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Introduction
We know that cohomological methods, and especially sheaf theory, are playing an
increasingly important role, not only in the theory of functions of several complex
variables (cf. [5]), but also in classical algebraic geometry (suffice it mention the recent
work of Kodaira–Spencer on the Riemann-Roch theorem). The algebraic nature of these
methods suggested that that they could also be applied to abstract algebraic geometry;
the aim of the present work is to show that this is indeed the case.

The content of the various chapters is as follows:
Chapter I is devoted to the general theory of sheaves. It contains proofs of the

results of this theory that are used in the two other chapters. The various algebraic
operations that can be applied to sheaves are described in §1; we have followed closely
the exposition of Cartan ([2], [5]). In §2 we study coherent sheaves of modules; these
sheaves generalize analytic coherent sheaves (cf. [3], [5]), and enjoy similar properties.
In §3 the cohomology groups of a space 𝑋 with values in a sheaf ℱ are defined. In the
subsequent applications, 𝑋 is an algebraic variety, equipped with the Zariski topology,
so it is not a separated1 topological space, and the methods used by Leray [10] or Cartan
[3] (based on “partitions of unity” or “fine” sheaves) do not apply; so we have had to
return to the method of Čech and define the cohomology groups𝐻𝑞(𝑋,ℱ) by passing
to the limit over finer and finer open coverings. Another difficulty arising from the
non-separatedness of 𝑋 regards the “cohomology exact sequence” (cf. nos24 and 25):
we could construct this exact sequence only in particular cases, which are however
sufficient for the purposes we had in mind (cf. nos24 and 47).

Chapter II starts with the definition of an algebraic variety, analogous to that of Weil
([17], Chapter VII), but including the case of reducible varieties (note that, contrary
to Weil’s usage, we do not reserve the word “variety” only for irreducible varieties);
we define the structure of an algebraic variety by giving the data of a topology (Zariski
topology) and a sub-sheaf of the sheaf of germs of functions (a sheaf of local rings).
An algebraic coherent sheaf on an algebraic variety 𝑉 is simply a coherent sheaf of
𝒪𝑉-modules, 𝒪𝑉 being the sheaf of local rings on 𝑉; we give various examples in §2.

1i.e. Hausdorff
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The results obtained are in fact similar to related facts concerning Stein manifolds (cf.
[3], [5]): if ℱ is a coherent algebraic sheaf on an affine variety 𝑉, then𝐻𝑞(𝑉,ℱ) = 0 for
all 𝑞 > 0 andℱ𝑥 is generated by𝐻0(𝑉,ℱ) for all 𝑥 ∈ 𝑉. Moreover (§4),ℱ is determined
by𝐻0(𝑉,ℱ) considered as a module over the ring of coordinates on 𝑉.

Chapter III, concerning projective varieties, contains the results which are essential
for this paper. We start with establishing a correspondence between coherent algebraic
sheavesℱ on a projective space𝑋 = ℙ𝑟(𝐾) and graded 𝑆-modules satisfying the condition
(TF) of n◦ 56 (𝑆 denotes the polynomial algebra 𝐾[𝑡0,… , 𝑡𝑟]); this correspondence is
bijective if one identifies two 𝑆-modules whose homogeneous components differ only in
low degrees (for precise statements, see nos57, 59 and 65). In consequence, every question
concerning ℱ could be translated into a question concerning the associated 𝑆-module
𝑀. This way we obtain a method allowing an algebraic determination of 𝐻𝑞(𝑋,ℱ)
starting from𝑀, which in particular lets us study the properties of 𝐻𝑞(𝑋,ℱ(𝑛)) for 𝑛
going to +∞ (for the definition of ℱ(𝑛), see n◦ 54); the results obtained are stated in
nos65 and 66. In §4, we relate the groups𝐻𝑞(𝑋,ℱ) to the functors Ext𝑞𝑆 introduced by
Cartan-Eilenberg [6]; this allows us, in §5, to study the behavior of 𝐻𝑞(𝑋,ℱ(𝑛)) for 𝑛
tending to −∞ and give a homological characterization of varieties 𝑘 times of the first
kind. §6 exposes certain properties of the Euler-Poincaré characteristic of a projective
variety with values in a coherent algebraic sheaf.

Moreover, we show how the general results of this paper can be applied to diverse
particular problems, and notably extend to the abstract case the “duality theorem” of
[15], thus a part of the results of Kodaira-Spencer on the Riemann-Roch theorem; in
these applications, the theorems in nos66, 75 and 76 play an essential role. We also show
that, if the base field is the field of complex numbers, the theory of coherent algebraic
sheaves is essentially identical to that of coherent analytic sheaves (cf. [4]).
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Chapter I

Sheaves

§1. Operations on sheaves

1. Definition of a sheaf

Let 𝑋 be a topological space. A sheaf of abelian groups on 𝑋 (or simply a sheaf ) consists
of:
(a) A function 𝑥 ↦ ℱ𝑥, giving for all 𝑥 ∈ 𝑋 an abelian group ℱ𝑥,

(b) A topology on the set ℱ, the sum of the sets ℱ𝑥.
If 𝑓 is an element of ℱ𝑥, we put 𝜋(𝑓) = 𝑥; the mapping 𝜋 is called the projection of ℱ
onto 𝑋; the family in ℱ ×ℱ consisting of pairs (𝑓, 𝑔) such that 𝜋(𝑓) = 𝜋(𝑔) is denoted
by ℱ +ℱ.

Having stated the above definitions, we impose two axioms on the data (a) and (b):
(I) For all 𝑓 ∈ ℱ there exist open neighbourhoods 𝑉 of 𝑓 and 𝑈 of 𝜋(𝑓) such that

the restriction of 𝜋 to 𝑉 is a homeomorphism of 𝑉 onto 𝑈.
(In other words, 𝜋 is a local homeomorphism).
(II) The mapping 𝑓 ↦ −𝑓 is a continuous mapping from ℱ to ℱ, and the mapping

(𝑓, 𝑔)↦ 𝑓 + 𝑔 is a continuous mapping from ℱ +ℱ to ℱ.
We shall see that, even when 𝑋 is separated (which we do not assume), ℱ is not

necessarily separated, which is shown by the example of the sheaf of germs of functions
(cf. n◦ 3).

Example (of a sheaf). For 𝐺 an abelian group, set ℱ𝑥 = 𝐺 for all 𝑥 ∈ 𝑋; the set ℱ
can be identified with the product 𝑋 × 𝐺 and, if it is equipped with the product topology
of the topology of𝑋 by the discrete topology on𝐺, one obtains a sheaf, called the constant
sheaf isomorphic to 𝐺, often identified with 𝐺.

2. Sections of a sheaf

Let ℱ be a sheaf on a space 𝑋, and let 𝑈 be a subset of 𝑋. By a section of ℱ over 𝑈
we mean a continuous mapping 𝑠∶ 𝑈 → ℱ for which 𝜋◦𝑠 coincides with the identity
on 𝑈. We therefore have 𝑠(𝑥) ∈ ℱ𝑥 for all 𝑥 ∈ 𝑈. The set of sections of ℱ over 𝑈 is
denoted by 𝛤(𝑈,ℱ); axiom (II) implies that 𝛤(𝑈,ℱ) is an abelian group. If 𝑈 ⊂ 𝑉, and
if 𝑠 is a section over 𝑉, the restriction of 𝑠 to 𝑈 is a section over 𝑈; hence we have a
homomorphism 𝜌𝑉𝑈 ∶ 𝛤(𝑉,ℱ)→ 𝛤(𝑈,ℱ).
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§1. OPERATIONS ON SHEAVES 5

If 𝑈 is open in 𝑋, 𝑠(𝑈) is open in ℱ, and if 𝑈 runs over a base of the topology of 𝑋,
then 𝑠(𝑈) runs over a base of the topology of ℱ; this is only another wording of axiom
(I).

Note also one more consequence of axiom (I): for all 𝑓 ∈ ℱ𝑥, there exists a section 𝑠
over an open neighbourhood of 𝑥 for which 𝑠(𝑥) = 𝑓, and two sections with this property
coincide on an open neighbourhood of 𝑥. In other words, ℱ𝑥 is an inductive limit of
𝛤(𝑈,ℱ) for 𝑈 running over the filtering order of all open neighbourhoods of 𝑥.

3. Construction of sheaves

Given for all open 𝑈 ⊂ 𝑋 an abelian group ℱ𝑈 and for all pairs of open 𝑈 ⊂ 𝑉 a
homomorphism 𝜙𝑉𝑈 ∶ ℱ𝑉 → ℱ𝑈 , satisfying the transitivity condition 𝜙𝑉𝑈◦𝜙𝑊𝑉 = 𝜙𝑊𝑈
whenever 𝑈 ⊂ 𝑉 ⊂ 𝑊.

The collection (ℱ𝑈 , 𝜙𝑉𝑈) allows us to define a sheaf ℱ in the following way:
(a) Put ℱ𝑥 = limℱ𝑈 (inductive limit of the system of open neighbourhoods of 𝑥). If

𝑥 belongs to an open subset 𝑈, we have a canonical morphism 𝜙𝑈𝑥 ∶ ℱ𝑈 → ℱ𝑥.
(b) Let 𝑡 ∈ ℱ𝑈 and denote by [𝑡, 𝑈] the set of 𝜙𝑈𝑥 (𝑡) for 𝑥 running over 𝑈 ; we have

[𝑡, 𝑈] ⊂ ℱ and we give ℱ the topology generated by [𝑡, 𝑈]. Moreover, an element
𝑓 ∈ ℱ𝑥 has a base of neighbourhoods consisting of the sets [𝑡, 𝑈] for 𝑥 ∈ 𝑈 and
𝜙𝑈𝑥 (𝑡) = 𝑓.

One checks immediately that the data (a) and (b) satisfy the axioms (I) and (II), in other
words, that ℱ is a sheaf. We say that this is the sheaf defined by the system (ℱ𝑈 , 𝜙𝑉𝑈).

If 𝑓 ∈ ℱ𝑈 , the mapping 𝑥 ↦ 𝜙𝑈𝑥 (𝑡) is a section of ℱ over 𝑈 ; hence we have a
canonical morphism 𝜄∶ ℱ𝑈 → 𝛤(𝑈,ℱ).

Proposition 1. The map 𝜄∶ ℱ𝑈 → 𝛤(𝑈,ℱ) is injective1 if and only if the following
condition holds:

If an element 𝑡 ∈ ℱ𝑈 is such that there exists an open covering {𝑈𝑖} of𝑈 with
𝜙𝑈𝑈𝑖

(𝑡) = 0 for all 𝑖, then 𝑡 = 0.

If 𝑡 ∈ ℱ𝑈 satisfies the condition above, we have

𝜙𝑈𝑥 (𝑡) = 𝜙𝑈𝑖
𝑥 ◦𝜓𝑈𝑈𝑖

(𝑡) = 0 if 𝑥 ∈ 𝑈𝑖,

which means that 𝜄(𝑡) = 0. Conversely, suppose that 𝜄(𝑡) = 0with 𝑡 ∈ ℱ𝑈 ; since 𝜙𝑈𝑥 (𝑡) =
0 for 𝑥 ∈ 𝑈, there exists an open neighbourhood 𝑈(𝑥) of 𝑥 such that 𝜙𝑈𝑈(𝑥)(𝑡) = 0, by
the definition of an inductive limit. The sets 𝑈(𝑥) form therefore an open covering of 𝑈
satisfying the condition stated above.

Proposition 2. Let𝑈 be an open subset of 𝑋, and let 𝜄 ∶ ℱ𝑉 → 𝛤(𝑉,ℱ) be injective for
all open 𝑉 ⊂ 𝑈. Then 𝜄 ∶ ℱ𝑈 → 𝛤(𝑈,ℱ) is surjective1 (and therefore bijective) if and only
if the following condition is satisfied:

For all open coverings {𝑈𝑖} of 𝑈, and all systems {𝑡𝑖}, 𝑡𝑖 ∈ ℱ𝑈𝑖 such that
𝜙𝑈𝑖
𝑈𝑖∩𝑈𝑗

(𝑡𝑖) = 𝜙𝑈𝑗
𝑈𝑖∩𝑈𝑗

(𝑡𝑗) for all pairs (𝑖, 𝑗), there exists a 𝑡 ∈ ℱ𝑈 with𝜙𝑈𝑈𝑖
(𝑡) = 𝑡𝑖

for all 𝑖.
1Recall (cf. [1]) that a function 𝑓∶ 𝐸 → 𝐸′ is injective if 𝑓(𝑒1) = 𝑓(𝑒2) implies 𝑒1 = 𝑒2, surjective if

𝑓(𝐸) = 𝐸′, bijectivewhen it is both injective and surjective. An injective (resp. surjective, bijective) mapping
is called an injection (resp. a surjection, a bijection).



6 CHAPTER I. SHEAVES

The condition is necessary: every 𝑡𝑖 defines a section 𝑠𝑖 = 𝜄(𝑡𝑖) over 𝑈𝑖, and we have
𝑠𝑖 = 𝑠𝑗 over𝑈𝑖 ∩𝑈𝑗; so there exists a section 𝑠 over𝑈 which coincides with 𝑠𝑖 over𝑈𝑖 for
all 𝑖; if 𝜄∶ ℱ𝑈 → 𝛤(𝑈,ℱ) is surjective, there exists 𝑡 ∈ ℱ𝑈 such that 𝜄(𝑡) = 𝑠. If we put
𝑡′𝑖 = 𝜙𝑈𝑈𝑖

(𝑡), the section defined by 𝑡′𝑖 over 𝑈𝑖 does not differ from 𝑠𝑖; since 𝜄(𝑡𝑖 − 𝑡′𝑖 ) = 0,
which implies 𝑡𝑖 = 𝑡′𝑖 for 𝜄 was supposed injective.

The condition is sufficient: if 𝑠 is a section ofℱ over𝑈, there exists an open covering
{𝑈𝑖} of𝑈 and elements 𝑡𝑖 ∈ ℱ𝑈𝑖 such that 𝜄(𝑡𝑖) coincides with the restriction of 𝑠 to𝑈𝑖; it
follows that the elements 𝜙𝑈𝑖

𝑈𝑖∩𝑈𝑗
(𝑡𝑖) and 𝜙

𝑈𝑗
𝑈𝑖∩𝑈𝑗

(𝑡𝑗) define the same section over𝑈𝑖 ∩𝑈𝑗,
so, by the assumption made on 𝜄, they are equal. If 𝑡 ∈ ℱ𝑈 satisfies 𝜙𝑈𝑈𝑖

(𝑡) = 𝑡𝑖, 𝜄(𝑡)
coincides with 𝑠 over each 𝑈𝑖, so also over 𝑆, q.e.d.

Proposition 3. If ℱ is a sheaf of abelian groups on 𝑋, the sheaf defined by the system
(𝛤(𝑈,ℱ), 𝜌𝑉𝑈) is canonically isomorphic toℱ.

This is an immediate result of properties of sections stated in n◦ 2.
Proposition 3 shows that every sheaf can be defined by an appropriate system

(ℱ𝑈 , 𝜙𝑉𝑈). We will see that different systems can define the same sheaf ℱ; however,
if we impose on (ℱ𝑈 , 𝜙𝑉𝑈) the conditions of Propositions 1 and 2, we shall have only one
(up to isomorphism) possible system: the one given by (𝛤(𝑈,ℱ), 𝜌𝑉𝑈).

Example. Let 𝐺 be an abelian group and denote by ℱ𝑈 the set of functions on 𝑈 with
values in 𝐺; define 𝜙𝑉𝑈 ∶ ℱ𝑉 → ℱ𝑈 by restriction of such functions. We thus obtain
a system (ℱ𝑈 , 𝜙𝑉𝑈), and hence a sheaf ℱ, called the sheaf of germs of functions with
values in 𝐺. One checks immediately that the system (ℱ𝑈 , 𝜙𝑉𝑈) satisfies the conditions
of Propositions 1 and 2; we thus can identify sections of ℱ over an open 𝑈 with the
elements of ℱ𝑈 .

4. Glueing sheaves

Letℱ be a sheaf on 𝑋, and let𝑈 be a subset of 𝑋; the set 𝜋−1(𝑈) ⊂ ℱ, with the topology
induced from ℱ, forms a sheaf over 𝑈, called a sheaf induced by ℱ on 𝑈, end denoted
by ℱ(𝑈) (or just ℱ, when it does not cause confusion).

We see that conversely, we can define a sheaf on 𝑋 by means of sheaves on open
subsets covering 𝑋:

Proposition 4. Let 𝔘 = {𝑈𝑖}𝑖∈𝐼 be an open covering of 𝑋 and, for all 𝑖 ∈ 𝐼, let ℱ𝑖 be a
sheaf over𝑈𝑖; for all pairs (𝑖, 𝑗) let 𝜃𝑖𝑗 be an isomorphism fromℱ𝑗(𝑈𝑖 ∩𝑈𝑗) toℱ𝑖(𝑈𝑖 ∩𝑈𝑗);
suppose that we have 𝜃𝑖𝑗◦𝜃𝑗𝑘 = 𝜃𝑖𝑘 at each point of 𝑈𝑖 ∩ 𝑈𝑗 ∩ 𝑈𝑘 for all triples (𝑖, 𝑗, 𝑘).
Then there exists a sheaf ℱ and for all 𝑖 an isomorphism 𝜂𝑖 from ℱ(𝑈𝑖) to ℱ𝑖, such that
𝜃𝑖𝑗 = 𝜂𝑖◦𝜂−1𝑗 at each point of𝑈𝑖∩𝑈𝑗 . Moreover,ℱ and 𝜂𝑖 are determined up to isomorphism
by the preceding conditions.

The uniqueness of {ℱ, 𝜂𝑖} is evident; for the proof of existence, we could define ℱ
as a quotient space of the sum of ℱ𝑖, but we will rather use the methods of n◦ 3: if 𝑈
is an open subset of 𝑋, let ℱ𝑈 be the group whose elements are systems {𝑠𝑘}𝑘∈𝐼 with
𝑠𝑘 ∈ 𝛤(𝑈∩𝑈𝑘,ℱ𝑘) and 𝑠𝑘 = 𝜃𝑘𝑗(𝑠𝑗) on𝑈∩𝑈𝑗∩𝑈𝑘 ; if𝑈 ⊂ 𝑉, we define𝜙𝑉𝑈 in an obvious
way. The sheaf defined by the system (ℱ𝑈 , 𝜙𝑉𝑈) is the sheaf ℱ we look for; moreover, if
𝑈 ∈ 𝑈𝑖, the mapping sending a system {𝑠𝑘} ∈ ℱ𝑈 to the element 𝑠𝑖 ∈ 𝛤(𝑈𝑖,ℱ𝑖) is an
isomorphism from ℱ𝑈 to 𝛤(𝑈,ℱ𝑖), because of the transitivity condition; we so obtain
an isomorphism 𝜂𝑖 ∶ ℱ(𝑈𝑖)→ ℱ𝑖, which obviously satisfies the stated condition.
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We say that the sheaf ℱ is obtained by glueing the sheaves ℱ𝑖 by means of the
isomorphisms 𝜃𝑖𝑗.

5. Extension and restriction of a sheaf

Let 𝑋 be a topological space, 𝑌 its closed subspace and ℱ a sheaf on 𝑋. We say that ℱ is
concentrated on 𝑌, or that it is zero outside of 𝑌 if we have ℱ𝑥 = 0 for all 𝑥 ∈ 𝑋 − 𝑌.

Proposition 5. If a sheafℱ is concentrated on 𝑌, the homomorphism

𝜌𝑋𝑌 ∶ 𝛤(𝑋,ℱ)→ 𝛤(𝑌,ℱ(𝑌))

is bijective.

If a section of ℱ over 𝑋 is zero over 𝑌, it is zero everywhere since ℱ𝑥 = 0 if 𝑥 ∉ 𝑌,
which shows that 𝜌𝑋𝑌 is injective. Conversely, let 𝑠 be a section of ℱ(𝑌) over 𝑌, and
extend 𝑠 onto 𝑋 by putting 𝑠(𝑥) = 0 for 𝑥 ∉ 𝑌 ; the mapping 𝑥 ↦ 𝑠(𝑥) is obviously
continuous on 𝑋 − 𝑌 ; on the other hand, if 𝑥 ∈ 𝑌, there exists a section 𝑠′ of ℱ over
an open neighbourhood 𝑈 of 𝑥 for which 𝑠′(𝑥) = 𝑠(𝑥); since 𝑠 is continuous on 𝑌 by
assumption, there exists an open neighbourhood 𝑉 of 𝑥, contained in 𝑈 and such that
𝑠′(𝑦) = 𝑠(𝑦) for all 𝑦 ∈ 𝑉 ∩ 𝑌; since ℱ𝑦 = 0 if 𝑦 ∉ 𝑌, we also have that 𝑠′(𝑦) = 𝑠(𝑦) for
𝑦 ∈ 𝑉 − (𝑉 ∩ 𝑌); hence 𝑠 and 𝑠′ coincide on 𝑉, which proves that 𝑠 is continuous in a
neighbourhood of 𝑌, so it is continuous everywhere. This shows that 𝜌𝑋𝑌 is surjective,
which ends the proof.

We shall now prove that the sheaf ℱ(𝑌) determines the sheaf ℱ uniquely:

Proposition 6. Let 𝑌 be a closed subspace of 𝑋, and let 𝒢 be a sheaf on 𝑌. Putℱ𝑥 = 𝒢𝑥
if 𝑥 ∈ 𝑌, ℱ𝑥 = 0 if 𝑥 ∉ 𝑌, and let ℱ be the sum of the sets ℱ𝑥. Then ℱ admits a unique
structure of a sheaf over 𝑋 such thatℱ(𝑌) = 𝒢.

Let 𝑈 be an open subset of 𝑋; if 𝑠 is a section of 𝒢 on 𝑈 ∩ 𝑌, extend 𝑠 by 0 on
𝑈 − (𝑈 ∩𝑌); when 𝑠 runs over 𝛤(𝑈 ∩𝑌,𝒢), we obtain this way a groupℱ𝑈 of mappings
from 𝑈 to ℱ. Proposition 5 then shows that if ℱ is equipped a structure of a sheaf such
that ℱ(𝑌) = 𝒢, we have ℱ𝑈 = 𝛤(𝑈,ℱ), which proves the uniqueness of the structure
in question. The existence is proved using the methods of n◦ 3 applied to ℱ𝑈 and the
restriction homomorphisms 𝜙𝑉𝑈 ∶ ℱ𝑈 → ℱ𝑉 .

We say that a sheafℱ is obtained by extension of the sheaf 𝒢 by 0 outside𝑌 ; we denote
this sheaf by 𝒢𝑋 , or simply 𝒢 if it does not cause confusion.

6. Sheaves of rings and sheaves of modules

The notion of a sheaf defined in n◦ 1 is that of a sheaf of abelian groups. It is clear
that there exist analogous definitions for all algebraic structures (we could even define
“sheaves of sets”, where ℱ𝑥 would not admit an algebraic structure, and we only require
axiom (I)). From now on, we will encounter mainly sheaves of rings and sheaves of
modules:

A sheaf of rings 𝒜 is a sheaf of abelian groups 𝒜𝑥, 𝑥 ∈ 𝑋, where each 𝒜𝑥 has a
structure of a ring such that the mapping (𝑓, 𝑔)↦ 𝑓 ⋅ 𝑔 is a continuous mapping from
𝒜+𝒜 to𝒜 (the notation being that of n◦ 1). We shall always assume that𝒜𝑥 has a unity
element, varying continuously with 𝑥.
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If𝒜 is a sheaf of rings satisfying the preceding condition, 𝛤(𝑈,𝒜) is a ring with unity,
and 𝜌𝑉𝑈 ∶ 𝛤(𝑉,𝒜) → 𝛤(𝑈,𝒜) is a homomorphism of rings preserving unity if 𝑈 ⊂ 𝑉.
Conversely, given rings 𝒜𝑈 with unity and homomorphisms 𝜙𝑉𝑈 ∶ 𝒜𝑉 → 𝒜𝑈 preserving
unity and satisfying 𝜙𝑉𝑈◦𝜙𝑊𝑉 = 𝜙𝑊𝑈 , the sheaf𝒜 defined by the system (𝒜𝑈 , 𝜙𝑉𝑈) is a sheaf
of rings. For example, if 𝐺 is a ring with unity, the ring of germs of functions with values
in 𝐺 (defined in n◦ 3) is a sheaf of rings.

Let𝒜 be a sheaf of rings. A sheaf ℱ is called a sheaf of𝒜-modules if every ℱ𝑥 carries
a structure of a left unitary2 𝒜𝑥-module, varying “continuously” with 𝑥, in the following
sense: if𝒜+ℱ is the subspace of𝒜 ×ℱ consisting of the pairs (𝑎, 𝑓) with 𝜋(𝑎) = 𝜋(𝑓),
the mapping (𝑎, 𝑓)↦ 𝑎 ⋅ 𝑓 is a continuous mapping from 𝒜 +ℱ to ℱ.

If ℱ is a sheaf of 𝒜-modules, 𝛤(𝑈,ℱ) is a unitary module over 𝛤(𝑈,𝒜). Conversely,
if 𝒜 is defined by the system (𝒜𝑈 , 𝜙𝑉𝑈) as above, and let ℱ be a sheaf defined by the
system (ℱ, 𝜓𝑉𝑈), where everyℱ𝑈 is a unitary𝒜𝑈-module, with 𝜓𝑉𝑈(𝑎 ⋅𝑓) = 𝜙𝑉𝑈(𝑎) ⋅𝜓𝑉𝑈(𝑓);
then ℱ is a sheaf of 𝒜-modules.

Every sheaf of abelian groups can be considered a sheaf of ℤ-modules, ℤ being the
constant sheaf isomorphic to the ring of integers. This will allow us to narrow our study
to sheaves of modules from now on.

7. Subsheaf and quotient sheaf

Let𝒜 be a sheaf of rings,ℱ a sheaf of𝒜-modules. For all 𝑥 ∈ 𝑋, let 𝒢𝑥 be a subset ofℱ𝑥.
We say that 𝒢 =⋃𝒢𝑥 is a subsheaf of ℱ if:
(a) 𝒢𝑥 is a sub-𝒜𝑥-module of ℱ𝑥 for all 𝑥 ∈ 𝑋,
(b) 𝒢 is an open subset of ℱ.

Condition (b) can be also expressed as:
(b′) If 𝑥 is a point of 𝑋, and if 𝑠 is a section of ℱ over a neighbourhood of 𝑥 such that

𝑠(𝑥) ∈ 𝒢𝑥, we have 𝑠(𝑦) ∈ 𝒢𝑦 for all 𝑦 close enough to 𝑥.
It is clear that, if these conditions are satisfied, 𝒢 is a sheaf of 𝒜-modules.
Let 𝒢 be a subsheaf of ℱ and put𝒦𝑥 = ℱ𝑥∕𝒢𝑥 for all 𝑥 ∈ 𝑋. Give𝒦 = ⋃𝒦𝑥 the

quotient topology of ℱ; we see easily that we also obtain a sheaf of𝒜-modules, called
the quotient sheaf ofℱ by 𝒢, and denoted byℱ∕𝒢. We can give another definition, using
the methods of n◦ 3: if 𝑈 is an open subset of 𝑋, set𝒦𝑈 = 𝛤(𝑈,ℱ)∕𝛤(𝑈,𝒢) and let 𝜙𝑉𝑈
a homomorphism obtained by passing to the quotient with 𝜌𝑉𝑈 ∶ 𝛤(𝑉,ℱ) → 𝛤(𝑈,ℱ);
the sheaf defined by the system (𝒦𝑈 , 𝜙𝑉𝑈) coincides with𝒦.

The second definition of𝒦 shows that, if 𝑠 is a section of𝒦 over a neighbourhood
of 𝑥, there exists a section 𝑡 of ℱ over a neighbourhood of 𝑥 such that the class of 𝑡(𝑦)
mod 𝒢𝑦 is equal to 𝑠(𝑦) for all 𝑦 close enough to 𝑥. Of course, this does not hold globally
in general: if 𝑈 is an open subset of 𝑋 we only have an exact sequence

0→ 𝛤(𝑈,𝒢)→ 𝛤(𝑈,ℱ)→ 𝛤(𝑈,𝒦),

the homomorphism 𝛤(𝑈,ℱ)→ 𝛤(𝑈,𝒦) not being surjective in general (cf. n◦ 24).

8. Homomorphisms

Let 𝒜 be a sheaf of rings, ℱ and 𝒢 two sheaves of 𝒜-modules. An 𝒜-homomorphism (or
an𝒜-linear homomorphism, or simply a homomorphism) fromℱ to 𝒢 is given by, for all
𝑥 ∈ 𝑋, an𝒜𝑥-homomorphism 𝜙𝑥 ∶ ℱ𝑥 → 𝒢𝑥, such that the mapping 𝜙∶ ℱ → 𝒢 defined

2i.e. with the unity acting as identity
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by the 𝜙𝑥 is continuous. This condition can also be expressed by saying that, if 𝑠 is a
section ofℱ over𝑈, 𝑥 ↦ 𝜙𝑥(𝑠(𝑥)) is a section of 𝒢 over𝑈 (we denote this section by 𝜙(𝑠),
or 𝜙◦𝑠). For example, if 𝒢 is a subsheaf of ℱ, the injection 𝒢 → ℱ and the projection
ℱ → ℱ∕𝒢 both are homomorphisms.

Proposition 7. Let 𝜙 be a homomorphisms from ℱ to 𝒢. For all 𝑥 ∈ 𝑋, let𝒩𝑥 be the
kernel of 𝜙𝑥 and let ℐ𝑥 be the image of 𝜙𝑥. Then𝒩 =⋃𝒩𝑥 is a subsheaf ofℱ, ℐ =

⋃ ℐ𝑥
is a subsheaf of 𝒢, and 𝜙 defines an isomorphism fromℱ∕𝒩 onto ℐ.

Since𝜙𝑥 is an𝒜𝑥-homomorphism,𝒩𝑥 and ℐ𝑥 are submodules ofℱ and𝒢 respectively,
and𝜙𝑥 defines an isomorphism ofℱ𝑥∕𝒩𝑥 with ℐ𝑥. If on the other hand 𝑠 is a local section
of ℱ, such that 𝑠(𝑥) ∈𝒩𝑥, we have 𝜙◦𝑠(𝑥) = 0, hence 𝜙◦𝑠(𝑦) = 0 for 𝑦 close enough to
𝑥, so 𝑠(𝑦) ∈𝒩𝑦, which shows that𝒩 is a subsheaf of ℱ. If 𝑡 is a local section of 𝒢, such
that 𝑡(𝑥) ∈ ℐ𝑥, there exists a local section 𝑠 ∈ ℱ, such that 𝜙◦𝑠(𝑥) = 𝑡(𝑥), hence 𝜙◦𝑠 = 𝑡
in the neighbourhood of 𝑥, showing that ℐ is a subsheaf of 𝒢, isomorphic with ℱ∕𝒩.

The sheaf𝒩 is called the kernel of 𝜙 and is denoted byKer(𝜙); the sheaf ℐ is called the
image of𝜙 and is denoted by Im(𝜙); the sheaf𝒢∕ℐ is called the cokernel of𝜙 and is denoted
by Coker(𝜙). A homomorphism 𝜙 is called injective, or one-to-one, if each 𝜙𝑥 is injective,
or equivalently if Ker(𝜙) = 0; it is called surjective if each 𝜙𝑥 is surjective, or equivalently
if Coker(𝜙) = 0; it is called bijective if it is both injective and surjective, and Proposition
7 shows that it is an isomorphism of ℱ and 𝒢 and that 𝜙−1 is a homomorphism. All
the definitions related to homomorphisms of modules translate naturally to sheaves
of modules; for example, a sequence of homomorphisms is called exact if the image of
each homomorphisms coincides with the kernel of the homomorphism following it. If
𝜙∶ ℱ → 𝒢 is a homomorphism, the sequences:

0→ Ker(𝜙)→ ℱ → Im(𝜙)→ 0
0→ Im(𝜙)→ 𝒢→ Coker(𝜙)→ 0

are exact.
If𝜙 is a homomorphism fromℱ to𝒢, themapping 𝑠 ↦ 𝜙◦𝑠 is a𝛤(𝑈,𝒜)-homomorphism

from 𝛤(𝑈,ℱ) to 𝛤(𝑈,𝒢). Conversely, if 𝒜, ℱ, 𝒢 are defined by the systems (𝒜𝑈 , 𝜙𝑉𝑈),
(ℱ𝑈 , 𝜓𝑉𝑈), (𝒢𝑈 , 𝜒𝑉𝑈) as in n◦ 6, and take for every open 𝑈 ⊂ 𝑋 an 𝒜𝑈-homomorphism
𝜙𝑈 ∶ ℱ𝑈 → 𝒢𝑈 such that 𝜒𝑉𝑈◦𝜙𝑉 = 𝜙𝑈◦𝜓𝑉𝑈 ; by passing to the inductive limit, the 𝜙𝑈
define a homomorphism 𝜙∶ ℱ → 𝒢.

9. The direct sum of two sheaves

Let 𝒜 be a sheaf of rings, ℱ and 𝒢 two sheaves of 𝒜-modules; for all 𝑥 ∈ 𝑋, form the
moduleℱ𝑥⊕𝒢𝑥, the direct sum ofℱ𝑥 and 𝒢𝑋 ; an element ofℱ𝑥⊕𝒢𝑥 is a pair (𝑓, 𝑔)with
𝑓 ∈ ℱ𝑥 and 𝑔 ∈ 𝒢𝑥. Let𝒦 be the sum of the setsℱ𝑥 ⊕ 𝒢𝑥 for 𝑥 ∈ 𝑋 ; we can identify𝒦
with the subset of ℱ × 𝒢 consisting of the pairs (𝑓, 𝑔) with 𝜋(𝑓) = 𝜋(𝑔). We give𝒦 the
topology induced from ℱ × 𝒢 and verify immediately that𝒦 is a sheaf of 𝒜-modules;
we call this sheaf the direct sum of ℱ and 𝒢, and denote it by ℱ ⊕ 𝒢. A section of ℱ ⊕ 𝒢
is of the form 𝑥 ↦ (𝑠(𝑥), 𝑡(𝑥)), where 𝑠 and 𝑡 are sections of ℱ and 𝒢 over 𝑈; in other
words, 𝛤(𝑈,ℱ ⊕ 𝒢) is isomorphic to the direct sum 𝛤(𝑈,ℱ)⊕ 𝛤(𝑈,𝒢).

The definition of the direct sum extends by recurrence to a finite number of 𝒜-
modules. In particular, a direct sum of 𝑝 sheaves isomorphic to one sheaf ℱ is denoted
by ℱ𝑝.
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10. The tensor product of two sheaves

Let𝒜 be a sheaf of rings, ℱ a sheaf right of𝒜-modules, and 𝒢 a sheaf of left𝒜-modules.
For all 𝑥 ∈ 𝑋, put𝒦𝑥 = ℱ𝑥 ⊗ 𝒢𝑥, the tensor product being taken over the ring 𝒜𝑥 (cf.
for example [6], Chapter II, §2); let𝒦 be the sum of the sets𝒦𝑥.

Proposition 8. There exists a unique structure of a sheaf on𝒦 with the property that if 𝑠
and 𝑡 are sections ofℱ and 𝒢 over an open subset𝑈, then the mapping 𝑥 ↦ 𝑠(𝑥)⊗ 𝑡(𝑥) ∈
𝒦𝑥 is a section of𝒦 over𝑈.

The sheaf𝒦 thus defined is called the tensor product (over𝒜) ofℱ and𝒢, and is denoted
byℱ ⊗𝒜 𝒢; if the rings𝒜𝑥 are commutative, then it is a sheaf of𝒜-modules.

If 𝒦 has a structure of a sheaf satisfying the above condition, and if 𝑓𝑖 and 𝑔𝑖 are
sections of ℱ and 𝒢 over an open 𝑈 ⊂ 𝑋, the mapping 𝑥 ↦∑ 𝑠𝑖(𝑥)⊗ 𝑡𝑖(𝑥) is a section
of 𝒦 on 𝑈. In fact, all ℎ ∈ 𝒦𝑥 can be expressed in the form ℎ = ∑𝑓𝑖 ⊗ 𝑔𝑖, 𝑓𝑖 ∈ ℱ𝑋 ,
𝑔𝑖 ∈ 𝒢𝑥, therefore also the form

∑ 𝑠𝑖(𝑥)⊗ 𝑡𝑖(𝑥), where 𝑠𝑖 and 𝑡𝑖 are defined in an open
neighbourhood 𝑈 of 𝑥; in result, every section of 𝒦 can be locally expressed in the
preceding form, which shows the uniqueness of the structure of a sheaf on𝒦.

Now we show the existence. We might assume that 𝒜, ℱ, 𝒢 are defined by the
systems (𝒜𝑈 , 𝜙𝑉𝑈), (ℱ𝑈 , 𝜓𝑉𝑈), (𝒢𝑈 , 𝜒𝑉𝑈) as in n◦ 6. Now set𝒦𝑈 = ℱ𝑈 ⊗ 𝒢𝑈 , the tensor
product being taken over 𝒜𝑈; the homomorphisms 𝜓𝑉𝑈 and 𝜒𝑉𝑈 define, by passing to
the tensor product, a homomorphism 𝜂𝑉𝑈 ∶ 𝒦𝑉 → 𝒦𝑈; besides, we have lim𝑥∈𝑈𝒦𝑈 =
lim𝑥∈𝑈 ℱ𝑈 ⊗ lim𝑥∈𝑈 𝒢𝑈 = 𝒦𝑥, the tensor product being taken over 𝒜𝑥 (for the com-
mutativity of the tensor product with inductive limits, see for example [6], Chapter VI,
Exercise 18). The sheaf defined by the system (𝒦𝑈 , 𝜂𝑉𝑈) can be identified with𝒦, and𝒦
is thus given a structure of a sheaf obviously satisfying the imposed condition. Finally, if
the𝒜𝑥 are commutative, we can suppose that the𝒜𝑈 are also commutative (it suffices to
take for 𝒜𝑈 the ring 𝛤(𝑈,𝒜)), so𝒦𝑈 is a𝒜𝑈-module, and𝒦 is a sheaf of 𝒜 −𝑚𝑜𝑑𝑢𝑙𝑒𝑠.

Now let 𝜙 be an 𝒜-homomorphism from ℱ to ℱ′ and let 𝜓 be an 𝒜-homomorphism
form 𝒢 to 𝒢′; in that case 𝜙𝑥 ⊗ 𝜓𝑥 is a homomorphism (of abelian groups in general
– of 𝒜𝑥-modules, if 𝒜𝑥 is commutative) and the definition of ℱ ⊗𝒜 𝒢 shows that the
collection of 𝜙𝑥⊗𝜓𝑥 is a homomorphism fromℱ⊗𝒜𝒢 toℱ′⊗𝒜𝒢′; this homomorphism
is denoted by 𝜙 ⊗ 𝜓; if 𝜓 is the identity, we write 𝜙 instead of 𝜙 ⊗ 1.

All of the usual properties of the tensor product of two modules transpose to the
tensor product of two sheaves of modules. For example, every exact sequence

ℱ → ℱ′ → ℱ′′ → 0

gives rise to an exact sequence

ℱ ⊗𝒜 𝒢→ ℱ′ ⊗𝒜 𝒢→ ℱ′′ ⊗𝒜 𝒢→ 0.

We have canonical isomorphisms

ℱ ⊗𝒜 (𝒢1 ⊕ 𝒢2) ≃ ℱ ⊗𝒜 𝒢1 ⊕ℱ ⊗𝒜 𝒢2, ℱ ⊗𝒜 𝒜 ≃ ℱ,

and (supposing that the 𝒜𝑥 are commutative, to simplify the notation):

ℱ ⊗𝒜 𝒢 ≃ 𝒢⊗𝒜 ℱ, ℱ ⊗𝒜 (𝒢⊗𝒜 𝒦) ≃ (ℱ ⊗𝒜 𝒢)⊗𝒜 𝒦.
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11. The sheaf of germs of homomorphisms from one sheaf to another

Let 𝒜 be a sheaf of rings and ℱ and 𝒢 two sheaves of 𝒜-modules. If 𝑈 is an open
subset of 𝑋, let𝒦𝑈 be the group of homomorphisms from ℱ(𝑈) to 𝒢(𝑈) (we also write
“homomorphism fromℱ to 𝒢 over𝑈” in place of "homomorphism fromℱ(𝑈) to 𝒢(𝑈)").
The operation of restricting a homomorphism defines 𝜙𝑉𝑈 ∶ 𝒦𝑉 → 𝒦𝑈 ; the sheaf defined
by (𝒦𝑈 , 𝜙𝑉𝑈) is called the sheaf of germs of homomorphisms fromℱ to 𝒢 and denoted by
Hom𝒜(ℱ,𝒢). If 𝒜𝑥 are commutative, Hom𝒜(ℱ,𝒢) is a sheaf of 𝒜-modules.

An element of Hom𝒜(ℱ,𝒢), being a germ of a homomorphism from ℱ to 𝒢 in a
neighbourhood of 𝑥, defines an𝒜𝑥-homomorphism from ℱ𝑥 to 𝒢𝑥 ; hence a canonical
homomorphism

𝜌∶ Hom𝒜(ℱ,𝒢)𝑥 → Hom𝒜𝑥 (ℱ𝑥,𝒢𝑥).
But, contrary to what happened with the operations studied up to now, the homomor-
phism 𝜌 is not a bijection in general ; we will give in n◦ 14 a sufficient condition for
that.

If 𝜙∶ ℱ′ → ℱ and 𝜓∶ 𝒢→ 𝒢′ are homomorphisms, we define in an obvious way a
homomorphism

Hom𝒜(𝜙, 𝜓)∶ Hom𝒜(ℱ,𝒢)→ Hom𝒜(ℱ′,𝒢′).

Every exact sequence 0→ 𝒢→ 𝒢′ → 𝒢′′ gives rise to an exact sequence:

0→ Hom𝒜(ℱ,𝒢)→ Hom𝒜(ℱ,𝒢′)→ Hom𝒜(ℱ,𝒢′′).

We also have the canonical isomorphisms: Hom𝒜(𝒜,𝒢) ≃ 𝒢,

Hom𝒜(ℱ,𝒢1 ⊕ 𝒢2) ≃ Hom𝒜(ℱ,𝒢1)⊕Hom𝒜(ℱ,𝒢2)
Hom𝒜(ℱ1 ⊕ℱ2,𝒢) ≃ Hom𝒜(ℱ1,𝒢)⊕Hom𝒜(ℱ2,𝒢).

§2. Coherent sheaves of modules

In this paragraph, 𝑋 denotes a topological space and 𝒜 a sheaf of rings on 𝑋. We
suppose that all the rings𝒜𝑥, 𝑥 ∈ 𝑋, are commutative and have a unity element varying
continuously with 𝑥. All sheaves considered up to n◦ 16 are sheaves of 𝒜-modules and
all homomorphisms are 𝒜-homomorphisms.

12. Definitions

Let ℱ be a sheaf of 𝒜-modules, and let 𝑠1,… , 𝑠𝑝 be sections of ℱ over an open 𝑈 ⊂ 𝑋.
When we map any family 𝑓1,… , 𝑓𝑝 of elements of𝒜𝑥 to the element

∑𝑖=𝑝
𝑖=1 𝑓𝑖 ⋅ 𝑠𝑖(𝑥) of

ℱ𝑥, we obtain a homomorphism 𝜙∶ 𝒜𝑝 → ℱ defined over an open subset U (being
precise, 𝜙 is a homomorphism from𝒜𝑝(𝑈) to ℱ(𝑈), with the notation from n◦ 4). The
kernel ℛ(𝑠1,… , 𝑠𝑝) of the homomorphism 𝜙 is a subsheaf of 𝒜𝑝, called the sheaf of
relations between the 𝑠𝑖; the image of 𝜙 is a subsheaf of ℱ generated by 𝑠𝑖. Conversely,
any homomorphism 𝜙∶ 𝒜𝑝 → ℱ defines sections 𝑠1,… , 𝑠𝑝 by the formulas

𝑠1(𝑥) = 𝜙𝑥(1, 0,… , 0), … , 𝑠𝑝(𝑥) = 𝜙𝑥(0,… , 0, 1).

Definition. A sheaf of𝒜-modules ℱ is said to be of finite type if it is locally generated
by a finite number of its sections.
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In another words, for each point 𝑥 ∈ 𝑋, there must exist an open neighbourhood
𝑈 of 𝑥 and a finite number of sections 𝑠1,… , 𝑠𝑝 of ℱ over 𝑈 such that every element of
ℱ𝑦, 𝑦 ∈ 𝑈 is a linear combination, with coefficients in 𝒜𝑦, of 𝑠𝑖(𝑦). According to the
preceding statements, this amounts to saying that the restriction ofℱ to𝑈 is isomorphic
to a quotient sheaf of a sheaf 𝒜𝑝.

