D < L)< L)+ D:.

La démonstration de cette propriété se raméme facilement & celle
du théoréeme suivant

THEOREME 1.—Soient K, k et B comme ci-dessus et soient (x,)
(¢=1,---,n) des éléments de K tels que inf; [x,]<0 dans F(K k). Alors
il existe un B-diviseur D, tel que

inf, (f (@,))<D,

pour toute place k-valuée f de K.

Ce théoréme est en fait une conséquence immédiate du théoréme
5 de [12] et d’une des formules intervenant dans la démonstration
de ce dernier. Pour plus de commodité, reproduisons cependant cette
démonstration dans le cas particulier du théoréme 1.

Puisque inf; [x,]<0 dans F(K/k), il existe, d’aprés ([12], Th. 2,
Coroll. 1) un polynome P e k[ X ]=k[X,---, X,] tel que P(x)=0 et
P(0)=1. Donc on a une relation

1=27 a,M/x)

ou a, €k pour tout v et ol les M, sont des mondémes. D’ol, puisque
les f(z,) sont des spécialisations compatibles entre elles des x, sur k

(2) 1= a.M(f ().

Soit @ une valuation quelconque de k. On a inf, w(z,) <0 ou
inf, w(z;)>0 pour tout <. Dans ce dernier cas on a o(M,(f(x,)))=v(f(x,))
pour tout ¢. La relation (2) entraine donc

(3) inf, (w(f(2;))) = inf (0, sup, (v(a;")).
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A tout B-diviseur D premier sur % associons maintenant la valua-
tion @, de K qui, & tout x e K*, fait correspondre le coeflicient de
D dans (z) et telle qu’on ait, pour tout D, w,(0)=o0 eb w;(o0)=—oo.

On obtient le théoréme (1) en appliquant la relation (3) & chacune
des valuations w,. On peut prendre D,=inf (0, sup, a;").

Une conséquence du théoréme 1 est le ‘“théoréme de décomposi-
tion’’, valable pour toute variété V projective non singuliére. Dans
ce cas, pour tout V-diviseur T’ rationnel sur %, la fonction de valua-
tion X, (voir paragraphe 2 ci-dessus ou [12], Chap. V) est définie.
On peut exprimer X, sous la forme inf, sup; [z], avee, pour tout
couple d’indices «, B, ., € K et (Ty)=T+X.—Y, ou les X, et, de
méme, les Yﬁ; sont sans point commun. Nous désignerons par J, la
distribution f— inf, sup; ((f (x4))) attachée a X,. :

Soit P un point de V rationnel sur k et soit f, I'une des places
L-valuées de K de centre P. Lorsque le symbole x(P) est défini, on
a fo(x)=x(P), et l'expression f.(x) ne dépend donc que de P et non
du choix particulier de f,. D’autre part, supposons qu’il existe un
indice « tel que z.,(P) ne soit pas défini pour tout B; on a alors
P e T+Y, et, comme il existe un 3 tel que P ¢ Y;, on a sup; (@)= (0).
Il résulte de 1a que, dans tous les cas, 4,(f,) ne dépend que de P
et non du choix particulier de f,. Nous écrirons 4,(£) au lieu de
4.(f). Le théoréme de décomposition se déduit facilement du théoreme
1, de la relation X,,-=[z] et de I'existence de I’isomorphisme 7— X,.
Son énoncé est le suivant:

Soit x un élément de K, et soit (x)=>)m,T;, on les m, sont des
entiers et les T, des V-diviseurs premiers rationnels sur k. Alors il
existe deuxr V-diviseurs D, et D. rationnels sur k tels qu’on ait quel
que soit P

21 m;» -ATi<P>+Dl < (x(P» < Zi miATI;<P>+D2'

4. Interprétation géométrique du théoréeme 1.

Donnons une interprétation géométrique du théoreme 1 dans le
cas particulier suivant: supposons V projective non singuliere et les
z, tels que (x,)=X,—X, ou les V-diviseurs X, X, sont positifs, les X
étant sans point commun. Ce cas particulier contient celui de
I’application & la démonstration du théoréme (B), dont nous parlerons
au chapitre suivant.

~ Soient P” et P° les espaces projectifs contenant respectivement
V et B. Soit M un point générique de B sur k, tel que k==Fk,(M)
et soit @ un point générique de V sur k. Considérons la variété ¢ V
lieu de Q@ x M sur k, dans le produit P"x P°.
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Désignons par p D’application rationnelle de ¢{/ sur B définie par
la projection @ x M— M. 11 sera commode d’employer aussi la lettre
p pour désigner la projection algébrique sur B d’un ¢{-cycle ou la
projection ensembliste sur B d’un ensemble algébrique sur ¢{/.

Pour tout ¢, considérons la fonction y, sur C{/, définie sur %, telle
que ¥, (@ x M)=z,Q). On a, quel que soit 7, (x,)=(y,)-P"x M. Donec,
puisque les X, sont sans point commun, I’ensemble algébrique inter-
section des supports des (¥,) ne rencontre pas V xM et est contenu
dans I’ensemble algébrique ¢{/,—p Y(B,), ou B, est I’ensemble algébrique
fondamental pour p sur B. Désignons d’autre part par ¢{/, I’ensemble
algébrique des points multiples de ¢{/. Puisque V est sans point multi-
ple,ona B, -=p(V,)~=B. Posons ({"*==C{/ /et B*=B,~B,=p(V*).

Soit P un point de V rationnel sur k, et soit ¢ le lieu de P x M
sur k,. Soit de plus f, une place k-valuée de K de centre P. On
peut supposer f,(x,) défini pour tout ¢, ear sinon on aurait Pe¢ X, et
comme il existe un ¢ tel que P¢X,, on aurait inf, ((f(x,)))=().
On a

n; :fl’(xi) ::xi(P):./i(P X M)'

En désignant par z, la fonction induite par y, sur &, on a done

(u;)==p((2,)).

L’interprétation du théoréme 1 est la suivante: il existe un B-
diviseur D, tel que

inf, ((u,)) < D,.

Or considérons une composante commune Z aux (2,),. Si elle est
simple sur ¢{/, cette composante appartient aux (¥,),, donc & I’ensemble
algébrique ¢{/,. On a done dans tous les cas ZCV*, done p(Z)B*.
Il en résulte que les composantes de inf, ((«,)) sont contenues dans B*.
L’affirmation de ’existence de D, équivaut a celle de 'existence d’une
borne supérieure pour les coefficients de ces composantes ou, ce qui
revient au méme, a la suivante:

Le coefficient dans inf, (z,), d’une composante commune Z aux (2,),
se projetant proprement sur B admet une borne supérieure qui ne dépend
pas de P nt de Z.

Dans le cas particulier oli la dimension de B,, est <dim (B)—2, 72
est toujours simple sur /et il suffit de démontrer I’existence d’une
borne supérieur pour les multiplicités d’intersection ¢[Z, (¥,),- ¥ ]*.

2) Pour les multiplicités d’intersection, propres ou excédentaires, nous employons
les notations de P. Samuel [&].
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Lorsqu’il n’en est pas ainsi, on peut se ramener & la démonstration
de I’existence d’une borne supérieure analogue en plongeant C{/ dans
une variété CV’ sur laquelle les composantes de C{/, sont simples et
telle qu’il existe, pour tout ¢, une fonction y; sur (1" induisant y;
sur €. Dans [4], j’ai obtenu une démonstration directe de I’existence
de cette borne supérieure en utilisant un lemme de la théorie des
intersections (chap. II, lemme 4 et Coroll.) Ce lemme n’est pas
indispensable pour la démonstration de (B) ou il peut étre remplacé
avantageusement, comme nous verrons plus loin, par les propriétés
de la notion de hauteur (qui résultent du théoréme 1). Cependant,
il semble intéressant de signaler que I’utilisation des fonctions de
valuation permet d’en donner une démonstration relativement simple,
et méme d’obtenir le résultat suivant, légérement plus précis:

THREOREME 2. Soient V une variété, q un entier positrf et
U, (§=1,---,7) des V-diviseurs positifs. Soit E I’ensemble algébrique
intersection des supports des U,. Sotent Z une sous- -variété simple de
V, non contenue dans E et Y une sous-variété de V contenant Z,
telles que les conditions sutvantes sotent satisfaites:

(A)—Z est stmple sur Y.

(B)—Z est une composante propre de chacune des 1intersections
Y-U; sur V.

(C)— Pour toute composante E, de E, on a q,=1[Z; Y-E,]=q.

Alors, si l’on pose i[Z;Y -U,J=m,, on a inf,m;=m, on m est
un nombre positif qui ne dépend que des U; et de q, mats non de Z
nt de Y.»

On peut, en utilisant un recouvrement de V, se ramener au cas
ou V est une variété dans un espace affine puis, par projection sur
I’un d’un nombre fini de sous-espaces de ce dernier, et compte tenu
de I'hypothése ‘‘Z simple sur V”’, au cas ou V est elleméme un
espace affine.

Montrons qu’on peut de plus se ramener au cas ou 'intersectoin
E est réduite & une variété. Soit £ un corps de définition algébrique-
ment fermé des U, et posons A==k[x]=k[z,--+,2,] oU &, -, %,
représentent les coordonnées dans V. Soient J l’idéal de A engendré
par les u;,J’' ’idéal des éléments de A qui s’annulent sur £ et, pour
tout A, J, V’idéal des éléments de A qui s’annulent sur la composante
FE, de E. D’ apres le theoreme des zéros de Hllbert il existe un

3) Ce theoreme était connu, dans le cas r—=2, par Enrlques, qui l’a utlhse dans
la démonstration d’un résultat préliminaire au ¢‘lemme d’Enriques-Severi”. Cette
derniere démonstration a été simplifiée par Zariski par une méthode qui pourrait étre
rattachée a la théorie des paragraphes 1 & 3 ci-dessus (voir [13]).
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entier ¢ tel que

J1 .
De plus
Tn[ J, rn] Jr=J'.
Donc
(4) (];[ J) .

Or tout idéal I de A est de type fini, donc détermine une fonec-
tion de valuation X, ¢ F(K/A) définie par X,(w)==inf,c; w(y) (Cf [12],
Chap. V); on vérifie aisément les propriétés X, <X, pour I DI et
X,,=X,+X,. La relation (4) entraine donc

(5) XI<QZ)LXI,,°

Posons K=Fk(x). Soit fy une place de K ayant pour centre Y,
3 valeurs dans le corps K’ des fonctions sur Y définies sur k. Pour
tout z ¢ K telle que la fonction z, induite par « sur Y soit définie,
on a zy=fy(a); soit w, la valuation de K’ qui, & tout u’ e K ' fait
correspondre le coefficient de Z dans le Y-diviseur (u').

Par hypothdse f,(x;,) est définie pour tout ¢, et coincide avec la
fonetion induite par z, sur Y. Compte tenu de ([11], Chap. VIII,
Th. 4) on a, pour tout k,¢[Z;Y -U,]=wAfr(«;). Nous avons done
4 démontrer que X, (wzofy) admet une borne supérieure indépendante
de Y et de Z. D’aprés (5), il suffit de montrer qu’il en est de méme
de chacun des X, (wzofy)s

D’oi la réduction annoncée: nous pouvons supposer que l’intersec-
tion E est réduite & une variété. Par hypothése ona ¢q,=1[Z; Y -F |=q.
Soient oy la valuation de K qui, & tout ye K, fait correspondre la
multiplicité de y en E. On peut trouver un élément ¢ de k(u), qu’on
peut choisir parmi un ensemble fini qui ne dépend pas de Y ni de Z,
tel que I’hypersurface t=0 contienne E et coupe proprement ¥ en Z
avec la multiplicité ¢,. Soit 2z un élément arbitraire de k(¢) et posons
z—=t%, la fonction 2, étant définie et non nulle pour ¢{=0. On a
(2)=I(t)+(2,). Comme E n’est contenue dans aucune des composantes
de (z,), on a wx(2)=1 et i[Z;(2)-Y ]=I 1[Z; ()Y ]=lg,. Donc wzofy
coincide avee quwp sur k(). D’autre part, puisque 0 est la seule
spécialisation de ¢ compatible avec x,—>0 sur k£, on a la relation
inf, [2,]<0 dans F(K/k(t)). L’application de ([12], Th. 5) entraine
done bien I’existence d’une borne supérieure pour inf; (w(f(x;))).

5. Hauteur d’un point.
Nous reprenons maintenant les notations des paragraphes 2 et 3.
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Soit ¥ un point de 1’espace projectif P*, de coordonnées (¥,, ¥, **, ¥n)
rationnelles sur %. Associons-lui le B-diviseur D= —inf ((y,;)). Le
degré de ce diviseur n’est pas modifié quand on multiplie tous les y;
par un méme élément de k. Donc ce degré ne dépend que de y.
On le notera A(y) et on I'appellera hauteur du point y.

On a évidemment, puisque deg ((¥,))=0, A(y)=0 pour tout y.
On peut ajouter que A(y)=0 si et si seulement le point y est
rationnel sur k,. En effet, supposons ¥,==1 et y,¢k,. Soit £ un
B-diviseur premier sur k,, positif et <(¥,).. Alors on a inf, w,(y;,) =0
pour tout B-diviseur D premier sur %, puisque w,(¥,)=0 et inf,v,(y,)<0.
Done A(y) = deg E >0.

Signalons encore I'interprétation suivante du symbole A(y). Soit ¢
I’application de B sur P” définie par les y, et posons Y=¢(V); Y est
aussi la variété lieu de y sur k,. Si I’on désigne par Z la section de Y
par un hyperplan de P" coupant proprement P", on a h(y)=deg(p (Z)).
En effet, on peut supposer les y, tous=+0. La section Y, de Y par
y,=0 est alors définie pour tout ¢, et on a d’apres ([11], Chap. VIII,
Th. 4, Coroll. 2)

@ly)=p (Z)—p {(Y).
On a
h(y)=—=deg D’
avec
D'== —inf, (y,/z)=inf, (¢ (Y) =9 (Z)),

Or, puisque les ¢ '(Y,) n’ont pas de composante commune, on a
D'=¢p '(Z).

REMARQUE.—Le symbole A(y) n’est pas défini de maniére intrin-
seque, en ce sens que ’application ¥ A(y) ne dépend pas seulement
du corps %, mais aussi au modéle projectif B choisi. Cependant, on
peut remarquer que si A’ est le symbole défini au moyen d’un autre
modele projectif B’, on a une relation de la forme v,A(y)<A'(y)=wv.2(¥)
valable pour tout ¥y, ol v, et v, sont des constantes réelles positives.
En effet soit B=#(B’), ou ¢ est une transformation birationnelle.
Soient ¢ et ¢’ =g@ot les applications rationnelles de B et B’ dans P"
définies par les y, et posons comme ci-dessus D=¢ {(Z), D'=¢ '(Z).
On a D=i#(D"). Soit H' une section hyperplane générique de B’
et posons H,—t(H'); on a h'(y)==deg (D-H,) <deg D-deg H,. Donc
h'(y) = h(y)-deg H,.

THEOREME 8. Pour h(y) borné, le degré de la variété Y liew de
y sur k est également borné.

Soit en effet, comme plus haut, ¢ D’application de B sur P"

de
de
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définie par les y,. D’apres ([11], Chap. VI, Th. 1), on a une relation
de la forme

p @)= U,

ou p est la caractéristique, f un entier positif et les U, des sous-
variétés de B conjuguées entre elles par rapport a %,(%). On a done

deg (¢ '(¥)=p"-m-e

ou e est le degré de I'une quelconque des composantes U,. Soit n—¢
la dimension de Y et considérons des section Y, (v=1,---,¢) de Y
par des hyperplans génériques indépendants sur k, dans P". Le degré
de Y est le nombre des points communs aux Y,. Les Y, se coupent
proprement dans P" en des points qui sont tous génériques de Y sur
k,. Donc les ¢ (Y,) se coupent proprement sur B, et on a

P (Y, Yoo+, Y) =97 (Yo) 7 (Yy)- - - (Y.
En comparant les degrés des deux membres, on obtient
p’-m-e-deg (Y) = (A(y))
d’ou le résultat annoncé.
Une conséquence du théoréme 3 est que le lieu Y de ¥ ne peut

appartenir, d’apres le théoreme de Bertini-Chow, qu’a un nombre
fini de systémes algébriques.

6. Définitron du symbole hy.

Il sera commode d’introduire la relation d’équivalence suivante :
pour tout ensemble E, on dira que deux fonctions f et g sur E a
valeurs réelles, éventuellement infinies, sont équivalentes s’il existe
deux constantes a, et a. telles que pour tout

f@)+a, = 9(x) = f(@)+a,
pour tout x € E.

La relation d’équivalence ainsi définie sera notée <. On écrira
parfois f(x) =< g(x) au lieu de f<g.

Soit maintenant 7' un V-diviseur rationnel sur & et supposons
qu’il appartienne a une série linéaire sans point fixe L sur V. On
peut trouver dans L des V-diviseurs T, rationnels sur % et sans point
commun, et il existe des x; € K tels que (x,)==T,—7T. Soit ¢ I’appli-
cation de V dans P" définie par les z,. Alors, d’aprés le choix des
T., ¢ est définie en tout point P de V. Nous désignerons par A, la
fonetion sur I’ensemble des points de V rationnels sur %k, & valeurs
entiéres positives, définie par

h,(PY=hp(P)).
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Cette fonction ne dépend pas seulement de 7' mais aussi du choix
des z,. Cependant, nous allons montrer que sa classe pour la relation
— ne dépend que de T, et méme de la classe de T pour la relation
d’équivalence linéaire.

Soit en effet 77 un V-diviseur rationnel sur k linéairement équi-
valent & 7. Puisque V est normale, il existe une série linéaire sans
point fixe L' sur V contenant T’ (on peut supposer L'D L). Con-
sidérons des éléments T/ de L’ sans point commun, rationnels sur k,
et des z;¢e K tels que (x)=T,—T'. Soit ¢’ I’application rationnelle
définie sur k¥ de V dans un espace projectif définie par les z;, et
poSoOns

by (P)=h(g'(P))-

Soit de plus ¢ un élément de K tel que (¢)=T—T’'. On a d’apres
([12], Th. 3)

' T=inf, [x,]=inf, [{x]].

On peut trouver d’apres ([12], Th. 1) pour tout P rationnel sur
k, une place fr» de K & valeurs dans %, qui soit une extension des
spécialisations x;,—>z,(P) et x,—>zj(P) sur k. Le théoréme 1 entraine
Iexistence de deux B-diviseurs D; et D, tels que

—inf, (fol@ )+ D; < —inf, (fo@}) < —inf; (f@:))) + De.

D’oi1, en passant aux degrés, le résultat annoncé : Ay =Xl

Si I' désigne une classe d’équivalence lindaire sur V représentable
par les éléments d’une série linéaire L sans point fixe, on peut donc
poser

he(P)=h+P)

en prenant 7T arbitraire dans L. Le symbole h; est parfaitement
défini & 1’équivalence =< preés par la donnée de I'.

De plus, si I" et I sont deux telles classes, il en est de méme
de I'+I", et on a

hpop =< bp+ b

En effet, soient (z,), (x}) des sous-ensembles finis de K associés,
comme plus haut, & I' et I respectivement, tels que (x)=T,—T
(z)=T;—T" avec T,eL et T;eL' et tels que les T,, et de méme
les T, soient sans point commun; il suffit de remarquer que les
T,+ T sont sans point commun et d’utiliser les x; x; pour définir le
symbole Ap.r. On peut étendre la définition du symbole A, aux
classes I',—I'; obtenues par différence de deux classes [',—1I"; du
type précédent. Il suffit de poser

hr(P)=hp (P)—hr(P).
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Le symbole A, ainsi étendu est encore parfaitement défini a
I’équivalence =< pres par la donnée de I'.

Remarquons que dans le cas particulier ou la variété V est non
singuliére, le symbole A, est défini quel que soit I'. Dans ce cas,
on peut aussi définir A par la formule

hr(P)=deg (4,(P))

avec T'e I', ou 4, est le symbole défini au paragraphe 3. Les résultats,
qui précédent sont alors une conséquence immédiate du théoréme de
décomposition.

Signalons enfin le résultat suivant:

THEOREME 4. Soient V une variété compléte non singuliére définie
sur k, V' une variété normale définte sur k et u une application
rationnelle de V' sur V définte sur k. Soit I" une classe de V-diviseurs
pour 1’équivalence linéaire. Alors, les V'-diviseurs T'=u "' (T), avec
T e I', appartiennent 4 une méme classe I pour I’ équivalence linéaire.
St le symbole hp est défint, il en est de méme de hr. et on a

hr(u(P ")) =< hr(P")
pour tout P'e V'.

En effet ’application T'—>T'=u"'(T") est un isomorphisme du
groupe ordonné G(V) dans le groupe ordonné G(V’). De plus tout
corps de définition de T' contenant % est un corps de définition de T".

D’autre part, en appelant K le corps des fonctions sur V' définies

sur k on a, pour tout x ¢ K, et compte tenu des hypothéses sur V
et V', d’aprés ([11], Chap. VIII, Th. 4, Coroll. 2)

u” (@) = (zou).

Done I’isomorphisme préeédent envoie G,(V) dans G(V’). Done
les T’ appartiennent bien & une méme classe /" pour Tel et ap-
plication I'— I est un isomorphisme de G(V)/G (V) dans G(V")/G (V).

Supposons que le symbole /A soit défini. On peut se ramener
au cas ou [’ contient une série linéaire sans point fixe L définie sur
k. Alors ’image de L sur V est une série linéaire sans point fixe
L’ définie sur k. Soient 7, (=0,---,n) des éléments de L rationnels
sur % sans point ecommun et soit pour tout ¢, z; € K tel que (x,)=T,—T.
On a (zx,0u)=T/—T,, en posant TV=u"(T,) pour tout ¢, et les T
sont sans point commun. On peut donc prendre, pour tout P’e V'

by (P")y=Mgp'(P"))=Mp(P))=h(P)
ott ¢ et ¢’ =gou désignent les applications rationnelles de V dans un

espace projectif définies par les z, et les [ respectivement. D’ou le
résultat annoncé.
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3.— Application a la détermination de la structure de GG (V).

Montrons maintenant comment la théorie qui précéde s’applique
3 la ““descente infinie’’ dans la démonstration de (B). En reprenant
les notations de lintroduction, donnons d’abord I’énoncé préeis du
probléme qu’il s’agit de résoudre dans cette partie de la démonstration.

Soient F' un demi-domaine universel, k, un sous-corps de F' algé-
priquement fermé dans F, B une variété projective normale définie
sur k,, M un point générique de B sur I et C une courbe projective
non singuliére définie sur k=Fk,(M). On suppose que la jacobienne
J de C est une variété projective définie sur k, et que la fonction
cannonique correspondante ¢ est également définie sur k. Soit @ un
point générique de C sur K et soit V la variété lieu de Q@ x M sur
F dans le produit des espaces projectifs contenant respectivement B
et C.

A tout V-diviseur U rationnel sur F, on associe le C-diviser A
défini par AxM—=U-(Ax M) et le point P=S[¢(A)], (c’est-a-dire
Stmp(A,) si A=>1m;A;) de la jacobienne J. L’application U—~>P
de G"(V) sur J est un homomorphisme ¢ dont le noyau est HI'(V,C)
et dont l’image est le groupe de tous les points de J rationnels sur
F(M). Posons H,={(G,(V)).

Il s’agit de prouver que H/H, est un groupe de type fini en
supposant déja démontrée la propriété suivante: pour tout entier s
positif différent de la caractéristique, le groupe H/sH est un groupe
fini.

Pour cela on se fixe arbitrairement un entier s=*p et >1 et on
choisit des représentants P,(a=1,---,1) de chacune des classes de
H(mod sH). En partant d’un élément quelconque P, de H on peut
construire une suite infinie P,, P;,---, P,,- -+ d’éléments de H et une
suite d’entiers positifs «,, aj,- -+, a,, tous =1, tels que I'on ait pour
tout v

sP,=P, ,—P,,.

I1 nous suffit de montrer que, pour v assez grand, P, ne peut représenter
qu’un nombre fini de classes de H(mod H,) indépendantes de la suite
{P,} choisie.

Faisons correspondre & tout entier « l’application rationnelle u,
de J sur J définie par u.(Q)=sQ+P, pour tout Q< J. La théorie
des variétés abéliennes permet de montrer que pour tout « et pour
tout J-diviseur X, on a une équivalence linéaire de la forme

X,=u; ' (X) (s —1DX+ X,
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avee X, >0. Prenons pour X un hyperplan arbitraire dans 1’espace
projectif contenant J. ILe symbole %, est défini pour tout Y puisque
J est non singuliére et on a d’aprés le théoréme 4, pour tout Pe H

hx (P)=<hx(u,(P))=<(s*—D)h(P)+bx (P).
Done
(8*=1Dhx(P) = hx(u(P)) +a,

ou a, est un entier indépendant de P. Si ’on pose h(P,)==h, pour
tout v, et si 'on fait P=P,, a=a, dans la formule ci-dessus, on

obtient, en posant a-—sup, a,,
(82—1)b/y§hv_]+alo
Done A, est, pour v assez grand, inférieur & un nombre réel b

indépendant de la suite P, choisie <pour tout = réel positif, on peut

-1
rendre b—a® +e>.
p s*—2

Désignons par P" et P* les espaces projectifs contenant J et B
respectivement. Soit B un point générique de J sur k et considérons
dans le produit P"x P*® la variété ¢ lieu de BxM sur k, 1l est
commode de considérer en méme temps que Y, le modéle projectif
gJ'=T(J), ou T est I’application birationnelle partout biréguliére
de P"xP® dans P™*"** qui, au point (@y,---, )X ¥, ---,¥,), fait
correspondre le point ayant pour coordonnées les x, o

Pour tout », désignons par &, le lieu de P,x M sur F' et posons
Py=T(P,). Puisque A(P,) =<0 pour » assez grand, et puisque
W(M)—deg (B), on a WT(P,x M))=<bdeg (B)-=b" pour v assez grand.
Done d’aprés le théoréme 8, &%, ne peut appartenir, pour v assez
grand, qu’a un nombre fini de systémes algébriques sur §’ indépendants
du choix de la suite {P,}, et de méme ¢, ne peut appartenir qu’a
un nombre fini de systémes algébriques sur 4. En d’autres termes,
il existe un nombre fini de couples (9, F) composés d’un cycle
positif 9¥;, sur 4 rationnel sur F et d’un corps de définition F, de
W, contenant k,, contenu dans F' et algébriquement fermé, tels qu’on
ait la propriété suivante: quelle que soit la suite {P,} on peut, & tout
indice v assez grand, faire correspondre un entier B,<! tel que P,
soit une spécialisation de W,, sur F,. Pour tout B, le cycle
Wy (J x M) est de la forme S, x M ot1 S, est un point de J rationnel sur
F(M). Or on peut trouver un C-diviseur A, rationnel sur Fy(M) et
tel que S[p(A4;)]=S,. Le lieu 4, de A; x M sur F est un V-diviseur
positif rationnel sur F, et tel que {(.4)=S,. Pour tout v, on peut
étendre la spéeialisation “We,—~ P, & une spécialisation Jpv—> J, sur
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F,. On a néeessairement C(1U)=P, Or, pour tout 8, I’ensemble
des spécialisations de A sur Fy est un systéme algébrique de diviseurs
positifs sur V, et les images sur J des éléments de cet ensemble
appartiennent a une méme classe (mod H,). Nous venons de montrer
que P, appartient, pour » assez grand, 4 I'une de ces classes, d’ou le
résultat annoncé.
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Some Results in the Theory of the Differential Forms
of the First Kind on Algebraic Varieties

Yoshikazu NAKAI

The theory of the differential forms of the first kind on algebraic
varieties are developed systematically in the classieal case, by the
use of harmonic integrals and we have much results in this subject
owing to the continuous efforts of eminent mathematicians. But in
the abstract case, i.e. in the algebraic geometry over the universal
domain .of characteristic p(7#0), the situations are quite different
and the theory is still hanging in the air. Moreover the recent work
of J. Igusa [1]V shows us that the abstract theory has quite different
nature from the classical one, and his example seems to indicate some
new role of the theory of the differential forms in abstract algebraic
geometry. The author is especially interested in the theory of the
differential forms of the first kind on abstract algebraic varieties.
The present paper will contain some results which will make some
contributions toward this purpose.

§ 1 contains some auxiliary results which are necessary in the
following paragraphs. In § 2, we shall give a necessary and sufficient
condition for a differential form o to be of the first kind in terms
of its coefficients. We shall also introduce the expression for « In
the language of adjoint forms as is usaully done in the classical case.
In §3, we shall proceed as follows: Let V" be a normal projective
variety defined over a field £, C a generic hyperplane section of V
with reference to & and & an (r—1)-fold differential form of the
first kind on C. We shall say that w has the property (P), if there
exists an r-fold differential form © on V such that (2)+C>0 and
Res; 2—w. Then we can characterize @ having the property (P),
by a special property of the divisor (w) on C. Meanwhile we can
again prove a result of my previous paper in a slightly better form
by a quite simple method. Now in the classical case it is known
that an (r—1)-fold differential form of the first kind o, on C, which
is the trace on C of a differential form » of the first kind on V

1) The numbers in the bracket refer to the blbhography at the end of the parer,
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has not the property (P). But, at present, no body knows whether
the similar results also holds or not in the abstract case. We shall
derive in §4 a characteristic property of an (r—1)-fold differential
form  which has the property (P) with respect to a generic hyper-
plane section, then our method enables us to reduce the above pro-
blem to the following somewhat interesting conjecture.

CONJECTURE.? Let V*" be a projective variety in a projective
space S™"' which is a generic projection of « non-singular varvety V
with reference to a field of definition k for V, and F* (Y, Yy,-++, Y, 1)
an irreducible form defining V*, of degree m. Let A¥ (1—0,1,---,
r+1) be forms of degree <m—r, and suppose that there exists an
identity of the form

AS“aF*/aYoJrATaF*/aYmL Tt +A;“+18F*/8YH1:O,

Then the forms A*’s must be identically zero, provided m s not
divisible by the characteristic p of the universal domain.

In the case r=1, the above result is true as was shown by
Castelnuovo and plays a fundamental role in the theory of the dif-
ferential forms of the first kind on algebraic surfaces developed by
F. Severi [9]. If this conjecture holds true we can answer the
above mentioned problem affirmatively and we get also the inequalities
Bt < h0® (g=1,---,dim V). Moreover we can also prove the pres-
ervation of the independency of the differential forms of the first
kind on an algebraic variety on its generic hyperplane section by
the similar method. The author wishes very much to lift the veil
covering this conjecture in the near future.

The author expresses his hearty thanks to Prof. Akizuki for his
interest taken in this work and his encouragement throughout the
period of investigation.

2) The conjecture came from the following Lemma: “‘Let F'(x,¥,2)=0 be an
irreducible form defining a plane curve which has only nodal points. Let m be the
degree of F' and suppose that there exist forms A, B, and C of degree <m—1 satisfy-
ing the identity AF.-+BF,+CF,;=0. Then we must have A=B=C=0." (Cf. Severi
[(8D-

In this Lemma the assumption on the singularity of the curve is essential, other-
wise we can easily find a counter example F(x,y,7)=y2—a" But the author does
not know whether the assumption that the original variety V is a non-singular variety
is necessary or not.

3) hs¢ denotes the dimension of the g-th cohomology group of V with coefficients
in the sheaf @ of germs of s-fold regular differential forms on V, i.e. hs:a=dim HqoV, £9).
When ¢=7(=dim V), it is known that Jrs—=hsr by the duality theorem of Serre (Ct.
Serre [8] and his lecture at the Congress in 1954).
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§ 1. Algebraic preliminaries.

Let V” be a normal variety in a projective space S" and k, the
smallest field of definition for V. Let P==(§,&,---,&,) be a generic
point of V over k,, and u,; (¢=0,1,--+,7+1:5==0,1,+- -, n)r+2)(n+1)

independent variables over X (P). Let o;i:Z ;& (0=0,+++,r+1),
=0

Yi=n:/n. We shall denote by H, the hyperplane in S" defined by the

equation fﬁu[ij:O (¢==0,1,--+,741) and we shall put C,=V-H,.

Then C’s are also normal varieties® respectively defind over £,
(Uspy %), and () -C,—C,.” We shall denote by K the field
generated by u,, over k,. We shall fix these notations throughout
the rest of the papers.

PROPOSITION 1. Let A"' be a subvariety of V, different from
Cy, then for any set of indices i,,---,1, chosen from among 1,---,r,
we can find functions z,,---,2, , such that the functions Yir "> Uiy
Riyt 52,5 are untformizing parameters® along A on V if s<r.

PROOF. We shall use the induction on s. When s—0 the asser-
tion is trivial. Suppose that the prop. is true for integers<s.
Moreover we can assume that ¢;-=j and &, -7, in this case we must,
of course replace k, by the field k-=k, (g, -+, u,,). Let M =1, x,,

-++,x,) be a generic point of A over K'(DK), and i‘ai_i(Xj~xj);O

(¢=-1,--+,n—7) the defining equation for the tangent linear variety
to V at M. Then Prop. 1 is equivalent to say that the rank of

N\
the matrix (g’f) (t—1,-++,8:k=1,---,n—pr:j=-1,---,n) is equal to
Rad 1

n—r+s. Suppose that the rank of this matrix is <n—r+s, then
by the induction assumption we have dim,.,, («, =mns—r+s-—1, hence
dim, (x, %;,) =< dim, (z) 4+ dim,,, (u;,) << ns +s—1. On the other hand
dim, (v, u,;)-=dim, (u,;)+dim, (x)=ns+r—1. It is a contradiction if
r>s. q.e.d.
PROPOSITION 2. Veldy, « - -dy, )= —(s+1)C, if s<r. In particular
of s<r, then we have (dy, - “dy; )= —(s+1)C,.

4) For the properties of a generic hyperplane section C of V we shall refer to
Seidenberg [7] and Nakai [6].

5) Stricktly speaking, y;’s are quantities, and not functions following the usage
of Weil [11]. But we shall identify y;’s with the functions f;’s on V defined over
k() by fi(P)--y; respectively, since it will cause no confusions.

6) Concerning the definitions and the properties of uniformizing parameters, the
readers are expected to refer Weil [11] and Nakai [6]. We shall cite Weil’s book
by (F).
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PROOF. For the sake of simplicity we shall assume that 7,=7.
Let v =1/ys, V==t fy; (i=2,---,7), then dy,=—yidy; and dy, =y, dyi—
yiy.dy, hence we have dy,- - -dy,-=—y"'dy;- - -dy;. Since as we See
easily, ., -+, ¥, are uniformizing parameters on V along C, we im-
mediately have the first half of the proposition. Concerning the
second half of the proposition, it is a direct consequence of Prop. 1.

q.e.d.

