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Abstract

This is a translation of: Etude d’'une class d'iog, in Varéties de Shimura et
FonctionsL (Ed. L. Breen and J.P. Labesse), Publications Mat#tiques de I'Univergit
Paris 7 (1979), 73-81.

It is available at www.jmilne.org/math/.

Notations.

— G'is a group scheme ovéf such thatG(R) = (O%° ® R)* for any com-
mutative ringR;

V(R)istheOp ® R-moduleOp ® R.
— Alisthering of a@les forQ: A =R x Ay =R x Ag’c x Qy, where

Af:Zf(X)@, ZlelinZ/nZ:Z?pr

n

— K is a sufficiently small open subgroup 6{Z;).

)
— Two isomorphism§” = V(Zy) are K-equivalent if there exists & € K
@’
such thatp = ko ¢'.

— For an abelian variety, we seftnd’(A) = End(A4)®Q, A,, = Ker(m: A —
A), A(p) = lim Ay, TyA = " lim" A, (i.e., the inverse systeiit,,),, re-
garded as an object of the category of inverse systénﬁsl),: lim - A,
andVyA =T{A @z Q.

p)=1

— W is the ring of Witt vectors with componentsliy andW’ = W®,Q; DN
is the Dieudoné module of the finite group schemg DA = im DAy,
andD’'A = DA ® Q.

— & denotes the absolute Frobenius morphism of the Shimura varietyFpver
attached to the groug.
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Let £/ be a totally real number field of degré®verQ, B a totally indefinite quaternion
algebra ovel?, Og a maximal order in3, andp a prime number¥ is denotedF' in [3]).
We assume that = Hmpp in £ with thep distinct, and that, iz, denotes the completion
of E at the primep;, then B ®p E, is split; moreover, thatk = K? - G(Z,) where
KP? = KNG(AY). Fix an abelian varietyl over[F, of dimensior2d and a homomorphism
i: Op — End(A) such thati(1) = 1. We shall describe the s&t, of all isomorphism
classes of triple$A4’,i’, ) with A’ an abelian variety ovéf,, ' a homomorphisnOp —
End(4’), andp a K-equivalence class of isomorphisms 77 A" — V(Z%); we require
that (A’, ') be isogenous t0A, i) and that the tangent spatg to A’ at the origin satisfy
the following condition (see Expédll §2):

(*) the subspaces of defined by the idempotents; §) and (g 9) of
Op @ F, = M(F,) are freeOg ® F,-modules of rank.

We have seen in [1] that the sgtS(F,) of points with values irfF, of the Shimura
variety .S admits a description

KS(]FP) = HAYA

with A running over the set of isogeny classes of abelian varieties of the type under con-
sideration. We fix from now on such ahand putY” = Y. Let ® denote the restriction to
Y of the Frobenius operator on the sef(F,).

According to [1], [3], we should distinguish the following two cases:

(NS) The commutant of3 in End’(A) is a totally imaginary field=’ of degree2 over
E which splitsB; A(p) is isogenous to a produgf, ,A(p) with A(p) ap-divisible
group of heightd, = 2[E,: Q,]; if p splitsin £’ into p = qq’, thenA(p) ~ A(q) x
A(q') where A(q) has slopen,/d, and A(q') has slope(d, — my)/d, = my/dy;
otherwiseA(p) has slope /2, and we putm;, = d,/2 = mj,.

(S) The commutant of3 in End’(A) is a quaternion algebr®’ over E; A is isogenous to
a powerA ~ A2? of a supersingular elliptic curve,.

LEMMA 1. LetT C TyA be such that'y A/T is finite; then there exists a unique isogeny
a: A" — A such that the image df;a is T

ProOF. SinceT;A/T is finite, the cokernelV of 7'/nT — Ty A/nT;A is independent
of n for n sufficiently large. Choose such an and lety be the surjective mapl,, =
TyA/nTyA — N. In order fora: A’ — Ato be an isogeny withya (Tt A") = T, it is
necessary and sufficient thider(o) = N and thaty be the map4,, — N defined by the
snake lemma starting from the diagram

0 — N A -2 A 0
b
0 —— N A —25 A 0.

The integersi,, my,, andm,’ are denoted;, m;, andm;’ in [1], and will be denotedl,, m;,, andm;
respectively in ExpasVI wherew is the place of associated with the ideal



Recall that for an abelian variety, Ext" (A, G,,) = 0 for r # 1 andExt'(4,G,,) is the
abelian varietyA" dual to A; moreover,AYY = A. Thus to givea amounts to giving
a¥: AY — A" such thafKer(a¥) = N (where NV denotes the Cartier dual éf) and
NY — Ais Y. We must taked”” = AY/NV. O

Since Vi’ A is free of rank one oveB ® Z!, T7 A contains a lattice isomorphic to
V(Z%), and we can choose the initial pdid, i) such that there exists an isomorphism
pa: TFA — V(Z5).