Proposition 1. Letℱ be a sheaf of finite type. If 𝑠1,… , 𝑠𝑝 are sections ofℱ, defined over
a neighbourhood of a point 𝑥 ∈ 𝑋 and generatingℱ𝑥, then they also generateℱ𝑦 for all 𝑦
close enough to 𝑥.

Becauseℱ is of finite type, there is a finite number of sections ofℱ in a neighbourhood
of 𝑥, say 𝑡1,… , 𝑡𝑞, which generate ℱ𝑦 for 𝑦 close enough to 𝑥. Since 𝑠𝑗(𝑥) generate ℱ𝑥,
there exist sections 𝑓𝑖𝑗 of𝒜 in a neighbourhood of 𝑥 such that 𝑡𝑖(𝑥) =

∑𝑗=𝑝
𝑗=1 𝑓𝑖𝑗(𝑥) ⋅𝑠𝑗(𝑥);

it follows that, for 𝑦 close enough to 𝑥, we have:

𝑡𝑖(𝑦) =
𝑗=𝑝∑

𝑗=1
𝑓𝑖𝑗(𝑦) ⋅ 𝑠𝑗(𝑦),

which implies that 𝑠𝑗(𝑦) generate ℱ𝑦, q.e.d.

Definition. A sheaf of 𝒜-modules ℱ is said to be coherent if
(a) ℱ is of finite type, and
(b) if 𝑠1,… , 𝑠𝑝 are sections of ℱ over an open 𝑈 ⊂ 𝑋, the sheaf of relations between

the 𝑠𝑖 is of finite type (over the open set 𝑈).

Note the local character of definitions 1 and 2.

Proposition 2. Locally, every coherent sheaf is isomorphic to the cokernel of a homomor-
phism 𝜙∶ 𝒜𝑞 → 𝒜𝑝.

This is an immediate consequence of the definitions and of the remarks preceding
definition 1.

Proposition 3. Every subsheaf of finite type of a coherent sheaf is coherent.

Indeed, if a sheaf ℱ satisfies condition (b) of definition 2, then any subsheaf of ℱ
satisfies it also.

13. Main properties of coherent sheaves

Theorem 1. Let 0→ ℱ 𝛼,→ 𝒢 𝛽,→ 𝒦 → 0 be an exact sequence of homomorphisms. If two
of the sheavesℱ, 𝒢,𝒦 are coherent, then so is the third.

Suppose that 𝒢 and𝒦 are coherent. Locally, there exists a surjective homomorphism
𝛾∶ 𝒜𝑝 → 𝒢; let ℐ the kernel of 𝛽◦𝛾; since 𝒦 is coherent, ℐ is a sheaf of finite type
(condition (b)); thus 𝛾(ℐ) is a sheaf of finite type, thus coherent by Proposition 3; since 𝛼
is an isomorphism from ℱ to 𝛾(ℐ), it follows that ℱ is also coherent.

Suppose that ℱ and 𝒢 are coherent. Because 𝒢 is of finite type, 𝒦 is also of finite
type, so it remains to prove that𝒦 satisfies the condition (b) of definition 2. Let 𝑠1,… , 𝑠𝑝
be a finite number of sections of𝒦 in a neighbourhood of a point 𝑥 ∈ 𝑋. The question
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being local, we can assume that there exist sections 𝑠′1,… , 𝑠′𝑝 of 𝒢 such that 𝑠𝑖 = 𝛽(𝑠′𝑖 ).
Let 𝑛1,… , 𝑛𝑞 be a finite number of sections of ℱ in a neighbourhood of 𝑥, generating ℱ𝑦
for 𝑦 close enough to 𝑥. A family 𝑓1,… , 𝑓𝑝 of elements of𝒜𝑦 belongs to ℛ(𝑠1,… , 𝑠𝑝)𝑦 if
and only if one can find 𝑔1,… , 𝑔𝑞 ∈ 𝒜𝑦 such that

𝑖=𝑝∑

𝑖=1
𝑓𝑖 ⋅ 𝑠′𝑖 =

𝑗=𝑞∑

𝑗=1
𝑔𝑗 ⋅ 𝛼(𝑛𝑗) in 𝑦.

Now the sheaf of relations between the 𝑠′𝑖 and the 𝛼(𝑛𝑗) is of finite type, because 𝒢 is
coherent. The sheaf ℛ(𝑠1,… , 𝑠𝑝), the image of the preceding by the canonical projection
from 𝒜𝑝+𝑞 to 𝒜𝑝 is thus of finite type, which shows that𝒦 is coherent.

Suppose that ℱ and 𝒦 are coherent. The question being local, we may suppose
that ℱ (resp. 𝒦) is generated by a finite number of sections 𝑛1,… , 𝑛𝑞 (resp. 𝑠1,… , 𝑠𝑝);
furthermore we might assume that there exist sections 𝑠′𝑖 of 𝒢 such that 𝑠𝑖 = 𝛽(𝑠′𝑖 ). It is
clear that the sections 𝑠′𝑖 and 𝛼(𝑛𝑗) generate 𝒢, which proves that 𝒢 is a sheaf of finite
type. Now let 𝑡1,… , 𝑡𝑟 be a finite number of sections of 𝒢 in a neighbourhood of a point
𝑥; since𝒦 is coherent, there exist sections 𝑓𝑖𝑗 or 𝒜𝑟 (1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤ 𝑠), defined in
the neighbourhood of 𝑥, which generate the sheaf of relations between the 𝛽(𝑡𝑖). Put
𝑢𝑗 =

∑𝑖=𝑟
𝑖=1 𝑓𝑖𝑗 ⋅ 𝑡𝑖; since

∑𝑖=𝑟
𝑖=1 𝑓𝑖𝑗 ⋅ 𝛽(𝑡𝑖) = 0, the 𝑢𝑗 are contained in 𝛼(ℱ) and, since ℱ is

coherent, the sheaf of relations between the 𝑢𝑗 is generated, in a neighbourhood of 𝑥,
by a finite number of sections, say 𝑔𝑗𝑘 (1 ≤ 𝑗 ≤ 𝑠, 1 ≤ 𝑘 ≤ 𝑡). I say that the∑𝑗=𝑠

𝑗=1 𝑔
𝑗
𝑘 ⋅ 𝑓

𝑖
𝑗

generate the sheaf ℛ(𝑡1,… , 𝑡𝑟) in a neighbourhood of 𝑥; indeed, if
∑𝑖=𝑟

𝑖=1 𝑓𝑖 ⋅ 𝑡𝑖 = 0 on 𝑦,
with 𝑓𝑖 ∈ 𝒜𝑦, we have

∑𝑖=𝑟
𝑖=1 𝑓𝑖 ⋅ 𝛽(𝑡𝑖) = 0 and there exist 𝑔𝑗 ∈ 𝒜𝑦 with 𝑓𝑖 =

∑𝑗=𝑠
𝑗=1 𝑔𝑗𝑓𝑖𝑗;

noting that
∑𝑖=𝑟

𝑖=1 𝑓𝑖 ⋅ 𝑡𝑖 = 0, one obtains∑𝑗=𝑠
𝑗=1 𝑔𝑗 ⋅ 𝑢𝑗 = 0, thus making the system 𝑔𝑗

a linear combination of the systems 𝑔𝑗𝑘 and showing our assertion. It follows that 𝒢
satisfies condition (b), which ends the proof.

Corollary. The direct sum of a finite family of coherent sheaves is coherent.

Theorem 2. Let 𝜙 be a homomorphism from a coherent sheaf ℱ to a coherent sheaf 𝒢.
The kernel, the cokernel and the image of 𝜙 are also coherent sheaves.

Because ℱ is coherent, Im(𝜙) is of finite type, thus coherent by Proposition 3. We
apply Theorem 1 to the exact sequences

0→ Ker(𝜙)→ ℱ → Im(𝜙)→ 0
0→ Im(𝜙)→ 𝒢→ Coker(𝜙)→ 0

seeing that Ker(𝜙) and Coker(𝜙) are also coherent.

Corollary. Letℱ and 𝒢 be two coherent subsheaves of a coherent sheaf𝒦. The sheaves
ℱ + 𝒢 andℱ ∩ 𝒢 are coherent.

For ℱ + 𝒢, this follows from Proposition 3; and for ℱ ∩ 𝒢, this is the kernel of
ℱ → 𝒦∕𝒢.
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14. Operations on coherent sheaves

We have just seen that a direct sum of a finite number of coherent sheaves is a coherent
sheaf. We now prove analogous results for the functors⊗ and Hom.

Proposition 4. Ifℱ and 𝒢 are two coherent sheaves,ℱ ⊗𝒜 𝒢 is a coherent sheaf.

By Proposition 2, ℱ is locally isomorphic to the cokernel of a homomorphism
𝜙∶ 𝒜𝑞 → 𝒜𝑝; thus ℱ ⊗𝒜 𝒢 is locally isomorphic to the cokernel of 𝜙∶ 𝒜𝑞 ⊗𝒜 𝒢 →
𝒜𝑝 ⊗𝒜 𝒢. But𝒜𝑞 ⊗𝒜 𝒢 and 𝒜𝑝 ⊗𝒜 𝒢 are isomorphic to 𝒢𝑞 and 𝒢𝑝 respectively, which
are coherent (Corollary of Theorem 1). Thus ℱ ⊗𝒜 𝒢 is coherent (Theorem 2).

Proposition 5. Letℱ and 𝒢 be two sheaves,ℱ being coherent. For all 𝑥 ∈ 𝑋, the module
Hom𝒜(ℱ,𝒢)𝑥 is isomorphic toHom𝒜𝑥 (ℱ𝑥,𝒢𝑥).

Precisely, we prove that the homomorphism

𝜌∶ Hom𝒜(ℱ,𝒢)𝑥 → Hom𝒜(ℱ,𝒢)𝑥,

defined in n◦ 11, is bijective. First of all, let 𝜓∶ ℱ → 𝒢 be a homomorphism defined in a
neighbourhood of 𝑥, being zero inℱ𝑥; sinceℱ is of finite type, we conclude immediately
that 𝜓 is zero in a neighbourhood of 𝑥, which proves that 𝜌 is injective. We will show
that 𝜌 is surjective, or in other words, that if 𝜙 is a 𝒜𝑥-homomorphism from ℱ𝑥 to 𝒢𝑥,
there exists a homomorphism 𝜓∶ ℱ → 𝒢, defined in a neighbourhood of 𝑥 and such
that 𝜓𝑥 = 𝜙. Let𝑚1,… , 𝑚𝑝 be a finite number of sections of ℱ in a neighbourhood of 𝑥,
generatingℱ𝑦 for all 𝑦 close enough to 𝑥, and let 𝑓𝑖𝑗 (1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑞) be sections of
𝒜𝑝 generating ℛ(𝑚1,… , 𝑚𝑝) in a neighbourhood of 𝑥. There exist local sections of 𝒢,
say 𝑛1,… , 𝑛𝑝, such that 𝑛𝑖(𝑥) = 𝜙(𝑚𝑖(𝑥)). Put 𝑝𝑗 =

∑𝑖=𝑝
𝑖=1 𝑓𝑖𝑗 ⋅ 𝑛𝑖, 1 ≤ 𝑗 ≤ 𝑞; the 𝑝𝑗 are

local sections of 𝒢 being zero in 𝑥, so in every point of a neighbourhood𝑈 of 𝑥. It follows
that for 𝑦 ∈ 𝑈, the formula∑𝑓𝑖 ⋅𝑚𝑖(𝑦) = 0 with 𝑓𝑖 ∈ 𝒜𝑦, implies

∑𝑓𝑖 ⋅ 𝑛𝑖(𝑦) = 0; for
any element𝑚 =∑𝑓𝑖 ⋅𝑚𝑖(𝑦) ∈ ℱ𝑦, we thus can put:

𝜓𝑦(𝑚) =
𝑖=𝑝∑

𝑖=1
𝑓𝑖 ⋅ 𝑛𝑖(𝑦) ∈ 𝒢𝑦.

The collection of 𝜓𝑦, 𝑦 ∈ 𝑈 constitutes a homomorphism 𝜓∶ ℱ → 𝒢, defined over 𝑈
and such that 𝜓𝑥 = 𝜙, which ends the proof.

Proposition 6. If ℱ and 𝒢 are two coherent sheaves, then Hom𝒜(ℱ,𝒢) is a coherent
sheaf.

The question being local, we might assume, by Proposition 2, that we have an exact
sequence 𝒜𝑞 → 𝒜𝑝 → ℱ → 0. From the preceding Proposition it follows that the
sequence:

0→ Hom𝒜(ℱ,𝒢)→ Hom𝒜(𝒜𝑝,𝒢)→ Hom𝒜(𝒜𝑞,𝒢)

is exact. Now the sheafHom𝒜(𝒜𝑝,𝒢) is isomorphic to 𝒢𝑝, thus is coherent, the same for
Hom𝒜(𝒜𝑞,𝒢). Theorem 2 then shows that Hom𝒜(ℱ,𝒢) is coherent.
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15. Coherent sheaves of rings

A sheaf of rings𝒜 can be regarded as a sheaf of𝒜-modules; if this sheaf of𝒜-modules is
coherent, we say that 𝒜 is a coherent sheaf of rings. Since 𝒜 is clearly of finite type, this
means that 𝒜 satisfies condition (b) of Proposition 2. In other words:

Definition. A sheaf 𝒜 is a coherent sheaf of rings if the sheaf of relations between a
finite number of sections of 𝒜 over an open subset 𝑈 is a sheaf of finite type on 𝑈.

Example. (1) If 𝑋 is a complex analytic variety, the sheaf of germs of holomorphic
functions on 𝑋 is a coherent sheaf of rings, by a theorem of K. Oka (cf. [3], statement
XV, or [5], §5).

(2) If 𝑋 is an algebraic variety, the sheaf of local rings of 𝑋 is a coherent sheaf of rings
(cf. n◦ 37, Proposition 1).

When 𝒜 is a coherent sheaf of rings, we have the following results.

Proposition 7. For a sheaf of𝒜-modules, being coherent is equivalent to being locally
isomorphic to the cokernel of a homomorphism 𝜙∶ 𝒜𝑞 → 𝒜𝑝.

The necessity is Proposition 2; the sufficiency follows from the coherence of 𝒜𝑝 and
𝒜𝑞 and from Theorem 2.

Proposition 8. A subsheaf of𝒜 is coherent if and only if it is of finite type.

This is a special case of Proposition 3.

Corollary. The sheaf of relations between a finite number of sections of a coherent sheaf
is coherent.

In fact, this sheaf is of finite type, from the definition of a coherent sheaf.

Proposition 9. Let ℱ be a coherent sheaf of 𝒜-modules. For any 𝑥 ∈ 𝑋, let ℐ𝑥 be the
ideal in the 𝒜𝑥 consisting those 𝑎 ∈ 𝒜𝑥 such that 𝑎 ⋅ 𝑓 = 0 for all 𝑓 ∈ ℱ𝑥. Then the ℐ𝑥
form a coherent sheaf of ideals (called the annihilator ofℱ).

In fact, ℐ𝑥 is the kernel of the homomorphism𝒜𝑥 → Hom𝒜𝑥 (ℱ𝑥,𝒢𝑥); we then apply
Propositions 5 and 6 and Theorem 2.

More generally, the conductor ℱ ∶ 𝒢 of a coherent sheaf 𝒢 into its coherent subsheaf
ℱ is a coherent sheaf of ideals (being the annihilator of 𝒢∕ℱ).

16. Change of rings

The notions of a sheaf of finite type, and of a coherent sheaf, are dependent on the fixed
sheaf of rings𝒜. When we will consider multiple sheaves of rings, we will say “of finite
type over 𝒜”, “𝒜-coherent” to point out that we mean sheaves of𝒜-modules.

Theorem 3. Let𝒜 be a coherent sheaf of rings, ℐ a coherent sheaf of ideals of𝒜. Let ℱ
be a sheaf of 𝒜∕ℐ-modules. Then ℱ is 𝒜∕ℐ-coherent if and only if it is 𝒜-coherent. In
particular,𝒜∕ℐ is a coherent sheaf of rings.
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It is clear that "of finite type over 𝒜" is the same as "of finite type over 𝒜∕ℐ". For
the other part, if ℱ is𝒜-coherent, and if 𝑠1,… , 𝑠𝑝 are sections of ℱ over an open 𝑈, the
sheaf of relations between the 𝑠𝑖 with coefficients in𝒜, is of finite type over𝒜. It follows
immediately that the sheaf of relations between the 𝑠𝑖 with coefficients in 𝒜∕ℐ, is of
finite type over 𝒜∕ℐ, since it is the image of the preceding by the canonical mapping
𝒜𝑝 → (𝒜∕ℐ)𝑝. Thus ℱ is 𝒜∕ℐ-coherent. In particular, since 𝒜∕ℐ is 𝒜-coherent, it is
also𝒜∕ℐ-coherent, in other words,𝒜∕ℐ is a coherent sheaf of rings. Conversely, if ℱ is
𝒜∕ℐ-coherent, it is locally isomorphic to the cokernel of a homomorphism 𝜙∶ (𝒜∕ℐ)𝑞 →
(𝒜∕ℐ)𝑝 and since 𝒜∕ℐ is 𝒜-coherent, ℱ is coherent by Theorem 2.

17. Extension and restriction of a coherent sheaf

Let 𝑌 be a closed subspace of a space 𝑋. When 𝒢 is a sheaf over 𝑌, we denote by 𝒢𝑋 the
a sheaf obtained by extending 𝒢 by 0 outside 𝑌; it is a sheaf over 𝑋 (cf. n◦ 5). If 𝒜 is a
sheaf of rings over 𝑌, 𝒜𝑋 is a sheaf of rings over 𝑋, and if ℱ is a sheaf of 𝒜-modules,
then ℱ𝑋 is a sheaf of 𝒜𝑋-modules.

Proposition 10. ℱ is of finite type over𝒜 if and only ifℱ𝑋 is of finite type over𝒜𝑋 .

Let 𝑈 be an open subset of 𝑋, and let 𝑉 = 𝑈 ∩ 𝑌. Any homomorphism 𝜙∶ 𝒜𝑝 → ℱ
over 𝑉 defines a homomorphism 𝜙𝑋 ∶ (𝒜𝑋)𝑝 → ℱ𝑋 over 𝑈, and conversely; so 𝜙 is
surjective if and only if 𝜙𝑋 is. The proposition follows immediately from this.

One shows similarly:

Proposition 11. ℱ is𝒜-coherent if and only ifℱ𝑋 is𝒜𝑋-coherent.

Hence, on taking ℱ = 𝒜:

Corollary. 𝒜 is a coherent sheaf of rings if and only if𝒜𝑋 is a coherent sheaf of rings.

§3. Cohomology of a space with values in a sheaf

In this paragraph, 𝑋 denotes a topological space, separated or not. By a covering of 𝑋 we
will always mean an open covering.

18. Cochains of a covering

Let𝔘 = {𝑈𝑖}𝑖∈𝐼 be a covering of 𝑋. If 𝑠 = (𝑖0,… , 𝑖𝑝) is a finite sequence of elements of 𝐼,
we put

𝑈𝑠 = 𝑈𝑖0…𝑖𝑝 = 𝑈𝑖0 ∩ … ∩𝑈𝑖𝑝 .
Let ℱ be a sheaf of abelian groups on the space 𝑋. If 𝑝 is an integer ≥ 0, we call a

𝑝-cochain of𝔘 with values inℱ a function 𝑓 assigning to every sequence 𝑠 = (𝑖0,… , 𝑖𝑝)
of 𝑝 + 1 elements of 𝐼 a section 𝑓𝑠 = 𝑓𝑖0…𝑖𝑝 of ℱ over 𝑈𝑖0…𝑖𝑝 . The 𝑝-cochains form an
abelian group, denoted by 𝐶𝑝(𝔘,ℱ); it is the product group∏𝛤(𝑈𝑠,ℱ), the product
being over all sequences 𝑠 of 𝑝 + 1 elements of 𝐼. The family of 𝐶𝑝(𝔘,ℱ), 𝑝 = 0, 1,… is
denoted by 𝐶(𝔘,ℱ). A 𝑝-cochain is also called a cochain of degree 𝑝.

A 𝑝-cochain is said to be alternating if:
(a) 𝑓𝑖0…𝑖𝑝 = 0 whenever two of the indices 𝑖0,… , 𝑖𝑝 are equal,
(b) 𝑓𝑖𝜎0…𝑖𝜎𝑝 = 𝜀𝜎𝑓𝑖0…𝑖𝑝 if 𝜎 is a permutation of the set {0,… , 𝑝} (𝜀𝜎 denotes the signature

of 𝜎).
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The alternating cochains form a subgroup 𝐶′𝑝(𝔘,ℱ) of the group 𝐶𝑝(𝔘,ℱ); the
family of the 𝐶′𝑝(𝔘,ℱ) is denoted by 𝐶′(𝔘,ℱ).

19. Simplicial operations

Let 𝑆(𝐼) be the simplex with the set 𝐼 as its set of vertices; an (ordered) simplex of
𝑆(𝐼) is a sequence 𝑠 = (𝑖0,… , 𝑖𝑝) of elements of 𝐼; 𝑝 is called the dimension of 𝑠. Let
𝐾(𝐼) =⨁∞

𝑝=0 𝐾𝑝(𝐼) be the complex defined by 𝑆(𝐼): by definition,𝐾𝑝(𝐼) is the free group
with the set of simplexes of dimension 𝑝 of 𝑆(𝐼) as its base.

If 𝑠 is a simplex of 𝑆(𝐼), we denote by |𝑠| the set of vertices of 𝑠.
A mapping ℎ∶ 𝐾𝑝(𝐼)→ 𝐾𝑞(𝐼) is called a simplicial endomorphism if

(i) ℎ is a homomorphism,
(ii) for any simplex 𝑠 of dimension 𝑝 of 𝑆(𝐼) we have

ℎ(𝑠) =
∑

𝑠′ 𝑐
𝑠′
𝑠 ⋅ 𝑠′,

with 𝑐𝑠′𝑠 ∈ ℤ, the sum being over all simplexes 𝑠′ of dimension 𝑞 such that |𝑠′| ⊂ |𝑠|.
Let ℎ be a simplicial endomorphism, and let 𝑓 ∈ 𝐶𝑞(𝔘,ℱ) be a cochain of degree 𝑞.

For any simplex 𝑠 of dimension 𝑝 put,

(𝑡ℎ𝑓)𝑠 =
∑

𝑠′
𝑐𝑠′𝑠 ⋅ 𝜌𝑠

′
𝑠 (𝑓𝑠′),

where 𝜌𝑠′𝑠 denotes the restriction homomorphism 𝛤(𝑈𝑠′ ,ℱ)→ 𝛤(𝑈𝑠,ℱ), which makes
sense because |𝑠′| ⊂ |𝑠|. The mapping 𝑠 ↦ (𝑡ℎ𝑓)𝑠 is a 𝑝-cochain, denoted by 𝑡ℎ𝑓. The
mapping 𝑓 ↦ 𝑡ℎ𝑓 is a homomorphism

𝑡ℎ∶ 𝐶𝑞(𝔘,ℱ)→ 𝐶𝑝(𝔘,ℱ),

and one verifies immediately the formulas:
𝑡(ℎ1 + ℎ2) = 𝑡ℎ1 + 𝑡ℎ2, 𝑡(ℎ1◦ℎ2) = 𝑡ℎ2◦𝑡ℎ1, 𝑡1 = 1.

Note. In practice, we often neglect to write the restriction homomorphism 𝜌𝑠′𝑠 .

20. Complexes of cochains

We apply the above to the simplicial endomorphism

𝜕∶ 𝐾𝑝+1(𝐼)→ 𝐾𝑝(𝐼),

defined by the usual formula:

𝜕(𝑖0,… , 𝑖𝑝+1) =
𝑗=𝑝+1∑

𝑗=0
(−1)𝑗(𝑖0,… , 𝑖𝑗,… , 𝑖𝑝+1),

the sign ̂meaning, as always, that the symbol below it should be omitted.
We thus obtain a homomorphism 𝑡𝜕∶ 𝐶𝑝(𝔘,ℱ) → 𝐶𝑝+1(𝔘,ℱ), which we denote

by 𝑑; from its definition, we have that

(𝑑𝑓)𝑖0…𝑖𝑝+1 =
𝑗=𝑝+1∑

𝑗=0
(−1)𝑗𝜌𝑗(𝑓𝑖0…𝑖𝑗…𝑖𝑝+1),
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where 𝜌𝑗 denotes the restriction homomorphism
𝜌𝑗 ∶ 𝛤(𝑈𝑖0…𝑖𝑗…𝑖𝑝+1 ,ℱ)→ 𝛤(𝑈𝑖0…𝑖𝑝+1 ,ℱ).

Since 𝜕◦𝜕 = 0, we have 𝑑◦𝑑 = 0. Thus we find that 𝐶(𝔘,ℱ) is equipped with a
coboundary operator making it a complex. The 𝑞-th cohomology group of the complex
𝐶(𝔘,ℱ) will be denoted by𝐻𝑞(𝔘,ℱ). We have:
Proposition 1. 𝐻0(𝔘,ℱ) = 𝛤(𝑋,ℱ).

A 0-cochain is a system (𝑓𝑖)𝑖∈𝐼 with every 𝑓𝑖 being a section of ℱ over 𝑈𝑖. It is a
cocycle if and only if it satisfies 𝑓𝑖 − 𝑓𝑗 = 0 over 𝑈𝑖 ∩𝑈𝑗, or in other words, if there is a
section 𝑓 of ℱ on 𝑋 coinciding with 𝑓𝑖 on 𝑈𝑖 for all 𝑖 ∈ 𝐼. Hence the Proposition.

(Thus 𝐻0(𝔘,ℱ) is independent of 𝔘; of course this is not true for 𝐻𝑞(𝔘,ℱ) in
general).

We see immediately that 𝑑𝑓 is alternating if 𝑓 is alternating; in other words, 𝑑
preserves 𝐶′(𝔘,ℱ), which forms a subcomplex of 𝐶(𝔘,ℱ). The cohomology groups of
𝐶′(𝔘,ℱ) are denoted by𝐻′𝑞(𝔘,ℱ).
Proposition 2. The inclusion of 𝐶′(𝔘,ℱ) into 𝐶(𝔘,ℱ) defines an isomorphism from
𝐻′𝑞(𝔘,ℱ) onto𝐻𝑞(𝔘,ℱ), for every 𝑞 ≥ 0.

We equip the set 𝐼 with a structure of a total order, and let ℎ be a simplicial endo-
morphism of 𝐾(𝐼) defined in the following way:

ℎ((𝑖0,… , 𝑖𝑞)) = 0 if any two indices 𝑖0,… , 𝑖𝑞 are equal,
ℎ((𝑖0,… , 𝑖𝑞)) = 𝜀𝜎(𝑖𝜎0… 𝑖𝜎𝑞) if all indices 𝑖0,… , 𝑖𝑞 are distinct and 𝜎 is a permutation

of {0,… , 𝑞} for which 𝑖𝜎0 < 𝑖𝜎1 < … < 𝑖𝜎𝑞 .
We verify right away that ℎ commutes with 𝜕 and that ℎ(𝑠) = 𝑠 if dim(𝑠) = 0; it

follows (cf. [7], Chapter VI, §5) that there exists a simplicial endomorphism 𝑘, raising
the dimension by one, such that 1 − ℎ = 𝜕◦𝑘 + 𝑘◦𝜕. Hence, by passing to 𝐶(𝔘,ℱ),

1 − 𝑡ℎ = 𝑡𝑘◦𝑑 + 𝑑◦𝑡𝑘.
But we check immediately that 𝑡ℎ is a projection from 𝐶(𝔘,ℱ) onto 𝐶′(𝔘,ℱ); since

the preceding formula shows that it is a homotopy operator, the Proposition is proved.
(Compare with [7], Chapter VI, theorem 6.10).

Corollary. 𝐻𝑞(𝔘,ℱ) = 0 for 𝑞 > dim(𝔘).

By the definition of dim(𝔘), we have𝑈𝑖0…𝑖𝑞 = ∅ for 𝑞 > dim(𝔘), if the indices 𝑖0,… , 𝑖𝑞
are distinct; hence 𝐶′𝑞(𝔘,ℱ) = 0, which shows that

𝐻𝑞(𝔘,ℱ) = 𝐻′𝑞(𝔘,ℱ) = 0.

21. Passage from a covering to a finer covering

A covering𝔘 = {𝑈𝑖}𝑖∈𝐼 is said to be finer than the covering𝔙 = {𝑉𝑗}𝑗∈𝐽 if there exists a
mapping 𝜏∶ 𝐼 → 𝐽 such that 𝑈𝑖 ⊂ 𝑉𝜏𝑖 for all 𝑖 ∈ 𝐼. If 𝑓 ∈ 𝐶𝑞(𝔙,ℱ), put

(𝜏𝑓)𝑖0,…,𝑖𝑞 = 𝜌𝑉𝑈(𝑓𝜏𝑖0…𝜏𝑖𝑞 ),

𝜌𝑉𝑈 denoting the restriction homomorphism defined by the inclusion of𝑈𝑖0…𝑖𝑞 in 𝑉𝜏𝑖0…𝜏𝑖𝑞 .
The mapping 𝑓 ↦ 𝜏𝑓 is a homomorphism from 𝐶𝑞(𝔙,ℱ) to 𝐶𝑞(𝔘,ℱ), defined for all
𝑞 ≥ 0 and commuting with 𝑑, thus it defines homomorphisms

𝜏∗∶ 𝐻𝑞(𝔙,ℱ)→ 𝐻𝑞(𝔘,ℱ).
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Proposition 3. The homomorphisms 𝜏∗∶ 𝐻𝑞(𝔙,ℱ) → 𝐻𝑞(𝔘,ℱ) depend only on 𝔘
and𝔙 and not on the chosen mapping 𝜏.

Let 𝜏 and 𝜏′ be two mappings from 𝐼 to 𝐽 such that 𝑈𝑖 ⊂ 𝑉𝜏𝑖 and 𝑈𝑖 ⊂ 𝑉𝜏′𝑖 ; we have
to show that 𝜏∗ = 𝜏′∗.

Let 𝑓 ∈ 𝐶𝑞(𝔙,ℱ); set

(𝑘𝑓)𝑖0…𝑖𝑞−1 =
ℎ=𝑞−1∑

ℎ=0
(−1)ℎ𝜌ℎ(𝑓𝜏𝑖0…𝜏𝑖ℎ𝜏′𝑖ℎ…𝜏′𝑖𝑞−1),

where 𝜌ℎ denotes the restriction homomorphism defined by the inclusion of 𝑈𝑖0…𝑖𝑞−1 in
𝑉𝜏𝑖0…𝜏𝑖𝑗𝜏′𝑖ℎ…𝜏′𝑖𝑞−1 .

We verify by direct computation (cf. [7], Chapter VI, §3) that we have

𝑑𝑘𝑓 + 𝑘 𝑑𝑓 = 𝜏′𝑓 − 𝜏𝑓,
which ends the proof of the Proposition.

Thus, if𝔘 is finer than𝔙, there exists for every integer 𝑞 ≥ 0 a canonical homomor-
phism from𝐻𝑞(𝔙,ℱ) to𝐻𝑞(𝔘,ℱ). From now on, this homomorphism will be denoted
by 𝜎(𝔘,𝔙).

22. Cohomology groups of 𝑋 with values in a sheafℱ
The relation “𝔘 is finer than𝔙” (which we denote henceforth by𝔘 ≺ 𝔙) is a relation of
a preorder between coverings of 𝑋; moreover, this relation is filtered, since if𝔘 = {𝑈𝑖}𝑖∈𝐼
and𝔙 = {𝑉𝑗}𝑗∈𝐽 are two coverings,𝔚 = {𝑈𝑖 ∩𝑉𝑗}(𝑖,𝑗)∈𝐼×𝐽 is a covering finer than𝔘 and
than𝔙.

We say that two coverings 𝔘 and 𝔙 are equivalent if we have 𝔘 ≺ 𝔙 and 𝔙 ≺ 𝔘.
Any covering𝔘 is equivalent to a covering𝔘′ whose set of indices is a subset of𝔓(𝑋);
in fact, we can take for𝔘′ the set of open subsets of 𝑋 belonging to the family𝔘. We can
thus speak of the set of classes of coverings with respect to this equivalence relation; this
is an ordered filtered set.

If𝔘 ≺ 𝔙, we have defined at the end of the preceding n◦ a well defined homomor-
phism 𝜎(𝔘,𝔙)∶ 𝐻𝑞(𝔙,ℱ)→ 𝐻𝑞(𝔘,ℱ), defined for every integer 𝑞 ≥ 0 and every sheaf
ℱ on 𝑋. It is clear that 𝜎(𝔘,𝔘) is the identity and that 𝜎(𝔘,𝔙)◦𝜎(𝔙,𝔚) = 𝜎(𝔘,𝔚)
if 𝔘 ≺ 𝔙 ≺ 𝔚. It follows that, if 𝔘 is equivalent to 𝔙, then 𝜎(𝔘,𝔙) and 𝜎(𝔙,𝔘)
are inverse isomorphisms; in other words, 𝐻𝑞(ℱ,𝔘) depends only on the class of the
covering𝔘.
Definition. We call the 𝑞-th cohomology group of 𝑋 with values in a sheaf ℱ, and de-
note by𝐻𝑞(𝑋,ℱ), the inductive limit of groups𝐻𝑞(𝔘,ℱ), where𝔘 runs over the filtered
ordering of classes of coverings of 𝑋, with respect to the homomorphisms 𝜎(𝔘,𝔙).

In other words, an element of𝐻𝑞(𝑋,ℱ) is just a pair (𝔘, 𝑥) with 𝑥 ∈ 𝐻𝑞(𝔘,ℱ), and
we identify two such pairs (𝔘, 𝑥) and (𝔙, 𝑦) whenever there exists a𝔚 with𝔚 ≺ 𝔘,
𝔚 ≺ 𝔙 and 𝜎(𝔚,𝔘)(𝑥) = 𝜎(𝔚,𝔙)(𝑦) in𝐻𝑞(𝔚,ℱ). To every covering𝔘 in 𝑋 is thus
attached a canonical homomorphism 𝜎(𝑈)∶ 𝐻𝑞(𝔘,ℱ)→ 𝐻𝑞(𝑋,ℱ).

We will see that 𝐻𝑞(𝑋,ℱ) can also be defined by an inductive limit of 𝐻𝑞(𝔘,ℱ)
where 𝔘 runs over a cofinal family of coverings. Thus, if 𝑋 is quasi-compact (resp.
quasi-paracompact), we can consider only finite (resp. locally finite) coverings.

When 𝑞 = 0, by Proposition 1 we have:
Proposition 4. 𝐻0(𝑋,ℱ) = 𝛤(𝑋,ℱ).
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23. Homomorphisms of sheaves

Let 𝜙 be a homomorphism from a sheaf ℱ to a sheaf 𝒢. If𝔘 is a covering of 𝑋, we can
assign to any 𝑓 ∈ 𝐶𝑞(𝔘,ℱ) an element 𝜙𝑓 ∈ 𝐶𝑞(𝔘,𝒢) defined by the formula (𝜙𝑓)𝑠 =
𝜙(𝑓𝑠). The mapping 𝑓 ↦ 𝜙𝑓 is a homomorphism from 𝐶(𝔘,ℱ) to 𝐶(𝔘,𝒢) commuting
with the coboundary, thus it defines homomorphisms 𝜙∗∶ 𝐻𝑞(𝔘,ℱ)→ 𝐻𝑞(𝔘,𝒢). We
have 𝜙∗◦𝜎(𝔘,𝔙) = 𝜎(𝔘,𝔙)◦𝜓∗, hence, by passing to the limit, homomorphisms

𝜙∗∶ 𝐻𝑞(𝑋,ℱ)→ 𝐻𝑞(𝑋,𝒢).

When 𝑞 = 0, 𝜙∗ coincides with the homomorphism from 𝛤(𝑋,ℱ) to 𝛤(𝑋,𝒢) induced
in a natural way by 𝜙.

In general, the homomorphisms 𝜙∗ satisfy usual formal properties:

(𝜙 + 𝜓)∗ = 𝜙∗ + 𝜓∗, (𝜙◦𝜓)∗, 1∗ = 1.

In other words, for all 𝑞 ≥ 0,𝐻𝑞(𝑋,ℱ) is a covariant additive functor of ℱ. Hence
we gather that if ℱ is the direct sum of two sheaves 𝒢1 and 𝒢2, then 𝐻𝑞(𝑋,ℱ) is the
direct sum of𝐻𝑞(𝑋,𝒢1) and𝐻𝑞(𝑋,𝒢2).

Suppose that ℱ is a sheaf of𝒜-modules. Any section of𝒜 on 𝑋 defines an endomor-
phism of ℱ, therefore of 𝐻𝑞(𝑋,ℱ). It follows that 𝐻𝑞(𝑋,ℱ) are modules over the ring
𝛤(𝑋,𝒜).

24. Exact sequence of sheaves: the general case

Let 0→ 𝒜 𝛼,→ ℬ 𝛽,→ 𝒞→ 0 be an exact sequence of sheaves. If𝔘 is a covering of 𝑋, the
sequence

0→ 𝐶(𝔘,𝒜) 𝛼,→ 𝐶(𝔘,ℬ) 𝛽,→ 𝐶(𝔘,𝒞)
is obviously exact, but the homomorphism 𝛽 need not be surjective in general. Denote
by 𝐶0(𝔘,𝒞) the image of this homomorphism; it is a subcomplex of 𝐶(𝔘,𝒞) whose
cohomology groups will be denoted by𝐻𝑞

0 (𝔘,𝒞). The exact sequence of complexes:

0→ 𝐶(𝔘,𝒜)→ 𝐶(𝔘,ℬ)→ 𝐶0(𝔘,𝒞)→ 0

giving rise to an exact sequence of cohomology:

…→ 𝐻𝑞(𝔘,ℬ)→ 𝐻𝑞
0 (𝔘,𝒞)

𝑑,→ 𝐻𝑞+1(𝔘,𝒜)→ 𝐻𝑞+1(𝔘,ℬ)→ … ,

where the coboundary operator 𝑑 is defined as usual.
Now let 𝔘 = {𝑈𝑖}𝑖∈𝐼 and 𝔙 = {𝑉𝑗}𝑗∈𝐽 be two coverings and let 𝜏∶ 𝐼 → 𝐽 be such

that 𝑈𝑖 ⊂ 𝑉𝜏𝑖 ; we thus have𝔘 ≺ 𝔙. The commutative diagram:

0 𝐶(𝔙,𝒜) 𝐶(𝔙,ℬ) 𝐶(𝔙,𝒞)

0 𝐶(𝔘,𝒜) 𝐶(𝔘,ℬ) 𝐶(𝔘,𝒞)

𝜏 𝜏 𝜏

shows that 𝜏maps𝐶0(𝔙,𝒞) into𝐶0(𝔘,𝒞), thus defining the homomorphisms 𝜏∗∶ 𝐻𝑞
0 (𝔙,𝒞)→

𝐻𝑞
0 (𝔘,𝒞). Moreover, the homomorphisms 𝜏∗ are independent of the choice of the map-

ping 𝜏: this follows from the fact that, if 𝑓 ∈ 𝐶𝑞0 (𝔙,𝒞), we have 𝑘𝑓 ∈ 𝐶𝑞−10 (𝔘,𝒞), with
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the notation of the proof of Proposition 3. We have thus obtained canonical homo-
morphisms 𝜎(𝔘,𝔙)∶ 𝐻𝑞

0 (𝔙,𝒞) → 𝐻𝑞
0 (𝔘,𝒞); we can then define 𝐻

𝑞
0 (𝑋,𝒞) to be the

inductive limit of the groups𝐻𝑞
0 (𝔘,𝒞).

Because an inductive limit of exact sequences is an exact sequence (cf. [7], Chapter
VIII, theorem 5.4), we obtain:

Proposition 5. The sequence

…→ 𝐻𝑞(𝑋,ℬ) 𝛽∗,,→ 𝐻𝑞
0 (𝑋,𝒞)

𝑑,→ 𝐻𝑞+1(𝑋,𝒜) 𝛼∗,,→ 𝐻𝑞+1(𝑋,ℬ)→ …

is exact.

(𝑑 denotes the homomorphism obtained by passing to the limit with the homomor-
phisms 𝑑∶ 𝐻𝑞

0 (𝔘,𝒞)→ 𝐻𝑞+1(𝔘,𝒜)).
To be able to apply the preceding Proposition, it is convenient to compare the groups

𝐻𝑞
0 (𝑋,𝒞) and 𝐻𝑞(𝑋,𝒞). The inclusion of 𝐶0(𝔘,𝒞) in 𝐶(𝔘,𝒞) defines the homomor-

phisms 𝐻𝑞
0 (𝔘,𝒞) → 𝐻𝑞(𝔘,𝒞), hence, by passing to the limit with 𝔘, the homomor-

phisms:
𝐻𝑞
0 (𝑋,𝒞)→ 𝐻𝑞(𝑋,𝒞).

Proposition 6. The canonical homomorphism 𝐻𝑞
0 (𝑋,𝒞) → 𝐻𝑞(𝑋,𝒞) is bijective for

𝑞 = 0 and injective for 𝑞 = 1.

We will prove the following lemma:

Lemma 1. Let 𝔙 = {𝑉𝑗}𝑗∈𝐽 be a covering and let 𝑓 = (𝑓𝑗) be an element of 𝐶0(𝔙,𝒞).
There exists a covering 𝔘 = {𝑈𝑖}𝑖∈𝐼 and a mapping 𝜏∶ 𝐼 → 𝐽 such that 𝑈𝑖 ⊂ 𝑉𝜏𝑖 and
𝜏𝑓 ∈ 𝐶00(𝔘,𝒞).

For any 𝑥 ∈ 𝑋, take a 𝜏𝑥 ∈ 𝐽 such that 𝑥 ∈ 𝑉𝜏𝑥. Since 𝑓𝜏𝑥 is a section of 𝒞 over 𝑉𝜏𝑥,
there exists an open neighbourhood𝑈𝑥 of 𝑥, contained in 𝑉𝜏𝑥 and a section 𝑏𝑥 ofℬ over
𝑈𝑥 such that 𝛽(𝑏𝑥) = 𝑓𝜏𝑥 on 𝑈𝑥. The {𝑈𝑥}𝑥∈𝑋 form a covering𝔘 of 𝑋, and the 𝑏𝑥 form
a 0-chain 𝑏 of𝔘 with values in𝔙; since 𝜏𝑓 = 𝛽(𝑏), we have that 𝜏𝑓 ∈ 𝐶00(𝔘,𝒞).

We will now show that𝐻1
0(𝑋,𝒞)→ 𝐻1(𝑋,𝒞) is injective. An element of the kernel

of this mapping may be represented by a 1-cocycle 𝑧 = (𝑧𝑗0𝑗1) ∈ 𝐶′0(𝔙,𝒞) such that there
exists an 𝑓 = (𝑓𝑗) ∈ 𝐶0(𝔙,𝒞) with 𝑑𝑓 = 𝑧; applying Lemma 1 to 𝑓 yields a covering𝔘
such that 𝜏𝑓 ∈ 𝐶00(𝔘,𝒞), which shows that 𝜏𝑧 is cohomologous to 0 in 𝐶0(𝔘,𝒞), thus
its image in𝐻1

0(𝑋,𝒞) is 0. This shows that𝐻0
0(𝑋,𝒞)→ 𝐻0(𝑋,𝒞) is bijective.

Corollary 1. We have an exact sequence:

0→ 𝐻0(𝑋,𝒜)→ 𝐻0(𝑋,ℬ)→ 𝐻0(𝑋,𝒞)→ 𝐻1(𝑋,𝒜)→ 𝐻1(𝑋,ℬ)→ 𝐻1(𝑋,𝒞).

This is an immediate consequence of Propositions 5 and 6.

Corollary 2. If𝐻1(𝑋,𝒜) = 0, then 𝛤(𝑋,ℬ)→ 𝛤(𝑋,𝒞) is surjective.
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25. Exact sequence of sheaves: the case of 𝑋 paracompact

Recall that a space𝑋 is said to be paracompact if it is separated and if every covering of𝑋
admits a locally finite finer covering. On paracompact spaces, we can extend Proposition
6 to all values of 𝑞 (I do not know whether that extension is possible for nonseparated
spaces):

Proposition 7. If 𝑋 is paracompact, the canonical homomorphism

𝐻𝑞
0 (𝑋,𝒞)→ 𝐻𝑞(𝑋,𝒞)

is bijective for all 𝑞 ≥ 0.

