
ABELIAN VARIETIES WITH COMPLEX MULTIPLICATION (FOR
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J.S. MILNE

Abstract. (June 7, 1998.) This is the text of an article that I wrote and dissemi-
nated in September 1981, except that I’ve updated the references, corrected a few
misprints, and added a table of contents, some footnotes, and an addendum.

The original article gave a simplified exposition of Deligne’s extension of the
Main Theorem of Complex Multiplication to all automorphisms of the complex
numbers. The addendum discusses some additional topics in the theory of complex
multiplication.
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The main theorem of Shimura and Taniyama (see Shimura 1971, Theorem 5.15)
describes the action of an automorphism τ of C on a polarized abelian variety of
CM-type and its torsion points in the case that τ fixes the reflex field of the variety.
In his Corvallis article (1979), Langlands made a conjecture concerning conjugates of

All footnotes were added in June 1998.
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Shimura varieties that (see Milne and Shih 1979) leads to a conjectural description
of the action of τ on a polarized abelian variety of CM-type and its torsion points for
all τ . Recently (July 1981) Deligne proved the conjecture1 (Deligne 1982b). Deligne
expresses his result as an identity between two pro-reductive groups, the Taniyama
group of Langlands and his own motivic Galois group associated with the Tannakian
category of motives of abelian varieties over Q of potential CM-type. Earlier (April
1981) Tate gave a more down-to-earth conjecture than that stated in (Milne and Shih
1979) and partially proved his conjecture (Tate 1981).

The purpose of these notes is to use Deligne’s ideas to give as direct a proof as
possible of the conjecture in the form stated by Tate. It is also checked that the
three forms of the conjecture, those in Deligne 1982b, Milne and Shih 1979, and Tate
1981 are compatible. Also, Tate’s ideas are used to simplify the construction of the
Taniyama group. In the first three sections, I have followed Tate’s manuscript (1981)
very closely, sometimes word-for-word.

These notes are a rough write-up of two of my lectures at the conference on Shimura
Varieties, Vancouver, 17–25 August, 1981. In the remaining lectures I described
how the result on abelian varieties of CM-type could be applied to give a proof of
Langlands’s conjecture on conjugates of Shimura varieties for most2 (perhaps all)
Shimura varieties.

Notations. We let Ẑ = lim←−Z/mZ and Af = Ẑ ⊗ Q. For a number field E, Af,E =

Af ⊗ E is the ring of finite adèles and AE = Af,E × (E ⊗ R) the full ring of adèles.
When E is a subfield of C, Eab and Eal denote respectively the maximal abelian
extension of E in C and the algebraic closure of E in C. Complex conjugation is
denoted by ι.

For a number field E, recE :A
×
E → Gal(Eab/E) is the reciprocity law, normalized so

that a prime element parameter corresponds to the inverse of the usual (arithmetic)
Frobenius: if a ∈ A×

f,E has v-component a prime element av in Ev and w-component

aw = 1 for w �= v, then recE(a) = σ−1 if σx ≡ xN(v) mod pv. When E is totally

complex, recE factors into A×
E → A×

f,E

rE−→ Gal(Eab/E). The cyclotomic character

χ = χcyc: Aut(C) → Ẑ× ⊂ A×
f is the homomorphism such that τζ = ζχ(τ ) for every

root of 1 in C. The composite rE ◦χ = VerE/Q, the Verlagerung map Gal(Qal/Q)ab →
Gal(Qal/E)ab.

When T is a torus over E, X∗(T ) is the cocharacter group HomEal(Gm, T ) of T .

*Be wary3 of signs.*

1. Statement of the Theorem

Let A be an abelian variety over C, and letK be a subfield of End(A)⊗Q of degree
2 dimA over Q. The representation of K on the tangent space to A at zero is of the
form ⊕φ∈Φφ with Φ a subset of Hom(K,C). A Riemann form for A is a Q-bilinear

1That is, the conjectural description of the action of τ on a polarized abelian variety of CM-type,
not Langlands’s conjecture!

