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Whenever we consider a triple (4, %, 0) we will mean that A is an abelian variety
of dimension d, € is a polarization of A, 6 : F - End°(4) = End (4)®2Q is a
ring homomorphism where F is a field of degree 2d over Q, O0(F) = 6(F) where
o+— o’ is the involution of End°(A4) induced by %, and that A4, €, and 0 are all defined
over some subfield of the complex numbers C. F is then necessarily a CM-field, and
(4,%,0) is of type (F, ®; a,{) in the sense of [5, p. 128] for some lattice a in F and
element { of F. We will assume that the reader is familiar with the definitions in [S].

Our main result is that (4,%,0) always has a model defined over its field of
moduli kg, i.e. that there is an (A4, %, 0,) defined over k, which becomes isomorphic
to (4,%,0) over C. As a consequence, one gets an alternative proof of a theorem of
Casselman’s [6, Theorem 6] characterizing those Grossen-characters which arise
from abelian varieties. Also, one obtains a positive answer to a question of Shimura’s
concerning the existence of such Grossen-characters [6, p. 513].

In a second paper we intend to consider the question of, given (4, €, 0), when is
the pair (A4, €) defined over its field of moduli.

We write k,, for the maximal abelian extension of a field k, and k for its algebraic
closure. (F', ®’) denotes the reflex of a CM-type (F, ®@).

THEOREM. Let (A,%,0), as above, be of CM-type (F, ®). Then there is a model
(Ao, %, 0,) of (A, €,0) defined over the field of moduli k, of (A, ¥, 6) and such that all
torsion points of A, are rational over F',.

Proof. Let S be the (ordered) set of points of A of order 3, and let k, be the
field of moduli of (4, %,8, S).

() FFck,cF,
This follows from [5, 5.16]

(ii) There is a model (4,,%,,0,, S) for (A4, 4,0, S) defined over k;.
It is easy to see that there is a finite normal extension K of k, such that (4, %, 0, S)
is defined over K and such that for every o€ Gal (K/k,) there is an isomorphism
Ay: (A,%4,0,5) > (A°,4°,0°, S%) defined over K. Let A, , = AJ-. . fore,7 e Gal(K/k,).
From the fact that Aut (4, %,0, S) = {1}[3,§21, Thm 5] it follows that

ll:’ s = 'J'pt, po

)'t,a'z'a,p = ’lt,p
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for all p, o, Te Gal (K/k;). Assertion (ii) now follows from [7].

(iii) A, as in (ii) above, has all of its torsion points rational over F’,,
This is [5,7.8.8].

Regard now (4, €, 0) as being defined over k, and satisfying (iii). If k; = k, then
the theorem is proved. If not, there is a field k,, k, o k, o k, © F’, such that
ki/k, is Galois of prime degree p (use (i)). Let o generate Gal (k,/k,) and let
A:(A,C,0) > (4%, C°% 0°) be an isomorphism. :

(iv) 4 is defined over k,.
This is a consequence of [6, Thm 5,Pptn1]. Alternatively it may be proved as
follows. at @’ is'an isomorphism V; A — ¥, A° which commutes with the actions of
F and of Gal (k,/k,) (use (iii)). But it is clear from [4, Cor 2 to Thm 5] that any
homomorphism ¥} A — V; A which commutes with the action of F commutes with
the action of Gal (k,/k,). Thus A° = A for all e Gal (k,/k,) which proves (iv).
Write v for the canonical isomorphism
@"—a): (A°%,4°7,6°") » (A,%,0). Then A =vA°""'...A°1 is an automorphism
of (4,%,6), and hence may be written as 6(«) with o € u(R) where R = 6~ '(End(4))
and pu(R) is the set of roots of unity in R.