This Proposition is an immediate consequence of the following lemma, analogous to
Lemma 1:

Lemma 2. Let𝔙 = {𝑉𝑗}𝑗∈𝐽 be a covering, and let 𝑓 = (𝑓𝑗0…𝑗𝑞 ) be an element of 𝐶𝑞(𝔙,𝒞).
There exists a covering 𝔘 = {𝑈𝑖}𝑖∈𝐼 and a mapping 𝜏∶ 𝐼 → 𝐽 such that 𝑈𝑖 ⊂ 𝑉𝜏𝑖 and
𝜏𝑓 ∈ 𝐶𝑞0 (𝔘,𝒞).

Since 𝑋 is paracompact, we might assume that𝔙 is locally finite. Then there exists a
covering {𝑊𝑗}𝑗∈𝐽 such that𝑊𝑗 ⊂ 𝑉𝑗. For every 𝑥 ∈ 𝑋, choose an open neighbourhood
𝑈𝑥 of 𝑥 such that

(a) If 𝑥 ∈ 𝑉𝑗 (resp. 𝑥 ∈𝑊𝑗), then 𝑈𝑥 ⊂ 𝑉𝑗 (resp. 𝑈𝑥 ⊂ 𝑊𝑗),
(b) If 𝑈𝑥 ∩𝑊𝑗 ≠ ∅, then 𝑈𝑥 ⊂ 𝑊𝑗,
(c) If 𝑥 ∈ 𝑉𝑗0…𝑗𝑞 , there exists a section 𝑏 of ℬ over 𝑈𝑥 such that 𝛽(𝑏) = 𝑓𝑗0…𝑗𝑞 over

𝑈𝑥.
The condition (c) can be satisfied due to the definition of the quotient sheaf and to

the fact that 𝑥 belongs to a finite number of sets 𝑉𝑗0…𝑗𝑞 . Having (c) satisfied, it suffices to
restrict 𝑈𝑥 appropriately to satisfy (a) and (b).

The family {𝑈𝑥}𝑥∈𝑋 forms a covering 𝔘; for any 𝑥 ∈ 𝑋, choose 𝜏𝑥 ∈ 𝐽 such that
𝑥 ∈ 𝑊𝜏𝑥. We now check that 𝜏𝑓 belongs to 𝐶𝑞0 (𝑈,𝒞), in other words, that 𝑓𝜏𝑥0…𝜏𝑥𝑞 is
the image by 𝛽 of a section of ℬ over 𝑈𝑥0 ∩ … ∩𝑈𝑥𝑞 . If 𝑈𝑥0 ∩ … ∩𝑈𝑥𝑞 is empty, this is
obvious; if not, we have 𝑈𝑥0 ∩ 𝑈𝑥𝑘 ≠ ∅ for 0 ≤ 𝑘 ≤ 𝑞, and since 𝑈𝑥𝑘 ⊂ 𝑈𝜏𝑥𝑘 , we have
𝑈𝑥0 ∩𝑊𝜏𝑥𝑘 ≠ ∅, which implies by (b) that 𝑈𝑥0 ⊂ 𝑉𝜏𝑥𝑘 , hence 𝑥0 ∈ 𝑉𝜏𝑥0…𝜏𝑥𝑞 ; we then
apply (c), seeing that there exists a section 𝑏 of ℬ over 𝑈𝑥0 such that 𝛽(𝑏)𝑥 = 𝑓𝜏𝑥0…𝜏𝑥𝑞
on 𝑈𝑥0 , so also on 𝑈𝑥0 ∩ … ∩𝑈𝑥𝑞 , which ends the proof.

Corollary. If 𝑋 is paracompact, we have an exact sequence:

…→ 𝐻𝑞(𝑋,ℬ) 𝛽∗,,→ 𝐻𝑞(𝑋,𝒞) 𝑑,→ 𝐻𝑞+1(𝑋,𝒜) 𝛼∗,,→ 𝐻𝑞+1(𝑋,ℬ)→ …

Themap𝑑 is defined to be the composite of the inverse of the isomorphism𝐻𝑞
0 (𝑋,𝒞)→

𝐻𝑞(𝑋,𝒞) with 𝑑∶ 𝐻𝑞
0 (𝑋,𝒞)→ 𝐻𝑞+1(𝑋,𝒜).

The exact sequence mentioned above is called the exact sequence of cohomology
defined by a given exact sequence of sheaves 0→ 𝒜→ ℬ → 𝒞→ 0. More generally, it
exists whenever we can show that𝐻𝑞

0 (𝑋,𝒞)→ 𝐻𝑞(𝑋,𝒞) is bijective (we will see in n◦ 47
that this is the case when 𝑋 is an algebraic variety and𝒜 is an algebraic coherent sheaf).
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26. Cohomology of a closed subspace

Let ℱ be a sheaf over a space 𝑋, and let 𝑌 be a subspace of 𝑌. Let ℱ(𝑌) be the
sheaf induced by ℱ on 𝑌, in the sense of n◦ 4. If 𝔘 = {𝑈𝑖}𝑖∈𝐼 is a covering of 𝑋,
the sets 𝑈′

𝑖 = 𝑌 ∩ 𝑈𝑖 form a covering 𝔘′ of 𝑌; if 𝑓𝑖0…𝑖𝑄 is a section of ℱ over 𝑈𝑖0…𝑖𝑞 ,
the restriction of 𝑓𝑖0…𝑖𝑞 to 𝑈′

𝑖0…𝑖𝑞 = 𝑌 ∩ 𝑈𝑖0…𝑖𝑞 is a section of ℱ(𝑌). The operation
of restriction is a homomorphism 𝜌∶ 𝐶(𝔘,ℱ) → 𝐶(𝔘′,ℱ(𝑌)), commuting with 𝑑,
thus defining 𝜌∗∶ 𝐻𝑞(𝔘,ℱ) → 𝐻𝑞(𝔘′,ℱ(𝑌)). If 𝔘 ≺ 𝔙, we have 𝔘′ ≺ 𝔙′, and
𝜌∗◦𝜎(𝔘,𝔙) = 𝜎(𝔘′,𝔙′)◦𝜌∗; thus the homomorphisms 𝜌∗ define, by passing to the limit
with𝔘, homomorphisms 𝜌∗∶ 𝐻𝑞(𝑋,ℱ)→ 𝐻𝑞(𝑌,ℱ(𝑌)).

Proposition 8. Assume that 𝑌 is closed in 𝑋 and thatℱ is zero outside 𝑌. Then

]𝜌∗∶ 𝐻𝑞(𝑋,ℱ)→ 𝐻𝑞(𝑌,ℱ(𝑌))

is bijective for all 𝑞 ≥ 0.

The Proposition is implied by the following facts:
(a) Any covering𝔚 = {𝑊𝑖}𝑖∈𝐼 of 𝑌 is of the form𝔘′ for some covering𝔘 of 𝑋.
Indeed, it suffices to put 𝑈𝑖 =𝑊𝑖 ∪ (𝑋 − 𝑌), since 𝑌 is closed in 𝑋.
(b) For any covering𝔘 of 𝑋, 𝜌∶ 𝐶(𝔘,ℱ)→ 𝐶(𝔘′,ℱ(𝑌)) is bijective. Indeed, the

result follows from Proposition 5 of n◦ 5, applied to 𝑈𝑖0…𝑖𝑞 and the sheaf ℱ.
We can also express Proposition 8 in the following manner: If 𝒢 is a sheaf on 𝑌, and

if 𝒢𝑋 is the sheaf obtained by extending 𝒢 by 0 outside 𝑌, we have𝐻𝑞(𝑌,𝒢) = 𝐻𝑞(𝑋,𝒢𝑋)
for all 𝑞 ≥ 0; in other words, the identification of 𝒢 with 𝒢𝑋 is compatible with passing
to cohomology groups.

§4. Comparison of cohomology groups of different
coverings

In this paragraph, 𝑋 denotes a topological space and ℱ is a sheaf on 𝑋. We propose to
give conditions on a covering𝔘 of 𝑋, under which we have𝐻𝑛(𝔘,ℱ) = 𝐻𝑛(𝑋,ℱ) for
all 𝑛 ≥ 0.

27. Double complexes

A double complex (cf. [6], Chapter VI, §4) is a bigraded abelian group

𝐾 =
⨁

𝑝,𝑞
𝐾𝑝,𝑞, 𝑝 ≥ 0, 𝑞 ≥ 0,

equipped with two endomorphisms 𝑑′ and 𝑑′′ satisfying the following conditions:

{ 𝑑
′ maps 𝐾𝑝,𝑞 to 𝐾𝑝+1,𝑞

𝑑′′ maps 𝐾𝑝,𝑞 to 𝐾𝑝,𝑞+1

⎧
⎨
⎩

𝑑′◦𝑑′ = 0
𝑑′◦𝑑′′ + 𝑑′′◦𝑑′ = 0
𝑑′′◦𝑑′′ = 0.

An element of 𝐾𝑝,𝑞 is said to be bihomogenous of bidegree (𝑝, 𝑞), and of total degree
𝑝+ 𝑞. The endomorphism 𝑑 = 𝑑′ + 𝑑′′ satisfies 𝑑◦𝑑 = 0, and the cohomology groups of
𝐾 with respect to this coboundary operator are denoted by𝐻𝑛(𝐾), where 𝑛means the
total degree.
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We can treat 𝑑′ as a coboundary operator on 𝐾; since 𝑑′ is compatible with the
bigrading of 𝐾, we also obtain cohomology groups, denoted by 𝐻𝑝,𝑞

𝐼 (𝐾); for 𝑑′′, we have
the groups𝐻𝑝,𝑞

𝐼𝐼 (𝐾).
We denote by 𝐾𝑞

𝐼𝐼 the subgroup of 𝐾0,𝑞 consisting of elements 𝑥 such that 𝑑′(𝑥) = 0,
and by 𝐾𝐼𝐼 the direct sum of 𝐾𝑞

𝐼𝐼 (𝑞 = 0, 1,…). We have an analogous definition of
𝐾𝐼 =

⨁∞
𝑝=0 𝐾

𝑝
𝐼 . We note that

𝐾𝑞
𝐼𝐼 = 𝐻0,𝑞

𝐼 (𝐾) and 𝐾𝑝
𝐼 = 𝐻𝑝,0

𝐼𝐼 (𝐾).

𝐾𝐼𝐼 is a subcomplex of 𝐾, and the operator 𝑑 coincides on 𝐾𝐼𝐼 with the operator 𝑑′′.

Proposition 1. If 𝐻𝑝,𝑞
𝐼 (𝐾) = 0 for 𝑝 > 0 and 𝑞 ≥ 0, the inclusion 𝐾𝐼𝐼 → 𝐾 defines a

bijection from𝐻𝑛(𝐾𝐼𝐼) to𝐻𝑛(𝐾), for all 𝑛 ≥ 0.

(Cf. [4], statement XVII-6, whose proof we shall repeat here).
By replacing 𝐾 by 𝐾∕𝐾𝐼𝐼 , we are led to prove that if𝐻𝑝,𝑞

𝐼 (𝐾) = 0 for 𝑝 ≥ 0 and 𝑞 ≥ 0,
then𝐻𝑛(𝐾) = 0 for all 𝑛 ≥ 0. Put

𝐾ℎ =
⨁

𝑞≥ℎ
𝐾𝑝,𝑞.

The groups 𝐾ℎ (ℎ = 0, 1,…) are subcomplexes embedded in 𝐾, and 𝐾ℎ∕𝐾ℎ+1 is iso-
morphic to

⨁∞
𝑝=0 𝐾𝑝,ℎ, equipped with the coboundary operator 𝑑′. We thus have

𝐻𝑛(𝐾ℎ∕𝐾ℎ+1) = 𝐻ℎ,𝑛−ℎ
𝐼 (𝐾) = 0 for any 𝑛 and ℎ, therefore 𝐻𝑛(𝐾ℎ) = 𝐻𝑛(𝐾ℎ+1). Since

𝐻𝑛(𝐾ℎ) = 0 if ℎ > 𝑛, we deduce, by descending recursion on ℎ, that𝐻𝑛(𝐾ℎ) = 0 for all
𝑛 and ℎ, and since 𝐾0 is equal to 𝐾, the Proposition follows.

28. The double complex defined by two coverings

Let 𝔘 = {𝑈𝑖}𝑖∈𝐼 and𝔙 = {𝑉𝑗}𝑗∈𝐽 be two coverings of 𝑋. If 𝑠 is a 𝑝-simplex of 𝑆(𝐼) and
𝑠′ a 𝑞-simplex of 𝑆(𝐽), we denote by 𝑈𝑠 the intersection of 𝑈𝑖, 𝑖 ∈ 𝑠 (cf. n◦ 18), the
intersection of 𝑉𝑗, 𝑗 ∈ 𝑠′, by𝔙𝑠 the covering of 𝑈𝑠 formed by {𝑈𝑠 ∩ 𝑉𝑗}𝑗∈𝐽 and by 𝔘𝑠′
the covering of 𝑉𝑠′ formed by {𝑉𝑠′ ∩𝑈𝑖}𝑖∈𝐼 .

We define a double complex 𝐶(𝔘,𝔙;ℱ) =⨁
𝑝,𝑞 𝐶𝑝,𝑞(𝔘,𝔙;ℱ) as follows:

𝐶𝑝,𝑞(𝔘,𝔙;ℱ) =∏𝛤(𝑈𝑠 ∩ 𝑉𝑠′ ,ℱ), the product taken over all pairs (𝑠, 𝑠′) where 𝑠 is
a simplex of dimension 𝑝 of 𝑆(𝐼) and 𝑠′ is a simplex of dimension 𝑞 of 𝑆(𝐽).

An element 𝑓 ∈ 𝐶𝑝,𝑞(𝔘,𝔙;ℱ) is thus a system (𝑓𝑠,𝑠′) of sections ofℱ on𝑈𝑠 ∩𝑉𝑠′ or,
with the notation of n◦ 18, it is a system

𝑓𝑖0…𝑖𝑝 ,𝑗0…𝑗𝑞 ∈ 𝛤(𝑈𝑖0…𝑖𝑝 ∩ 𝑉𝑗0…𝑗𝑞 ,ℱ).

We can also identify 𝐶𝑝,𝑞(𝔘,𝔙;ℱ) with∏𝑠′ 𝐶𝑝(𝔘𝑠′ ,ℱ); thus, for all 𝑠′, we have a
coboundary operator 𝑑∶ 𝐶𝑝(𝔘𝑠′ ,ℱ → 𝐶𝑝+1(𝔘𝑠′ ,ℱ), giving a homomorphism

𝑑𝔘∶ 𝐶𝑝,𝑞(𝔘,𝔙;ℱ)→ 𝐶𝑝+1,𝑞(𝔘,𝔙;ℱ).

Making the definition of 𝑑𝔘 explicit, we obtain:

(𝑑𝔘𝑓)𝑖0…𝑖𝑝+1,𝑗0…𝑗𝑞 =
𝑘=𝑝+1∑

𝑘=0
(−1)𝑘𝜌𝑘(𝑓𝑖0…𝑖𝑘…𝑖𝑝+1,𝑗0…𝑗𝑞 ),
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𝜌𝑘 being the restriction homomorphism defined by the inclusion of

𝑈𝑖0…𝑖𝑝 ∩ 𝑉𝑗0…𝑗𝑞 in 𝑈𝑖0…𝑖𝑘…𝑖𝑝+1 ∩ 𝑉𝑗0…𝑗𝑞 .

We define 𝑑𝔙∶ 𝐶𝑝,𝑞(𝔘,𝔙;ℱ)→ 𝐶𝑝,𝑞+1(𝔘,𝔙;ℱ) the same way and we have

(𝑑𝔙𝑓)𝑖0…𝑖𝑝 ,𝑗0…𝑗𝑞+1 =
ℎ=𝑞+1∑

ℎ=0
(−1)ℎ𝜌ℎ(𝑓𝑖0…𝑖𝑝 ,𝑗0…�̂�ℎ…𝑗𝑞+1).

It is clear that𝑑𝔘◦𝑑𝔘 = 0, 𝑑𝔘◦𝑑𝔙 = 𝑑𝔙◦𝑑𝔘, 𝑑𝔙◦𝑑𝔙 = 0. We thus put𝑑′ = 𝑑𝔘, 𝑑′′ =
(−1)𝑝𝑑𝔙, equipping 𝐶(𝔘,𝔙;ℱ) with a structure of a double complex. We now apply to
𝐾 = 𝐶(𝔘,𝔙;ℱ) the definitions from the preceding n◦ ; the groups or complexes denoted
in the general case by 𝐻𝑛(𝐾), 𝐻𝑝,𝑞

𝐼 (𝐾), 𝐻𝑝,𝑞
𝐼 (𝐾), 𝐻𝑝,𝑞

𝐼𝐼 (𝐾), 𝐾𝐼 , 𝐾𝐼𝐼 will be denoted by
𝐻𝑛(𝔘,𝔙;ℱ),𝐻𝑝,𝑞

𝐼 (𝔘,𝔙;ℱ),𝐻𝑝,𝑞
𝐼𝐼 (𝔘,𝔙;ℱ), 𝐶𝐼(𝔘,𝔙;ℱ) and 𝐶𝐼𝐼(𝔘,𝔙;ℱ), respectively.

From the definitions of 𝑑′ and 𝑑′′, we immediately obtain:

Proposition 2. 𝐻𝑝,𝑞
𝐼 (𝔘,𝔙;ℱ) is isomorphic to∏𝑠′ 𝐻𝑝(𝔘𝑠′ ,ℱ), the product being taken

over all simplexes of dimension 𝑞 of 𝑆(𝐽). In particular,

𝐶𝑞𝐼𝐼(𝔘,𝔙;ℱ) = 𝐻0,𝑞
𝐼 (𝔘,𝔙;ℱ)

is isomorphic to
∏

𝑠′ 𝐻0(𝔘𝑠′ ,ℱ) = 𝐶𝑞(𝔙,ℱ).

We denote by 𝜄′′ the canonical isomorphism: 𝐶(𝔙,ℱ)→ 𝐶𝐼𝐼(𝔘,𝔙;ℱ). If (𝑓𝑗0…𝑗𝑞 ) is
an element of 𝐶𝑞(𝔙,ℱ), we thus have

(𝜄′′𝑓)𝑖0,𝑗0…𝑗𝑞 = 𝜌𝑖0(𝑓𝑗0…𝑗𝑞 ),

where 𝜌𝑖0 denotes the restriction homomorphism defined by the inclusion of

𝑈𝑖0 ∩ 𝑉𝑗0…𝑗𝑞 in 𝑉𝑗0…𝑗𝑞 .

Obviously, a statement analogous to Proposition 2 holds for𝐻𝑝,𝑞
𝐼 𝐼(𝔘,𝔙;ℱ), and we

have an isomorphism 𝜄′∶ 𝐶(𝔘,ℱ)→ 𝐶𝐼(𝔘,𝔙;ℱ).

29. Applications

Proposition 3. Assume that 𝐻𝑝(𝔘𝑠′ ,ℱ) = 0 for every 𝑠′ and all 𝑝 > 0. Then the
homomorphism𝐻𝑛(𝔙,ℱ)→ 𝐻𝑛(𝔘,𝔙;ℱ), defined by 𝜄′′, is bijective for all 𝑛 ≥ 0.

This is an immediate consequence of Propositions 1 and 2.
Before stating Proposition 4, we prove a lemma:

Lemma 1. Let𝔚 = {𝑊𝑖}𝑖∈𝐼 be a covering of a space 𝑌 and letℱ be a sheaf on 𝑌. If there
exists an 𝑖 ∈ 𝐼 such that𝑊𝑖 = 𝑌, then𝐻𝑝(𝔚,ℱ) = 0 for all 𝑝 > 0.

Let 𝔚′ be a covering of 𝑌 consisting of a single open set 𝑌; we obviously have
𝔚 ≺ 𝔚′, and the assumption made on𝔚means that𝔚′ ≺ 𝔚. In result (n◦ 22) we
have𝐻𝑝(𝔚,ℱ) = 𝐻𝑝(𝔚′,ℱ) = 0 if 𝑝 > 0.

Proposition 4. Suppose that the covering𝔙 is finer than the covering𝔘. Then 𝜄′′∶ 𝐻𝑛(𝔙,ℱ)→
𝐻𝑛(𝔘,𝔙;ℱ) is bijective for all 𝑛 ≥ 0. Moreover, the homomorphism 𝜄′◦𝜄′′−1∶ 𝐻𝑛(𝔘,ℱ)→
𝐻𝑛(𝔙,ℱ) coincides with the homomorphism 𝜎(𝔙,𝔘) defined in n◦ 21.
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We apply Lemma 1 to𝔚 = 𝔘𝑠′ and 𝑌 = 𝑉𝑠′ , seeing that 𝐻𝑝(𝔘𝑠′ ,ℱ) = 0 for all
𝑝 > 0, and then Proposition 3 shows that

𝜄′′∶ 𝐻𝑛(𝔙,ℱ)→ 𝐻𝑛(𝔘,𝔙;ℱ)

is bijective for all 𝑛 ≥ 0.
Let 𝜏∶ 𝐽 → 𝐼 be a mapping such that 𝑉𝑗 ⊂ 𝑈𝜏𝑗; for the proof of the second part of

the Proposition, we need to observe that if 𝑓 is an 𝑛-cocycle of 𝐶(𝔘,ℱ), the cocycles
𝜄′(𝑓) and 𝜄′′(𝜏𝑓) are cohomologous in 𝐶(𝔘,𝔙;ℱ).

For any integer 𝑝, 0 ≤ 𝑝 ≤ 𝑛 − 1, define 𝑔𝑝 ∈ 𝐶𝑝,𝑛−𝑝−1(𝔘,𝔙;ℱ) by the following
formula

𝑔𝑝𝑖0…𝑖𝑝 ,𝑗0…𝑗𝑛−𝑝−1 = 𝜌𝑝(𝑓𝑖0…𝑖𝑝𝜏𝑗0…𝜏𝑗𝑛−𝑝),

𝜌𝑝 denoting the restriction defined by the inclusion of

𝑈𝑖0…𝑖𝑝 ∩ 𝑉𝑗0…𝑗𝑛−𝑝−1 in 𝑈𝑖0…𝑖𝑝 ,𝜏𝑗0…𝜏𝑗𝑛−𝑝−1 .

We verify by a direct calculation (keeping in mind that 𝑓 is a cocycle) that we have

𝑑′′(𝑔0) = 𝜄′′(𝜏𝑓),… , 𝑑′′(𝑔𝑝) = 𝑑′(𝑔𝑝−1),…𝑑′(𝑔𝑛−1) = (−1)𝑛𝜄′(𝑓)

hence 𝑑(𝑔0 − 𝑔1 +…+ (−1)𝑛−1𝑔𝑛−1) = 𝜄′′(𝜏𝑓) − 𝜄′(𝑓), which shows that 𝜄′′(𝜏𝑓) and 𝜄′(𝑓)
are cohomologous.

Proposition 5. Suppose that 𝔙 is finer than 𝔘 and that 𝐻𝑞(𝔙𝑠,ℱ) = 0 for all 𝑠 and
all 𝑞 > 0. Then the homomorphism 𝜎(𝔙,𝔘)∶ 𝐻𝑛(𝔘,ℱ) → 𝐻𝑛(𝔙,ℱ) is bijective for all
𝑛 ≥ 0.

If we apply Proposition 3, switching the roles of𝔘 and𝔙, we see that 𝜄′ ∶ 𝐻𝑛(𝔙,ℱ)→
𝐻𝑛(𝔘,𝔙;ℱ) is bijective. The Proposition then follows directly from Proposition 4.

Theorem 1. Let 𝑋 be a topological space, 𝔘 = {𝑈𝑖}𝑖∈𝐼 a covering of 𝑋, ℱ a sheaf on 𝑋.
Assume that there exists a family 𝔙𝛼, 𝛼 ∈ 𝐴 of coverings of 𝑋 satisfying the following
properties:

(a) For any covering𝔚 of 𝑋, there exists an 𝛼 ∈ 𝐴 with𝔙𝛼 ≺𝔚,
(b)𝐻𝑞(𝔙𝛼

𝑠 ,ℱ) = 0 for all 𝛼 ∈ 𝐴, all simplexes 𝑠 ∈ 𝑆(𝐼) and every 𝑞 > 0,
Then 𝜎(𝔘)∶ 𝐻𝑛(𝔘,ℱ)→ 𝐻𝑛(𝑋,ℱ) is bijective for all 𝑛 ≥ 0.

Since𝔙𝛼 are arbitrarily fine, we can assume that they are finer than𝔘. In this case,
the homomorphism

𝜎(𝔙𝛼,𝔘)∶ 𝐻𝑛(𝔘,ℱ)→ 𝐻𝑛(𝔙𝛼,ℱ)
is bijective for all 𝑛 ≥ 0, by Proposition 5. Because𝔙𝛼 are arbitrarily fine,𝐻𝑛(𝑋,ℱ) is
the inductive limit of𝐻𝑛(𝔙𝛼,ℱ), and the theorem follows.

Remarks. (1) It is probable that Theorem1 remains validwhenwe replace the condition
(b) with the following weaker condition: (b′) lim𝛼𝐻𝑞(𝔙𝛼

𝑠 ,ℱ) = 0 for every simplex 𝑠 of
𝑆(𝐼) and every 𝑞 > 0.

(2) Theorem 1 is analogous to a theorem of Leray on acyclic coverings. Cf. [10] and
also [4], statement XVII-7.



Chapter II

Algebraic Varieties – Coherent
Algebraic Sheaves on Affine
Varieties

From now on, 𝐾 denotes a commutative algebraically closed field of arbitrary character-
istic.

§1. Algebraic varieties

30. Spaces satisfying condition (A)

Let 𝑋 be a topological space. The condition (A) is the following:
(A) — Any decreasing sequence of closed subsets of 𝑋 is stationary.

In other words, if we have 𝐹1 ⊃ 𝐹2 ⊃ 𝐹3 ⊃ …, 𝐹𝑖 being closed in 𝑋, there exists an
integer 𝑛 such that 𝐹𝑚 = 𝐹𝑛 for𝑚 ≥ 𝑛. Or:

(A′) — The set of closed subsets of 𝑋, ordered by inclusion, satisfies the minimality
condition

Example. Equip a set 𝑋 with the topology whose closed subsets are the finite subsets
of 𝑋 and the whole of 𝑋; condition (A) is then satisfied. More generally, any algebraic
variety, equipped with Zariski topology, satisfies (A) (cf. n◦ 34).

Proposition 1. (a) If 𝑋 satisfies (A), then 𝑋 is quasi-compact,

(b) If 𝑋 satisfies (A), then every subspace of 𝑋 satisfies it also.

(c) If 𝑋 is a finite union of 𝑌𝑖 satisfying (A), then 𝑋 also satisfies (A).

If 𝐹𝑖 is a filtering decreasing set of closed subsets of 𝑋, and if 𝑋 satisfies (A′), then
there exists an 𝐹𝑖 contained in all others; if

⋂𝐹𝑖 = ∅, there is therefore an 𝑖 such that
𝐹𝑖 = ∅, which shows (a).

Let 𝐺1 ⊃ 𝐺2 ⊃ 𝐺3 ⊃ … be a decreasing sequence of closed subsets of a subspace
𝑌 of 𝑋; if 𝑋 satisfies (A), there exists an 𝑛 for which �̄�𝑚 = �̄�𝑛 for 𝑚 ≥ 𝑛, hence
𝐺𝑚 = 𝑌 ∩ �̄�𝑚 = 𝑌 ∩ �̄�𝑛 = 𝐺𝑛, which shows (b).

Let 𝐹1 ⊃ 𝐹2 ⊃ 𝐹3 ⊃ … be a decreasing sequence of closed subsets of a space 𝑋
satisfying (c); since all𝑌𝑖 satisfy (A), there exists for all 𝑖 an 𝑛𝑖 such that𝐹𝑚∩𝑌𝑖 = 𝐹𝑛𝑖∩𝑌𝑖
for𝑚 ≥ 𝑛𝑖; if 𝑛 = sup(𝑛𝑖), we then have 𝐹𝑚 = 𝐹𝑛 for𝑚 ≥ 𝑛, which shows (c).

27
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A space 𝑋 is said to be irreducible if it is not a union of two closed subspaces, dis-
tinct from itself; or equivalently, if any two non-empty open subsets have a non-empty
intersection. Any finite family of non-empty open subsets of 𝑋 then has a non-empty
intersection, and any open subset of 𝑋 is also irreducible.

Proposition 2. Any space 𝑋 satisfying the condition (A) is a union of a finite number of
irreducible closed subsets 𝑌𝑖 . If we suppose that that 𝑌𝑖 is not contained in 𝑌𝑗 for any pair
(𝑖, 𝑗), 𝑖 ≠ 𝑗, the set of 𝑌𝑖 is uniquely determined by 𝑋; the 𝑌𝑖 are then called the irreducible
components of 𝑋.

The existence of a decomposite 𝑋 = ⋃𝑌𝑖 follows immediately from (A). If 𝑍𝑘 is
another such decomposite of 𝑋, we have 𝑌𝑖 =

⋃𝑌𝑖 ∩ 𝑍𝑘, and, since 𝑌𝑖 is irreducible,
this implies of an index 𝑘 such that 𝑍𝑘 ⊃ 𝑌𝑖; interchanging the roles of 𝑌𝑖 and 𝑍𝑘, we
conclude similarly that there exists an index 𝑖′ for which 𝑌𝑖′ ⊃ 𝑍𝑘; thus 𝑌𝑖 ⊂ 𝑍𝑘 ⊂ 𝑌𝑖′ ,
which by the assumption made on 𝑌𝑖 leads to 𝑖 = 𝑖′ and 𝑌𝑖 = 𝑍𝑘, hence the uniqueness
of the decomposite.

Proposition 3. Let 𝑋 be a topological space, union of a finite number of non-empty open
subsets𝑉𝑖 . Then𝑋 is irreducible if and only if all𝑉𝑖 are irreducible and𝑉𝑖 and𝑉𝑗 intersect
for all pairs (𝑖, 𝑗)

The necessity of these conditions was noted above; we show that they are sufficient.
If 𝑋 = 𝑌 ∪ 𝑍, where 𝑌 and 𝑍 are closed, we have 𝑉𝑖 = (𝑉𝑖 ∩𝑌) ∪ (𝑉𝑖 ∩ 𝑍), which shows
that each 𝑉𝑖 is contained either in 𝑌 or in 𝑍. Suppose that 𝑌 and 𝑍 are distinct from
𝑋; we can then find two indices 𝑖, 𝑗 such that 𝑉𝑖 is not contained in 𝑌 and 𝑉𝑗 is not
contained in 𝑍; according to our assumptions on 𝑌𝑖, we then have 𝑉𝑖 ⊂ 𝑍 and 𝑉𝑗 ⊂ 𝑌.
Set 𝑇 = 𝑉𝑗−𝑉𝑖∩𝑉𝑗; 𝑇 is closed in𝑉𝑗 and we have𝑉𝑗 = 𝑇∪(𝑍∩𝑉𝑗); as𝑉𝑗 is irreducible,
it follows that either 𝑇 = 𝑉𝑗, which means that 𝑉𝑖 ∩ 𝑉𝑗 = ∅, or 𝑍 ∩ 𝑉𝑗 = 𝑉𝑗, which
means that 𝑉𝑗 ⊂ 𝑍, and in both cases this leads to a contradiction, q.e.d.

31. Locally closed subsets of an affine space

Let 𝑟 be an integer ≥ 0 and let 𝑋 = 𝐾𝑟 be the affine space of dimension 𝑟 over the
field 𝐾. We equip 𝑋 with the Zariski topology; recall that a subset of 𝑋 is closed in this
topology if it is the zero set of a family of polynomials 𝑃𝛼 ∈ 𝐾[𝑋1,… , 𝑋𝑟]. Since the
ring of polynomials is Noetherian, 𝑋 satisfies the condition (A) from the preceding n◦ .
Moreover, one easily shows that 𝑋 is an irreducible space.

If 𝑥 = (𝑥1,… , 𝑥𝑟) is a point of 𝑋, we denote by 𝒪𝑥 the local ring of 𝑥; recall that this
is the subring of the field 𝐾(𝑋1,… , 𝑋𝑟) consisting of those fractions 𝑅 which can be put
in the form 𝑅 = 𝑃∕𝑄, where 𝑃 and 𝑄 are polynomials and 𝑄(𝑥) ≠ 0.

Such a fraction is said to be regular at 𝑥; for all points 𝑥 ∈ 𝑋 for which 𝑄(𝑥) ≠ 0,
𝑥 ↦ 𝑃(𝑥)∕𝑄(𝑥) is a continuous function with values in 𝐾 (𝐾 being given the Zariski
topology) which can be identified with 𝑅, the field 𝐾 being infinite. The𝒪𝑥, 𝑥 ∈ 𝑋, thus
form a subsheaf 𝒪 of the sheaf ℱ(𝑋) of germs of functions on 𝑋 with values in 𝐾 (cf. n◦
3); the sheaf 𝒪 is a sheaf of rings.

We will extend the above to locally closed subspaces of 𝑋 (we call a subset of a space
𝑋 locally closed in𝑋 if it is an intersection of a open subset with a closed subset of𝑋). Let
𝑌 be such a subspace and let ℱ(𝑌) be the sheaf of germs of functions on 𝑌 with values
in 𝐾; if 𝑥 is a point of 𝑌, the operation of restriction defines a canonical homomorphism

𝜀𝑥 ∶ ℱ(𝑋)𝑥 → ℱ(𝑌)𝑥.
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The image of𝒪𝑥 under 𝜀𝑥 is a subring ofℱ(𝑌)𝑥 which we denote by𝒪𝑥,𝑌 ; the𝒪𝑥,𝑌 form
a subsheaf 𝒪𝑌 of ℱ(𝑌), which we call the sheaf of local rings of 𝑌. A section of 𝒪𝑌 over
an open subset 𝑉 of 𝑌 is thus, by definition, a function 𝑓 ∶ 𝑉 → 𝐾 which is equal, in the
neighbourhood of any point 𝑥 ∈ 𝑉, to a restriction to 𝑉 of a rational function regular at
𝑥; such a function is said to be regular on 𝑉; it becomes a continuous function when we
equip 𝑉 with the induced topology and 𝐾 with the Zariski topology. The set of regular
functions at all points of 𝑉 is a ring, the ring 𝛤(𝑉,𝒪𝑌); observe also that, if 𝑓 ∈ 𝛤(𝑉,𝒪𝑥)
and if 𝑓(𝑥) ≠ 0 for all 𝑥 ∈ 𝑉, then 1∕𝑓 also belongs to 𝛤(𝑉,𝒪𝑌).

We can characterize the sheaf 𝒪𝑌 in another way:

Proposition 4. Let𝑈 (resp. 𝐹) be an open (resp. closed) subspace of𝑋 and let𝑌 = 𝑈∩𝐹.
Let 𝐼(𝐹) be the ideal 𝐾[𝑋1,… , 𝑋𝑟] consisting of polynomials vanishing on 𝐹. If 𝑥 is a point
of 𝑌, the kernel of the surjection 𝜀𝑥 ∶ 𝒪𝑥 → 𝒪𝑥,𝑌 coincides with the ideal 𝐼(𝐹) ⋅𝒪𝑥 of 𝒪𝑥.

It is clear that each element of 𝐼(𝐹) ⋅𝒪𝑥 belongs to the kernel of 𝜀𝑥. Conversely, let
𝑅 = 𝑃∕𝑄 be an element of the kernel, 𝑃 and 𝑄 being two polynomials with 𝑄(𝑥) ≠ 0.
By assumption, there exists an open neighbourhood𝑊 of 𝑥 such that 𝑃(𝑦) = 0 for all
𝑦 ∈ 𝑊 ∩ 𝐹; let 𝐹′ be the complement of𝑊, which is closed in 𝑋; since 𝑥 ∈ 𝐹′, there
exists, by the definition of the Zariski topology, a polynomial 𝑃1 vanishing on 𝐹′ and
nonzero at 𝑥; the polynomial 𝑃 ⋅ 𝑃1 belongs to 𝐼(𝐹) and we can write 𝑅 = 𝑃 ⋅ 𝑃1∕𝑄 ⋅ 𝑃1,
which shows that 𝑅 ∈ 𝐼(𝐹) ⋅𝒪𝑥.

Corollary. The ring 𝒪𝑥,𝑌 is isomorphic to the localization of 𝐾[𝑋1,… , 𝑋𝑟]∕𝐼(𝐹) at the
maximal ideal defined by the point 𝑥.

This follows immediately from the construction of the localization a quotient ring
(cf. for example [8], Chap. XV, §5, th. XI).

32. Regular functions

Let 𝑈 (resp. 𝑉) be a locally closed subspace of 𝐾𝑟 (resp. 𝐾𝑠). A function 𝜙∶ 𝑈 → 𝑉 is
said to be regular on 𝑈 (or simply regular) if:
(a) 𝜙 is continuous,
(b) If 𝑥 ∈ 𝑈 and 𝑓 ∈ 𝒪𝜙(𝑥),𝑉 then 𝑓◦𝜙 ∈ 𝒪𝑥,𝑈 .
Denote the coordinates of the point 𝜙(𝑥) by 𝜙𝑖(𝑥), 1 ≤ 𝑖 ≤ 𝑠. We then have:

Proposition 5. A map 𝜙∶ 𝑈 → 𝑉 is regular on 𝑈 if and only if the 𝜙𝑖 ∶ 𝑈 → 𝐾 are
regular on𝑈 for all 𝑖, 1 ≤ 𝑖 ≤ 𝑠.

As the coordinate functions are regular on 𝑉, the condition is necessary. Conversely,
suppose that we have 𝜙𝑖 ∈ 𝛤(𝑈,𝒪𝑈) for each 𝑖; if 𝑃(𝑋1,… , 𝑋𝑠) is a polynomial, the
function 𝑃(𝜙1,… , 𝜙𝑠) belongs to 𝛤(𝑈,𝒪𝑈) since 𝛤(𝑈,𝒪𝑈) as a ring; it follows that it is
a continuous function on 𝑈, thus its zero set is closed, which shows the continuity of
𝜙. If we have 𝑥 ∈ 𝑈 and 𝑓 ∈ 𝒪𝜙(𝑥),𝑉 , we can write 𝑓 locally in the form 𝑓 = 𝑃∕𝑄,
where 𝑃 and 𝑄 are polynomials and 𝑄(𝜙(𝑥)) ≠ 0. The function 𝑓◦𝜙 is then equal to
𝑃◦𝜙∕𝑄◦𝜙 in a neighbourhood of 𝑥; from what we gave seen, 𝑃◦𝜙 and𝑄◦𝜙 are regular in
a neighbourhood of 𝑥. As 𝑄◦𝜙(𝑥) ≠ 0, it follows that 𝑓◦𝜙 is regular in a neighbourhood
of 𝑥, q.e.d.

A composite of two regularmaps is regular. A bijection𝜙 ∶ 𝑈 → 𝑉 is called a biregular
isomorphism (or simply an isomorphism) if 𝜙 and 𝜙−1 are regular; or equivalently, if 𝜙 is
a homeomorphism from 𝑈 to 𝑉 which transforms the sheaf 𝒪𝑈 into the sheaf 𝒪𝑉 .
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33. Products

If 𝑟 and 𝑟′ are two nonnegative integers, we identify the affine space 𝐾𝑟+𝑟′ with the
product 𝐾𝑟 × 𝐾𝑟′ . The Zariski topology on 𝐾𝑟+𝑟′ is finer than the product of the Zariski
topologies on 𝐾𝑟 and 𝐾𝑟′ ; it is even strictly finer if 𝑟 and 𝑟′ are > 0. In result, if𝑈 and𝑈′

are locally closed subspaces of 𝐾𝑟 and 𝐾𝑟′ , 𝑈 ×𝑈′ is a locally closed subspace of 𝐾𝑟+𝑟′

and the sheaf 𝒪𝑈×𝑈′ is well defined.
On the other hand, let𝑊 be a locally closed subspace of𝐾𝑡, 𝑡 ≥ 0 and let 𝜙 ∶𝑊 → 𝑈

and 𝜙′∶ 𝑊 → 𝑈′ be two maps. As an immediate result of Proposition 5 we have:

Proposition 6. A map 𝑥 → (𝜙(𝑥), 𝜙′(𝑥)) is regular from𝑊 to 𝑈 × 𝑈′ if and only if 𝜙
and 𝜙′ are regular.

As any constant function is regular, the preceding Proposition shows that any section
𝑥 ↦ (𝑥, 𝑥′0), 𝑥′0 ∈ 𝑈′ is a regular function from 𝑈 to 𝑈 × 𝑈′; on the other hand, the
projections 𝑈 ×𝑈′ → 𝑈 and 𝑈 ×𝑈′ → 𝑈′ are obviously regular.

Let 𝑉 and 𝑉′ be locally closed subspaces of 𝐾𝑠 and 𝐾𝑠′ and let 𝜓∶ 𝑈 → 𝑉 and
𝜓′ ∶ 𝑈′ → 𝑉′ be two mappings. The preceding remarks, together with Proposition 6,
show that we then have (cf. [1], Chap. IV):

Proposition 7. A map 𝜓 × 𝜓′∶ 𝑈 ×𝑈′ → 𝑉 × 𝑉′ is regular if and only if 𝜓 and 𝜓′ are
regular.

Hence:

Corollary. Amap𝜓×𝜓′ is a biregular isomorphism if and only if𝜓 and𝜓′ are biregular
isomorphisms.

34. Definition of the structure of an algebraic variety

Definition. We call an algebraic variety over 𝐾 (or simply an algebraic variety) a set 𝑋
equipped with:

1◦ a topology,
2◦ a subsheaf 𝒪𝑥 of the sheaf ℱ(𝑋) of germs of functions on 𝑋 with values in 𝐾,

these data being subject to axioms (𝑉𝐴𝐼) and (𝑉𝐴𝐼𝐼) stated below.

First note that if 𝑋 and 𝑌 are equipped with two structures of the above type, we
have a notion of isomorphism from 𝑋 onto 𝑌: it is a homeomorphism from 𝑋 onto 𝑌
that transforms 𝒪𝑋 to 𝒪𝑋 . On the other hand, if 𝑋′ is an open subset of 𝑋, we can equip
𝑋′ with the induced topology and the induced sheaf: we have a notion of an induced
structure on an open subset. That being said, we can state the axiom (𝑉𝐴𝐼):

(𝑉𝐴𝐼) — There exists a finite open covering𝔙 = {𝑉𝑖}𝑖∈𝐼 of the space 𝑋 such that each
𝑉𝑖 , equipped with the structure induced from 𝑋, is isomorphic to a locally closed subspace
𝑈𝑖 of an affine space, equipped with the sheaf 𝒪𝑈𝑖 defined in n

◦ 31.
To simplify the language, we call an prealgebraic variety a topological space𝑋 together

with a sheaf 𝒪𝑋 satisfying the axiom (𝑉𝐴𝐼). An isomorphism 𝜙𝑖 ∶ 𝑉𝑖 → 𝑈𝑖 is called a
chart of the open subset 𝑉𝑖; the condition (𝑉𝐴𝐼) means that it is possible to cover 𝑋 with
finitely many open subsets possessing charts. Proposition 1 from n◦ 30 shows that 𝑋
satisfies condition (A), thus it is quasi-compact and so are its subspaces.

The topology on 𝑋 is called the “Zariski topology” and the sheaf 𝒪𝑋 is called the
sheaf of local rings of 𝑋.
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Proposition 8. Let 𝑋 be a set covered by a finite family of subsets 𝑋𝑗, 𝑗 ∈ 𝐽. Suppose
that each 𝑋𝑗 is equipped with a structure of a prealgebraic variety and that the following
conditions are satisfied:
(a) 𝑋𝑖 ∩ 𝑋𝑗 is open in 𝑋𝑖 for all 𝑖, 𝑗 ∈ 𝐽,
(b) the structures induced by 𝑋𝑖 and 𝑋𝑗 on 𝑋𝑖 ∩ 𝑋𝑗 coincide for all 𝑖, 𝑗 ∈ 𝐽.

Then there exists a unique structure of a prealgebraic variety on 𝑋 such that 𝑋𝑗 are open in
𝑋 and such that the structure induced on each 𝑋𝑖 is the given structure.