PROPOSITION 3. Let A™' be a subvariety of V different from C,,
and suppose that yi,---,Y, are not uniformizing parameters on V
along A. Then the r FUNCLLONS Y1y Yio1s Yists* s Yy Yr AT uni-
formizing parameters on V along A, for any choice of index t.
(1=<i=r).

PrROOF. Suppose that the proposition were false. Then using
the same notations as in the proof of Prop. 1, we would immediately
get the relation dim,.,, (K)=n(r+1)—2. The rest of the proof is
quite similar to that of Prop. 1. q.e.d.

PROPOSITION 4. Let Y be a divisor defined by (dy,,- - dy, )+ (r+1)
C,=Y, then Y is a positive divisor on V. Moreover a stmple point
P’ on V, not lying on C,, is in some component of the divisor Y if
and only if the r functions y;,- -+, Y; are not uniformizing parameters
on V at P'.

PrOOF. For the sake of simplicity we assume that ;=7 and
&,=ne If yy,---,y, are uniformizing parameters on V at P’ then
we easily see that the point P’ is not in any component of Y.
Suppose that u,,---,¥, are not uniformizing parameters at P’ on V,

and let _Zn}a,j(ijx.}):O (3==1,--+,n—1r) be the set of defining equa-

tions for the tangent linear variety to V at P'--(1,x,---,a,). Since
P’ is simple on V the rank of the matrix (a,;) is n—r. We shall
assume that det|a,,|(G-—r+1,---,n:i=1,-+,n—") is different from
0. Let (1,z,,--+,%,) be a generic point of V over K, then the
functions «, (¢==1,---,7) are uniformizing parameters on V at P'.

We shall put dy,-—3>)a,dx;. Then since ¥,=> u;x;+ U, We see
J=1 J=1
immediately «,;==u;;+ > u; 9%,/o%;. By our assumptions we have
t=r+1

det;Z‘ifl:O, (i1, ++,r:h=1,---,n—r:j==1,---,n). Now multipy-

ing t-th column by ox/ox; (¢>r) and adding them to j-th ecolumn
(7 =<7), we see that

i *

N, ;| v

O0==det W ==
}ak'

j 0 ay
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This means that the function det |a,;| is zero at P’. Since dy;--- dy,

=det |a,; | dx,- - -dz,, and P’ is a simple point of V there exists a

component of Y containing P. This completes the proof. q.e.d.
PROPOSITION 5. Let Y, be the positive divisor defined by (dy,- - -

dy;- - -dy, )+ (@ +1)Co==Y,, then Y, and Y; have no common com-
ponent.

This is an immediate consequence of Prop. 3 and 4.

Let V* be a variety in a projective space S*' whose generic
point over K is given, in homogeneous coordinates, by (50, 71,5 7, 11)-
Then as is known V and V* are birationally equivalent over K.
This variety will henceforce be called a generic projection of V with
reference to k,, in the projective space S™'*', or simply, a generic pro-

integrally closed in its quotient field. Let { be the conductor of o
in v. Then we have the

PROPOSITION 6.7  HKwvery prime divisor of | (as an tdeal of v) s
of rank 1.

PROOF. First we shall show that every prime divisor of { (as
an ideal of v") is of rank 1. Let a be an element of v, and a, the
ideal of v” which consists of elements « in o’ such that aa € 0’. First
we shall show that the rank of a, is 1. Let a,--a,,~a, be the reduced
expression as an intersection of primary ideals, where every primary
in a, is of rank 1 and every primary in a, is of rank >1. Let b be
an element of a, not in a, and d/a be the representation of « as a
quotient of @ ev” and d e v’. Then aba,Cv’, i.e. dba,Cav’. But since
in o’ the theorem of unmixedness holds,” every prime divisor of av’
is of rank 1. On the other had since o, is of rank>1 we see easily
that db € av’, i.e. abecv’. This means that b e a, it is a contradiction.

Since == [)a,, every prime divisor of { is also of rank 1.

o

Let f—=a, ~a, be the representation of { in 0o, where every primary
in a, is of rank 1 and that of a, is of rank >1. As before let b be
an element of a,. Then if a,C0’, f==f 0" = (0; ~0") ~(Ay ~0") =0, ~ (a5, ~0").
Since the rank of every prime divisor of | in o’ is of rank 1 we see
that o, a,~0" €0,,” and {=q, as asserted. Suppose that a,q20’, then
we can suppose that b is not in o’. Then «a, is an ideal different from

is integral over o' ==K[y], moreover by our assumption on V, o is

7) This proposition is due to M. Nagata.

8) This is immediate since o <K [Y;,---, Youi 1/ F(Y).

9) Since p and o’ are integral extensions of a polynomial ring K{y,---,¥%r], the
rank of the ideals are preserved, cf. Nagata [3].
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the unit ideal o and of rank 1. Since ba,C, we have Ay 0" C e
[t is a contradiction since rank (a,~0)>1 and rank a,=1. Thus
we have proved the proposition. . q.e.d.
Let F*(Y,, Yy,-++, Y, ,)be an irreducible homogeneous polynomial
defining the generic projection V* in §*Y, and F(Y,--, Y, )=

r+1

F(1, Yy, Y, 00)e Then since F(y)=0 we have >\ F,dy,=0, where we
=1
put F,-=0F/2y,. From this we get the relation dy,,,— ——ZT FF, . dy,.

Multiplying both sides by dy;- - -dy, ,-dy;,, - -dy,, we get
dy,- -~ dy,- - Ay, == (=17 ' FJF, dyy -+ -y,
Hence we have
F)—(F ) =Y, — Y, 1

Since Y, and Y,,; have no common component we easily see that
(F.,)e— Y, ==X >0. Then we have (F.)),=X+Y, for any ¢. It is
easy to see that the divisor X is rational over the field K. Let a
be the ideal (F,---, F, )" and a*-= (p](anp,\n), where b runs over all

prime ideals of o, of rank 1. Then since aCf we have a*Cfo,~0.
On the other hand every prime divisor of f is of rank 1 by Prop. 6,
we see that [fo, ~v=T, hence we have a*Cf. Thus we have

p

PROPOSITION 7. Let « be an element of v, such that (a),~X,
Then « is contained in the conductor f.

In the following, any element of K[y, which is contained in the
conductor of K[z] in K(y], will be called an adjoint polynomial in
y. It may also be remarked here that the divisor X defined above
does not depend on the choice of hyperplane at infinity, and is deter-
mined uniquely when V and V* are given.

PROPOSITION 8. The generic projection from V onto V* s bi-
reqular at any point which s not contained in any component of X.

ProoF. Without loos of generalities we can assume that &=,
(1=0,---,7+1). Let f, ¢=7r) be the conductor of K[#/n;] In
K[§&,/&]. Let P’ be a point on V not contained in any component
of X, and assume that P’ is not on C,. Then we can pass to the
affine representatives V, where £,70. Let q be the ideal in K[z]
(x,=£,/%,) corresponding to P’, we shall show that qz>f,. Suppose
that ¢Of,, then there exists a prime ) of f, such that ¢2Ob. But
since rank f, is equal to 1, p must be the ideal corresponding- to
some component prime rational cycle of X. This means that P’ is
in some component of X. Thus we have qbf,. Hence there exists
an element % in f, not in 4, and then x,==x,k/h, xh € K[n/n,]. This



Some Results in the Theory of the Differential Forms 161

proves that the projection is biregular at P’. The proof for the
remaining case is similar. q.e.d.

As an application of Prop. 8, we have the

PROPOSITION 9. Let V™ be a normal vartety in a projective space.
If deg V<r+2, then the geometric genus P, s zero. In the case
deg V=r+2, we can conclude that the geometric genus s less than
or equal to 1. Moreover in this case if P,=1, V 1is contained wn o
linear subvariety of dimenston r+1, i.e. V s a hypersurface.

PrROOF. Let m be the degree of V. Then we have (F))=X+Y,
—(m—1)-C,, i.e. X~(m—1)-C,—Y,;. Since Y;~K+(r+1)-C,, where
K denotes the canonical divisor of V, we have X+ K~(m—r—2)-C,.
From this relation we easily have the first assertion, since X >0.
If m==r+2, we have X+K~0, hence K<0 and /(K)=1. Then if
I(K)-=1, we must have K=:0, and X must also be a zero cycle.
Hence by Prop. 8, the generic projection from V onto V* is every-
where biregular and K[x]--K[y]. This proves our assertion.

This is a generalization of a well known result that a non-singular
cubic curve of genus 1 is a plane curve.'”

§ 2. Representation of the differential form of the first kind.

We shall retain, in this paragraph, to the same notations and
assumptions as in §1.

Let
(2.1) e DY fis, dyeedy,,

ey

be a g-fold differential form of the 1st kind on V, where the coef-
ficients f ...;, are assumed to be skew symmetric with respect to its
indices and the sum is extended over all set of indices ¢, < --- <1,
taken from 1,---,7. We shall determine a necessary and suflicient
conditions for » to be of the 1st kind.

Let 7,,---,7,., be the set of indices complementary to ¢;,-- -, %
Then multiplying » by dy, ---dy;,_, we get

(dy,, - dy;._ ~w)+(r—q+1)C,>0.
From this we have immediately the relations
(2.2) (fipi)+ Y, .1 —qC, > 0.

The condition (2.2) means that o is finite along any subvariety A of
dimension r—1, outside of C, and the component of Y, ,.
Next we shall determine the condition that « is finite along C,.

10) E.g., c¢f. van-der-Waerden [10].
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Let v,=1/y:, v.=y,Jy, (i=2,+--,7). Then as we easily see y; (i=1
.,7) are uniformizing parameters on V along C,'” and
dy,dy,, - - - dy,, = —y3" 'dydy;,- - - dyi,,
dyil---dyiq (7,>1)

q P
=yidy, - - - dy;, — Yt S (= 1y dyidys - - -dy - Ay
a=1

Hence
©=_3u fropi@ ey + e S,y -dy,,

1<lo<le - <y 1<y <<y

VS fren AYAY Ayl A S Y -y
q AN
=Y oy 20 (S 1 i Ay, YY)
==yt SN (S, T Z Yo Luigi) QLY - - - dyi,

asy 11 1,1
— i >0 .fil“-i,,d? i\ -~ dy; i

where 3, denotes the sum extended over all sets of indices 4,< -« - <%,
taken from 2,---,7, and S\, the sum over all sets of indices 7, <7,<
- <1, taken from 2,---,7r.
Since o is finite along C, we must have

?J(‘O( E ?/dfulz lq)~——q

aig,

for any set of indices (1<)7,2<---<7Jq taken from 2,---,r. Quite
similarly we get the following conditions

(2.3) ( Z :l/afal'l"-i,,__1>+Yr+1——qC0>.O'

i, g,
Finally we shall determine the condition for « to be finite along any
component of Y,,,. By Prop. 4, ¥,---,%, are not uniformizing
parameters along any component of Y,,;, hence by Prop. 8 it is
possible to use the functions, say, ¥.,---,%,,¥,.: as uniformizing
parameters on V along any component of Y,,;. Using the relation

r+1

EFdJl =0, we can represent dJl-—~(1/F1)§Fidyi. Substituting

thls in the expression (2.1), we see

r+1

W= — (1/F1>1<1- Zl ‘ fligv--iq ( 22 Fidy)dy,,- - 'dyiq
+ 3L fi- z,,dv/n 2

1< <<y
— (I, 4/ FY) Zlfh, z(d{'/T+1d./7 'd?/i,,
—>% f171~-~i,, ( il/Fl)fliz i (F'/F)flms"}m

+( L(#, /1y )ful-z(, Jdy, - dyz,,
11) E.g., cf. Th 1 of Nakai [5].
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We shall put
q
gioil"’ing(_I)O‘Fiafioil---fa--viq-
Then we have
(gio"’iq/Fl)+Y1_qC0>.O

by a reasoning similar to one which was used to deduce the relation
(22). Thus we get (gio...ig/FHl)—FY,+1-—qC0>O. Since (FY/F,, )=
Y,—Y,.,, this to equivalent to the relation

q
@4 (UED S (D Ffide)+ Ve =G0,

The conditions (2.2) (2.3) and (2.4) are sufficient for « to be of the
first kind when V is a non-singular variety. In fact these conditions
imply that « is finite along any subvariety of dimension r—1, hence
(w)>0. Since V is assumed to be non-gingular, it implies that o is
of the 1st kind.

REMARK. It should be remarked here that these conditions are
necessary but not sufficient if V admits some singular points. In
this case, the condition (w)>0 does not necessarily imply that « is
of the 1st kind (Kawahara [2]).

For an r-fold differential form «=—fdy,---dy,, the necessary and
sufficient conditions for o to be of the first kind is simply the relation

(2.5) (F)+Y,.1— (@ +1)Cy>0.

As an application of the above considerations we immediately have

PROPOSITION 10. Let V' be a normal hypersurface in S™*' and
assume that V has a q(<r)-fold differential form of the first kind
on V, then deg V >q+1.

PrOOF. Let m-=-degV, then Y, ,~(m—1)C,. Hence if there
exists a g-fold differential form of the first kind, there must exist
the functions satisfying the conditions (2.2) and (2.3). From this
we get the desired inequality, m—qg—1>0.

This limit is the best one in the sense that there exists a normal
surface of degree 3 in S* which has a differential form of the first
kind and of the first degree.

In the following we shall put one more additional condition that
V is arithmetically normal.

Let us put

Ai1~'~iq:fil-~~inr+l'
Then



164 Y. NAKAI

(Ail...iq)—X-F(m—Q”“l)Co
= {(F )+ X =Y, 1+ (m—1C} + {(f

[1~~i,1)+Y7+1—qC0}>.0

by (2.2) and the argument of §1. Hence if f’s are defined over K
A’s are elements of K[&/y,]. Moreover (4, ..;),>X, hence A’s are
in K[y], i.e. A’s are adjoint polynomials of degree at most equal to

m—q—1. Then the above considerations yield at once the following

THEOREM 1.'2 Let V*" be a generic projection of a mon-stngular
arithmetically normal projective variety, and F(Y,,---,Y,,.)=0 the
defining equation for V* of degree m. Let o be a q-fold differential
form of the first kind on V, K' a common field of definition for o
and V*, and (yy,--+,Y,.1) @& generie point of V* over K'. Then if
g<r, w can be written wn the form
(2.1 w"——"-il<_.2<i”A,:l...l,,/F,Hd?/,-l...d?/,-,,,
where the sum 1is extended over the set of indices ©,<---<1, taken
from 1,---,7, and A’s are adjoint polynomials tn K'[y) of degree
at most equal to m—q—1, skew symmetric with respect to the indices,
satisfying the following conditions:

(2.2) > YA, AL

) ) g~y
iy gy

are the adjoint polynomials of degree not greater than m—q—1.
(2.83") There exist the adjoint polynomials AfY..; of degree == m—q—1
such that

az':)(—1>&F[0‘A5()"'i?1""'11:;A?:)’?’kl" it rane
Conversely if the coefficients of w in the expression (2.1") satisfy the
above conditions, then w is a q-fold differential form of the first kind.
For an r-fold differential form of the 1st kind it is stmply written as

w:A/FrJrldyl' * 'dy'n

where A is an adjoint polynomial in K'[y] of degree at most equal
to m—r—2.

For the proof it may be necessary to remark here that a function
f such that (f)+Y,.;—¢C,>0 can be written as a linear combination,
with constant coefficients, of the similar functions which are defined
over K, since Y,,; and C, are rational over K (F-VIII, Th. 10).

12) After I have completed this work, I heard from Y. Kawahara that he also
arrived at the similar results to Th. 1 in his unpublished paper.
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§ 3. The differential forms on the generic hyperplane section.

We shall treat mainly in this paragraph the (r—1)-fold differential
forms of V" and the trace w. of » on a hyperplane section C of V.
For this purpose we shall make frequent use of the Poincaré residue
of an r-fold differential forms of V with respect to C, hence we shall
briefly sketch its definition and main properties.

Let V™ be a normal variety defined over k£, C a generic hyper-
plane section of 'V with reference to the fleld & and £ an r-fold
differential form on V such that v.(2)>=-—1. Let y be a function
on V such that vo(y)=1. Then y is chosen as a member of uni-
formizing parameters on V along C. Expressing £ in the form

Q=(h/y)dydy,- - -dy,_,

we can define the Poincaré residue of 2 with respect to C, denoted
by Res. 2, by the following formula

Resc 2=hdy,---dy,

where ~ denotes the trace on C of the functions on V. It is not
difficult to see that this definition does not depend on the choice of
uniformizing parameters ¥,y ---, ¥, used to define it, but it is
determined uniquely when £ and C are given. It is also easy to see
that Res, 2=0 if and only if £ is finite on C. When Res; 270 we
have the following relation

(8.1) (Res, )= ((2)+C)-C.

For the proof we refer to Zariski [12]. We shall fix these V and
C throughout this paragraph.

PROPOSITION 11. Let o be an (r—1)-fold differential form on
V7" such that o induces on C a well defined differential form wc.
Let Q be the r-fold differential form defined by 2=dy ~wly, then we
have Res, 2 =w¢, where y is a function on V such that v (y)=1.

This is immediate from its definition.

Let o be an (r—1)-fold differential form on V such that the trace
w. of @ on C is well defined. Then Prop. 11 and (3.1) yield that
(w,;)-———(\ ( dy;\w\)+C>-C, where y is a function on V such that (¥)=
C—C,, and C, is an irreducible hyperplane section of V. Since
(dy)=—2C,, we see (dy~w)+2C;—(0)=X is a positive divisor,™
and we have

(3.2) (0c)=((0) +X—=Cy)-C.

13) Cf. Prop. 3 of Nakai [4].
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Then if we choose C, in such a way that

(1) (w)-C does not contain any component of C-C,

(2) w¢ is finite along C-C,,
we must have (X—C,)-C>0. This is surely the case when C, is a
generic hyperplane section of V with reference to a field of definition
for . Thus we have

THEOREM 2. Let o be an (r—1)-fold differential form on V'
such that the trace we of w on C s well defined and not zero. Then
for a suitable chovce of the hyperplane section C, of V we can write
the diwvisor of w¢ tn the form

(0e)=((0)+X—C,)-C

where X 1s a positive divisor such that (X—C,)-C > 0.

This gives a slightly more precise form of the C-divisor X which
appeared in Theorem 2 of Nakai [3].

COROLLARY. Let w be an (r—1)-fold differential form of the 1st
kind on V" such that wc70, and K the canonical divisor of V. Then
there exists a positive divisor Z, linearly equivalent to K+2C such
that (wc)=(Z—C,)-C, where C, is a suitable member of the linear

system |C|.
Let the funections y, (’i =1,---,7r+1) and the divisors Y, be as in
§1, and o= Z f.dy, - - dy, a differential form of the 1st kind

on V. Then as is proved, the coefficients f, must be in the module
Y, ,i—(r—DC,).'"* Now we have

PROPOSITION 12. Notations and assumptions are as above, the
trace of w on C, is zero tf and only if the coelficients f’s are in the
module ¥Y,,,—rC,).

PROOF. Lety;=1/y, and Q =dy, ~w/y;. Then Q= —(f,/y)dy,- - -dy,.
Hence if w¢ =0, £ is finite along C,, i.e. (f)+Y,,;—rC,>~0. Con-
versely if f, satisfies the above conditions, then (£)+C,>0 and
wc,=Res¢, £=0. For the remaining f,’s, the assertion is the direct
consequence of the condition (2.8), or of the similar considerations
as above. q.e.d.

PROPOSITION 13. Let V", C and K be as above, and » be an (r—1)-
fold differential form on C, then there exists a divisor Z linearly
equivalent to K+ C such that (w)=2Z-C, or equivalently there exists
an r-fold differential form 2 on V such that vo(2)=—1 and Res, 2 =a.

PrROOF. Let us denote by W, the section of V with the

14) Let X be a V-lelSOI‘ then Q(X) denotes the module of the functlons on V
such that (f)+X > 0.
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hypersurface of order m. Then there exists an integer 7, such that
()+ W, -C>0. On the other hand there exists also an integer n,
such that Tr.|K+nC|'™ is complete on C for n>=n,, by the lemma
of Castelnuovo. Hence we can see easily that, if we denote by n an
integer greater than max (n,, n,), there exists a hypersurface section
W, _, and a positive divisor Z’ in |K+nC| such ()+W,_C=Z"-C,
i.e. ()=C-(Z'—W,_;) which proves the first half of the proposition.
Now Z'~K+nC, we can find an r-fold differential from £’ on V
such that ()=2Z2'—C—W,_ ;. Then (Res Q") —=(Z'-W, ) -C=(w).
Since the (r—1)-fold differential forms on C form a vector space of
dimension 1 over the function field of C, it is easy to see that there
exists a constant ¢ such that Rescc®’ —w. Then the differential form
Q=cQ' satisfy all the requirements. q.e.d.

Let » be an (r—1)-fold differential form of the first kind on C.
Then it may be natural to ask whether there exists a positive divisor
Z linearly equivalent to K+ C such that (w)—=Z-C.

THEOREM 8. Let V' be a normal variety defined over k, C a
generic hyperplane section of V with reference to k and » an (r—1)-
fold differential form of the first kind on C. Then there exists @
positive divisor Z in |K+C| such that (w)=Z-C if ond only if there
exists an r-fold differential form £ such that (2)+C>0 and Resc 2~ w.

The proof is quite similar to that of Prop. 13 and will be omitted.
Henceforth any differential form of the first kind on C having the
property stated in the above theorem will be said to have the
property (P).

Let o be an (r—1)-fold differential form of the 1st kind. Then
if the trace w. of ® on C has the property (P), we shall say that
the differential form o has the property (P) with respect to C. In
the classical case, where the universal domain is the field of all
complex numbers, it is known that any (r—1)-fold differential form
of the 1st kind has not the property (P) with respect to a generic
hyperplane section of V. Then the Th. 8 yields at once

THROREM 4. Let V and C be as in Th. 8, and o an (r—1)-fold
differential form of the first kind on V. Then, if the characteristic
of the universal domain is 0, the C-divisor (wc) s not contained 1n
the linear system Tr.|K+C|.

15) This means the trace of the complete linear system |K+C]| on C, i.e. the
set of positive C-divisors of the form Z-C, where Z is a member of the linear system
|K+Cj] on V.
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& 4. The differential forms of the first kind having the pro-
perty (P).

In this paragraph we shall retain to the notations defined in §1.

PROPOSITION 14. Let V" be a normal variety, and

0= (= 1) fidy,- -y, - -dy, ™

be a differential form of the 1st kind on V. Suppose that o has the
property (P) with respect to some C;, (1=1i=r), then f’s must be
written tn the form

(4.1) fi:hi_'y’ik() (ijl,u"?d)’

where h’s are the functions on V such that (h)+Y, ,—rC,>0.

ProOOF. For the sake of simplicity we shall assume that » has
the property (P) with respect to C,. Let Q—=dy, ~w/y,, then (2)+
C,+C,>0 and Res c2=wc. By our assumption on o there exists
an r-fold differential form @ such that (@)+C, >0 and Res ® =wc,.
Expressing @ in the form

@ =(hJy)dy, - - -dy,

we have (4,)+Y, ,—rC,>0. Since Res; (£—@)=0, the differential
form 2—@& must be finite on C,, i.e. the funection A,/y,— fi/y.=—=h,
must be in ¥(Y,,,—rC,. This proves the assertion for 7--1, i.e.
Si=hy— Yy,

Let z,=y,/y;, then (z)=C,—C,. Let Q,—dz, ~w/z;,, then we have
(2:)+C;+C, >0 as before and Res 2, ~w¢. The simple calculation
shows that

Q=W fr—=y S )Yy -dy, - - -dy,.

We shall recall here that the function (y,f;—w.f;) is in the module
Y, ,,—(@r—1)C,). By a similar reasoning as above we see that the
function A,/y,—(y.fi—y.f /vy, is in the module UY,,,—(r+1)C,+C)).
Hence we can write &,/y,— f,/y.+f./y,—=h,Jy, with function &, satis-
fying (2,)+Y,,,—rC,>0, or equivalently f,=Ah,—yk,. This proves
the proposition.

PROPOSITION 15. Let V be a normal variety defined over k,, C
a generic hyperplane section of V with respect to k, and o an (r—1)-
fold differential form of the first kind on V. Assume that o has
the property (P) with respect to C, then w has the property (P) with
respect to any irreducible section C(m) of V with a hypersurface of
order m(=1).

16) We attached the signs to simplify the fomulas which will come in the future.
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ProOF. Without loss of generality we may assume that C is
one of C, (1=<t7=7) defined in §1. Then we can express » in the
form

w:—";} (—1>i_1fzd?/1' edy,- - -dy,

with the supplementary conditions
(4.2) fi=h,—yhy, h/’s are in &Y,,,—rC,)
by the preceding proposition. Let a« be a function on V such that

()=C(m)—mC, and L2 =da ~w. Then since o is of the first kind
and v¢(da)=—m—1, we have (£)+(m+1)C,>0, or equivalently

(i a.f)+Y, . +(m—r)C, >0 where da:i‘ a,dy.. Let g be a function

on V defined by g:j a.f; +mah0:ﬁ ah, +h(ma—y,a,— -+ —Y,a,)

then it will be shown that (9)=Y,,,+(m—r—1)C,>0. Suppose for
a moment that this is already proved, then the differential form

.Q:< g )dyl- --dy, is easily seen to satisfy the condition (2)+ C(m)>0.
o

Moreover 2—9Q'/a is finite along C(m), hence Resc.,.,2 =Res¢.,(2'/a)
~weam,, Which proves that « has the property (P) with respect to
C(m). Next we shall show that (@)+Y,.,+(m—r—1)C,>0. For
this purpose it will be sufficient to prove the following
PROPOSITION 16. Notations and assumptions being as before, let
C(m) be an irreducible section of V with a hypersurface of order m,
dzﬁ'erent from C,, and a a function such that (a)=C(m)—mC, Let

da= Zadyl, then ve(a,)=—(m—1) and v, (ZaLy, ma) = —(m—1).

=1

PrOOF. Let o*=yld(alyl), then o*=—=do— Wmdyl/yl_ZadyZ

mady,/y;,. Now using the functions y,=1/y, and y;=y,/y, (7,— yor e, 1)
as uniformizing parameters on V along C,, we have

w* = —yl{Z ay, —ma}dy{ +y, > ady;.
i=1 1=2

Since a/y!" is finite along C,, we have Ve (0*)=—m. Then we easily
have ve (y,a)=—m and vc (¥, (3 ay,—ma))=—m. From this we
i=1

have the assertion. q.e.d.
To complete the proof of Prop. 15, we must show that « has
the property (P) with respect to C,, which was excluded in the
above proof. The simple calculation shows us that e =(—¥%"'fidy;-
< dyl)e, = Wby - -dyS)e,, Let Q=-—hdy,---dy,, then (2)+C,>0
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and Q =y, hdy:- - -dy,. Hence Res, (2)-= iy hdys - - -dy,’.)c(,:(y’{hody;-
- -dylye,=w¢,- This completes the proof of Proposition 15. q.e.d.
In the following we shall simply say that the differential form
of the 1st kind has the property (P), if it has the property (P) with
respect to some generic hyperplane section of V. It is reasonable

by Prop. 15.
We shall now translate the conditions of Prop. 14 in the language

r

of adjoint forms. Let o =S (=1)Y " fidy, - - (ﬁ/, .. -dy, be a differential

form of the 1st kind on V, having the property (£). Then the
coefficients f,’s are of the form fi=—=h,—yh,, where h,’s are contained
in 2Y,,;—7C,). Then by (2.4) we have

WJF, ) (S Fh,— (g F ) € €Y,y —(r—1)C)
hence
AF,, ) Fh— (S g F ) €AY, — 7).

r+1
Then if we put the above function —h,,, and F,——=>1y.F;, we get
the relation

r+1
(4.3) SVhF,—0, with the functions h’s in &Y, ., —rC)-

=0
Now we shall assume that V is arithmetically normal, then multi-
plying (4.3) by #,., and putting A, —=F_  h, we have

r+1

(4:.4:) Z AiFi =0,

where A,’s are, as is easily seen, the adjoint polynomials of degree
<m—r—1. Let Af=xp"'A, and F¥—pi 'F',, then we easily see
that F*=0F*/0n,, where F'* is, an in §1, the defining homogeneous
form for the generic projection V*. Then the identity (4.4) is
transformed into

(4.5) S ARFF=0
i=0
with adjoint forms A} of degree ~m—r—1.
PROPOSITION 17. Let V be a nonstngular arithmetically normal
variety and let V admit an (r—1)-fold differential form of the
1st kind, having the property (P). Using the nmotations in §1, let

w:_zr‘,(—l)i‘l(Af/lf"Hl)dy{---d@ﬁ---dyr be such one. Then there exist

adjoint polynomials A, (0=t =r+1) of degrees <m—1r—1 such that
1) A€:Ai"—yi"40)
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r+1
i) >TASF} =0, where A¥-—y"""'A, and F*-—0F*[0n,.
=0
Conversely, tf there exist adjoint forms A satisfying the above con-
dition it), then the differential form

0=} (=) (A, —y, AN, dy,- - -y, -dy,

18 a differential form of the first kind having the property (P).

PROOF. The first half of the proposition is already proved. To
prove the second part, we must verify the conditions (2.2") and (2.3,
but it will be a simple verification. q.e.d.

Now we are well prepared to discuss the usage of our conjecture
which we shall restate in the following

CONJECTURE. Let V* be a generic projection in S™*' of a non-
stngular variety V' in a projective space, and F*(Y,,Y,,---,Y,.,) an
wreducible form defining V*. Let m be the degree of F* and A}
the forms of degrees <m—r such that

r+1

(5.1) SVAFFF=0.

=0
Then A*’s must be identically zero, provided m s mot divisible by the
characteristic p of the universal domain.
PROPOSITION 18. Assume that our conjecture holds true, and let
V be a non-singular variety whose projective degree is not divisible
by the characteristic p. Using the same notations as in §1 let A¥
(t=0,1,--+,r+1) be forms tn Y’s of degree <m—r such that
r+1
(5.2) > AF( () =0.
Then A¥ must be of the form n,N*, where N* is a form of degree
<m-—r—2.
PrROOF. From the relation (5.2) we have the identity
r+1
(5.3) D ANFHY)=N*Y)HF*Y)
=0
with a polynomial N* of degree <m —7r—2. On the other hand we
have the Euler’s identity for homogeneous form

r+1

(5.4) SVYFF=mF*,

=0

Combining (5.3) and (5.4) we get an identity

r+1

S (mAF — Y, N*)F'* =0,
i=0

The lemma implies that A=Y ,N*/m. q.e.d.
Combining the Propositions 16, 17 and 18 we see the following
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I[f our conjecture holds true, then any (r—1)-fold differential
form (F0) of the first Lind on a non-singular projective variety
cannot have the property (P), provided deg V is not divisible by the
characteristic p of the universal domain.

At the end, we shall give one more proposition, from which we
can deduce the preservation of the independency of the differential
forms of the first kind on its generiec hyperplane section.

ProposSITION 19. Using the same assumptions and notations as
in Prop. 18, let A¥ (1=1,---,q+ 1) be the forms in Y’s of degree
<m—q—1(g=7), and assume that there exists a relation of the form

(5.5) ‘ 12:]1 A?‘(?})F{‘E(?}) ==0.

Then A¥=0.

PrROOF. When ¢-=r, this is a special case of the preceding prop-
osition. We shall use the induction on the number r—gq. Suppose
that g<r, then ¢+1=n, there exists an index j such that F'; does
not appear in (5.5). We shall assume that #', does not appear in (5.5).
Let V*=V*.S;, where S, is a linear variety in S”'! defined by the
equation Y,==0. Then as is easily seen that V§ is a generic projection
of V,=V-H, where H, is a hyperplane defined in §1, V¢ is defined
by the form F*(Y,, -+, Y, )=F*Q, Y,,---, Y, ) and OF*°[0Y;==
Fx0,Y,,---, Y, ) if ¢=1 Applying the induction assumption on
V* we see that A*’—=0, where A*" is the restriction of A* on V.
Since degrees of A*’s are less than m these are the identities, and
we see that A*’s must be of the form A==,/ #*  Thus we have

q+1
analogous relations > AF*()EF % (9)==0. Continuing this process in
i==1

finite number we arrive at the conclusion. q.e.d.
As a consequence of this proposition we have the following:
Assume that our conjecture holds true. Let V be a non-singular

arithmetically normal projective variety, whose degree is not divisible

by the characteristic of the wniversal domain. Let C be a generic

hyperplane section of V with reference to a field of definition for V.

Then the restriction map from the vector space o f the q-fold differential

forms of the first kind on V into the vector space of the q-fold duif-

ferential forms of the first kind on C is an isomorphism (g<dim V).

PrROOF. Let w = > Ail,..iq/F”ldyil- «-dy,, bea differential form
1',1<...<71q

of the 1st kind, and suppose that o, =0. Then A, A<t < “1,)
must be of the form ylA;...iq with adjoint A’s of the degree <m—q—2.
(I) The case g<r—1.

Let 4,,%5,--+,%, be a set of indices taken from 2,---,7. Then
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as in §2 we can find adjoint polynomials Al .., of degree <m—q—2
such that

q

i N ’
% (—‘ 1) FL'jA:O“‘ij"”L'qMFT+1A’I'0""1'q‘
Hence by the preceding proposition we have A, =0 1f 1<y - - <,

Moreover we see by (2.2") that Ay ...;, are polynomials of degree
=m—q—2. Then again using the similar argument to the above

we see that there exist adjoint polynomials Al...,, such that

q

>0 (—= 1)';F[1A1,tl...fj...z:q:F”IA’

Liyessige
=1 !

From this we have also Al,.z‘..,.qr-;O. Hence o--0.
(II) The case ¢q:-=r—1.