(v) ais a pth power in R.
If u is a homomorphism of abelian varieties we write y, for the corresponding map
on the Tate groups T, (or V;). The map ar> 4,7 *(a°): T, A — T, A is Z,linear and
commutes with the action of 6(R). By [4, Cor. 1 to Thm. 5] there exists an
@, €R, = R®zZ, such that 1,7'(a°) = 0(x,”")(a) all ae T;A. It follows that
Ay(@) = 6(")(a) all ae T} A. Hence 0(a) = 0(o/*), and so « is a pth power in R, for
all primes I. By class field theory, e.g. [1, X], this implies that « is a pth power in
F, say o = fP. By using that a« € u(R) and is a pth power in R, for all /, one gets that
BeR,foralll. ButR = \R,,and so feR.

Replace A by 10(B~ 1), so that now A = 1. Define 1; ;: A°' - A”’ by

A=A

0<i<j<p-l,and 4; ;=v"4j,, ,0<j<i<p-—1. Then 4 ;4 ;=4 ; and
A5 i = Aj+1 1+1 and so [7] there is an (A4,, €,,0,) defined over k, which is isomorphic
to (4, %,0) over k,. Note that A, will therefore also satisfy (iii). If k, = k the proof
is complete. If not, the above process may be used to find an (4, €3, 603) over some
ks, ky 2 k3 o k, k, # k5. By continuing in this way, one eventually obtains the
desired result.

In order to state the two corollaries, consider (A, €, 0) defined over some number
field k, and let it be of type (F, ®; a,{). Regard F as a subfield of C, write I, for the
idéle group of k, put I, ,, = kK ® R < I, and write I,* for the group of finite idéles
of k, i.e. those whose component at any infinite prime is 1. If x e I, write x, for the
component of x corresponding to the infinite prime defined by the given embedding
of F = C. Then det®’ defines a homomorphism F'* — F* and, since k o F’, we
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get a homomorphism g = (det ®') Nyp : k* —» F*. This extends to a continuous
homomorphism I, — I which we also denote by g.

As explained in [6,p.510], one obtains from (A4,%,0) a Grossen-character
Y : I, > C* such that,

(1) for all xel, o, Y(x) = g(x); "', and

(2) for all xel,®, Y(x)€ F*, Y(x)¥(x) = |xlo, and Y(x)a = g(x) a, where y(x)
is the complex conjugate of Y(x) and |x|, is the absolute norm of the ideal associated
to x. Conversely, there is the following result.

COROLLARY 1. Let k be a finite extension of F'. Any Grdossen-charactery : I, - C*
satisfying (1) and (2) arises from some (A, ¥4, 0) of type (F, ®; a,{) defined over k.

Proof. Let (A, %,0) be any structure of type (F, ®@; qa, {). It follows from [5,5.16]
that k contains the field of moduli of (4, %,0) and so we may take (4, %,0) to be
defined over k. Let Y’ be the Grossen-character arising from (4,%,60) and put
x=y/y'. By (1), x is a Dirichlet character and so may be regarded as a character
of G = Gal (K/k) for some finite abelian extension K of k. Let R, be R regarded as
a G-module by defining oa = x(6) a for 6 € G, a € R. Then, in the notation of [2, §2],
(4',%,0") with A’ = R, ® A and obvious §’' and €’ is of type (F, ®; a,{) and has
Grossen-character yy' = .

COROLLARY 2. Let k be a finite extension of Q and let (F,®; a,{) be a possible
type for a structure (A, 4,0). Then there is a Grdssen-character \y : I, — C* satisfying
(1) and (2) if and only if k contains the field of moduli of some (A,¥,0) of type
(F, ®; a,0).

Proof. The necessity follows from [5, 5.16] and the sufficiency from the theorem.

Remarks 1. In [6], Corollary 1 is proved directly and then, under certain
hypotheses on R ((5.2) loc. cit.), Shimura explicitly constructs a Gréssen-character
¥ satisfying (1) and (2) and so deduces a weaker form of our Theorem 1.