The existence and uniqueness of the topology on 𝑋 and the sheaf 𝒪𝑋 are immediate;
it remains to check that this topology and this sheaf satisfy (𝑉𝐴𝐼), which follows from
the fact that 𝑋𝑗 form a finite family and satisfy (𝑉𝐴𝐼).

Corollary. Let 𝑋 and 𝑋′ be two prealgebraic varieties. There exists a structure of a
prealgebraic variety on 𝑋 × 𝑋′ satisfying the following condition: If 𝜙∶ 𝑉 → 𝑈 and
𝜙′∶ 𝑉′ → 𝑈′ are charts (𝑉 being open in 𝑋 and 𝑉′ being open in 𝑋′), then 𝑉 × 𝑉′ is open
in 𝑋 × 𝑋′ and 𝜙 × 𝜙′∶ 𝑉 × 𝑉′ → 𝑈 ×𝑈′ is a chart.

Cover𝑋 by a finite number of open𝑉𝑖 having charts 𝜙𝑖 ∶ 𝑉𝑖 → 𝑈𝑖 and let (𝑉′
𝑗, 𝑈′

𝑗, 𝜙′𝑗)
be an analogous system for 𝑋′. The set 𝑋 × 𝑋′ is covered by 𝑉𝑖 × 𝑉′

𝑗; equip each 𝑉𝑖 × 𝑉′
𝑗

with the structure of a prealgebraic variety induced from 𝑈𝑖 × 𝑈′
𝑗 by 𝜙−1𝑖 × 𝜙′−1𝑗 ; the

assumptions (a) and (b) of Proposition 8 are satisfied for this covering of 𝑋 × 𝑋′, by the
corollary of Proposition 7. We obtain a structure of a prealgebraic variety on 𝑋 × 𝑋′

which satisfies appropriate conditions.
We can apply the preceding corollary to the particular case 𝑋′ = 𝑋; so 𝑋 × 𝑋 has a

structure of a prealgebraic variety, and in particular a topology. We can now state the
axiom (𝑉𝐴𝐼𝐼):

(𝑉𝐴𝐼𝐼) — The diagonal ∆ of 𝑋 × 𝑋 is closed in 𝑋 × 𝑋.
Suppose that 𝑋 is a prealgebraic variety obtained by the “gluing” procedure of Propo-

sition 8; then the condition (𝑉𝐴𝐼𝐼) is satisfied if and only if 𝑋𝑖𝑗 = ∆ ∩ 𝑋𝑖 × 𝑋𝑗 is closed
in 𝑋𝑖 × 𝑋𝑗. Or 𝑋𝑖𝑗 is the set of (𝑥, 𝑥) for 𝑥 ∈ 𝑋𝑖 ∩ 𝑋𝑗. Suppose that there exist charts
𝜙∶ 𝑋𝑖 → 𝑈𝑖 and let 𝑇𝑖𝑗 = 𝜙 × 𝜙𝑗(𝑋𝑖𝑗); 𝑇𝑖𝑗 is the set of (𝜙𝑖(𝑥), 𝜙𝑗(𝑥)) for 𝑥 running over
𝑋𝑖 ∩ 𝑋𝑗. The axiom (𝑉𝐴𝐼𝐼) takes therefore the following form:

(𝑉𝐴′
𝐼𝐼) — For each pair (𝑖, 𝑗), 𝑇𝑖𝑗 is closed in𝑈𝑖 ×𝑈𝑗 .

In this form we recognize Weil’s axiom (A) (cf. [16], p. 167), except that Weil
considered only irreducible varieties.

Example (of algebraic varieties). Any locally closed subspace𝑈 of an affine space,
equipped with the induced topology and the sheaf 𝒪𝑈 defined in n◦ 31 is an algebraic
variety. Any projective variety is an algebraic variety (cf. n◦ 51). Any algebraic fibre
space (cf. [17]) whose base and fibre are algebraic varieties is an algebraic variety.

Remarks. (1) Note the similarity of the condition (𝑉𝐴𝐼𝐼) with the condition of separat-
edness imposed on topological, differential, and analytic varieties.
(2) Simple examples show that condition (𝑉𝐴𝐼𝐼) is not a consequence of condition (𝑉𝐴𝐼).

35. Regular mappings, induced structures, products

Let 𝑋 and 𝑌 be two algebraic varieties and let 𝜙 be a function from 𝑋 to 𝑌. We say that
𝜙 is regular if:
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(a) 𝜙 is continuous.
(b) If 𝑥 ∈ 𝑋 and 𝑓 ∈ 𝒪𝜙(𝑥),𝑌 then 𝑓◦𝜙 ∈ 𝒪𝑥,𝑋 .
As in n◦ 32, the composite of two regular functions is regular and a bijection 𝜙∶ 𝑋 →

𝑌 is an isomorphism if and only if 𝜙 and 𝜙−1 are regular functions. Regular functions
form a family ofmorphisms for the structure of an algebraic variety in the sense of [1],
Chap. IV.

Let 𝑋 be an algebraic variety and let 𝑋′ be a locally closed subspace of 𝑋. We equip
𝑋′ with the topology induced from 𝑋 and the sheaf 𝒪𝑋′ induced by 𝒪𝑋 (to be precise,
for all 𝑥 ∈ 𝑋′ we define 𝒪𝑥,𝑋′ as the image of 𝒪𝑥,𝑋 under the canonical homomorphism
ℱ(𝑋)𝑥 → ℱ(𝑋′)𝑥). The axiom (𝑉𝐴𝐼) is satisfied: if 𝜙𝑖 ∶ 𝑉𝑖 → 𝑈𝑖 is a system of charts
such that 𝑋 = ⋃𝑉𝑖, we set 𝑉′

𝑖 = 𝑋′ ∩ 𝑉𝑖, 𝑈′
𝑖 = 𝜙𝑖(𝑉′

𝑖 ) and 𝜙𝑖 ∶ 𝑉′
𝑖 → 𝑈′

𝑖 is a system of
charts such that 𝑋′ =⋃𝑉′

𝑖 . The axiom (𝑉𝐴𝐼𝐼) is satisfied as well since the topology of
𝑋′ ×𝑋′ is induced from 𝑋 ×𝑋 (we could also use (𝑉𝐴′

𝐼𝐼)). We define the structure of an
algebraic variety on 𝑋′ which is induced by that of 𝑋; we also say that 𝑋′ is a subvariety
of 𝑋 (in Weil [16], the term “subvariety” is reserved for what we call here an irreducible
closed subvariety). If 𝜄 denotes the inclusion of 𝑋′ in 𝑋, 𝜄 is a regular mapping; moreover,
if 𝜙 is a function from an algebraic variety 𝑌 to 𝑋′ then 𝜙∶ 𝑌 → 𝑋′ is regular if and only
if 𝜄◦𝜙∶ 𝑌 → 𝑋 is regular (which justifies the term “induced structure”, cf. [1], loc. cit.).

If 𝑋 and 𝑋′ are two algebraic varieties, 𝑋 × 𝑋′ is an algebraic variety, called the
product variety; it suffices to check that the axiom (𝑉𝐴′

𝐼𝐼) is satisfied, in other words,
that if 𝜙𝑖 ∶ 𝑉𝑖 → 𝑈𝑖 and 𝜙′𝑖 ∶ 𝑉′

𝑖 → 𝑈′
𝑖 are systems of charts such that 𝑋 = ⋃𝑉𝑖 and

𝑋′ =⋃𝑉′
𝑖 , then the set 𝑇𝑖𝑗 × 𝑇′𝑖′𝑗′ is closed in 𝑈𝑖 ×𝑈𝑗 ×𝑈′

𝑖′ × 𝑉′
𝑗′ (with the notation of

n◦ 34); this follows immediately from the fact that 𝑇𝑖𝑗 and 𝑇′𝑖′𝑗′ are closed in𝑈𝑖 ×𝑈𝑗 and
𝑈′
𝑖′ ×𝑈′

𝑗′ respectively.
Propositions 6 and 7 are valid without change for arbitrary algebraic varieties.
If 𝜙∶ 𝑋 → 𝑌 is a regular mapping, the graph Φ of 𝜙 is closed in 𝑋 × 𝑌, because it

is the inverse image of the diagonal 𝑌 × 𝑌 by 𝜙 × 1∶ 𝑋 × 𝑌 → 𝑌 × 𝑌; moreover, the
mapping 𝜓∶ 𝑋 → Φ defined by 𝜓(𝑥) = (𝑥, 𝜙(𝑥)) is an isomorphism: indeed, 𝜓 is a
regular mapping, and so is 𝜓−1 (since it is a restriction of the projection 𝑋 × 𝑌 → 𝑋).

36. The field of rational functions on an irreducible variety

We first prove two lemmas of a purely topological nature:

Lemma 1. Let 𝑋 be a connected space, 𝐺 an abelian group and 𝒢 a constant sheaf on 𝑋
isomorphic to 𝐺. The canonical mapping 𝐺 → 𝛤(𝑋,𝒢) is bijective.

An element of 𝛤(𝑋,𝒢) is just a continuous mapping from 𝑋 to 𝐺 equipped with
the discrete topology. Since 𝑋 is connected, any such a mapping is constant, hence the
Lemma.

We call a sheaf ℱ on a space 𝑋 locally constant if any point 𝑥 has an open neighbour-
hood 𝑈 such that ℱ(𝑈) is constant on 𝑈.

Lemma 2. Any locally constant sheaf on an irreducible space is constant.

Letℱ be a sheaf,𝑋 a space and set 𝐹 = 𝛤(𝑋,ℱ); it suffices to show that the canonical
homomorphism 𝜌𝑥 ∶ 𝐹 → ℱ𝑥 is bijective for all 𝑥 ∈ 𝑋, because we would thus obtain
an isomorphism of the constant sheaf isomorphic to 𝐹 with the given sheaf ℱ.
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If 𝑓 ∈ 𝐹, the set of points 𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 0 is open (by the general properties
of sheaves) and closed (because ℱ is locally constant); since an irreducible space is
connected, this set is either ∅ or 𝑋, which shows that 𝜌𝑥 is injective.

Now take𝑚 ∈ ℱ𝑥 and let 𝑠 be a section of ℱ over a neighbourhood 𝑈 of 𝑥 such that
𝑠(𝑥) = 𝑚; cover𝑋 by nonempty open subsets𝑈𝑖 such thatℱ(𝑈𝑖) is constant on𝑈𝑖; since
𝑋 is irreducible, we have 𝑈 ∩𝑈𝑖 ≠ ∅; choose a point 𝑥𝑖𝑈 ∩𝑈𝑖; obviously there exists a
section 𝑠𝑖 of ℱ over 𝑈𝑖 such that 𝑠𝑖(𝑥𝑖) = 𝑠(𝑥𝑖), and since the sections 𝑠 and 𝑠𝑖 coincide
in 𝑥𝑖, they coincide on whole 𝑈 ∩ 𝑈𝑖, since 𝑈 ∩ 𝑈𝑖 is irreducible, hence connected;
analogously 𝑠𝑖 and 𝑠𝑗 coincide on 𝑈𝑖 ∩𝑈𝑗, since they coincide on 𝑈 ∩𝑈𝑖 ∩𝑈𝑗 ≠ ∅; thus
the sections 𝑠𝑖 define a unique section 𝑠 ofℱ over 𝑋 and we have 𝜌𝑥(𝑠) = 𝑚, which ends
the proof.

Now let 𝑋 be an irreducible algebraic variety. If 𝑈 is a nonempty open subset of 𝑋,
set𝒜𝑈 = 𝛤(𝑈,𝒪𝑋);𝒜𝑈 is an integral domain: indeed, suppose that we have 𝑓 ⋅ 𝑔 = 0, 𝑓
and 𝑔 being regular functions from 𝑈 to 𝐾; if 𝐹 (resp. 𝐺) denotes the set of 𝑥 ∈ 𝑈 such
that 𝑓(𝑥) = 0 (resp. 𝑔(𝑥) = 0), we have𝑈 = 𝐹 ∪𝐺 and 𝐹 and 𝐺 are closed in𝑈, because
𝑓 and 𝑔 are continuous; since 𝑈 is irreducible, it follows that 𝐹 = 𝑈 or 𝐺 = 𝑈, which
means exactly that 𝑓 or 𝑔 is zero on 𝑈. We can therefore form the field of fractions of
𝒜𝑈 , which we denote by𝒦𝑈 ; if 𝑈 ⊂ 𝑉, the homomorphism 𝜌𝑉𝑈 ∶ 𝒜𝑉 → 𝒜𝑈 is injective,
because 𝑈 is dense in 𝑉, and we have a well defined isomorphism 𝜙𝑉𝑈 of𝒦𝑉 to𝒦𝑈 ; the
system of {𝒦𝑈 , 𝜙𝑉𝑈} defines a sheaf of fields𝒦; then𝒦𝑥 is canonically isomorphic with
the field of fractions of 𝒪𝑥,𝑋 .

Proposition 9. For any irreducible algebraic variety 𝑋, the sheaf𝒦 defined above is a
constant sheaf.

By Lemma 2, it suffices to prove the Proposition when 𝑋 is a locally closed sub-
variety of the affine space 𝐾𝑟; let 𝐹 be the closure of 𝑋 in 𝐾𝑟 and let 𝐼(𝐹) be the
ideal in 𝐾[𝑋1,… , 𝑋𝑟] of polynomials vanishing on 𝐹 (or equivalently on 𝑋). If we set
𝐴 = 𝐾[𝑋1,… , 𝑋𝑟]∕𝐼(𝐹), the ring 𝐴 is an integral domain because 𝑋 is irreducible; let
𝐾(𝐴) be the ring of fractions of𝐴. By corollary of Proposition 4, we can identify𝒪𝑥,𝑋 with
the localization of 𝐴 in the maximal ideal defined by 𝑥; we thus obtain an isomorphism
of the field 𝐾(𝐴) with the field of fractions of 𝒪𝑥,𝑋 and it is easy to check that it defines
an isomorphism of the constant sheaf equal to 𝐾(𝐴) with the sheaf𝒦, which shows the
Proposition.

By Lemma 1, the sections of the sheaf 𝒦 form a field, isomorphic with 𝒦𝑥 for
all 𝑥 ∈ 𝑋, which we denote by 𝐾(𝑋). We call it the field of rational functions on 𝑋;
it is an extension of finite type1 of the field 𝐾, whose transcendence degree over 𝐾
is the dimension of 𝑋 (we extend this definition to reducible varieties by imposing
dim𝑋 = Sup dim𝑌𝑖 if 𝑋 is a union of closed irreducible varieties 𝑌𝑖). In general, we
identify the field 𝐾(𝑋) with the field𝒦𝑥; since we have 𝒪𝑥,𝑋 ⊂ 𝒦𝑥, we see that we can
view 𝒪𝑥,𝑋 as a subring of 𝐾(𝑋) (it is the ring of specialization of the point 𝑥 in 𝐾(𝑋) in
the sense of Weil, [16], p. 77). If 𝑈 is an open subset of 𝑋, 𝛤(𝑈,𝒪𝑋) is the intersection
in 𝐾(𝑋) of the rings 𝒪𝑥,𝑋 for 𝑥 running over 𝑈.

If 𝑌 is a subvariety of 𝑋, we have dim𝑌 ≤ dim𝑋; if furthermore 𝑌 is closed and
does not contain any irreducible component of 𝑋, we have dim𝑌 < dim𝑋, as shown by
reducing to the case of subvarieties of 𝐾𝑟 (cf. for example [8], Chap. X, §5, th. II).

1i.e. finitely generated
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§2. Coherent algebraic sheaves

37. The sheaf of local rings on an algebraic variety

Return to the notation of n◦ 31: let 𝑋 = 𝐾𝑟 and let 𝒪 be the sheaf of local rings of 𝑋. We
have:

Lemma 1. The sheaf 𝒪 is a coherent sheaf of rings, in the sense of n◦ 15.

Let 𝑥 ∈ 𝑋, let 𝑈 be an open neighbourhood of 𝑥 and let 𝑓1,… , 𝑓𝑝 be sections of 𝒪
over 𝑈, i.e. rational functions regular at each point of 𝑈; we must show that the sheaf
of relations between 𝑓1,… , 𝑓𝑝 is a sheaf of finite type over 𝒪. Possibly replacing 𝑈 by a
smaller neighbourhood, we can assume that 𝑓𝑖 can be written in the form 𝑓𝑖 = 𝑃𝑖∕𝑄
where 𝑃𝑖 and𝑄 are polynomials and𝑄 does not vanish on𝑈. Let now 𝑦 ∈ 𝑈 and 𝑔𝑖 ∈ 𝒪𝑦
such that

∑𝑖=𝑝
𝑖=1 𝑔𝑖𝑓𝑖 is zero in a neighbourhood of 𝑦; we can again write 𝑔𝑖 in the form

𝑔𝑖 = 𝑅𝑖∕𝑆 where 𝑅𝑖 and 𝑆 are polynomials and 𝑆 does not vanish in 𝑦. The relationship
“
∑𝑖=𝑝

𝑖=1 𝑔𝑖𝑓𝑖 = 0 in a neighbourhood of 𝑦” is equivalent to the relationship “∑𝑖=𝑝
𝑖=1 𝑅𝑖𝑃𝑖 = 0

in a neighbourhood of 𝑦”, i.e. equivalent to∑𝑖=𝑝
𝑖=1 𝑅𝑖𝑃𝑖 = 0. As the module of relations

between the polynomials 𝑃𝑖 is a module of finite type (because the ring of polynomials
is Noetherian), it follows that the sheaf of relations between 𝑓𝑖 is of finite type.

Let now 𝑉 be a closed subvariety of 𝑋 = 𝐾𝑟; for any 𝑥 ∈ 𝑋 let 𝒥𝑥(𝑉) be the ideal of
𝒪𝑥 consisting of elements 𝑓 ∈ 𝒪𝑥 whose restriction to 𝑉 is zero in a neighbourhood of
𝑥 (we thus have 𝒥𝑥(𝑉) = 𝒪𝑥 if 𝑥 ∉ 𝑉). The 𝒥𝑥(𝑉) form a subsheaf 𝒥(𝑉) of the sheaf 𝒪.

Lemma 2. The sheaf 𝒥(𝑉) is a coherent sheaf of 𝒪-modules.

Let 𝐼(𝑉) be the ideal of 𝐾[𝑋1,… , 𝑋𝑟] consisting of polynomials 𝑃 vanishing on 𝑉.
By Proposition 4 from n◦ 31, 𝒥𝑥(𝑉) is equal to 𝐼(𝑉) ⋅𝒪𝑥 for all 𝑥 ∈ 𝑉 and this formula
remains valid for 𝑥 ∉ 𝑉 as shown immediately. The ideal 𝐼(𝑉) being generated by a
finite number of elements, it follows that the sheaf 𝒥(𝑉) is of finite type, thus coherent
by Lemma 1 and Proposition 8 from n◦ 15.

We shall now extend Lemma 1 to arbitrary algebraic varieties:

Proposition 1. If 𝑉 is an algebraic variety, the sheaf𝒪𝑉 is a coherent sheaf of rings on 𝑉.

The question being local, we can suppose that 𝑉 is a closed subvariety of the affine
space 𝐾𝑟. By Lemma 2, the sheaf 𝒥(𝑉) is a coherent sheaf of ideals, thus the sheaf
𝒪∕𝒥(𝑉) is a coherent sheaf of rings on𝑋, by Theorem 3 from n◦ 16. This sheaf of rings is
zero outside 𝑉 and its restriction to 𝑉 is just 𝒪𝑉 (n◦ 31); thus the sheaf 𝒪𝑉 is a coherent
sheaf of rings on 𝑉 (n◦ 17, corollary of Proposition 11).

Remark. It is clear that Proposition is valid more generally for any prealgebraic variety.

38. Coherent algebraic sheaves

If 𝑉 is an algebraic variety whose sheaf of local rings is 𝒪𝑉 , we call an algebraic sheaf on
𝑉 any sheaf of 𝒪𝑉-modules, in the sense of n◦ 6; if ℱ and 𝒢 are two algebraic sheaves,
we say that 𝜙∶ ℱ → 𝒢 is an algebraic homomorphism (or simply a homomorphism) if
it is a 𝒪𝑉-homomorphism; recall that this is equivalent to saying that 𝜙𝑥 ∶ ℱ𝑥 → 𝒢𝑥 is
𝒪𝑥,𝑉–linear and that 𝜙 transforms local sections of ℱ into local sections of 𝒢.
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If ℱ is an algebraic sheaf on 𝑉, the cohomology groups𝐻𝑞(𝑉,ℱ) are modules over
𝛤(𝑉,𝒪𝑉), cf. n◦ 23; in particular, they are vector spaces over 𝐾.

An algebraic sheaf ℱ over 𝑉 is said to be coherent if it is a coherent sheaf of 𝒪𝑉-
modules, in the sense of n◦ 12; by Proposition 7 of n◦ 15 and Proposition 1 above, these
sheaves are characterized by the property of being locally isomorphic to the cokernel of
an algebraic homomorphism 𝜙∶ 𝒪𝑞

𝑉 → 𝒪𝑝
𝑉 .

We shall give some examples of coherent algebraic sheaves (we will see more of them
later, cf. in particular nos48, 57).

39. Sheaf of ideals defined by a closed subvariety

Let𝑊 be a closed subvariety of an algebraic variety 𝑉. For any 𝑥 ∈ 𝑉, let 𝒥𝑥(𝑊) be the
ideal of𝒪𝑥,𝑉 consisting of elements 𝑓 whose restriction to𝑊 is zero in a neighbourhood
of 𝑥; let 𝒥(𝑊) be the subsheaf of𝒪𝑉 formed by 𝒥𝑥(𝑊). We have the following Proposition,
generalizing Lemma 2:

Proposition 2. The sheaf 𝒥(𝑊) is a coherent algebraic sheaf.

The question being local, we can suppose that 𝑉 (thus also𝑊) is a closed subvariety
of the affine space 𝐾𝑟. It follows from Lemma 2, applied to𝑊, that the sheaf of ideals
defined by𝑊 in 𝐾𝑟 is of finite type; this shows that 𝒥(𝑊), which is its image under the
canonical homomorphism𝒪→ 𝒪𝑉 , is also of finite type, thus is coherent by Proposition
8 of n◦ 15 and Proposition 1 of n◦ 37.

Let 𝒪𝑊 be the sheaf of local rings of𝑊 and let 𝒪𝑉
𝑊 be the sheaf on 𝑉 obtained by

extending𝒪𝑊 by 0 outside𝑊 (cf. n◦ 5); this sheaf is canonically isomorphic to𝒪𝑉∕𝒥(𝑊),
in other words, we have an exact sequence:

0→ 𝒥(𝑊)→ 𝒪𝑉 → 𝒪𝑉
𝑊 → 0.

Let then ℱ be an algebraic sheaf on𝑊 and let ℱ𝑉 be the sheaf obtained by extending ℱ
by 0 outside𝑊; we can consider ℱ𝑉 as a sheaf of 𝒪𝑉

𝑊-modules, thus also as a sheaf of
𝒪𝑉-modules whose annihilator contains 𝒥(𝑊). We have:

Proposition 3. Ifℱ is a coherent algebraic sheaf on𝑊,ℱ𝑉 is a coherent algebraic sheaf
on𝑉. Conversely, if 𝒢 is an coherent algebraic sheaf on𝑉 whose annihilator contains 𝒥(𝑊),
the restriction of 𝒢 to𝑊 is a coherent algebraic sheaf on𝑊.

If ℱ is a coherent algebraic sheaf on𝑊, ℱ𝑉 is a coherent sheaf of 𝒪𝑉
𝑊-modules (n

◦

17, Proposition 11), thus a coherent sheaf of𝒪𝑉-modules (n◦ 16, Theorem 3). Conversely,
if 𝒢 is a coherent algebraic sheaf on 𝑉 whose annihilator contains 𝒥(𝑊), 𝒢 can be
considered as a sheaf of 𝒪𝑉∕𝒥(𝑊)-modules, and is a coherent sheaf (n◦ 16, Theorem 3);
the restriction of 𝒢 to𝑊 is then a coherent sheaf of 𝒪𝑊-modules (n◦ 17, Proposition 11).

So, any coherent algebraic sheaf on𝑊 can by identified with an algebraic coherent
sheaf on 𝑉 (and this identification does not change cohomology groups, by Proposition
8 of n◦ 26). In particular, any coherent algebraic sheaf on an affine (resp. projective)
variety can be considered as a coherent algebraic sheaf on an affine (resp. projective)
space; we will frequently use this possibility later.

Remark. Let 𝒢 be a coherent algebraic sheaf on 𝑉 which is zero outside𝑊; the an-
nihilator of 𝒢 does not necessarily contain 𝒥(𝑊) (in other words, 𝒢 not always can be
considered as an coherent algebraic sheaf on𝑊); all we can say is that it contains a
power of 𝒥(𝑊).
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40. Sheaves of fractional ideals

Let 𝑉 be an irreducible algebraic variety and let 𝐾(𝑉) denote the constant sheaf of
rational functions on 𝑉 (cf. n◦ 36); 𝐾(𝑉) is an algebraic sheaf which is not coherent if
dim𝑉 > 0. An algebraic subsheaf ℱ of 𝐾(𝑉) can be called a “sheaf of fractional ideals”
since each ℱ𝑥 is a fractional ideal of 𝒪𝑥,𝑉 .

Proposition 4. An algebraic subsheaf ℱ of 𝐾(𝑉) is coherent if and only if it is of finite
type.

The necessity is trivial. To prove the sufficiency, it suffices to prove that𝐾(𝑉) satisfies
condition (b) of definition 2 from n◦ 12, in other that if 𝑓1,… , 𝑓𝑝 are rational functions,
the sheaf ℛ(𝑓1,… , 𝑓𝑝) is of finite type. If 𝑥 is a point of 𝑉, we can find functions 𝑔𝑖 and
ℎ such that 𝑓𝑖 = 𝑔𝑖∕ℎ, 𝑔𝑖 and ℎ being regular in a neighbourhood 𝑈 of 𝑥 and ℎ being
nonzero on𝑈; the sheafℛ(𝑓1,… , 𝑓𝑝) is then equal to the sheafℛ(𝑔1,… , 𝑔𝑝), which is of
finite type, since 𝒪𝑉 is a coherent sheaf of rings.

41. Sheaf associated with the total space of a vector bundle

Let 𝐸 be an algebraic fibre space with a vector space of dimension 𝑟 as a fibre and an
algebraic variety 𝑉 as a base; by definition, the typical fibre of 𝐸 is a vector space 𝐾𝑟

and the structure group is the linear group 𝐺𝐿(𝑟, 𝐾) acting on 𝐾𝑟 in the usual way (for
the definition of an algebraic fibre space, cf. [17]; see also [15], n◦ 4 for analytic vector
bundles).

If 𝑈 is an open subset of 𝑉, let 𝒮(𝐸)𝑈 denote the set of regular sections of 𝐸 on 𝑈;
if 𝑉 ⊃ 𝑈, we have the restriction homomorphism 𝜙𝑉𝑈 ∶ 𝒮(𝐸)𝑉 → 𝒮(𝐸)𝑈 ; thus a sheaf
𝒮(𝐸), called the sheaf of germs of sections of 𝐸. Since 𝐸 is a vector bundle, each 𝒮(𝐸)𝑈
is a 𝛤(𝑈,𝒪𝑉)-module and it follows that 𝒮(𝐸) is an algebraic sheaf on 𝑉. If we identify
locally 𝐸 with 𝑉 × 𝐾𝑟, we have:

Proposition 5. The sheaf 𝒮(𝐸) is locally isomorphic to 𝒪𝑟
𝑉 ; in particular, it is a coherent

algebraic sheaf.

Conversely, it is easily seen that any algebraic sheaf ℱ on 𝑉, locally isomorphic to
𝒪𝑟
𝑉 , is isomorphic to a sheaf 𝒮(𝐸) where 𝐸 is determined up to isomorphism (cf. [15] for

the analytic case).
If 𝑉 is a variety without singularities, we can take for 𝐸 the vector bundle of 𝑝-

covectors tangent to 𝑉 (𝑝 being a nonnegative integer); letΩ𝑝 be the sheaf corresponding
to 𝒮(𝐸); an element of Ω𝑝

𝑥 , 𝑥 ∈ 𝑉 is just a differential form of degree 𝑝 on 𝑉, regular
in 𝑥. If we set ℎ𝑝,𝑞 = dim𝐾 𝐻𝑞(𝑉,Ω𝑝), we know that in the classical case (and if 𝑉 is
projective), ℎ𝑝,𝑞 is equal to the dimension of harmonic forms of type (𝑝, 𝑞) (theorem of
Dolbeault2 and, if 𝐵𝑛 denotes the 𝑛-th Betti number of 𝑉, we have 𝐵𝑛 =

∑
𝑝+𝑞=𝑛 ℎ𝑝,𝑞.

In the general case, we could take the above formula for the definition of the Betti
numbers of a nonsingular projective variety (we will see in n◦ 66 that ℎ𝑝,𝑞 are finite). It
is convenient to study their properties, in particular to see if they coincide with those
involved in the Weil conjectures for varieties over finite fields3. We only mention that
they satisfy the “Poincaré duality” 𝐵𝑛 = 𝐵2𝑚−𝑛 when 𝑉 is an irreducible of dimension
𝑚.

2P. Dolbeault. Sur la cohomologie des variétés analytiques complexes. C. R. Paris, 246, 1953, p. 175-177.
3Bulletin Amer. Math. Soc., 55, 1949, p.507
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The cohomology groups 𝐻𝑞(𝑉,𝒮(𝐸)) are also involved in other issues, including the
Riemann-Roch, as well as in the classification of algebraic fibre spaces with base 𝑉 and
the affine group 𝑥 ↦ 𝑎𝑥 + 𝑏 as the structural group (cf. [17], §4, where the case when
dim𝑉 = 1 is studied).

§3. Coherent algebraic sheaves on affine varieties

42. Affine varieties

An algebraic variety 𝑉 is said to be affine if it is isomorphic to a closed subvariety of an
affine space. The product of two affine varieties is an affine variety; any closed subvariety
of an affine variety is an affine variety.

An open subset 𝑈 of an algebraic variety 𝑉 is said to be affine if, equipped with the
structure of an algebraic variety induced from 𝑋, it is an affine variety.

Proposition 1. Let𝑈 and 𝑉 be two open subsets of an algebraic variety 𝑋. If𝑈 and 𝑉
are affine,𝑈 ∩ 𝑉 is affine.

Let ∆ be the diagonal of 𝑋 × 𝑋; by n◦ 35, the mapping 𝑥 ↦ (𝑥, 𝑥) is a biregular
isomorphism from 𝑋 onto ∆; thus the restriction of this map to 𝑈 ∩ 𝑉 is a biregular
isomorphism of 𝑈 ∩ 𝑉 onto ∆ ∩ 𝑈 × 𝑉. Since 𝑈 and 𝑉 are affine varieties, 𝑈 × 𝑉 is
also an affine variety; on the other hand, ∆ is closed in 𝑋 × 𝑋 by the axiom (𝑉𝐴𝐼𝐼), thus
∆ ∩𝑈 × 𝑉 is closed in 𝑈 × 𝑉, hence affine, q.e.d.

(It is easily seen that this Proposition is false for prealgebraic varieties; the axiom
(𝑉𝐴𝐼𝐼) plays an essential role).

Let us now introduce a notation which will be used thorough the rest of this para-
graph: if 𝑉 is an algebraic variety and 𝑓 is a regular function on 𝑉, we denote by 𝑉𝑓 the
open subset of 𝑉 consisting of all points 𝑥 ∈ 𝑉 for which 𝑓(𝑥) ≠ 0.

Proposition 2. If 𝑉 is an affine algebraic variety and 𝑓 is a regular function on 𝑉, the
open subset 𝑉𝑓 is affine.

Let 𝑊 be the subset of 𝑉 × 𝐾 consisting of pairs (𝑥, 𝜆) such that 𝜆 ⋅ 𝑓(𝑥) = 1; it
is clear that 𝑊 is closed in 𝑉 × 𝐾, thus it is an affine variety. For all (𝑥, 𝜆) ∈ 𝑊 set
𝜋(𝑥, 𝜆) = 𝑥; the mapping 𝜋 is a regular mapping from 𝑊 to 𝑉𝑓. Conversely, for all
𝑥 ∈ 𝑉𝑓, set 𝜔(𝑥) = (𝑥, 1∕𝑓(𝑥)); the mapping 𝜔∶ 𝑉𝑓 → 𝑊 is regular and we have
𝜋◦𝜔 = 1, 𝜔◦𝜋 = 1, thus 𝑉𝑓 and𝑊 are isomorphic, q.e.d.

Proposition 3. Let 𝑉 be a closed subvariety of 𝐾𝑟, 𝐹 be a closed subset of 𝑉 and let
𝑈 = 𝑉 − 𝐹. The open subsets 𝑉𝑃 form a base for the topology of𝑈 when 𝑃 runs over the
set of polynomials vanishing on 𝐹.

Let 𝑈′ = 𝑉 − 𝐹′ be an open subset of 𝑈 and let 𝑥 𝑖𝑛𝑈′; we must show that there
exists a 𝑃 for which 𝑉𝑃 ⊂ 𝑈′ and 𝑥 ∈ 𝑉𝑃; in other words, 𝑃 has to be zero on 𝐹′ and
nonzero in 𝑥; the existence of such a polynomial follows simply from the definition of
the topology of 𝐾𝑟.

Theorem 1. The open affine subsets of an algebraic variety 𝑋 form an open base for the
topology of 𝑋.

The question being local, we can assume that 𝑋 is a locally closed subspace of an
affine space 𝐾𝑟; in this case, the theorem follows immediately from Propositions 2 and 3.
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Corollary. The coverings of 𝑋 consisting of open affine subsets are arbitrarily fine.

We note that if𝔘 = {𝑈𝑖}𝑖∈𝐼 is such a covering, the𝑈𝑖0…𝑖𝑝 are also open affine subsets,
by Proposition 1.

43. Some preliminary properties of irreducible varieties

Let 𝑉 be a closed subvariety of 𝐾𝑟 and let 𝐼(𝑉) be the ideal of 𝐾[𝑋1,… , 𝑋𝑟] consisting of
polynomials vanishing on 𝑉; let 𝐴 be the quotient ring 𝐾[𝑋1,… , 𝑋𝑟]∕𝐼(𝑉); we have a
canonical homomorphism

𝜄∶ 𝐴 → 𝛤(𝑉,𝒪𝑉)
that is injective by the definition of 𝐼(𝑉).

Proposition 4. If 𝑉 is irreducible, 𝜄∶ 𝐴 → 𝛤(𝑉,𝒪𝑉) is bijective.

(In fact, this holds for any closed subvariety of 𝐾𝑟, as will be shown in the next n◦ ).
Let 𝐾(𝑉) be the field of fractions of 𝐴; by n◦ 36, we can identify 𝒪𝑥,𝑉 with the

localization of 𝐴 in the maximal ideal𝔪𝑥 consisting of polynomials vanishing in 𝑥, and
we have𝛤(𝑉,𝒪𝑉) = 𝐴 =⋂

𝑥∈𝑉 𝒪𝑥,𝑉 (all𝒪𝑥,𝑉 being considered as subrings of𝐾(𝑉)). But
allmaximal ideals of𝐴 are𝔪𝑥, since𝐾 is algebraically closed (Hilbert’s theoremof zeros);
it follows immediately (cf. [8], Chap. XV, §5, th. X) that 𝐴 = ⋂

𝑥∈𝑉 𝒪𝑥,𝑉 = 𝛤(𝑉,𝒪𝑉),
q.e.d.

Proposition 5. Let 𝑋 be an irreducible algebraic variety, 𝑄 a regular function on 𝑋 and
𝑃 a regular function on 𝑋𝑄. Then, for 𝑛 sufficiently large, the rational function 𝑄𝑛𝑃 is
regular on the whole of 𝑋.

By quasi-compactness of 𝑋, the question is local; by Theorem 1, we can thus suppose
that 𝑋 is a closed subvariety of 𝐾𝑟. The above Proposition shows that then 𝑄 is an
element of 𝐴 = 𝐾[𝑋1,… , 𝑋𝑟]∕(𝐼(𝑋)). The assumption made on 𝑃 means that for any
point 𝑥 ∈ 𝑋𝑄 we can write 𝑃 = 𝑃𝑥∕𝑄𝑥 with 𝑃𝑥 and 𝑄𝑥 in 𝐴 and 𝑄𝑥(𝑥) ≠ 0; if 𝔞 denotes
the ideal of 𝐴 generated by all 𝑄𝑥, the variety of zeros of 𝔞 is contained in the variety
of zeros of 𝑄; by Hilbert’s theorem of zeros, this leads to 𝑄𝑛 ∈ 𝔞 for 𝑛 sufficiently large,
hence 𝑄𝑛 =∑𝑅𝑥𝑄𝑥 and 𝑄𝑛𝑃 =

∑𝑅𝑥𝑃𝑥 with 𝑅𝑥 ∈ 𝐴, which shows that 𝑄𝑛𝑃 is regular
on 𝑋.

(We could also use the fact that 𝑋𝑄 is affine if 𝑋 is and apply Proposition 4 to 𝑋𝑄).

Proposition 6. Let 𝑋 be an irreducible algebraic variety, 𝑄 a regular function on 𝑋,ℱ a
coherent algebraic sheaf on 𝑋 and 𝑠 a section ofℱ over 𝑋 whose restriction to 𝑋𝑄 is zero.
Then for 𝑛 sufficiently large the section 𝑄𝑛𝑠 is zero on the whole of 𝑋.

The question being again local, we can assume:
(a) that 𝑋 is a closed subvariety of 𝐾𝑟,
(b) that ℱ is isomorphic to a cokernel of a homomorphism 𝜙∶ 𝒪𝑝

𝑋 → 𝒪𝑞
𝑋 ,

(c) that 𝑠 is the image of a section 𝜎 of 𝒪𝑞
𝑋 .

(Indeed, all the above conditions are satisfied locally).
Set 𝐴 = 𝛤(𝑋,𝒪𝑋) = 𝐾[𝑋1,… , 𝑋𝑟]∕𝐼(𝑋). The section 𝜎 can be identified with a

system of 𝑞 elements of 𝐴. Let on the other hand

𝑡1 = 𝜙(1, 0,… , 0),… , 𝑡𝑝 = 𝜙(0,… , 0, 1);
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the 𝑡𝑖, 1 ≤ 𝑖 ≤ 𝑝 are sections of 𝒪𝑞
𝑋 over 𝑋, thus can be identified with systems of 𝑞

elements of 𝐴. The assumption made on 𝑠 means that for all 𝑥 ∈ 𝑋𝑄 we have 𝜎(𝑥) ∈
𝜙(𝒪𝑝

𝑥,𝑋), that is, 𝜎 can be written in the form 𝜎 = ∑𝑖=𝑝
𝑖=1 𝑓𝑖 ⋅ 𝑡𝑖 with 𝑓𝑖 ∈ 𝒪𝑥,𝑋; or, by

clearing denominators, that there exist𝑄𝑥 ∈ 𝐴,𝑄𝑥(𝑥) ≠ 0 for which𝑄𝑥 ⋅𝜎 =
∑𝑖=𝑝

𝑖=1 𝑅𝑖 ⋅ 𝑡𝑖
with 𝑅𝑖 ∈ 𝐴. The reasoning used above shows then that, for 𝑛 sufficiently large, 𝑄𝑛
belongs to the ideal generated by 𝑄𝑥, hence 𝑄𝑛𝜎(𝑥) ∈ 𝜙(𝒪𝑝

𝑥,𝑋) for all 𝑥 ∈ 𝑋, which
means that 𝑄𝑛𝑠 is zero on the whole of 𝑋.

44. Vanishing of certain cohomology groups

Proposition 7. Let 𝑋 be an irreducible algebraic variety, 𝑄𝑖 a finite family of regular
functions on 𝑋 that do not vanish simultaneously and𝔘 the open covering of 𝑋 consisting
of 𝑋𝑄𝑖 = 𝑈𝑖 . If ℱ is a coherent algebraic subsheaf of 𝒪𝑝

𝑋 , we have 𝐻𝑞(𝔘,ℱ) = 0 for all
𝑞 > 0.

Possibly replacing 𝔘 by an equivalent covering, we can assume that none of the
functions 𝑄𝑖 vanishes identically, in other words that we have 𝑈𝑖 ≠ ∅ for all 𝑖.

Let 𝑓 = (𝑓𝑖0…𝑖𝑞 ) be a 𝑞-cocycle of 𝔘 with values in ℱ. Each 𝑓𝑖0…𝑖𝑞 is a section of
ℱ over 𝑈𝑖0…𝑖𝑞 , thus can be identified with a system of 𝑝 regular functions on 𝑈𝑖0…𝑖𝑞 ;
applying Proposition 5 to 𝑄 = 𝑄𝑖0 …𝑄𝑖𝑞 we see that, for 𝑛 sufficiently large, 𝑔𝑖0…𝑖𝑞 =
(𝑄𝑖0 …𝑄𝑖𝑞 )𝑛𝑓𝑖0…𝑖𝑞 is a system of 𝑝 regular functions on 𝑋. Choose an integer 𝑛 for which
this holds for all systems 𝑖0,… , 𝑖𝑞, which is possible because there is a finite number
of such systems. Consider the image of 𝑔𝑖0…𝑖𝑞 in the coherent sheaf 𝒪

𝑝
𝑋∕ℱ; this is a

section vanishing on 𝑈𝑖0…𝑖𝑞 ; then applying Proposition 6 we see that for𝑚 sufficiently
large, the product of this section with (𝑄𝑖0 …𝑄𝑖𝑞 )𝑚 is zero on the whole of 𝑋. Setting
𝑁 = 𝑚 + 𝑛, we see that we have constructed sections ℎ𝑖0…𝑖𝑞 of ℱ over 𝑋 which coincide
with (𝑄𝑖0 …𝑄𝑖𝑞 )𝑁𝑓𝑖0…𝑖𝑞 on 𝑈𝑖0…𝑖𝑞 .

As the 𝑄𝑁𝑖 do not vanish simultaneously, there exist functions

𝑅𝑖 ∈ 𝛤(𝑋,𝒪𝑋)

such that
∑𝑅𝑖𝑄𝑁𝑖 = 1. Then for any system 𝑖0,… , 𝑖𝑞−1 set

𝑘𝑖0…𝑖𝑞−1 =
∑

𝑖
𝑅𝑖ℎ𝑖𝑖0…𝑖𝑞−1∕(𝑄𝑖0 …𝑄𝑖𝑞−1)𝑁 ,

which makes sense because 𝑄𝑖0 …𝑄𝑖𝑞−1 is nonzero on 𝑈𝑖0…𝑖𝑞−1 .
We have thus defined a cochain 𝑘 ∈ 𝐶𝑞−1(𝔘,ℱ). I claim that 𝑓 = 𝑑𝑘, which will

show the Proposition.
We must check that (𝑑𝑘)𝑖0…𝑖𝑞 = 𝑓𝑖0…𝑖𝑞 ; it suffices to show that these two sections

coincide on 𝑈 =⋂𝑈𝑖, since they will coincide everywhere, because they are systems of
𝑝 rational functions on 𝑋 and 𝑈 ≠ 0. Now over 𝑈, we can write

𝑘𝑖0…𝑖𝑞−1 =
∑

𝑖
𝑅𝑖 ⋅ 𝑄𝑁𝑖 ⋅ 𝑓𝑖𝑖0…𝑖𝑞 ,

hence

(𝑑𝑘)𝑖0…𝑖𝑞 =
𝑗=𝑞∑

𝑗=0
(−1)𝑞

∑

𝑖
𝑅𝑖 ⋅ 𝑄𝑁𝑖 ⋅ 𝑓𝑖𝑖0…𝑖𝑗…𝑖𝑞

and taking into account that 𝑓 is a cocycle,
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Corollary 1. 𝐻𝑞(𝑋,ℱ) = 0 for 𝑞 > 0.

Indeed, Proposition 3 shows that coverings of the type used in Proposition 7 are
arbitrarily fine.

Corollary 2. The homomorphism 𝛤(𝑋,𝒪𝑝
𝑋)→ 𝛤(𝑋,𝒪𝑝

𝑋∕ℱ) is surjective.

This follows from Corollary 1 above and from Corollary 2 to Proposition 6 from n◦
24.

Corollary 3. Let 𝑉 be a closed subvariety of 𝐾𝑟 and let

𝐴 = 𝐾[𝑋1,… , 𝑋𝑟]∕𝐼(𝑉).

Then the homomorphism 𝜄∶ 𝐴 → 𝛤(𝑉,𝒪𝑉) is bijective.