In this case we shall assume that w¢, <0, without losing any
generality, where o is as above. Then A’s are adjoint polynomials

of degree <~m—r—1 by Prop. 12, and we have the relation zr‘, AF, —
=A'F, , by (2.8). This implies that 4,--0. Hence w=0. q.e.d.
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Sur la dimension homologique des anneaux et des
modules noethériens

Jean-Pierre SERRE

Dans sa conférence au Colloque de Topologie de Bruxelles [7],
J.-L.. Koszul a montré quel avantage il y a a exposer la théorie des
syzygies de Hilbert en utilisant le langage homologique. Ce point de
vue a été repris et systématisé par H. Cartan et S. FKilenberg (cf.
8], Chap. VIII), qui ont notamment étendu les résultats de Koszul
a d’autres anneaux que l’anneau des polyndmes, par exemple a
I’anneau des séries formelles, ou convergentes. En fait, ces résultats
sont valables dans tout anneau local régulier: c’est ce que viennent
de montrer M. Auslander et D. Buchsbaum, dans un article récent
(2], ou ils étudient également les relations existant entre la notion
de ‘““dimension homologique’’, introduite dans [ 3], et la notion classi-
que de dimension, due a Krull; ces relations généralisent celles qui
étaient connues dans le cas classique (ef. [5] par exemple).

Dans ce qui suit, je me propose d’exposer certains des résultats
de [2], en les complétant sur plusieurs points, et notamment en
montrant que la validité du théoréme des syzygies caractérise les
anneaux locaux réguliers (cf. th. 8). La conséquence sans doute la
plus intéressante de cette caractérisation est le fait que tout anneau
de fractions d’un anneau local régulier est régulier (cf. th. 5).

1. Conventions et terminologie.

a) Tous les anneaux considérés par la suite seront SUDPOSES
commutatifs, noethériens, et & élément unité; tous les modules sur
ces anneaux seront supposés unitaires, et de type fini, donc noethér'iens.

b) Si E est un module sur un anneau A, nous appellerons dimen-
sion homologique de E, et nous noterons dh,(£) entier (fini ou égal
4 + o) appelé dimension ‘‘projective’”’ de E, et noté dim, K, dans
[8]: ce changement de terminologie parait nécessaire, si on veut
appliquer cette notion a la géométrie ‘projective’’. Rappelons que
dh, (F)<n signifie qu’il existe une suite exacte:

0—->P,»--+—>P,—>Py—>E~>Q0,
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ot les P, sont des A-modules projectifs (facteurs directs de modules
libres).

De méme, nous noterons gl.dh (A4) la borne supérieure, finie ou
infinie, des dh, (&), pour E parcourant tons les A-modules (se borner
qux modules de type fini ne change pas gl.dh (4), d’aprés un résultat
de M. Auslander [1]).

Pour toutes les autres définitions et notations d’algébre homo-
logique, nous renvoyons a [3].

¢) Si A est un anneau, nous noterons dim (A) sa dimension au
sens de Krull (ef. [8], [13], [14] par exemple), c’est-a-dire la borne
supérieure des entiers n tels quil existe n+1 idéaux premiers em-
boités distinets dans A:

PoCh T T,

Qi o est un idéal de A, mnous mnoterons dim (0) la dimension de
I’anneau quotient A/a. Si A est un anneau local, on sait que dim (A4)
et les dim (0) sont finis.

d) Si A est un anneau, et si 1 est in idéal premier de A, nous
noterons A, I’anneau de fractions de A relativement au complémen-
taire de b (ef. [18], Chap. 2 ainsi que [14], Chap. I, no. 4); rappelons
que c¢’est ensemble des fractions a/s, « ¢ A, se¢p, deux fractions afs
et /s’ étant identifiées si et seulement si il existe s”¢)d tel que
s"(s'a—sa’)=0; I’anneau A, est un anneau local d’idéal maximal bA,
et de corps des restes le corps des fractions de A/p; la dimension de
A, est appelée le rang de b, et notée rg (h).

e) Soit £ un A-module. Si a est un idéal de A, et si F est un
sous-module de E, nous noterons aF' (ou a-F) le sous-module de K
engendré par les produits aof ol a parcourt a et f parcourt F. L’idéal
a sera dit diviseur de zéro dans E/F g’il existe v ¢ K, v ¢ F, tel que
ax — F' (c’est-a-dire ax ¢ F pour tout « € a). Soit F-= () Q, une décom-
position primaire réduite ((6], §6-[15], Chap. IV) de F dans FE, les
Q, correspondant aux idéaux premiers b,; nous dirons que les p; sont
les idéaux premiers de F dans E; on sait ([6], cor. au th. 18-[15],
Chap. IV, th. 7) qu’un idéal a est diviseur de zéro dans E/F si et
seulement si il est contenu dans 'un des b, (ou dans la réunion des
p,, cela revient au méme d’aprés la prop. 6 du Chap. I de [13]); en
particulier, ’ensemble des a ¢ A qui sont diviseurs de zéro dans E/F
est égal & la réunion des p,.

f) Conformément & I’usage de N. Bourbaki, nous dirons qu’une
application f: E—E' est injective si f(e)-= f(e,) entraine e, —e,,
surjective si f(E)=E’', bijective si elle est a la fois injective et sur-
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jective. Une application injective (resp. surjective, bijective) est
appelée une injection (resp. une surjection, une bijection).

2. La notion de E-suite.

Soit A un anneau local d’idéal maximal m, et soit £ un A-module.

DEFINITION 1. Une suite (a,---, a,) d’éléments de m est appelée
une F-suite si, pour tout i <q, [’élément a; n’est pas diviseur de zéro
dans E(a,,- -+, a, ) FE. Lentier q est appelé la longueur de la E-suite.
(Cf. [2], §3.)

Une E-suite (ay,---,a,) est dite maximale s’il n’existe aucun
élément a,,, ¢ m tel que (a,,---,a, a,,,) soit une K-suite; cela signifie
que tout élément de m est diviseur de zéro dans Ef(a,---, a,)E; si
p,---, b, désignent les idéaux premiers de (a,,---,a,)E dans E, la
condition précédente équivaut & dire que m est contenu dans la réunion
des p,, donc est égal a 'un des p, (cf. no. 1).

Nous montrerons plus loin que, si E n’est pas réduit a 0, toute
E-suite peut étre prolongée en une FK-suite maximale (cor. a la
prop. 2), et que deux E-suites maximales ont méme longueur (th. 2).

PROPOSITION 1. Soit E un A-module, et soit 7 som complété,
considéré comme module sur le complété A de A. Si une suite
(@g,---, a,) est une F-suite (resp. une E-suite maximale), ¢’est aUSST UNE
E-suite (resp. une F-suite mazimale).

Puisque A est un anneau local, c’est un anneau de Zariski, et le
foncteur E est un foneteur exact ([15], Chap. V, §2); en particulier,
supposons que F soit un A-module et que a € m soit non diviseur de
zéro dans F'; on a une suite exacte:

0> F% F—> FlaF— 0,

d’ol1, par complétion, la suite exacte 0 — FS F> ﬁ/aFA-» 0, qui montre

que @ est non diviseur de zéro dans F. Par récurrence sur ¢, Oon en
déduit que, si (a,,---, a,) est une E-suite, c’est aussi une E-suite.
Supposons maintenant que (a,,---, @,) soit une E-suite maximale 1.e.
que m soit un idéal premier de F=(a,,---,a,)E dans E; il existe
alors (cf. no. 1) un élément x ¢ E, x ¢ F, tel que m-x CF; on aura
done Nez=A-m-xCA- ::ﬁ‘, et x$ﬁ puisque I;'AE:F(cf. (15],
loc. cit.); done m est diviseur de zéro dans F:/ﬁ’:ﬂ:i‘/(al,- .-, a,,)E’, ce
gqui montre bien que la E-suite (a,,-++,a,) est maximale.
PROPOSITION 2. Soit E un A-module, et soient b, les idéaux
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premiers de 0 dans E. Si (ay,-- -, a,) est une E-suite, on a g==dim (p,)
pour tout .

Nous utiliserons le lemme suivant:

LEMME 1. Soit E un A-module et soit a un élément de m qui ne
sott pas dwviseur de zéro dans E. St b est un idéal premier de 0 dans
E, il existe un tdéal premier b de akF dans E qui contient [’idéal p+ ().

(Cf. [5], §135, no. 8).

S’il n’existait pas d’idéal p vérifiant les conditions de 1’énoncé,
I’idéal p+ (@) ne serait pas diviseur de zéro dans E/aFE (no. 1), autre-
ment dit, la relation (p+(a))-x CaF entrainerait x ¢ aF; comme on
a évidemment ax € aF, ceci signifie que la relation p-xC aF entraine-
rait « e all. ‘Considérons alors le sous-module N de E formé des x
tels que p-z==0; puisque p est un idéal premier de 0 dans K, on a
N0 (ef. no. 1); mais, si xe¢ N, on a p-x—0Cak, d’ou xecak,
d’aprés ce que nous venons de voir, et I'on peut écrire x--ay, avec
ye E. La relation p.x:-0 s’éerit alors p-ay--0, et, comme a n’est
pas diviseur de zéro dans F, ceci entraine p-y-—-0, i.e. y ¢ N. On voit
done que N--=alN, et, comme a appartient & m, ceci entraine N--0
(ef. [3], Chap. VIII, Prop. 5.1"), d’out la contradiction cherchée.

Démontrons maintenant la prop. 2 par récurrence sur ¢, le cas
q=0 étant trivial. Soit p l'un des idéaux p,, et soit P’ un idéal
premier vérifiant les conditions du lemme 1 (avee a—a,). Puisque le
module E/a, £ possede la Eja E-suite (as,- - -, a,), ’hypothése de récur-
rence montre que ¢—1 -~ dim (}’). Mais p'C P, ' =£) (ear sinon on aurait
@y € b, et a, serait diviseur de zéro dans E); d’ou dim (p")-=dim (p)—1,
et ¢ =dim (p), eqfd.

COROLLAIRE. St E est un A-module 50, toute E-suite peut étre
prolongée en une E-suite maximale.

En effet, la condition E7-0 signifie que l:ensemble des idéaux
premiers de 0 dans E est non vide, et la prop.1 montre alors que
la longueur de toute E-suite est bornée par la dimension de I’un
queleonque de ces idéaux.

3. Relations entre les notions de E-suite et de dimension homo-
logique.

Les notations étant les mémes que précédement, nous désignerons
par k le corps des restes de ’anneau local A : puisque % est un anneau
quotient de A, on peut le considérer comme un A-module, et les
Tor; (K, k) sont donc définis pour tout entier p =0 et tout A-module
E. D’apres [3], Chap. VIII, les relations:

“Torj(E,k)=0" et ‘“dh,(E)<p”
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sont équivalentes. En particulier, gl.dh(A) est égal a dh,(k), lui-
méme égal au plus petit entier ¢ tel que Tor;. (%, k)=0.

PROPOSITION 3. Soit E un A-module 50, et soit (a,,---, a,) une
H-suite. Si Q=E/(ay,---,a)E, on o dh (Q)=dh,(E)+q.

(Ce résultat est bien connu dans la théorie classique des syzygies,
cf. [5], §152, no. 6; dans le cas des anneaux locaux, voir [2], §3
ainsi que [16], no. 76, lemme 2.)

Par récurrence sur q, on voit que ’on peut supposer ¢-=1. Désignons
par u I’homothétie de rapport ¢, dans £. On a une suite exacte:

(%) 0—>E->E—->Q—0.
Pour tout entier p>=0, w définit un homomorphisme
w,: Tor;, (&, k)— Tor, (¥, k).

Il résulte des propriétés générales des Tor que ’on obtient le
méme homomorphisme %, en considérant 1’homothétie de rapport a,
dans k, et non plus dans £. Comme «a, appartient a u, cette homo-
thétie est identiquement nulle, et I'on a w,-=0 pour tout p. La suite
exacte:

-+« > Tor, (K, k)—>Tor; (K, k)— Tor(Q, k)~ Tor; (¥, k)— -+ -
associée a la suite exacte (x) se décompose donc en suites exactes
partielles:

0—Tor, (K, k)—Tor;(Q, k)— Tor;" (¥, k) 0.
Si 'on pose s-=dh,(#), les suites exactes précédentes montrent que
Tor;(Q, k)0 pour p-<s+1 et Tor}(Q, k)==0 pour p>s+1, ce qul
montre bien que dh,(Q)==s+1, cqfd.

PROPOSITION 4. Supposons que gl.dh(A) soit finie,et égale a s.
Alors, st E est un A-module 0, la longueur de toute E-suite maxti-
male est égale a s—dh,(&).

Soit (a4,- -+, @,) une E-suite maximale, et soit Q@=F/(a,,- -, a,)E.
D’apres la proposition précédente, on a dh, (#)=dh,(Q)—q, et il nous
suffira done de prouver que dh,(Q)=s. D’aprés ce que nous avons
vu au no. 2, I'idéal m de A est diviseur de zéro dans @; on peut
done trouver un élément x e @, x~+0, tel que n-x=-0; I’élément «
engendre donc un sous-module de @ isomorphe a4 k, et I'on a ainsi
obtenu une suite exacte:

0—>k—>Q—>Q/k—0.
On en déduit la suite exacte:
Tor, (Q/k, k) — Tor(k, k)~ Tor(Q, k).

Puisque s=gl.dh(A), on a Tor\ (Q/k, k)=0, et Tor/(k, k)=0;
d’ou Tor;(Q, k)0, ce qui montre que dh,(Q)=s; comme il est trivial
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que dh,(Q)=s, la proposition est démontrée.

COROLLAIRE 1. Pour que dh,(E) soit égal & s, 1l faut et il sulfit
que m soit un tdéal premier de 0 dans E.

En effet, les deux conditions équivalent & dire que toute E-suite
est vide.

COROLLAIRE 2. St gl.dh(A) est finie, on a gl.dh(A4)=<dim (4).

(En fait, on a gl.dh(A)=dim (A), ef. [2], lemme 4.2, ainsi que
les ths. 1 et 3 ci-apres.)

En appliquant la prop. 4 & EF=A, on voit que s est egal a la
longueur de toute A-suite maximale; la prop. 2 montre alors que
s <dim (p), pour tout idéal premier p de 0 dans A, d’ou a fortiory
s=<dim (A4).

THEOREME 1. Si A est un anneaw local régulier (cf. [14], p. 29)
de dimension n, on a gl.dh(A4)=mn.

(Cf. [2], 84, ainsi que [3], Chap. VIII.)

Par définition, I’idéal m de A peut étre engendré par n éléments
(2, ++,%,); de plus on sait ([14], loc. ecit.) que, pour tout @-=n,
anneau A/(x,---,x, ;) est un anneau local régulier, donc integre, et
x, n'est pas diviseur de zéro dans A/(x,,---,x, ;). Il s’ensuit que
(x4, -+, 2, est une A-suite; en appliquant la prop. 8 avec E=A4, et
en remarquant que F/(a,,---,a,)E=A/m=Fk, on obtient:

dh,(k)==dh,(A)+n=n (puisque A est A-libre),

ce qui démontre le théoreme, car dh,(k)=gl.dh (A).

Puisque gl.dh (A)=n< + o, on peut appliquer la prop. 4. D’ou:

COROLLAIRE 1. St K est un A-module 7 0, la longueur de toute
suite maximale est égale & n—dh,(F)

Et, en appliquant la prop. 2:

COROLLAIRE 2. Si b, désignent les idéaux premlers de 0 dans E,
on a dh,(E)=n~dim (»b,) pour tout i.

Remarques.

1) On peut avoir dh,(#)>n—dim (p,) pour tout ¢, comme le
montrent de nombreux exemples. Cf. [5], §155, no. 8.

2) Le corollaire 1 ci-dessus fournit un procédé commode pour
calculer dh,(#). A titre d’exemple, montrons que tout anneau local
régulier A de dimension 2 est factoriel, résultat di & Krull ([9],
Satz 9) et Samuel ([14], p. 61): puisque 'on sait que A est intég-
ralement clos, il nous suffit de montrer que tout idéal premier
minimal b de A est principal; or il existe évidemment un élément
@ € m non contenu dans ), et cet élément n’est pas diviseur de zéro
dans A/p; en appliquant le cor. 1 au module A/b, on en déduit
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dh,(A/m)<1, d’ot dh,(b) =<0, ce qui signifie que b est un A-module
libre, done est un idéal principal, cqfd.

4. Codimension homologique d’un module sur un anneau local.

THEOREME 2. Soit A un anneau local. Si E est un A-module
70, toutes les FE-suites maximales ont méme longueur.

(Cf. [2], §38.)

Soient (ay,---,a,) et (aj,---, a,) deux E-suites maximales; d’aprés
la prop. 1, ce sont aussi des F-suites maximales. En vertu d’un
théoréme de Cohen ([4], cor. 2 au th. 15- voir aussi [14], Chap. 1V),

I’anneau local complet A est isomorphe au quotient d’un anneau local

régulier B; ainsi, £ se trouve muni d’une structure de B-module.
Si (by,- -+, b,) désignent de représentants dans B de (a,,---, a,), il est
clair que (by,---,b,) et (b],---, b)) sont des F-suites maximales, et le
cor. 1 au th. 1 montre alors que p—=¢—=dim (B)~dh,;(l77), cqfd.

DEFINITION 2. Si E est un A-module 70, on appelle codimen-
ston  homologique de FE, et on note codh,(E), la longueur de toute
FE-suite maximale.

Remarques.

1) La notation codh,(E) est justifiée par le cor. 1 au th. 1: si

A est un anneau local régulier de dimension », on a:

dh,,(E)+codh (K)=mn.

2) A la différence de la notion de dimension homologique, celle
de codimension est indépendante de I’anneau A considéré, et ne dépend
que du module F. De facon plus précise, si £ est un A-module, et
si 'anneau A est un quotient d’un anneau local B, on a:

codh (&) =codh,(&).

On peut donc écrire codh (£) au lieu de codh ,(F) sans risque d’ambi-
guité.

38) Il serait intéressant de trouver une démonstration directe
du th. 2, n’utilisant ni les théoréemes de structure de Cohen, ni la
notion de dimension homologique.

FExemples.

1) Prenons pour module £ I’anneau local A lui-méme. D’aprés
la prop. 2, on a codh (A) <dim (p) pour tout idéal premier » de 0 dans
A, et, en particulier, codh(A)=<dim(A). Les anneaux locaux A
vérifiant D’égalité codh(A)=dim(A) sont ceux qui possedent un
‘““systéme distinet de parameétres’’, au sens de Nagata ([117], §7); on
trouvera diverses caractérisations de ces anneaux dans le mémoire
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précité de Nagata, et notamment celle-ci: ce sont les anneaux locaux
dans lesquels le théoréme d’équidimensionnalité de Cohen-Macaulay
est valable. Ces anneaux ont pour analogues, dans la théorie classi-
que des syzygies, les quotients d’un anneau de polyndmes par un
idéal ““parfait” (cf. [5], §153). -

2) Soit A un anneau local intégre, intégralement clos, et de
dimension =>2, et soit a un idéal fractionnaire de A; supposons que
a soit un idéal ‘‘divisoriel”’ (ef. [15], p. 82). Je dis que 1’on a alors
codh (a) =2 (lorsque a==A, on retrouve le résultat démontré dans [16],
no. 76). En effet, on peut tout d’abord supposer (par multiplication
par un élément convenable de A) que l’idéal a est contenu dans A4;
si z est un &lément non nul de m, I’idéal z-a est un idéal divisoriel,
done est intersection de puissances symboliques d’idéaux premiers
minimaux p, (ef. [15], Chap. IV, §4); comme dim (A)>>2, aucun des
p, n’est égal a m, et 'on peut done choisir un ¥ € in qui n’appartient
a aucun des p,. Montrons maintenant que (x, ¥) est une a-suite, ce
qui établira notre assertion; puisque A est integre et x40, = est
non diviseur de zéro dans A, done a fortior: dans aC . A; de méme,
y n’étant contenu dans aucun des p, n’est pas diviseur de zéro dans
AJx-a, donc a fortior: dans afx-aC Ajx-a, cqfd.

3) La notion de codimension homologique permet d’énoncer de
facon un peu plus simple certains résultats relatifs aux faisceaux
algébriques cohérents. Ainsi, le th. 2 du no. 74 de [16] s’énonce de
la facon suivante:

Soit V' une variété algébrique projective, soit F un faisceau algé-
brique cohérent sur V, et soit p un entrer =>0. Les deux conditions
sutvantes sont équivalentes:

(a) HYV,F(—n))=0 pour n assez grand et 0 <q <p.

(b) Pour tout xeV, on a codh(F,)=>p.

(On observera que la condition (b) ne fait pas intervenir le plonge-
ment de V dans un espace projectif, alors qu’il n’en est pas de méme,
a priore, pour la condition (a)).

Supposons V irréductible, de dimension 7r, et appliquons Ila
théoréme avee G—=(), et p—=7r; nous voyons ainsi que la condition
“HYV,O(—n))=0 pour n assez grand et 0 <g<7r’’ est vérifiée si et
seulement si tous les anneaux locaux ©,, ¢ € V, vérifient les conditions
de ’exemple 1 ci-dessus; ce résultat contient évidemment comme cas
particulier eelui du no. 75 de [16].

5. Caractérisation homologique des anneaux locaux réguliers.

THEOREME 3. Soit A un anneau local. Pour que gl.dh(A) soit
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Sinie, il faut et il suffit que A soit un anneaw local régulier.

Si A est régulier, nous savens déja (cf. th. 1) que gl.dh (A)=
dim (A)< + eo. Pour démontrer la réciproque, nous aurons besoin du
théoréme suivant:

THEOREME 4. Soit A un anneawu local, d’idéal maximal m, de
corps des restes k=A/m, et soit n la dimension du k-espace vectoriel
m/m®. - Pour tout entier p=0, le A-module Tor)(k, k) est un k-espace

vectoriel de dimension g( Z) .

Admettons provisoirement le th. 4, et montrons comment il
entraine le th. 8: du fait que Tor;(k, k) est dimension >1 sur k, on
a n=gl.dh(A4); d’autre part, le cor. 2 & la prop. 4 montre que
gl.dh(4) <dim (A4), d’ot n=dim (A), ce qui entraine que A est un
anneau local régulier (ef. [14], p. 29).

Le reste de ce n’ va étre consacré a la démonstration du théoréme 4.

Soit &,---, &, une base du k-espace vectoriel V=m/m? et soient
%y, ++, %, des représentants dans m des &,---,&,: on sait (ef. [8],
Chap. VIII, Prop. 5-1’ par exemple) que les z, engendrent 1’idéal m.
Au moyen des x;, on peut, par un procédé bien connu (ef. (7], §2,

ou [3], Chap. VIII), définir un complexe L:§2LP; rappelons-en

brievement la définition:

Un élément de L, est une application (Ciy e e ey 2,)>a(ly, - -+, 1,)
qui fait correspondre & toute suite (¢,,- - -, t,) d’entiers =<7 un élément
de Panneau A dépendant de facon alternée de 7, - -, t,; on munit L,
d’une structure évidente de A-module, qui en fait un A-module libre

de rang (Z), Popérateur bord d: L,— L, , est donné par la formule:

i=mn
(da>(@.1’ tt 7’1)~1>:le1'(1’(7’7 1’1,' Yy 7/],_1>o
-

On a en particulier L,=A", L,—=A, et I'opérateur d: L,— L, fait
correspondre & tout systéme a(z) ¢ A" 'élément Sla,-a(i)e A; on a
done d(L,)==m.

LEMME 2. Pour tout entier p>1, Dopératewr d définit, par
passage aw quotient, une application injective d' de L,/mL, dans
mL,_,/m*L,_,. ~

Posons L;,=L,/mL,; un élément de L, peut s’identifier & une
application (2;,---, %) > a(iy,- -+, 7,), ou a(iy,---,¢,) est un élément de
k dépendant de facon alternée de 4,,---,7,, On peut également
identifier mL, ,/m*L, ; & m/m*QL, ,/mL, ,=VQL,_,, et I’opérateur
d' défini par d, est donné par la formule:
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(d,a’)(ib *t % i])#l)::g El@“(ii /I:l) Tt 7:1)—1)'

Mais, par hypothése, les &, forment une base de V; done d'a=0
entraine que, pour tout i, «(,%,---,%, ,)=0, ¢’est-a-dire «=0, cqfd.
On notera que le complexe L défini ci-dessus n’est en général pas
acyclique; autrement dit, la suite:
0-L,~>L, ,—>---—>L—>L,—~>k—>0,

n’est pas nécessairement exacte. Le lemme suivant montre que l’on
peut toutefois la ‘‘compléter’” en une suite exacte:
LEMME 8. Il existe une suite exacte de A-modules:

----a-Mp—'—; s> > My—>k—>0

qui vérifie les conditions suivantes:

a) Si Q, désigne le noyauw de d: M,—M,_,, I’homomorphisme
d définit, par passage au quotient, une bijection de M, /M, sur
Q,.,/mQ,_;.

b) Le module M, est somme directe du module L, et d’un module
libre N,; la restriction de d a L, applique L, dans L, , et coincide
avee I”homomorphisme d défint ct-dessus.

Nous allons construire les M, et d:M,—~M, , par récurrence
sur ’entier p. Pour p=0, on pose M,—=L,=A; pour p=1, on pose
M,=L,; du fait que d(L,)=m, la suite M,—~ M,—~k—0 est exacte, et
d applique biunivoquement M,/mM; sur m/m?

Supposons done que la suite exacte M, ,—>M, .~ ---—>M~>k—>0
ait 6té définie, et qu’elle vérifie les conditions a) et b).

Du fait que le composé L, L, ,-> L, , est nul, on a d(L,)C@Q, 1,
d’ott un homomorphisme d”: L,/mL,—Q, ;/mQ, ,. Je dis que d” est
injectif. Tout d’abord, puisque M, ,/mM, ,—@Q,_./mQ, , est bijectif
(d’aprés la condition a), le noyau Q,_, de d: M, ,—~@Q, . est contenu
dans mM,_,; il nous suffit donec de prouver que I’homomorphisme
composé :

Lp/mLpf; Q, . /mQ,_,->mM, ,jm*M,_,

est injectif; mais la condition b) entraine que mM,_,/m*M, , est iso-
morphe & la somme directe de mL,_ ,/m*L, , et de mN,_ ,/m’N,_,, et
notre assertion résulte donc du lemme 2.

Soient alors ,,---,y, des éléments de @, , dont les classes
mod mQ,_, forment une base d’un supplémentaire de d”(L,/mL,) dans
le k-espace vectoriel @, ,/m@Q,,. Posons N,=A* et définissons
d:N,—»Q,_, par la condition que d applique la base canonique de N,
sur ¥,,---, ¥, prenons pour M, la somme directe de L, et de N,, et
définissons d sur M, par linéarité. Par construction, d applique M,
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dans @,_;, et définit un isomorphisme de M,/mM, sur Q, ,/mQ, ,; il
s’ensuit (ef. [3], Chap. VIII, Prop. 5.1) que a(M,))--Q, ,, et il est
clair que les conditions a) et b) sont satisfaites, eqfd.

Montrons maintenant comment le lemme 3 entraine le théoréme 4.
Par définition, les Tor;'(k, k) sont les modules d’homologie du complexe
formé par les M, Q. k=M, mM, Mais, d’aprés la condition a),
d(M,)=Q,_, est contenu dans mM,_,, ce qui montre que 1’opérateur
bord du complexe précédent est identiquement nul: done Tor,\(k, k)
est isomorphe & M, /mM,. Mais, d’aprés la condition b), M,/mM, est
isomorphe & la somme directe de L,/mL, et de N,/mN,, et, comme

N\
L,/mL, est un espace vectoriel de dimension ( Z) sur k, le théoréme 4
/

est démontré, et, avec lui, le théoréme 3.

6. Applications.

Nous montrerons d’abord comment les résultats qui précédent
permettent de démontrer, de facon simple, le théoréme de Cohen-
Macaulay ([4], th. 21- cf. aussi [14], p. 53 et [11], §7):

PROPOSITION 5. Soit A un anneaw local régulier de dimension n
et didéal maximal m, et soient a,,---, a, des éléments de m tels que
dim (A/(as,- -+, a,)=n—p. Alors tous les idéaux premiers de I’idéal
(@,---,a,) sont de rang p et de dimension n—np.

SL ay,- -+, a, sont des éléments quelconques de m, on a évidemment
dim (A4/(a;,- -+, a,))=n—p; si P'égalité est vérifiée, nous dirons que le
systeme a,,---,a, est pur; cela équivaut a dire que les Ay, v, @,

font partie d’un systéme de paramétres de A, cf. [14], Chap. I1,
no. 4.

Ceci posé, raisonnons par récurrence sur p, le cas p—0 étant
trivial. Puisque le systéme @,-+-,a, est pur, il en est méme du
systeme a,,---,a, ,, et I’hypothése de récurrence montre que les
idéaux premiers b, de cet idéal sont tous de dimension 7% — p+1.
L’élément a, n’appartient & aucun des b, car, si Ion avait par exemple
a,€bd,, on aurait (a,,---,a,)Cp,, d’ou:

dim (A/(a’b tt Y ap))gdlm (A/pl):n_p+1y

contrairement a I’hypothése.

Il s’ensuit (ef. no. 1) que @, n’est pas diviseur de zéro dans
A/(ay, -+, a, ), et de méme a, n’est pas diviseur de zéro dans
Aflay, -+, a;_y); la suite (a,,---,a,) est donec une A-suite, au sens de
la définition 1. La prop. 3 montre alors que dh,(A/(ay, -, a,))=
dh,(A4)+p=p. Simaintenant p désigne un idéal premier de (a,, - - -, a,),
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le cor. au th. 1 montre que p=n—dim (p); d’autre part, ’hypothese
entraine dim (b)) =n—p, d’ou dim (P):=n—p. En outre, p contient
I’un des b, soit p, par exemple, et I’hypothése de récurrence entraine
que rg(p,)=p—1; comme P contient x,, qui n’est pas contenu dans
p, on a bz=h, dou rg()=rg®)+1=p; en sens inverse, on a
I’inégalité évidente rg (1) +dim (p) =n, c’est-a-dire rg M =p, dou
rg (P)=n, cqfd.

COROLLAIRE. Si A est un anneau local régulier, et si b est un
idéal premier de A, on a rg (1) +dim (p)=dim (A4).

(Ce résultat est di a Krull, cf. [8], Satz 11.)

Les notations étant les mémes que ci-dessus, soit a,---, @, un
systéme pur d’éléments de b, ayant le plus grand nombre possible
d’éléments. Puisque b contient I'idéal (ay,- - -, @,), il contient au moins
I'un des idéaux premiers b,,---, b, de cet idéal, soit b, par exemple.
Montrons que on a p=p,;, ce qui démontrera le corollaire, en vertu
de la proposition précédente. Si ’on avait p=£p,, l'idéal b ne serait
contenu dans aucun des b, (aucun des p; ne peut contenir ), puisque
dim (p,)=dim (p,) d’aprés la proposition préeédente); d’apres la prop. 6
du Chap. I de [18], il existerait alors un élément «a,,,cp tel que
a,.; ¢ b, pour tout i: cette derniére propriété entraine que Ay, -, a, )
est un anneau de dimension dim (A4)—p—1 (ef. [14], p. 28); le systeme
a,--+,a,,, serait donc pur, contrairement au caractére maximal de
 Yentier p, cqfd.

Le corollaire précédent signifie que la dimension de I’anneau de
fractions A, est égale & dim (A)—dim (b); le résultat suivant précise
la structure de Ay:

THEOREME 5. Si A est un anneaw local régulier, et si b est un
idéal premier de A, Uanneau Ay est aussi un anneaw local régulier.

En effet, d’apres le th. 8, il suffit de démontrer que gl.dh (Ayp)<< + o2,
comme nous savons que gl.dh(A4)< + oo, notre assertion résulte donc
de l'inégalité
(+) gl.dh (A,) = gl.dh (A),

démontrée dans [2], §4.

(Pour étre complets, rappelons brievement la démonstration de
Pinégalité (x): si n=gl.dh (4), on peut trouver une suite exacte de
A-modules:

0>L,—>++—>L—>L—>Alp->0,

ott les L, sont libres; par produit tensoriel avee A,, on en déduit que
le A,module AP, Ay=Ay/pA, est de dimension homologique =<mn,
d’ot ’inégalité cherchée.) :

NO e e A U e

A

A"
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Remarques.

1) Le théoréme précédent était connu dans divers cas particuliers:
il avait été démontré, pour les anneaux locaux géométriques, par
Zariski ([17], §5.8), pour les anneaux locaux complets non ramifiés,
par Cohen ([4], th. 20), et, sans faire d’hypothése sur A, mais en
supposant b ‘‘analytiquement non ramifié”’, par Nagata ([11], §13).

2) Lorsque A est non ramifié, il en est de méme de Ay, d’aprés
un résultat de Nagata ([10], ef. aussi [11], Lemme 1.19); en fait,
ce résultat peut se déduire trés simplement du théoréme 5 lui-méme:
il suffit de montrer que, si # est un élément de b tel que 'anneau
A/rA soit régulier, il en est méme de ’anneau Ay/xAy, ce qui résulte
du th. 5, appliqué a I’anneau A/xA, et & 1’idéal premier p/xrA de cet
anneau.

Le théoréme 5 peut étre appliqué au probléme des *‘chaines
d’idéaux premiers’’:

PROPOSITION 6. Soit A un anneau local, isomorphe au quotient
d’un anneau local régulier. Si Y Cp sont deux idéaux premiers de
A, toutes les chaines saturées d’idéaux premiers jotgnant b a h ont
meéme longueur, & savoir dim (p')—dim (b).

On peut se borner au cas ou A est régulier, et, dans ce cas, il
suffit de montrer que, si »'Cp sont deux idéaux premiers congécutifs,
on a dim (p)=dim (p)+1.

Dire que p" et b sont conséeutifs signifie que 1’idéal DA, est de
dimension 1. Puisque A, est régulier (th. 5), on peut lui appliquer
le cor. & la prop. 5, et I’on voit ainsi que rg (p'Ay)==dim (4,)—1,
c'est-a-dire rg (1)=rg(p)—1; appliquant le cor. a la prop. 5 & I’anneau
A lui-méme, on en déduit bien que dim (1')=dim (M) +1, cafd.

Remarque.

La prop. 6 ne s’étend pas & un anneau local quelconque: un
contre-exemple a été récemment construit par Nagata; cf. [12], ol
Pon trouvera également des résultats plus généraux que notre prop. 6.

Ce qui fait toutefois 'intérét de cette proposition, c’est le fait
que la condition ‘“A est isomorphe au quotient d’un anneau local
régulier” est une condition trés large; en effet, elle est vérifiée par
les anneaux locaux complets (d’aprés les théorémes de Cohen, cf. [4],
cor. 2 au th. 15), par les anneaux locaux de fonctions analytiques
(puisque l’anneau des séries convergentes est régulier), et par les
anneaux locaux de la géométrie algébrique (éventuellement sur un
anneau de Dedekind-ecf. [10], ainsi que ’exemple ci-apres).

