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Some estimates from étale cohomology

By J. S. Milne*) at Ann Arbor

The primary purpose of this paper is to prove the inequality used in § 13 of the
preceding paper (see especially Lemma 17 of that paper). The elegant argument used in C
to complete the proof is largely due to P. Deligne (for the author’s original approach,
see Remark 3 below). A secondary purpose is to illustrate how the methods developed
by Deligne in [1] and [2] can be used to derive certain types of estimates. For this reason,
some of the arguments have been given in greater generality than is strictly necessary
to prove the main result, and some proofs have been given in more detail than is the
(author’s) custom. I would like to thank N. Katz for many helpful conversations.

The notations concerning étale cohomology will be the same as in [6]. All cohomology
groups will be with respect to the étale topology; F will denote the Frobenius endo-
morphism (relative to F,), and Tr(F|H*) abbreviates Y (—1)" Tr(F|H"). The numbers
p. q. [, and r are related by /# p. ¢ = p". Other notations are similar to, but not identical
with, those used in the preceding paper. The symbols A! and P' denote the affine and
projective lines, and F, and F, denote the field of ¢ elements and its algebraic closure.

A. Pencils of elliptic curves

Let V* be a projective smooth surface over F, and let n: V* — P' be a morphism
whose fibres, except for a finite number, are elliptic curves. We assume that a model for
(V*, m) is given over F, so that it makes sense, for example. to speak of the points of
a fibre V¥, 1 € P'(F,), with coordinates in F,. Write g —e,(1)+1 for the number of such
points; the Riemann hypothesis shows that |e,(1)] <2 1/;1 Let §=R'n,Q,. and let
S</P'(F,) be the set of ¢ for which V¥ is singular. There is a morphism j: P! —§ — P!
sending each point ¢ to the j-invariant of the fibre V¥. Let n=specK be the generic point
of P!, and let M =&; be the generic stalk of &, so that M = T; ® Q where T, is the Tate
module of the generic member V¥ of our family of elliptic curves.

Lemma 1. If j is not constant, then M is an absolutely irreducible Gal(K/|K)-module.

Proof. Assume p = 2: then there is a finite extension K’ of K and a A€ K’ such that V¥

is isomorphic over K’ to
Y?Z=X(X—-2Z)(X—1Z).

*) partially supported by N.S. F.
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Theorem 1 of [4] shows that the image of Gal(K/K’) in End(M) generates End(M) as
a Qalgebra. Thus M is absolutely irreducible as a Gal(K/K')-module and, a fortiori,
as a Gal(K/K)-module. If p=2, the argument can be repeated with Theorem 2 of [4]
substituted for Theorem 1. (If 7 arises from a Lefschetz pencil. one can also use the fact
that the action of Gal(K/K) on E/E n E* is absolutely irreducible, where E denotes
the vanishing cycles (see [1]. 5. 5); in our case E*=MS"=0and E=M.)

Proposition 1. (a) Tr(F'|H*(P', &)=Y e,(1). where the sum is over all t € P*(F,).

t

(b) If j is not constant, then |3 e ()| < (B2(V*)—2)q. where B,(V*) is the second
l-adic Betti number of V*.

Proof. (a) According to the Lefschetz trace formula [6], VI 13. 4,
Tr(F'IH* (P!, &))=3 Tr(F'|&7)
t

where &7 is the stalk of & at a geometric point ¢ lying over ¢ € P'(F,). The proper base
change theorem shows that &7=H'(V*. Q). and the trace formula shows that
Tr(FIH (V7. Q))=¢,(1).

(b) Let U=P'—S; we have H*(P', &) =H?(U, &) and, because & has no sections
with support on a finite set, H°(P', &) o H°(U, &). The action of Gal(K/K) on M factors
through m; <7, (U. ij), and H°(U. &) =M™ and H2(U.&)=M,(—1) (see [6]. V2. 4b).
Lemma 1 therefore shows that H°(P!, &) = 0= H?*(P', &), and the Leray spectral sequence
H'(P'. R°m, Q) = H"™ 5(V*, Q) consequently degenerates. As R'n,Q,=Q. &, Q(—1)
for r=0, 1. 2, this shows that

H>(V*, Q)=Q(-1) @ H' (P, &) ® Q(—1).