We apply Corollary 2 above to 𝑋 = 𝐾𝑟, 𝑝 = 1, ℱ = 𝒥(𝑉), the sheaf of ideals defined
by 𝑉; we obtain that every element of 𝛤(𝑉,𝒪𝑉) is the restriction of a section of 𝒪 on 𝑋,
that is, a polynomial, by Proposition 4 applied to 𝑋.

45. Sections of a coherent algebraic sheaf on an affine variety

Theorem 2. Letℱ be a coherent algebraic sheaf on an affine variety 𝑋. For every 𝑥 ∈ 𝑋,
the 𝒪𝑥,𝑋-moduleℱ𝑥 is generated by elements of 𝛤(𝑋,ℱ).

Since 𝑋 is affine, it can be embedded as a closed subvariety of an affine space 𝐾𝑟; by
extending the sheaf ℱ by 0 outside 𝑋, we obtain a coherent algebraic sheaf on 𝐾𝑟 (cf.
n◦ 39) and we are led to prove the theorem for the new sheaf. In other words, we can
suppose that 𝑋 = 𝐾𝑟.

By the definition of a coherent sheaf, there exists a covering of 𝑋 consisting of
open subsets on which ℱ is isomorphic with a quotient of the sheaf 𝒪𝑝. Applying
Proposition 3, we see that there exists a finite number of polynomials𝑄𝑖 that do not vanish
simultaneously and such that on every𝑈𝑖 = 𝑋𝑄𝑖 there exists a surjective homomorphism
𝜙𝑖 ∶ 𝒪𝑝𝑖 → ℱ; we can furthermore assume that none of the polynomials is identically
zero.

The point 𝑥 belongs to one 𝑈𝑖, say 𝑈0; it is clear that ℱ𝑥 is generated by sections of
ℱ over 𝑈0; as 𝑄0 is invertible in 𝒪𝑥, it suffices to prove the following lemma:

Lemma 1. If 𝑠0 is a section ofℱ over𝑈0, there exists an integer𝑁 and a section 𝑠 ofℱ over
𝑋 such that 𝑠 = 𝑄𝑁0 ⋅ 𝑠0 over𝑈0.

By Proposition 2, 𝑈𝑖 ∩ 𝑈0 is an affine variety, obviously irreducible; by applying
Corollary 2 of Proposition 7 to this variety and to 𝜙𝑖 ∶ 𝒪𝑝𝑖 → ℱ, we see that there exists
a section 𝜎0𝑖 of 𝒪𝑝𝑖 on 𝑈𝑖 ∩𝑈0 such that 𝜙𝑖(𝜎0𝑖) = 𝑠0 on 𝑈𝑖 ∩𝑈0; as 𝑈𝑖 ∩𝑈0 is the set of
points of 𝑈𝑖 in which 𝑄0 does not vanish, we can apply Proposition 5 to 𝑋 = 𝑈𝑖, 𝑄 = 𝑄0
and we see that there exists, for 𝑛 sufficiently large, a section 𝜎𝑖 of 𝒪𝑝𝑖 over 𝑈𝑖 which
coincides with 𝑄𝑛0 ⋅ 𝜎0𝑖 over 𝑈𝑖 ∩ 𝑈0; by setting 𝑠′𝑖 = 𝜙𝑖(𝜎𝑖), we obtain a section of ℱ
over 𝑈𝑖 that coincides with 𝑄𝑛0 ⋅ 𝑠0 over 𝑈𝑖 ∩ 𝑈0. The sections 𝑠′𝑖 and 𝑠′𝑗 coincide on
𝑈𝑖 ∩𝑈𝑗 ∩𝑈0; applying Proposition 6 to 𝑠′𝑖 − 𝑠′𝑗, we see that for𝑚 sufficiently large we
have 𝑄𝑚0 (𝑠′𝑖 − 𝑠′𝑗) = 0 on the whole of𝑈𝑖 ∩𝑈𝑗. The 𝑄𝑚0 ⋅ 𝑠′𝑖 then define a unique section 𝑠
of ℱ over 𝑋, and we have 𝑠 = 𝑄𝑛+𝑚0 𝑠0 on 𝑈0, which shows the lemma and completes
the proof of Theorem 2.
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Corollary 1. The sheafℱ is isomorphic to a quotient sheaf of the sheaf 𝒪𝑝
𝑋 .

Because ℱ𝑥 is an 𝒪𝑥,𝑋-module of finite type, it follows from the above theorem that
there exists a finite number of sections of ℱ generating ℱ𝑥; by Proposition 1 of n◦ 12,
these sections generateℱ𝑦 for 𝑦 sufficiently close to 𝑥. The space𝑋 being quasi-compact,
we conclude that there exists a finite number of sections 𝑠1,… , 𝑠𝑝 of ℱ generating ℱ𝑥 for
all 𝑥 ∈ 𝑋, which means that ℱ is isomorphic to a quotient sheaf of the sheaf 𝒪𝑝

𝑋 .

Corollary 2. Let𝒜 𝛼,→ ℬ 𝛽,→ 𝒞 be an exact sequence of coherent algebraic sheaf on an
affine variety 𝑋. The sequence 𝛤(𝑋,𝒜) 𝛼,→ 𝛤(𝑋,ℬ) 𝛽,→ 𝛤(𝑋,𝒞) is also exact.

We can suppose, as in the proof of Theorem 2, that 𝑋 is an affine space 𝐾𝑟, thus is
irreducible. Set 𝒥 = ℑ(𝛼) = Ker(𝛽); everything reduces to seeing that 𝛼∶ 𝛤(𝑋,𝒜) →
𝛤(𝑋, 𝒥) is surjective. Now, by Corollary 1, we can find a surjective homomorphism
𝜙∶ 𝒪𝑝

𝑋 → 𝒜 and, by Corollary 2 to Proposition 7, 𝛼◦𝜙∶ 𝛤(𝑋,𝒪𝑝
𝑋) → 𝛤(𝑋, 𝒥) is surjec-

tive; this is a fortiori the same for 𝛼∶ 𝛤(𝑋,𝒜)→ 𝛤(𝑋, 𝒥), q.e.d.

46. Cohomology groups of an affine variety with values in a coherent algebraic
sheaf

Theorem 3. Let 𝑋 be an affine variety, 𝑄𝑖 a finite family of regular functions on 𝑋 that
do not vanish simultaneously and let𝔘 be the open covering of 𝑋 consisting of 𝑋𝑄𝑖 = 𝑈𝑖 . If
ℱ is a coherent algebraic sheaf on 𝑋, we have𝐻𝑞(𝔘,ℱ) = 0 for all 𝑞 > 0.

Assume first that 𝑋 is irreducible. By Corollary 1 to Theorem 2, we can find an exact
sequence

0→ ℛ → 𝒪𝑝
𝑋 → ℱ → 0.

The sequence of complexes: 0→ 𝐶(𝔘,ℛ)→ 𝐶(𝔘,𝒪𝑝
𝑋)→ 𝐶(𝔘,ℱ)→ 0 is exact; indeed,

this reduces to saying that every section of ℱ over 𝑈𝑖0…𝑖𝑞 is the image of a section of 𝒪
𝑝
𝑋

over 𝑈𝑖0…𝑖𝑞 , which follows from Corollary 2 to Proposition 7 applied to the irreducible
variety 𝑈𝑖0…𝑖𝑞 . This exact sequence gives birth to an exact sequence of cohomology:

…→ 𝐻𝑞(𝔘,𝒪𝑝
𝑋)→ 𝐻𝑞(𝔘,ℱ)→ 𝐻𝑞+1(𝔘,ℛ)→ … ,

and as 𝐻𝑞(𝔘,𝒪𝑝
𝑋) = 𝐻𝑞+1(𝔘,ℛ) = 0 for 𝑞 > 0 by Proposition 7, we conclude that

𝐻𝑞(𝔘,ℱ) = 0.
We proceed now to the general case. We can embed 𝑋 as a closed subvariety of

an affine space 𝐾𝑟; by Corollary 3 to Proposition 7, the functions 𝑄𝑖 are induced by
polynomials 𝑃𝑖; let on the other hand 𝑅𝑗 be a finite system of generators of the ideal
𝐼(𝑋). The functions 𝑃𝑖, 𝑅𝑗 do not vanish simultaneously on 𝐾𝑟, thus define an open
covering𝔘′ of 𝐾𝑟; let ℱ′ be the sheaf obtained by extending ℱ by 0 outside 𝑋; applying
what we have proven to the space 𝐾𝑟, the functions 𝑃𝑖, 𝑅𝑗 and the sheaf ℱ′, we see that
𝐻𝑞(𝔘′,ℱ′) = 0 for 𝑞 > 0. As we can immediately verify that the complex 𝐶(𝔘′,ℱ′) is
isomorphic to the complex 𝐶(𝔘,ℱ), it follows that𝐻𝑞(𝔘,ℱ) = 0, q.e.d.

Corollary 1. If 𝑋 is an affine variety and ℱ a coherent algebraic sheaf on 𝑋, we have
𝐻𝑞(𝑋,ℱ) = 0 for all 𝑞 > 0.

Indeed, the coverings used in the above theorem are arbitrarily fine.
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Corollary 2. Let 0 → 𝒜 → ℬ → 𝒞 → 0 be an exact sequence of sheaves on an affine
variety 𝑋. If the sheaf𝒜 is coherent algebraic, the homomorphism 𝛤(𝑋,𝔙)→ 𝛤(𝑋,𝒞) is
surjective.

This follows from Corollary 1, by setting 𝑞 = 1.

47. Coverings of algebraic varieties by open affine subsets

Proposition 8. Let 𝑋 be an affine variety and let𝔘 = {𝑈𝑖}𝑖∈𝐼 be a finite covering of 𝑋 by
open affine subsets. Ifℱ is a coherent algebraic sheaf on 𝑋, we have𝐻𝑞(𝔘,ℱ) = 0 for all
𝑞 > 0.

By Proposition 3, there exist regular functions 𝑃𝑗 on 𝑋 such that the covering𝔙 =
{𝑋𝑃𝑗 } is finer than𝔘. For every (𝑖0,… , 𝑖𝑝), the covering𝔙𝑖0,…,𝑖𝑝 induced by𝔙 on𝑈𝑖0…𝑖𝑝 is
defined by restrictions of 𝑃𝑗 to 𝑈𝑖0…𝑖𝑝 ; as 𝑈𝑖0…𝑖𝑝 is an affine variety by Proposition 1, we
can apply Theorem 3 to it and conclude that𝐻𝑞(𝔙𝑖0…𝑖𝑝 ,ℱ) = 0 for all 𝑞 > 0. Applying
then Proposition 5 of n◦ 29, we see that

𝐻𝑞(𝔘,ℱ) = 𝐻𝑞(𝔙,ℱ),

and, as𝐻𝑞(𝔙,ℱ) = 0 for 𝑞 > 0 by Theorem 3, the Proposition is proven.

Theorem 4. Let 𝑋 be an algebraic variety, ℱ a coherent algebraic sheaf on 𝑋 and𝔘 =
{𝑈𝑖}𝑖∈𝐼 afinite covering of𝑋 by openaffine subsets. The homomorphism𝜎(𝔘)∶ 𝐻𝑛(𝔘,ℱ)→
𝐻𝑛(𝑋,ℱ) is bijective for all 𝑛 ≥ 0.

Consider the family 𝔙𝛼 of all finite coverings of 𝑋 by open affine subsets. By the
corollary of Theorem 1, these coverings are arbitrarily fine. On the other hand, for every
system (𝑖0,… , 𝑖𝑝) the covering𝔙𝛼

𝑖0…𝑖𝑝 induced by𝔙
𝛼 on𝑈𝑖0…𝑖𝑝 is a covering by open affine

subsets, by Proposition 1; by Proposition 8, we thus have 𝐻𝑞(𝔙𝛼
𝑖0…𝑖𝑝 ,ℱ) = 0 for 𝑞 > 0.

The conditions (a) and (b) of Theorem 1, n◦ 29 are satisfied and the theorem follows.

Theorem 5. Let 𝑋 be an algebraic variety and𝔘 = {𝑈𝑖}𝑖∈𝐼 a finite covering of 𝑋 by open
affine subsets. Let 0→ 𝒜→ ℬ → 𝒞→ 0 be an exact sequence of sheaves on 𝑋, the sheaf
𝒜 being coherent algebraic. The canonical homomorphism𝐻𝑞

0 (𝔘,𝒞)→ 𝐻𝑞(𝔘,𝒞) (cf. n◦
24) is bijective for all 𝑞 ≥ 0.

It obviously suffices to prove that 𝐶0(𝔘,𝒞) = 𝐶(𝔘,𝒞), that is, that every section of 𝒞
over 𝑈𝑖0…𝑖𝑞 is the image of a section of ℬ over 𝑈𝑖0…𝑖𝑞 , which follows from Corollary 2 of
Theorem 3.

Corollary 1. Let 𝑋 be an algebraic variety and let 0 → 𝒜 → ℬ → 𝒞 → 0 be an
exact sequence of sheaves on 𝑋, the sheaf 𝒜 being coherent algebraic. The canonical
homomorphism𝐻𝑞

0 (𝑋,𝒞)→ 𝐻𝑞(𝑋,𝒞) is bijective for all 𝑞 ≥ 0.

This is an immediate consequence of Theorems 1 and 5.

Corollary 2. We have an exact sequence:

…→ 𝐻𝑞(𝑋,ℬ)→ 𝐻𝑞(𝑋,𝒞)→ 𝐻𝑞+1(𝑋,𝒜)→ 𝐻𝑞+1(𝑋,ℬ)→ …
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§4. Correspondence between modules of finite type and
coherent algebraic sheaves

48. Sheaf associated with a module

Let 𝑉 be an affine variety, 𝒪 the sheaf of local rings of 𝑉; the ring 𝐴 = 𝛤(𝑉,𝒪), which
will be called the ring of coordinates of 𝑉, is an algebra over 𝐾 which has no nilpotent
elements but 0. If 𝑉 is embedded as a closed subvariety of an affine space 𝐾𝑟, we know
(cf. n◦ 44) that 𝐴 is identified with the quotient algebra of 𝐾[𝑋1,… , 𝑋𝑟] by the ideal of
polynomials vanishing on𝑉; it follows that the algebra𝐴 is generated by a finite number
of elements.

Conversely, we verify easily that if 𝐴 is a commutative 𝐾–algebra without nilpotent
elements (other that 0) and is generated by a finite number of elements, there exists an
affine variety 𝑉 such that 𝐴 is isomorphic to 𝛤(𝑉,𝒪); moreover, 𝑉 is determined up to
isomorphism by this property (we can identify𝑉 with the set of characters of𝐴 equipped
with the usual topology).

Let𝑀 be an 𝐴-module;𝑀 defines a constant sheaf on 𝑉 which we denote again by
𝑀; the sameway𝐴 defines a constant sheaf, and the sheaf𝑀 can be considered as a sheaf
of 𝐴-modules. Define 𝒜(𝑀) = 𝒪⊗𝐴 𝑀, the sheaf 𝒪 being also considered as a sheaf of
𝐴-modules; it is clear that 𝒜(𝑀) is an algebraic sheaf on 𝑉. Moreover, if 𝜙∶ 𝑀 → 𝑀′ is
an 𝐴-homomorphism, we have a homomorphism 𝒜(𝜙) = 1⊗ 𝜙∶ 𝒜(𝑀)→ 𝒜(𝑀′); in
other words, 𝒜(𝑀) is a covariant functor of the module𝑀.

Proposition 1. The functor𝒜(𝑀) is exact.

Let𝑀 → 𝑀′ → 𝑀′′ be an exact sequence of 𝐴-modules. We must observe that the
sequence 𝒜(𝑀) → 𝒜(𝑀′) → 𝒜(𝑀′′) is exact, in other words, that for all 𝑥 ∈ 𝑉 the
sequence:

𝒪𝑥 ⊗𝐴 𝑀 → 𝒪𝑥 ⊗𝐴 𝑀′ → 𝒪𝑥 ⊗𝐴 𝑀′′

is exact.
Now 𝒪𝑥 is nothing else that the localization 𝐴𝑆 of 𝐴, 𝑆 being the set of those 𝑓 ∈ 𝐴

for which 𝑓(𝑥) ≠ 0 (for the definition of localization, cf. [8], [12] or [13]). Proposition 1
is thus a particular case of the following result:

Lemma 1. Let 𝐴 be a ring, 𝑆 a multiplicative system in 𝐴 not containing 0, 𝐴𝑆 the local-
ization of 𝐴 in 𝑆. If 𝑀 → 𝑀′ → 𝑀′′ is an exact sequence of 𝐴-modules, the sequence
𝐴𝑆 ⊗𝐴 𝑀 → 𝐴𝑆 ⊗𝐴 𝑀′ → 𝐴𝑆 ⊗𝐴 𝑀′′ is exact.

Denote by𝑀𝑆 the set of fractions 𝑚∕𝑠 with 𝑚 ∈ 𝑀, 𝑠 ∈ 𝑆, two fractions 𝑚∕𝑠 and
𝑚′∕𝑠′ being identified if there exists an 𝑠′′ ∈ 𝑆 such that 𝑠′′(𝑠′ ⋅ 𝑚 − 𝑠 ⋅ 𝑚′) = 0; it is
easily seen that𝑀𝑆 is an 𝐴𝑆-module and that the mapping

𝑎∕𝑠 ⊗ 𝑚 ↦ 𝑎 ⋅𝑚∕𝑠

is an isomorphism from 𝐴𝑆 ⊗𝐴 𝐴 onto𝑀𝑆; we are thus led to prove that the sequence

𝑀𝑆 → 𝑀′
𝑆 → 𝑀′′

𝑆

is exact, which is obvious.

Proposition 2. 𝒜(𝑀) = 0 implies𝑀 = 0.
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Let 𝑚 be an element of 𝑀; if 𝒜(𝑀) = 0, we have 1 ⊗ 𝑚 = 0 in 𝒪𝑥 ⊗𝐴 𝑀 for all
𝑥 ∈ 𝑉. By the discussion above, 1 ⊗ 𝑚 = 0 is equivalent to existence of an element
𝑠 ∈ 𝐴, 𝑠(𝑥) ≠ 0 such that 𝑠 ⋅𝑚 = 0; the annihilator of𝑚 in𝑀 is not contained in any
maximal ideal of 𝐴, which implies that it is equal to 𝐴, so𝑚 = 0.

Proposition 3. If𝑀 is an 𝐴-module of finite type,𝒜(𝑀) is a coherent algebraic sheaf on
𝑉.

Because𝑀 is of finite type and since 𝐴 is Noetherian,𝑀 is isomorphic to the cok-
ernel of a homomorphism 𝜙∶ 𝐴𝑞 → 𝐴𝑝 and 𝒜(𝑀) is isomorphic to the cokernel of
𝒜(𝜙)∶ 𝒜(𝐴𝑞) → 𝒜(𝐴𝑝). As 𝒜(𝐴𝑝) = 𝒪𝑝 and 𝒜(𝐴𝑞) = 𝒪𝑞, it follows that 𝒜(𝑀) is
coherent.

49. Module associated with an algebraic sheaf

Let ℱ be an algebraic sheaf on 𝑉 and let 𝛤(ℱ) = 𝛤(𝑉,ℱ); since ℱ is a sheaf of 𝒪-
modules, 𝛤(ℱ) is equipped with a natural structure of an 𝐴-module. Any algebraic
homomorphism 𝜙∶ ℱ → 𝒢 defines an 𝐴-homomorphism 𝛤(𝜙)∶ 𝛤(ℱ) → 𝛤(𝒢). If we
have an exact sequence of algebraic sheaves ℱ → 𝒢→ 𝒦, the sequence

𝛤(ℱ)→ 𝛤(𝒢)→ 𝛤(𝒦)

is exact (n◦ 45); applying this to an exact sequence 𝒪𝑝 → ℱ → 0 we see that 𝛤(ℱ) is an
𝐴-module of finite type if ℱ is coherent.

The functors 𝒜(𝑀) and 𝛤(ℱ) are “inverse” to each other:

Theorem 1. (a) If𝑀 is an 𝐴-module of finite type, 𝛤(𝒜(𝑀)) is canonically isomorphic to
𝑀.

(b) Ifℱ is a coherent algebraic sheaf on 𝑉,𝒜(𝛤(ℱ)) is canonically isomorphic toℱ.

First let us show (a). Every element𝑚 ∈ 𝑀 defines a section 𝛼(𝑚) of𝒜(𝑀) by the
formula: 𝛼(𝑚)(𝑥) = 1⊗𝑚 ∈ 𝒪𝑥 ⊗𝐴 𝑀; hence a homomorphism 𝛼∶ 𝑀 → 𝛤(𝒜(𝑀)).
When𝑀 is a free module of finite type, 𝛼 is bijective (it suffices to see this when𝑀 = 𝐴,
in which case it is obvious); if𝑀 is an arbitrary module of finite type, there exists an
exact sequence 𝐿1 → 𝐿0 → 𝑀 → 0 where 𝐿0 and 𝐿1 are free of finite type; the sequence
𝒜(𝐿1)→ 𝒜(𝐿0)→ 𝒜(𝑀)→ 0 is exact, thus also the sequence 𝛤(𝒜(𝐿1))→ 𝛤(𝒜(𝐿0))→
𝛤(𝒜(𝑀))→ 0. The commutative diagram:

𝐿1 𝐿0 𝑀 0

𝛤(𝒜(𝐿1)) 𝛤(𝒜(𝐿0)) 𝛤(𝒜(𝑀)) 0

𝛼 𝛼 𝛼 𝛼

shows then that 𝛼∶ 𝑀 → 𝛤(𝒜(𝑀)) is bijective, which shows (a).
Let now ℱ be an algebraic coherent sheaf on 𝑉. If we associate to every 𝑠 ∈ 𝛤(ℱ)

an element 𝑠(𝑥) ∈ ℱ(𝑋), we obtain an 𝐴-homomorphism: 𝛤(ℱ)→ ℱ𝑥 which extends
to an 𝒪𝑥-homomorphism 𝛽𝑥 ∶ 𝒪𝑥 ⊗𝐴 𝛤(ℱ) → ℱ𝑥; we easily verify that the 𝛽𝑥 form a
homomorphism of sheaves 𝛽∶ 𝒜(𝛤(ℱ))→ ℱ. When ℱ = 𝒪𝑝, the homomorphism 𝛽 is
bijective; it follows by the same reasoning as above that 𝛽 is bijective for every coherent
algebraic sheaf ℱ, which shows (b).
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Remarks. (1) We could also deduce (b) from (a); cf. n◦ 65, proof of Proposition 6.
(2) We will see in Chapter III how the above correspondence should be modified

when one studies coherent sheaves on the projective space.

50. Projective modules and vector bundles

Recall ([6], Chap. I, th. 2.2) that an𝐴-module is called projective if it is a direct summand
of a free 𝐴-module.

Proposition 4. Let𝑀 be an 𝐴-module of finite type. Then𝑀 is projective if and only if
the 𝒪𝑥-module 𝒪𝑥 ⊗𝐴 𝑀 is free for every 𝑥 ∈ 𝑉.

If𝑀 is projective, 𝒪𝑥 ⊗𝐴 𝑀 is 𝒪𝑥–projective, thus 𝒪𝑥–free since 𝒪𝑥 is a local ring
(cf. [6], Chap. VIII, th. 6.1’).

Conversely, if all 𝒪𝑥 ⊗𝐴 𝑀 are free, we have

dim(𝑀) = Sup dim𝑥∈𝑉(𝒪𝑥 ⊗𝐴 𝑀) = 0 (𝑐𝑓.[6], 𝐶ℎ𝑎𝑝.𝑉𝐼𝐼, 𝐸𝑥𝑒𝑟.11),

from which it follows that𝑀 is projective ([6], Chap. VI, §2).
Note that if ℱ is a coherent algebraic sheaf on 𝑉 and if ℱ𝑥 is isomorphic to 𝒪𝑝

𝑥 , ℱ is
isomorphic to 𝒪𝑝 in a neighbourhood of 𝑥; if this property is satisfied in every 𝑥 ∈ 𝑉,
the sheaf ℱ is thus locally isomorphic to the sheaf 𝒪𝑝, the integer 𝑝 being constant on
every connected component of 𝑉. Applying this to the sheaf 𝒜(𝑀), we obtain:

Corollary. Let ℱ be a coherent algebraic sheaf on a connected affine variety 𝑉. The
three following properties are equivalent:

(i) 𝛤(ℱ) is a projective 𝐴-module,
(ii)ℱ is locally isomorphic to 𝒪𝑝,
(iii)ℱ is isomorphic to the sheaf of germs of sections of a vector bundle with base 𝑉.

In other words, the mapping 𝐸 ↦ 𝛤(𝒮(𝐸) (𝐸 denoting a vector bundle) gives a
bijective correspondence between classes of vector bundles and classes of projective
𝐴-modules of finite type; in this correspondence, a trivial bundle corresponds to a free
module and conversely.

Note that when 𝑉 = 𝐾𝑟 (in which case 𝐴 = 𝐾[𝑋1,… , 𝑋𝑟]), we do not know if there
exist projective𝐴-modules that are not free, or equivalently, if there exist algebraic vector
bundles with base 𝐾𝑟 that are not trivial.



Chapter III

Coherent Algebraic Sheaves on
Projective Varieties

§1. Projective varieties

51. Notation

(The notation introduced below will be used without reference throughout the chapter).
Let 𝑟 be an integer≥ 0 and let𝑌 = 𝐾𝑟+1−{0}; the multiplicative group𝐾∗ of nonzero

elements of 𝐾 acts on 𝑌 by the formula

𝜆(𝜇0,… , 𝜇𝑟) = (𝜆𝜇0,… , 𝜆𝜇𝑟).

Two points 𝑦 and 𝑦′ will be called equivalent if there exists 𝜆 ∈ 𝐾∗ such that 𝑦′ = 𝜆𝑦;
the quotient space of 𝑌 by this equivalence relation will be denoted by ℙ𝑟(𝐾) or simply
𝑋; it is the projective space of dimension 𝑟 over 𝐾; the canonical projection of 𝑌 onto 𝑋
will be denoted 𝜋.

Let 𝐼 = {0, 1,… , 𝑟}; for every 𝑖 ∈ 𝐼, we denote by 𝑡𝑖 the 𝑖-th coordinate function on
𝐾𝑟+1, defined by the formula:

𝑡𝑖(𝜇0,… , 𝜇𝑟) = 𝜇𝑖.
We denote by 𝑉𝑖 the open subset of 𝐾𝑟+1 consisting of points whose 𝑡𝑖 is ≠ 0 and by

𝑈𝑖 the image of 𝑉𝑖 by 𝜋; the {𝑈𝑖} form a covering𝔘 of 𝑋. If 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐼, the function
𝑡𝑗∕𝑡𝑖 is regular on𝑉𝑖 and invariant for𝐾∗, thus defines a function on𝑈𝑖 which we denote
also by 𝑡𝑗∕𝑡𝑖; for fixed 𝑖, the functions 𝑡𝑗∕𝑡𝑖, 𝑗 ≠ 𝑖 define a bijection 𝜙𝑖 ∶ 𝑈𝑖 → 𝐾𝑟.

We equip 𝐾𝑟+1 with the structure of an algebraic variety and 𝑌 the induced structure.
Likewise, we equip 𝑋 with the quotient topology from 𝑌: a closed subset of 𝑋 is thus the
image by 𝜋 of a closed cone in 𝐾𝑟+1. If 𝑈 is open in 𝑋, we define 𝐴𝑈 = 𝛤(𝜋−1(𝑈),𝒪𝑌);
this is the sheaf of regular functions on 𝜋−1(𝑈). Let 𝐴0

𝑈 be the subring of 𝐴𝑈 consisting
of elements invariant for 𝐾∗ (that is, homogeneous functions of degree 0). When 𝑉 ⊃ 𝑈,
we have a restriction homomorphism 𝜙𝑉𝑈 ∶ 𝐴0

𝑉 → 𝐴0
𝑈 and the system (𝐴0

𝑈 , 𝜙𝑉𝑈) defines a
sheaf 𝒪𝑋 which can be considered as a subsheaf of the sheaf ℱ(𝑋) of germs of functions
on 𝑋. Such a function 𝑓, defined in a neighbourhood of 𝑥 belongs to 𝒪𝑥,𝑋 if and only if
it coincides locally with a function of the form 𝑃∕𝑄 where 𝑃 and 𝑄 are homogeneous
polynomials of the same degree in 𝑡0,… , 𝑡𝑟 with 𝑄(𝑦) ≠ 0 for 𝑦 ∈ 𝜋−1(𝑥) (which we
write for brevity as 𝑄(𝑥) ≠ 0).
Proposition 1. The projective space 𝑋 = ℙ𝑟(𝐾), equipped with the topology and sheaf
above, is an algebraic variety.

46
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The𝑈𝑖, 𝑖 ∈ 𝐼 are open in𝑋 andwe verify immediately that the bijections𝜙𝑖 ∶ 𝑈𝑖 → 𝐾𝑟

defined above are biregular isomorphisms, which shows that the axiom (𝑉𝐴𝐼) is satisfied.
To show that (𝑉𝐴𝐼𝐼) is also satisfied, wemust observe that the subset of𝐾𝑟×𝐾𝑟 consisting
of all pairs (𝜓𝑖(𝑥), 𝜓𝑗(𝑥)) where 𝑥 ∈ 𝑈𝑖 ∩𝑈𝑗 is closed, which does not pose difficulties.

In what follows, 𝑋 will be always equipped with the structure of an algebraic variety
just defined; the sheaf 𝒪𝑋 will be simply denoted 𝒪. An algebraic variety 𝑉 is called
projective if it is isomorphic to a closed subvariety of a projective space. The study of
coherent algebraic sheaves on projective varieties can be reduced to the study of coherent
algebraic sheaves on ℙ𝑟(𝐾), cf. n◦ 39.

52. Cohomology of subvarieties of the projective space

Let us apply Theorem 4 from n◦ 47 to the covering𝔘 = {𝑈𝑖}𝑖∈𝐼 defined in the preceding
n◦ : it is possible since each 𝑈𝑖 is isomorphic to 𝐾𝑟. We thus obtain:

Proposition 2. If ℱ is a coherent algebraic sheaf on 𝑋 = ℙ𝑟(𝐾), the homomorphism
𝜎(𝔘)∶ 𝐻𝑛(𝔘,ℱ)→ 𝐻𝑛(𝑋,ℱ) is bijective for all 𝑛 ≠ 0.

Since𝔘 consists of 𝑟 + 1 open subsets, we have (cf. n◦ 20, corollary to Proposition 2):

Corollary. 𝐻𝑛(𝑋,ℱ) = 0 for 𝑛 > 𝑟.

This result can be generalized in the following way:

Proposition 3. Let 𝑉 be an algebraic variety, isomorphic to a locally closed subvariety
of the projective space 𝑋. Let ℱ be an algebraic coherent sheaf on 𝑉 and let 𝑊 be the
subvariety of 𝑉 such thatℱ is zero outside𝑊. We then have𝐻𝑛(𝑉,ℱ) = 0 for 𝑛 > dim𝑊.

In particular, taking𝑊 = 𝑉, we see that we have:

Corollary. 𝐻𝑛(𝑉,ℱ) = 0 for 𝑛 > dim𝑉.

Identify 𝑉 with a locally closed subvariety of 𝑋 = ℙ𝑟(𝐾); there exists an open subset
𝑈 of𝑋 such that𝑉 is closed in𝑈. We can clearly assume that𝑊 is closed in𝑉, so that𝑊
is closed in 𝑈. Let 𝐹 = 𝑋 −𝑈. Before proving Proposition 3, we establish two lemmas:

Lemma 1. Let 𝑘 = dim𝑊; there exists 𝑘 + 1 homogeneous polynomials 𝑃𝑖(𝑡0,… , 𝑡𝑟) of
degrees > 0, vanishing on 𝐹 and not vanishing simultaneously on𝑊.

(By abuse of language, we say that a homogeneous polynomial 𝑃 vanishes in a point
𝑥 of ℙ𝑟(𝐾) if it vanishes on 𝜋−1(𝑥)).

We proceed by induction on 𝑘, the case when 𝑘 = −1 being trivial. Choose a point
on each irreducible component of𝑊 and let 𝑃1 be a homogeneous polynomial vanishing
on 𝐹, of degree > 0 and nonvanishing in each of these points (the existence of 𝑃1 follows
from the fact that 𝐹 is closed, given the definition of the topology of ℙ𝑟(𝐾)). Let𝑊′ be
a subvariety of𝑊 consisting of points 𝑥 ∈𝑊 such that 𝑃1(𝑥) = 0; by the construction
of 𝑃1, no irreducible component of 𝑊 is contained in 𝑊′ and it follows (cf. n◦ 36)
that dim𝑊′ < 𝑘. Applying the induction assumption to𝑊′, we see that there exist 𝑘
homogeneous polynomials 𝑃2,… , 𝑃𝑘+1 vanishing on𝐹 and nonvanishing simultaneously
on𝑊′; it is clear that the polynomials 𝑃1,… , 𝑃𝑘+1 satisfy appropriate conditions.

Lemma 2. Let 𝑃(𝑡0,… , 𝑡𝑟) be a homogeneous polynomial of degree 𝑛 > 0. The set 𝑋𝑃 of
all points 𝑥 ∈ 𝑋 such that 𝑃(𝑥) ≠ 0 is an open affine subset of 𝑋.
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If we assign to every point 𝑦 = (𝜇0,… , 𝜇𝑟) ∈ 𝑌 the point of the space 𝐾𝑁 having
for coordinates all monomials 𝜇𝑚0

0 …𝜇𝑚𝑟
𝑟 , 𝑚0 + … +𝑚𝑟 = 𝑛, we obtain, by passing to

quotient, a mapping 𝜙𝑛 ∶ 𝑋 → ℙ𝑁−1(𝐾). It is classical, and also easy to verify, that 𝜙𝑛 is
a biregular isomorphism of 𝑋 onto a closed subvariety of ℙ𝑁−1(𝐾) (“Veronese variety”);
now 𝜙𝑛 transforms the open subset 𝑋𝑃 onto the locus of points of 𝜙𝑛(𝑋) not lying on a
certain hyperplane of ℙ𝑁−1(𝑋); as the complement of any hyperplane is isomorphic to
an affine space, we conclude that 𝑋𝑃 is isomorphic to a closed subvariety of an affine
space.

We shall now prove Proposition 3. Extend the sheaf ℱ by 0 on 𝑈 − 𝑉; we obtain a
coherent algebraic sheaf on 𝑈 which we also denote by ℱ, and we know (cf. n◦ 26) that
𝐻𝑛(𝑈,ℱ) = 𝐻𝑛(𝑉,ℱ). Let on the other hand 𝑃1,… , 𝑃𝑘+1 be homogeneous polynomials
satisfying the conditions of Lemma 1; let 𝑃𝑘+2,… , 𝑃ℎ be homogeneous polynomials of
degrees> 0, vanishing on𝑊∪𝐹 and not vanishing simultaneously in any point of𝑈−𝑊
(to obtain such polynomials, it suffices to take a system of homogeneous coordinates
of the ideal defined by𝑊 ∪ 𝐹 in 𝐾[𝑡0,… , 𝑡𝑟]). For every 𝑖, 1 ≤ 𝑖 ≤ ℎ, let 𝑉𝑖 be the set of
points 𝑥 ∈ 𝑋 such that 𝑃𝑖(𝑥) ≠ 0; we have 𝑉𝑖 ⊂ 𝑈 and the assumptions made above
show that 𝔙 = {𝑉𝑖} is an open covering of 𝑈; moreover, Lemma 2 shows that 𝑉𝑖 are
open affine subsets, so 𝐻𝑛(𝔙,ℱ) = 𝐻𝑛(𝑈,ℱ) = 𝐻𝑛(𝑉,ℱ) for all 𝑛 ≥ 0. On the other
hand, if 𝑛 > 𝑘 and if the indices 𝑖0,… , 𝑖𝑛 are distinct, one of the indices is > 𝑘 + 1 and
𝑉𝑖0…𝑖𝑛 does not meet𝑊; we conclude that the group of alternating cochains 𝐶′𝑛(𝔙,ℱ) is
zero if 𝑛 > 𝑘, which shows that𝐻𝑛(𝔙,ℱ) = 0, by Proposition 2 of n◦ 20.

53. Cohomology of irreducible algebraic curves

If𝑉 is an irreducible algebraic variety of dimension 1, the closed subsets of𝑉 distinct from
𝑉 are finite subsets. If𝐹 is a finite subset of𝑉 and 𝑥 a point of𝐹, we set𝑉𝑝

𝑥 = (𝑉−𝐹)∪{𝑥};
the 𝑉𝐹

𝑥 , 𝑥 ∈ 𝐹 form a finite open covering𝔙𝐹 of 𝑉.

Lemma 3. The coverings𝔙𝐹 of the above type are arbitrarily fine.

Let𝔘 = {𝑈𝑖}𝑖∈𝐼 be an open covering of 𝑉, which we may assume to be finite since 𝑉
is quasi-compact. We can likewise assume that𝑈𝑖 ≠ ∅ for all 𝑖 ∈ 𝐼. If we set 𝐹𝑖 = 𝑉−𝑈𝑖,
𝐹𝑖 is also finite, and so is 𝐹 = ⋃

𝑖∈𝐼 𝐹𝑖. We will show that 𝔙𝐹 ≺ 𝔘, which proves the
lemma. Let 𝑥 ∈ 𝐹; there exists an 𝑖 ∈ 𝐼 such that 𝑥 ∉ 𝐹𝑖, since the 𝑈𝑖 cover 𝑉; we have
then 𝐹 − {𝑥} ⊃ 𝐹𝑖, because 𝐹 ⊃ 𝐹𝑖, which means that 𝑉𝐹

𝑥 ⊂ 𝑈𝑖 and shows that𝔙𝐹 ≺ 𝔘.

Lemma 4. Letℱ be a sheaf on 𝑉 and 𝐹 a finite subset of 𝑉. We have

𝐻𝑛(𝔙𝐹 ,ℱ) = 0

for 𝑛 ≥ 2.

Set𝑊 = 𝑉 − 𝐹; it is clear that 𝑉𝐹
𝑥0 ∩ … ∩ 𝑉𝐹

𝑥𝑛 = 𝑊 if 𝑥0,… , 𝑥𝑛 are distinct and if
𝑛 ≥ 1. If we put 𝐺 = 𝛤(𝑊,ℱ), it follows that the alternating complex 𝐶′(𝔙𝐹 ,ℱ) is
isomorphic, in dimensions ≥ 1, to 𝐶′(𝑆(𝐹), 𝐺), 𝑆(𝐹) denoting the simplex with 𝐹 for the
set of vertices. It follows that

𝐻𝑛(𝔙𝐹 ,ℱ) = 𝐻𝑛(𝑆(𝐹), 𝐺) = 0 for 𝑛 ≥ 2,

the cohomology of a simplex being trivial.
Lemmas 3 and 4 obviously imply:
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Proposition 4. If 𝑉 is an irreducible algebraic curve and ℱ is an arbitrary sheaf in 𝑉,
we have𝐻𝑛(𝑉,ℱ) = 0 for 𝑛 ≥ 2.
Remark. I do not know whether an analogous result is true for varieties of arbitrary
dimension.

§2. Graded modules and coherent algebraic sheaves on the
projective space

54. The operationℱ(𝑛)
Let ℱ be an algebraic sheaf on 𝑋 = ℙ𝑟(𝐾). Let ℱ𝑖 = ℱ(𝑈𝑖) be the restriction of ℱ to 𝑈𝑖
(cf. n◦ 51); if 𝑛 is an arbitrary integer, let 𝜃𝑖𝑗(𝑛) be the isomorphism of ℱ𝑗(𝑈𝑖 ∩𝑈𝑗) with
ℱ𝑖(𝑈𝑖 ∩ 𝑈𝑗) defined by multiplication by the function 𝑡𝑛𝑗 ∕𝑡𝑛𝑖 ; this makes sense, since
𝑡𝑗∕𝑡𝑖 is a regular function on 𝑈𝑖 ∩𝑈𝑗 with values in 𝐾∗. We have 𝜃𝑖𝑗(𝑛)◦𝜃𝑗𝑘(𝑛) = 𝜃𝑖𝑘(𝑛)
at every point of 𝑈𝑖 ∩𝑈𝑗 ∩𝑈𝑘; we can thus apply Proposition 4 of n◦ 4 and obtain an
algebraic sheaf denoted by ℱ(𝑛), defined by gluing the sheaves ℱ𝑖 = ℱ(𝑈𝑖) using the
isomorphisms 𝜃𝑖𝑗(𝑛).

We have the canonical isomorphisms: ℱ(0) ≃ ℱ, ℱ(𝑛)(𝑚) ≈ ℱ(𝑛 +𝑚). Moreover,
ℱ(𝑛) is locally isomorphic to ℱ, thus coherent if ℱ is; it also follows that every exact
sequence ℱ → ℱ′ → ℱ′′ of algebraic sheaves gives birth to exact sequences ℱ(𝑛) →
ℱ′(𝑛)→ ℱ′′(𝑛) for all 𝑛 ∈ ℤ.

We can apply the above procedure to the sheaf ℱ = 𝒪 and so obtain the sheaves
𝒪(𝑛), 𝑛 ∈ ℤ. We will give another description of these sheaves: if 𝑈 is open in 𝑋, let
𝐴𝑛
𝑈 be the subset of 𝐴𝑈 = 𝛤(𝜋−1(𝑈),𝒪𝑌) consisting of regular functions of degree 𝑛

(that is, satisfying the identity 𝑓(𝜆𝑦) = 𝜆𝑛𝑓(𝑦) for 𝜆 ∈ 𝐾∗ and 𝑦 ∈ 𝜋−1(𝑈)); the 𝐴𝑛
𝑈

are 𝐴0
𝑈-modules, thus give birth to an algebraic sheaf, which we denote by 𝒪′(𝑛). An

element of 𝒪′(𝑛)𝑥, 𝑥 ∈ 𝑋 can be this identified with a rational function 𝑃∕𝑄, 𝑃 and 𝑄
being homogeneous polynomials such that 𝑄(𝑥) ≠ 0 and deg𝑃 − deg𝑄 = 𝑛.
Proposition 1. The sheaves 𝒪(𝑛) and 𝒪′(𝑛) are canonically isomorphic.

By definition, a section of 𝒪(𝑛) over an open 𝑈 ⊂ 𝑋 is a system (𝑓𝑖) of sections of 𝒪
over 𝑈 ∩𝑈𝑖 with 𝑓𝑖 = (𝑡𝑛𝑗 ∕𝑡𝑛𝑖 ) ⋅ 𝑓𝑗 on 𝑈 ∩𝑈𝑖 ∩𝑈𝑗; the 𝑓𝑗 can be identified with regular
functions, homogeneous of degree 0 over 𝜋−1(𝑈)∩𝜋−1(𝑈𝑖); set 𝑔𝑖 = 𝑡𝑛𝑖 ⋅𝑓𝑖; we then have
𝑔𝑖 = 𝑔𝑗 at every point of 𝜋−1(𝑈) ∩ 𝜋−1(𝑈𝑖) ∩ 𝜋−1(𝑈𝑗), thus the 𝑔𝑖 are the restrictions
of a unique regular function on 𝜋−1(𝑈), homogeneous of degree 𝑛. Conversely, such a
function 𝑔 defines a system (𝑓𝑖) by setting 𝑓𝑖 = 𝑔∕𝑡𝑛𝑖 . The mapping (𝑓𝑖)↦ 𝑔 is thus an
isomorphism of 𝒪(𝑛) with 𝒪′(𝑛).

Henceforth, we will often identify 𝒪(𝑛) with 𝒪′(𝑛) by means of the above isomor-
phism. We observe that a section of 𝒪′(𝑛) over 𝑋 is just a regular function on 𝑌, ho-
mogeneous of degree 𝑛. If we assume that 𝑟 ≥ 1, such a function is identically zero for
𝑛 < 0 and it is a homogeneous polynomial of degree 𝑛 for 𝑛 ≥ 0.
Proposition 2. For every algebraic sheafℱ, the sheavesℱ(𝑛) andℱ⊗𝒪𝒪(𝑛) are canon-
ically isomorphic.

Since 𝒪(𝑛) is obtained from the 𝒪𝑖 by gluing with respect to 𝜃𝑖𝑗(𝑛), ℱ ⊗ 𝒪(𝑛) is
obtained fromℱ𝑖⊗𝒪𝑖 by gluing with respect to the isomorphisms 1⊗𝜃𝑖𝑗(𝑛); identifying
ℱ𝑖 ⊗𝒪𝑖 with ℱ𝑖 we recover the definition of ℱ(𝑛).