Dans tout ce qui précéde, nous ne nous sommes intéressés qu’aux
anneaux locaux; cela tient au fait que la notion de dimension homo-
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logique a un caractére local (cf. (8], Chap. VII, Exer. 11): on pourra
done traduire les résultats obtenus en des résultats valables pour
tout anneau. En particulier:

THEOREME 6. Soit A un anneau, et soit n un entier. Les deux
conditions suivantes sont alors équivalentes: '

a) gl.dh(A4)=mn.

b) Pour tout idéal maximal m de A, Uanneau local A, est un
anneaw local régulier de dimension =n.

" (Cela résulte immédiatement du th. 8, et du fait que gl.dh(A)
est égale & la borne supérieure des gl.dh (Ay), d’apres [3], loe. cit.

COROLLAIRE 1. gl.dh(A) est égal, soit @ + <, soit & dim (A).

COROLLAIRE 2. Si gl.dh(A)< + oo, pour tout idéal premier b de
A Danneau local A, est régulier.

En effet, si m est un idéal maximal contenant b, I’anneau A,, est
un anneau local régulier d’aprés le th. 6, et, comme A, est un anneau
de fractions de A,, c’est un anneau local régulier, d’apres le th. 5.

Exemple.

Soit K un anneau de Dedekind, et soit A=K[X,, -+, X,] un
anneau de polynémes sur K; d’aprés un résultat (encore inédit) de
S. Eilenberg, on a gl.dh (A)=n+gl.dh (K y<n+1; le cor. 2 ci-dessus
redonne alors un théoréme de Nagata [10].
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The Theory of Multiplicity in General Local Rings

Masayoshi NAGATA

The notion of multiplicity in local rings was introduced by
Chevalley ([1] and [2]). Though his definition was restricted only
to ideals generated by systems of parameters of loecal rings which
contain fields, Samuel ([15]) generalized the definition to primary
ideals belonging to the maximal ideal of a local ring containing a
field under a nice idea to make use of the Hilbert characteristic
function and Samuel ([16]) defined the multiplicity also in local rings
which contain no field by the same way as in [15].

The purpose of the present paper is to reconstruct the theory
of multiplicity in local rings” and to prove some further important
results as follows:

THE EXTENSION FORMULA.” Let o be a local ring and let o’ be
a semi-local ring which is a finite v-module. Assume that there
exists a system of linearly independent elements a, =1, @y, -+, a, of
o over o such that eo’ is contained in the module Sla,0 with an
element ¢ of v which is not a zero-divisor in »’. Then for any primary
ideal q of o belonging to the maximal ideal, the relative multiplicity
of qv” with respect to o is equal to e(q)-r (where e(q) denotes the
multiplicity of q).

THE THEOREM OF ADDITIVITY. Let o be a loeal ring and let g
be a primary ideal belonging to the maximal ideal of v. Let Dy, e, Py
be all of prime divisors of zero whose co-rank are equal to rank o
and let qy,---,q, be primary components of zero belonging to UPRIEPE U
respectively. Then e(q)==3); e((q+19,)/q,).

THE REDUCTION THEOREM. Let o be a local ring and assume
that zero ideal is primary. Let b be the prime divisor of the zero
ideal. Then for any primary ideal q of v belonging to the maximal

1) Many of results in Samuel [15] and [16] can be generalized and can be proved
in simpler way. On the other hand, the treatment in Samuel [156] and [16] contains
some errors. The serious one is in the proof of our Theorem 1 (in §5). Though it
was corrected in Nagata [9], the proofs were sketchy and we want to prove it again
in detail.

2) This is a slight generalization of an assertion in Samuel [16].
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ideal, the multiplicity e(q) of q is equal to e((q+P)/p)-length o,.

A CHARACTERIZATION OF REGULAR LOCAL RINGS.” A local ring
is regular if and only if it is of multiplicity one and unmixed.”

Tge EXISTENCE THEOREM OF DISTINCT SYSTEM OF PARAMETERS.
A local ring o has a distinet system of parameters if and only if the
unmixedness theorem holds in o (and in this case, any system of
parameters of o is distinet.”)

TaE MULTIPLICITY OF RINGS OF QUOTIENTS. Let p be a prime
ideal of a local ring o. If rank b +co-rank p--ranko and if b 18
analytically unramified, then the multiplicity of o, is not greater
than that of ‘o.

Though our treatment will include the case of local rings which
contain no field, many of our treatment are simpler than the already
known treatment. In particular, the proof of the theorem of transition
(originally proved by Chevalley ([2]) and generalized a little by Samuel
([15]) (only for geometric loeal rings in the sense of Chevalley [2])
and ours is a generalization for arbitrary local rings) is essentially
simpler than those given by Chevalley ([2)) and Samuel ([15]) (or
[161).” Though the proof of the associativity formula (originally
proved by Chevalley ([2]) for geometric local rings and ours is a
generalization for arbitrary local rings) is simpler than that was
given by Chevalley ([2]) (or Samuel ([16]) if we restrict only to
geometric local rings (in a generalized sense due to Nagata (197,
the general case is not so simple and the essential difficulty lies in
absence of subfields.

Qince we need to make use of some basic results on general
(Noetherian) local rings, we shall list them in §1. We shall observe
the Hilbert characteristic function in §2 and define the notion of
form rings in §3. Then we shall define the notion of multiplicity
in §4 and observe some elementary properties of the notion in § 5.
In §6, we shall prove the extension formula and the theorem of
additivity. In &7, we shall prove the existence theorem of distinct
system of parameters, which generalizes not only the original un-
mixedness theorem (in polynominal rings) due to Lasker-Macaulay
but also its generalization to regular local rings due to Cohen ([3])-
In §8, we shall prove the characterization of regular local rings
(stated above). We shall prove in §9 the theorem of transition. In

3) The case when o contains a field, the proof is easy and it well known (see
Samuel [15]).

4) For the definitions, see §7.

5) Our simplification was given in essential by Nagata [9].
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§ 10, we shall prove the associativity formula only for complete local
integrity domains and applying it to complete unramified regular local
rings, we shall prove the reduction theorem in §11. Then using the
redution theorem, we shall prove the general case of the associativity
formula in §12. In §13, we shall prove the assertion on the multi-
plicity of rings of quotients. In § 14, we shall concern the complete
tensor products of local rings. In appendix, we shall give a proof
of the well known result that a polynomial f(x) in one indeterminate
x with coefficients in the field of rational numbers is a linear com-
bination of binomial coefficients with integer coefficients if there
exists one integer N such that for any integer » greater than
N, f(n) is an integer and this results shows that the multiplicity and
the relative multiplicity are natural numbers.

The writer wants to express here his hearty thanks to Mr. H.
Matsumura for a critical reading of the manuscript of the present
paper.

TERMINOLOGY: We will mean under a ring a commutative ring
with identity, under a local ring a Noetherian local ring and under
a semi-local ring a Noetherian semi-local ring. Further, we say that
a local ring o dominates another local ring o if 1) o contains o’ and
2) the maximal ideal of v lies over that of o’ (see Nagata [11, I]).
The terminology used in Nagata [10] (normal rings, derived normal
rings, rank (of ideals or of rings), co-rank (of ideals), integral exten-
sions, almost finite integral extensions, the J-radical, the rings of
quotients and so on) will be used in the same sense. Basic terminology
on local rings (completions, system of parameters, regular system of
parameters, regular local rings, analytical unramifiedness and so on)
will be used in the usual sense. But, according to the definition in
Nagata [10], the dimension of a local ring in the usual sense will
be called the rank and the dimension of an ideal in the usual sense
will be called the co-rank. (The equi-dimensional local ring in the
sense of Chevalley [2] will be called an unmixed local ring.)

NOTATIONS: When o is a ring and when b is a prime ideal of
o or a multiplicatively closed subset of » which does not contain zero,
the symbol o, will denote the ring of quotients of o with respect to b
(see [10]). When o is a ring and when « is a transeendental element
over o, we will denote by o(x) the ring o[« ], where S is the inter-
section of complementary sets of ideals of o[z ] generated by maximal
ideals of o (if v is a local ring with maximal ideal ut, then o(x)= o[ @ ],y .7)

(see [11, I]). The symbol (:f) will denote the usual binomial cofficients.
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When v is a subring of another ring v/, the symbol [o": 0] will denote
the number of maximally linearly independent elements of o’ over o
(when it is well defined).

RESULTS ASSUMED TO BE KNOWN:

(1) On the theory of general rings; the results stated in Nagata
[10] will be used freely.

(2) Basic notions and results on polynomial rings, especially on
homogeneous ideals, will be used freely.

(8) On the general theory of local rings; many of well known
results will be used freely and they will be listed in §1.

& 1. Well known results on the general theory of local rings.

LEMMA 1.1. If v is a local ring with maximal ideal m, then
the completion v* of v is a local ring with maximal tdeal mo*. Further,
rank o--rank 0*. If a is an ideal of v, then av* ~v==a and v*/aw* s
the completion of oja. (Krull [5])

For the proof, see Chevalley [1] or Cohen [8] or Krull [5] or
Nagata [9] or Samuel [16]. (The equality that rank o-=-rank o*
follows from our treatment in §3.)

LEMMA 1.2. Let a be an ideal of a semi-local ring v and let o*
be the completion of o. If b is an element of v, then av* :bo*--(a:bo)o*.
(Zariski [17])

For the proof, see Nagata [7] or [9] or Samuel [16] or Zariski
[17].

COROLLARY. [If an element « of v is not « zero-divisor wn v,
then a s not a zero-divisor in v*. (Chevalley |1 )

LEMMA 1.8. Let v be « complete semi-local ring with J-radical
m. If a’s are ideals of o such that a,,,a;, for any i and that
(1:0,=0, then there exists an integer n(k) for any giwen integer k
(=>0) such that a,.,, <m* (Chevalley [1)

For the poof, see Chevalley [1] or Cohen [3] or Nagata [9] or
Samuel [16].

COROLLARY. Let o be a semi-local ring with J-radical m and let
¢ be an element of o which is not a zero-divisor. Then there exists
an integer n(k) for any given integer k such that w*®:co & m
(Chevalley [17)

LEMMA 1.4. Let o be the completton of a semi-local ring v and
let a,,---,a, be ideals of o. Then (a;~««+~a 0% =a,0* ~...~a,0*,
(Nagata [ 8 ))

For the proof, see Nagata |8 or [9 .

LEMMA 1.5. Let v be a complete local ring with maximal ideal
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m and let o' be a local ring which dominates o. If o'/mv’ is a finite
o/m-module, then o is a finite v-module, o' s a complete local ring
and o 1s a subspace of v'. (Chevalley [1])

For the proof, see Chevalley [1] or Choen [8] or Nagata [9] or
Samuel [16].

LEMMA 1.6. If o is a finite integral extension of a semi-local
wntegrity domain v, then v is a subspace of v'. (Chevalley [1])

For the proof, see Chevalley [1] or Nagata [9] or Samuel [16].

LEMMA 1.7. A complete local ring o has a coefficient ring I (that
18, I is dominated by v and is a homomorphic image of a discrete
valuation ring whose maximal ideal is generated by the characteristic
of the residue class field of v and, furthermore, the residue class field
of v cowncides with that of I). (Cohen [8))

For the proof, see Cohen [3] or Samuel [16].%

LEMMA 1.8. If v is a complete local integrity domain, then any
wntegral extension of v has only one maximal ideal. (Cohen [38])

For the proof, see Cohen [3] or Nagata [7].

LEMMA 1.9. [If v is a complete local integrity domain, then any
almost finite integral extension of o is a finite v-module (hence it ts
a complete local integrity domain). (Nagata [8, 1I])

For the proof, see Nagata [8, II] or [11, II].

LeMMA 1.10. If o is a regular local ring then the completion of
0 15 also regular and conversely. (Krull [5])

For the proof, see Cohen [3] or Krull [5] or Nagata [9].

LEMMA 1.11. Let o be a local ring and let x be a transcendental
clement over v. Then o is regular if and only if o(x) is regular.
(Nagata [11, II]) (ef. Cohen [3])

The proof is easy.

LEMMA 1.12. Let v be a regular local ring and let o be an ideal
of v. Then o/a is reqular if and only if o is generated by a subset
of a regular system of parameters of v. (Chevalley [1] and Cohen [3])

For the proof, see Chevalley [1] or Cohen [8] or Nagata [9].

LEMMA 1.13. A regular local ring s a normal ring. (Krull [5])

For the proof, see Krull [5] or Nagata [9] or Samuel [16].

LEMMA 1.14. An wunramafied regular local ring is a unique
factorization ring, that is, any element is expressible uniquely as the
product of irreducible elements (prime elements) up to units. (Y. Mori)

6) It was communicated to the writer that Mr. Narita gave a much simpler proof
of the assertion and that his proof will appear in the journal ¢ SGigaku’’. On the other
hand, the proof of this assertion in Nagata [7] is a little simpler than Cohen’s only

for the case when the residue class field is perfect or the case when p contains a field
and is not correct in the general case.
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For the proof, see Krull [6] or Nagata [9] or [11, II]. We
shall make use of only the assertion in the complete case and the
proof of the case was given by Cohen [3]; see Cohen [3] or Samuel
[16].

LEMMA 1.15. Let v be a local ring and let a be an tdeal of o
generated by r elements and whose rank is r. If o/a is a regular local
ring, then o is a regular local ring.

The proof is immediate from the definition of regular local rings.

LEMMA 1.16. If o is a complete local integrity domain and if b
is @ prime tdeal of o of rank 1, then co-rank p=ranko—1. (Cohen
[3D) ,

For the proof, see Cohen [3] or Nagata [9].

COROLLARY. If v is a complete local integrity domain, then the
length of any maximal chain of prime ideals of v is equal to rank o.
(Cohen [3))

LEMMA 1.17. Let v* be the completion of a normal local ring o
and let a (a0, av==0) be an element of v. If any prime divisor
of ao is analytically unramified, then o* contains no nilpotent element
other than zero, i.e., v 1s analytically unramified. Further, in this
case, any prime divisor of zero of v* is contained properly in a prime
divisor of w* with a suitable prime diwvisor » of ao. (Zariski [17])

For the proof, see Nagata [8] or [9] or [11, 1] or Zariski [17].

LEMMA 1.18. If o is a complete reqular local ring and +f b s
a prime ideal of v, then v, is a regular local ring. (Nagata [11, II])

For the proof, see Nagata [11, II]. We shall make use of only
the case when v is unramified and the case was proved by Cohen [3].

LEMMA 1.19. Let b be a prime ideal of a regqular local ring o
with maximal ideal m. If an element f of v is nmot in W", then f s
not wn Y'v,. (Nagata [11, II])

For the proof, see Nagata [11, II]. ‘

LEMMA 1.20. If a and b are ideals of rank r and s respectively
i an unramified regular local ring, then a+0 is at most of rank
r+s. (Nagata [11, V)

For the proof, see Nagata [11, V]; when the ring contains a
field, then considering the completion, the assertion is reduced to
the complete case and the case was proved by Chevalley [2] and
the other case can be proved similarly.

§ 2. The Hilbert characteristic function.

A ring o is called a primary ring if it is a local ring whose non-
units are nilpotent. Then a (Noetherian) ring satisfies the minimum
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condition for ideals if and only if it is the direct sum of a finite
number of primary rings. On the other hand, let M be a module
over a ring v. Assume that M has a composition series (as an o-
module). Then the length of the composition series is called the
length of M (over ») and will be denoted by [(M;v) or merely by
I(M); observe that the length is well defined independently on the
choice of composition series by virtue of the Jordan-Hoelder-Schreier
theorem. Observe further that if M is a finite module over a ring
o which satisfies the minimum condition for ideals, then (M) is
defined.

LEMMA 2.1. Assume that a primary ring A dominates another
primary ring A and that the residue class field K of A is a finite
algebraic extension of the residue class field K' of A'. Then for any
finite module M over A, we have [(M; A=[K:K']-l(M; A).

Proor. Let M=M,D M,D---D>M,=0 be a composition series
of M as an A-module (n=I(M; A)). Then each M, ,/M; (:=1,2,---,n)
is an irreducible K-module and therefore (M, ,/M,; K")=[K:K'].
Thus we see that M has a composition series of length %n-[K:K']
as an A’-module and the assertion is proved.

LEMMA 2.2. If a ring A is the direct sum of primary rings
A, -+, A, then I(A) is the sum of all I(A)).

The proof is easy and we omit it.

REMARK 1. Similar assertion as above for direct sums of modules
holds good obviously.

We shall denote hereafter by A a primary ring, by F' the ring
of polynomials over A in indeterminates X,,---,X,, by a a homo-
geneous ideal of F, by F(n) the A-module of homogeneous forms of
degree n in F, by a(n) the module a~F(n) and by x(a;n) the length of
the A-module F(n)/a(n). This x(a;n) is called the Hilbert characteristic

function of a. We will remark here that l(F(n)):(nJrjIl)-l(A),

S
. . ‘n+s—1
because the number of monomial of degree n is equal to ( a1 )

LEMMA 2.8. If a and 0 are homogeneous ideals of F, then
(a4 0; n)=x(a; n)+ x(b; n)—x(@a~0; n).

PROOF. We have obviously (a(n)+ 0(n))/a(n)=0(n)/(a(n)~0rn)) and
y(a; ) —x (0 +0; n)=x(a~D; n)—x(b; n), which proves our assertion.

LEMMA 2.4. If f is a homogeneous form of degree d such that
a: fF=aq, then x(a+fF;n)=x(a;n)—x(@;n—d) for any n=d.

PROOF. If g is an element of F(n—d) such that fg e a(n), then
gea because a:fF=aqa, hence g¢a(n—d), which shows that a(n)~
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f-Fn—d)=f-a(n—d). Obviously ®¢{r)+f-F(n—d)=(a+fF)(n) and

(0 + FFYW)fa(n) == f- Fln—d)/(f- F(n—d)~a(n)-=f- F(n—d)f -a(n—d).

Since f is not a zero-divisor in F,” the mapping ¢ from F(n—d)

into F(n) sueh that ¢(h)--fh is an isomorphism and we have

[((a+ fEYn)fa(n)) = I(f- F(n—d)/f-a(n—d)) = I(F(n—d)/a(n—d)). Thus

we have x(a;n)—x(a+fF;n)=x(a; n—d), which proves our assertion.
We say that a is ¢rrelevant if co-rank a—=0.

PROPOSITION 1. x(a;n) s a polynomial in n for suffictently
large n. (Hilbert [4] and Samuel [15])

PrROOF. When a is irrelevant, a contains F'(n) for sufficiently
large n and x(a;7n)-=0 for such n. This shows the validity of the
assertion for irrelevant ideals, in particular for the irrelevant prime
ideal. Therefore we will prove the assertion by induction on the
largeness of a. If there exist homogeneous ideals 0 and ¢ which
contain properly a such that a==6~c¢, then we see the assertion by
our induction assumption and by Lemma 2.3. If there exists no
such ideal, then a is a primary ideal. By the above observation, we
may assume that co-ranka>>1. Then there exists a homogeneous
form f of degree 1 such that a:fF—=a. By Lemma 2.4, x(a;n)=
S x(a+fF; 1)+ x(a; 0) and we see the assertion also in this case.

REMARK 2. As we have known, if a is of co-rank zero, then
x(2;n)=0 for sufficiently large n. If a is of co-rank» (r>0), then
we sghall see that x(a;%) is a polynomial of degree r—1 (for suf-
ficiently large n). A proof will be given in § 3.

LEMMA 2.5. Let b be a homogeneous ideal which coincides with
a up to wrelevant primary components. Then x(a;n)=—=x(0;n) for
sulficiently large n. (Samuel [157)

PROOF. By our assumption, there are irrelevant ideals q and ¢
such that g~a=q'~b. Let N be an integer such that F(N) is con-
tained in q~q’. Then for any n which is not less than N, we have
a(n)=>0(n) and the assertion is proved.

A homogeneous element f of degree 1 is called a superficial ele-
ment with respect to a if y(a;n)=x(a:fF;n) for sufficiently large n.

LEMMA 2.6. Assume that the residue class field K of A contains
tnfinitely many elements and that co-ranka is different from zero.
Then there exists a superficial element f with respect to a. In this
case, if a finite number of proper submodules M,,---, M, of F(1)

7) Let p be the maximal ideal of A. Then any element of F' which is not in
PF' is not a zero-divisor. From the assumption that q:fF'=:q, we see that f is not in
any prime divisor of a. Since pF is nilpotent, pF is contained in every prime divisor
of @, hence f is not in pF' and f is not a zero-divisor.
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are given, then we can choose f outside of any of M,’s. (Samuel [15])

PrOOF. Let by,---,D, be all the prime divisors of a different
from the irrelevant prime ideal and set M, , -p,(1) for each 7. Let
m be the maximal ideal of A. Then M,+mF(1)=F(1) for any
t-=1,---,t+u because m is the J-radical of A (see 10, §6]). Set
V.==(M,+mFQ))/mF Q1) for each ¢. Then V,# F(1)/ml'(1). Since K
contains infinitely many elements and since V/’s are proper subspace
of F(1)/mF'(1), there exists an element f’ of F(1)/mF(1) which is
not in any of V,’s. Let f be an element of F(1) whose residue
class modulo m#(1) is f’. Then f is not in any of M,’s; in particular
f is not in any of p,’s. Therefore a and a: fF coincide with each
other up to irrelevant primary components. Thus f is a superficial
element by Lemma 2.5.

REMARK 3. If a is a primary ideal, then it is superfluous to
assume that K contains infinitely many elements only for the existence
of superficial element. But, in the general case, the assumption is
essential as is easily seen.

& 3. Form rings of a local ring.

Let v be a local ring with maximal ideal m and let g be a primary
ideal belonging to m. Then A-==v/q is a primary ring. The module
0%/q"**(q°=0) can be regarded as an A-module and is called the q-form
of v of degree »; this will be denoted by F'(y;%n). The direct sum
F(q) of all F(q;n) is called the form ring of o with respect to q.
Let «,,---,z, be a base of ¢ and let x|,-- -,z be the classes of them
in F(q;1). For any elements a’ ¢ F'(q;¢) and b € F'(q;7), take rep-
resentatives a and b of them in v and define a’b’ to be the class of
ab in F(q;¢+7). By this definition of multiplieation, F(q) becomes
a ring and is generated by z,---,x; over A. Therefore there exists a
uniquely determined homomorphism ¢ from the ring F=A[ X, -+, X|]
onto F'(q) which maps X, to x,. As is easily seen, the kernel a of
¢ is a homogeneous ideal of F. Therefore the Hilbert characteristic
function x(qa;n) is defined. Then x(a;n)=I(F (3;n)). Since [(v/q")=
SW-tI(F(q; 7)), we see immediately from Proposition 1 the following

PROPOSITION 2. [(0/q9") is a polynomual in n for suffictently large
n. (Samuel [15])

This polynomial will be denoted by o(q; n).

REMARK 1. Let o* be the completion of o and set ¢* =qo*. Then
o*/q*"=p/q" for any n. Therefore the form ring of o with respect to
q is also that of »* with respect to g*. By the same reason, we see
that o(q; n)=0o(q*; n).
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REMARK 2. As will be shown in appendix and as is well known,
o(q;n) 1s a linear combination of binomial coefficients with integer
coeflicients.

Let @ be an element of o. Then there corresponds a unique
element a’' of the form ring F(q) as follows: 1) if a=0, then a'=0
and 2) if @=~0, then @’ is the class of a in F'(g;n), where n is the
integer such that e e " and a¢¢*"'. This o is called the g-form of
a and n is called the degree of a with respect to q (when a=0,
we regard that the degree is infinite). Observe that a’ may be
regarded as a homogeneous form of degree n in «i,---,x.. Therefore
there exists a homogeneous form f in F whose residue class modulo
a is @’. Such f is called a form in F' which corresponds to a.

On the other hand, an element a of q is called a superficial
element of q if there exists an integer ¢ such that (q":av)~q°=q""*
for any n greater than ¢. Then we have

PROPOSITION 8. An element a of  is a superficial element of
q of and only if a corresponds to a superficial element in F with
respect to the homogeneous ideal a.

PROOF. Assume that a corresponds to a superficial element f
with respect to a and let ¢ be an integer such that x(a; n)=x(a:fF;n)
for any n=>c¢. Obviously (q":av)~q° (n>c) contains q" ' because a is
in q. Let b be any element of (¢":av)~q°. Then abeq". Let g be
a form in F' which corresponds to b. If g is of degree not less than
n—1, we have b is in ¢""'. We will assume the contrary. Then
deg (f9)<n—1 and therefore fg is in a (because ab is in "), hence
g is in a: fF. Since x(a;m)=x(a:fF;m) for any m=c and since
the degree of ¢ is not less than ¢, we have ¢ is in a, which is a
contradiction to the definition of corresponding forms. Thus b is in
q""' and we have (q":av)~q’=q" ! (n>¢), which shows that « is a
superficial element of q. Conversely assume that a is a superficial
element of q, that is, there exists an integer ¢ such that (¢": av) ~q°=q" "
for any n>c. Let f be a form in F which corresponds to a. We
have only to show that a(n)=(a:fF)n) for any n>c. Let g be an
element of (a:fF)n) and assume that g ¢ a. Then there exists an
element b of o such that ¢ is a form which corresponds to b. Then
ab is in q"*? because fg is of degree n+1 and is in a. This shows
that (q"*%:a0)~q° contains & which is not in ¢"*', which is a con-
tradiction. Thus we have geca (hence g ¢ a(n)), i.e., (a:fF)n) is
contained in a(n). Since the converse inclusion is obvious, we have
the required result.

COROLLARY. [If the residue class field K of o contains infinitely
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many elements and if by,---,b, are ideals of v which do not contain
0, then there exists a superficial element a of q which is not in any
of b’s. (Samuel [15])

PROOF. Let M, be the module F'(q; 1)~((q*+ b)/0%). If M,=F(q; 1),
then 9*+0,2 4, hence i* < 4*+6,. Therefore 1< q®+0,. Similarly we
have ¢ <" +50, for any n. Thus we have & N.a"+0)=0, and is a
contradiction. Therefore we have M, F(q;1) and we can apply
Lemma 2.6. Thus the assertion is proved.

LEMMA 8.1. If a is a superficial element of q and if a is not
a zero-divisor, then q":av=q""' for sufficiently large n. (Samuel [157)

PROOF. There exists an integer »n such that 0" :a0 & q° for any
given integer ¢ (see §1) and our assertion is proved.

PROPOSITION 4. Let x be an element of o. Then we have

[(0/(q" +20))==1(v/q™)—I(0/(q" : 2v)). (Samuel [15])

PROOF. Obviously /(v/q™)=1(0/(q" + 20)) + 1((q" + x0)/q") and (q" + x0)/q"
=20/(0" ~x0). Let ¢ be the homomorphism from o onto zv such that
$(@)=xa. Then o=d¢ (av) and q" : xo=¢ '(q"~x0). Therefore we have
(/0™ : wo)) =1(@0/(q" ~20))=1((q" +20)/9"). Thus the proof is completed.

COROLLARY 1. Set q'=(q+zv)/xo. Then we have a(q’; n)=a(q; n)
—(0/(q" : 20)) for sufficiently large n.

COROLLARY 2. If x is a superficial element of q, then there
exists an integer C such that a(;m)—o(@; n—1) < o(q’, n) < o(q; n)—
o(g;n—1)+C. (Samuel [15])

PROOF. Let ¢ be an integer such that (Q" :20)~q°=q" ! for any
n>c. Then setting C=1{(v/q°), we have the inequality.

COROLLARY 3. If furthermore x is not a zero-divisor, then we
have a(q; n)—a(q; n—1)=a(q’; n).

PROOF. This follows from Lemma 8.1 and Proposition 4.

REMARK 3. The degree of 4(q;n) coincides with the rank of o.
(Samuel [16])

Proor. We first prove the assertion under the assumption that
the residue class field K contains infinitely many elements. When
rank 0=0, the assertion is obvious and we will prove the assertion
by induction on the rank of o. Let z be a superficial element of q;
we can choose x so that z is not in any prime ideal whose co-rank is
equal to rank o. Then rank o/zo=rank o—1. By the above Corollary
2, o(q/xo; n) coincides with o(q;n)—o(q;m—1) up to constant terms
and therefore deg (s(q/x0; n))=deg (o(y;n))—1. By our induction as-
sumption, deg (a(q/20; 7)) = rank o/wo — rank —1, which shows that
deg (a(q; »))=rank 0. Now the general case follows from

LEMMA 8.2. If x is a transcendental element over o, then (0/9™)(x)
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—oo(x)/q"o(x) and therefore o(q; n) == a(qo(x); n).

The proof is easy and we omit it.

COROLLARY. If =z is a superficial element of a, then rank o/xo
—rank n—1.

Next we will give the proof of Remark 2 in §2. Let m be the
irrelevant prime ideal and consider the local ring Fl/oF,. Let q be
the ideal of the local ring generated by the classes of Xj,---,X..
Then x(a;n):l(q”/q””):a(q;n)——a(q;n~1) for sufficiently large n.
Therefore we see the assertion by Remark 3 above.

From this result and from Remark 3, we have the following

REMARK 4. With the same notations as before in this §, co-rank a
—ranko. (Krull [5] and Samuel [16])

LEMMA 3.3. Assume that there exisls an ideal n of o such that
n~q°=0 for an integer c. Then 1) the length of n is finite and 2)
for any superficial element x of q, the residue class ' of ¥ modulo 1 s
a superficial element of (q+n)/n (in the local ring o/m). (Nagata [9 1)

PROOF. We have (q°+mn)/q°=n, which shows the finiteness of the
length of 1. Since x is a superficial element of q, there exists an
integer ¢’ such that (q": wo)~q”=q""! for any n>c'. We may assume
without loss of generality that c—c'. We denote by o the ideal
(q+n)/m and by o' the local ring o/n. Let b be any element of
(0" :2'0")~q" (n>c) and let b be a representative of b' in v. Since
b ¢ ¢, we may choose b from q°. Since b'x’ € ¢'*, we have br e q"+1m.
We express bxr in the form ¢+¥ with geq” and yen. We may
regard the expression br—=¢g+y as an expression of bx in q°+1. Since
©°~n=0, we see that such an expression is uniquely determined.
Since bx € q°, we have br—=q (and ¥~ 0). Since qeq”, we have bx € q"
and be(q":x0)~q'=q""" Therefore we have b eq” ' and 2’ is a
superficial element of q'. Thus the proof is completed.

& 4. The definition of multiplicity.

Let again v be a local ring with maximal ideal m and let q be a
primary ideal belonging to . Then [(v/q") is the polynomial a(q; m)
for sufficiently large » and the degree d of o(q;n) coincides with
rank v, as we have proved in § 3. Let a be the coefficient of »* in
o(q;n). Then (d!a is called the multiplicity of q and will be denoted
by e(q). e(m) is called the multiplicity of v and will be denoted by
m(v).

Next, we will generalize the above definition to semi-local rings.
Let v be a semi-local ring and let by, -+, b, be some of maximal ideals
of v. Further let q,---,q, be primary ideals belonging to by,---, b,
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respectively and set m=q,~-..~q,. Then o/m” is isomorphic to the
direct sum of rings o/q" (;_uvl qyo, ), - -, 0/0% (=0, /a%0,). Therefore
[(o/m")==3>7 o(q,0,,; n) for sufficiently large n; this polynomial will be
denoted by o(m;n). The degree d of o(m;n) is the maximum of rank
by,++-,rank db,. Let a be the coefficient of »* in o(1; #). Then (d!a is
called the multiplicity of m and is denoted by e(m). When m is the
J-radical of v, e(in) is called the multiplicity of o and is denoted by (o).

From this definition, we have, assuming that rank),=d if and
only +f 1 =<s, the equality e(m)=37; e(q;). On the other hand, e(q,)=
e(q0,,) for any <. In particular, the multiplicity of v is the sum of
multiplicity of local rings which are rings of quotients of o and
whose rank is equal to rank o.

With the same o, p,,---, b, 04,--+,q, and m as above, we assume
further that there exists a local ring »° which is a subring of » such
that 1) each ), lies over the maximal ideal m’ of v and 2) each o/p,,
is a finite module over o'/m’. Then o/m" can be regarded as an
o’-module and [(v/m”;0") is defined. Then I(o/m";0")=]1(v/q?;0")=
Mo/ o'/ m’]-(0/9?) (by Lemma 2.1), hence this is a polynomial in
n for sufficiently large n; this polynomial will be denoted by o(im; 0’; n).
Observe that the degree d of o(m;0’;m) is equal to that of o(u;n).
Let a be the coefficient of n® in o(m;0’;n). Then (d!a is called the
relative multiplicity of m with respect to v” and is denoted by rm(in; o).
From this definition, we have rm(nt; 0" )= e(q,)-[o/p, : 0'/m"].

As will be shown in appendix, multiplicity and relative multi-
plicity are natural numbers.

We will add here the following remark:

Let o be a loecal ring with maximal ideal m and let q be a primary
ideal belonging to m. Let "M be the maximal ideal of the form ring
F(q) which corresponds to the irrelevant prime ideal. Further let
be the ideal of F'(qy) generated by the forms of elements of q. Then
o(q; n)=a(QF(q)gy; ) and the multiplicity e(q) is equal to e(2F(a)ym).

For the proof, see § 8.

& 5. Elementary properties of multiplicity.

LEMMA 5.1. Let g be a primary ideal belonging to the maximal
tdeal m of a local ring v and let v* be the completion of o. Then
e()=e(q*). Similar fact holds for semi-local rings.

PROOF. As was shown in §8, o(q; n)=a(qo*; n) and e(q)=e(qo*).

On the other hand, we have obviously

LEMMA 5.2. If a local ring o is of rank 0, then for any primary
ideal q of o, e(q)=I(v). (Samuel [15])
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Next we will consider the case of rank 1.

LEMMA 5.3. Let o be a local ring of rank 1, let q be a primary
ideal of v belonging to the maximal ideal m and assume that x is a
superficial element of o. Then 1) tof « ts not a zero-divisor, then
e(q) = e(wn) = I(o/x0) and 2) if x is a zero-divisor, then e(q)=e(x0)<{(v/zv).
(Nagata [9])

PrROOF OF 1). By Corollary 3 to Proposition 4, a(q/xo; n)=0a(q; n)
—o(q;n—1)=e(q) (because the degree of o(q;n) is equal to 1). By
Lemma 5.2, a(q/av; n)=I[(o/zv). Thus we have e(q)—=I(v/xv). Since x
is not a zero-divisor, z is a superficial element of the primary ideal
ro. Therefore the same can be applied and we have e(xo)==1(o/xv).
Thus 1) is proved.