Hence dimH'(P', &) =pB,(V*)—2, and (b) of the proposition follows from part (a)
because the Riemann hypothesis for I* shows that the eigenvalues of F" on H'(P!, &)
have absolute value g.

Remark 1. It is usually possible to compute the dimension of H'(P', &) from
a knowledge of the singularities of the fibres V¥, t € S (see [3]. XVI 2. 4). For example, if ©
arises from a Lefschetz pencil, then

dimH" (P', &)= —y(P', &) =s—4
where s is the order of S, and so | e,(1)| < (s —4) ¢*'* (see [6], V 2. 12).
Proposition 2. If j is not constant, then

Y en)’=¢>+0(¢g>).

tefFy

Proof. The Lefschetz trace formula shows that
Tr (F'|H* (A, 6R68))=X e,(1)*.
Let U=A"'—S. Then &|U is locally constant and self-dual, and so
H>(A'. 6 ®E)=H*(U. R E)
is, up to a Tate twist, the dual of

HO(U, & ® &) =(M ® M)™ =Hom(M, M)™=Hom(M. M)SK/K
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Lemma 1 shows that this last vector space is Q. and so HZ(A',&®&)= Q(—2).
Therefore

Tr(FT|H* (A, € ® 6))=q* — Tr(F'|H}) + Tr(F'|H?) = 4>+ 0(¢*")
by [2].

Remark 2. (a) The constant implicit in the O can be calculated from &. For example,
if 7 arises from a Lefschetz pencil, then the conductor ¢,(€) =1 and ¢,( ® §) <3 for r€S.
Therefore [6], V 2. 12 shows that

LA ERE)=2-4—-35—4=4—3s.
As HY(A', & ® &) =0, we see that dimH! (A', & ® &) <3s—3, and so

| Y e ()’ —¢*|£(3s—3) ¢,
teFq
(b) An argument similar to that in the proposition shows that
Y e (1) e(t+u)=0(q4"?)
tefFy
provided the sets S and {s — u|s € S} are disjoint.
Let ¢: A> — A' be the map (¢;, 1) — 1, + 1, and let pr,; and pr, be the projection
maps A2 3 A'. Denote R¢,(prf & ® pri &) (an object of the derived category of
Q,-sheaves on A') by & = &.

Il

Lemma 2. Tr(F|H*(A', (&) ®(E*E))= X (2 elt) e(u—1))

uefFq tefgq

> (X edn) e (14+uw).

uefFq tefy

Proof. The first equality is an immediate consequence of the Lefschetz trace formula,

and the second is trivial, both sums being equal to 3 e.(ty) e (1) e, (13) e,(ta).
t1tta=t3tty

Proposition 3. If © arises from a Lefschetz pencil then there exists a constant A(s),
depending only on s, such that

dim (HI(A', (6 * &) ® (& x &))) < A(s)
Sforalli.

Proof. We first need a lemma.

Lemma 3. Let & be a sheaf on P* that is locally constant off a finite set S with s" elements,
has stalks of dimension <d, and is tamely ramified at all points of S. Then the dimensions
of the spaces H'(P*, %) are bounded in terms of s' and d.

Proof. Let U=/P'—S. From the exact sequence

o> HWU F)->H P, F)>P H(t.F)— -
teS
we see that it suffices to bound the dimensions of the spaces Hi(U, #). But H>(U, %) =0,
and H2(U, #)=(%73)n(—1) has dimension <d. The conductor of j, %, where j denotes
the inclusion U < P!.isds andso (U, #)=2d—ds’; thereforedim H} (U, #) <d(s'—1).
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Let a: A' & P! be the usual inclusion; we have to show that a,((& * &) @ (& * &))
(or rather its homology groups—recall that & * & is a complex) satisfies the conditions
of the lemma with s and d bounded in terms of s. Clearly it suffices to prove the same
result for a,(& * &).

The existence of d is easy: for any u € A'(F,)
Hi(a(& % &)),=H'(6 x ), =HI(A'. 6 ® E (1))

where &(u) is the pull-back of & relative to ¢+ (u—1); since a,(€ ® &(u)) is locally
constant off a set with at most (s?+ 1) elements, has stalks of dimension <4, and is tamely
ramified, the lemma provides a bound for the dimensions of its cohomology groups.