Henceforth, we will also identify ℱ(𝑛) with ℱ ⊗𝒪(𝑛).
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55. Sections ofℱ(𝑛)
Let us first show a lemma on algebraic varieties, that is quite analogous to Lemma 1 of
n◦ 45:

Lemma 1. Let𝑉 be an affine variety,𝑄 a regular function on𝑉 and𝑉𝑄 the set of all points
𝑥 ∈ 𝑉 such that 𝑄(𝑥) ≠ 0. Letℱ be a coherent algebraic sheaf on 𝑉 and let 𝑠 be a section
ofℱ over 𝑉𝑄. Then, for 𝑛 sufficiently large, there exists a section 𝑠′ ofℱ over the whole 𝑉
such that 𝑠′ = 𝑄𝑛𝑠 over 𝑉𝑄.

Embedding 𝑉 in an affine space and extending ℱ by 0 outside 𝑉, we are brought to
the case where 𝑉 is an affine space, thus is irreducible. By Corollary 1 to Theorem 2
from n◦ 45, there exists a surjective homomorphism 𝜙∶ 𝒪𝑝

𝑉 → ℱ; by Proposition 2 of n◦
42, 𝑉𝑄 is an open affine subset and thus there exists (n◦ 44, Corollary 2 to Proposition
7) a section 𝜎 of 𝒪𝑝

𝑉 over 𝑉𝑄 such that 𝜙(𝜎) = 𝑠. We can identify 𝜎 with a system of
𝑝 regular functions on 𝑉𝑄; applying Proposition 5 of n◦ 43 to each of these functions,
we see that there exists a section 𝜎′ of 𝒪𝑝

𝑉 over 𝑉 such that 𝜎′ = 𝑄𝑛𝜎 on 𝑉𝑄, provided
that 𝑛 is sufficiently large. Setting 𝑠′ = 𝜙(𝜎′), we obtain a section of ℱ over 𝑉 such that
𝑠′ = 𝑄𝑛𝑠 on 𝑉𝑄.

Theorem 1. Let ℱ be a coherent algebraic sheaf on 𝑋 = ℙ𝑟(𝐾). There exists an integer
𝑛(ℱ) such that for all 𝑛 ≥ 𝑛(ℱ) and all 𝑥 ∈ 𝑋, the 𝒪𝑥-module ℱ(𝑛)𝑥 is generated by
elements of 𝛤(𝑋,ℱ(𝑛)).

By the definition of ℱ(𝑛), a section 𝑠 of ℱ(𝑛) over 𝑋 is a system (𝑠𝑖) of sections of ℱ
over 𝑈𝑖 satisfying the compatibility conditions:

𝑠𝑖 = (𝑡𝑛𝑗 ∕𝑡𝑛𝑖 ) ⋅ 𝑠𝑗 on 𝑈𝑖 ∩𝑈𝑗;

we say that 𝑠𝑖 is the 𝑖-th component of 𝑠.
On the other hand, since 𝑈𝑖 is isomorphic to 𝐾𝑟, there exists a finite number of

sections 𝑠𝛼𝑖 ofℱ over𝑈𝑖 which generateℱ𝑥 for all 𝑥 ∈ 𝑈𝑖 (n◦ 45, Corollary 1 to Theorem
2); if for a certain integer 𝑛 we can find sections 𝑠𝛼 of ℱ(𝑛) whose 𝑖-th component is 𝑠𝛼𝑖 ,
it is clear that 𝛤(𝑋,ℱ(𝑛)) generates ℱ(𝑛)𝑥 for all 𝑥 ∈ 𝑈𝑖. Theorem 1 is thus proven if
we prove the following Lemma:

Lemma 2. Let 𝑠𝑖 be a section ofℱ over𝑈𝑖 . For all 𝑛 sufficiently large, there exists a section
𝑠 ofℱ(𝑛) whose 𝑖-th component is equal to 𝑠𝑖 .

Apply Lemma 1 to the affine variety 𝑉 = 𝑈𝑗, the function 𝑄 = 𝑡𝑖∕𝑡𝑗 and the section
𝑠𝑖 restricted to𝑈𝑖 ∩𝑈𝑗; this is legal, because 𝑡𝑖∕𝑡𝑗 is a regular function on𝑈𝑗 whose zero
set is equal to 𝑈𝑗 − 𝑈𝑖 ∩ 𝑈𝑗. We conclude that there exists an integer 𝑝 and a section
𝑠′𝑗 of ℱ over 𝑈𝑗 such that 𝑠′𝑗 = (𝑡𝑝𝑖 ∕𝑡

𝑝
𝑗 ) ⋅ 𝑠𝑖 on 𝑈𝑖 ∩𝑈𝑗; for 𝑗 = 𝑖, we have 𝑠′𝑖 = 𝑠𝑖, which

allows us to write the preceding formula in the form 𝑠′𝑗 = (𝑡𝑝𝑖 ∕𝑡
𝑝
𝑗 ) ⋅ 𝑠′𝑖 .

The 𝑠′𝑗 being defined for every index 𝑗 (with the same exponent 𝑝), consider 𝑠′𝑗 −
(𝑡𝑝𝑘∕𝑡

𝑝
𝑗 ) ⋅ 𝑠′𝑘; it is a section ofℱ over𝑈𝑗 ∩𝑈𝑘 whose restriction to𝑈𝑖 ∩𝑈𝑗 ∩𝑈𝑘 is zero; by

applying Proposition 6 of n◦ 43 we see that for every sufficiently large integer 𝑞 we have
(𝑡𝑞𝑖 ∕𝑡

𝑞
𝑗 )(𝑠′𝑗 − (𝑡𝑝𝑘∕𝑡

𝑝
𝑗 ) ⋅ 𝑠′𝑘) = 0 on 𝑈𝑗 ∩𝑈𝑘; if we then put 𝑠𝑗 = (𝑡𝑞𝑖 ∕𝑡

𝑞
𝑗 ) ⋅ 𝑠′𝑗 and 𝑛 = 𝑝 + 𝑞,

the above formula is written 𝑠𝑗 = (𝑡𝑛𝑘∕𝑡
𝑛
𝑗 ) ⋅ 𝑠𝑘 and the system 𝑠 = (𝑠𝑗) is a section of ℱ(𝑛)

whose 𝑖-th component is equal to 𝑠𝑖, q.e.d.
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Corollary. Every coherent algebraic sheafℱ on 𝑋 = ℙ𝑟(𝐾) is isomorphic to a quotient
sheaf of a sheaf 𝒪(𝑛)𝑝, 𝑛 and 𝑝 being suitable integers.

By the above theorem, there exists an integer 𝑛 such that ℱ(−𝑛)𝑥 is generated by
𝛤(𝑋,ℱ(−𝑛)) for every 𝑥 ∈ 𝑋; by the quasi-compactness of 𝑋, this is equivalent to saying
that ℱ(−𝑛) is isomorphic to a quotient sheaf of a sheaf 𝒪𝑝, 𝑝 being an appropriate
integer ≥ 0. It follows then that ℱ ≈ ℱ(−𝑛)(𝑛) is isomorphic to a quotient sheaf of
𝒪(𝑛)𝑝 ≃ 𝒪𝑝(𝑛).

56. Graded modules

Let 𝑆 = 𝐾[𝑡0,… , 𝑡𝑟] be the algebra of polynomials in 𝑡0,… , 𝑡𝑟. For any integer 𝑛 ≥ 0,
let 𝑆𝑛 be the linear subspace of 𝑆 consisting of homogeneous polynomials of degree
𝑛; for 𝑛 < 0, we set 𝑆𝑛 = 0. The algebra 𝑆 is a direct sum of 𝑆𝑛, 𝑛 ∈ ℤ and we have
𝑆𝑝 ⋅ 𝑆𝑞 ⊂ 𝑆𝑝+𝑞; in other words, 𝑆 is a graded algebra.

Recall that an 𝑆-module𝑀 is said to be graded if there is given a decomposite of𝑀
into a direct sum: 𝑀 =⨁

𝑛∈ℤ𝑀𝑛,𝑀𝑛 being subgroups of𝑀 such that 𝑆𝑝 ⋅𝑀𝑞 ⊂ 𝑀𝑝+𝑞 for
every couple (𝑝, 𝑞) of integers. An element of𝑀𝑛 is said to be homogeneous of degree 𝑛; a
submodule𝑁 of𝑀 is said to be homogeneous if it is a direct sum of𝑁∩𝑀𝑛, in which case
it is a graded 𝑆-module. If𝑀 and𝑀′ are two graded 𝑆-modules, an 𝑆-homomorphism

𝜙∶ 𝑀 → 𝑀′

is said to be homogeneous of degree 𝑠 if 𝜙(𝑀𝑛) ⊂ 𝑀′
𝑛+𝑠 for every 𝑛 ∈ ℤ. A homogeneous

𝑆-homomorphism of degree 0 is simply called a homomorphism.
If𝑀 is a graded 𝑆-module and 𝑛 an integer, we denote by𝑀(𝑛) the graded 𝑆-module:

𝑀(𝑛) =
⨁

𝑝∈ℤ
𝑀(𝑛)𝑝 with𝑀(𝑛)𝑝 = 𝑀𝑛+𝑝.

We thus have𝑀(𝑛) = 𝑀 as 𝑆-modules, but a homogeneous element of degree 𝑝 of𝑀(𝑛)
is homogeneous of degree 𝑛+𝑝 in𝑀; in other words,𝑀(𝑛) is made from𝑀 by lowering
degrees by 𝑛 units.

We denote by 𝒞 the class of graded 𝑆-modules𝑀 such that𝑀𝑛 = 0 for 𝑛 sufficiently
large. If 𝐴 → 𝐵 → 𝐶 is an exact sequence of homomorphisms of graded 𝑆-modules, the
relations 𝐴 ∈ 𝒞, 𝐶 ∈ 𝒞 clearly imply 𝐵 ∈ 𝒞; in other words, 𝒞 is a class in the sense
of [14], Chap. I. Generally, we use the terminology introduced in the aforementioned
article; in particular, a homomorphism 𝜙∶ 𝐴 → 𝐵 is called 𝒞-injective (resp. 𝒞-surjective)
if Ker(𝜙) ∈ 𝒞 (resp. if Coker(𝜙) ∈ 𝒞) and 𝒞-bijective if it is both 𝒞-injective and 𝒞-
surjective.

A graded 𝑆-module𝑀 is said to be of finite type if it is generated by a finite number
of elements; we say that𝑀 satisfies the condition (TF) if there exists an integer 𝑝 such
that the submodule

⨁
𝑛≥𝑝𝑀𝑛 of𝑀 is of finite type; this is the same as saying that𝑀

is 𝒞-isomorphic to a module of finite type. The modules satisfying (TF) form a class
containing 𝒞.

A graded 𝑆-module 𝐿 is called free (resp. free of finite type) if it admits a base (resp. a
finite base) consisting of homogeneous elements, in other words if it is isomorphic to a
direct sum (resp. to a finite direct sum) of the modules 𝑆(𝑛𝑖).
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57. The algebraic sheaf associated with a graded 𝑆-module
If 𝑈 is a nonempty subset of 𝑋, we denote by 𝑆(𝑈) the subset of 𝑆 = 𝐾[𝑡0,… , 𝑡𝑟] con-
sisting of homogeneous polynomials 𝑄 such that 𝑄(𝑥) ≠ 0 for all 𝑥 ∈ 𝑈; 𝑆(𝑈) is a
multiplicatively closed subset of 𝑆, not containing 0. For 𝑈 = 𝑋, we write 𝑆(𝑥) instead
of 𝑆({𝑥}).

Let𝑀 be a graded 𝑆-module. We denote by𝑀𝑈 the set of fractions𝑚∕𝑄with𝑚 ∈ 𝑀,
𝑄 ∈ 𝑆(𝑈),𝑚 and 𝑄 being homogeneous of the same degree; we identify two fractions
𝑚∕𝑄 and𝑚′∕𝑄′ if there exists 𝑄′′ ∈ 𝑆(𝑈) such that

𝑄′′(𝑄′ ⋅𝑚 − 𝑄 ⋅𝑚′) = 0;

it is clear that we have defined an equivalence relation between the pairs (𝑚,𝑄). For
𝑈 = 𝑥, we write𝑀𝑥 instead of𝑀{𝑥}.

Applying this to𝑀 = 𝑆, we see that 𝑆𝑈 is the ring of rational functions 𝑃∕𝑄, 𝑃 and 𝑄
being homogeneous polynomials of the same degree and 𝑄 ∈ 𝑆(𝑈); if𝑀 is an arbitrary
graded 𝑆-module, we can equip𝑀𝑈 with a structure of an 𝑆𝑈-module by imposing:

𝑚∕𝑄 +𝑚′∕𝑄′ = (𝑄′𝑚 + 𝑄𝑚′)∕𝑄𝑄′

(𝑃∕𝑄) ⋅ (𝑚∕𝑄′) = 𝑃𝑚∕𝑄𝑄′.

If 𝑈 ⊂ 𝑉, we have 𝑆(𝑉) ⊂ 𝑆(𝑈), hence the canonical homomorphisms

𝜙𝑉𝑈 ∶ 𝑀𝑉 → 𝑀𝑈 ;

the system (𝑀𝑈 , 𝜙𝑉𝑈), where 𝑈 and 𝑉 run over nonempty open subsets of 𝑋, define thus
a sheaf which we denote by 𝒜(𝑀); we verify immediately that

lim
𝑥∈𝑈

𝑀𝑈 = 𝑀𝑥,

that is, that 𝒜(𝑀)𝑥 = 𝑀𝑥. In particular, we have 𝒜(𝑆) = 𝒪 and as the 𝑀𝑈 are 𝑆𝑈-
modules, it follows that 𝒜(𝑀) is a sheaf of 𝒜(𝑆)-modules, that is, an algebraic sheaf
on 𝑋. Any homomorphism 𝜙∶ 𝑀 → 𝑀′ defines in a natural way the 𝑆𝑈-linear homo-
morphisms 𝜙𝑈 ∶ 𝑀𝑈 → 𝑀′

𝑈 , thus a homomorphism of sheaves𝒜(𝜙)∶ 𝒜(𝑀)→ 𝒜(𝑀′),
which we frequently denote 𝜙. We clearly have

𝒜(𝜙 + 𝜓) = 𝒜(𝜙) +𝒜(𝜓), 𝒜(1) = 1, 𝒜(𝜙◦𝜓) = 𝒜(𝜙)◦𝒜(𝜓).

The operation𝒜(𝑀) is thus a covariant additive functor defined on the category of graded
𝑆-modules and with values in the category of algebraic sheaves on 𝑋.

(The above definitions are quite analogous to these of §4, from Chap. II; it should be
noted however that 𝑆𝑈 is not the localization of 𝑆 in 𝑆(𝑈), but only its homogeneous
component of degree 0.)

58. First properties of the functor𝒜(𝑀)
Proposition 3. The functor𝒜(𝑀) is an exact functor.

Let𝑀 𝛼,→ 𝑀′ 𝛽,→ 𝑀′′ be an exact sequence of graded 𝑆-modules and show that the
sequence𝑀𝑥

𝛼,→ 𝑀′
𝑥

𝛽,→ 𝑀′′
𝑥 is also exact. Let𝑚′∕𝑄 ∈ 𝑀′

𝑥 be an element of the kernel of
𝛽; by the definition of𝑀′′

𝑥 , there exist 𝑅 ∈ 𝑆(𝑥) such that 𝑅𝛽(𝑚′) = 0; but then there
exists𝑚 ∈ 𝑀 such that 𝛼(𝑚) = 𝑅𝑚′ and we have 𝛼(𝑚∕𝑅𝑄) = 𝑚′∕𝑄, q.e.d.
(Compare with n◦ 48, Lemma 1.)
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Proposition 4. If𝑀 is a graded 𝑆-module and if 𝑛 is an integer,𝒜(𝑀(𝑛)) is canonically
isomorphic to𝒜(𝑀)(𝑛).

Let 𝑖 ∈ 𝐼, 𝑥 ∈ 𝑈𝑖 and𝑚∕𝑄 ∈ 𝑀(𝑛)𝑥, with𝑚 ∈ 𝑀(𝑛)𝑝, 𝑄 ∈ 𝑆(𝑥), deg𝑄 = 𝑝. Put:

𝜂𝑖,𝑥(𝑚∕𝑄) = 𝑚∕𝑡𝑛𝑖 𝑄 ∈ 𝑀𝑥,

which is valid because𝑚 ∈ 𝑀𝑛+𝑝 and 𝑡𝑛𝑖 𝑄 ∈ 𝑆(𝑥). We immediately see that 𝜂𝑖,𝑥 ∶ 𝑀(𝑛)𝑥 →
𝑀𝑥 is bijective for all 𝑥 ∈ 𝑈𝑖 and defines an isomorphism 𝜂𝑖 of 𝒜(𝑀(𝑛)) to 𝒜(𝑀) over
𝑈𝑖. Moreover, we have 𝜂𝑖◦𝜂−1𝑗 = 𝜃𝑖𝑗(𝑛) over 𝑈𝑖 ∩𝑈𝑗. By the definition of the operation
ℱ(𝑛) and Proposition 4 of n◦ 4, this shows that 𝒜(𝑀(𝑛)) is isomorphic to 𝒜(𝑀)(𝑛).

Corollary. 𝒜(𝑆(𝑛)) is canonically isomorphic to 𝒪(𝑛).

Indeed, it has been said that𝒜(𝑆) was isomorphic to 𝒪.
(It is also clear that𝒜(𝑆(𝑛)) is isomorphic to𝒪′(𝑛), because𝒪′(𝑛)𝑥 consists precisely

of the rational functions 𝑃∕𝑄 such that deg𝑃 − deg𝑄 = 𝑛 and 𝑄 ∈ 𝑆(𝑥).)

Proposition 5. Let𝑀 be a graded 𝑆-module satisfying the condition (TF). The algebraic
sheaf𝒜(𝑀) is also a coherent sheaf. Moreover𝒜(𝑀) = 0 if and only if𝑀 ∈ 𝒞.

If𝑀 ∈ 𝒞, for all𝑚 ∈ 𝑀 and 𝑥 ∈ 𝑋 there exists𝑄 ∈ 𝑆(𝑥) such that𝑄𝑚 = 0; it suffices
to take 𝑄 of a sufficiently large degree; we thus have 𝑀𝑥 = 0, hence 𝒜(𝑀) = 0. Let
now𝑀 be a graded 𝑆-module satisfying the condition (TF); there exists a homogeneous
submodule 𝑁 of𝑀, of finite type and such that𝑀∕𝑁 ∈ 𝒞; applying the above together
with Proposition 3, we see that 𝒜(𝑁)→ 𝒜(𝑀) is bijective and it thus suffices to prove
that 𝒜(𝑁) is coherent. Since 𝑁 is of finite type, there exists an exact sequence 𝐿1 →
𝐿0 → 𝑁 → 0 where 𝐿0 and 𝐿1 are free modules of finite type. By Proposition 3, the
sequence 𝒜(𝐿1)→ 𝒜(𝐿0)→ 𝒜(𝑁)→ 0 is exact. But, by the corollary to Proposition 4,
𝒜(𝐿0) and 𝒜(𝐿1) are isomorphic to finite direct sums of the sheaves 𝒪(𝑛𝑖) and are thus
coherent. It follows that 𝒜(𝑁) is coherent.

Let finally𝑀 be a graded 𝑆-module satisfying (TF) and such that𝒜(𝑀) = 0; by the
above considerations, we can suppose that𝑀 is of finite type. If𝑚 is a homogeneous
element of𝑀, let 𝔞𝑚 be the annihilator of𝑚, that is, the set of all polynomials 𝑄 ∈ 𝑆
such that𝑄 ⋅𝑚 = 0; it is clear that 𝔞𝑚 is a homogeneous ideal. Moreover, the assumption
𝑀𝑥 = 0 for all 𝑥 ∈ 𝑋 implies that the variety of zeros of 𝔞𝑚 in 𝐾𝑟+1 is reduced to {0};
Hilbert’s theorem of zeros shows that every homogeneous polynomial of sufficiently
large degree belongs to 𝔞𝑚. Applying this to the finite system of generators of𝑀, we
conclude immediately𝑀𝑝 = 0 for 𝑝 sufficiently large, which completes the proof.

By combining Propositions 3 and 5 we obtain:

Proposition 6. Let𝑀 and𝑀′ be two graded 𝑆-modules satisfying the condition (TF) and
let 𝜙∶ 𝑀 → 𝑀′ be a homomorphism of𝑀 to𝑀′. Then

𝒜(𝜙)∶ 𝒜(𝑀)→ 𝒜(𝑀′)

is injective (resp. surjective, bijective) if and only if 𝜙 is 𝒞-injective (resp. 𝒞-surjective,
𝒞-bijective).
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59. The graded 𝑆-module associated with an algebraic sheaf
Let ℱ be an algebraic sheaf on 𝑋 and set:

𝛤(ℱ) =
⨁

𝑛∈ℤ
𝛤(ℱ)𝑛, with 𝛤(ℱ)𝑛 = 𝛤(𝑋,ℱ(𝑛)).

The group 𝛤(ℱ) is a graded group; we shall equip it with a structure of an 𝑆-module.
Let 𝑠 ∈ 𝛤(𝑋,ℱ(𝑞)) and let 𝑃 ∈ 𝑆𝑝; we can identify 𝑃 with a section of 𝒪(𝑝) (cf. n◦ 54),
thus 𝑃⊗𝑠 is a section of𝒪(𝑝)⊗ℱ(𝑞) = ℱ(𝑞)(𝑝) = ℱ(𝑝+𝑞), using the homomorphisms
from n◦ 54; we have then defined a section of ℱ(𝑝 + 𝑞) which we denote by 𝑃 ⋅ 𝑠 instead
of 𝑃⊗ 𝑠. The mapping (𝑃, 𝑠)→ 𝑃 ⋅ 𝑠 equips 𝛤(ℱ) with a structure of an 𝑆-module that is
compatible with the grading.

In order to compare the functors 𝒜(𝑀) and 𝛤(ℱ) we define two canonical homo-
morphisms:

𝛼∶ 𝑀 → 𝛤(𝒜(𝑀)) and 𝛽∶ 𝒜(𝛤(ℱ))→ ℱ.
Definition of 𝛼. Let𝑀 be a graded 𝑆-module and let 𝑚 ∈ 𝑀0 be a homogeneous

element of 𝑀 of degree 0. The element 𝑚∕1 is a well-defined element of 𝑀𝑥 that
varies continuously with 𝑥 ∈ 𝑋; thus 𝑚 defines a section 𝛼(𝑚) of 𝒜(𝑀). If now 𝑚
is homogeneous of degree 𝑛, 𝑚 is homogeneous of degree 0 in 𝑀(𝑛), thus defines
a section 𝛼(𝑚) of 𝒜(𝑀(𝑛)) = 𝒜(𝑀)(𝑛) (cf. Proposition 4). This is the definition of
𝛼∶ 𝑀 → 𝛤(𝒜(𝑀)) and it is immediate that it is a homomorphism.

Definition of 𝛽. Letℱ be an algebraic sheaf on 𝑋 and let 𝑠∕𝑄 be an element of 𝛤(ℱ)𝑥
with 𝑠 ∈ 𝛤(𝑋,ℱ(𝑛)), 𝑄 ∈ 𝑆𝑛 and 𝑄(𝑥) ≠ 0. The function 1∕𝑄 is homogeneous of degree
−𝑛 and regular in 𝑥, hence a section of 𝒪(−𝑛) in a neighbourhood of 𝑥; it follows that
1∕𝑄 ⊗ 𝑠 is a section of 𝒪(−𝑛)⊗ ℱ(𝑛) = ℱ in a neighbourhood of 𝑥, thus defines an
element of ℱ𝑥 which we denote by 𝛽𝑥(𝑠∕𝑄), because it depends only on 𝑠∕𝑄. We can
also define 𝛽𝑥 by using the components 𝑠𝑖 of 𝑠: if 𝑥 ∈ 𝑈𝑖, 𝛽𝑥(𝑠∕𝑄) = (𝑡𝑛𝑖 ∕𝑄) ⋅ 𝑠𝑖(𝑥). The
collection of the homomorphisms 𝛽𝑥 defines a homomorphism 𝛽∶ 𝒜(𝛤(ℱ))→ ℱ.

The homomorphisms 𝛼 and 𝛽 are related by the following Propositions, which are
shown by direct computation:

Proposition 7. Let 𝑀 be a graded 𝑆-module. The composite of the homomorphisms
𝒜(𝑀)→ 𝒜(𝛤(𝒜(𝑀)))→ 𝒜(𝑀) is the identity.

(The first homomorphism is defined by 𝛼∶ 𝑀 → 𝛤(𝒜(𝑀)) and the second is 𝛽,
applied to ℱ = 𝒜(𝑀).)

Proposition 8. Letℱ be an algebraic sheaf on 𝑋. The composite of the homomorphisms
𝛤(ℱ)→ 𝛤(𝒜(𝛤(ℱ)))→ 𝛤(ℱ) is the identity.

(The first homomorphism is 𝛼, applied to𝑀 = 𝛤(ℱ), while the second one is defined
by 𝛽∶ 𝒜(𝛤(ℱ))→ ℱ.)

We will show in n◦ 65 that 𝛽∶ 𝒜(𝛤(ℱ)) → ℱ is bijective if ℱ is coherent and that
𝛼∶ 𝑀 → 𝛤(𝒜(𝑀)) is 𝒞-bijective if𝑀 satisfies the condition (TF).

60. The case of coherent algebraic sheaves

Let us show a preliminary result:

Proposition 9. Let ℒ be an algebraic sheaf on 𝑋, a direct sum of a finite number of the
sheaves 𝒪(𝑛𝑖). Then 𝛤(ℱ) satisfies (TF) and 𝛽 ∶ 𝒜(𝛤(ℒ))→ ℒ is bijective.
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It comes down immediately ℒ = 𝒪(𝑛), then to ℒ = 𝒪. In this case, we know that
𝛤(𝒪(𝑝)) = 𝑆𝑝 for 𝑝 ≥ 0, thus we have 𝑆 ⊂ 𝛤(𝒪), the quotient belonging to 𝒞. It follows
first that 𝛤(𝒪) satisfies (TF), then that 𝒜(𝛤(𝒪)) = 𝒜(𝑆) = 𝒪, q.e.d.

(We observe that we have 𝛤(𝒪) = 𝑆 if 𝑟 ≥ 1; on the other hand, if 𝑟 = 0, 𝛤(𝒪) is not
even an 𝑆-module of finite type.)

Theorem 2. For any coherent algebraic sheafℱ on 𝑋 there exists a graded 𝑆-module𝑀,
satisfying (TF), such that𝒜(𝑀) is isomorphic toℱ.

By the corollary to Theorem 1, there exists an exact sequence of algebraic sheaves:

ℒ1 𝜙,→ ℒ0 → ℱ → 0,

whereℒ1 andℒ0 satisfy the assumptions of the above Proposition. Let𝑀 be the cokernel
of the homomorphism𝛤(𝜙)∶ 𝛤(ℒ1)→ 𝛤(ℒ0); by Proposition 9,𝑀 satisfies the condition
(TF). Applying the functor 𝒜 to the exact sequence:

𝛤(ℒ1)→ 𝛤(ℒ0)→ 𝑀 → 0,

we obtain an exact sequence:

𝒜(𝛤(ℒ1))→ 𝒜(𝛤(ℒ0))→ 𝒜(𝑀)→ 0.

Consider the following commutative diagram:

𝒜(𝛤(ℒ1)) 𝒜(𝛤(ℒ0)) 𝒜(𝑀) 0

ℒ1 ℒ0 ℱ 0

𝛽 𝛽

By Proposition 9, the two vertical homomorphisms are bijective. It follows that𝒜(𝑀)
is isomorphic to ℱ, q.e.d.

§3. Cohomology of the projective space with values in a
coherent algebraic sheaf

61. The complexes 𝐶𝑘(𝑀) and 𝐶(𝑀)
We preserve the notation of nos51 and 56. In particular, 𝐼 will denote the interval
{0, 1,… , 𝑟} and 𝑆 will denote the graded algebra 𝐾[𝑡0,… , 𝑡𝑟].

Let𝑀 be a graded 𝑆-module and 𝑘 and 𝑞 two integers ≥ 0; we shall define a group
𝐶𝑞𝑘(𝑀): an element of 𝐶𝑞𝑘(𝑀) is a mapping

(𝑖0,… , 𝑖𝑞)↦ 𝑚⟨𝑖0… 𝑖𝑞⟩

which associates to every sequence (𝑖0,… , 𝑖𝑞) of 𝑞 + 1 elements of 𝐼 a homogeneous
element of degree 𝑘(𝑞+1) of𝑀, depending in an alternatingway on 𝑖0,… , 𝑖𝑞. In particular,
we have 𝑚⟨𝑖0… 𝑖𝑞⟩ = 0 if two of the indices 𝑖0,… , 𝑖𝑞 are equal. We define addition in
𝐶𝑞𝑘(𝑀) in the obvious way. the same with multiplication by an element 𝜆 ∈ 𝐾, and
𝐶𝑞𝑘(𝑀) is a vector space over 𝐾.
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If𝑚 is an element of 𝐶𝑞𝑘(𝑀), we define 𝑑𝑚 ∈ 𝐶𝑞+1𝑘 (𝑀) by the formula:

(𝑑𝑚)⟨𝑖0… 𝑖𝑞+1⟩ =
𝑗=𝑞+1∑

𝑗=0
(−1)𝑗𝑡𝑘𝑖𝑗 ⋅𝑚⟨𝑖0… 𝑖𝑗 … 𝑖𝑞+1⟩.

We verify by a direct calculation that 𝑑◦𝑑 = 0; thus, the direct sum 𝐶𝑘(𝑀) =⨁𝑞=𝑟
𝑞=0 𝐶

𝑞
𝑘(𝑀), equipped with the coboundary operator 𝑑, is a complex, whose 𝑞-th coho-

mology group is denoted by𝐻𝑞
𝑘(𝑀).

(We note, after [11], another interpretation of the elements of 𝐶𝑞𝑘(𝑀): introduce 𝑟+1
differential symbols 𝑑𝑥0,… , 𝑑𝑥𝑟 and associate to every𝑚 ∈ 𝐶𝑞𝑘(𝑀) a “differential form”
of degree 𝑞 + 1:

𝜔𝑚 =
∑

𝑖0<…<𝑖𝑞
𝑚⟨𝑖0… 𝑖𝑞⟩𝑑𝑥𝑖0 ∧ … ∧ 𝑑𝑥𝑖𝑞 .

If we put 𝛼𝑘 =
∑𝑖=𝑟

𝑖=0 𝑡𝑘𝑖 𝑑𝑥𝑖, we see that we have:

𝜔𝑑𝑚 = 𝛼𝑘 ∧ 𝜔𝑚,

in other words, the coboundary operation is transformed into the exterior multiplication
by the form 𝛼𝑘).

If ℎ is an integer ≥ 𝑘, let 𝜌ℎ𝑘 ∶ 𝐶
𝑞
𝑘(𝑀) → 𝐶𝑞ℎ(𝑀) be the homomorphism defined by

the formula:
𝜌ℎ𝑘(𝑚)⟨𝑖0… 𝑖𝑞⟩ = (𝑡𝑖0 … 𝑡𝑖𝑞 )ℎ−𝑘𝑚⟨𝑖0… 𝑖𝑞⟩.

We have 𝜌ℎ𝑘◦𝑑 = 𝑑◦𝜌ℎ𝑘 and 𝜌
𝑙
ℎ◦𝜌

𝑗
𝑘 = 𝜌𝑙𝑘 if 𝑘 ≤ ℎ ≤ 𝑙. We can thus define a complex

𝐶(𝑀), the inductive limit of the system (𝐶𝑘(𝑀), 𝜌ℎ𝑘) for 𝑘 → +∞. The cohomology
groups of this complex are denoted 𝐻𝑞(𝑀). Because cohomology commutes with induc-
tive limits (cf. [6], Chap. V, Prop. 9.3*), we have:

𝐻𝑞(𝑀) = lim
𝑘→∞

𝐻𝑞
𝑘(𝑀).

Every homomorphism 𝜙∶ 𝑀 → 𝑀′ defines a homomorphism

𝜙∶ 𝐶𝑘(𝑀)→ 𝐶𝑘(𝑀′)

by the formula: 𝜙(𝑚)⟨𝑖0… 𝑖𝑞⟩ = 𝜙(𝑚⟨𝑖0… 𝑖𝑞⟩), hence, by passing to the limit, 𝜙∶ 𝐶(𝑀)→
𝐶(𝑀′); moreover, these homomorphisms commute with boundary and thus define the
homomorphisms

𝜙∶ 𝐻𝑞𝑘(𝑀)→ 𝐻𝑞𝑘(𝑀′) and 𝜙∶ 𝐻𝑞(𝑀)→ 𝐻𝑞(𝑀′).

If we have an exact sequence 0 → 𝑀 → 𝑀′ → 𝑀′′ → 0, we have an exact sequence
of complexes 0 → 𝐶𝑘(𝑀) → 𝐶𝑘(𝑀′) → 𝐶𝑘(𝑀′′) → 0, hence an exact sequence of
cohomology:

…𝐻𝑞
𝑘(𝑀′)→ 𝐻𝑞

𝑘(𝑀′′)→ 𝐻𝑞+1
𝑘 (𝑀)→ 𝐻𝑞+1

𝑘 (𝑀′)→ …

The same results for 𝐶(𝑀) and𝐻𝑞(𝑀).

Remark. We shall see later (cf. n◦ 69) that we can express𝐻𝑞
𝑘(𝑀) in terms of Ext𝑞𝑆.
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62. Calculation of𝐻𝑞
𝑘(𝑀) for certain modules𝑀

Let 𝑀 be a graded 𝑆-module and 𝑚 ∈ 𝑀 a homogeneous element of degree 0. The
system of (𝑡𝑘𝑖 ⋅𝑚) is a 0-cocycle of 𝐶𝑘(𝑀), which we denote by 𝛼𝑘(𝑚) and identify with its
cohomology class. We obtain in this way a 𝐾-linear homomorphism 𝛼𝑘 ∶ 𝑀0 → 𝐻0

𝑘(𝑀);
as 𝛼ℎ = 𝜌ℎ𝑘◦𝛼𝑘 if ℎ ≥ 𝑘, the 𝛼𝑘 define by passing to the limit a homomorphism 𝛼∶ 𝑀0 →
𝐻0(𝑀).

Let us introduce two more notation:
If (𝑃0,… , 𝑃ℎ) are elements of 𝑆, we denote by (𝑃0,… , 𝑃ℎ)𝑀 the submodule of 𝑀

consisting of the elements
∑𝑖=ℎ

𝑖=0 𝑃𝑖 ⋅𝑚𝑖 with 𝑚𝑖 ∈ 𝑀; if the 𝑃𝑖 are homogeneous, this
submodule is homogeneous.

If 𝑃 is an element of 𝑆 and 𝑁 a submodule of𝑀, we denote by 𝑁∶ 𝑃 the submodule
of𝑀 consisting of the elements𝑚 ∈ 𝑀 such that 𝑃 ⋅𝑚 ∈ 𝑁; we clearly have𝑁∶ 𝑃 ⊃ 𝑁;
if 𝑁 and 𝑃 are homogeneous, so is 𝑁 ∶ 𝑃.

Having specified these notation, we have:

Proposition 1. Let𝑀 be a graded 𝑆-module and 𝑘 an integer ≥ 0. Assume that for all
𝑖 ∈ 𝐼 we have:

(𝑡𝑘0 ,… , 𝑡𝑘𝑖−1)𝑀 ∶ 𝑡𝑘𝑖 = (𝑡𝑘0 ,… , 𝑡𝑘𝑖−1)𝑀.
Then:
(a) 𝛼𝑘 ∶ 𝑀0 → 𝐻0

𝑘(𝑀) is bijective (if 𝑟 ≥ 1),
(b) 𝐻𝑞

𝑘(𝑀) = 0 for 0 < 𝑞 < 𝑟.

(For 𝑖 = 0, the assumption means that 𝑡𝑘0 ⋅𝑚 = 0 implies𝑚 = 0.)
This Proposition is a special case of a result of de Rham [11] (the de Rham’s result

being also valid even if we do not assume that the𝑚⟨𝑖0… 𝑖𝑞⟩ are homogeneous). See also
[6], Chap. VIII, ¶4 for a particular case, sufficient for our purposes.

We now apply Proposition 1 to the graded 𝑆-module 𝑆(𝑛):

Proposition 2. Let 𝑘 be an integer ≥ 0, 𝑛 an arbitrary integer. Then:
(a) 𝛼𝑘 ∶ 𝑆𝑛 → 𝐻0

𝑘(𝑆(𝑛)) is bijective (if 𝑟 ≥ 1),
(b)𝐻𝑞

𝑘(𝑆(𝑛)) = 0 for 0 < 𝑞 < 𝑟,
(c)𝐻𝑟

𝑘(𝑆(𝑛)) admits a base (over 𝐾) consisting of the cohomology classes of the mono-
mials 𝑡𝛼00 … 𝑡𝛼𝑟𝑟 with 0 ≤ 𝛼𝑖 < 𝑘 and∑𝑖=𝑟

𝑖=0 𝛼𝑖 = 𝑘(𝑟 + 1) + 𝑛.

It is clear that the 𝑆-module 𝑆(𝑛) satisfies the assumptions of Proposition 1, which
shows (a) and (b). On the other hand, for every graded 𝑆-module𝑀, we have 𝐻𝑟

𝑘(𝑀) =
𝑀𝑘(𝑟+1)∕(𝑡𝑘0 ,… , 𝑡𝑘𝑟 )𝑀𝑘𝑟; now the monomials

𝑡𝛼00 … 𝑡𝛼𝑟𝑟 , 𝛼𝑖 ≥ 0,
𝑖=𝑟∑

𝑖=0
𝛼𝑖 = 𝑘(𝑟 + 1) + 𝑛,

formabasis of𝑆(𝑛)𝑘(𝑟+1) and those forwhich at least𝛼𝑖 is≥ 𝑘 formabasis of (𝑡𝑘0 ,… , 𝑡𝑘𝑟 )𝑆(𝑛)𝑘𝑟;
hence (c).

It is convenient to write the exponents 𝛼𝑖 in the form 𝛼𝑖 = 𝑘 − 𝛽𝑖. The conditions of
(c) are then written:

0 < 𝛽𝑖 ≤ 𝑘 and
𝑖=𝑟∑

𝑖=0
𝛽𝑖 = −𝑛.
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The second condition, together with 𝛽𝑖 > 0, implies 𝛽𝑖 ≤ −𝑛 − 𝑟; if thus 𝑘 ≥ −𝑛 − 𝑟,
the condition 𝛽𝑖 ≤ 𝑘 is a consequence of the preceding two. Hence:

Corollary 1. For 𝑘 ≥ −𝑛− 𝑟,𝐻𝑟
𝑘(𝑆(𝑛)) admits a basis formed of the cohomology classes

of monomials (𝑡0… 𝑡𝑟)𝑘∕𝑡𝛽00 … 𝑡𝛽𝑟𝑟 with 𝛽𝑖 > 0 and∑𝑖=𝑟
𝑖=0 𝛽𝑖 = −𝑛.

We also have:

Corollary 2. If ℎ ≥ 𝑘 ≥ −𝑛 − 𝑟, the homomorphism

𝜌ℎ𝑘 ∶ 𝐻
𝑞
𝑘(𝑆(𝑛))→ 𝐻𝑞

𝑘(𝑆(𝑛))

is bijective for all 𝑞 ≥ 0.

For 𝑞 ≠ 𝑟, this follows from the assertions (a) and (b) of Proposition 2. For 𝑞 = 𝑟,
this follows from Corollary 1, given that 𝜌ℎ𝑘 transforms

(𝑡0… 𝑡𝑟)𝑘∕𝑡𝛽00 … 𝑡𝛽𝑟𝑟 into (𝑡0… 𝑡𝑟)ℎ∕𝑡𝛽00 … 𝑡𝛽𝑟𝑟 .

Corollary 3. The homomorphism 𝛼 ∶ 𝑆𝑛 → 𝐻0(𝑆(𝑛)) is bijective if 𝑟 ≥ 1 or if 𝑛 ≥ 0.
We have𝐻𝑞(𝑆(𝑛)) = 0 for 0 < 𝑞 < 𝑟 and𝐻𝑟(𝑆(𝑛)) is a vector space of dimension

(−𝑛−1
𝑟
)

over 𝐾.

The assertion pertaining to 𝛼 follows from Proposition 2, (a), in the case when 𝑟 ≥ 1;
it is clear if 𝑟 = 0 and 𝑛 ≥ 0. The rest of the Corollary is an obvious consequence of
Corollaries 1 and 2 (seeing that the binomial coefficient

(𝑎
𝑟
)
is zero for 𝑎 < 𝑟).

63. General properties of𝐻𝑞(𝑀)
Proposition 3. Let𝑀 be a graded 𝑆-module satisfying the condition (TF). Then:
(a) There exists an integer 𝑘(𝑀) such that 𝜌ℎ𝑘 ∶ 𝐻

𝑞
𝑘(𝑀) → 𝐻𝑞

ℎ(𝑀) is bijective for ℎ ≥
𝑘 ≥ 𝑘(𝑀) and every 𝑞.

(b) 𝐻𝑞(𝑀) is a vector space of finite dimension over 𝐾 for all 𝑞 ≥ 0.
(c) There exists an integer 𝑛(𝑀) such that for 𝑛 ≥ 𝑛(𝑀), 𝛼 ∶ 𝑀𝑛 → 𝐻0(𝑀(𝑛)) is

bijective and that𝐻𝑞(𝑀(𝑛)) is zero for all 𝑞 > 0.

This immediately comes down to the case that𝑀 is of finite type. We say that𝑀 is
of dimension ≤ 𝑠 (𝑠 being an integer ≥ 0) if there exists an exact sequence,

0→ 𝐿𝑠 → 𝐿𝑠−1 → …→ 𝐿0 → 𝑀 → 0,

with the 𝐿𝑖 free graded 𝑆-modules of finite type. By the Hilbert syzygy theorem (cf. [6],
Chap. VIII, th. 6.5), this dimension is always ≤ 𝑟 + 1.

We prove the Proposition by induction on the dimension of𝑀. If it is 0,𝑀 is free of
finite type, i.e. a direct sum ofmodules 𝑆(𝑛𝑖) and the Proposition follows fromCorollaries
2 and 3 and Proposition 2. Assume that𝑀 is of dimension ≤ 𝑠 and let 𝑁 be the kernel
of 𝐿0 → 𝑀. The graded 𝑆-module 𝑁 is of dimension ≤ 𝑠 − 1 and we have an exact
sequence:

0→ 𝑁 → 𝐿0 → 𝑀 → 0.
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By the induction assumption, the Proposition is true for 𝑁 and 𝐿0. Applying the five
lemma ([7], Chap. I, Lemme 4.3) to the commutative diagram:

𝐻𝑞
𝑘(𝑁) 𝐻𝑞

𝑘(𝐿0) 𝐻𝑞
𝑘(𝑀) 𝐻𝑞+1

𝑘 (𝑁) 𝐻𝑞+1
𝑘 (𝐿0)

𝐻𝑞
ℎ(𝑁) 𝐻𝑞

ℎ(𝐿0) 𝐻𝑞
ℎ(𝑀) 𝐻𝑞+1

ℎ (𝑁) 𝐻𝑞+1
ℎ (𝐿0),

where ℎ ≥ 𝑘 ≥ Sup(𝑘(𝑁), 𝑘(𝐿0), we obtain (a), thus also (b), because the𝐻𝑞
𝑘(𝑀) are of

finite dimension over 𝐾. On the other hand, the exact sequence

𝐻𝑞(𝐿0(𝑛))→ 𝐻𝑞(𝑀(𝑛))→ 𝐻𝑞+1(𝑁(𝑛))

shows that𝐻𝑞(𝑀(𝑛)) = 0 for 𝑛 ≥ Sup(𝑛(𝐿0), 𝑛(𝑁)). Finally, consider the commutative
diagram:

0 𝑁𝑛 𝐿𝑛 𝑀𝑛 0

0 𝐻0(𝑁(𝑛)) 𝐻0(𝐿0(𝑛)) 𝐻0(𝑀(𝑛)) 𝐻1(𝑁(𝑛));

𝛼 𝛼 𝛼

for 𝑛 ≥ 𝑛(𝑁), we have 𝐻1(𝑁(𝑛)) = 0; we deduce that 𝛼 ∶ 𝑀𝑛 → 𝐻0(𝑀(𝑛)) is bijective
for 𝑛 ≥ Sup(𝑛(𝐿0), 𝑛(𝑁)), which completes the proof of the Proposition.