2. Given A and the map 6 it is always possible to find a polarization € such that
O(F)' = 0(F) [5, p. 128]. Moreover [6, Pptn 4] the field of moduli of (4,%,0) is
independent of the € chosen. Thus it makes sense to speak of the field of moduli of
(4,0), and then Theorem 1 implies that this is also the smallest field of definition of
(4,0).
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The proof of the theorem contains an error. Before giving a correct proof, we
state two lemmas.

LEMMA 1. Let Kk be a cyclic Galois extension of degree m, let o generate
Gal (K[k), and let (A, %, 6) be defined over K. Suppose that there exists an isomorphism
Ai(A,%,0)—> (4°,%°,0° over K such that vA°"'...A° A=1, where v is the
canonical isomorphism (A°", €°",0°") » (A, %,6). Then (A, 4, 6) has a model over
k, which becomes isomorphic to (A, €, 0) over K.

Proof. This follows easily from [7], as is essentially explained on p. 371.

LEMMA 2. Let G be an abelian pro-finite group and let ¢ : G — Q[Z be a continuous
character of G whose image has order p. Then either:
(a) there exist subgroups G’ and H of G such that H is cyclic of order p™ for some
m, $(G) =0, and G = G'xH, or
(b) for any m > 0 there exists a continuous character ¢, of G such that p" ¢,, = ¢.

Proof. If (b) is false for a given m, then there exists an element o € G, of order p"
for some r < m, such that ¢(c) # 0. (Consider the sequence dual to 0 — Ker (p™) —»
G P G). There exists an open subgroup G, of G such that ¢(G,) = 0 and ¢ has
order p" in G/G,. Choose H to be the subgroup of G generated by o, and then an easy
application to G/G, of the theory of finite abelian groups shows the existence of G’
(note that ¢(c) # 0 implies that ¢ is not a p-th power in G).

We now prove the theorem. The proof is correct up to the statement (iv) (except
that (i) should read: F’' < k; = F',;). To remove a minor ambiguity in the proof of
(iv), choose ¢ to be an element of Gal (F',/k,) whose image & in Gal (k,/k,)
generates this last group. The error occurs in the statement that the canonical map

v: A°® — A acts on points by sending a°” + g; it, of course, sends a— a.
The proof is correct, however, in the case that it is possible to choose ¢ so that

¢f =1 (in Gal (F',,/k,)).

By applying Lemma 2 to G = Gal (F',/k;) and the map G — Gal (k,/k,) one
sees that only the following two cases have to be considered.

(a) It is possible to choose & so that ¢ = 1, for some m, and G = G’ x H where
G’ acts trivially on k, and H is generated by o.

(b) For any m > O there exists a field K, F',, o K o k, o k,, such that K/k,
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is a cyclic Galois extension of degree p™.

In the first case, we let K = F’,, be the fixed field of G’. Then (4, %, 6), regarded
as being defined over K, has a model over k,. Indeed, if m = 1, then this was
observed above, but when m > 1 the same argument applies.

In the second case, let 1: (4, %, 6) — (A%, €7, 0°) be an isomorphism defined over
k, and let vA°... 2" 7' A = a e u(R).

If A is replaced by Ay for some y € Aut, ((4, %, 0)) then a is replaced by ay”.
Thus, as p(R) is finite, we may assume that a"""l‘ = 1 for some m. Choose K, as in
(b), to be of degree p™ over k,. Let g,, be a generator of Gal (K/k,) whose restriction
to k, is . Then

A:(A,%,0) > (4%, %%, 0°) = (A%, €, 0°)
is an isomorphism defined over K and vA’=P"", ... A% A = ™" = 1, and so, by)
Lemma 1, (4, %, 0) has a model over k, which becomes isomorphic to (4, ¢,60
over K.
The proof may now be completed as before.

Addendum: Professor Shimura has pointed out to me that the claim on lines 25
and 26 of p. 371, viz that u(R) is a pure subgroup of IIz*,, does not hold for all
rings R. Thus this condition, which appears to be essential for the validity of the
theorem, should be included in the hypotheses. It holds, for example, if u(R) is a
direct summand of u(F).
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