For the other two conditions, we need the following general result.
Lemma 4. Consider a diagram

X"—i—)D

T

in which T is a smooth curve, T is proper and smooth with fibres of dimension 1, and D is
a divisor on X with normal crossings relative to n. Let & be a constructible sheaf of Q, vector
spaces on X which is locally constant off D and tamely ramified on D, and let D' be an open
subscheme of D which is finite and étale over T and such that i* F is locally constant on D'.
Then R'n, F is locally constant off n(D — D') and is tamely ramified for all r.

Proof. First suppose that &# = j,(#|U), where U=X—D and j is the immersion
U o X. As mis proper, there is an exact sequence

oo Hi(X5, F) > H'(X5. F) = H (X7, RO(F)) — - -

in which ¢ and 5 are respectively closed and generic points of 7 and R®(%) is the complex
of vanishing cycles (see [3], XIII 2. 18. 9). It follows from [3], XIII 2. 1. 11 that R@F =0,
andso H' (X7, ) —=> H'(Xg, F),i.e. (R'n, F )i—— (R'n, ¥ ). Because R'n, F is con-
structible, this implies ([6], V. 1. 10a) that R'n, & is locally constant on the whole of T
in this case.

The lemma is obvious if & has support on D, and the general case now follows from
considering the cohomology sequence of

0—- j(j*F) > F - i, *F —0.

We apply this with X=A'x P! and = the projection map A'x P! — A'. Let
a: A x A' o A' x A'c A'x P! bethe map (x, y) — (x+y, y), and let # =a,(prf & ® pr3 &).
As toa=¢. Rn,F =6+ &. Let D={(x, y)lx—y e Sor ye Sy {oo}}. The lemma shows
that & = & is locally constant off a set with at most s>+ 2 elements and that it is tamely
ramified there.

We come now to the example that will be of particular interest to us. Fix a prime p
and elements a, ., y, and N of F,. We assume:

n p>3, N+0, afy+0.



212 Milne, Estimates from étale cohomology

Let V be the projective smooth surface defined by
X+ Y +Z3=NW?3.
For 1 =(10:1;) € P'(F,). let H, be the plane defined by
to(aX+pY+yZ)=1, W,
and let V,=V n H,. We denote (0:1) by co.

Let o', f'.y be square roots of a, ff,y. The curve V, is singular if and only if
*=N(a*+ B*+79?)?* for some choice of signs. The family (H,) is a Lefschetz pencil
for ¥ if and only if ¥, is singular for exactly twelve 7 € F, and ¥V, n V,, has exactly three
points in F,. These conditions are satisfied if

>+ 49?0

2
) P E BP0, Py +0. Y +a+0

} (all choices of signs).

For the rest of this section we assume both (1) and (2) hold. Let n: V* — P! be
the map defined by the pencil (H,). Thus V'* is obtained from V' by blowing up the three
points of ¥V N V,, and for any ¢t € P!, 7' (t) = V,. The set S contains twelve values of .
For each 1 ¢ S, V is an elliptic curve, and for 7€ S, V, has a single node as singularity.
Note that, as V" and the pencil are defined over F,. so also are V'* and 7.

Let g —e,(¢)+1 denote the number of points on ¥, with coordinates in F,, ¢ =p".
Then remarks 1 and 2 show that

(3) I 2 e=8q.
teFgu{o}
(4) | X e () —q*1<33¢%2.
teFy

Equation (3) can be made more precise. For example, if p=2(mod3). then
(x:y:z:w) > (x>:p*:2%:w?) is a bijection between the set of F,-rational points on the
hyperplane X + Y + Z = N'? W and V(F,). Thus

#(V(F))=p*+p+1.
#(V(F))=p*+(A+f)p+1

where f is the number of F,-rational points on V, N V,, (note that f'is 0, 1, or 3). Therefore
Y(p—e(®)+1)=p*+(1+f)p+1, and T e(t)=(1—f)p in this case. (We drop the
subscript r when it is 1.)