2In fact all, see Milne 1983.
3This is universally good advice, but I believe the signs here to be correct.
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skew-symmetric form ψ on H1(A,Q) such that

(x, y) �→ ψ(x, iy):H1(A,R)×H1(A,R)→ R

is symmetric and positive definite. We assume that there exists a Riemann form ψ
compatible with the action of K in the sense that

ψ(ax, y) = ψ(x, (ιa)y), a ∈ K, x, y ∈ H1(A,Q).

Then K is a CM-field, and Φ is a CM-type on K, i.e., Hom(K,C) = Φ∪ ιΦ (disjoint
union). The pair (A,K ↪→ End(A) ⊗ Q) is said to be of CM-type (K,Φ). For
simplicity, we assume that K ∩ End(A) = OK , the full ring of integers in K.

Let CΦ be the set of complex-valued functions on Φ, and embedK into CΦ through
the natural map a �→ (φ(a))φ∈Φ. There then exist a Z-lattice a in K stable under
OK , an element t ∈ K×, and an OK-linear analytic isomorphism θ:CΦ/a → A such
that ψ(x, y) = TrK/Q(tx · ιy) where, in the last equation, we have used θ to identify
H1(A,Q) with a ⊗ Q = K. The variety is said to be of type (K,Φ; a, t) relative4

to θ. The type determines the triple (A,K ↪→ End(A) ⊗ Q, ψ) up to isomorphism.
Conversely, the triple determines the type up to a change of the following form: if θ
is replaced by θ ◦ a−1, a ∈ K×, then the type becomes (K,Φ; aa, t

a·ιa).
Let τ ∈ Aut(C). Then K ↪→ End(A) ⊗ Q induces a map K ↪→ End(τA) ⊗ Q,

so that τA also has complex multiplication by K. The form ψ is associated with a
divisorD on A, and we let τψ be the Riemann form for τA associated with τD. It has
the following characterization: after multiplying ψ with a nonzero rational number,
we can assume that it takes integral values on H1(A,Z); define ψm to be the pairing

Am × Am → µm, (x, y) �→ exp(2πi·ψ(x,y)
m

); then (τψ)m(τx, τy) = τ (ψm(x, y)).

In the next section we shall define (following Tate) for each CM-type (K,Φ) a map
fΦ: Aut(C)→ A×

f,K/K
× such that

fΦ(τ ) · ιfΦ(τ ) = χ(τ )K×, all τ ∈ Aut(C).

We can now state the new main theorem of complex multiplication in the form first
appearing (as a conjecture) in Tate 1981.

Theorem 1.1 (Shimura, Taniyama, Langlands, Deligne). Suppose A has type

(K,Φ; a, t) relative to θ:CΦ/a
≈−→ A. Let τ ∈ Aut(C), and let f ∈ A×

f,K lie in fΦ(τ ).

(a) The variety τA has type

(K, τΦ; fa,
tχ(τ )

f · ιf )

relative to θ′ say.
(b) It is possible to choose θ′ so that

Af,K >> Af,K/a⊗ Ẑ ∼= K/a
θ
> Ators

Af,K

∨
f

>> Af,K/(fa⊗ Ẑ) ∼= K/fa
θ′
> τAtors

∨
τ

commutes, where Ators denotes the torsion subgroup of A.

4See Shimura 1971, pp 126–129.
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Remark 1.2. Prior to its complete proof, the theorem was known in three5 im-
portant cases.

(a) If τ fixes the reflex field of (K,Φ), then the theorem becomes the old main
theorem of complex multiplication, proved by Shimura and Taniyama (see (2.7)
below). This case is used in the proof of the general result.

(b) Tate (1981) proved part (a) of the theorem, and he showed that (b) holds when
f is replaced by fe, some e ∈ A×

f,K0
with e2 = 1, where K0 the maximal real

subfield of K. We include Tate’s proof of his result, although it is not necessary
for the general case.

(c) Shih (1976) proved the theorem under the assumption that there exists an
automorphism σ of K of order 2 such that τ (Φ∩Φσ) = Φ∩Φσ and τ (Φ∩ιΦσ) =
Φ∩ ιΦσ for all automorphisms τ of C. As we shall see, his proof is a special case
of the general proof.