64. Comparison of the groups𝐻𝑞(𝑀) and𝐻𝑞(𝑋,𝒜(𝑀))
Let𝑀 be a graded 𝑆-module and let𝒜(𝑀) be the algebraic sheaf on 𝑋 = ℙ𝑟(𝐾) defined
by 𝑀 by the procedure of n◦ 57. We will now compare 𝐶(𝑀) with 𝐶′(𝔘,𝒜(𝑀)), the
complex of alternating cochains of the covering 𝔘 = {𝑈𝑖}𝑖∈𝐼 with values in the sheaf
𝒜(𝑀).

Let𝑚 ∈ 𝐶𝑞𝑘(𝑀) and let (𝑖0,… , 𝑖𝑞) be a sequence of 𝑞+1 elements of 𝐼. The polynomial
(𝑡𝑖0 … 𝑡𝑖𝑞 )𝑘 belongs obviously to 𝑆(𝑈𝑖0…𝑖𝑞 ), with the notation of n◦ 57. It follows that
𝑚⟨𝑖0… 𝑖𝑞⟩∕(𝑡𝑖0 … 𝑡𝑖𝑞 )𝑘 belongs to𝑀𝑈 , where 𝑈 = 𝑈𝑖0…𝑖𝑞 , thus defines a section of 𝒜(𝑀)
over𝑈𝑖0…𝑖𝑞 . When (𝑖0,… , 𝑖𝑞) varies, the system consisting of this sections is an alternating
cochain of𝔘 with values in 𝒜(𝑀), which we denote by 𝜄𝑘(𝑚). We immediately see that
𝜄𝑘 commutes with 𝑑 and that 𝜄𝑘 = 𝜄ℎ◦𝜌ℎ𝑘 if ℎ ≥ 𝑘. By passing to the inductive limit, the 𝜄𝑘
thus define a homomorphism 𝜄∶ 𝐶(𝑀)→ 𝐶′(𝔘,𝒜(𝑀)), commuting with 𝑑.

Proposition 4. If𝑀 satisfies the condition (TF), 𝜄 ∶ 𝐶(𝑀)→ 𝐶′(𝔘,𝒜(𝑀)) is bijective.

If𝑀 ∈ 𝒞, we have𝑀𝑛 = 0 for 𝑛 ≥ 𝑛0, so 𝐶𝑘(𝑀) = 0 for 𝑘 ≥ 𝑛0 and 𝐶(𝑀) = 0. As
every 𝑆-module satisfying (TF) is 𝒞-isomorphic to a module of finite type, this shows that
we can restrict ourselves to the case when𝑀 is of finite type. We can then find an exact
sequence 𝐿1 → 𝐿0 → 𝑀 → 0, where 𝐿1 and 𝐿0 are free of finite type. By Propositions 3
and 5 from n◦ 58, the sequence

𝒜(𝐿1)→ 𝒜(𝐿0)→ 𝒜(𝑀)→ 0
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is an exact sequence of coherent algebraic sheaves; as the 𝑈𝑖0…𝑖𝑞 are affine open subsets,
the sequence

𝐶′(𝔘,𝒜(𝐿1))→ 𝐶′(𝔘,𝒜(𝐿0)→ 𝐶′(𝔘,𝒜(𝑀))→ 0

is exact (cf. n◦ 45, Corollary 2 to Theorem 2). The commutative diagram

𝐶(𝐿1) 𝐶(𝐿0) 𝐶(𝑀) 0

𝐶′(𝔘,𝒜(𝐿1)) 𝐶′(𝔘,𝒜(𝐿0)) 𝐶′(𝔘,𝒜(𝑀)) 0

𝜄 𝜄 𝜄

then shows that if the Proposition is true for the module 𝐿1 and 𝐿0, so it is for𝑀. We are
thus reduced to the special case of a free module of finite type, then, by the decomposite
into direct summands, to the case when𝑀 = 𝑆(𝑛).

In this case, we have 𝒜(𝑆(𝑛)) = 𝒪(𝑛); a section 𝑓𝑖0…𝑖𝑞 of 𝒪(𝑛) over 𝑈𝑖0…𝑖𝑞 is, by the
sole definition of this sheaf, a regular function on 𝑉𝑖0 ∩ … ∩ 𝑉𝑖𝑞 and homogeneous of
degree 𝑛. As 𝑉𝑖0 ∩ … ∩ 𝑉𝑖𝑞 as the set of points of 𝐾𝑟+1 where the function 𝑡𝑖0 … 𝑡𝑖𝑞 is ≠ 0,
there exists an integer 𝑘 such that

𝑓𝑖0…𝑖𝑞 = 𝑃⟨𝑖0… 𝑖𝑞⟩∕(𝑡𝑖0 … 𝑡𝑖𝑞 )𝑘,

𝑃⟨𝑖0… 𝑖𝑞⟩ being a homogeneous polynomial of degree 𝑛 + 𝑘(𝑞 + 1), that is, of degree
𝑘(𝑞 + 1) in 𝑆(𝑛). Thus, every alternating cochain 𝑓 ∈ 𝐶′(𝔘,𝒪(𝑛)) defines a system
𝑃⟨𝑖0… 𝑖𝑞⟩ that is an element of 𝐶𝑘(𝑆(𝑛)); hence a homomorphism

𝜈∶ 𝐶′(𝔘,𝒪(𝑛))→ 𝐶(𝑆(𝑛)).

As we verify immediately that 𝜄◦𝜈 = 1 and 𝜈◦𝜄 = 1, it follows that 𝜄 is bijective, which
completes the proof.

Corollary. 𝜄 defines an isomorphism of𝐻𝑞(𝑀) with𝐻𝑞(𝑋,𝒜(𝑀)) for all 𝑞 ≥ 0.

Indeed, we know that𝐻′𝑞(𝔘,𝒜(𝑀)) = 𝐻𝑞(𝔘,𝒜(𝑀)) (n◦ 20, Proposition 2) and that
𝐻𝑞(𝔘,𝒜(𝑀)) = 𝐻𝑞(𝑋,𝒜(𝑀)) (n◦ 52, Proposition 2, which applies because 𝒜(𝑀) is
coherent).

Remark. It is easy to see that 𝜄∶ 𝐶(𝑀)→ 𝐶′(𝔘,𝒜(𝑀)) is injective even when𝑀 does
not satisfy the condition (TF).

65. Applications

Proposition 5. If𝑀 is a graded 𝑆-module satisfying the condition (TF), the homomor-
phism 𝛼 ∶ 𝑀 → 𝛤(𝒜(𝑀)), defined in n◦ 59, is 𝒞-bijective.

Wemust observe that 𝛼 ∶ 𝑀𝑛 → 𝛤(𝑋,𝒜(𝑀(𝑛))) is bijective for 𝑛 sufficiently large.
Then, by Proposition 4, 𝛤(𝑋,𝒜(𝑀(𝑛))) is identified with 𝐻0(𝑀(𝑛)); the Proposition
follows thus from Proposition 3, (c), given the fact that the homomorphism 𝛼 is trans-
formed by the above identification to a homomorphism defined at the beginning of n◦
62, also denoted by 𝛼.
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Proposition 6. Let ℱ be a coherent algebraic sheaf on 𝑋. The graded 𝑆-module 𝛤(ℱ)
satisfies the condition (TF) and the homomorphism 𝛽 ∶ 𝒜(𝛤(ℱ))→ ℱ defined in n◦ 59 is
bijective.

By Theorem 2 of n◦ 60, we can assume that ℱ = 𝒜(𝑀), where 𝑀 is a module
satisfying (TF). By the above Proposition, 𝛼 ∶ 𝑀 → 𝛤(𝒜(𝑀)) is 𝒞-bijective; as 𝑀
satisfies (TF), it follows that 𝛤(𝒜(𝑀)) satisfies it also. Applying Proposition 6 from n◦

58, we see that 𝛼 ∶ 𝒜(𝑀) → 𝒜(𝛤(𝒜(𝑀))) is bijective. Since the composite 𝒜(𝑀) 𝛼,→
𝒜(𝛤(𝒜(𝑀))) 𝛽,→ 𝒜(𝑀) is the identity (n◦ 59, Proposition 7), it follows that 𝛽 is bijective,
q.e.d.

Proposition 7. Letℱ be a coherent algebraic sheaf on𝑋. The groups𝐻𝑞(𝑋,ℱ) are vector
spaces of finite dimension over 𝐾 for all 𝑞 ≥ 0 and we have𝐻𝑞(𝑋,ℱ(𝑛)) = 0 for 𝑞 > 0 and
𝑛 sufficiently large.

We can assume, as above, that ℱ = 𝒜(𝑀) where𝑀 is a module satisfying (TF). The
Proposition then follows from Proposition 3 and the corollary to Proposition 4.

Proposition 8. We have 𝐻𝑞(𝑋,𝒪(𝑛)) = 0 for 0 < 𝑞 < 𝑟 and 𝐻𝑟(𝑋,𝒪(𝑛)) is a vector
space of dimension

(−𝑛−1
𝑟
)
over 𝐾, admitting a base consisting of the cohomology classes of

the alternating cocycles of𝔘

𝑓01…𝑟 = 1∕𝑡𝛽00 … 𝑡𝛽𝑟𝑟 with 𝛽𝑖 > 0 and
𝑖=𝑟∑

𝑖=0
𝛽𝑖 = −𝑛.

We have 𝒪(𝑛) = 𝒜(𝑆(𝑛)), hence𝐻𝑞(𝑋,𝒪(𝑛)) = 𝐻𝑞(𝑆(𝑛)), by the corollary to Propo-
sition 4; the Proposition follows immediately from this and from the corollaries of
Proposition 2.

We note that in particular𝐻𝑟(𝑋,𝒪(−𝑟 − 1)) is a vector space of dimension 1 over 𝐾,
with a base consisting of the cohomology class of the cocycle 𝑓01…𝑟 = 1∕𝑡0… 𝑡𝑟.

66. Coherent algebraic sheaves on projective varieties

Let 𝑉 be a closed subvariety of the projective space 𝑋 = ℙ𝑟(𝐾) and let ℱ be a coherent
algebraic sheaf on 𝑉. By extending ℱ by 0 outside 𝑉, we obtain a coherent algebraic
sheaf on 𝑋 (cf. n◦ 39) denoted ℱ𝑋 ; we know that𝐻𝑞(𝑋,ℱ𝑋) = 𝐻𝑞(𝑉,ℱ). The results of
the preceding n◦ thus apply to the groups𝐻𝑞(𝑉,ℱ). We obtain immediately (given n◦
52):

Theorem 1. The groups𝐻𝑞(𝑉,ℱ) are vector spaces of finite dimension over 𝐾, zero for
𝑞 > dim𝑉.

In particular, for 𝑞 = 0 we have:

Corollary. 𝛤(𝑉,ℱ) is a vector space of finite dimension over 𝐾.

(It is natural to conjecture that the above theorem holds for all complete varieties, in
the sense of Weil [16].)

Let 𝑈′
𝑖 = 𝑈𝑖 ∩ 𝑉; the 𝑈′

𝑖 form an open covering𝔘′ of 𝑉. If ℱ is an algebraic sheaf
on 𝑉, let ℱ𝑖 = ℱ(𝑈′

𝑖 ) and let 𝜃𝑖𝑗(𝑛) be the isomorphism of ℱ𝑗(𝑈′
𝑖 ∩𝑈′

𝑗) to ℱ𝑖(𝑈′
𝑖 ∩𝑈′

𝑗)
defined bymultiplication by (𝑡𝑗∕𝑡𝑖)𝑛. We denote byℱ(𝑛) the sheaf obtained by gluing the
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ℱ𝑖 with respect to 𝜃𝑖𝑗(𝑛). The operation ℱ(𝑛) has the same properties as the operation
defined in n◦ 54 and generalizes it; in particular, ℱ(𝑛) is canonically isomorphic to
ℱ ⊗𝒪𝑉(𝑛).

We have ℱ𝑋(𝑛) = ℱ(𝑛)𝑋 . Applying then Theorem 1 of n◦ 55, together with Proposi-
tion 7 from n◦ 65, we obtain:

Theorem 2. Letℱ be a coherent algebraic sheaf on 𝑉. There exists an integer𝑚(ℱ) such
that we have, for all 𝑛 ≥ 𝑚(ℱ):
(a) For all 𝑥 ∈ 𝑉, the 𝒪𝑥,𝑉-moduleℱ(𝑛)𝑥 is generated by the elements of 𝛤(𝑉,ℱ(𝑛)),
(b) 𝐻𝑞(𝑉,ℱ(𝑛)) = 0 for all 𝑞 > 0.

Remark. It is essential to observe that the sheaf ℱ(𝑛) does not depend solely onℱ and
𝑛, but also on the embedding of 𝑉 into the projective space 𝑋. More precisely, let 𝑃 be
the principal bundle 𝜋−1(𝑉) with the structural group 𝐾∗; with 𝑛 an integer, we make
𝐾∗ act on 𝐾 by the formula:

(𝜆, 𝜇)↦ 𝜆−𝑛𝜇 if 𝜆 ∈ 𝐾∗ and 𝜇 ∈ 𝐾.

Let 𝐸𝑛 = 𝑃 ×𝐾∗ 𝐾 be the fibre space associated with 𝑃 and the fibre 𝐾, equipped with
the above action; let 𝒮(𝐸𝑛) be the sheaf of germs of sections of 𝐸𝑛 (cf. n◦ 41). Taking into
account the fact that 𝑡𝑖∕𝑡𝑗 form a system of transition maps of 𝑃, we verify immediately
that 𝒮(𝐸𝑛) is canonically isomorphic to 𝒪𝑉(𝑛)). The formula ℱ(𝑛) = ℱ ⊗ 𝒪𝑉(𝑛) =
ℱ ⊗ 𝒮(𝐸𝑛) shows then that the operation ℱ → ℱ(𝑛) depends only on the class of
the principal bundle 𝑃 defined by the embedding 𝑉 → 𝑋. In particular, if 𝑉 is normal,
ℱ(𝑛) depends only on the class of linear equivalence of hyperplane sections of 𝑉 in the
considered embedding (cf. [17]).

67. A complement

If𝑀 is a graded𝑆-module satisfying (TF),we denote by𝑀♮ the graded𝑆-module𝛤(𝒜(𝑀)).
We have seen in n◦ 65 that 𝛼∶ 𝑀 → 𝑀♮ is 𝒞-bijective. We shall now give conditions for
𝛼 to be bijective.

Proposition 9. The map 𝛼∶ 𝑀 → 𝑀♮ is bijective if and only if the following conditions
are satisfied:
(i) If𝑚 ∈ 𝑀 is such that 𝑡𝑖 ⋅𝑚 = 0 for all 𝑖 ∈ 𝐼, then𝑚 = 0,
(ii) If elements𝑚𝑖 ∈ 𝑀, homogeneous of the same degree, satisfy 𝑡𝑗 ⋅𝑚𝑖 = 𝑡𝑖 ⋅𝑚𝑗 = 0 for

every couple (𝑖, 𝑗), there exists an𝑚 ∈ 𝑀 such that𝑚𝑖 = 𝑡𝑖 ⋅𝑚.

Let us show that the conditions (i) and (ii) are satisfied by 𝑀♮, which will prove
the necessity. For (i), we can assume that 𝑚 is homogeneous, that is, it is a section
of 𝒜(𝑀(𝑛)); in this case, the condition 𝑡𝑖 ⋅ 𝑚 = 0 implies that 𝑚 is zero on 𝑈𝑖, and
since this occurs for all 𝑖 ∈ 𝐼, we have 𝑚 = 0. For (ii), let 𝑛 be the degree of 𝑚𝑖; we
thus have𝑚𝑖 ∈ 𝛤(𝒜(𝑀(𝑛))); as 1∕𝑡𝑖 is a section of 𝒪(−1) over 𝑈𝑖,𝑚𝑖∕𝑡𝑖 is a section of
𝒜(𝑀(𝑛− 1)) over𝑈𝑖 and the condition 𝑡𝑗 ⋅𝑚𝑖 − 𝑡𝑖 ⋅𝑚𝑗 shows that these various sections
are the restrictions of a unique section𝑚 of 𝒜(𝑀(𝑛 − 1)) over 𝑋; it remains to compare
the sections 𝑡𝑖 ⋅𝑚 and𝑚𝑖; to show that they coincide on 𝑈𝑗, it suffices to observe that
𝑡𝑗(𝑡𝑖 ⋅ 𝑚 − 𝑚𝑖) = 0 on 𝑈𝑗, which follows from the formula 𝑡𝑗 ⋅ 𝑚𝑖 = 𝑡𝑖 ⋅ 𝑚𝑗 and the
definition of𝑚.
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We will now show that (i) implies that 𝛼 is injective. For 𝑛 sufficiently large, we
know that 𝛼∶ 𝑀𝑛 → 𝑀♮

𝑛 is bijective and we can thus proceed by descending induction
on 𝑛. If 𝛼(𝑚) = 0 with 𝑚 ∈ 𝑀𝑛, we have 𝑡𝑖𝛼(𝑚) = 𝛼(𝑡𝑖 ⋅ 𝑚) = 0 and the induction
assumption, applicable since 𝑡𝑖 ⋅𝑚 ∈ 𝑀𝑛+1, shows that𝑚 = 0. Finally, let us show that
(i) and (ii) imply that 𝛼 is surjective. We can, as before, proceed by descending induction
on 𝑛. If𝑚′ ∈ 𝑀♮

𝑛, the induction assumption shows that there exist𝑚𝑖 ∈ 𝑀𝑛+1 such that
𝛼(𝑚𝑖) = 𝑡𝑖 ⋅ 𝑚′; we have 𝛼(𝑡𝑗 ⋅ 𝑚𝑖 − 𝑡𝑖 ⋅ 𝑚𝑗) = 0, hence 𝑡𝑗 ⋅ 𝑚𝑖 − 𝑡𝑖 ⋅ 𝑚𝑗 = 0, because
𝛼 is injective. The condition (ii) then implies that there exists an 𝑚 ∈ 𝑀𝑛 such that
𝑡𝑖 ⋅𝑚 = 𝑚𝑖; we have 𝑡𝑖(𝑚′ − 𝛼(𝑚)) = 0, which shows that𝑚′ = 𝛼(𝑚) and completes the
proof.

Remarks. (1) The proof shows that the condition (i) is necessary and sufficient for 𝛼 to
be injective.

(2) We can express (i) and (ii) as: the homomorphism 𝛼1∶ 𝑀𝑛 → 𝐻0
𝑞(𝑀(𝑛)) is

bijective for all 𝑛 ∈ ℤ. Besides, Proposition 4 shows that we can identify𝑀♮ with the
𝑆-module⨁𝑛∈ℤ𝐻0(𝑀(𝑛)) and it would be easy to provide a purely algebraic proof of
Proposition 9 (without using the sheaf 𝒜(𝑀)).

§4. Relations with the functors Ext𝑞𝑆
68. The functors Ext𝑞𝑆
We keep the notation of n◦ 56. If 𝑀 and 𝑁 are two graded 𝑆-modules, we denote by
Hom𝑆(𝑀,𝑁)𝑛 the group of homogeneous 𝑆-homomorphisms of degree 𝑛 from𝑀 to 𝑁,
and by Hom𝑆(𝑀,𝑁) the graded group⨁𝑛∈ℤHom𝑆(𝑀,𝑁)𝑛; it is a graded 𝑆-module;
when𝑀 is of finite type it coincides with the 𝑆-module of all 𝑆-homomorphisms from
𝑀 to 𝑁.

The derived functors (cf. [6], Chapter V) of the functorHom𝑆(𝑀,𝑁) are the functors
Ext𝑞𝑆(𝑀,𝑁), 𝑞 = 0, 1,…. Let us briefly recall their definition: 1

One chooses a “resolution” of𝑀, that is, an exact sequence:

…→ 𝐿𝑞+1 → 𝐿𝑞 → …→ 𝐿0 → 𝑀 → 0,

where the 𝐿𝑞 are free graded 𝑆-modules and the maps are homomorphisms (that is, as
usual, homogeneous 𝑆-homomorphisms of degree 0). If we set 𝐶𝑞 = Hom𝑆(𝐿𝑞, 𝑁), the
homomorphism 𝐿𝑞+1 → 𝐿𝑞 defines by transposition a homomorphism 𝑑∶ 𝐶𝑞 → 𝐶𝑞+1
satisfying 𝑑◦𝑑 = 0; therefore 𝐶 =⨁

𝑞≥0 𝐶𝑞 is endowed with a structure of a complex,
and the 𝑞-th cohomology group of 𝐶 is just, by definition, equal to Ext𝑞𝑆(𝑀,𝑁); one
shows that it does not depend on the chosen resolution. As the 𝐶𝑞 are graded 𝑆-modules
and since 𝑑∶ 𝐶𝑞 → 𝐶𝑞+1 is homogeneous of degree 0, the Ext𝑞𝑆(𝑀,𝑁) are 𝑆-modules
graded by the subspaces Ext𝑞𝑆(𝑀,𝑁)𝑛); the Ext𝑞𝑆(𝑀,𝑁) are the cohomology groups of
the complex formed by the Hom𝑆(𝐿𝑞, 𝑁)𝑛), i.e., are the derived functors of the functor
Hom𝑆(𝑀,𝑁)𝑛).

Recall the main properties of Ext𝑞𝑆:
1When𝑀 is not of finite type, the Ext𝑞𝑆(𝑀,𝑁) defined above can differ from the Ext𝑞𝑆(𝑀,𝑁) defined

in [6]: this is due to the fact that Hom𝑆(𝑀,𝑁) does not have the same meaning in both cases. However,
all the proofs of [6] are valid without change in the case considered here: this is seen either directly or by
applying Appendix of [6].
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Ext0𝑆(𝑀,𝑁) = Hom𝑆(𝑀,𝑁); Ext𝑞𝑆(𝑀,𝑁) = 0 for 𝑞 > 𝑟 + 1 if 𝑀 is of finite type
(due to the Hilbert syzygy theorem, cf. [6], Chapter VIII, theorem 6.5); Ext𝑞𝑆(𝑀,𝑁) is
an 𝑆-module of finite type if𝑀 and 𝑁 are both of finite type (because we can choose a
resolution with the 𝐿𝑞 of finite type); for all 𝑛 ∈ ℤ we have the canonical isomorphisms:

Ext𝑞𝑆(𝑀(𝑛), 𝑁) ≃ Ext𝑞𝑆(𝑀,𝑁(−𝑛)) ≃ Ext𝑞𝑆(𝑀,𝑁)(−𝑛).

The exact sequences:

0→ 𝑁 → 𝑁′ → 𝑁′′ → 0
0→ 𝑀 → 𝑀′ → 𝑀′′ → 0

give rise to exact sequences:

…→ Ext𝑞𝑆(𝑀,𝑁)→ Ext𝑞𝑆(𝑀,𝑁′)→ Ext𝑞𝑆(𝑀,𝑁′′)→ Ext𝑞+1𝑆 (𝑀,𝑁)→ …
…→ Ext𝑞𝑆(𝑀′′, 𝑁)→ Ext𝑞𝑆(𝑀′,𝑀)→ Ext𝑞𝑆(𝑀,𝑁)→ Ext𝑞−1𝑆 (𝑀′′, 𝑁)→ …

69. Interpretation of𝐻𝑞
𝑘(𝑀) in terms of Ext𝑞𝑆

Let𝑀 be a graded 𝑆-module and let 𝑘 be an integer ≥ 0. Set:

𝐵𝑞𝑘(𝑀) =
⨁

𝑛∈ℤ
𝐻𝑞
𝑘(𝑀(𝑛)),

with the notation of n◦ 61.
We obtain in this way a graded group, isomorphic to the 𝑞-th cohomology group

of the complex
⨁

𝑛∈ℤ 𝐶𝑘(𝑀(𝑛)); this complex can be given a structure of an 𝑆-module,
compatible with the grading by setting

(𝑃 ⋅𝑚)⟨𝑖0⋯ 𝑖𝑞⟩ = 𝑃 ⋅𝑚⟨𝑖0⋯ 𝑖𝑞⟩, if 𝑃 ∈ 𝑆𝑝 and𝑚⟨𝑖0⋯ 𝑖𝑞⟩ ∈ 𝐶𝑞𝑘(𝑀(𝑛));

as the coboundary operator is a homogeneous 𝑆-homomorphism of degree 0, it follows
that the 𝐵𝑞𝑘(𝑀) are themselves graded 𝑆-modules.

We put
𝐵𝑞(𝑀) = lim

𝑘→∞
𝐵𝑞𝑘(𝑀) =

⨁

𝑛∈ℤ
𝐻𝑞(𝑀(𝑛)).

The 𝐵𝑞(𝑀) are graded 𝑆-modules. For 𝑞 = 0 we have

𝐵0(𝑀) =
⨁

𝑛∈ℤ
𝐻0(𝑀(𝑛)),

and we recognize the module denoted by𝑀♮ in n◦ 67 (when𝑀 satisfies the condition
(TF)). For each 𝑛 ∈ ℤ, we have defined in n◦ 62 a linear map 𝛼∶ 𝑀𝑛 → 𝐻0(𝑀(𝑛)); we
verify immediately that the sum of these maps defines a homomorphism, which we
denote also by 𝛼, from𝑀 to 𝐵0(𝑀).

Proposition 1. Let 𝑘 be an integer ≥ 0 and let 𝐽𝑘 be the ideal (𝑡𝑘0 ,… , 𝑡𝑘𝑟 ) of 𝑆. For every
graded 𝑆-module𝑀, the graded 𝑆-modules 𝐵𝑞𝑘(𝑀) and Ext𝑞𝑆(𝐽𝑘,𝑀) are isomorphic.
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Let 𝐿𝑞𝑘 , 𝑞 = 0,… , 𝑟 be the free graded 𝑆-module with a base consisting of the elements
𝑒⟨𝑖0⋯ 𝑖𝑞⟩, 0 ≤ 𝑖0 < 𝑖1 < … < 𝑖𝑞 ≤ 𝑟 of degree 𝑘(𝑞+1); we define an operator 𝑑∶ 𝐿𝑞+1𝑘 →
𝐿𝑞𝑘 and an operator 𝜀 ∶ 𝐿

0
𝑘 → 𝐽𝑘 by the formulas:

𝑑(𝑒⟨𝑖0⋯ 𝑖𝑞+1⟩) =
𝑗=𝑞+1∑

𝑗=0
(−1)𝑗𝑡𝑘𝑖𝑗 ⋅ 𝑒⟨𝑖0⋯ 𝑖𝑗⋯ 𝑖𝑞+1⟩,

𝜀(𝑒⟨𝑖⟩) = 𝑡𝑘𝑖 .

Lemma 1. The sequence of homomorphisms:

0→ 𝐿𝑟𝑘
𝑑,→ 𝐿𝑟−1𝑘 → …→ 𝐿0𝑘

𝜀,→ 𝐽𝑘 → 0

is an exact sequence.

For 𝑘 = 1, this result is well known (cf. [6], Chapter VIII, §4); the general case is
shown in the same way (or reduced to it); we can also use the theorem shown in [11].

Proposition 1 follows immediately from the Lemma, if we observe that the complex
formed by theHom𝑆(𝐿𝑞𝑘 ,𝑀) and the transposition of𝑑 is just the complex⨁𝑛∈ℤ 𝐶𝑘(𝑀(𝑛)).

Corollary 1. 𝐻𝑞
𝑘(𝑀) is isomorphic to Ext𝑞𝑆(𝐽𝑘,𝑀)0.

Indeed, these groups are the degree 0 components of the graded groups 𝐵𝑞𝑘(𝑀) and
Ext𝑞𝑆(𝐽𝑘,𝑀).

Corollary 2. 𝐻𝑞(𝑀) is isomorphic to lim𝑘→∞ Ext𝑞𝑆(𝐽𝑘,𝑀)0.

We easily see that the homomorphism 𝜌ℎ𝑘 ∶ 𝐻
𝑞
𝑘(𝑀) → 𝐻𝑞

ℎ(𝑀) from n◦ 61 is trans-
formed by the isomorphism from Corollary 1 to a homomorphism from

Ext𝑞𝑆(𝐽𝑘,𝑀)0 to Ext𝑞𝑆(𝐽ℎ,𝑀)0

induced by the inclusion 𝐽ℎ → 𝐽𝑘; hence the Corollary 2.
Remark. Let𝑀 be a graded 𝑆-module of finite type;𝑀 defines (cf. n◦ 48) a coherent

algebraic sheaf ℱ′ on 𝐾𝑟+1, thus on 𝑌 = 𝐾𝑟+1 − {0} and we can verify that𝐻𝑞(𝑌,ℱ′) is
isomorphic to 𝐵𝑞(𝑀).

70. Definition of the functors 𝑇𝑞(𝑀)
Let us first define the notion of a dual module to a graded 𝑆-module. Let𝑀 be a graded
𝑆-module; for all 𝑛 ∈ ℤ,𝑀𝑛 is a vector space over 𝐾, whose dual vector space we denote
by (𝑀𝑛)′. Set

𝑀∗ =
⨁

𝑛∈ℤ
𝑀∗
𝑛, with 𝑀∗

𝑛 = (𝑀−𝑛)′.

We give𝑀∗ the structure of an 𝑆-module compatible with the grading; for all 𝑃 ∈ 𝑆𝑝, the
mapping𝑚 ↦ 𝑃 ⋅𝑚 is a 𝐾-linear map from𝑀−𝑛−𝑝 to𝑀−𝑛, so defines by transposition a
𝐾-linear map from (𝑀−𝑛)′ = 𝑀∗

𝑛 to (𝑀−𝑛−𝑝)′ = 𝑀∗
𝑛+𝑝 ; this defines the structure of an

𝑆-module on𝑀∗. We could also define𝑀∗ as Hom𝑆(𝑀,𝐾), denoting by 𝐾 the 𝑆-graded
module 𝑆∕(𝑡0,… , 𝑡𝑟).

The graded 𝑆-module𝑀∗ is called the module dual to M; we have𝑀∗∗ = 𝑀 if every
𝑀𝑛 is of finite dimension over𝐾, which holds if𝑀 = 𝛤(ℱ),ℱ being a coherent algebraic
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sheaf on 𝑋, or if 𝑀 is of finite type. Every homomorphism 𝜙 ∶ 𝑀 → 𝑁 defines by
transposition a homomorphism from𝑁∗ to𝑀∗. If the sequence𝑀 → 𝑁 → 𝑃 is exact, so
is the sequence 𝑃∗ → 𝑁∗ → 𝑀∗; in other words,𝑀∗ is a contravariant and exact functor
of the module𝑀. When 𝐼 is a homogeneous ideal of 𝑆, the dual of 𝑆∕𝐼 is exactly the
“inverse system” of 𝐼, in the sense of Macaulay (cf. [9], n◦ 25).

Let now𝑀 be a graded 𝑆-module and 𝑞 an integer ≥ 0. In the preceding n◦ , we have
defined the graded 𝑆-module 𝐵𝑞(𝑀); themodule dual to 𝐵𝑞(𝑀) will be denoted by 𝑇𝑞(𝑀).
We thus have, by definition:

𝑇𝑞(𝑀) =
⨁

𝑛∈ℤ
𝑇𝑞(𝑀)𝑛, with 𝑇𝑞(𝑀)𝑛 = (𝐻𝑞(𝑀(−𝑛)))′.

Every homomorphism 𝜙 ∶ 𝑀 → 𝑁 defines a homomorphism from 𝐵𝑞(𝑀) to 𝐵𝑞(𝑁),
thus a homomorphism from 𝑇𝑞(𝑁) to 𝑇𝑞(𝑀); thus the 𝑇𝑞(𝑀) are contravariant functors
of𝑀 (we shall see in n◦ 72 that they can expressed very simply in terms of Ext𝑆). Every
exact sequence:

0→ 𝑀 → 𝑁 → 𝑃 → 0
gives rise to an exact sequence:

…𝐵𝑞(𝑀)→ 𝐵𝑞(𝑁)→ 𝐵𝑞(𝑃)→ 𝐵𝑞+1(𝑀)→ … ,
thus, by transposition, an exact sequence:

…𝑇𝑞+1(𝑀)→ 𝑇𝑞(𝑃)→ 𝑇𝑞(𝑁)→ 𝑇𝑞(𝑀)→ … .
The homomorphism 𝛼∶ 𝑀 → 𝐵0(𝑀) defines by transposition a homomorphism

𝛼∗∶ 𝑇0(𝑀)→ 𝑀∗.
Since 𝐵𝑞(𝑀) = 0 for 𝑞 > 𝑟, we have 𝑇𝑞(𝑀) = 0 for 𝑞 > 𝑟.

71. Determination of 𝑇𝑟(𝑀).
(In this n◦ , and in the following, we assume that we have 𝑟 ≥ 1; the case 𝑟 = 0 leads to
somehow different, and trivial, statements).

We denote by Ω the graded 𝑆-module 𝑆(−𝑟 − 1); this is a free module, with a base
consisting of an element of degree 𝑟 + 1. We have seen in n◦ 62 that𝐻𝑟(Ω) = 𝐻𝑟

𝑘(Ω) for
𝑘 sufficiently large, and that 𝐻𝑟

𝑘(Ω) admits a base over 𝐾 consisting of a single element
(𝑡0… 𝑡𝑟)𝑘∕𝑡0… 𝑡𝑟; the image in 𝐻𝑟(Ω) of this element will be denoted by 𝜉; 𝜉 is thus a
basis of𝐻𝑟(Ω).

We will now define a scalar product ⟨ℎ, 𝜙⟩ between elements ℎ ∈ 𝐵𝑟(𝑀)−𝑛 and
𝜙 ∈ Hom𝑆(𝑀,Ω)𝑛, 𝑀 being an arbitrary graded 𝑆-module. The element 𝜙 can be
identified with an element of Hom𝑆(𝑀(−𝑛),Ω)0, that is, with a homomorphism from
𝑀(−𝑛) to Ω; it thus defines, by passing to cohomology groups, a homomorphism from
𝐻𝑟(𝑀(−𝑛)) = 𝐵𝑟(𝑀)−𝑛 to𝐻𝑟(Ω), which we also denote by 𝜙. The image of ℎ under this
homomorphism is thus a scalar multiple of 𝜉, and we define ⟨ℎ, 𝜙⟩ by the formula:

𝜙(ℎ) = ⟨ℎ, 𝜙⟩𝜉.
For every 𝜙 ∈ Hom𝑆(𝑀,Ω)𝑛, the function ℎ ↦ ⟨ℎ, 𝜙⟩ is a linear form on 𝐵𝑟(𝑀)−𝑛,

thus can be identified with an element 𝜈(𝜙) of the dual of 𝐵𝑟(𝑀)−𝑛, which is 𝑇𝑟(𝑀)𝑛.
We have thus defined a homogeneous mapping of degree 0

𝜈∶ Hom𝑆(𝑀,Ω)→ 𝑇𝑟(𝑀),
and the formula ⟨𝑃 ⋅ ℎ, 𝜙⟩ = ⟨ℎ, 𝑃 ⋅ 𝜙⟩ shows that 𝜈 is an 𝑆-homomorphism.
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Proposition 2. The homomorphism 𝜈∶ Hom𝑆(𝑀,Ω)→ 𝑇𝑟(𝑀) is bijective.

We shall first prove the Proposition when𝑀 is a freemodule. If𝑀 is a direct sum of
homogeneous submodules𝑀𝛼, we have:

Hom𝑆(𝑀,Ω)𝑛 =
∏

𝛼
Hom𝑆(𝑀𝛼,Ω)𝑛 and 𝑇𝑟(𝑀)𝑛 =

∏

𝛼
𝑇𝑟(𝑀𝛼)𝑛.

So, if the proposition holds for the𝑀𝛼, it holds for𝑀, and this reduces the case of free
modules to the particular case of a free module with a single generator, that is, to the
case when𝑀 = 𝑆(𝑚). We can identifyHom𝑆(𝑀,Ω)𝑛 withHom𝑆(𝑆, 𝑆(𝑛 −𝑚 − 𝑟 − 1))0,
that is, with the vector space of homogeneous polynomials of degree 𝑛 − 𝑚 − 𝑟 − 1.
Thus Hom𝑆(𝑀,Ω)𝑛 has for a base the family of monomials 𝑡𝛾00 … 𝑡𝛾𝑟𝑟 with 𝛾𝑖 ≥ 0 and
∑𝑖=𝑟

𝑖=0 𝛾𝑖 = 𝑛 −𝑚 − 𝑟 − 1. On the other hand, we have seen in n◦ 62 that𝐻𝑟
𝑘(𝑆(𝑚 − 𝑛))

has for a base (if 𝑘 is large enough) the family of monomials (𝑡0… 𝑡𝑟)𝑘∕𝑡𝛽00 … 𝑡𝛽𝑟𝑟 with
𝛽𝑖 > 0 and∑𝑖=𝑟

𝑖=0 𝛽𝑖 = 𝑛 −𝑚. By setting 𝛽𝑖 = 𝛾′𝑖 + 1, we can write these monomials in
the form (𝑡0… 𝑡𝑟)𝑘−1∕𝑡

𝛾′0
0 … 𝑡𝛾

′
𝑟
𝑟 , with 𝛾′𝑖 ≥ 0 and∑𝑖=𝑟

𝑖=0 𝛾′𝑖 = 𝑛 −𝑚 − 𝑟 − 1. Comparing the
definition of ⟨ℎ, 𝜙⟩, we observe that the scalar product

⟨(𝑡0… 𝑡𝑟)𝑘−1∕𝑡
𝛾′0
0 … 𝑡𝛾

′
𝑟
𝑟 , 𝑡

𝛾0
0 … 𝑡𝛾𝑟𝑟 ⟩

is always zero, unless 𝛾𝑖 = 𝛾′𝑖 for all 𝑖, in which case it is equal to 1. This means that 𝜈
transforms the basis of 𝑡𝛾00 … 𝑡𝛾𝑟𝑟 to the dual basis of (𝑡0… 𝑡𝑟)𝑘−1∕𝑡

𝛾′0
0 … 𝑡𝛾

′
𝑟
𝑟 , thus is bijective,

which shows the Proposition in the case when𝑀 is free.
Let us now pass to the general case. We choose an exact sequence

𝐿1 → 𝐿0 → 𝑀 → 0

where 𝐿0 and 𝐿1 are free. Consider the following commutative diagram

0 Hom𝑆(𝑀,Ω) Hom𝑆(𝐿0,Ω) Hom𝑆(𝐿1,Ω)

0 𝑇𝑟(𝑀) 𝑇𝑟(𝐿0) 𝑇𝑟(𝐿1).

𝜈 𝜈 𝜈 𝜈

The first row of this diagram is an exact sequence, by the general properties of the functor
Hom𝑆; the second is also exact, because it is dual to the sequence

𝐵𝑟(𝐿1)→ 𝐵𝑟(𝐿0)→ 𝐵𝑟(𝑀)→ 0,

which is exact by the cohomology exact sequence of 𝐵𝑞 and the fact that 𝐵𝑟+1(𝑀) = 0
for any𝑀. On the other hand, the two vertical homomorphisms

𝜈∶ Hom𝑆(𝐿0,Ω)→ 𝑇𝑟(𝐿0) and 𝜈∶ Hom𝑆(𝐿1,Ω)→ 𝑇𝑟(𝐿1)

are bijective, as we have just seen. It follows that

𝜈∶ Hom𝑆(𝑀,Ω)→ 𝑇𝑟(𝑀)

is also bijective, which completes the proof.
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72. Determination of 𝑇𝑞(𝑀).
We shall now prove the following theorem, which generalizes Proposition 2:

Theorem 1. Let𝑀 be a graded 𝑆-module. For 𝑞 ≠ 𝑟, the graded 𝑆-modules 𝑇𝑟−𝑞(𝑀) and
Ext𝑞𝑆(𝑀,Ω) are isomorphic. Moreover, we have an exact sequence:

0→ Ext𝑟𝑆(𝑀,Ω)→ 𝑇0(𝑀) 𝛼∗,,→ 𝑀∗ → Ext𝑟+1𝑆 (𝑀,Ω)→ 0.

We will use the axiomatic characterization of derived functors given in [6], Chap.
III, §5. For this, we first define new functors 𝐸𝑞(𝑀) in the following manner:

For 𝑞 ≠ 𝑟, 𝑟 + 1, 𝐸𝑞(𝑀) = 𝑇𝑟−𝑞(𝑀),
For 𝑞 = 𝑟, 𝐸𝑟(𝑀) = Ker(𝛼∗),
For 𝑞 = 𝑟 + 1, 𝐸𝑟+1(𝑀) = Coker(𝛼∗).

The 𝐸𝑞(𝑀) are additive functors of𝑀, enjoying the following properties:
(i) 𝐸0(𝑀) is isomorphic toHom𝑆(𝑀,Ω).

This follows from Proposition 2.
(ii) If 𝐿 is free, 𝐸𝑞(𝐿) = 0 for 𝑞 > 0.

It suffices to verify this for 𝐿 = 𝑆(𝑛), in which case it follows from n◦ 62.
(iii) To every exact sequence 0 → 𝑀 → 𝑁 → 𝑃 → 0 there is associated a sequence of

coboundary operators 𝑑𝑞 ∶ 𝐸𝑞(𝑀)→ 𝐸𝑞+1(𝑃) and the sequence:

…𝐸𝑞(𝑃)→ 𝐸𝑞(𝑁)→ 𝐸𝑞(𝑀) 𝑑𝑞,,→ 𝐸𝑞+1(𝑃)→ …

is exact.
The definition of 𝑑𝑞 is obvious if 𝑞 ≠ 𝑟 − 1, 𝑟: this is the homomorphism from 𝑇𝑟−𝑞(𝑀)
to 𝑇𝑟−𝑞−1(𝑃) defined in n◦ 70. For 𝑞 = 𝑟 − 1 or 𝑟, we use the following commutative
diagram:

𝑇1(𝑀) 𝑇0(𝑃) 𝑇0(𝑁) 𝑇0(𝑀) 0

0 𝑃∗ 𝑁∗ 𝑀∗ 0.

𝛼∗ 𝛼∗ 𝛼∗ 𝛼∗

This diagram shows immediately that the image of 𝑇1(𝑀) is contained in the kernel
of 𝛼∗∶ 𝑇0(𝑃)→ 𝑃∗, which is just 𝐸𝑟(𝑃). This defines 𝑑𝑟−1∶ 𝐸𝑟−1(𝑀)→ 𝐸𝑟(𝑃).

To define 𝑑𝑟 ∶ Ker(𝑇0(𝑀) → 𝑀∗) → Coker(𝑇0(𝑃) → 𝑃∗), we use the process from
[6], Chap. III, Lemma 3.3: if 𝑥 ∈ Ker(𝑇0(𝑀)→ 𝑀∗), there exists 𝑦 ∈ 𝑃∗ and 𝑧 ∈ 𝑇0(𝑁)
such that 𝑥 is the image of 𝑧 and that 𝑦 and 𝑧 have the same image in 𝑁∗; we then set
𝑑𝑟(𝑥) = 𝑦.

The exactness of the sequence

…→ 𝐸𝑞(𝑃)→ 𝐸𝑞(𝑁)→ 𝐸𝑞(𝑀) 𝑑𝑞,,→ 𝐸𝑞+1(𝑃)→ …

follows from the exactness of the sequence

…𝑇𝑟−𝑞(𝑃)→ 𝑇𝑟−𝑞(𝑁)→ 𝑇𝑟−𝑞(𝑀)→ 𝑇𝑟−𝑞−1(𝑃)→ …
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and from [6], loc. cit.
(iv) The isomorphism from (i) and the operators 𝑑𝑞 from (iii) are “natural”

This follows immediately from the definitions.
As the properties (i) to (iv) characterize the derived functors of the functorHom𝑆(𝑀,Ω),

we have 𝐸𝑞(𝑀) ≃ Ext𝑞𝑆(𝑀,Ω), which proves the Theorem.

Corollary 1. If𝑀 satisfies (TF),𝐻𝑞(𝑀) is isomorphic to the vector space dual toExt𝑟−𝑞𝑆 (𝑀,Ω)0
for all 𝑞 ≥ 1.

In fact, we know that 𝐻𝑞(𝑀) is a vector space of finite dimension, whose dual is
isomorphic to Ext𝑟−𝑞𝑆 (𝑀,Ω)0.

Corollary 2. If𝑀 satisfies (TF), the 𝑇𝑞(𝑀) are graded 𝑆-modules of finite type for 𝑞 ≥ 1,
and 𝑇0(𝑀) satisfies (TF).