In the preceding paper, e(r) is written E(z.p); thus, in the present notation,
formulas (116) and (117) of that paper become
A= > e(t)e(t+ 1),

tef,

O= Y 4>

AeFy,
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We now state the main result of the paper, whose proof will be completed in C.

Theorem. There exist constants B and C with the following property: for any
o B. v, N, and p such that

(a) conditions (1) and (2) are satisfied,

(b) p>C, and

(¢) p=1(mod3)or p=2(mod3)and f*0,
the inequality

O=2p*—Bp’"?
holds.

Remark 3. According to Lemma 2, in order to prove the theorem we have to show
that

Tr(FIH* (A, (€ + &) ® (6 x &))) =2 p*+0(p"?).

It is not difficult to show that p* occurs at least twice as an eigenvalue of F on this space.
but I do not know how to prove in general that cancellation does not occur. My original
approach was to find conditions on a, 8, 9, N, and p sufficient to ensure that all eigenvalues
of F on this space equalled p*.

B. Exponential sums

For the rest of the paper, we assume Q, contains a primitive p® root { of 1, and we
fix an embedding Q, ¢ C under which { maps to exp(2ni/p). Let U be the Galois
covering of A} defined by X?—X =T, and let ¥ be the locally constant sheaf on A’
associated with the representation Gal(U/A') — Aut(Q)) sending the canonical generator
o: (1, x) — (1, x+1) of Gal(U/A") to multiplication by {. For x € F,. we let

Y (x) =exp (2mi Tre e, (X)/q).
Lemma S. (a) Forany te F,, Tr(F'|¥) =y (1).
(b) The wild conductor of ¥ at o is 1.
(¢) Foralli, H(A', ¥)=0.

Proof. (a) Consider x € Fp such that xP— x=1¢; then

Xl=x+ 3 xP'—x? '=x+Tr(t)=c""(x).

i=1
This shows that the Frobenius automorphism acts on U, and ¥7, as
(T =exp (2ni Tr(2)/ p)=y(2).

(b) Consider the extension K of F,((7"')) defined by the equation X?—X=T.
If n7! e K satisfies this equation, then m is a uniformizing parameter for K and
o(n) =o(n~')"'=n/1 — n. The ramification groups of K/F,((T"'))are

G_1=Go=G,=2Z|pZ and G,={0}.

It is now easy to compute the conductor using [6], p. 188, Formula (d).

Journal fiir Mathematik. Band 328 28
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(c) It is obvious that H2(A!, ¥)=0=HZ(A'. ¥). and [6], V 2. 12 and (b) show
that y (A', ¥)=0.

Let ¥ be a smooth surface of degree d in P*, defined over F,, but having a given model
over F,. For t=(19:1,) € P'(F,), let V,;=V n H, where H, is the hyperplane defined by
to(aX+pY+yZ)=t, W

some o, B, ye F,, afy+0. Assume that V,, is smooth and that ¥, n V, has exactly
d points in F,. On blowing up these d points we obtain a surface V* and a map n: V* — P!
such that the fibre n~'(z), for 1€ P'(F,), is V. Let & =R'n,Q, and let ¢(€) be the sum
3 ¢,(&) of the conductors of & at the closed points ¢ of /P}p.

Lemma 6. The conductor c(&) of & is d(d —1).

Proof. A standard formula [6], VI. 5. 6 shows that the Betti numbers of V' are
1,0, d>*—4d*+6d—2. 0, 1, and therefore the Betti numbers of F* are
1,0, d>—4d*+7d—2, 0, 1. From the Leray spectral sequence for n, we find that
x(V*) =4 — x(&). For n a generic point of P!, & has dimension 2 genus(V;) =(d—1) (d —2).
Thus [6]. V. 2. 12 shows that y(&) =2(d—1) (d —2) — ¢(&). On combining these statements,
we find ¢(&) = d(d—1)>.

For Ae F). let ¥ be the translate of ¥ by 4, so that Y= ¥ ;7. We write e,(¢) =Tr(F'|&)
when r€ F,.
Proposition 4. (a) If i+ 1, then H(A', Y*® &) =0.

(b) The vector space Hy(A', ¥*® &) has dimension d(d—1)* and weight <2 (in the
sense of [2]).