PROOE OF 2). We will first show that e(ao)<length o/zo. Let
y be a non-zero element of o such that ay-=0. Then there exists
an integer m such that y ¢ ™. Let n be a sufficiently large integer.
Then (v/xv)==a(xo/x0; n)=a(20; N)— (0/(x"0 : av)) by Proposition 4. Since
2" : zv contains ¥ which is not in 2" 'o,z"v: 2o contains x" ‘o properly.
Theorefore o(xo; n—1) is greater than {(v/(x"v : 20)) and [(v/xv) is greater
than o(x0; n)—o(xo; n—1)=e(xo). Next we will show that e(q)==-e(xv).
Set n=0:x0. Since x is superficial element of g, there exists an
integer ¢ such that (¢":a0)~q°=q" "' for n>c. Since n is contained
in any of q":av, we have n~q°=0. Therefore by Lemma 3.3, I(n)
is finite and therefore e(q)=e(q+m)/n and e(zv)—=e((wo+n)/m). Further
by Lemma 8.3, (x modulon) is a superficial element of (q+m)m.
Therefore we may replace o by o/it, ¢ by (qg+u)/n and x by (x modulo »).
Repeating the same procedure, we reach to the case when 2« 1s not
a zero-divisor and we have e(q)—=e(xo) by 1). Thus the proof is com-
pleted.

Thirdly, we will consider local rings of rank greater than 1.

LEMMA 5.4. Let o be a local ring of rank greater than 1, let q
be a primary ideal of o belonging to the maximal ideal m and assume
that x is « superficial element of q. Then we have e(q)—e(a/xo).
(Samuel [15))

PROOF. By Corollary 2 to Proposition 4, o(q/xo;n) and o(q; n)—
o(q;m—1) coincide up to constant terms. Let d be the degree of
o(q; ), which coincides with rank o and d>1. Therefore the coeflficient
of n* ! in o(q/xo; n) coincides with that of o(q;n)—a(q;n—1) and is
obviously e(q)/((d—1)!). Thus we see the assertion.

On the other hand, we see immediately from Proposition 4 the
following

LEMMA 5.5. If q is a primary tdeal of a local ring o belonging
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to the maximal ideal and if x is an element of o such that rank
o/zo=rank 0—1,% then e(q) is not greater than e(q/xv).

(For, q":xo0 contains q"~' and o(q/zv; n) is not less than a(q; %)—
o(q; n— 1).)

COROLLARY 1. If x,, ---,x, are elements of q such that 1)
rank (33 w,0)=1r and 2) e(q)=e(q/(X z»)), then for any ideal a gener-
ated by a subset of w,---,x, we have e(q)=e(q/a).

COROLLARY 2. If q 4s the ideal of a local ring v generated by
@ system of parameters of v, then e(q) is not greater than ((v/q).

Now we have

THEOREM 1. Let o be a local ring with maximal ideal m and
let q be a primary ideal belonging to m. If o/m contains nfinitely
many elements, then there exists an ideal o which is generated by a
system of parameters of v and contained in q such that e(q’). (Nagata
[9D)

PROOF. When rank o1, we have proved in Lemmas 5.2-5.3.%
We will prove the other case by induction on the rank d of n. Let
x be a superficial element of q. Then by Lemma 5.4, we have
e(q)==e(a/xv). Since rank v/zv--rank n—1, there exists a system of
parameters x,,---,x; of v/zo such that e(q/xv)-—=e (S xi(v/z0)) and that
xieqfro. Let @, be a representative of x, in o for each ¢ and let q
be the ideal generated by =, x,- - -, x,. Since ¢’ < 9, we have e(q) = e(q).
On the other hand, we see by Lemma 5.5 that e(q") = e(q'[xo) = e(q/zv)
==¢(1). Thus we see that e(q)=e(y’) and the proof is completed.

REMARK 1. Lemmas 5.3-5.4 and the above proof shows that
one ¢’ can be constructed as follows: Let x, be a superficial element
of g, let x, be a representative of a superficial element of q/x,0 and
so on (in general, let x;, be a representative of a superficial element
of q/(>5i""z,0)). Then the ideal ' generated by z,,-- -, x, (d=rank )
is the required ideal.

On the other hand, in order to reduce the case when the residue
class field contains only a finite number of elements to the contrary
case, it will be convenient to formulate Lemma 3.2 as following

PROPOSITION 5. Let x be a transcendental element over a local
ring v and let q be a primary ideal of v belonging to the maximal
tdeal m.  Then we have {(v/0)=I(o(z)/qv(x)) and e(0)==e(qo(x)).

We will add here some remarks on the notion of superficial system

8) For this condition rank p/xpo=rankp-1, it is sufficient to be rank zp=1 (and
this last condition is not necessary).

9) We regard that the ideal generated by the empty set is the zero ideal and
that the system of parameters of a local ring of rank zero is the empty set.
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of parameters introduced by Samuel [15]. We say that a system
of parameters -+, %, of a local ring v 1S a superficial system of
parameters of o if x, modulo>) 'z is a superficial element of
(S 2,0)/(CI " ®50) for each ¢=1,---,d. Then

REMARK 2. If q is the ideal of a local ring » generated by a
system of parameters of v and if the residue class field of o contains
infinitely many elements, then q is generated by a superficial system
of parameters of o. (Samuel [15])

PrOOF. Let z,,---,2, be a system of parameters of » which
generates 0. Then a superficial element ¥ of q is linear combination
of x’s with- coefficients in o such that some coefficients are unit in o.
If the coefficient of z; is unit, then q 1is generated by ¥, %y, Tae
The same can be applied to o/yo and q/yo (which is generated by the
residue classes of @.,« -, Tq)- Thus, repeating the same (or by induc-
tion on d), we see the assertion.

REMARK 8. If ¢ is the ideal generated by a superficial system
of parameters ;:--, %, of a local ring v, then e(q)==e(q/CI1 ! @0)).
On the other hand, e(q)—={(v/q) if and only if z, is not a zero-divisor
modulo SY¢ 'z, (Samuel [15])

This follows from Lemmas 5.3-5.4.

§ 6. The extension formula and the theorem of additivity.

THEOREM 2 (EXTENSION FORMULA). Let v be o local ring with
maximal ideal m and let q be a primary tdeal belonging to m. Assume
that an over-ring v’ of o satisfies the following condition : There exist
a system a,=—=1, @s,+++, @, Of linearly independent elements of v over
o and an element ¢ of v which s not a zero-divisor in o such that
co' is contained in the module M=—=2>] . Then we have

e(q)-r=rm(qv’; 0).
PrOOF. Since q"M contains q"cv’, (eo' +q"M)/a" M may be regarded

as a homomorphic image of ¢v’/q "eo’ (with kernel (0" M ~cv)/q"eo”). Hence
we have
(1)  Uev'fa"ev’;0) = l((cn’+q"M)/q”’M)::l(M/q"M)—Z(M/(cn’+ q"M)).
Since mapping ¢ from o onto co' such that ¢(a)==ca is an iso-
morphism, we have l(n’/q”n’;n);l(cn’/q”co’; ). On the other hand,
obviously I(M/q"M)==r-1(o/q") and l(M/(co’+q”M));’l(M/(cM+ q"M))=
r-l(of(eo+q")); this last is of less degree than rank o because ¢ is
not a zero-divisor. Therefore the above inequality (1) shows that
the relative multiplicity of g0’ is not less than 7-e(q).

n./

Conversely; since "0’ contains "M, (M+q “o")/q"0" may be regarded
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as a homomorphic image of M/q"M. Hence we have

(2)  I(M]q" M) =1((M~+q"0")/q"0"y = ((eo’ +a"0")/q"v’; b)
=10 f0"0'; 0) = L' (e +q"0'); ).

Since [(v'/(ev’+q"0"); 0) is of less degree than rank o, the above
inequality (2) shows that the relative multiplicity of qo’ is not greater
than r-e(q). Thus we have the equality 7-e(q)=rm(qv’; o).

COROLLARY 1. Let v be a local ring and let o' be a subring of
the total quotient ring of o such that o' is a finite o-module. Then
for any primary ideal q of v belonging to the maximal ideal m of o,
it holds the equality e(q)-=rm(qov’;0). In particular, for any maximal
ideal " of »” such that rank p’==rank o, e(qv’y.) is not greater than e(q);
they coincide if and only if 1) o/m==0/p’ and 2) any other maximal
ideal of v” is of rank less than that of . In general, m(v’) = m(v).

COROLLARY 2. If 0o s a finite integral extension of a local
integrity domain o, then for any primary ideal q or o belonging to
the maximal ideal m of v, 1t holds that rm(qo’;0)=[0":0]-e(q).

REMARK. If we apply the extension formula to unmixed local
rings (equi-dimensional local rings in the sense of Chevalley [2])"”
which are complete and which contain fields, we see the coincidence
of our definition to that of Chevalley [2] as follows:

Let v be an unmixed and complete local ring which contains a
field . Then v contains a field K which forms a complete set of
representatives of the residue class field of 0. Let z,,---,x, be a
system of parameters of o. Let v be the set of elements of v which
are expressible as power series in z;,:---,x, with coefficients in K.
Then v is a regular local ring. Sinece o is unmixed, any non-zero
element of v is not a zero-divisor in o. On the other hand, since
z,’s generate an ideal ¢ which is primary belonging to the maximal
ideal m of o and since K--po/uni, 0 is a finite r-module. Hence rm(q; 1)
=[n:v]-e(Slxyx). Since K=o/m, rm(q;rv)=e(q). Since z,’s form a
regular system of parameters of r, e(Dlxr)=1. Hence we have
e(q)=[o:r].

THEOREM 38 (THE THEOREM OF ADDITIVITY).!” Let v be a local
ring and let b,,---, b, be all of prime divisors of zero; we renumber
them so that co-rank b,=—=ranko +f and only +f 1=r. Let q,---,q,
be primary components of zero belonging to py,---, b, respectively.
Then it holds the equality e(q)=>17 e((q+q,)/q,)-

10) The definition will be stated in §7.
11) This theorem was proved by Northcott-Rees [14] under a certain condition.
On the other hand, the last part of this theorem was given by Samuel [16].
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In particular, if o and b are ideals of o such that co-rank
>co-rank b, then

e((q + a)/a)=e((q + (a ~0))/(a ~D)).

PROOF. We will prove the last assertion at first. Let z,---,2,
be a base of q. Then the form ring F((q+a)/a), F((q+Db)/b) and
F((q+ (a0)/(a~b) may be regarded as homomorphic images of the
polynomial ring F=(o/q) [X,,-++,X,] (X’s being indeterminates) by
the natural way. Let n(a), n(6) and n(a~0) be the kernel of these
homomorphisms. Then co-rank n(a)=co-rank a, co-rank n(6)=co-rank b
and co-rank n(a ~b)=co-rank (0 ~b) (see &3, Remark 4). Obviously
n(a) ~n(b) contains n(a ~b) and n(a~b) contains n(a)-n(0). Therefore we
see that n(a)‘and n(a ~0) coincide up to primary components of less
co-rank than co-rank a. Therefore there exist homogeneous ideals
o/, 0" and ¢ such that 1) co-rank o’=co-rankq, co-rank 0’ < co-rank «a,
co-rank ¢’ < co-rank a and 2) n(a)=a’ ~¢’, n(a ~b)==a’ ~0’. By Lemma 2.3,
(04 O3 )= x(a'; n)+ x(t'; B)—x (2’ ~C; m). Sinee x(a'+ ;) and x(¢'; n)
are of less degree than x(¢;n), we see that x(o’;n) and x(a' ~C;7)
have the same term of the largest degree. Similarly, x(o¢/;%) and
x (2’ ~0';n) have the same term of the largest degree. Thus we see
that x(n(a); ») and x(n(a,~0);7) have the same term of the largest
degree and e((q+a)/0)—e((q+(a ~0))/(a ~0). Now we will prove the
first assertion. By the above observation, e(q)==e((a+(; a.)/(N: %)
Therefore we may assume that [),q,==0, that is, all p,’s are of the
same co-rank (=ranko). Then in the total quotient ring of o, there
exist primitive idempotents e,,---, e, such that ve, is isomorphic to
v/q, for each 7. Set v’==S)en. Then by Corollary 1 to the extension
formula, we have rm(qo’; 0)==e(q). Since any residue class field of v
is represented by elements of v, we have rm(qv’;v) is the sum of all
e(qoe,)==e((q+q,)/q,) and the assertion is proved.

§ 7. The existence of distinct system of parameters.

Let o be a local ring and let z,,-- -, 2, be a system of parameters
of . Let q be the ideal generated by z,’s. Then as was shown in
§5, e(q)<Il(v/q). We say that z,,---,x, is a distenct system of pa-
rameters of o if e(q)=I[(v/q). As was remarked there, if z,---, 2, is
a superficial system of parameters, then they form a distinct system
of parameters if and only if x, is not a zero-divisor modulo >}~ x;0.

PROPOSITION 6. A system of parameters ,---,x, of a local
ring o is distinct if and only if the form ring F(q),q being the ideal
generated by x.’s, 1S tsomorphic to the polynomial ring F wn d in-
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determinates X,’s over v/q. Therefore in this case, l(n/q”)::<n§d>.

[(o/q) for any n and x,---,x, is a superficial system of parameters.'?

PROOF. Let a be the homogeneous ideal of ¥ which is the kernel
of the homomorphism from F onto F(q) which maps X, to the
form of «; in F(2). Set m-=I(oja). Then UF(a)=m-("F f;l) and
(F(n)/a(n)) =1(q"/q"*") = o(q; n+1)—a(q; n) for sufficiently large n.
Assume that a+0 and let f be a non-zero homogeneous form in qa;
let ¢ be the degree of f. Then a(n) contains all the forms fX/:-.. X7
(>1n,=n—c¢) and the length of the module of such forms is equal to
( n—gircf— 1\):(n‘i‘1/((d— D) + (terms of lower degree). Hence the coef-
ficient of »*™' in a(q; n+1)—6(q; n) is not greater than (m—1)/((d—1)!),
which shows that e(q) is less than m. Hence, if x,,---, x, is a distinet
system of parameters, then a--0. Conversely, if a==0, then obviously
[(o/q" >_m-(n}_d> and e(q)—=m. Further we see that x, is a super-

ficial element of g, and then by induction on 7 we see that the residue
class of z, modulo >}{"'x,0 is a superficial element of o/ ! x,0).
Thus we see that z,,---,x, is a superficial system of parameters.

We say that a local ring o is unmixed if the co-rank of any prime
divisor of zero of the completion o* of o is equal to the rank of o.
Then we have

LEMMA 7.1. If a local ring v has a distinct system of parameters,
then v s unmixed. More generally, if there exists a primary ideal
q of o belonging to the maximal ideal of v such that any prime divisor
of zero of the form ring F'(q) is of co-rank equal to ranko, then o
1s unmized. '

PROOF. By virtue of Proposition 6, we may prove only the last
assertion. We may assume that o is complete. Assume that there
exists a prime divisor b of zero of o which is of co-rank less than
rank o. Let p’ be the ideal of F'(q) which is generated by all
forms which correspond to elements of p (' is the kernel of the
natural homomorphism from F#'(q) onto F((q+Db)/p)). Since p is a
prime divisor of zero, b’ is contained in a prime divisor of zero of
F(q) (for, there exists an element a>~0 of o such that ap--0). Since
co-rank p<ranko, we have co-rank p’<rank o, which shows that there
exists a prime divisor of F!(q) of co-rank less than rank o. Thus the
assertion is proved.

12)77Thlsfriesult shows that our notion of distinct system of parameters coincides
with the notion of ¢ system distingué de parametres” in the sense of Samuel [15].
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PROPOSITION 7. If -+, %, S @ system of parameters of a local
ring v such that each x, is not a zero-dwwisor modulo "'z, then
Ty, Ty 15 o distinet system of parameters of v (and conversely).

PROOF. By the case 7—=1, we see that x; is not a zero-divisor.
Therefore, if d—=1, our assertion follows from Lemma 5.3 (see the
proof to it).'” Therefore we will prove the assertion by induction
on d. Then, by our induction assumption, @.,- -, %, modulo z;0 form
a distinet system of parameters of o/x,0. Let q be the ideal generated
by z,’s and let a be the kernel of the homomorphism from the poly-
nomial ring F=:(v/q) ' X,,--+, X, ] onto the form ring F'(q) which maps
X, to the form of z,. We have only to prove that a=-=0. Assume
the contrary.. Since o/xp is generated by a distinet system of pa-
rameters of o/z,0, the form ring F'(q/x,0) is isomorphic to FIX,F by
the natural way, which shows that a is contained in X,F. Let n be
such that a(n+1)7%0. Then there exists an element f ¢ F(n) which
is not in F(n+1) such that X,fea. This shows that there exists
an element beq” which is not in o""' such that x.beq"t?, le.,
b=, ... Ll Ty with 37¢,=-degree of x,b with respect to q >n+2
and ¢, ..., ¢0. Consider a corresponding form f’ to the element b
in F. Since z,b is in x;0 and since F(g/x,0)-—=F/X\F, we see that
f' e X,F, that is, there exists an element b, of v such that 1)
b e q%% ' and 2) x,b—wb cq4" . Set b':-b—b,. Then b ¢q""' and
the degree of z,b’ with respect to q is greater than that of x,b. The
same can be applied to x,0' and so on and we see that there exists
a convergent sequence b® in o (b &q"'') such that x,0 converges
to zero. Since z, is not a zero-divisor in o, x; is not a zero-divisor
in the completion of o, which shows that b converges to zero and
it is a contradiction to that % ¢q“*!. Thus we have a==0 and the
proof is completed.

THEOREM 4. If a local ring o has a distinct system of parameters,
then any system of parameters of v is distinct.

PROOF. When v is of rank 1, our assertion is immediate from
Lemma 5.8 (cf. foot-note 18)) and we will prove the assertion by
induction on the rank of ». Let z,,---,2, be a distinet system of
parameters of o and let y,,---, %, be any system of parameters of o.
We may assume that x4y, is of rank 2, because z,’s and y,’s
may be changed to another system of parameters which generate
respectively the same ideals. By Proposition 6 (or 7), we see that
the residue classes of x,---,z, modulo 2,0 form a distinet system of

13) Another proof can be given as follows: Since x, is not a zero-divisor,
l(n/2,0) —=l(x,m0/x,™ ‘o) for any n, hence l(n/x,"0)== l(p/x,0)+n for any n.
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parameters of v/x;o. Hence, by our induction assumption, we see
that any system of parameters of o/x;0 is a distinct system of pa-
rameters of o, which shows by virtue of Proposition 7 that any system
of parameters of o which contains x;, as a member is a distinct system
of parameters of o. In particular, any system of parameters of o
which contains x, and ¥, as members is a distinct system of parame-
ters. Then the same can be applied to such a system of parame-
ters (taking y, instead of x, in the above observation) and we see
that any system of parameters of o which contains y, as a member
is also a distinet system of parameters and the assertion is proved.

COROLLARY 1. Any system of parameters of a regular local ring
is a distinct system of parameters. (Nagata [9])

PROOF. Obviously any regular system of parameters is a distinct
system of parameters and the assertion is proved.

COROLLARY 2. If a local ring o has a distinct system of pa-
rameters and if a is an ideal of v generated by r elements and of rank
r, then oja has distinct system of parameters, hence any system of
parameters of oo 1s distinet and ofa is unmized.

PROOF. A base of a of r elements is a subset of a system of
parameters of o, which is distinct by our theorem. Therefore o/a
has distinct system of parameters.

COROLLARY 8. Assume that a local ring o is a fintte module over
a Noetherian subring v and that v has a linearly independent module
base over v. If v has a distinct system of parameters, then v has also
a distinet system of parameters and therefore any system of parameters
of v s distinct.

PrROOF. Let q be the ideal of r generated by a (distinct) system
of parameters of v. Then rm(qo; v)==[o:r]-e(q)==[o0:v]-l(x/q)==l(v/q0; t),
which show that e(qo)={(o/qo;p) and that the system of parameters
which generates g is a distinct system of parameters of o.

Though we have seen by Propositions 6 and 7 important charac-
terization of distinet systems of parameters, we will now give another
characterizations of the notion at the point of view of theory of ideals.
In order to do it, we will introduce the notion of unmixedness theorem.

We say that the wunmizvedness theorem holds in a ring o if the
following condition is satisfied: If an ideal a of o is generated by 7
elements and if a is of rank 7 (r may be zero; see foot-note 9)), then
any prime divisor of a is of rank 7.

REMARK 1. By the above definition, we see that if the unmixed-
ness theorem holds in a ring v, then 1) the prime divisor of zero is of
rank zero, that is, the zero ideal has no imbedded prime divisor and
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2) if o is the ideal of v generated by r elements and if ranka=r,
then the unmixedness theorem holds also in o/a.

REMARK 2. In any ring of rank zero, the unmixedness theorem
holds good. In a ring of rank 1, the theorem holds if and only if
the zero ideal has no imbedded prime divisor. (Hence, in a local
ring of rank 1, the theorem holds if and only if the maximal ideal
is not a prime divisor of zero.)

THEOREM 5. The unmixedness theorem holds in a local ring o
of and only if o has a distinct system of parameters.

PROOF. Assume that o has a distinct system of parameters and
let a be the ideal generated by » elements and of rank r. Then o/a
is unmixed By Corollary 2 to Theorem 4, which show that any prime
divisor b of a is of co-rank equal to rank o—r. Therefore rank b is
not greater than r. Since a is of rank r, it follows that rank p=—rt®
Thus the unmixedness theorem holds in 0. Conversely, assume that
the unmixedness theorem holds in o. When v is of rank zero, then
the empty set is the distinet system of parameters. In the other
case, we can construct a distinct system of parameters xy,---,%q in
the following way: We can choose x, so that it is not a zero-divisor
because prime divisors of zero are of rank zero. Since rank x,0=1,
the unmixedness theorem holds in o/z,0 and we can choose z, so that
x, is not a zero-divisor modulo z,n. Repeating the same (or by in-
duction argument), we can choose a system of parameters ,---,Zq
so that each x, is not a zero-divisor modulo >3 'z . Then x,---, T,
form a distinct system of parameters of o by Proposition 7 and the
proof is completed.

Combining Theorem 4, Theorem 5 and Proposition 7, we can
derive many interesting results on the theory of ideals. We want
to state here some of them in below.

We will first state a corollary to Theorem 5:

COROLLARY. The unmixedness theorem holds in a local ring o
of and only if the theorem holds in the completion o* of v.

PrROOF. If x,,---,x, is a distict system of parameters of v, then
it is a distinet system of parameters of o*. Conversely, assume that
¥+« x*¥ be a distinet system of parameters of v*. Let x,---,%,

be elements of v such that each z,—a* is in mgq*, where m is the
maximal ideal of v and ¢* is the ideal of o* generated by x}’s. Let
q be the ideal of v generated by «,’s. Then qv*4mg*=q* and we

14) Observe that we have proved in the same time that for any prime ideal p
of p rankp+co—rank p=rankp. We can prove easily further that any maximal chain
of prime ideals in an unmixed local ring p has length equal to rank o (see Nagata [12]).



The Theory of Multiplicity in General Local Rings 213

have qo*=q*. Hence z,---,x, is a distinct system of parameters
of both o* and o. Thus we see our assertion by virtue of Theorem 5.

PROPOSITION 8. The unmixedness theorem holds wn a Noetherian
ring o if and only tf it holds in the ring v, of quotients of with
respect to any maximal rdeal m of o,

ProOF. The if part is immediate from the definition and we
will prove the only if part. Assume that the unmixedness theorem
holds in o and let m be a maximal ideal of v and let » be the rank
of m. Then there exist elements x,,---,x, of m such that >0 is
of rank s for any s—1,---,7. Then x,,---,x, is a system of pa-
rameters of o, which satisfies the condition in Proposition 7 and we
see the validity of the unmixedness theorem in o,,.

COROLLARY. I[f the unmixedness theorem holds in a Noetherian
ring v, then it holds tn any ring of quotients of v.

ProoF. By Proposition 8, we have only to treat the case of the
ring of quotients of o with respect to a prime ideal. Then the proof
of such a case is the same as in Proposition 8. '

PROPOSITION 9. If the unmixedness theorem holds in a Noetherian
ring o, then it holds in the polynomial ring over o in a finite number
of indeterminates.

PROOF. Making use of induction argument on the number of
indeterminates, we have only to prove the case of one indeterminate
X. On the other hand, by Proposition 8, we have only to prove that
if p is a prime ideal o[ X ], then the theorem holds in o[ X ]p. There-
fore, setting p'—=p~o, we may assume that o-=o, by the corollary to
Proposition 8. Let g be the primary ideal of o generated by a distinet
system of parameters of v. If ¢o[X], is a primary ideal belonging
to the maximal ideal, then o[ X ],=o(x) and we see the existence of
distinet system of parameters of o[ X ], in this case. In the other
case, we have po[X ] /qo[ X ], is of rank 1 and po[ X ], is not a prime
divisor of qo[X],. Let z be an element of po[ X ], which is not a
zero-divisor modulo qo[ X ],. Further let z,,- - -, z, be a distinet system
of parameters which generates q. Then the system of parameters
T, -+, o, x of o[ X ], satisfles the condition in Proposition 7 and we
see the existence of distinct system of parameters of o[ X ],. Thus
the proof is completed.

REMARK 8. Though we stated the unmixedness theorem taking
the notion of rank to be standard, we can state an equivalent con-
dition as follows:

(i) In a local ring or more generally in a Noetherian ring whose
any maximal ideal is of the same rank with the ring: Let d be the
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rank of the ring. If an ideal a of the ring is generated by r elements
and is of co-rank d—r, then any prime divisor of a is of co-rank d—r.
(Indeed, in the case of local rings, we can see easily by the
similar way as in the proof of Theorem 5 that the above condition
is equivalent to the existence of distinct system of parameters.)
(ii) In the general Noetherian rings: If an ideal a of a ring »
is generated by r elements, if m is a maximal ideal containing a
and if rank m/a is rank m—r, then for any prime divisor } of a
contained in m, rank m/p—=rank m—r.

§8. A characterization of regular local rings.

LEMMA 81 Let v be a complete local integrity domain and let
r be a transcendental element over o. Then o(x) is unmized and
analytically unramified.'”

PROOF. Let o be the derived normal ring of o. Since o is
complete, o’ is a finite v-module (see §1) and is a local ring (see §1).
Therefore v'(z) is the derived normal ring of o(x) and v'(z) is a finite
o(x)-module. Hence o(x) is a subspace of v'(x) (see §1). Therefore
we have only to prove the assertion for v'(x). Thus we way assume
that o is normal. Now we will prove the assertion by induetion on
the rank of o (because when rank 0=0, our assertion is obvious).
Let @ be an element of o (¢5%0, ao~v) and let p,,---, b, be all the
prime divisors of av. Then rank b,=1 for any ¢ because v is normal.
Since o is complete, we have co-rank p=ranko—1 (see §1). Further
by our induction assumption, each py(x) is analytically unramified
and o(z)/p,o(x) is unmixed. From the analytical unramifiedness of
p,o(x), we have the analytical unramifiedness of o(x) and that any
prime divisor $* of zero of the completion o* of o(x) is contained in
some divisor of some po* (see §1). By the unmixedness of o()/b0(x),
any prime divisor of po* is of co-rank equal to rank o—1. Hence
co-rank P* is not less than rank o, hence co-rank ¥*=ranko. Thus
the proof is completed.

LEMMA 8.2. Let v* be the completion of a semi-local ring o.
If q is a primary ideal belonging to a prime ideal p of v, then any
prime divisor of qo* is contained in some prime divisor of po*.
PROOF. We will prove the assertion by induction on [(po,/ab,)

15) We can prove further that the completion of p(x) is an integrity domain.
But we need not prove it in the present paper and we shall not prove the fact. On
the other hand, we can prove more generally the following: If a local ring p is un-
mixed and if x is a transcendental element over p, then p(x) is also unmixed. See
Nagata [12].
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(because it is one if and only if p-:q and in this case the assertion
is obvious). On the other hand, we may assume that q--0 because
p*/qo* is the completion of v/q. Let o’ be a primary ideal which is
minimal among non-zero primary ideal belonging to p. Then by our
induetion assumption, any prime divisor of q'v* is contained in some
prime divisor of po*. Let a be a non-zero element of ¢’ and let S
be the complementary set of p with respect to v. Further let
p¥, ..., ¥ be all the prime divisors of po* and let b* be any element
of o* which is not in any of b. Assume that a*0*=0 (a* ¢ 0*) (and
we have only to prove that a*=0). Since every prime divisor of q'v*
is contained in some of b}’s, we have a* € ¢'v*. Since g'v==q'0,==an,,
we have qo¥=avo*. Therefore there exists an element s of S such
that a*s=aa** (a** ¢ 0*). Since any element of S is not a zero-divisor
in o* (by our assumption that ¢=0; see §1), we have only to prove
that aa**=0. Since 0:av*=(0:av)o* (see §1), we have 0:av*—po*
and a**b* € po*. Sinee b* is not in any prime divisor of bo*, we
have a** ¢ po* and aa**=0. Thus the assertion is proved.

COROLLARY. If v is a complete local ring whose zero ideal 1s
primary and if « is a trascendental element over o, then o(x) s un-
mixed.

THEOREM 6. A local ring v is reqular if and only if it s of
multiplicity one and unmized.'”

PROOF. The only if part is obvious and we will prove the if
part. When rank 0--0, our assertion is obvious and we will prove
the assertion by induetion on the rank of v. Since we have only to
prove that the completion of v is regular (see §1), we may assume
that o is complete (also by the definition of unmixedness). Let m be
the maximal ideal of o.

(1) If the zero ideal of o has more than one prime divisors, then
m(v) is greater than 1 by the theorem of additivity. Therefore the
zero ideal is a primary ideal.'”

(2) We will prove the case where o/m contains infinitely many
elements. Let = be a superficial element of m, (i) If v is of rank 1,
e(x0)=I(v/xv), because x is not a zero-divisor (by Lemma 5.3), hence
go—=m. Since in a Noetherian ring any principal ideal generated by
an element of its J-radical cannot contain properly any pr1me ideal

16) There are local integrity domalns of mu1t1p11c1ty one Wh]ch are not regular

(see Nagata [12]).
17) If we make use of the reduction theorem which will be proved in §11 (in

order to prove the theorem, we do not make use of the present Theorem 6), then we
see immediately that p is an integrity domain.
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other than zero, we see that o is an integrity domain and o is a
discrete valuation ring, namely, v is a regular local ring. (i) Now
we assume that o is of rank greater than 1. By Lemma 5.4, we
have m(v/xo)-=1. Since any minimal prime divisor v is of rank 1,
it is of co-rank equal to ranko—1 (because v is complete). Let p
be the intersection of the primary components of zo belonging to
minimal prime divisors of xv. Then by the theorem of additivity we
have m(o/p)=1. Since vo/p is unmixed, o/p is a regular local ring by
our induction assumption and p is a prime ideal. By the primeness
of b, we see that xo—po,. By the same reason stated above, we see
that o, is a discrete valuation ring. Let Y be the prime divisor of
zero of o. Then we have Po,=0. Since the zero-ideal of v is primary,
that Lo,=0 shows that ¥--0 and we see that v is an integrity domain.
Let o be the derived normal ring of o. Then by Corollary 1 to the
extension formula, we have rm(ino’;0)=—1, which shows that v’ is of
multiplicity one, e(nmo’)=1 and, denoting by m’ the maximal ideal of
q’, o'/m’=po/m. Let y be a superficial element of m’. Then, since yvo’
has no imbedded prime divisor, applying the above observation on o
to o/, we see that yo' is a prime ideal and o’/yo’ is regular, which
shows that o’ is regular. Let g be the ideal of v generated by a
system of parameters such that e(q)=1. Then we have e(qv’)=1.
Since o’ is regular, e(qo")=1I(v"/q0") (because q is generated by a distinct
system of parameters of o" by Corollary 1 to Theorem 4). Therefore
we have qo’—=m’ and in particular mo’-=m’, Since o/m=0o'/m’, we have
p=v". Thus o is a regular local ring.

(8) Now we treat the case where o/m contains only a finite
number of elements. Let z be a transcendental element over o.
We have only to show that o(x) is regular (see §1). By Proposition
5, we have m(o(x))=1. By the corollary to Lemma 8.2, we see that
o(x) is unmixed. Therefore by (2) we see that o(z) is regular and
the proof is completed.

8§ 9. The theorem of transition.

THEOREM 7 (THE THEOREM OF TRANSITION). Let o* be the
completron of a local ring o, let g be a primary ideal of o with
prime divisor b and let v* be a minimal prime divisor of bo*. Set
mp*)=1(o}f«/p0}x). Then we have [(of/a05) =m(b*) - U(0,/q0,), a(q0ye; n)=
m(p*)-a(qo,; n) and e(qoy.)=m(p*)-e(qo,).

Proor. The second equality follows from the first one because
it is also true of q"o,~o for any = and the third equality follows
from the second immediately. We will prove the first equality by
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induction on (o /qo,). We may assume without loss of generality
that ¢=0 because v*/qo* is the completion of v/q. Let ¢’ be a primary
ideal which is minimal among those belonging to p and different from
zero. Let a be a non-zero element of ¢'. Then 0:av=) and q’np:aov.
Therefore we have 0:ao*=po* (see §1) and q'vfx=av}.. Therefore we
see that aoj. is a faithful (o}./poj.)-module generated by one element,
which shows that [(aoy.)=m(*). Since by our induction-assumption
L(ofe/q"0}) =m(p*)-U(0,/q'0,) and since [(0,/0'0,)=1(0,)—1, we gsee the
assertion.

COROLLARY 1. If b is analytically unramified, then [Qog/a’n}.
=1(0,/qv,) and e(qo,)=e(qoy).

COROLLARY 2. Let D be a prime ideal of a local ring o and let
v* be the completion of v. If d* is a minimal prime divisor of po*,
then rank p=—rank p*.

COROLLARY 3. If a local ring v is unmixed, then for any prime
tdeal p of o, rank p+co-rank p=rank o. (Nishi [18])

PROOF. Let o* be the completion of v. Then there exists a prime
divisor p* of po* such that co-rank p=co-rank b* because v*/po* is the
completion of v/p. By Corollary 2, rank p—=rank b*. Since any prime
divisor of zero of o* is of co-rank equal to rank o, rank b* + co-rank p*
=rank v and the assertion is proved.