We now restate the theorem in more invariant form. Let

TA
df
= lim←−Am(C) ∼= lim←−(

1

m
H1(A,Z)/H1(A,Z)) = H1(A, Ẑ)

(limit over all positive integers m), and let

VfA = TA⊗Z Q = H1(A,Q)⊗Q Af .

Then ψ gives rise to a pairing

ψf = lim←−ψm:VfA× VfA→ Af(1)

where Af (1) = (lim←−µm(C))⊗Q.

Theorem 1.3. Let A have type (K,Φ); let τ ∈ Aut(C), and let f ∈ fΦ(τ ).

(a) τA is of type (K, τΦ);
(b) there is an K-linear isomorphism α:H1(A,Q)→ H1(τA,Q) such that

(i) ψ(χ(τ )
f ·ιf x, y) = (τψ)(αx, αy), x, y ∈ H1(A,Q);

(ii) the6 diagram

Vf (A)
f✲ Vf (A)

❅
❅

❅
τ

❘

Vf (τA)
❄
α⊗1

commutes.

Lemma 1.4. The statements (1.1) and (1.3) are equivalent.

5Shimura (1977) investigated the question in some further special cases. After explaining that the
action of a general automorphism of C on an elliptic curve of CM-type can be obtained from knowing
the actions of complex conjugation and those automorphisms fixing its reflex field, he concludes
rather pessimistically that “In the higher-dimensional case, however, no such general answer seems
possible.”

6Note that both f ∈ A×
f,K and the K-linear isomorphism α are uniquely determined up to

multiplication by an element of K×. Changing the choice of one changes that of the other by the
same factor.
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Proof. Let θ and θ′ be as in (1.1), and let θ1:K
≈−→ H1(A,Q) and θ′1:K

≈−→
H1(τA,Q) be the K-linear isomorphisms induced by θ and θ′. Let χ = χ(τ )/f · ιf
— it is an element of K×. Then

ψ(θ1(x), θ1(y)) = Tr(tx · ιy)
(τψ)(θ′1(x), θ

′
1(y)) = Tr(tχx · ιy)

and

Af,K
θ1−−−→ Vf (A)�f

�τ

Af,K
θ′1−−−→ Vf (τA)

commutes. Let α = θ′1 ◦ θ−1
1 ; then

τψ(αx, αy) = Tr(tχθ−1
1 (x) · ιθ−1

1 (y)) = ψ(χx, y)

and (on Vf (A)),

τ = θ′1 ◦ f ◦ θ−1
1 = θ′1 ◦ θ−1

1 ◦ f = α ◦ f.
Conversely, let α be as in (1.3) and choose θ′1 so that α = θ′1 ◦ θ−1

1 . It is then easy to
check (1.1).

2. Definition of fΦ(τ )

Let (K,Φ) be a CM-type. Choose an embedding K ↪→ C, and extend it to an
embedding i:Kab ↪→ C. Choose elements wρ ∈ Aut(C), one for each ρ ∈ Hom(K,C),
such that

wρ ◦ i|K = ρ, wιρ = ιwρ.

For example, choose wρ for ρ ∈ Φ (or any other CM-type) to satisfy the first equation,
and then define wρ for the remaining ρ by the second equation. For any τ ∈ Aut(C),
w−1

τρ τwρ ◦ i|K = w−1
τρ ◦ τρ|K = i. Thus i−1 ◦ w−1

τρ τwρ ◦ i ∈ Gal(Kab/K), and we can

define FΦ: Aut(C)→ Gal(Kab/K) by

FΦ(τ ) =
∏
φ∈Φ

i−1 ◦ w−1
τφ τwφ ◦ i.