© |X YA e ()| Sd(d—1)q.

tef,
Proof. (a)is obvious.
(b) An easy calculation shows that
A(P*®E)=c(&), teAl,
Co(P*® &) = (V) dim(& ) =2(d—1) (d—2),
and 50 ¢c(Y*® &) = c(&) + 2dim(& ). Therefore
dim H} (A, Y*® &) = — x (A, P *® &) =c(6) =d(d—1)?

by [6]. V.2.12. As Y*® & has weight 1, [2], Théoréme 1 shows that H!(A', ¥*® &)
has weight < 2.

(c¢) From the Lefschetz trace formula, we find that
Tr(FIH; (A, P*® &)= X Tr(F|(Y*® &)) =2 ¥ (A1) e,(1).
teky

and so (c) follows from (b).

Remark 4. (a) If (H,) is a Lefschetz pencil for V, then & —=— j,j*& where j is
the inclusion into P! of any open subset U on which & is constant. Let a be the inclusion
A' & P'; then a(P*® &) —=> j, (P*®&)|U), and so [2], Théoréme 2 shows that
HN(A', P*® &) is pure of weight 2.
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(b) Part (c) of the proposition was first proved. using an adaptation of the proof of
[1]. 8.4, by N. Katz who also showed that H}(A', ¥* ® &) is always pure of weight 2.
(See also the comments at the end of § 11 of the preceding paper.)

We now assume that V is the cubic surface introduced in A and that (1) and (2) hold.
For Ae F,. we write

S/ =2 e (1) Y(41),

tefy

which is the same as the sum S,(4; o, f. y; p) defined in (93) of the preceding article.
We also write

4,0 =2 e(1) e,(1+4),

tefFy

O=X (4.@A).

tefFgq

When r =1, we omit the subscript.

Proposition 5. (a) |S,/(4)]| <124.
b)) T ISSDP=¢gXe()*=¢+0(g°"?).

AeFy

© X ISSI* =40,

Aekgq
Proof. (a) This is the special case d =3 of (a) of Proposition 4.

(b), (c). Elementary calculations, starting from the definition of S,(4), show that

IS, (AD? =3 4, (u) Y (Au),
SIS/ (AP =q4,000=q3 (1),
A
SIS AP =q X 4,(w)*=q0O,.
A

The estimate in (b) follows from (4).

C. Proof of the main inequality

Throughout this section & will be the sheaf on A corresponding to the cubic surface
considered at the end of section A4; conditions (1) and (2) of 4 will be assumed to hold.
We define ¥’ to be the locally constant sheaf on A? corresponding to the covering
XP—X=T, T, of A* in the same way that ¥ corresponds to the covering X?—X=T of A';
thus Tr(F'|¥5) =y (1,1,) for t=(t;, t,) € F}. Let F =R, pri.(¥' @ pr¥ &). The stalk of F#
at 2, where A e F,.is H{ (A', P*® &) (we set ¥° = Q). Consequently.

Tr(F'|F2)= X e ) Y (A1) =S,(4), AeF,,
tefq
Tr(F'|HHA. #))= X S' (D).

A€k,
28*
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It follows from Proposition 4 that % is locally constant with stalks of dimension 12
on A'—{0}, and it follows from Remark 4(a) that & is (punctually) pure of weight 2.
Therefore # V= Hom (#, Q(—2)) is also locally constant and pure of weight 2 on
A'— {0}, and the eigenvalues of F" on &) are the complex conjugates of the eigenvalues
of F" on %,. This implies the following equalities (the estimates result from Proposition
5(a) and equation (3)):

®)) Tr(F"|H;"(A1_{0}ﬂ§;®37V)= 3 'Sr/(/l)|2=q3+0(q5/2);

A%0,eF,

6) Tr(FHXA'—{0}, FRQZQF'®@F V)= X ISSWI*=q0+0(¢").

A%0, Ak,

Let M be the generic stalk % of #. and let 7; and 7; respectively be the arithmetic
and geometric fundamental groups, m; (A}p— {0}, 77) and (A}P — {0}, 7); thus

i, = Ker (n, &> 7 = Gal(F,/ F,)).

Lemma 7. The 7t,-module M is irreducible.