REMARK. Since rank p* +co-rank p*=rank 0 and rank p*=rank p
for any minimal prime divisor p* of o*, we see immediately that
co-rank b*=co-rank p for any minimal prime divisor of po*.

§10. The associativity formula.

THEOREM 8 (THE ASSOCIATIVITY FORMULA). Let x,,---,x, be a
system of parameters of a local ring o and set =SV x,0, a=3%x,0.
Then we have

e(1)=2], e(av,)- e((q + d)/D),

where b runs over all (minimal) prime divisors of a such that
co-rank p=d—s and rank p=s.

In the present paragraph, we will prove only the case where »
is a complete local integrity domain. The general case will be proved
in §12.

(1) When o contains a field: o contains a coeficient field  (see
§1). Let r be the set of elements of o which are expressible as
power series in x,,---,x, with coefficients in f. Then r is a regular
local ring and v is a finite r-module. Since o and v have the same
residue class field f, we have by the extension formula that e(q)=[o:1].
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Set V'=SYNwxr. Then }’ is a prime ideal of r. Let S be the com-
plementary set of »’ with respect to 1. Then we have e(q)==[0s:1, ]
= rm(Vog; 1) eh'r,) = rm (Pog; 1) = 25, e(Poy)-[o/b: t/p’].  Further
Cofprr/p']—= e((q+ »)/b), because o/p and t/p’ are in the same situation
as o and r above. Thus the assertion is proved in this case.

(2) In order to treat the case where o contains no field, we will
begin from a special case where o is an unramified regular local ring,
s—1 and there exists an element u of » such that %, ©.,---,2, is a
regular system of parameters of o.

Since z,’s form a distinet system of parameters by Corollary 1
to Theorem 4, we have e(q)=I[(v/q). Therefore e(q) is characterized
by u*® € q and u*¥ ¢ q, namely, if we express ¥, as a power series
in w, -, v, with coefficients in o outside of m, then e(y) is the
least degree of the term of the form (unit)-u". Let fi1---fi* be the
factorization of z; to the product of irreducible elements f: (see §1).
Then the P’s in our theorem are the fo’s and e(@w;,)=J;,» On the
other hand, e((q+f0)/fo) is the least degree of the term of f, of
the form (unit)-«". Therefore e(v) is the sum of e(x;0,,)-e((q+ f.0)/f0)
and the assertion is proved in this case.

(8) Now we consider the case where o is a complete local in-
tegrity domain which does not contain any field. Let I be the coefficient
ring of v (see §1) and let t be the set of all elements of o which are
expressible as power series in z,’s with ecoefficients in /. Obviously
r is complete and o is a finite r-module (see § 1). We first treat the
case where t—o. Let X,,---,X, be indeterminates and consider the
formal power series ring W-—=I{X,-- ., X,}. Then there exists an
element f of i such that /R =1 (x, is the residue class of X,). Set
Q=R+ 5% X9, A=FR+3% XN and N=33 XA, Since f, < e, Xy
form a distinet system of parameters of %, we have e(q)-= e(Q) = e(Q/MN)
(=1(o/q)). Let P,---, P, be all of prime divisors of A (P,/fN’s are
all of 1’s). Since Ry, is regular (see § 1), f, X, -+, X, form a distinet
system of parameters of Jy,. Therefore we have e(ar,,)—e(ANy,)=
e(ANyp,/MRy,), where b, =P/fR. If we apply the result in (2) to J/N,
we have e(Q/N)=>), e(‘)I’ﬁggi/‘Iti]mxi)-e((&l+‘l§i)/i§i). Since e(q)=-e(2/N)
and since e(ar,)=e(ARy /MRy ), we have the assertion in the case
where t=0. Next we consider the case where r5o. Set o =S¥
and ¢=S"zx and let pi,---, b be all of (minimal) prime divisors of a’.
Then the above observation shows that e(q)=2>1 e(a'r,, )+ e((a" +P1)/bo)s
Let m’ be the maximal ideal of v and let S; be the complementary
set of p, with respect tor. Since o/m=r/m’, rm(q;r)=e(q) and there-
fore e(q)=[o:t]-e(q)y=[o:1r]-(3; e(a'ry )-e((a’+p))/p)). Further e(a'r, )
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[o:t]=rm(aog,;t,,)=>] vap,[0/p 1 1/p;]-e(an,) and, considering o/p and
t/p; for each pair (b, b;) such that pDp; (b ~r=D;), we have [o/p:r/pi]-
e((q"+ P/ =rm((q+D)/P)=e((g+p)/p) (because r/m’-=o/m). Therefore
we have the assertion also in this case. Thus the proof of the case
where o is a complete local integrity domain is completed.

§11. The reduction theorem.

LEMMA 11.1. Let o be a local ring and assume that the zero ideal
is primary. Let wm be the maximal ideal of v and let p be the prime
divisor of zero. If q is a primary ideal belonging to m and if n s
a primary ideal belonging to b such that l(no)=1, then e(q)— e((q+b)/m)
18 not greater than e((q-+Pp)/b).

PROOF. Let a be a non-zero element of n. Then no,=ano,.
Therefore by the theorem of additivity we have e((q+ n)/n)=e((ao+ q)/av).
Set ¢ =(q+av)/av. Then o(q;n)—a(q’;n)==1(v/(0":av)) for sufficiently
large n by Proposition 4. Obviously q" : av contains p+q" and therefore
we have [(0/(q": av)) < a((q+D)/p; ») for sufficiently large ». Thus we
have o(q; n)—a(q’; n) < o((q+D)/b; »), which shows the required result.

From this result, we see easily, applying the same to o/n and so
on, the following fact:

e(q) is not greater than I(v)-e((q+p)/h). If e(a)=I(v,)-e((a+b)/b),
then for any primary ideal n’ belonging to b, e((q+n")/n")=I(o,/n',)-
e((a-+p)/p).

Using this result, we prove the following

THEOREM 9 (THE REDUCTION THEOREM). Let o be a local ring
with maximal ideal m and assume that the zero ideal of o is primary.
Let b be the prime divisor of zero. Then for any primary ideal g
belonging to m, e(q)=e((q+p)/p)-I(vy).

PROOF. (1) When o/m contains only a finite number of elements,
we consider o(X) (X being a transcendental element over o). Then
by Proposition 5, e(q)=e(qo(X)), e((q+9)/0)=e((q+)o(X)/po(X)) and
I(0,)=1(0(X)pocx,).- Therefore we may assume that o/m contains infinitely
many elements.

(2) When v is complete: There exists an unramified complete
regular local ring v which has an ideal o such that o=v/a. Let ¢ be
the homomorphism from t onto o and set ¢*=¢ '(q). Let y;,---,¥,
(s=rank v) be elements of q* such that the ideal ¢’ of v generated by
#(y,)’s is a primary ideal belonging to m and e(q)=e(y’) (by Theorem 1).
Then there exists elements z,,---,2, (r=rank a=rankr—s) of a such
that -+, &,, ¥, -, Y, iS a system of parameters of r. Then the
ideal 6, generated by x,- - ., x,, is contained in a and of rank r. Since



220 M. NAGATA

v is regular, x,---, 2,9, --,Y, is a distinet system of parameters
by Corollary 1 to Theorem 4. We denote by g’ the ideal generated
by #’s. Now we apply the associativity formula to r. Then we have

e(6+0") = Sy e(br) - (0" + BY/P),

where ¥ runs over all prime divisors of 0 (they are of co-rank s and
of rank » by Theorem 5). Since x,,---,2,, %, -+, ¥, is a distinct system
of parameters, we have e(b+q")=e((q”"+0)/0). Since x,,---,, is a
distinet system of parameters of ry (by the corollary to Proposition 8
or by the fact that vy is regular), e(bvy)={(ry/bry). Thus we have
e((q” + 0)/0) =" L(vy/bry) - e((9” + P)/P). Let 22 be the primary component
of 0 belonging to L. Then by the theorem of additivity, we have
e((q"+6)/0) = Sn e((0”+2)/Q). Thus ‘we have >l5e((q"+Q)/Q) —
S e((q +P)/P) - L(vp/Qry) (because Trp=D0bry by the definition of D)
Then the observation after Lemma 11.1 ean be applied to each t/Q
and we have, for any L, that e((q”"+ 2)/Q)=1{(ryp/ryp)e((q"” +B)/P).
Then this shows, applying the same to t/2 (2 being taken to be
a primary ideal belonging to the same prime ideal with a), that
e((q"" + a)/ay = U(vyp/avg) - e((q" +P)/P) = L(o,)- (0 +P)/p) and e(q) = e(q') =
I(0,)-e((a"+b)/D). Since e(q) < I(vp)-e((a+p)/p), we have e((0'+p)/h) =
e((q+D)/p). Since ¢ Sq, we have e((q'+)/b)=e((9+p)/b) and the
assertion is proved in this case.

(8) We will prove the general case. Let o* be the completion
of v and let p¥,---,pF be all of prime divisors of zero of o* such
that their co-rank are equal to rank o and let qf,---,qF be the
primary component of zero belonging to pf¥,-- -, pf respectively. Then
by the theorem of additivity, we have e(q)=—=e(qo*)=—=>]; e((qo* +q¥)/q}).
Then applying the result in (2), we have e(q)—=>], e((qo* +bF)/bF)-L(ogx.)-
By the theorem of transition, we have [(v}.)=={(0}%,/boge,)-{(v,). There-
fore e((qo* +b;)/bi) (0}, ==e((qo* 4+ pF)/b¥) - L(of,/bo). ) -{(0,). On the other
hand, applying the above result to the case where b-=0, we have
e((q+ D)) =30, e((qo* +pF)/pF) - L(of,/ook.).  Therefore we have e(q)=
e((q+b)/b)-U(v,) and the assertion is proved completely.

COROLLARY 1. Let v be a local ring and let q be a primary
ideal belonging to the maximal ideal m of o. Then we have

e(q) =3, e((a+p)/0)-1(o,),
where b runs over all prime ideal of v such that co-rankp-—=rank o.
The proof is immediate from the theorem of additivity and our
reduction theorem.
COROLLARY 2. Let o and q be the same as above Corollary 1 and
let 1 be the radical of o. Then e(q)=e(q+n).
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For, in the formula in Corollary 1, the right side does not change
under the replacement of ¢ by g4 n.

8§ 12. Continuation of the proof of the associativity formula.

Now we will prove the general case of the associativity formula.

(1) When o is complete: Let Py, -+, b, be all of prime divisors
of zero of v such that their co-rank are equal to rank v. Then by
the reduction theorem, we have e(q)--3), e((q+pi)/pi)-l(npi), e(an, ) ==
S (@ 2)0u/,00)-Uon).  Since e((a-+,)/,) = Say, e((a+ )0, /,)-
e((0+9)/p) for each ¢, by the observation in § 10, we have the required
result easily. ‘

(2) The non-complete case: Let o* be the completion of v. Then
by (1) we have e()==e(00*) == 37« e(av) - e((qo* + p*)/p*), where D* runs
over prime divisors of ao* such that their co-rank are equal to d—s
and they contain some prime divisors of zero of co-rank d (such p*
must be of rank s because o* is complete). By the theorem of
transition e(aog)==e(ao,)-U(v¥./bo¥,) for any minimal prime divisor p*
of po*; observe that our p*’s in the former summation are minimal
prime divisors po*’s. Since rank b=rank p* for any minimal prime
divisor b* of po* by Corollary 2 to the theorem of transition, we see
that a minimal prime divisor b* of bo* appears in the above summation
if and only if it is of co-rank d—s. Hence e((q =4 0)/p) = e((q + P)o* /po*)
=20y ((q0* +p*)/D*) - U(of/Dof.), where p* runs over all minimal prime
divisors of po* which appears in the former summation. Therefore
we have the required equality and the proof of the associativity
formula is completed.

§13. Multiplicity of rings of quotients.

THEOREM 10. Let b be a prime ideal of a local ring v. If
rank p+co-rank p--rank v and if b is analytically unramified, then
the multiplicity of v, 18 not greater than that of o.

PROOF. Let m be the maximal ideal of v. If o/m contains only
a finite number of elements, then let  be a transcendental element
over v and consider o(x). By Proposition 5, m(0)-=m(o(x)) and, observing
that o(@),,..,==0,(x), m(o,) =m(o(x),,,,). Therefore we may assume
that o/m contains infinitely many elements.

(1) When v is a complete local integrity domain: Let iy v, Ty
be a system of parameters of v such that m(v)=e(q) with the ideal
q generated by x,’s and let [ be the coefficient ring of v. Let v be
the set of elements of v which are expressible as power series in
Ty, -+, , With coefficients in 7. 1 is a complete local integrity domain
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and o is a finite r-module. Set p=p v and m'=mr. Further let
S be the complementary set of p with respect to t.

(i) When [ is a field: In this case, r is a regular local ring.
Qince e(m’)==1, o/m==r/m’ and m'n=q, we have e(q)=rm(q;v)=[0:1]
:;[DS:rp,]:Tm(p’ng;rw)/’e(p’rp/);:rm(p’og;rp,) (because 1, is regular (see
§1)). Since rm(p'og; 1) is not less than e(p'o,) = e(ho,), we have the
assertion in this case.

(ii) When [ is not a field: Let X,,---,X, be indeterminates and
consider the formal power series ring R =I{X,,- -, Xu} Then there
exists an element f of M such that t=R/fR (where z, is the residue
class of X). Let ¢ be the homomorphism from 1 onto v and set
Be=p(p). Since R is a regular local ring My is a regular local
ring (see §1). Further the degree of f with respect to the maximal
ideal of M is not less than the degree of f with respect to TRy
(see §1). Since f, X, -+, X, 1s a distinet system of parameters of
%t by Corollary 1 to Theorem 4, we have e(fR+3SWHXM)=e(Sx:1)
— (xS x,v) = (degree of f with respect to the maximal ideal of ).

On the other hand, since N, is regular, (01, == e(P Ry [fRyy) is equal
to the degree of f with respect to PRy as is easily seen. Thus we
see that m(r,) is not greater than e(>)x). Now, e(n)= e(q)==rm(q; v)
=[] e axr) =[og 1y ] e(M'ry) == rm(Wog; 1) = e(p'vg) =e(vo,). Thus
the proof of this case is completed.

(2) When o is complete: Let B,,---, B, be all of prime divisors
of zero such that their co-rank are equal to rank o; we renumber
them so that P, <p if and only if i <s. Then by Corollary 1 to
the reduction theorem, we have m(o)==>1 m(o/p,)-l(ox,) and m(oy)=
S m(oy/Pop) - {(vg,). Then we have the assertion by (1) (applying the
result to o/¥,).

(3) Now we will prove the general case. Let o* be the com-
pletion of o and let p* be a minimal prime divisor of po* such that
co-rank p=co-rank p*. By Corollary 2 to the theorem of transition,
rank p=rank p*. Hence rank p* +co-rank p* == rank o* and we have
m(o*) =m(o¥). Obviously m(0)==m(o*). On the other hand, since p
is analytically unramified, we have m(oy)=m(o}.) by Corollary 1 to
the theorem of transition. Thus we see the assertion.

COROLLARY. If v is a regular local ring and if a prime ideal
p of v is analytically unramified, then o, s also a regular local ring.
If furthermore v is unramified, then v, is also unramaified.

PROOF. Since m(v)=1, we have m(v,)=1. Since o and therefore
also v, have distinet system of parameters, v, is unmixed (see §7).
Therefore o, is regular by Theorem 6. For the last assertion, see § 1.
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§14. Complete tensor products.

A subring B of a semi-local ring » is called a basic ring of o if
1) B is a homomorphic image of a discrete valuation ring and 2) any
maximal ideal b of o lies over the maximal ideal n of B and o/p is
a finite algebraic extension of B/n. Let v and o be semi-local rings
which have the same basic ring B. Let v be the tensor product of
o and o over B and let M(n) be the ideal of v” generated by m" and
m™, where m and m’ denote the J-radicals of o and o’ respectively.
Then the limit space of the inverse system {0o”/M(n);n--1,2,---} is
called the complete tensor product of v and o’ over B. As was shown
in (11, II], this notion corresponds to the notion of Kronecker pro-
duct of o and 0" over B in the sense of Chevalley [2], namely, when
o and o are complete local rings and if B is a field, then o* is the
Kronecker product in his sense.

PROPOSITION 11. Assume that v and o' are local rings and that
B is a field. Then for any primary ideals q and g belonging to m
and m’ respectively, we have

rm(qo* +q'v*; B)=—rm(q; B)-rm(y’; B).

PROOF.'™ We shall use the notation I( ) in the sense of I( ; B).
Set f(@):==(q"/0"*") and ¢(?)-=1(q"/q""*") and denote by m* the ideal of
p* generated by q and q. To calculate the length of o*/m*" we
remark that o*/m*" is the homomorphic image of the (v/q")&), (0 /a™)
with the kernel )., . (q"/a")®"/q™). Considering v/q" and o'/q"™
as B-modules, we see that o/q” and v’/q"" are isomorphic to >}, (a/q'"")
and >, (q/0""") respectively; >1(0'/0")=>1 <, (@), (0"/0")=
SVcien @07, Therefore o*/m** =37, (0*/0"")& (a”/q7’*1), which
shows that [(o*/m*") =3V, ... fF(D)g(7). Set e=rm(y; B), ¢ =—=rm(y’; B),
d-=rank o and d’==ranko’. Since the case dd' --=0 is easy by the above
equality, we shall treat only the case where dd'>0. Since l(0/q")=
(e/(d)n®+ (terms of lower degree) (for sufficiently large n), we have
f(n)=(e/(d—1)Dn* '+ (terms of lower degree). Similarly we have g(n)

=(e'[{d'—1)n* '+ (terms of lower degree). Since f f Ty idady
0 0

= ((d—-DNd —D(d+dYDn* " + (terms of lower degree), we have
S jen 8TV = (A= DU = DA+ )™ @ + (terms of lower degree)
and [(o*/m*")=3",, o, f@O)9(F)=(ee'/[(d—d))n***¥ 4 (terms of lower de-
gree), which prove our result.

REMARK. We have proved in the same time that rank o*=rank o
+rank o',

18) The present proof was given by Samuel [15].



224 M. NAGATA

COROLLARY 1. Assume further that o/m@,o’'/m’ is a field, then
e(q)-e(q)=e(qv* +q'0*) and in particular m(e*)=m(p)-m(v’). (Samuel
[15])

COROLLARY 2. Let v and v be semi-local rings with the same
basic field B and let o* be the complete tensor product of o and o’
over B. Then for any ideals q and o of o and v which are inter-
sections of primary tdeals belonging to maximal ideals, we have
rm(q; B)-rm(q’; B)=rm(qo* +q'v*; B).

Appendix. Numerical polynomials.

Let f(x) be a polynomial in one indeterminate x with coefficients
in the field of rational numbers. We say that f(x) is numeriecal if
there exists an integer N such that f(») is an integer for any integer
n greater than N.

PROPOSITION A. If f(x) is a numerical polynomial of degree d,
then there exist integers ¢, - - -, ¢, such that f(x)-= do(x—(;d)w%l(x;fl_; 1)
+oee +C(z-1<x_1*_1>+cd-

PrROOF. When d=—=0 our assertion is obvious and we will prove
the assertion by induction on d. Let ¢ be the coefficient of 2” in
f(@). Then f(x)—f(@—1)-=cdx" '+ (terms of lower degree). Since
f(x)—f(x—1) is also numerical, we see by our induction assump-
tion that c¢-(d!)=¢, is an integer. Then co( x;d

\ /

) is numerical and

Jf@)—c, (x;d) is a numerical polynomial of degree less than d. There-

fore we see the assertion by our induection assumption.

From this proposition we see immediately the following

PROPOSITION B. If f(x) is a numerical polynomial, then f(n)
18 an integer for any integer n.

On the other hand, we see immediately that the multiplicity and
relative multiplicity are natural numbers by virtue of Proposition A.
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Addenda. It was communicated to the writer by Professor
J.-P. Serre that (1) he proved that if ) is a prime ideal of a regular
local ring o, then v, is also regular, in his paper ““Sur la dimension
homologique des anneaux et des modules noethériens’’ (these proceed-
ings, pp. 175-189) and (2) he treated also the theory of multiplicity
in his forthcoming paper ‘‘ Multiplicités d’intersection et caractéristi-
ques d’Euler-Poincaré’’; there are some substancially common results
with our treatment and furthermore he proved our associativity for-
mula by a simpler way than ours. He defined the notion of multi-
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plicity in a finite module: Let & be a finite module over a local
ring o and let g be a primary ideal belonging to the maximal ideal
of 0. Then he denoted the multiplicity of g in E by exq). The
notion plays a similar réle as our notion of relative multiplicity.
On the other hand, if we want to calculate e.(q) from our standing
point, then it becomes as follows: We consider the module v+ /£ as
a ring by defining to be E*=0; which becomes a local ring. Then
ex(0)=e(a(o+ E))—e(a).

Added in proof: [11, I] and [12] appeared in Amer. J. of
Math., 78 (1956), pp. 78-116 and Nagoya Math. J., 10 (1956), pp.
51-64 respectively.



Cohomology of Function Fields and Other Algebras

Daniel ZELINSKY

In this lecture I would like to present a homological characteri-
zation of finitely separably generated algebraic function fields due to
A. Rosenberg and myself [5]. The characterization is in terms of
the cohomology groups of algebras first introduced by Hochsehild [4 ]
and later recast by Cartan and Eilenberg [2; Chapter IX]. Specifi-
cally, if A is an algebra with unit over a field £ and M is a two-
sided A-module (thus M is a left A>-module where A°=A), A*) we
denote by H"(A, M) the nth cohomology group of A with coefficients
in M, or, in Cartan-Eilenberg’s terminology, Ext%«{A4, M). And by
dim A (or k-dim A when it is necessary to specify the base field
explicitly) we denote the supremum of all » such that H"(A, M)Y=+0
for some M. Thus dim A=1. dim,A4, the left dimension of the A’
module A. Our characterization is as follows: A field extension A
of k is a finitely separably generated algebraic function field if and
only if the transcendence degree of A over k s finite and equal to
dim A. The proof actually exhibits a few more properties of the
dimension of field extensions, as stated in the theorems below.

THEOREM 1 (Subadditivity of dimension). Let A be an algebra
over @ field K and let k be a subfield of K. Then k-dim A <k-dim K
+ K-dim A. Also k-dim A = k-dim K.

The proof is based on (1) a similar subadditivity theorem for
modules: If R—S is a homomorphism of a ring R into a ring S and
if A is any left S-module then 1l.dim,A =<1 dim,S+1.dim; A
[2; Chapter XVI, Exercise 5, or 3; Proposition 3] (in our application
R--A==A&,A* and S=AK,A*); (2) the identity AKXy A* =
A*Rxe K which is easily verified (the isomorphism is induced by
aR)pa* > a@,a* Qxe1); and (3) the change of rings formula: If
R— S is a ring-homomorphism, if S is projective as right R-module
and if B is any left R-module, then I.dim,B>=1.dim;S&zB
[2; VI, 4.1.8] (in our application B=K, R=K* and S=A*, the mapping
being an inclusion mapping). The first inequality then follows
immediately: k-dim A=Ldim,A <ldim, A A*+1l.dim,g  4* A=
1. dim e A* Qe K+ K-dim A < 1. dim g K+ K-dim A=k-dim K+ K-dim A.
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As for the second inequality, A is a direct sum of copies of K
even as a K"-module, hence &-dim K=1.dim,c K=1. dim ¢ A <1.dim, A
by a second change of rings formula [2; VI, 4.1.47.

THEOREM 2. If A s a finitely separably generated algebraic
function field of finite transcendence degree over k then dim A—=tran-
scendence degree of A over k.

First k-dim k(x) =1 if x is an indeterminate over %, because
k(x) =k(x) &), k() is a principal ideal ring so that every k(x)-module (in
particular %(x)) has left dimension at most 1. Next if K—=k(z,,---, x,
with x,---, 2, independent indeterminates over %, then k-dim K=<n
by repeated use of the subadditivity in Theorem 1. We prove
k-dim K=mn By exhibiting a noncobounding n-coeycle of K into K:
Sy, u,)=11;,9u,/on,, The fact that f does not ecobound results
irom an identity that coboundaries satisfy: If f is the coboundary
of an (n—1)-cochain g, then

Af(“l; ) %n):Zi (ui?/i—yiui) with yi:Ag(ul) Tty 2211, e, U,
where the operator A on a function % is defined as the alternating
sum of the values of %, summed over all permutations of the vari-
ables. Finally, if A is a finite separable algebraic extension of K,
then K-dim A-=0[4; Theorem 4.1] and so by both inequalities in
Theorem 1, n==Fk-dim K <k-dim A < k-dim K.

COROLLARY. For any field extension A of k, dim A = transcendence
degree of A over k.

For if K is a subfield generated by a transcendence basis,

dim A >dim K by Theorem 1 and dim K- transcendence degree of A
by Theorem 2.

THEOREM 3. If A isa finitely generated extension field o f k with
no separable generation over k then dim A= oo,

Let A=k(t,,---,¢,) and let s be the maximum integer such that
k(¢:,++-,t,) can be separably generated over %. Let K be a rational
function field over which k(t,,---,¢,) is algebraic and separable. Then
k(t,---,%,t,.,) is separable over K (ts.1) so that K(¢,,,) has no separa-
ble generation over K (else k(ty,-+-,t,.,) would also have a separable
generation, contrary to the choice of s). Write y— t..;, and consider
the subfield K(y) of A. (Note that y is algebraic over K by the
maximality of s). By Theorem 1 it suffices to prove dim K (y)= co.
We shall actually prove that a certain sealar extension G ). K(y) is
a commutative ring with minimum condition and nonzero radical,
which implies that dim G (%), K(y) - [1; Propositions 14 and 15];
since dim is invariant under scalar extension [2; IX, 7.2] this will
complete the proof.
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Let {z,,---,x,} be a transeendence basis of K and let f be an
irredueible polynomial in n+1 variables such that

(*) f(xly" *y Ty ?/>?’:O‘

Since (x) is the minimum equation of ¥ over K and K (¥) is inseparable
over K, the exponent of y in each nonzero term is a multiple of the

characteristic p. If w, actually occurs in () then {x,,---,&,---,x,, y}
is another transcendence basis of K(y) and, since K( J) has no separa-
ble generation, x, is also inseparable over k(z,,- - &+, 2, y). The

same argument then shows that the exponents of x, in ( x) are also
multiples of p. Hence, if G is the field obtained by adjoining to %
the pth roots of all the coefficients of f, then f==g¢” for some poly-
nomial ¢ with coefficients in G. If z=g(x,---,z,, ¥) ¢ GK, K (¥),
then 2”—=0 so that G ), K(y) is commutative, satisfies the minimum
condition because |G : k] is finite, and contams a nilpotent element,
hence a nonzero radical.

THEOREM 4. If A is a field extension of k with no finite genem-
tion then dim A =>1+transcendence degree of A over k.

The Corollary of Theorem 2 disposes of the case of infinite tran-
scendence degree. In case the transcendence degree of A is n < oo,
let K be a subfield generated by a transcendence basis. Then A has
no finite generation over K and so [A: K] is infinite. It will suffice
to prove dim A’>1+n for some subfield A’ of A since by Theorem 1
dim A>=dim A’. So we may reduce to the case where [A: K ]= N,.
In these circumstances we can show that a special first cohomology
group of A over K is not zero, namely H'(A, A X, A)—that is, there
is a non-inner derivation & of A4 into A, A over K. This is a
computation based on representing A as the union of a denumerable
tower of subfields A,, each of finite degree over K, thus inducing a
topology on A ()« A (neighborhoods of zero are U, = {x ¢ AR, A|axr=xa
for all @ in A;}) under which A&, A is not complete. The required
derivation is a—ax—xa where z is a suitably chosen element of the
completion. (For computations we refer to ' 5].) If we now extend
the derivations 8,=9/or, (i=1,-- -,n) of K into K to derivations of
A into the ring of all K-linear transformations on A4 and if we
consider K-linear transformations on A as (1 &), A)-linear transfor-
mations on A¢Jx A then we can construct an (n+1)-cocycle

f(ul’ ) un+1): [81<u1)° - ‘8,”(%”)]8(%,”1)

of A into A, A which may be proved to be not a coboundary by
the same identity used in Theorem 2. This proves Theorem 4.
Theorems 2, 3, and 4 complete the proof of the characterization
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asserted at the beginning of the lecture.

We may make several remarks about these theorems. Theorem 1
remains true even when K is not a field if we assume that A is
projective as a K-module. In many cases we expect the first inequality
in this theorem to be an equality. That this is not always the case
is easy to demonstrate by examples. One such example may be
produced from a more precise version of Theorem 4:

THEOREM 4. If A 18 a denumerably and separably generated
field extension of k then dim A-—=1+transcendence degree of A.
(We refer again to [5] for the proof; in the case of zero transcendence
degree, Theorem 4’ implies that A is absolutely segregated—i.e.,
dim A <1—which is a result due to Kurockin).

If we choose an algebraic extension field A of k& which has a
subfield K such that [A:k]—=[K:k]=N, then Theorem 4’ asserts
that k-dim A= K-dim A-=k-dim K—1, so that equality in the sub-
additivity theorem does mot hold.

Eilenberg has recently used a spectral sequence argument to
show the first inequality in Theorem 1 is an equality when all dimen-
gions are finite and when K is special—in particular when K is a
rational function field.

Theorem 4 and the Corollary of Theorem 2 assert that no field
extension has dimension zero unless it is finite and separable. As a
matter of fact, this can be proved of arbitrary algebras.

Theorems 2, 8, and 4’ give the exact dimension of all field exten-
sions except those which have finite transcendence degree and are
separably but not denumerably generated: In the case of finite
transcendence degree and separable generation, if K is a rational
function field over which A is separable and algebraicand if [A: K J< N,
then dim A==dim K—=transcendence degree; if [A:K]=§N, then
dim A=1+dim K=1+transcendence degree; but it is difficult to
believe that [A:K]=N; should imply dim A=2+dim K, ete.;
presumably [A: K]> N, implies dim A=<, but so far our attempts
to settle this question have been unsuccessful, even in the case of
zero transcendence degree.
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An Existence Theorem of Algebras

Goro AZUMAYA

It is a well-known arithmetical theorem that if K is a discrete valuated
complete field and if L is a finite extension field of K such that the residue
class field of L is separable over that of K then there exists a unique
subfield (that is, the inertial field) T such that T is unramified over K
and every residue class of L is represented by an element of 7. The
theorem has been extended by Nakayama to the case where L is a division
algebra, so that T is an up to inner automorphisms uniquely determined
inertial division algebra. On the other hand, there is an important alge-
braic theorem, called Wedderburn-Malcev’s, which asserts that if R is an
algebra over a field K such that the semi-simple residue class algebra R/N
of R modulo its radical N is separable over K then there exists one and—
up to inner automorphisms—only one semi-simple subalgebra S such that
every residue class of R modulo N is represented by an element of S. Now
in the present lecture, we aim to prove a fundamental theorem which
includes above two theorems as particular cases. In the proof of this
theorem, which seems to be considerably difficult, a particular type of
algebras, called maximally central, play however a quite essential role, and
so we shall study such algebras as a main subject.

Let K be a commutative ring with unit element. Let R be a ring with
coefficient ring K. We shall R an algebra over K if R has a finite (not
necessarily linearly independent) module-basis over K. Let now R be an
algebra over K with unit element and possessing a linearly independent
basis. Then R can be looked upon in a natural way as a right-module of
the direct product RXR’, where R’ is inverse-isomorphic to R. Let us call
R a mawximally central algebra over K if RxX R’ coincides with the K-endo-
morphism ring of R, or what comes to the same, if for a basis a;, @, An
of R the m xm matrix (a;a,) is a regular matrix. The notion of maximally
central algebras is a natural expansion of that of central simple algebras.
In fact, we can show, among others, following theorems: 1) Every full
matrix ring over K is maximally central, 2) If R and S are both maximally
central over K then so is the direct product Rx S too, 3) If R is maximally
central over K then K coincides with the center of R, and two-sided ideals
of R and ideals of K correspond one-to-one and lattice-isomorphically; from
this it follows in particular that in case K is a field R is maximally central
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if and only if it is central simple, 4) If R is maximally central over K
and if @ is an over-algebra of R having a unit element in common with
R, then @ is a direct product of R and the commuter algebra S of R in @,
and between subalgebras of Q =RxS containing R and subalgebras of S
there is a one-to-one and lattice-isomorphic correspondence, 5) Further-
more, we can introduce the concept of algebra class group over K for
maximally central algebras in just a similar way as in the case of central
simple algebras.

From now on, we restrict ourselves to the case where K is a complete
local ring in the sense that K has a unique maximal ideal P, for which
ﬁP“:O holds, and K is complete with respect to the topology which is

v=1

defined by taking all the powers P’ as a system of neighbourhoods of 0.
(Naturally, every field as well as the valuation ring of every discrete
valuated complete field is a complete local ring.) Let R be an algebra over
K and N its radical (in the sense of Jacobson). Then the two-sided ideal

PR is contained in N, and so the residue class algebra R=R/N is regarded
as a semi-simple algebra over the residue class field K== K/P. Furthermore,
we can verify that for any given system of matrix units {e;;} in R there
exists actually a system of matrix units {e;;} in R such that each e;; is a
representative of €;;. Let us call R unramified over K if PR=N. Now R
is maximally central over K if and only if R is unramified and R is central
simple over K. These show that if we associate with every algebra class
{R}, where R is maximally central over K, the algebra class {E} we have
an isomorphism of the algebra class group over K into that over K. As
a matter of fact, this isomorphism is moreover an onto-mapping. To prove
this, it is indispensable to introduce the notions of Galois extensions of K
and their crossed products. Namely, a complete local ring L containing K
and possessing a linearly independent basis over K is called a Galois exten-
sion of K if L is (as algebra) unramified over K and the residue class
field L of L is a separable Galois extension of K. In this case, the auto-
morphism group G of L over K the Galois group of L/K--is mapped
isomorphically, in the natural manner, onto the Galois group G of L/K.
Further, for any given (finite, separable) Galois extension field L of K
there exists an up to K-isomorphisms unique Galois extension L of K whose
residue class field coincides with L. Now, for a Galois extension L of K
we can construct a crossed product (L/K, ts.2) by means of a factor set
{@s,~+ of L/K in just the same way as in the case of a Galois extension
fields. (L/K, ae,.) is then a maximally central algebra over K and in fact
the (central simple) residue class algebra modulo its radical is the crossed
product (E/E, Usy) OFf E/f{—. By making use of these facts, we may find

that the above mentioned isomorphism {R}—»{I_E} is an onto-mapping, and
from this we can deduce further that for any given central simple algebra
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R over K there exists an up to K-isomorphisms unique maximally central
algebra R over K whose residue class algebra modulo radical coincides with

R. Now, on the basis of these results, we have finally the following main
theorem:

THEOREM. Let R be an algebra over a complete local ring K such that
the semi-simple residue class algebra R/N of R modulo its radical N is
separable over the residue class field K/P of K. Then there exists one and
—up to inner automorphisms-—only one unramified subalgebra S such that
every residue class of R modulo N is represented by an element of S.