Lemma 2.1. The element FΦ is independent of the choice of {wρ}.
Proof. Any other choice is of the form w′

ρ = wρhρ, hρ ∈ Aut(C/iK). Thus FΦ(τ )

is changed by i−1 ◦ (∏φ∈Φ h
−1
τφhφ)◦ i. The conditions on w and w′ imply that hιρ = hρ,

and it follows that the inside product is 1 because τ permutes the unordered pairs
{φ, ιφ} and so

∏
φ∈Φ hφ =

∏
φ∈Φ hτφ.

Lemma 2.2. The element FΦ is independent of the choice of i (and K ↪→ C).

Proof. Any other choice is of the form i′ = σ◦ i, σ ∈ Aut(C). Take w′
ρ = wρ◦σ−1,

and then

F ′
Φ(τ ) =

∏
i′−1 ◦ (σw−1

τφ τwφσ
−1) ◦ i′ = FΦ(τ ).
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Thus we can suppose K ⊂ C and ignore i; then

FΦ(τ ) =
∏
φ∈Φ

w−1
τφ τwφ mod Aut(C/Kab)

where the wρ are elements of Aut(C) such that

wρ|K = ρ, wιρ = iwρ.

Proposition 2.3. For any τ ∈ Aut(C), there is a unique fΦ(τ ) ∈ A×
f,K/K

× such
that

(a) rK(fΦ(τ )) = FΦ(τ );
(b) fΦ(τ ) · ιfΦ(τ ) = χ(τ )K×, χ = χcyc.

Proof. Since rK is surjective, there is an f ∈ A×
f,K/K

× such that rK(f) = FΦ(τ ).
We have

rK(f · ιf) = rK(f) · rK(ιf)
= rK(f) · ιrK(f)ι−1

= FΦ(τ ) · FιΦ(τ )

= VK/Q(τ ),

where VK/Q: Gal(Q
al/Q)ab → Gal(Qal/K)ab is the transfer (Verlagerung) map. As

VK/Q = rK ◦ χ, it follows that f · ιf = χ(τ )K× mod (Ker rK). The next lemma
shows that 1+ ι acts bijectively on Ker(rK), and so there is a unique a ∈ Ker rK such
that a · ιa = (f · ιf/χ(τ ))K×; we must take fΦ(τ ) = f/a.

Lemma 2.4. The kernel of rK :A
×
f,K/K

× → Gal(Kab/K) is uniquely divisible by
all integers, and its elements are fixed by ι.

Proof. The kernel of rK is K×/K× where K× is the closure of K× in A×
f,K. It is

also equal to Ū/U for any subgroup U of O×
K of finite index. A theorem of Chevalley

(see Serre 1964, 3.5) shows that A×
f,K induces the pro-finite topology on U . If we take

U to be contained in the real subfield of K and torsion-free, then it is clear that Ū/U

is fixed by ι and (being isomorphic to (Ẑ/Z)dimA) uniquely divisible.

Remark 2.5. A more direct definition of fΦ(τ ), but one involving the Weil group,
can be found in (7.2).

Proposition 2.6. The maps fΦ: Aut(C) → A×
f,K/K

× have the following proper-
ties:

(a) fΦ(στ ) = fτΦ(σ) · fΦ(τ );
(b) fΦ(τ−1|K)(σ) = τfΦ(σ) if τK = K;
(c) fΦ(ι) = 1.

Proof. Let f = fτΦ(σ) · fΦ(τ ). Then

rK(f) = FτΦ(σ) · FΦ(τ ) =
∏
φ∈Φ

w−1
στφσwτφw

−1
τφ τwφ = FΦ(στ )

and f · ιf = χ(σ)χ(τ )K× = χ(στ )K×. Thus f satisfies the conditions that determine
fΦ(στ ). This proves (a), and (b) and (c) can be proved similarly.
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Let E be the reflex field for (K,Φ), so that Aut(C/E) = {τ ∈ Aut(C) | τΦ = Φ}.
Then ΦAut(C/K)

df
= ∪φ∈Φφ ·Aut(C/K) is stable under the left action of Aut(C/E),

and we write

Aut(C/K)Φ−1 = ∪ψAut(C/E) (disjoint union);

the set Ψ = {ψ|E} is a CM-type for E, and (E,Ψ) is the reflex of (K,Φ). The
map a �→ ∏

ψ∈Ψ ψ(a):E→ C factors through K and defines a morphism of algebraic

tori Ψ×:E× → K×. The (old) main theorem of complex multiplication states the
following: let τ ∈ Aut(C/E), and let a ∈ A×

f,E/E
× be such that rE(a) = τ ; then

(1.1) is true after f has been replaced by Ψ×(a). (See Shimura 1971, Theorem 5.15;
the sign differences result from different conventions for the reciprocity law and the
actions of Galois groups.) The next result shows that this is in agreement with (1.1).