Proof. If M has a composition series with n nonzero quotients, then dim (End (M), )= n.
As

HZ(A'— {0}, F ® ") =Hom (M. M(—2)); (—1)=End(M)z (-3

we see that then
Tr (FIHH (A — {0}, F @ F ) 2nq* + 0(¢°")
for ¢ sufficiently large. Equation (5) now shows that » is at most one: M is irreducible

as a ;-module.

Let G° be the algebraic envelope of the image of 7; in Aut(M), and let G°° be
the identity connected component of G°. A theorem of Grothendieck, together with
Lemma 7, shows that G° is semisimple (see [2], 1. 3.9). Therefore

End(M ® M)° =End(M ® M)g-=End(M ® M)z
=HXA'— {0}, 7 RFQRF'®F") (5).
Equation (6) now shows that

(7) O,=¢* (Tr(FEnd(M® M)®" )+ 0(q""?).

Lemma 8. The eigenvalues of F acting on End(M ® M) are roots of 1.

Proof. Let W={g e n;|deg(g) € Z} and let G be the extension of Z by G° defined
by the following diagram

1 Ny s W Z » 0
1 G° G 0.
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As G°° is semisimple, the group of outer automorphisms of G° (modulo (G °)*) is finite.
Let FeG lift the generator Fof Z. There is a g € G ° and an n>1 such that /g centralizes G °
and therefore acts as a scalar on M (and also M ® M). Then F" acts as 1 on End(M ® M)’
since it acts as F"g.

Lemma 9. There exist constants B and C such that if p> C and Tr(F|End(M ® M)¢")>1,
then

Oz2p*~Bp™.

Proof. From Lemma 2 and the definition of [J, we see that the L-series of
(B*xE)R(E*E)is

L(nZexp( X Tr(F|H: (AL, (& * 6) ® (& * &))1'[r)=exp(T O, 1"/1).

r>0

Equation (7) shows that
L(1)=(det(1 — Ft|End(M ® M)%"(—4)))"" L (2)

where L, (t) has no zeros or poles with |t|< p~ "/ Let ay.. .., a,, be the eigenvalues of F
on H¥(A'. (& x &) ® (& = &)) having absolute value equal to p*; then a; ', ....a,,' are
the only poles of L(p~*) with absolute value < p~"/2, and so {a;/p*.....a,/p*} is

the set of eigenvalues of F on End(M ® M)%". In particular. each a;/p* is a root of 1.

Let by,....b,, be the remaining eigenvalues of F on H¥(A', (& * &) ® (& = &)).
The main theorem of [2] shows that the b;, and all their conjugates. have absolute value
< p’?. We have

ny my

(8, O.= 2 ai+ 2 bi.
i=1

i=1

According to Proposition 3, there exists a constant /m (independent of a, f8. y, N, and p)
such that my.m, <m. Moreover there exists a constant n such that (a;/p*)"=1, all i;
to see this note that «; is a root of a polynomial of degree <m with coefficients in Q,,
and therefore lies in an extension of Q, of degree <m.

Let ¢> 0 be such that any nonzero sum of n'® roots of 1 with at most 2m terms has
absolute value >e¢, and let C=(2m/e)%. If p> C, then [] can be written in only one way
asasum

O=ap*+b
in which ¢ is a sum of at most m n' roots of 1 and |b| <mp’/?; for if we also have

O=da'p +b
then

-1/2

a—d'|=b—bp *<2mpPpt=2mp'P<e

andsoa=ua'.
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We apply this to equation (8;): for any o € Aut(C),

O=Xa+Xb=c0=%0d(a)+2d(b).

and so Y ;=Y o(a;): Y a;is in Q. As p~* 3 a; is a sum of roots of 1, it lies in Z. Now
the equation p~* Y a;=Tr (F|End(M ® M)°’) shows that, under the hypothesis of the
lemma, p~* 3 a;=2. We conclude that

O=Ya+Xb;22p*—mp'?.

Lemma 10. Tr(F|End(M ® M)® )21, and equals 1 only if Tr(F|M)=p for all
FeG mapping to F.
Proof. Replace G by
1->K°—-K—>Z7Z—->0
where K° is a maximal compact subgroup of G°. The action of K on M (1) factors through
a compact quotient K:

1 >K°—>K—ZnZ—0.
Let x be the character of M(1), and let F be a lifting of F. We have

Tr(FIM(1)®)=Tr(FIM(1)¥")= | x(Fg)dg.