HokkAIDO UNIVERSITY

Cohomology Theory for Algebras

Masatoshi IKEDA, Hiroshi NAGAO and Tadasi NAKAYAMA

Cohomology theory for algebras has been introduced and developed by
G. Hochschild [6], [7], [8], and the 1-, 2- and 3- dimensional cohomology
groups have been interpreted with reference to classical notions of structure
of algebras. E.g. algebras with vanishing 1-dimensional cohomology groups
are separable semi-simple algebras ([6], Theorem 4. 1). Here we sum-
marize our results on cohomological dimensions of algebras. QOur main
result is the characterization of algebras with vanishing n-cohomology
groups, i.e. the characterization of algebras with dimension <n--1 (n=2)
({97, Main theorem).

Let A be an (associative) algebra (of finite rank) possessing a unit
element 1, and N be its radical.

(I) If dimA=<n—-1(n=2), then

a) A/N is separable semi-simple, and
B L. dim,[<n—1 for every left ideal | of A.
Conversely
(II) if «) is the case and if
£ lL.dimyN=<n—2
then dimA=<n—1.

We shall sketech the proofs of (I) and (1I).

Proor oF (I). Let [ be a left ideal of A and m be an A-A-module satisfy-
ing m(=0. Let C*(4, m) be the n-dimensional cochain group, C{(A, m) be
its subgroup consisting of cochains which map Ax--- XA X! into zero and
Cln(A, m)=L(Qf, m) be the group of linear mapping of Q/=A4x .- xAXxI
(with n—1 A’s) into m. Here @ is an A-module under the operation
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s (X XUy XM) =AA X - - X Ao g XM~ A X Ay
X e XAy XM A XA X - X Uy s X Uy = M
We define the coboundary operators as usual, and we have the cochain com-
plexes C(A,m), C{A, m) and Cry/4, m). Since C(A, m)/C(A, m)=Cr(A4, m),
we have the following exact sequence;
SHPFA, )~ H"(A, m)—H5H (A, n)—H{"" (4, m)—- -
On the other hand we have the so-called reduction theorems;
H!"(A, m) ~ H{(A,C"(A, m)) = H(A,C{(A, m)) and Hy (4, m) =
H (A, Clo(A, m)) = Hiy' A, C*(A,m)). By the second relation, Hip A4, m)
~ H'(A, L(Q; ', m))~Ext (@ ', m) and consequently H'yrA,m)=0 if and
only if @ ' is projective, i.e. l. dim, =n—2.

We assume now that dim A <n-—1. Then in the above exact sequence
H'(Am) = H"*'(A,m) =0, therefore H{y( A,m) ~H""'(A,m) ~H"(A,C{(A,m))=0
and, as was shown above, I. dim, I =<n—2.

Next we show «). Since dim A=n—1 if and only if dim Ao=<n-—1 for
the algebraic closure £ of the ground field, we assume that the ground field
is algebraically closed. Let Ae,, - -, Ae, be the totality of non-isomorphic inde-
composable components of A. Then an A-left module m of finite rank over
2 is projective if and only if 1111~\‘aneK We denote A/N by A, then an
A-A-module m satisfying MmA-:m is an A-A-projective module if and only if m
is an A-projective module. Now if dim A =n—1, then Q%' is A-projective

and hence A-A-projective. Let 1x@Q% ' be isomorphic to NMta(Ae e ),

KA

then e xQ% 'e.~> tn(Aexe,2) as e, Ae,-¢,2-module. Thus we have
K

(e, xQN 'e: .Q)~Lt,w(eMAe,{ Q)= Lt,n(-w‘.

The mapping «,; X -« - X &, —Lx (L X - -xx,) defines an A-A-homomorphism

of Q%' under the ordmary opemtlon onto 1xQ%? and its kernel is 1+Q% .
Therefore we have

(6@ ey @) =(A: Q)" (e, A: D)((Ae,: 2)—(Ae,: 2))—(e *Qx ey 2),
(s @¥ "e,: )= (A: 2)" (e, d: D) ((Aey: ) (Ad,: D)) — (e xQ% Fe,: 2),
and (_ep,*Ne«,: Dy=(e,Ne,: 2)=cp—0u.
Consequently
(e,xQ% 'e,: 2)
:(?’3 +(A: DD)((Aey: D)—(Aey: D))(e,A: )+ (—1)"(Cp—w)

< “+<A D)i((Ae,: 2)—(Aé,: Q‘))(S;cm‘é;l : )+ (— 1) (Cw—uw)
Z o -

K
This shows that [¢u!==+1. Thus we have that if dim A=n-1 then Cartan

matrix of Ag is uni-modular. On the other hand if A/N is inseparable
then the determinant of Cartan matrix of A, is divisible by the charac-
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teristic of the ground field. Therefore if dimA<n—1 then A/N is
separable.

ProOOF oF (II). By (a), there is a subalgebra A such that A=A +N.
Let m be an A-A-module such that Nm=mN=0. If Of (@, Any Wppy) =0

wherever a,,.,¢A for an feC"(A, m), then there is a geC”- (4, m) such
that (f—dg)(ay, - -, a,-1, @) =0 whenever a@,cA. Therefore each class of
H"(A,m) contains an f such that flay, -, a,-1, @,)=0 whenever a,cA.
Let R(Q%™', m) be the group of A-homomorphism from Q%! into m as A-right
modules. By (aI(w)=aF(u) and (FO)(w)=F(a+u) (acA, ue@y,

FeR(QY", m)), R(Q%", m) becomes an A-A-module. The mapping ¢ defined
by ¢fCa)(a, -, m,)=f(a,---, m,)(a; €A, m,c N) for the cochain f satisfy-
ing fla, -+, ay_y, @,)=0, gives an isomorphism from H"(A, m) onto

H'(A, R(Q¥', m). Now if Q%' is projective as A-left module, then Q%
is projective as A-A-module and we have H'(A, R(Q% ™, m))=0. Thus under
the assuption «) and £;), we have H"(A, m)=0. If m is an arbitrary A-A-
module, considering the composition factor groups of 11, we have H"(A,m)=0.
We shall note some other results without proof.
(III) If Ais a non semi-simple quasi-Frobenius algebra, then dim A=oo,
(L9
(IV) dim A <dim A/a+1. dim, (4/a) for two-sided ide | a < N. ([4])
(V) If dimA-1, then dim A/a<co for any two-sided ideal a of A.
On the other hand for each m>>1, there cxist an algebra A and
its ideal a such that dim A==n and dim A/a=cc. ([5])
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On Cohomology Groups in a Field, which is Complete
with Respect to a Discrete Valuation

Kizi INABA

Let K be a field, which is complete with respect to a discrete valuation,
and § be its residue class field. In the case, R is perfect, Witt considered
central division algebras over K and obtained a theorem on the structure
of Brauer group over K. If we consider from the viewpoint of cohomology
theory, Witt’s theorem can be replaced by a theorem on two-dimensional
cohomology in a Galois extension of K. We aim to extend this theorem to
the one on higher dimensional cohomology groups, under the assump-
tion that § is perfect. For this purpose it seems more natural to consider
cohomology groups in a maximal separable algebraic extension L of K
rather than to consider those in a finite Galois extension of K. Let G be
the Galois group of L over K, and we assign to G the usual topology. We
denote with L* the multiplicative group of all non-zero elements in L, and
assign to L* the discrete topology. Then a continuous cochain in L* is
nothing other than the lifting to L of a cochain, which is defined on the
Galois group of some finite Galois extension of K. In the following we
consider only continuous cochains. Let S be the maximal unramified sub-
field of L over K. Then the residue class field ¢ of L can be identified
with the residue class field of ) and is algebraically closed over R. We
denote with & the Galois group of ¥ over &, and we have the following

THEOREM 1. Tae n-dimensional cohomology group H"(G, L*) is canoni-
cally isomorphic to the direct product of H'(®, Z) and H"(R, £*), where
7 is the additive group of rational integers, on which & operates trivially.

Next we shall consider the case, where generalized local class field
theory, due to Moriya, holds. In this case we have the following

THEOREM 2. If the dimension n is one or larger than two, H*(G, L*)
is trivial. H*G, L*) is isomorphically mapped onto the additive group of
all rational numbers mod Z.

OCHANOMIZU UNIVERSITY
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Some Remarks on Class Formations

Yukiyosi KAWADA

1. E. Artin has established the abstract class field theory in his lecture
at Princeton University [1]. There he has given the notion of a class
formation which is defined by several axioms, and on the basis of this
notion he has proved the main theorems both in local and in global class
field theory simultaneously. After his idea I compared in [2], this coho-
mology-theoretical class formation theory with other known theories of
abelian extensions; in particular, J. Tate and I considered the case of
algebraic function fields in [3]. Here we shall add some more results
concerning class formation theory; namely, on class formation theory in
characteristic p ([4]) and the system of Weil-groups in a class formation.

2. We shall repeat here the definition of a class formation. Let ko be
a given ground field and £ be a fixed infinite separable normal algebraic
extension of k,. We consider the set £ of all finite extensions of k
contained in 2. Let us assume that an abelian group A(k) is attached to
each ke with the following properties: (i) for k, Kef® and kCK there
exists an isomorphism ¢, x of A(k) into A(K), (ii) for a normal K/k the
Galois group G=G(K/k) operates on A(K) and ¢ Ak)=A(K)“ (and some
more additional conditions on A(k) such that we can apply the usual Galois
theory for the limit group A(L/k,) of {A(K); Ke&}), (iii) for normal
K/k the cohomology groups of G over the coefficient group A(K) satisfy:
H' (G, A(K))=0, H¥(G, A(K))=Z/nZ (n=[K:k]). Then we call{A(k); kef}
a class formation. By class field theory we know that for a p-adic number
field k, (or for an algebraic number field k,) dnd for its algebraic closure
0 we can take as A(k) the multiplicative group k* (or the idele class
group C;). Once these axioms are satisfied, we can prove the isomorphism
theorem to the effect that A(k)/AK/k)=G(K/k) (A(K/k)=¢;,'x (NGA(K)))
holds for abelian K/k (k, Kc§), the general theory of norm residue symbols,



240 Y. KAWADA

ete. To prove the existence theorem of a class field over &k for given sub-
group H of A(k) we have to determine the set A(k)={A(K/k); for all
abelian K/k in &} explicitly. This cannot be done in the abstract theory.

For any given 2/k, we can choose A(k) suitably (at least theoretically)
so that {A(k)} makes a class formation. In some cases we can determine
A(k) explicitly. (1) Soppose that (i) Z(k)=0, (i) k contains all the roots
of unity, (iii) k=N, K holds for any normal K/k. Then we can take
A(l) = (k*&(Q/Z))" (in general A" means the character group of A). We
have a simple interpretation of the usual Kummer theory by class formation
theory (see [2]). (1) Let k, be an algebraic function field of one variable
over the complex number field C and let £ be the maximal unramified
extension field of k,. Then we can take as A(k) the locally compact
character group of the divisor class group of k with the natural locally
compact topology. The relation between the classical function theory and
the class formation theory can be established (see [3]).

3. Now we shall consider the case of characteristic p. Let k, be an
arbitrary field of characteristic p. Let £ be the maximal separable p-
extension of k,. Then we can take A(k)=((Vi/ PV OIR(Q*/Z))" where V,
means the module of all Witt’s vectors in k of infinite length, & means
the tensor product over Z and Q*={a/p"; acZ, n=1,2,---}. A(k) is the
set of all open subgroups of A(k) of finite indices p" (n=1,2,---). We
can prove also that A(k) is topologically isomorphic to the Galois group of
the maximal abelian p-extension of k. In particular, let k, be formal
power series fleld of ¢ over a finite constant field GF(p/). Let a( #0)¢ck
and b=w(mod P V)R A/p") (x= (%, ®1,---) € Vi), then we can define a
continuous pairing of the multiplicative group k* and (V./£ V. R(Q*/Z)
into R/Z by (a, b)=%-Tr-Res,((xy, x5, -, «,_;)da/a), where Tr means the
trace from GF(p/) to GF(p) and 7 means the injection of the module of
Witt’s vectors of length » with components in GF(p) into R/Z. By this
pairing k*/GF(p’/) is isomorphically mapped to a dense submodule of
(Vi/P VOR(Q*/Z))". Using this fact we can prove that {A(k)=k*; kef}
makes another class formation and we can prove all the theorems in class
field theory including the existence theorem over k and the explicit formula
of the norm residue symbol as far as the p-extensions are concerned. In
a similar way we can derive the classical results over an algebraic function
field of one variable with a finite constant field from our general results on
class formation theory in characteristic p (as far as the p-extensions are
concerned).

Next, let k, be an algebraic function field of one variable over an
algebraically closed constant field of characteristic p, and let 2 be the
maximal unramified separable p-extension of k,. In this case we can take
All)=((V,* /P V*)8(Q*/Z))" where V,* means the module of all Witt’s
vectors in k which split locally for all prime divisors of k. Moreover, A(k)
is topologically isomorphic to the Galois group of the maximal unramified
p-extension of k, over k,.

4. A. Weil (6] has considered a system of groups Gg, (kCK) with
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the properties A, B, C, D for an algebraic number field k. This theory can
be established also on the basis of the axioms of a class formation {A(k)}.
Moreover, we can consider the universal group Ggq, in some cases. In
case (I) in 2, and in cases in 3 we can take simply as Ggq, the Galois
group G(2/k). In case (II) in 2 we can take as (an equivalence of) G,
the group extension of the fundamental group F(k) of the Riemann surface
of &k by Z with the canonical 2-cohomology class of F(k) over Z. We have
a simple topological interpretation of Gg . ([7]1, [8]).
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Certain Subfields of Rational Function Fields

Hideo KUNIYOSHI

Let K=Fk(x---, «,) be a purely transcendental extension of any field
k, and G be a group of linear transformations in x,,---, «,. G induces an

automorphism group G of K. We denote by L the subfield of K consisting

of elements fixed by the automorphisms of G, and investigate the problem
whether L is purely transcendental over k or not. It has been already
solved affirmatively when k is the fleld of all complex numbers and G is
abelian. It is also true for any k of characteristic p>>0 when G is the
regular representation of cyclic group of order p". In the present note we
shall generalize it for p-groups satisfying certain condition (C). These
conditions are satisfied when G is the regular representation of any p-group.
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In the following, k means any field of characteristic p>0, K=k (%, -, )
a purely transcendental extension over k, and G a group of order p”
consisting of linear transformations in xy,---, ®,. As a group of linear
transformations, G is equivalent to a group G’ with matrices of the form

(1)

The matrices of type (i, i) consisting of the first i rows and the first ¢
columns of such matrices form a group G, which is homomorphic to G.
Qo that, we get a series of homomorphisms

(2) (6):;G1<— c. .4_,_Gé<._. . .F_G“:G’

the kernel H; of the homomorphism G;—G;, being abelian group of type
(p,---, p) with order at most p~1. We assume further that G satisfies the
following conditions:

C) the order of H; is at most p.

Then, H; is included in the center of G;.
When we take an equivalent representation G, the system of genera-

tors xy,---, #, of field K are changed into another system of generators
Yy, Yo of K by a linear transformation. Then the assertion to be
proved is:

Let K,=k(yi, -, y.) be purely transcendental over k and G, be a linear

transformation group in Yi,---, Y. of matrices of the form (1). If G,
satisfies the condition (C), then the field L, consisting of elements fixed by

the automorphism group G, of K, induced by G, is purely transcendental
over k.

G, induces in the subfield K;==k(yi,---, ¥;) an automorphism group G,
which is also induced by G;. Since K, and G, satisfy the same assumption
of the above-mentioned assertion, we may prove it by induction on the
number n of generators Y., -, Y. .

Assume that the assertion has been proved for n=i—1. We prove it
for n=1i, G;_,#(e), and H;#(e). Let us denote by

8, b, elements in G,/H,,

Ty Tpyo - their representatives in G,,
&s,t their factor set in H,,

€ a generating element of H,.

From (1), we have
Y=Yt i, @-1€Ki 1,
where oa;_,=a;_,. We put #=y;/a;-(, then

Sﬂzd-‘i’l, ﬂsﬂ:(j‘+'bin1, bi—leKi—])
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and £0=67—¢ is invariant under H;. We may write (s—1)£ 8 instead

of (6,— 1) . Since they form a l-cocycle of G,_, in K,_,, there exists
¢;—; in K;_; such that

(3—1)6[")(7"—:(8—1)01'—1,
which shows f260—c¢;_,eL;. We take it as the i-th element %; in L,. Then
(G:1)=(K;: L) <(K;: L;_1(u;))
=(K;:K;_;(u))(K;_(w;): L; - (u;))
=p- (G- :1)=(G;:1).

Hence L, L;_((u;)=k(u,---, u;). It is obvious that u; are free generators
of L; over k, because the degree of transcendency of L; is <.
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On the Arithmetic on a Galois Structure

Katsuhiko MASUDA

1. Let k be a topological fleld, G be a topological group. Denote by
M the topological k-module consisting of all continuous mappings of G into
I, and define the left operation of G on M by

(af )?(h)=af(hg) feM, g,heG, ack.

We define a continuous distributive multiplication in M to make it a
topological algebra, not necessarily associative, over k. If the operation of
G gives (contimuous) automorphism of the thus obtained algebra, we call
it a topological Galois algebra over k with Galois group G. We call a
topological algebra K over k with G as a left operator group also a topo-
logical Galois algebra over k with Galois group G, if and only if there
exists a k-G-permissible ring-isomorphic homeomorphism onto K from one
of topological Galois algebras obtained by M. The concept of topological
Galois algebra is useful to combine the investigation of Galois extension
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fields and that of representations of topological groups, [1] (3][5]". A
separable normal extension field over k with Galois group G, is a topological
Galois algebra over k as discrete topological field with Galois group G, as
compact group with usual topology originally due to Krull.

2. Let K be a topological Galois algebra over k with Galois group G.
Suppose from now on that there exists a linearly dense set 4 of continuous
representations of G with regular matrices in k. For each pair of two
representations D, D, in 4 there exists a matrix C,, in k, uniquely
determined, such that

D}\ X D;JA - D}.);,C}\ )

where we denote by X the Kronecker product of matrices in K. We call
the pair of 4 and the set {C, ,; D,, D,c 4} of matrices in k as the Galois
structure corresponding to a Galois algebra K. As 4 is linearly dense in
M and the multiplication in K is continuous, the multiplication in K is
uniquely determined by its Galois structure. Conditions for K to be
associative or commutative or associative and commutative can be formu-
lated by certain explicit conditions for a Galois structure corresponding to
it, [1]7[6][7]. Here we remark that the most general associative and
commutative Galois structure of a finite Galois group generates over k the
invariant field in the purely transcendental extension field obtained by
adjunction of all elements in G as algebraically independent variables.

3. Let H be a closed subgroup in G. 1f a Galois algebra K over k with
Galois group G is the direct sum of Galois algebra over k with Galois
group H and its conjugates for G/H, we call that K is directly decomposable
with reference to H. The condition for K to be directly decomposable with
reference to H can be formulated as a certain direct reduction of the Galois
structure corresponding to K into the Galois structure of H and this reduc-
tion keeps the condition on Galois structures for commutativity, associa-
tivity and semi-simplicity, [2][3]. Thus the construction problem of Galois
fields with given Galois group over k is formulated as an existence problem
of certain matrices. This may be a generalization of the algebraic part
of the classical problem on the division of periods, [6]. The direct decom-
position of a Galois structure is of arithmetical character. It suggests us
to generalize the concept of n-th power residues mod p. We can prove that
if & has a discrete valuation p with finite residue class field, a direct
decomposition in ky of a suitable Galois structure in k corresponds to a

direct decomposition in the residue class field ié;, of k.

YAMAGATA UNIVERSITY

1) (added in proof) This fact is useful in the cohomology theory. This will be
discassed by the auther in another chance.
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Cycles on Algebraic V arieties

Hisasi MORIKAWA

Applying the theory of harmonic integrals, we shall prove some rela-
tions between cycles and multiple integrals on an algebraic variety and
give a new birational invariant.

Notations:

| %4

Vi(V.)

o(V)

W,

Hl‘(.V’ Q)

H, ,(V,Q)
$.(V,Q)
(o, 1)
{2, o, A
(o, L0y
{ar, -, 42
oW, .

g(n—p,fn—p)

o(X)

a compact non-singular algebraic variety of dimension
n imbedded in a projective space,

the first (second) component of VXV,

the diagonal subvariety of VXV,

a generic hyperplane section of dimension 7 of V,

the 7r-th homology group of V over @,

the subgroup of classes of type (p,q),

the subgroup of H,.(V, @) containing algebraic cycles,
a base of H.(V,, @),

the base of H,(V., Q) corresponding to {I'%, -, 1"/},
the base of H,,_.(V,, @) such that I(L"["/*) =4y,

the base of H.,_,(V,, @) corresponding to {[\*,- .-, ['%*},
the period matrix of harmonic forms of type (p, ¢) with
period cycles I'l,---, "%, where p+qg=7r=mn,

the period matrix of harmonic forms of type (n—gq,
n—p) with period cycle I'*,---, I'** where p+q=r=mn,
the cycle on #(V) corresponding to a cycle X on V.
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By virture of the intersection theory we have
I.eMMA 1. Let C be a cycle of dimension 2r. Then
"(I(C X Q=017 = (L(CIT*I)).
Applying Lemma 1 we get
PROPOSITION 1. Let C be a cycle of type (r¥s, r+s8) with complex
coefficients. Then

‘,1(0)!2(97,—@:3,71—1)1.\‘) ____Q(p,q)(]([ﬁiaalwﬁ-))'
By the theory of harmonic integrals we get

LEMMA 2. ([(W.I'*I'7)) is non-singular.
THEOREM 1. Let C be a cycle of type (r,r). Then

‘ 40(C)
- . : /11(0)
QIACT TN AW L)~ = ' -7
(€

where
Q(rr,()) ,Q(r,())
Q=22 QoD

QPor={ - for odd r, =| for even r.

_(;)(1,7'—1) _(;)0/2, 7/2) |

THEOREM 2. lLet {S,,---, S8} be a base of the module of rational matrices
S=(s;;) such that

}__} Si_;rf.*l‘f*z O‘

&

Let K..(V,Q) be the submodule of H,.(V,Q) consisting of classes Z such
that

| I(ZI'**) =0, 4,7=1,2,- -, B,.
Then there exists an isomorphism of

H,.(V,Q)/H, (V,Q)~K.(V,Q)

onto the module of rational matrices M satisfying
(i) QUM = A0
with a matric A,
(ii) Sp SSMAUI(W I'*'7%)) =0, v=1,2,---,1.

THEOREM 3. Let {S,,---,S;} be a base of the module of rational matrices
S=(s;;) such that

Z}SijF{*F{*zO.
iJ
Let Ki, »(V,Q) be the submodule of H,,_.(V,Q) consisting of classes Z
such that
I(W.ZI'*I'*)=0, ¢,j=1,2,---, B;.
Then there exists an isomorphism of
's:)n—l(V, Q)/‘g’n—l(vy Q) /\‘K2,n-2(V’ Q)
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onto the module of rational matrices M satisfyiug
(i) QUOM=A2YY  with a matrix A,
(ii) SpS MUI(W, ['*I['i*))=0, »=1,2,---,1.

THEOREM 4. The degree of 9,-.(V,Q)/D,-«(V,Q)~K}, o(V,Q) is a
birational invariant.

NAGOYA UNIVERSITY

Zusammenhang zwischen 2-Kohomologiegruppe
und Differente

Mikao MORIYA

1. Es sei o ein Z.P.I.-Ring und k der Quotientenkorper von o; ferner
sei K eine endlich-separable Erweiterung uber k& mit © als Hauptordnung.
Bekanntlich ist dann © auch ein Z.P.I.-Ring. Fur ein beliebiges nicht-
triviales Primideal P aus © bezeichnet Ky bzw. Oy die P-adische Hille
von K bzw. . Ist nun p das durch P teilbare Primideal aus o, so kann
man wie ublich annehmen, daf die p-adischen Hullen k, und o, bzw. in
Ky und Oy enthalten sind. Wir bezeichnen mit Dy(K/k) den B-Beitrag
der Differente von K/k. Da bekanntlich das Erweiterungsideal von Dy (K/k)
in Oy mit der Differente von K/k, ubereinstimmt, so konnen wir ohne
Miliverstindnis mit Dy (K/k) auch die Differente von Ky/k, bezeichnen.
Der Exponent von ®yu(K/k) in bezug auf B heile der P-Exponent der
Differente K/k.

Nun versteht man unter einem normalen 2-Kozyklus f von ©/o uber £,
eine bilineare Abbildung des Ringes O in Oy mit folgenden Eigenschaften:

1) Fiir beliebige Elemente X, Y aus £ gilt:
(X, Y)=f(Y, X).
2) TFur beliebige Elemente X;, Y; (i=1,2) aus O gilt:
F(Xi+ X, Yot Yo) =301 F( X, X))
3) Fiir beliebige Elemente X, Y, Z aus O gilt:
Xf(X,Z2)+f( X, Y2)=f(XY,Z)+Zf(X,Y).
4) Fir ein beliebiges Element « bzw. X aus o bzw. 9 gilt:
f(a, X)=0.

Ferner versteht man unter einer normalen 1-Kokette g von /o iiber
Oy eine lineare Abbildung von £ in Oy, welche fur ein beliebiges Element
x aus 0 bzw. X aus O stets den Gleichungen
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g(x)=0 und g@X)=29(X)
geniigen. Setzt man dann fur beliebige Elemente X, Y aus ©
09(X,Y)=Yg(X)+Xg(Y)—-g(XY),

so ist dg offenbar ein normaler 2-Kozyklus von /o itber Qg ; 09 heif3t der
2-Korand von ¢. Definiert man nun die Summe von zwei Kozyklen in
ublicher Weise, so bildet die Gesamtheit Z® (D/p;Oy) aller normalen 2-
Kozyklen von /o itber Oy einen Modul mit Oy als Multiplikatorenbereich ;
ebenso bildet die Gesamtheit B (D/o; Oy) der 2-Koridnder aller normalen
1-Koketten einen Oy-Untermodul von Z%(0/0;0y). Der Faktormodul
H®(D/0; Oy) nach B®(D/o;Oy) heilit die normale 2-Kohomologiegruppe
von /o uber Oy. Jedes Element aus H®(O/p; Oy) nennt man eine nor-
male 2-Kohamologieklasse und insbesondere ist B® (/p; Oy,) die Nullklasse
genannt.

Es sei H® (D/0; 0y)=U,2 U, R---R2U,2--- eine absteigende Folge von
den Ogp-Untermoduln aus H®(0D/0; Oy) von der Art, dal} sie im endlichen
abbricht (d.h. das letzte Glied der Folge ist die Nullklasse) und jeder
Faktormodul U,/U;.; (i=0) ein einfacher y-Modul ist. Dann heil3t diese
Folge eine Og-Kompositionsreihe von H ¥ (O/v;Oy); dabei ist die Linge
einer Oy-Kompositionsreihe eine Invariante von H“ (£/p; Oy) und sie heilde
die Oy-Linge von H ™ (/0; Og).

2. Die Struktur der normalen 2-Kohomologiegruppe H® (y/ny;Oy)
von £y/o, iiber Oy habe ich bereits bestimmt ([1D), und zwar gilt folgender

HAUPTSATZ. Die normale 2-Kohomologiegruppe H ™ (Dy/ny; Oy) besitzt
eine endliche Oy-Basis; das annullierende Ideal aus Oy etner beliebigen
normalen 2-Kohomologieklasse von /o, diber Oy ist stets ein Teiler von
Du(K/k). Ferner ist die Oy-Linge von H ™ (Oy/v,;Oy) gleich dem P-Ex-
ponenten von Oyu(K/k).

Man kann auch beweisen, dall H (Qy/o,; Og) ein zyklischer ,-Modul
ist, wenn O, tuber o, einfach mormal ist (d.h. O, entsteht aus o, durch
Ringadjunktion eines einzigen Elementes). Da die Differente von Ky/k,
dann und nur dann der groBite gemeinsame Teiler der Differenten aller
Elementen aus Oy ist, wenn Oy uber o, einfach normal ist, so schlie t man
ohne weiteres:

SATZ 1. Die Differente von Ky/k, ist ein gemeinsamer, aber kein
grofster gemeinsamer Teiler der Differenten aller Elemente aus Oy, wenn
H® (Dy/0,; Oy) kein zyklischer Oy-Modul ist.

Ferner kann man beweisen, dald jeder normale 2-Kozyklus von £/o
uber 9, stets als die Einschridnkung eines normalen 2-Kozyklus von Oy/0y
iber Oy auf /o betrachtet werden kann, und dall H®(O/p; Oy zu
H® (Dy/0,; Og) Oy-isomorph ist.

SATZ 2. Die normale 2-Kohomologiegruppe H ™ (/o;9Dy) ist Oy-iso-
morph zu H® (Dy/vy; Og).  Also ist der P-Exponent der Differente von K/k
gleich der Oy-Linge von H® (D/0; Oy).

OKAYAMA UNIVERSITAT
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Idealtheorie in Unendlichen Algebraischen Zahlkirpern

Noboru NAKANO

Unter einem unendlichen algebraischen Zahlkorper verstehen wir, wie
gewohnlich, den Korper, welcher als der Vereinigungskérper von abzihlbar
unendlich vielen algebraischen Zahlkérpern £, C 8- - CRC Ry ---
definiert wird, wobei jedes &, von endlichem Grade in Bezug auf den
Rationalkorper &, ist. Ferner bezeichnen wir mit O, O, resp. die Menge
aller ganzen algebraischen Zahlen aus &, &,.

In © ist dann der Teilerkettensatz nicht immer giiltig. Danach kann
ein von Einheits- und Null-ideal verschiedenes Ideal a in O idempotent sein
und a kann nicht immer endlich viele Primidealteiler besitzen (Stiemke [1]).
Unter diesen Umstidnden haben wir oft a=ba und a:b=a, obwohl a ein von
Nullideal verschiedenes Ideal und b ein von 9 verschiedener Teiler von a
ist. Im ersten Paragraphen wollen wir somit die notwendige und hin-
reichende Bedingung dafiir suchen, dass a=ba oder a:b=a ist.

In seiner Arbeit hat Herr W. Krull die bewertungstheoretische Behand-
lung der ldealtheorie in O entwickelt und in der Methode von der Topolo-
gisierung des Bewertungsringraumes eine notwendige und hinreichende
Bedingung dafur untersucht, dass fiir zwei gegebene ldeale a und b ein
Ideal ¢ existiert, so dass es der Gleichung a=0bc geniigt. Seine Untersuchung
beschaftigt sich mit dem Fall, dass a und b die genannten ,,éberall endlichen
Ideale* sind (Krull [3]). Im zweiten Paragraphen wollen wir dann in der
idealtheoretischen Methode dieses Problem untersuchen.

In (3), (4) im §1 und im §2 wollen wir darum eine Annahme iiber die
zugrund gelegten Ideale machen; Es sei q die zu einem beliebigen Primideal
b gehorige isolierte Primarkomponente (kurz mit I.P.K.) von einem Ideal
a und sei N ein hinreichend grosser Index, so muss q~£, die zu p~9,
gehorige I.P.K. von a~9%, fur alle v (v=N) sein und N muss fiir alle p
beschrankt sein (Nakano [9], s. 274, Hilfssatz 1).

§1. Produkte und Quotienten von Idealen.
(1) Ein ldeal ist dann und nur dann idempotent, wenn seine samtli-
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chen Primirkomponenten gleich idempotente Primideale sind (Nakano [5]).
Ist a ein nicht idempotentes Ideal, so ist (]a”=(0).

n=1
(2) Zu zwei gegebenen Idealen a (#(0)) und 0 (#9O) erhalten wir
dann und nur dann a=ab, wenn b=0b" und q=qp far alle zu p (26D
gehorigen I.P.K. q von a sind. Aus a=ab folgt b=0% aber nicht umgekehrt.
(3) Es sei 0:‘1“([\(](@), wobei q, qw, €3 alle zu Primidealen p, b,

gehorigen I.P.K. von a sind. Dann erhalten wir mit Hilfe obiger Annahme

(1) 2N g <2 (i) ijﬂ(T) —= (i) pDme.

(4) Es sei a=¢~({}q4r), s0 ist dann und nur dann a:p=a, wenn

T

q:p=q oder PO} P ist (mit Hilfe von (3)). Aus a:p=a folgt p=p’ oder
p (| by, aber nicht umgekehrt.

(5) Esseib (#9) ein Teiler von a (#(0)), so erhalten wir a:b=q,
wenn 6=0% und q:p=q fir alle zu p (2b5a) gehorigen I.P.K. q von a sind.
(6) Wenn a:b=aqa, 0D und 0= 6% sind, dann existieren mindestens
endlich viele nicht-idempotente I.P.K. o (t=1,2, --,n) vonb. Ist qffy eine

zu Yo, (207) gehorige I.P.K. von a, und stellen wir a in der Form von

13
a—a’~a' dar, wobei (10 =0/, (1qe=0a", so wird a’2a’”. Daraus ergibt
r=1 z

gich: Wenn a:b=q, a_b ist, dann erhalten wir entweder b=0* oder
a’Da”’

§2. Multiplikativeigenschaft der 1deale.

In O konnen wir die zum Primideal ) gehorigen Primiridealen g in
folgende vier Arten einteilen (Nakano [6]);

A. p#p*; (i) q heisst erste Art, wenn qb#¢q, q:b+#q sind,

(ii) q heisst zweite Art, wenn gp+4q, q:p =q sind,

B. p=1p%; {(iii) q heisst dritte Art, wenn qb =aq, q:p+Q sind,

(iv) q heisst vierte Art, wenn gp =g, q:p =4 sind.