Proposition 2.7. For any τ ∈ Aut(C/E) and a ∈ A×
f,E/E

× such that rE(a) = τ ,
Ψ×(a) ∈ fΦ(τ ).

Proof. Partition Φ into orbits, Φ = ∪jΦj, for the left action of Aut(C/E). Then
Aut(C/K)Φ−1 = ∪j Aut(C/K)Φ−1

j , and

Aut(C/K)Φ−1
j = Aut(C/K)(σ−1

j Aut(C/E)) = (HomK(Lj,C) ◦ σ−1
j )Aut(C/E)

where σj is any element of Aut(C) such that σj|K ∈ Φj and Lj = (σ−1
j E)K. Thus

Ψ×(a) =
∏
bj, with bj = NmLj/K(σ

−1
j (a)). Let

Fj(τ ) =
∏
φ∈Φj

w−1
τφ τwφ (modAut(C/Kab)).

We begin by showing that Fj(τ ) = rK(bj).

The basic properties of Artin’s reciprocity law show that

A×
f,E

⊂ > A×
f,σLj

σ−1
j

> A×
f,Lj

NmLj /K

> A×
f,K

Gal(Eab/E)
∨rE

VσjLj /E

> σj Gal(L
ab
j /Lj)σ

−1
j

∨rσLj

adσ−1
j
> Gal(Lab

j /Lj)
∨rLj

restriction
> Gal(Kab/K)

∨rK

commutes. Therefore rK(bj) is the image of rE(a) by the three maps in the bottom
row of the diagram. Consider {tφ | tφ = wφσ

−1
j , φ ∈ Φj}; this is a set of coset rep-

resentatives for σj Aut(C/Lj)σ
−1
j in Aut(C/E), and so Fj(τ ) =

∏
φ∈Φj

σ−1
j t−1

τφτtφσj =

σ−1
j V (τ )σj mod Aut(C/Kab).

Thus rK(Ψ
×(a)) =

∏
rK(bj) =

∏
Fj(τ ) = FΦ(τ ). Clearly, Ψ×(a) · ιΨ×(a) ∈

χ(τ )K×, and so this shows that Ψ×(a) ∈ fΦ(τ ).

3. Start of the Proof; Tate’s Result

We shall work with the statement (1.3) rather than (1.1). The variety τA has type
(K, τΦ) because τΦ describes the action of K on the tangent space to τA at zero.
Choose any K-linear isomorphism α:H1(A,Q)→ H1(τA,Q). Then

Vf (A)
τ→ Vf (τA)

(α⊗1)−1

→ Vf (A)
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is an Af,K-linear isomorphism, and hence is multiplication by some g ∈ A×
f,K ; thus

(α⊗ 1) ◦ g = τ .

Lemma 3.1. For this g, we have

(αψ)(
χ(τ )

g · ιgx, y) = (τψ)(x, y), all x, y ∈ Vf (τA).

Proof. By definition,

(τψ)(τx, τy) = τ (ψ(x, y)) x, y ∈ Vf (A)

(αψ)(αx, αy) = ψ(x, y) x, y ∈ Vf (A).

On replacing x and y by gx and gy in the second inequality, we find that

(αψ)(τx, τy) = ψ(gx, gy) = ψ((g · ιg)x, y).
As τ (ψ(x, y)) = χ(τ )ψ(x, y) = ψ(χ(τ )x, y), the lemma is now obvious.