Similarly,

[ |x(Fg)|?dg =Tr(F|End (M(1))f")=Tr (F|End (M)¢") =1

K°

because End(M)°¢ = Q,. Moreover,
Tr (F|End(M ® M)%")= Kl x(Fg)|* dg
> (Kj |x(Fg)*dg)* (Cauchy-Schwarz)
=1.
If equality holds, then

| (Ix(Fg)lz—l)ng=K§ lx(Fg)l*dg—2 | |x(Fg)*dg+ | ldg=0,
) 2 P

2
and so |y(Fg)| =1 forall g € K°.

Thus we have to find conditions, as general as possible, that ensure that we cannot
have |Tr(F|{M)|= p for all Fe G mapping to F. We do this by analyzing the local
monodromy of % at 0. Let D be the decomposition group at OeA}p, and let /=D be
the inertia group. Choose an embedding D ¢ ;. Recall that V,=V n H,, is the curve
X +v¥+27=0.
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Lemma 11. There exists a D-stable filtration M =Mo>M > M,>M3={0} of M
such that:
(a) Iacts trivially on each quotient M;[M ;. ;

(b) there are isomorphisms of D|I= Gal(/Fp/ F,)-modules

MM, ~ H' (V,, Q(-1)),
MM, ~ H'(P', &),
My,~H"(V,, Q).
Proof. Let 4 be the sheaf on A! x /P! obtained by extending ¥’ ® pr§é& by zero

from A! x A'. On the fibre over 140, 4 is ¥Y*® & extended by zero to P!, and on the
fibre over 0, ¢ is & extended by zero. By definition, # = R! pr,. %.

It follows from [37], XIII (especially 2. 1. 11) that the vanishing cycle complex
R®(&) =0, and the complex R®(¥’) has support on (0. c0). Consequently R®(%) has
support on (0, ) and if we write @'(—) for H (R®(—))w . then &(¥%) =85 ® P'(V").
Moreover there are exact sequences,

e (W) - HU (AL W) — HU(AL V) — 01(P) — -
o 80(%) Fs Fy 2H(F) —---.

n

As HYAL ¥')=0 (see Lemma5) and HI(A', ¥)=HI(A'. Q)=0 for i+2, and
=Q,(—1) for i=2, we see that ®'(¥')=0 for i+1 and ®'(¥')= Q(—1). The second
sequence therefore is

0O-M ->M—-E5(—-1)—0

where &5 (—1)=H"'(V,, Q(—1)). We define M, = M'. Then M, also equals HL(A', &),
and there is an exact sequence,

0—>&7— HNAY &) — H (P, 8)—0.
We define M, =Ker(H} (A", &) »> H'(P'. &))=6%.
The lemma shows that, if Fe D lifts F, then
Tr(FIM) = (e(o0) + '+ pe(0))

where —e'=Tr(F|H' (P', &))= #(V*(F,))—(p*+2 p+1) (cf. the proof of Proposition 1).
Lemma 10 therefore shows that, if Tr (F|End (M ® M)%")=1. then

9) e(o)+e'+ pe(c0)=+p.

If p=2, then #(V,(F,))=p+1 (obviously) and so e(c0)=0, and the discussion preceding
Theorem 1 shows that ¢'=(1— f) p. Thus equation (9) is impossible unless f=0. If p=1,
then e(00) is an integer such that 0< |e(o0)| < 2 ]/;; (see for example [5], p.140); as ¢’
is an integer divisible by p (e'/p+2 is the trace of F on the Néron-Severi group of V*,
which is a Z-module), equation (9) is always impossible in this case. This completes
the proof of the theorem.
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Remark 5. The preceding arguments indicate that “'in general”

OYS (Te() e(t+w)Pz2p*+0(p"?)

for a Lefschetz pencil of curves over F, provided the corresponding family of Jacobians
has no constant part. The example considered above should be regarded as being rather
special in that the curve at infinity, X 34 Y34+ 73=0, has complex multiplication.
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