Let A(c0) = U, A,,. Denote byl’; A the projective system

“lim " A(00)™ = - -+ A(o0)™ & A(oo)™) ...

whereA(co0)™ = A(co) for all n. We havel;A C V;A. (OverC, T; A can be identified
with H (A, Z) ® Z andV; A with Ty A @z Q). A lattice A in V; A is a subobject tim " A™
such that

— mA™) = A™ for all m andn, and

— mpA is contained i’y A for somem, and defines a finite quotie} A /mA.

We can writeV;A = VA x V,A with V,A = “lim "A(p)*"), and then a lattice\
decomposes into a produtt= A? x A, with A = AN VA andA, = ANV,A. Let
X be the set of all pairgA, ) with A a lattice inV;A and+ a K-equivalence class of
isomorphisms): A? — V/(Z}) which satisfies the following conditions:

(a) A is stable under the obvious action®f; on V; A;

(b) if D(A/pA) is the Dieudona module of the finite groupy/pA, thenD(A/pA)/F D(A/pA)
satisfies the condition (*).

Whena is an element ofind’(A) such thatna € End(A), we defineVia: VA —
V; A to be the family of mapping%A(oo)(m”) = A(oo)(")}. Correspondingly, there is an
action ofEnd’(A) on X defined by:

a(A, ) = ((Via)A, ¥ o Vi(a)~1h).
LEMMA 2. There exists a canonical bijection
End’(A)\X — Y.

PROOF. Let (A,¢) € X be such thatnA C T7A. Choose(A’,7, ) such that there
exists an isogeny: A’ — A with Tra(TrA") = mA, a o '(b) = i(b) for b € Op,
andy = L1 o (Tya). Sinceta = (D(A/pA)/FD(A/pA))Y (see [3]),t.4 satisfies the

condition (¥). If (A, ) and(A’, ") correspond to the same triplg’, i’, ) with A’ % A,
then(A',¢') = o’ o a™1(A, 7).



Write X = X? x X, with

XP={(A",9) | (A, ¥) € X}
Xp = {Ap | (AJE) EX}-

We may regard”j?A as a free module of rankd oveerc, Vf”A asT}’A ® Q, and anyA? as
aZ’}-Iattice in V;’A in the usual sense. The following lemma is obvious. O

LEMMA 3. The map
G(A]) — XP, g (g(TA),0a097")

induces a bijection
G(A%)/K" — X*.

We haveA, = “lim "Af" C V,(4) = “lim "A(p)”"). Forn sufficiently large,
p"T,A C A, and then we can identifx"") with A, /p"T,A. Thus

n—+1

Ker(AP"") — APy = p" T, A/p" T, A = A,

and
A(p)/AF") L A(p) /AP

is an isomorphism. Moreoved(p)/A?") determines\, (because\”""" = Ker(A(p) 2
A(p)/AF")) for r > 0) and the Dieudon® module of thep-divisible groupA(p)/A¥")
determines it. We have therefore:

LEMMA 4. The mapA — #D(A(p))/A,(,p") C D'A, n > 0, identifiesX,, with the set of
all submodules\/ of D’ A such that:

(a) M is free of rankid overW;
(b) M is stable under andV;
(c) M is stable under the action @ g;

(d) M/F M satisfies the condition (*).

In summary:
THEOREMS. There exists a bijection
Y ~ HQ\G(AY) x X,/K”

with H(Q) = E’* in the case (NS) anél (Q) = B’* in the case (S) . Moreovep acts as
1L onG(A%) and byM — FM on X,,; the Hecke operator corresponding yoe G(A%)
acts by multiplication on the right b (A%).

It remains to describ&l,, more explicitly.



LEMMA 6. There exists a bijection
Xp — Hp|po
whereX, is the set of all submodulel of D’ A(p) which are free of rankd, overV and
which satisfy the conditions (b), (c), (d) of Lemma 4 (With ® F, replaced byOp, ® I,
in (d)).
PROOF. We have
OE ® Zp g Hp|pOEp

Let e, be the corresponding idempotentshy; ® Z,, so thatOp, = ¢,(Or ® Z,). Note
thate, M has rankid, over W because the trace of an element O acting onM (or
A’) is four times its trace in the extensién> Q [4, 7.6.1]. We therefore obtain a bijection

M — (...,e,M,...).
0]

Note thatB, =4 B ® E, ~ M(E,) acts onD'A(p). Leteiy, ez1, ... € Op ® Op, be
the elements corresponding to the elements

(66), (Y6),--- € Mz(Op,)

and write D, = e;; D"A(p); it is @ module of dimensioRd, over W’ =g W @ Q. If
M C D'A(p) is in X,, then
M = 611M D 622M

and the map;1x — egiex IS an isomorphisne; M — ey M with inverseegx +—
e12e29x. Thus,e;; M determinesV/, and we have

LEMMA 7. The setX, can be identified with the set of all submodulésof D;, such that:
(a) M is free of rank2d,, over\/;
(b) M is stable under andV;
(c) M is stable undeOg,;
(d) M/FM is afreeOp, ® F,-module of rank.