(1) Ein Ideal, dessen jede isolierte Primédrkomponente von erster
oder zweiter Art ist, soll nach Herrn W. Krull ,,iiberall endlich‘‘ heissen.
Unter Hinzufiigung unserer Annahme gilt dabei folgender Satz; Sind a
und 6 uberall endliche Ideale und ist aZb, so gibt es dann und nur dann
¢ von der Art, dass a=bc ist, wenn

e S E o Enihs

ist, wobei a,=a~%Dy, b,=0~9O,, v=N ist.

(2) Um diesen Satz zu erweitern, wollen wir folgende zwei Hilfssatze
vorausschicken. .

(i) Ist q@Cq? und setzen wir q<“>r\§3v=pi", q® ~ Dv:p{v v=>N, so ist
q@ : =7 oder q, wobei
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ey oS
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sind (Nakano [8]).

(i) Es sei aZZbp und ¢“? bzw. q die zu p gehorige I.P.K. von a
bzw. b, und es sei §j der Durchschnitt von simtlichen Primidealen b derart,
dass q“”:q” =q ist, und ferner sei

* gbva; . b‘}gf}v.}.]ﬂv.‘.l :[7‘,4 +1 g M g_:—I)A('(; E} E_z:

wobei §,=)H~O, ist. Dann ist q die zu p gehorige I.P.K. von a:b, so ist
q=q, wenn p>DY ist, und ist ¢q, wenn pY ist.

Unter Hinzufigung unserer Annahme erhalten wir nach (i) und (ii)
folgenden Hauptsatz; Sind a und 0 zwei Ideale und ist ac.b, so gibt es
dann und nur dann ¢, derart, dass a=0bc ist, wenn fir jede zwei ent-
sprechende q“”, q” ein drittes q existiert, derart dass ¢ =q¢“q ist, und
ferner

“Ehay 1SNy a0y s by S Sha &

ist, wobei §, in gleicher Weise wie oben (ii) definiert wird.
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On the Structure of Complete Local Rings"

Masao NARITA

I. S. Cohen proved a structure-theorem of complete local rings in
his paper, ‘““On the structure and ideal theory of complete local rings”’
(1946). We can extend this theorem to a more general one. In the
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following, the word “‘local ring”’ will be used to indicate a ring satisfying
the following three conditions. (i) The local ring O is a commuatative
ring with unity 1. (ii) Every non-unit of O belongs to the maximal ideal
m of ©. (i) N7, m'=0). In the following, the symbols O, m, F and ¢
will be always used to express a local ring, its maximal ideal, its residue
feld O/m and the canonical mapping of O onto F, respectively.

LEMMA 1. Let O be a local ring with characteristic p. If there exists
a positive integer N such that m?"'=(0), then O contains a subfield K’
which is isomorphic to F?", such that ¢(K')=F"".

Let ¢ be the correspondence of F* into O such that ¢(a”")=a"",
aeF, aceH(a). It is to be noticed that a”” is uniquely determined by al",
Then ¢(F?") is a required subfield of .

LEMMA 2. Let O be local ring satisfying the same conditions as
Lemma 1. Then O contains « subfield K which is isomorphic to F such
that ¢(K)=F.

Let {7<}cer be a p-basis of F. Let us choose arbitrarily an element
¢. once for all from ¢~ "(r.), tel’. The subfield of £ which is generated
by K’ and {c<}er is a required subfield of .

TuEorREM 1. Let O be a complete local ring with the same characteristic
as the residue field F, then O contains « subfield K which is isomorphic to
F, such that ¢(K)=F.7

In case where the characteristic of © and F are both zero, this theorem
may be easily proved by using Hensel’s lemma.”  So we shall assume that
F has a characteristic p. By Lemma 2, the ring O/, ¢=1,2,3,--- con-
tains a subfield K; which is isomorphic to F. Moreover we can assume
that K., is mapped on K; by the canonical mapping O/m*'—O/m’.  Let
«; be an element of K, which corresponds to @€ F' under the correspondence
O/m—F, and a; be an element of © such that «; is mapped on «; under
the mapping O —O/m’. Then the sequence @, ., &s, -~ is a Cauchy sequence,
so has a limit in £. This limit is independent of the choice of a;, and is
uniquely determined by the sequence a;, @y, -« -. The subset of O which
consists of such limits is a required subfield of £.

LEMMA 3. Let O be a local ring having a characteristic different from
the characteristic of F. If there exists a positive integer m such that m”"=(0),
then O contains a subring O, with a maximal ideal (p) such that ¢ () =F.

Let ¢ be the mapping of F*" into  such that Sty =a"", a€F, ac¢ ().
We write Am Auis,- - Ay for G, SFT, -, J(F™") respectively.
Put now A‘—"-:Al,m—f"T)Aj,znq+p2A1,:n—2+'"*{-p“_[AImH, then A is a subring
of ©. Let R be a ring generated by 4 and {¢<}-er, c.€¢~"(y:). Then R
is a required subring of .

THEOREM 2. A complete local ring O having a characteristic different
from the characteristic of F contains a complete subring O, with a maximal
ideal (p) such that ¢(£,)=F.

1t is easy to prove this theorem by using Lemma 3 in the same way
as we proved Theorem 1 by using Lemma 2.

The following theorem is evident by the proof of Theorem 2.
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THEOREM 3. Let O be a complete local ring having a characteristic
different from the characteristic of F, then every complete subring of O
with a maximal ideal (p), which is mapped on F by ¢, is mutually
tsomorphic to each other.

INTERNATIONAL CHRISTIAN UNIVERSITY
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1) Details of the proofs were published on Journal of Mathematical Society of
Japan, Vol. 7, Supplement, 1955.

2) A. Geddes also proved this theorem by an analogous method as ours. See J.
Lond. Math. Soe., 29 (1954), pp. 334-341. He treated only the equi-characteristic case,
and did not prove Thecrem 2 of this paper.

3) See M. Nagata’s paper, “On the structure of complete local rings,” Nagoya
Math. J., 1 (1950), pp. 63-70.

On Orthogonal Groups over Number Fields

Takashi ONO

It is well known as the ‘< Hasse principle” that the representability
of a quadratic form (with coefficients in an algebraic number field) by
another form follows from the local representabilities everywhere. If we
wish to consider arithmetic properties of the algebraic groups over number
fields, the first thing to do would be to get some results of this type for
the orthogonal groups, since they can be treated in close relation with the
corresponding quadratic forms by the method of Dieudonné [1] and, at
the same time, these groups play roles for the algebraic groups as in the
classical theory of Lie groups.

For this reason, we have tried in [3] and [4] to consider the imbed-
ding (in a certain sense) of an orthogonal group O(W, g) in another
orthogonal group O(V, f), where f, g are quadratic forms on the spaces V
and W respectively. (For two forms f, g on the same V, the imbedding
of groups turns out to be the conjugateness of O(V,f) and O(V,g) in
GL(V)).

Let K be a field of characteristic #2, and let V and W be finite dimen-
sional vector spaces over K. Suppose that there is a semi-linear mapping
0 of W into V. Let f be a symmetric bilinear form on V. We denote by
Of a form on W which is defined by @f(wx, y)=(f(Ox, Oy))*~' for =, yeW,
where # is the automorphism of K associated with @. Now suppose that
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two nondegenerate forms f and g are given on the spaces V and W re-
spectively. We say that f semi-similarly represents g:f39, if g=A-0f
for some semi-linear injection ©® of W into V and for some A€K*. If the
injection @ is linear, we say that f similarly represents g:f<39, and
furthermore, if the scalar =1, then we say simply that f represents
g: 15 9. Particularly if V and W have the same dimensionalities, we
take away the arrows in the above notations and say that f and g are
semi-similar: feog, similar: foog and congruent: f~g respectively.

PROPOSITION 1. If 53 ¢, then we have 0=v(f) —¥{g)= dim V—dim W,
where v(f) is the index of f on V.

Now, for a form f on a space V, we denote by O(V, f) the orthogonal
of f, by O+(¥,f) the rotation group of f and by L2(V,f) the commutator
subgroup of O(V, f). Furthermore, we denote by I'(V, f) any one of these
three types of groups. Let W, be another vector space and let O be
a semi-linear isomorphism between W, and V. Let ¢ be €GL(V). We
define @ccGL(W) by putting Oc(w)=0""60(w), weW. It implies that o
leaves f invariant if and only if Bo leaves Gf invariant. We have that
Q(V,f)N=[(W,0f), where the groups [’s on both sides belong to the
same type of those three groups. (We always use two [”s in this sense.)
Assume that there are forms f, g on the spaces V, W respectively. We
say that the group I'(W,g) is semi-linearly imbedded in I'(V, f), if
Q(OW), f))=I'(W,g) for some semi-linear injection @ of W into V,
where f; is the restriction of f to @(W). Particularly, if ['(W, g) is semi-
linearly imbedded in I'(V, f) with a linear injection ®, we say simple that
(W, g) is linearly imbedded in I'(V,f). Using these terminologies, we
get the following

THEorREM 1. (W, g) is (semi)-linewrly imbedded in IV, ) if and
only if f (semi)-similarly represents g:fXa9(fS ).

For a form f on V, let e; (¢=1,---,n) be some orthogonal basis. Put
ai=f(e,e) and d;=a, --a;. We define the Clifford algebra C(f) of f as a
tensor product over K :C(f)=(ai, d) & (s, ds) K- - - K (W, d,), where (a, b)
is the quaternion algebra defined by «, b. (This algebra is different from
the habitual one. That is the one introduced by Witt as S(f) in [5]). As
for the discriminant d(f) of a form f, we set A(f)=(—1)r"=P2d(f),
where n=dim V. We put A(f, 9)=C()x C(g)% (d(g), d(f)d(g)), B, 9)
=A(f, ) % (—1,d(fHd(g)).

Since the possibility of the imbedding of groups may be characterized
by the similar representability of forms: 5 ¢ (Theorem 1), our problems
are reduced to the propositions of Hasse type for the representability of
forms which may be regarded as a complement of a series of theorems
due to Hasse [2].

Now, assume that K is a locally compactly valued field of characteristic
#+2.

PrROPOSITION 2. Let K be non-archimedean. Let n=dimV, m=dim W.
Then,

i)y if n—m=1, n:odd, fRg if and only if B(f, g)~1 in KV 4(g)),
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ii) if n—m=1, n: even, fRg if and only if B(f, g)~1 in KO/ 4(f)),

i if n—m=2, n: odd, X9 always,

iv) if n—m=2, n: even, fX g if and only if B(f, 9)~1 in KO/ 4(f),

V' 4(9)),

v) if n—m=3, fXg always.

In the local considerations, we meet the question, ‘“how do the p-adic
numbers resemble the real numbers?’’. In fact, as in the following theorem,
we can generalize several statements on the real numbers which are proved
by the methods peculier to these numbers to the case of completely valued
fields.

THEOREM 2. Let K be locally compatly valued. Assume that dim V=
dim W. Then, the following three conditions are equivalent.

i) f simil rly represents g:fXNg,

i) 0=u(fH)—vig)=dimV-—dim W, (For the case where dim V=dim W

is even and K is non-archimedean, we add the condition d(f)~d(g).

1) I'(W, g) is linearly imbedded in ['(V, f).

1t is remarkable that although the discriminants and Clifford algebras
of forms are used to characterize the usual representability forms over
local fields, the similar representability may be characterized by the indices
of forms which are a much simpler notion than the Clifford algebras.

Now, let K be either a field of algebraic numbers or a field of algebraic
functions of one variable over a finite field of characteristic #2. By using
the arithmetic theory of simple algebras and our considerations above, we
get the following theorems of Hasse type.

THEOREM 3. g in K if and only if fXg in K, for every ).

THEOREM 4. fXg in K if and only if 0=r,(f)—v,(¢9) =dimV—dim W
for every p.

THEOREM 5. ['(W, g) is linearly imbedded in I'(V,f) if and only if
I'(W,, g) is linearly imbedded in 'V, f) for every p.

From Theorem 4, we observe some examples showing that a global
property comes from weaker local properties everywhere. E.g. ““If fSo
in K, for every p, then fXg in K. “If O(W,, g) is topologically im-
bedded in O(V,, f) for everg p, then O(W, g) is linearly imbedded in
O(V,f)”. We may further weaken the local assumptions under certain
conditions on W.
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On Fermat Function Fields

Shuichi TAKAHASHI

1. Definition of Fermat function fields. Let @ be the field of rational
numbers, @, b non-zero elements of @, then the solution of the equation

(1) ax'+by'+1=0 (l:o0dd prime)

generates a function field K=@Q(x,y) which after Hasse is called a Fermat
funection field. Hasse’s original investigation [1] is devoted to the deter-
mination of its genus

g=1-1)(1-2)/2

and ¢ linearly independent holomorphic differentials and some remarks on
Weierstrass points.

2. Purpose of this investigation. Equation
(2) ax'+by'+2'=0

determines an absolutely irreducible non-singular curve /' in the projective
plane (z,y,2), and geometrically equation (2) and Fermat’s equation

(3) x4y +2'=0

determine the same curve over a field of definition @ (the algebraic closure
of @).

Many investigators on Fermat’s problem concern the non-trivial rational
integral points on I'. From this respect Hasse’s investigation is isolated,
and he does not even enter into the integral properties of the coeflicient
field. The main purpose of this note is to fill up this gap.

3. Characteristic preserving specializations. Let us consider the func-
tion field K or its coefficient extension K-k,. An important case is
k,=Q(&), where ¢ is a primitive I-th root of unity. Then our first method
is to specialize K (or K-k;) over @ (or over k,) to an algebraic extension
k of @ (or k,) by a prime divisor of K (or of K-k,). This method used by
Weil [2] and Siegel [3] gives upper bound of the number of rational solu-

tions of (1). Here Weil’s notion of the distribution [4] plays an important
role.
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4. Characteristic increasing specializations. Our next method is to
specialize the function field K-k, over k, by a divisor of K-k, induced by
a prime divisor P of k,. Then the function field becomes K -k,/(P) by this
specialization. For p=I this method was used by Legendre, Wendt, Dickson
and others and fruitful results are found by the principle used by Vino-
gradoff on Goldbach’s problem [5] and on Waring’s problem [6] and by
Siegel on quadratic forms [7]. In this direction Hasse-Weil’s zeta-function
plays an important role.
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Uber die Struktur der Metabelschen Gruppen

Kiyosi TAKETA

® sei maximale metabelsche Gruppe, die eine gegebene Abelsche Gruppe
9 als einen maximalen Abelschen Normalteiler enthalt.

Wir wollen hier die Invarianten der Faktorgruppe &/ bestimmen.

Seien 7, 03, - - -, 7, erzeugende Elemente von &/ also &= {ay, o3, -, 7y, A},
dann stellen die Automorphismen a°—a die Faktorgruppe &/ treu dar.

Unsre Frage fithrt sich also zu der die Invarianten von solchen Auto-
morphismengruppe I’ zu bestimmen.

Man nimmt 0.B.d.A. an, dal3 % eine p-Gruppe sei, und a;; i=1,2,---, M,
ihre Basiselemente mit der Ordnung p*i der Art, daf}

=SS Sag.
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Dann wird
S P42, yMin
al=a"'a,’ a,”,
wobei
pdk_ai l aik’ Z.<k’
ist.

I wird eine Kongruenzgruppe mit den Matrizen der Gestalt

, gy Ay 0 Qg
A1 g - - gy
(1) A=l -
. anl an;’ ann
nach dem Modul
p“l p”z- . -p”‘w
pdl p"lz_ . ,pan
p“x p"z- . -p“n

Alle Elemente I' lassen sich in der Art setzen, dal}

Ogy— 1
(2) A=>p'A;,

=0
wobei

A0+pAI+”'+ijj; jéa’n'_ly

nach dem mod p*» voneinander vertauschbar werden.
Dann wird [’ 1~isomorph zu einer Kongruenzgruppe /s« mod p, deren
Elemente die Gestalt
A,
A

mod p

Ad,,rl ’ Al AO
annehmen.

I, ist also vom Grade a,n, und die Frage fithrt sich zum Falle, wo 2
blof vom Typus (1,1, ---, 1) ist.

Fugt man alsdann o0.B.d.A. noch die Annahme hizu, daf} I" irreduzibel
sei, so wird I' 1~isomorph zu einer Gruppe P X, wobei  eine zyklische
Gruppe der Ordnung p*“--1, und P eine p-Gruppe ist.

Bei I' wird  durch die Matrizen der Gestalt

H
H

H
dargestellt, wobei die Hauptdiagonalkidstchen H vom Grade #u ist, und gesamt
ein Galois-feld GFu, erzeugen, also wird %|n, und setzt man n=wum,
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dann kann I’ als eine maximale Abelsche Substitutionsgruppe Grades m in
GFuy betrachtet werden. Da $ aber als eine zyklische Gruppe der Ordnung
p"—1 klar geworden ist, so geniigt es nur den Typus von P zu bestimmen.

Nun sei [’y eine Darstellung von B, dann fir jede Matrix A= (a;;)
von [’y kann man so annehmen, da

a;;€GFepy, ai=1, ax=0, 1>k

Braucht man statt A die Matrix A—=A—E, so sind solche Matrizen wie
A voneinander vertauschbar. Wir bilden fur ¥ eine Art Gruppenmatrix

P:A}xl'{“g-zw,;—** s +A—pkmpk,
wobei p* die Ordnung von B bedeutet, und wir nennen sie abgeleitete

Gruppenmatrix von ¥ und A ihr Element.

Ich habe mich lange beschiaftigt um P in bequeme Form zu transfor-
mieren, so dal} man die verlangte Invarianten von ®&/N durch Abzahlung
der Elemente von P, die erst nach dem p°-ten Potenzieren verschwinden,
geometrisch bestimmen kann.

Neulich gelang es mir alle moglichen Gestalten von P in drei Formen
zusammenzufassen, und jede von solchen Formen genug klar zu machen,
um die Abzihlung der obigen Elemente auszurichten.

MusASl TECHNISCHE HOCHSCHULE

On Some Extensions of Epstein’s Z-series

Tsuneo TAMAGAWA

In the following lines, we shall define a certain kind of Z-series obtained
as a natural extension of Epstein’s Z-series.

To avoid complication, we shall treat only a simple case. Let k be a
totally real algebraic number field with a finite degree 7, ED,--., B the
conjugates of k, and k™ the vector space of all m-dimensional column
vectors whose coefficients are in k. We shall consider k™ as a mn-dimen-
sional vector space over the rational field @. If an additive subgroup 1 of
L™ is a free abelian group generated by some basis of k™ over Q, we call
1 a m-dimensional lattice over k. For every basis aj,- - -an, of A, there

exist uniquely determined mn vectors af,- -, au. such that
(1 i=j,
g ’ai )= . .
Sp eseCaag) {0 i+

These mn vectors are also linearly independent over @ and generate a
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lattice 4*. Clearly this lattice 4* depends only upon A. We shall call
A* the complementary lattice of A.
The transformation matrix ® defined by

(Qr- Q) =(af - ak D
is non singular and we denote the absolute value of the determinant of
this matrix with D(A). D(.) is a rational number and also depends only
upon .
Let o be the set of all wek such that we A 4, then o is an order of
k. If r.e1 is equal to e, where ¢ is a unit of », we say r, is equivalent
to 1. We can divide the set of all non zero vectors of A in equivalence

classes.
Let ©=(&,---&,) be a set of n positive definite symmetric matrices
with degree m, and S the product of the determinants of &,,---, €,. Put

@[I] — ln[l ’r,(j)@jlﬁ('i)

where 1 is the conjugate of r in kY. 1f 1, is equivalent to r; we have
€l l=©r:]. Put
1
E(S; e, A)=>Y =
T elr)
where s is a complex variable and the summation ranges over all repre-
sentatives of equivalence classes in above sense.

This series converges if the real part of s is greater than o and

defines a holomorphic function in that region. Besides above defined series,
we have to define a #-series corresponding to that series. Put
1 1 = )
ﬁ(TI,- ey Ta @’ A) — %lteXp (—m S mn D(A')’ mn %::l'[jlx(‘/)@x<J))
where 7,,---, 7, are positive variables.
Using the linear transformation formula of ¢# function, we have a
functional equation of this ¢ series as follows:

ﬁ(z-l’. N TIZ; @’ /1):(‘['1- . 'T’!L>7 7;L ﬁ(—[;],.. . z--l . @—1, A*)

where A* is the complementary lattice of .f and &' is the set (&;1,---, &.).
Using this functional equation, we can prove that ¢(s, €, .1) is mero-

morphic in the whole S-plane, has only one pole of order 1 at s= Z’, and
satisfies the following functional equation

/WL

£(s, ©, =& 9

—s, &7, l*)
where

E(s, S, 1)=(SDCA))m a="L'(8)"E(s, S, 1).

If 4 is an arbitrary division algebra over k, we can also define the
same type of Z-series and prove the functional equations of these functions.
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The definition and proof are quite same as above, so we omit the detail.

The most interesting generalization is the following one. Let k be a
number field defined as above, and © an arbitrary non singular symmetric
matrix with degree m whose coefficients are in k. Following Siegel’s results,
we can define the representation mass M(S, r) for every re .1 such that
El1]="1Sr is totally positive. If r, is equal to Ux;e where Il is a unit of ©
whose coefficients are in o and ¢ a unit of o, we say 1, is equivalent to 1,
with respect to &. Put

Rl M&, 1)
c(s, &, A) >1_J Ny o(Sx])”
where YV ranges over all representatives of equivalence classes with respect
to ©. We presume that this function has probably similar functional
properties as above defined Z-functions, but the reduction theory of indefi-
nite quadratic forms in algebraic number fields being very complicated,
we have not yet obtained any results.

UNIVERSITY OF TOKYO

Additive Prime Number Theory in the Totally
Real Algebraic Number Field

Tikao TATUZAWA

Thanks to the remarkable work of Vinogradov, we know that every
sufficiently large odd integer can be expressed as a sum of three primes.
Less attention has been paid to the problem of representing numbers in
an algebraic number field as the sum of primes. Rademacher carried over
the Hardy-Littlewood formula in the rational case to a real quadratic
number field on a certain hypothesis concerning the distribution of the
zeros of Hecke’s £(s, ) functions.

Let K be a totally real algebraic number field of degree n with exactly
n real conjugates K=K, K® ---, K™ . A number v in K is called totally
positive, 0< v, whenever the m conjugates y O @ @ are all positive;
y<p means 0~<pu—». An algebraic integer is said to be prime if the
principal ideal which it generates is a prime ideal. We denote by J the
modul consists of all expressions =+2,+4,4 - --, with totally positive primes
i, Az -+ in K. We use the letter ¢ to denote a positive constant depending
only on K not necessarily the same each time it occurs.

Employing the Brun-Schnirelman method, we will prove without any
hypothesis that all integers in J are at most ¢ sums of +4, where 1 are
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totally positive primes. For this purpose we will develop some lemmas.
Let P(a, ¢) denote the number of integers £ in K such that

E—=p(mod.a), 0<E&EL,

where B, ¢ are integers in K with { <¢N({)"" and a is an integral ideal
in K. We can choose a basis («y, as, -, «,,) of a such that

P S eNar, 1=, j=n

Thus P(a, &) is the number of lattice points for which the inequalities
0<aVt - -+ x,dP D LD
O<5E1(¥(l‘m+ R +96,,(l’7<lm—|—ﬁ<n><c<n>

hold, Whence‘ follows

Pa,0= N 8o ((

N(C)»\\l_l/n
1/ d Na

N(a) / +1:> ’

where d is the discriminant of K.
Let b, -+, be prime ideals in K. We denote by P(a,C; pi,---, bi)
the number of integers £ in K satisfying

§=p(mod.a), 0<E<{,
E€p, (—E€p, 1=i=k.
Clearly we have
Pa, & p, - pe) =Pla, &, - pem ) —0ePCaPe, §5 Py o Dion),s
where
v,=2 if £€p, and wv,=1 if Cey,.
By iteration we obtain
Pla, & ps, - o)
=P(a,{) — 2>} PPy, G pae ey Pr 1)

1y 2y
=P(0,0) = 33 0 Pap, O+ 3 050, P b, Gty Pry-o)
RER AP Srelry K

Consequently, making use of Brun’s method, we get

2t

IR

”’Url v PO, O

where p is the maximal order of K and
k=ki>ki> >k, =0, r>r,> - >7ry>0,
kip=r;, 1=j=<2t.
Hence we have

PG, E3 9+, p) S N7+ 0N 7 T (2K,

where
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_ 1 <1+>2:t:( 1) Uy Ury >
Tﬂ\/d =1 )’1,-‘:17‘,; N(prl) T N(D;I) |

Let ¢ be a totally positive integer with % =cN(OY" and py,---, b be
all prime ideals satisfying

11 = Np; = N(O)".

There exists ¢ such that

NO 1
Po,C 0, 50:)=0 N > .
(0, C3 iy 2 B1) th@naNu
This is obtained by the same method with the rational case. Thus, if we
denote by P(¢) the number of solutions of

E=2+2, 02 A <C(,

where 1, 2’ are primes with 2? <e¢N()Y" and I'¥ <eN(4)Y", then

NE) o 1
P = ! .
©=0( 102N 2 No)

Combined this with the prime ideal theorem obtained by Hecke-Landau,
we have the following result. If we write

A(x)=the number of {(;0<{<wx},
E(x)=the number of {{;0<¢<a, {=2+1, 0<A A'<{, 4, 2 are primes},
then
E(x)>cA(x)

for sufficiently large positive integer x. Finally, carried over the density
theorem enunciated by Schnirelmann-Landau-Mann to the algebraic number
field, we get the desired result.
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A Generalization of the Principal Ideal Theorem

Fumiyuki TERADA

The object of this note is to give a cohomological description of a
generalized principal ideal theorem.

1. Let G be a finite group and S be its automorphism. H be the in-
variant subgroup of G generated by all the elements of the form a-S(a™1)
and gro-r-*'. Then H is S-invariant and G/H is abelian. Let oy, -,y
be representatives of generators of the abelian group G/H, where we may
assume that these elements generate the group G. This is accomplished
by adding them certain elements of H. Let e;,---,e, be the order of
Tiy -y O mod H.

Let us consider the group rings Z[G], Z[H], and Z[G'] of G, H and
G’ respectively, where G’ is the commutator subgroup of G and Z is the
rational integral domain. For these groups, it is known that

G/G'=H*G,Z)=1;/(1—-m),,
(1) H/H'=H~*(H,Z)=1,/(1--h)1,,
G'/G"=H*G',Z)=1;/(1—9" ),
where I; is an ideal of Z[G] generated by all the elements of the form
(1—0)Z[G]. Similarly 1,,=(1—h)Z[H], heH and I, =(1—9g")Z[G'], g'€G".
Next we shall consider the abelian groups ¢=G/G’ and )=H/G’, and
a mapping S which maps an element & of g to the element s(s)-07! (mod G”)
of ). And denote the restriction mapping H *(G,Z)—~H*(H,Z) by RE.
Then we have the following theorem.
THEOREM 1. If an element a of H *(G, Z) satisfies Sa=0, then Ra=0.

7 -1 — —
ProoF. Let M be the direct sum >!Z(G)S’, where S is a symbol such
=0
that S"=1 and » is the order of tlie automorphism S. If we define S(sS")
by S(5)8S*!, then M will have a structure of ring. Let I, be the ideal
of M generated by all elements £—1, £ M. To avoid confusion, we shall

use the following notations.
a;=0,—1 (i=1,---,m), a,=S—1,
fL:1+ﬂ1+ C. _}_()'f'zz',“l (7::1’ cee, m)

Now by the isomorphism (1) and the definition of S*, it is sufficient
to prove the following:
If an element a€l; satisfies S*ael;s, then

Ra=0 mod(1—-h)ly.

And this is described as a problem in the module I,, as follows:
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If
2 ri{(oi—Da,—(S—1a,}

E.ilfij{<0'i—‘1>aj—(Gj'—].)ai} mOd (h“l)]}{,

ny=

then we have >\7/fi - fua;=0 mod (h—1)Iy.
Now, we shall find an element DeM such that

D{(o;—1)a;—(o;—1)a;} =0 mod (h—1)I; (¢, j=1,---, m),
D{(o;—Da,—(S—Da;}=f - fua; mod (h—1DI; (i=1,---,m).

We do not concern in the detail of the existence of D. The theorem
follows from these relations immediately. q.e.d.

2. Let 2/2 be a normal extension with Galois group G. S be an
automorphism of G. Then S induces an automorphism of the factor group
Co/Ng,oCs of the ideéle class group Cq of £. Let C be the image of the
endomorphism S—1 of Cu/Ng,oCqa. Then there exists an abelian extension
K5 of @ such that Nx,.Cx=C (the existence theorem of class field theory).

The Galois group of 2/K is exactly the group H which was treated in § 1.
By the isomorphism theorem of class field theory (i.e. H-*(G, Z)— H"(G, Cq))
and Theorem 1, we have the following theorem.

THEOREM 2. The kernel of the endomorphism S—1 of the group
Co/Nu,oCs is contained in Ng,xCa, when it is considered in K, where K
is the abelian extension corresponding to the idele class group C% 'Ng,oCs.

By the usual correspondence which exists between ideles and ideals,
we have an analogous result concerning ideals. Using a result concerning
. the conductor and the module of genus which is obtained by Prof. Tannaka,

we can describe this as a norm theorem of a normal extension £2/2.
Especially, if S generates the Galois group of a cyclic extension 2/k and
K(D£) is the absolute (in generally ray) class field of k, we have a
generalized principal ideal theorem. Describing it in the case of unramified
extensions, we have the following theorem.

THEOREM 3. Let k be an algebraic number field, K the absolute class
field of k, and 2 a cyclic intermediate field of K/k. Let S be a generator
of the Galois group of the cyclic extension 2/k. Then all the ambigous
ideals in £ (i.e. W ~S=principal) become principal in K.
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Theory of Arithmetic Linear Transformations
and its Application to an Elementary Proof

of Dirichlet's Theorem About the Primes
in an Arithmetic Progression

Koichi YAMAMOTO

1. A. Selberg proved the Dirichlet’s theorem about the primes in an
arithmetic progression elementarily. His proof is based on the so-called
Selberg’s inequality, and it seems that the connection to the classical proof
is not clear enough.

We present here a unified interpretation of these two methods by a
new principle, which we shall call, theory of arithmetic linear transforma-
tions. This principle was, in essence, perceived by Dirichlet, Mobius,
Glaisher, Landau, Hardy, Selberg and others, but seems not fully
recognized. Our principle is elementary in its character, and it reveals
(Theorem 1) that the classical (Dirichlet-Mertens-Landau) method and
Selberg’s new method revolve around the same crucial point. It also
reveals that Selberg’s inequality is not the simplest formula for the
purpose, and is only next-to-the-best. However, Selberg’s inequality becomes
essential if we try to prove the prime number theorem by our method.

2. Let a=(ay, as---) be a sequence to numbers and f(x) be a function
defined on [1, o). We define an arithmetic linear transformation S, by

S =Stf( 1),

n:. x

S, is considered as a linear transformation on the totality of functions
defined on [1, o). Addition and multiplication are defined as usual. We
find that S.+Ss=Su+s and S.Ss=S;, with 7,= >la,B,, or 7 is the ““con-

volution”’ of « and (@; in notation y=axf. Convolution is commutative,
associative, and distributive w.r.t. addition. A sequence « is called regular
if «,#0. Regular sequences form an abelian group w.r.t. convolution-
multiplication. A sequence is called multiplicative (or factorizable resp.)
if an,a,=dn, for (m,n)=1 (or unconditionally, resp.). E.g. character mod k
are regular and factorizable at the same time. If « is factorizable, then
term-by-term multiplication af by « is distributive w.r.t. convolution.

We denote by ¢ the sequence (1,1,1,---); by x the sequence (p(1),
#(2),--+), with p(n) Mobius’ function; by log the sequence (log 1, log2,--+);
by A the sequence (A(1), A(2),---), with A(n) Mangoldt’s function. Now
let k be a positive integer>1, and denote characters mod k by %,--- . We
also denote by % the sequence (x(1), %(2),---). Let a be prime to k and
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1<a<k—1. Denote the sequence (¢u(1), t2(2),-+) by ta, With ¢a(n)=1 or
0, according as n=a (mod k) or not. Denote by & the sequence (1,0,0,---).

This is the neutral element of the group of the regular sequences. We
find:

ex ek =8 LRk ApU=Xpux X =E&;
¢« A=log, pxlog=A; txAA=%log, ApxAlog=%1;
ZZE X(CL)fa, !a:(l/SO(k))}:i(a)x,

where the first sum is extended over ¢(k) «’s such that (a,k)=1 and that
1<a<k-—1, and the second sum is over the ¢(k) characters mod k.

3. Let us denote by 1 the function defined on [1, o) and with constant
value 1. ¢(x)=8, 1 then is Tschebyscheff’s function. stands for the
principal character. Then we find:

LEMMA 1. S,.(x)=0(x).

LEMMA 2. S.(logx)=2+0(logx).

LEMMA 3. ¢ (x)=0(x).

LEMMA 4. S, (x)=uvlogx+0(x).

LEMMA 5. Sa(logx)=0(x).

But these are well-known results. Now let X # %; and define szi x(n)/n.
n=1

(This is=L(1, %) if we use Dirichlet’s L-functions.)

LEMMA 6. If fx# 0, then Sy (x)=0(x).

LEMMA 7. If Bx—0, then Sy(x)=-—xlogax+O0(x).

LEMMA 8. There is at most one mon-principal character with [Fx=0.
Such « character, if it exists, must be a real character.

THEOREM 1. There are only two possibilities. (1) Either Dirichlet’s
theorem is true for every k. (2) Or there is a unique real character with
By=:0, and then we would have Sllog p/p=0(1), the sum extending over
primes p =« such that %(p)=1 for this exceptional character X.

4. Mertens and Landau proved Py+ 0 for non-principal real characters
v. The method does not make use of L-functions or continuity of functions
at all.

On the other hand Selberg proved (Ann. of Math., vol. 50 (1949),
297-304) that > logp/p>cloga with some positive constant, and his

Py X(poe=1
proof is very elegant. We need not continuity of functions here, too. For

our purpose to prove > logp/p=oc0 we can simplify his proof to some
x(p)=1
extent.

THEOREM 2. If k is a positive integer>1 and a is prime to k, then
there exist infinitely many prime numbers in the arithmetic progression
a, a-t+k, a+2k,---.

KyusHu UNIVERSITY
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