We can replace 𝑀 by a module of finite type without changing the 𝐵𝑞(𝑀), thus
𝑇𝑞(𝑀). The Ext𝑟−𝑞𝑆 (𝑀,Ω) are then 𝑆-modules of finite type, and we have𝑀∗ ∈ 𝒞, hence
the Corollary.

§5. Applications to coherent algebraic sheaves

73. Relations between functors Ext𝑞𝑆 and Ext
𝑞
𝒪𝑥

Let𝑀 and 𝑁 be two graded 𝑆-modules. If 𝑥 is a point of 𝑋 = ℙ𝑟(𝐾), we have defined
in n◦ 57 the 𝒪𝑥-modules𝑀𝑥 and 𝑁𝑥; we will find relation between Ext𝑞𝒪𝑥

(𝑀𝑥, 𝑁𝑥) and
graded 𝑆-module Ext𝑞𝑆(𝑀,𝑁).

Proposition 1. Suppose that𝑀 is of finite type. Then:
(a) The sheaf𝒜(𝐻𝑜𝑚𝑆(𝑀,𝑁)) is isomorphic to the sheaf𝐻𝑜𝑚𝒪(𝒜(𝑀),𝒜(𝑁)).
(b) For all𝑥 ∈ 𝑋, the𝒪𝑥-moduleExt𝑞𝑆(𝑀,𝑁)𝑥 is isomorphic to the𝒪𝑥-moduleExt𝑞𝒪𝑥

(𝑀𝑥, 𝑁𝑥).

First define a homomorphism 𝜄𝑥 ∶ 𝐻𝑜𝑚𝑆(𝑀,𝑁)𝑥 → 𝐻𝑜𝑚𝒪𝑥 (𝑀𝑥, 𝑁𝑥). An element
of first module is a fraction 𝜑∕𝑃, with 𝜑 ∈ 𝐻𝑜𝑚𝑆(𝑀,𝑁)𝑛, 𝑃 ∈ 𝑆(𝑥), 𝑃 is homogeneous
of degree 𝑛; if𝑚∕𝑃′ is an element of𝑀𝑥, 𝜑(𝑚)∕𝑃𝑃′ is an element of 𝑁𝑥 which does not
depend on 𝜑∕𝑃 and 𝑚∕𝑃′, and the function 𝑚∕𝑃′ → 𝜑(𝑚)∕𝑃𝑃′ is a homomorphism
𝜄𝑥(𝜑∕𝑃)∶ 𝑀𝑥 → 𝑁𝑥; this defines 𝜄𝑥. After Proposition 5 of n◦ 14, 𝐻𝑜𝑚𝒪𝑥 (𝑀𝑥, 𝑁𝑥) can
be identified with:

𝐻𝑜𝑚𝒪(𝒜(𝑀),𝒜(𝑁))𝑥;
this identification transforms 𝜄𝑥 into:

𝜄𝑥 ∶ 𝒜(𝐻𝑜𝑚𝑆(𝑀,𝑁))𝑥 → 𝐻𝑜𝑚𝒪(𝒜(𝑀),𝒜(𝑁))𝑥,

and we easily verify that the family of 𝜄𝑥 is a homomorphism

𝜄∶ 𝒜(𝐻𝑜𝑚𝑆(𝑀,𝑁))→ 𝐻𝑜𝑚𝒪(𝒜(𝑀),𝒜(𝑁)).

When𝑀 is a free module of finite type, 𝜄𝑥 is a bijection. Indeed, it suffices to regard
𝑀 = 𝑆(𝑛), for which it is obvious.

If now𝑀 is any graded 𝑆-module of finite type, choose a resolution of𝑀:

...→ 𝐿𝑞+1 → 𝐿𝑞 → ...→ 𝐿0 → 𝑀 → 0
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where 𝐿𝑞 are free of finite type, and consider a complex 𝐶 formed by 𝐻𝑜𝑚𝑆(𝐿𝑞, 𝑁).
The cohomology groups of 𝐶 are Ext𝑞𝑆(𝑀,𝑁); or else if we denote by 𝐵𝑞 and 𝑍𝑞 the
submodules of 𝐶𝑞 formed respectively by the coboundaries and cocycles, we have the
exact sequences:

0→ 𝑍𝑞 → 𝐶𝑞 → 𝐵𝑞+1 → 0
and

0→ 𝐵𝑞 → 𝑍𝑞 → Ext𝑞𝑆(𝑀,𝑁)→ 0.
As the functor 𝒜(𝑀) is exact, the sequences

0→ 𝑍𝑞𝑥 → 𝐶𝑞𝑥 → 𝐵𝑞+1𝑥 → 0
and

0→ 𝐵𝑞𝑥 → 𝑍𝑞𝑥 → Ext𝑞𝑆(𝑀,𝑁)𝑆 → 0
are also exact.

But after preceding consideration𝐶𝑞𝑥 is isomorphic toHom𝒪𝑥 (𝐿
𝑞
𝑥, 𝑁𝑥); theExt𝑞𝑆(𝑀,𝑁)𝑥

are isomorphic to cohomology groups of a complex formed by the Hom𝒪𝑥 (𝐿
𝑞
𝑥, 𝑁𝑥) and,

because the 𝐿𝑞𝑥 are clearly 𝒪𝑥-free, we get back the definition of Ext𝑞𝒪𝑥
(𝑀𝑥, 𝑁𝑥), which

shows (b). For 𝑞 = 0 preceding considerations show that 𝜄𝑥 is bijection, so 𝜄 is an
isomorphism, so (a) holds.

74. Vanishing of cohomology groups𝐻𝑞(𝑋,ℱ(−𝑛)) for 𝑛 → +∞
Theorem 1. Let ℱ be a coherent algebraic sheaf on 𝑋 and let 𝑞 be an integer ≥ 0. The
following conditions are equivalent:
(a) 𝐻𝑞(𝑋,ℱ(−𝑛)) = 0 for 𝑛 large enough.
(b) Ext𝑟−𝑞𝒪𝑥

(ℱ𝑥,𝒪𝑥) = 0 for all 𝑥 ∈ 𝑋.

After Theorem 2 of n◦ 60, we can suppose that ℱ = 𝒜(𝑀), where 𝑀 is a graded
𝑆-module of finite type, and by the n◦ 64𝐻𝑞(𝑋,ℱ(−𝑛)) is isomorphic to𝐻𝑞(𝑀(−𝑛)) =
𝐵𝑞(𝑚)−𝑛, so condition (a) is equivalent to

𝑇𝑞(𝑀)𝑛 = 0
for 𝑛 large enough, that is to say 𝑇𝑞(𝑀) ∈ 𝒞. After Theorem 1 of n◦ 72 and the fact that
𝑀⋆ ∈ 𝒞 as𝑀 is of finite type, this last condition is equivalent to Ext𝑟−𝑞𝑆 (𝑀,Ω) ∈ 𝒞; as
Ext𝑟−𝑞𝑆 (𝑀,Ω) is a 𝑆-module of finite type,

Ext𝑟−𝑞𝑆 (𝑀,Ω) ∈ 𝒞

is equivalent to Ext𝑟−𝑞𝑆 (𝑀,Ω)𝑥 = 0 for all 𝑥 ∈ 𝑋, by Proposition 5 of n◦ 58. Finally the
Proposition 1 shows that Ext𝑟−𝑞𝑆 (𝑀,Ω)𝑥 = Ext𝑟−𝑞𝒪𝑥

(𝑀𝑥,Ω𝑥) and as𝑀𝑥 is isomorphism
to ℱ𝑥 and Ω𝑥 is isomorphic to 𝒪(−𝑟 − 1)𝑥, so to 𝒪𝑥, this completes the proof.

For announcing Theorem 2, we will need the notion of dimension of an 𝒪𝑥-module.
Recall ([6], Chap VI) that 𝒪𝑥-module of finite type 𝑃 is of dimension ≤ 𝑝 if there is an
exact sequence of 𝒪-modules:

0→ 𝐿𝑝 → 𝐿𝑝−1 → ...→ 𝐿0 → 𝑃 → 0,
where each 𝐿𝑝 is free (this definition is equivalent to [6], because all projective 𝒪𝑥-
modules of finite type are free (cf [6], Chap VIII, Th. 6.1.’).

All 𝒪𝑥-modules of finite type are of dimension ≤ 𝑟, by Hilbert’s syzygy theorem. (cf.
[6], Chap VIII, Th. 6.2’).
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Lemma 1. Let 𝑃 be an 𝒪𝑥-module of finite type and let 𝑝 be an integer ≥ 0. The following
two conditions are equivalent:
(i) 𝑃 is of dimension ≤ 𝑝.
(ii) Ext𝑚𝒪𝑥

(𝑃,𝒪𝑥) = 0 for all𝑚 > 𝑝.

It is clear that (i) implies (ii). Wewill show that (ii) implies (i) by induction decreasing
on 𝑝. For 𝑝 ≥ 𝑟 the lemma is trivial, because (i) is always true. Now pass from 𝑝 + 1 to
𝑝; let 𝑁 be any 𝒪𝑥-module of finite type. We can find an exact sequence 0→ 𝑅 → 𝐿 →
𝑁 → 0, where 𝐿 is free of finite type (because 𝒪𝑥 is Noetherian). The exact sequence:

Ext𝑝+1𝒪𝑥
(𝑃, 𝐿)→ Ext𝑝+1𝒪𝑥

(𝑃,𝑁)→ Ext𝑝+2𝒪𝑥
(𝑃, 𝑅)

shows that Ext𝑝+1𝒪𝑥
(𝑃,𝑁) = 0, so we have Ext𝑝+2𝒪𝑥

(𝑃, 𝐿) = 0 by condition (ii), and
Ext𝑝+2𝒪𝑥

(𝑃, 𝑅) = 0 as dim𝑃 ≤ 𝑝 + 1 by the induction hypothesis. As this property
characterizes the modules of finite dimension ≤ 𝑝, the lemma is proved.

By combining Lemma with Theorem 1 we obtain:

Theorem 2. Letℱ be a coherent algebraic sheaf on 𝑋, and let 𝑝 be an integer ≥ 0. The
following two conditions are equivalent:
(i) 𝐻𝑞(𝑋,ℱ(−𝑛)) = 0 for all 𝑛 large enough and 0 ≤ 𝑞 < 𝑝.
(ii) For all 𝑥 ∈ 𝑋 the 𝒪𝑥-moduleℱ𝑥 is of dimension ≤ 𝑟 − 𝑝.

75. Nonsingular varieties

The following results play essential role in extension of the ’duality theorem’ [15] to an
arbitrary case.

Theorem 3. Let𝑉 be a nonsingular subvariety of projective spaceℙ𝑟(𝐾). Suppose that all
irreducible components of𝑉 have the same dimension𝑝. Letℱ be a coherent algebraic sheaf
on𝑉, such that for all 𝑥 ∈ 𝑉,ℱ𝑥 is a freemodule over𝒪𝑥,𝑉 . Thenwe have𝐻𝑞(𝑉,ℱ(−𝑛)) =
0 for all 𝑛 large enough and 0 ≤ 𝑞 < 𝑝.

After Theorem 2, it remains to show that 𝒪𝑥,𝑉 considered as 𝒪𝑥-module is of dimen-
sion≤ 𝑟−𝑝. Denote by 𝑔𝑥(𝑉) the kernel of the canonical homomorphism 𝜖∶ 𝒪𝑥 → 𝒪𝑥,𝑉 ;
since the point 𝑥 is simple over 𝑉, we know (cf. [18], th 1) that this ideal is generated by
𝑟 − 𝑝 elements 𝑓1, ..., 𝑓𝑟−𝑝, and the theorem of Cohen-Macaulay (cf. [13], p. 53, prop 2)
shows that we have

(𝑓1, ..., 𝑓𝑖−1) ∶ 𝑓𝑖 = (𝑓1, ..., 𝑓𝑖−1) for 1 ≤ 𝑖 ≤ 𝑟 − 𝑝.

Denote by 𝐿𝑞 a free𝒪𝑥-module which admits a base of elements 𝑒 < 𝑖1...𝑖𝑞 > correspond-
ing to sequence (𝑖1, ..., 𝑖𝑞) such that

1 ≤ 𝑖1 < 𝑙2 < ... < 𝑖𝑞 ≤ 𝑟 − 𝑝;

for 𝑞 = 0, take 𝐿0 = 𝒪𝑥 and define:

𝑑(𝑒⟨𝑖1...𝑖𝑞⟩) =
𝑞∑

𝑗=1
(−1)𝑗𝑓𝑖,𝑗𝑒⟨𝑖1, ...̂𝑖𝑗...𝑖𝑞⟩

𝑑(𝑒⟨𝑖⟩) = 𝑓𝑖
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After [6], Chap. VIII, prop 4.3, the sequence

0→ 𝐿𝑟−𝑝
𝑑,→ 𝐿𝑟−𝑝−1

𝑑,→ ... 𝑑,→ 𝐿0
𝜖𝑥,,→ 𝒪𝑥,𝑉 → 0

is exact, which shows that dim𝒪𝑥 (𝒪𝑥,𝑉) ≤ 𝑟 − 𝑝, QED.

Corollary. We have𝐻𝑞(𝑉,𝒪𝑉(−𝑛)) = 0 for 𝑛 large enough and 0 ≤ 𝑞 < 𝑝.

Remark. The above proof applies more generally whenever the ideal 𝑔𝑥(𝑉) admits a
system of 𝑟 − 𝑝 generators, that is, if the variety 𝑉 is a local complete intersection at all
points.

76. Normal Varieties

Lemma 2. Let 𝑀 be a 𝒪𝑥 module of finite type and let 𝑓 be a noninvertible element of
𝒪𝑥, such that the relation 𝑓𝑚 = 0 implies𝑚 = 0 if𝑚 ∈ 𝑀. Then the dimension of the
𝒪𝑥-module𝑀∕𝑓𝑀 is equal to the dimension of𝑀 increased by one.

By assumption, we have an exact sequence 0→ 𝑀 𝛼,→ 𝑀 → 𝑀∕𝑓𝑀 → 0, where 𝛼 is
multiplication by 𝑓. If 𝑁 is a 𝒪𝑥-module of finite type, we have an exact sequence:

...→ Ext𝑞𝒪𝑥
(𝑀,𝑁) 𝛼,→ Ext𝑞𝒪𝑥

(𝑀,𝑁)→ Ext𝑞+1𝒪𝑥
(𝑀∕𝑓𝑀,𝑁)→ Ext𝑞+1𝒪𝑥

(𝑀,𝑁)→ ...

Denote by 𝑝 the dimension of 𝑀. By taking 𝑞 = 𝑝 + 1 in the preceding exact
sequence, we see that Ext𝑝+2𝒪𝑥

(𝑀∕𝑓𝑀,𝑁) = 0, which (by [6], Chap. VI, 2) implies that
dim(𝑀∕𝑓𝑀) ≤ 𝑝 + 1. On the other hand, since dim𝑀 = 𝑝 we can choose 𝑁 such that
Ext𝑝𝒪𝑥

(𝑀,𝑁) ≠ 0; by taking 𝑞 = 𝑝 in the above exact sequence, we see that
𝐸𝑥𝑡𝑝+1𝒪𝑥

(𝑀∕𝑓𝑀,𝑁) can be identified with cokernel of

Ext𝑝𝒪𝑥
(𝑀,𝑁) 𝛼,→ Ext𝑝𝒪𝑥

(𝑀,𝑁)′

as the last homomorphism is nothing else that multiplication by 𝑓 and that 𝑓 isn’t
invertible in the local ring 𝒪𝑥. If follows from [6], Chap. VIII, prop. 5.1’ that this
cokernel is ≠ 0, which shows that dim𝑀∕𝑓𝑀 ≥ 𝑝 + 1 and finishes the proof.

We will now show a result, that is related with ’the Enriques-Severi lemma’ of Zariski
[19]:

Theorem 4. Let 𝑉 be an irreducible, normal subvariety of dimension ≥ 2, of projective
space ℙ𝑟(𝐾). Letℱ be a coherent algebraic sheaf on 𝑉, such that for all 𝑥 ∈ 𝑉,ℱ𝑥 is a free
module over 𝒪𝑥,𝑉 . Then we have𝐻1(𝑉,ℱ(−𝑛)) = 0 for 𝑛 large enough.

After Theorem 2, it remains to show that𝒪𝑥,𝑉 , considered as𝒪𝑥-module is of dimen-
sion ≤ 𝑟 − 2. First choose an element 𝑓 ∈ 𝒪𝑥 such that 𝑓(𝑥) = 0 and that the image of
𝑓 in 𝒪𝑥,𝑉 is not zero; this is possible because dim𝑉 > 0. As 𝑉 is irreducible, 𝒪𝑥,𝑉 is an
integral ring (domain), and we can apply Lemma 2 to the pair (𝒪, 𝑓); we then have:

dim𝒪𝑥,𝑉 = dim𝒪𝑥,𝑉∕(𝑓) − 1, with (𝑓) = 𝑓𝒪𝑥,𝑉 .

As 𝒪𝑥,𝑉 is an integrally closed ring, all prime ideals 𝔭𝛼 of the principal ideal (𝑓) are
minimal (cf. [12] p.136, or [9], n◦ 37), and none of them is equal to the maximal ideal
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𝔪 of 𝒪𝑥,𝑉 (if not we would have dim𝑉 ≤ 1). So we can find an element 𝑔 ∈ 𝔪, not
belonging to any of 𝔭𝛼; this element 𝑔 is not divisible by 0 in the quotient ring 𝒪𝑥,𝑉∕(𝑓);
we denote by 𝑔, a representation of 𝑔 in 𝒪𝑥. We see that we can apply Lemma to the pair
𝒪𝑥,𝑉∕(𝑓), 𝑔); we then have:

dim𝒪𝑥,𝑉∕(𝑓) = dim𝒪𝑥,𝑉∕(𝑓, 𝑔) − 1.

But by Hilbert’s syzygy theorem, we have dim𝒪𝑥,𝑉∕(𝑓, 𝑔) ≤ 𝑟, so dim𝒪𝑥,𝑉 ≤ 𝑟 − 1
and dim𝒪𝑥,𝑉 ≤ 𝑟 − 2 QED.

Corollary. We have𝐻1(𝑉,𝒪𝑉(−𝑛)) = 0 for 𝑛 large enough.

Remarks. (1) The reasoning made before is classic in theory of syzygies. Cf. W. Gröb-
ner,Moderne Algebraische Geometrie, 152.6 and 153.1.

(2) If the dimension of 𝑉 is > 2, we can have dim𝒪𝑥,𝑉 = 𝑟 − 2. This is in particular
the case when 𝑉 is a cone which hyperplane section𝑊 is a normal and irregular
projective variety (i.e.,𝐻1(𝑊,𝒪𝑊) ≠ 0).

77. Homological characterization of varieties 𝑘-times of first kind
Let𝑀 be a graded 𝑆-module of finite type. We show by a reasoning identical to that of
Lemma 1:

Lemma 3. dim ≤ 𝑘 if and only if Ext𝑞𝑆(𝑀, 𝑆) = 0 for 𝑞 > 𝑘.

As 𝑀 is graded. we have Ext𝑞𝑆(𝑀,Ω) = Ext𝑞𝑆(𝑀, 𝑆)(−𝑟 − 1), so the previous con-
dition is equivalent to Ext𝑞𝑆(𝑀,Ω) = 0 for 𝑞 > 𝑘. Given Theorem 1 of n◦ 72, we conclude:

Proposition 2. (a) For dim𝑀 ≤ 𝑟 it is necessary and sufficient that𝑀𝑛 → 𝐻0(𝑀(𝑛))
is injective for all 𝑛 ∈ ℤ.

(b) If 𝑘 is an integer ≥ 1, for dim𝑀 ≤ 𝑟 − 𝑘 it is necessary and sufficient that 𝛼∶ 𝑀𝑛 →
𝐻0(𝑀(𝑛)) is bijective for all 𝑛 ∈ ℤ, and that𝐻𝑞(𝑀(𝑛)) = 0 for 0 < 𝑞 < 𝑘 and all
𝑛 ∈ ℤ.

Let 𝑉 be a closed subvariety of ℙ𝑟(𝐾), and let 𝐼(𝑉) be an ideal if homogeneous
polynomials, which are zero on 𝑉.

Denote 𝑆(𝑉) = 𝑆∕𝐼(𝑉), this is a graded 𝑆-module whose associated sheaf is 𝒪𝑉 . We
say2 that 𝑉 is a variety “𝑘-times of first kind” of ℙ𝑟(𝐾) if the dimension of 𝑆-module
𝑆(𝑉) is≤ 𝑟−𝑘. It is obvious that 𝛼∶ 𝑆(𝑉)𝑛 → 𝐻0(𝑉,𝒪𝑉(𝑛)) is injective for all 𝑛 ∈ ℤ, so
all varieties are 0-times of first kind. Using preceding proposition to𝑀 = 𝑆(𝑉), we obtain:

Proposition 3. Let 𝑘 be an integer ≥ 1. For a subvariety 𝑉 to be a 𝑘-times of first kind, it
is necessary and sufficient that the following conditions are satisfied for all 𝑛 ∈ ℤ:
(i) 𝛼∶ 𝑆(𝑉)𝑛 → 𝐻0(𝑉,𝒪𝑉(𝑛)) is bijective.
(ii) 𝐻𝑞(𝑉,𝒪𝑉(𝑛)) = 0 for 0 < 𝑞 < 𝑘.

2Cf. P. Dubreil, Sur la dimension des idéaux de polynômes, J . Math. Pures App., 15, 1936, p. 271-283.
See also W . Gröbner, hloderne Algebraische Geometrie, §5.
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(The condition (i) can also be expressed by saying that linear series cut on𝑉 by forms
of degree 𝑛 is complete, which is well known.)

By comparing with Theorem 2 (or by direct reasoning), we obtain:

Corollary. If 𝑉 is 𝑘-times of first kind, we have𝐻𝑞(𝑉,𝒪𝑉) = 0 for 0 < 𝑞 < 𝑘 and, for
all 𝑥 ∈ 𝑉, the dimension of 𝒪𝑥-module 𝒪𝑥,𝑉 is ≤ 𝑟 − 𝑘.

If𝑚 is an integer ≥ 1, denote by 𝜑𝑚 the embedding of ℙ𝑟(𝐾) into a projective space
of convenient dimension, given by the monomials of degree𝑚 (cf. [8], Chap. XVI, 6, or
n◦ 52, proof of Lemma 2). So the preceding corollary admits following converse:

Proposition 4. Let 𝑘 be an integer ≥ 1, and let 𝑉 be a connected and closed subvariety of
ℙ𝑟(𝐾). Suppose that𝐻𝑞(𝑉,𝒪𝑉) = 0 for 0 < 𝑞 < 𝑘, and that for all 𝑥 ∈ 𝑉 the dimension
of 𝒪𝑥-module 𝒪𝑥,𝑉 is ≤ 𝑟 − 𝑘.
Then for all𝑚 large enough, 𝜑𝑚(𝑉) is a subvariety 𝑘-times of first kind.

Because 𝑉 is connected, we have 𝐻0(𝑉,𝒪𝑉) = 𝐾. So, if 𝑉 is irreducible, it’s evident
(if not,𝐻0(𝑉,𝒪𝑉) contains a polynomial algebra and is not of finite dimension over 𝐾);
if 𝑉 is reducible, all elements 𝑓 ∈ 𝐻0(𝑉,𝒪𝑉) induce a constant on each of irreducible
components of 𝑉, and this constants are the same, because of connectivity of 𝑉.

By the fact that dim𝒪𝑥,𝑉 ≤ 𝑟 − 1, the algebraic dimension of each of irreducible
components of 𝑉 is at least equal to 1. So it follows that

𝐻0(𝑉,𝒪𝑉(−𝑛)) = 0

for all 𝑛 > 0 (because if 𝑓 ∈ 𝐻0(𝑉,𝒪𝑉(−𝑛)) and 𝑓 ≠ 0, the 𝑓𝑘𝑔 with 𝑔 ∈ 𝑆(𝑉)𝑛𝑘 form a
vector subspace of𝐻0(𝑉,𝒪𝑉) of dimension > 1).

That being said, denote by 𝑉𝑚 the subvariety 𝜑𝑚(𝑉); we obviously have:

𝒪𝑉𝑚(𝑛) = 𝒪𝑉(𝑛𝑚).

For𝑚 large enough the following conditions are satisfied:
(a) 𝛼 ∶ 𝑆(𝑉)𝑛𝑚 → 𝐻0(𝑉,𝒪𝑉(𝑛𝑚)) is bijective for all 𝑛 ≥ 1.
This follows from Proposition 5 of n◦ 65.
(b)𝐻𝑞(𝑉,𝒪𝑉(𝑚𝑛)) = 0 for 0 < 𝑞 < 𝑘 and for all 𝑛 ≥ 1.
This follows from Proposition of n◦ 65.
(c)𝐻𝑞(𝑉,𝒪𝑉(𝑛𝑚)) = 0 for 0 < 𝑞 < 𝑘 and for all 𝑛 ≤ −1.
This follows from Theorem 2 of n◦ 74, and hypothesis made on 𝒪𝑥,𝑉 .
On the other hand, we have 𝐻0(𝑉,𝒪𝑉) = 𝐾, 𝐻0(𝑉,𝒪𝑉(𝑛𝑚)) = 0 for all 𝑛 ≤ −1,

and𝐻𝑞(𝑉,𝒪𝑉) = 0 for 0 < 𝑞 < 𝑘, by the hypothesis. It follows that 𝑉𝑚 satisfies all the
hypothesis of Proposition 3, QED.

Corollary. Let 𝑘 be an integer≥ 1, and let𝑉 be a projective variety without singularities,
of dimension ≥ 𝑘. For 𝑉 being birationally isomorphic to a subvariety 𝑘-times of first kind
of a convenient projective space, it is necessary and sufficient that 𝑉 is connected and that
𝐻𝑞(𝑉,𝒪𝑉) = 0 for 0 < 𝑞 < 𝑘.

The necessity is evident, by Proposition 3. To show sufficiency, it suffices to remark
that 𝒪𝑥,𝑉 is of dimension ≤ 𝑟 − 𝑘 (cf. n◦ 75) and to apply the previous proposition.



§6. THE CHARACTERISTIC FUNCTION AND ARITHMETIC GENUS 75

78. Complete intersections

A subvariety 𝑉 of dimension 𝑝 of projective space ℙ𝑟(𝐾) is a complete intersection if the
ideal 𝐼(𝑉) of polynomials zero at𝑉 admits a system of 𝑟−𝑝 generators 𝑃1, ..., 𝑃𝑟−𝑝; in this
case, all irreducible components of 𝑉 have the dimension 𝑝, by the theorem of Macaulay
(cf. [9], n◦ 17). It is known, that this variety is 𝑝-times of first kind, which implies that
𝐻𝑞(𝑉,𝒪𝑉(𝑛)) = 0 for 0 < 𝑞 < 𝑝, as we have just seen. We will determine𝐻𝑝(𝑉,𝒪𝑉(𝑛))
as a function of degree𝑚1, ..., 𝑚𝑟−𝑝 of homogeneous polynomials 𝑃1, ..., 𝑃𝑟−𝑝.

Let 𝑆(𝑉) = 𝑆∕𝐼(𝑉) be a ring of projective coordinates of 𝑉. By theorem 1 of n◦ 72 all
it is left, is to determine the 𝑆-module Ext𝑟−𝑝𝑆 (𝑆(𝑉),Ω). We have a resolution, analogous
to that of n◦ 75: we take 𝐿𝑞 the graded free 𝑆-module, admitting for a base the elements
𝑒⟨𝑖1, ..., 𝑖𝑞⟩, corresponding to sequences (𝑖1, ..., 𝑖𝑞) such that 1 ≤ 𝑖1 < 𝑖2 < ... < 𝑖𝑞 ≤ 𝑟 − 𝑝
and of degree

∑𝑞
𝑗=1𝑚𝑗; for 𝐿0 we take 𝑆. We set:

𝑑(𝑒⟨𝑖1, ..., 𝑖𝑞⟩) =
𝑞∑

𝑗=1
(−1)𝑖𝑃𝑖𝑗𝑒⟨𝑖1...𝑖𝑗...𝑖𝑞⟩

𝑑(𝑒⟨𝑖⟩) = 𝑃𝑖.

The sequence 0→ 𝐿𝑟−𝑝 𝑑,→ ... 𝑑,→ 𝐿0 → 𝑆(𝑉)→ 0 is exact ([6], Chap. VIII, Prop. 4.3).
It follows that theExt𝑞𝑆(𝑆(𝑉),Ω) are the cohomology groups of the complex formed by the
𝐻𝑜𝑚𝑆(𝐿𝑞,Ω); but we can identify an element of𝐻𝑜𝑚𝑆(𝐿𝑞,Ω)𝑛 with a system 𝑓⟨𝑖1, ...𝑖𝑞⟩,
where the 𝑓⟨𝑖1, ..., 𝑖𝑞⟩ are homogeneous polynomials of degree𝑚𝑖1 + ...+𝑚𝑖𝑞 + 𝑛− 𝑟−1;
after this identification is made, the operator of coboundary is given by usual formula:

(𝑑𝑓)⟨𝑖1...𝑖𝑞+1⟩ =
𝑞∑

𝑗=1
(−1)𝑗𝑃𝑖𝑗𝑓⟨𝑖1...𝑖𝑗...𝑖𝑞+1⟩.

The theorem of Macaulay implies that we are in conditions of [11], and we obtain
that Ext𝑞𝑆(𝑆(𝑉),Ω) = 0 for 𝑞 ≠ 𝑟−𝑝. On the other hand, Ext𝑟−𝑝𝑆 (𝑆(𝑉),Ω)𝑛 is isomorphic
to a vector subspace of 𝑆(𝑉) formed by homogeneous elements of degree 𝑁 + 𝑛, where
𝑁 =∑𝑟−𝑝

𝑖=1 𝑚𝑖 − 𝑟 − 1. Using Theorem 1 of n◦ 72 we obtain:

Proposition 5. Let𝑉 be a complete intersection, defined by the homogeneous polynomials
𝑃1, ..., 𝑃𝑟−𝑝 of degrees𝑚1, ..., 𝑚𝑟−𝑝.
(a) The function 𝛼 ∶ 𝑆(𝑉)𝑛 → 𝐻0(𝑉,𝒪𝑉(𝑛)) is bijective for all 𝑛 ∈ ℤ.
(b) 𝐻𝑞(𝑉,𝒪𝑉(𝑛)) = 0 for 0 < 𝑞 < 𝑝 and all 𝑛 ∈ ℤ.
(c) 𝐻𝑞(𝑉,𝒪𝑉(𝑛)) is isomorphic to a dual vector space to 𝐻0(𝑉,𝒪𝑉(𝑁 − 𝑛)), with 𝑁 =∑𝑟−𝑝

𝑖=1 𝑚𝑖 − 𝑟 − 1.

We see that in particular𝐻𝑝(𝑉,𝒪𝑉) is zero if 𝑁 < 0.

§6. The characteristic function and arithmetic genus

79. Euler–Poincaré characteristic

Let 𝑉 be a projective variety and ℱ a coherent algebraic sheaf on 𝑉. Let

ℎ𝑞(𝑉,ℱ) = dim𝐾 𝐻𝑞(𝑉,ℱ).
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We have seen (n◦ 66, Theorem 1) that the ℎ𝑞(𝑉,ℱ) are finite for all integer 𝑞 and
zero for 𝑞 > dim𝑉. So we can define an integer 𝜒(𝑉,ℱ) by:

𝜒(𝑉,ℱ) =
∞∑

𝑞=0
(−1)𝑞 ℎ𝑞(𝑉,ℱ).

This is the Euler-Poincaré characteristic of 𝑉 with coefficient in ℱ.
Lemma 1. Let 0 → 𝐿1 → ... → 𝐿𝑝 → 0 be an exact sequence, with 𝐿𝑖 being finite
dimensional vector spaces over 𝐾, and homomorphisms 𝐿𝑖 → 𝐿𝑖+1 being 𝐾-linear. Then
we have:

𝑝∑

𝑞=1
(−1)𝑞 dim𝐾 𝐿𝑞 = 0.

We proceed by induction on 𝑝. The lemma is evident if 𝑝 ≤ 3. If 𝐿′𝑝−1 is the kernel
of 𝐿𝑝−1 → 𝐿𝑝, we have two exact sequences:

0→ 𝐿1 → ...→ 𝐿′𝑝−1 → 0

0→ 𝐿′𝑝−1 → 𝐿𝑝−1 → 𝐿𝑝 → 0.

Applying induction hypothesis to each sequence, we see that
∑𝑝−2

𝑞=1 (−1)𝑞 dim𝐿𝑞 +
(−1)𝑝−1 dim𝐿′𝑝−1 = 0, and

dim𝐿′𝑝−1 − dim 𝐿𝑝−1 + dim 𝐿𝑝 = 0,

which proves the lemma.

Proposition 1. Let 0 → 𝒜 → ℬ → 𝒞 → 0 be an exact sequence of coherent algebraic
sheaves on a projective variety𝑉, with homomorphisms𝒜→ ℬ andℬ → 𝒞 being𝐾-linear.
Then we have:

𝜒(𝑉,ℬ) = 𝜒(𝑉,𝒜) + 𝜒(𝑉,𝒞).

By Corollary 2 of Theorem 5 of n◦ 47, we have an exact sequence of cohomology:

...→ 𝐻𝑞(𝑉,ℬ)→ 𝐻𝑞(𝑉,𝒞)→ 𝐻𝑞+1(𝑉,𝒜)→ 𝐻𝑞+1(𝑉,ℬ)→ ...
Applying Lemma to this exact sequence of vector spaces we obtain the Proposition.

Proposition 2. Let 0→ ℱ1 → ...→ ℱ𝑝 → 0 be an exact sequence of coherent algebraic
sheaves on a projective variety 𝑉, with homomorphismsℱ𝑖 → ℱ𝑖+1 being algebraic. Then
we have:

𝑝∑

𝑞=1
(−1)𝑞 𝜒(𝑉,ℱ𝑞) = 0.

We proceed by induction on 𝑝. The proposition is a particular case of Proposition 1
if 𝑝 ≤ 3. If we define ℱ′

𝑝−1 to be the kernel of ℱ𝑝−1 → ℱ𝑝, the sheaf ℱ′
𝑝−1 is coherent

algebraic because ℱ𝑝−1 → ℱ𝑝 is an algebraic homomorphism. So we can applicate the
induction hypothesis to two exact sequences

0→ ℱ1 → ...→ ℱ′
𝑝−1 → 0

0→ ℱ′
𝑝−1 → ℱ𝑝−1 → ℱ𝑝,

and the Proposition follows.
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80. Relation with characteristic function of a graded 𝑆-module
Let ℱ be a coherent algebraic sheaf on the space ℙ𝑟(𝐾). We write 𝜒(ℱ) instead of
𝜒(ℙ𝑟(𝐾),ℱ). We have:
Proposition 3. 𝜒(ℱ(𝑛)) is a polynomial of 𝑛 of degree ≤ 𝑟.

By Theorem 2 of n◦ 60, there exists a graded 𝑆-module𝑀 of finite type, such that
𝒜(𝑀) is isomorphic to ℱ. Applying the Hilbert’s syzygy theorem to 𝑀 we obtain an
exact sequence of graded 𝑆-modules:

0→ 𝐿𝑟+1 → ...→ 𝐿0 → 𝑀 → 0,

where 𝐿𝑞 are free of finite type. Applying the functor 𝒜 to this sequence, we obtain an
exact sequence of sheaves:

0→ ℒ𝑟+1 → ...→ ℒ0 → ℱ → 0,

where each ℒ𝑞 is isomorphic to a finite direct sum of shaves 𝒪(𝑛𝑖). The proposition 2
implies that 𝜒(ℱ(𝑛)) is equal to an alternating sum of 𝜒(ℒ0(𝑛)), which brings us to case
of the sheaf 𝒪(𝑛𝑖). Now it follows from n◦ 62 that we have 𝜒(𝒪(𝑛)) =

(𝑛+𝑟
𝑟
)
, which is a

polynomial on 𝑛 of the degree ≤ 𝑟. This implies the Proposition.
Proposition 4. Let𝑀 be a graded 𝑆-module satisfying condition (TF), and letℱ = 𝒜(𝑀).
For all 𝑛 large enough, we have 𝜒(ℱ(𝑛)) = dim𝐾𝑀𝑛.

Weknow (byn◦ 65) that for𝑛 large enough, the homomorphism𝛼∶ 𝑀𝑛 → 𝐻0(𝑋,ℱ(𝑛))
is bijective, and𝐻𝑞(𝑋,ℱ(𝑛)) = 0 for 𝑞 > 0. So we have:

𝜒(ℱ(𝑛)) = ℎ0(𝑋,ℱ(𝑛)) = dim𝐾𝑀𝑛.

We use a well known fact, that dim𝐾𝑀𝑛 is a polynomial of 𝑛 for 𝑛 large enough. This
polynomial, which we denote by 𝑃𝑀 is called the characteristic function of𝑀. For all
𝑛 ∈ ℤ we have 𝑃𝑀(𝑛) = 𝜒(ℱ(𝑛)), and in particular for 𝑛 = 0, we see that the constant
term of 𝑃𝑀 is equal to 𝜒(ℱ).

Apply this to 𝑀 = 𝑆∕𝐼(𝑉), 𝐼(𝑉) being a homogeneous ideal of 𝑆 of polynomials
which are zero on a closed subvariety𝑉 ofℙ𝑟(𝐾). The constant term of𝑃𝑀 is called in this
case the arithmetic genus of 𝑉 (cf. [19]). Since on the other hand we have𝒜(𝑀) = 𝒪𝑉 ,
we obtain:

Proposition 5. The arithmetic genus of a projective variety 𝑉 is equal to

𝜒(𝑉,𝒪𝑉) =
∞∑

𝑞=0
(−1)𝑞 dim𝐾 𝐻𝑞(𝑉,𝒪𝑉).

Remarks.
(1) The preceding Proposition makes evident the fact, that the arithmetic genus is indepen-

dent of an embedding of 𝑉 into a projective space, since it’s true for𝐻𝑞(𝑉,𝒪).
(2) The virtual arithmetic genus (defined by Zariski in [19]) can also be reduced to Euler-

Poincare characteristic. We return to this question later, by Riemann-Roch theorem.
(3) For the reason of convenience, we have adopted the definition of arithmetic genus

different from the classical one (cf. [19]). If all irreducible components of 𝑉 have the
same dimension 𝑝, two definitions are related by the following formula: 𝜒(𝑉,𝒪𝑉) =
1 + (−1)𝑝𝑝𝑎(𝑉).
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81. The degree of the characteristic function

If ℱ is a coherent algebraic sheaf on an algebraic variety 𝑉, we call the support of ℱ,
and denote by 𝑆𝑢𝑝𝑝(ℱ), the set of points 𝑥 ∈ 𝑉 such that ℱ𝑥 ≠ 0. By the fact that ℱ is
a sheaf of finite type, this set is closed. If we have ℱ𝑥 = 0, the zero section generates ℱ𝑥,
then also ℱ𝑦 for 𝑦 in neighbourhood of 𝑥 (n◦ 12, Proposition 1), which means that the
complement of 𝑆𝑢𝑝𝑝(ℱ) is open.

Let𝑀 be a graded 𝑆-module of finite type, and let ℱ = 𝒜(𝑀) be a sheaf defined by
𝑀 on ℙ𝑟(𝐾) = 𝑋. We can determine 𝑆𝑢𝑝𝑝(ℱ) from𝑀 in the following manner:

Let 0 = ⋂
𝛼𝑀𝛼 be a decomposite of 0 as an intersection of homogeneous primary

submodules𝑀𝛼 of𝑀. 𝑀𝛼 correspond to homogeneous primary ideals 𝔭𝛼 (cf. [12], Chap.
IV). We suppose that this decomposite is ’the shortest possible’, i.e. that non of𝑀𝛼 is
contained in an intersection of others. For all 𝑥 ∈ 𝑋, each 𝔭 defines a primary ideal 𝔭𝛼𝑥
of a local ring 𝒪𝑥, and we have 𝔭𝛼𝑥 = 𝒪 if and only if 𝑥 is not an element of a variety
𝑉𝛼 defined by an ideal 𝔭𝛼. We have also 0 = ⋂

𝛼𝑀𝛼
𝑥 in𝑀𝑥, and we verify easily that

we thereby obtain a primary decomposite of 0 in𝑀𝑥. The𝑀𝛼
𝑥 correspond to primary

ideals 𝔭𝛼𝑥 ; if 𝑥 ∉ 𝑉𝛼, we have𝑀𝛼
𝑥 = 𝑀𝑥, and if we restrict ourself to consider𝑀𝛼

𝑥 such
that 𝑥 ∈ 𝑉𝛼, we obtain ’the shortest possible decomposite’ (cf. [12], Chap IV, th 4.). We
conclude that𝑀𝑥 ≠ 0 if and only if 𝑥 is an element of 𝑉𝛼, thus 𝑆𝑢𝑝𝑝(ℱ) =⋃

𝛼 𝑉𝛼.

Proposition 6. Ifℱ is a coherent algebraic sheaf onℙ𝑟(𝐾), the degree of𝜒(ℱ(𝑛)) is equal
to the dimension of 𝑆𝑢𝑝𝑝(ℱ).

We proceed by induction on 𝑟. The case 𝑟 = 0 is trivial. We can suppose that
ℱ = 𝒜(𝑀), where𝑀 is a graded 𝑆-module of finite type. Using notation introduced
below, we have to show that 𝜒(ℱ(𝑛)) is an polynomial of degree 𝑞 = 𝑆𝑢𝑝 dim 𝑉𝛼.

Let 𝑡 be a linear homogeneous form, which do not appear in any of proper prime
ideals 𝔭𝛼. Such a form exists because the field 𝐾 is infinite. Let 𝐸 be a hyperplane of 𝑋
with equation 𝑡 = 0. Consider the exact sequence:

0→ 𝒪(−1)→ 𝒪→ 𝒪𝐾 → 0,

where 𝒪→ 𝒪𝐸 is a restriction homomorphism, while 𝒪(−1)→ 𝒪 is a homomorphism
𝑓 ↦ 𝑡𝑓. Applying tensor product with ℱ, we obtain an exact sequence:

ℱ(−1)→ ℱ → ℱ𝐸 → 0, with ℱ𝐸 = ℱ ⊗𝒪 𝒪𝐸 .

On 𝑈𝑖, we can identify ℱ(−1) with ℱ, and this identification transforms the homo-
morphismℱ(−1)→ ℱ defined above to themultiplication by 𝑡∕𝑡𝑖. Because 𝑡 was chosen
outside 𝔭𝛼, 𝑡∕𝑡𝑖 don’t belong to any prime ideal of𝑀𝑥 = ℱ𝑥 if 𝑥 ∈ 𝑈𝑖, and the preceding
homomorphism is injective (cf. [12], p. 122, th. 7, b")). So we have an exact sequence:

0→ ℱ(−1)→ 𝐹 → ℱ𝐸 → 0,

from which, for all 𝑛 ∈ ℤ the exact sequence:

0→ ℱ(𝑛 − 1)→ ℱ(𝑛)→ ℱ𝐾(𝑛)→ 0.

Applying Proposition 1, we see that:

𝜒(ℱ(𝑛)) − 𝜒(ℱ(𝑛 − 1)) = 𝜒(ℱ𝐸(𝑛)).
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But the sheafℱ𝐸 is a coherent sheaf of𝒪𝐸-modules, whichmeans that it is a coherent
algebraic sheaf on 𝐸, which is a projective space of dimension 𝑟 − 1. Moreover ℱ𝑥,𝐸 = 0
means that the endomorphism ofℱ𝑥 defined bymultiplication by 𝑡∕𝑡𝑖 is surjective, which
leads to 𝐹𝑥 = 0 (cf. [6], Chap VIII, prop 5.1’). It follows that 𝑆𝑢𝑝𝑝(ℱ𝐾) = 𝐸 ∩ 𝑆𝑢𝑝𝑝(ℱ),
and because 𝐸 does not contain any of varieties 𝑉𝛼, if follows by a known fact, that the
dimension of 𝑆𝑢𝑝𝑝(ℱ𝐸) is equal to 𝑞 − 1. By the induction hypothesis 𝜒(ℱ𝐸(𝑛)) is a
polynomial of degree 𝑞−1. As this difference is prime to the function 𝜒(ℱ(𝑛)), the latter
is a polynomial of degree 𝑞.

Remarks. (1) Proposition 6 was well known for ℱ = 𝒪∕ℐ, ℐ being a coherent sheaf of
ideals. Cf. [9] n◦ 24.

(2) The above proof does not use Proposition 3 and shows it once again.
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