LEMMA 8. Letey, ..., eq, be the idempotents i@z, @ W corresponding to the decom-
positionOp, ® W = W x --- x W. ThenN; = ;D) has dimensior2 over I/’ and

Dy =Ny & ---@ Ng,. If F;: Ny — Nj is the map induced b¥: D} — D;, thenF;; =0

forl # 7 —1 mod d,, and itis an isomorphism otherwise. It is possible to choose a basis
{e, €’} for Ny such thatF'¥ : N; — N, corresponds to a matrix

B P 0 . ey
)= < 0 pm{a’> if p splits in £’ (case NS)

p®2 0
0 pi2 if d is even (case NS or S)

0 1 .
— pldp—1)/2
P (p 0) otherwise.



PROOF. The same argument as in the proof of Lemma 6 shows Ahdbas dimension
two overlV’. Let o be the Frobenius automorphismiéf. When £, is identified with a
subfield ofI¥’, the mapping

Ey— By, W S W x - x W

becomes
a— (a,0a,...,0% 'a).
Thus, for
B=(B1,---,0a,) € Dy= Ny x-xNg,
anda € E,, we have
aB = (ap,...,a" a)B;,...).

SinceaF = Fa on D;, we have

ol 1( )Zz FuB = Zz glU ( )ﬁlzal(a)Zlelﬁl‘

Therefore,F;; = 0if [ # j—1 mod d,. Itis clear thatF'}; is an isomorphism fof = j — 1
mod d, because’: D, — D, is.

In case (NS), ifp spllts |n E" andm;, # my, thenN, is aW’[F%]-module of rank2
over W’ whose slopes are:, andm, (relatlve to['%). Therefore, it is clear that there
exists a basige, ¢’} such thathPs = e andF%e’ = pmee’,

In the contrary case, all the slopes Bf equal%. Therefore,D, is a direct sum of

W’[F]-modules of rank overW’ on whichF acts by( ¢ ). Since( ) )d" = (pd"p 0 )

0 dy /2
whend, is even andp (dp—1)/2 (0 (1)) otherwise, D, is evidently an isotypic semisimple
W’[de] module, which completes the proof. O

REMARK 9. LetGy(Z,) = Endo, (A(p))* andG,(Q,) = (Endp, (A (p))@zp Q,)*. Then

Gy(Qy) is the multlpllcatlve group of the commutanth3 in Endy (D' A(p)) or, after
Lemma 7, the multiplicative group of the commutantigfin Endyy(r(D,). But if, for
a € Endw,[de](Nl) andg = (Bi,...,54,) € Dy, we puta(3) = (a 1o, 0fq,), then
Endy(rap) (V1) is identified with this last commutant. Thus

Gp(Q) = {(89) | a,b € Ey, ab# 0} in case (NS) whem,, # my,
= GLy(E,) whenm, # m, andd, is even,
= H* Whenmp =+ mp andd, is odd ( is the quaternion algebra over,).

LEMMA 10. The setX, can be identified with the set of sequences of lattidg$;c7, in
W' x W' such that

(@) L; 2 L1 2 pL,

(b) 0%6L; 4, = L; with§ as in Lemma 8.



PROOF. For M € X, we haveM = M; @ --- & Mg, with M; = e; M. Since
FM =FMy, ® FM, ® - ® FMy,

with FM; C N, the conditions (b) and (d) of Lemma 7 imply thatM,, C M,
FM, C My, ... andthatV,/FM,,, My/F M, ... have dimensioh overF,.
Choose a basig, '} for N, asin Lemma 8 and let;: N; = W’ x W’ be the mapping

a(F7¢) + b(Fie") v ("7 (a), a7 (b)).
Note thatp, ., F(z) = ¢;(z) andg;(F¥z) = 0% §p;(z). PutL; = ¢;(M;)for1 < j <
dp andLj,dp = gpj(FdPMj) = O'dde]'. ]

REMARK 11 ®(L;)jez = (L})jez With L) = L;_;. The group(E;)” (respectively
(B))" = (B'®g E,)*) acts onX, via the embeddingz, — G,(Q,) (respectively
B;, — G,(Q,)). The groupH (Q) acts onX,, via the obvious embedding (Q) — G(Q,).

In summary:

THEOREM 12. X, =~ Hp‘po where X,, is the set of sequences of lattices satisfying the
conditions of Lemma 10, anbland H (Q) act as described in Remark 11.

REMARK 13. Let 2 be the maximal unramified extension @f, and letOq, the ring of
integers inQ2. ThenW” is the completion of). One can writeD’A = D'A @, W’ with
D'A a module ovef)[F] (see [2, p85]). IfM is as in Lemma 4, thei/ is the image of
Da: DA’ — DAforacertainisogeny: A — A. Sincex is defined over a finite subfield
k of F,, andW} C Q, we haveM = M ®,, W’ for a submodulé// ¢ D’A. Therefore X,
can be identified with the set of submodules/#f4, and X, with the set of sequences of
lattices(L;) ez, L; C Q x €, satisfying the conditions of Lemma 10.
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