Remark 3.2. (a) On replacing x and y with αx and αy in (3.1), we obtain the
formula

ψ(
χ(τ )

g · ιgx, y) = (τψ)(αx, αy).

(b) On taking x, y ∈ H1(A,Q) in (3.1), we can deduce that χ(τ )/g · ιg ∈ K×;
therefore g · ιg ≡ χ(τ ) mod K×.

The only choice involved in the definition of g is that of α, and α is determined
up to multiplication by an element of K×. Thus the class of g in A×

f,K/K
× depends

only on A and τ . In fact, it depends only on (K,Φ) and τ , because any other abelian
variety of type (K,Φ) is isogenous to A and leads to the same class gK×. We define
gΦ(τ ) = gK× ∈ A×

f,K/K
×.

Proposition 3.3. The maps gΦ: Aut(C) → A×
f,K/K

× have the following proper-
ties:

(a) gΦ(στ ) = gτΦ(σ) · gΦ(τ );
(b) gΦ(τ−1|K)(σ) = τgΦ(σ) if τK = K;
(c) gΦ(ι) = 1;
(d) gΦ(τ ) · ιgΦ(τ ) = χ(τ )K×.

Proof. (a) Choose K-linear isomorphisms α:H1(A,Q) → H1(τA,Q) and
β:H1(τA,Q) → H1(στA,Q), and let g = (α ⊗ 1)−1 ◦ τ and gτ = (β ⊗ 1)−1 ◦ σ
so that g and gτ represent gΦ(τ ) and gτφ(σ) respectively. Then

(βα)⊗ 1 ◦ (gτg) = (β ⊗ 1) ◦ gτ ◦ (α ⊗ 1) ◦ g = στ,

which shows that gτg represents gΦ(στ ).

(b) If (A,K ↪→ End(A) ⊗ Q) has type (K,Φ), then (A,K
τ−1→ K → End(A)⊗ Q)

has type (K,Φτ−1). The formula in (b) can be proved by transport of structure.

(c) Complex conjugation ι:A → ιA is a homeomorphism (relative to the complex
topology) and so induces a K-linear isomorphism ι1:H1(A,Q)→ H1(A,Q). The map
ι1 ⊗ 1:Vf (A)→ Vf (ιA) is ι again, and so on taking α = ι1, we find that g = 1.

(d) This is proved in (3.2).
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Theorem 1.3 (hence also 1.1) becomes true if fΦ is replaced by gΦ. Our task is to
show that fΦ = gΦ. To this end we set

eΦ(τ ) = gΦ(τ )/fΦ(τ ) ∈ A×
f,K/K

×.

Proposition 3.4. The maps eΦ: Aut(C) → A×
f,K/K

× have the following proper-
ties:

(a) eΦ(στ ) = eτΦ(σ) · eΦ(τ );
(b) eΦ(τ−1|K)(σ) = τeΦ(σ) if τK = K;
(c) eΦ(ι) = 1;
(d) eΦ(τ ) · ιeΦ(τ ) = 1;
(e) eΦ(τ ) = 1 if τΦ = Φ.

Proof. Statements (a), (b), and (c) follow from (a), (b), and (c) of (2.6) and (3.3),
and (d) follows from (3.3d) and (2.3b). The condition τΦ = Φ in (e) means that τ
fixes the reflex field of (K,Φ) and, as we observed in §2, the theorems are known to
hold in that case, which means that fΦ(τ ) = gΦ(τ ).

Proposition 3.5. Let K0 be the maximal real subfield of K; then eΦ(τ ) ∈
A×

f,K0
/K×

0 and eΦ(τ )
2 = 1; moreover, eΦ(τ ) depends only on the effect of τ on K0,

and is 1 if τ |K0 = id.

Proof. Replacing τ by σ−1τ in (a), we find using (e) that eΦ(τ ) = eΦ(σ) if τΦ =
σΦ, i.e., eΦ(τ ) depends only on the restriction of τ to the reflex field of (K,Φ). From
(b) with τ = ι, we find using ιΦ = Φι that eιΦ(σ) = ιeΦ(σ). Putting τ = ι, then σ = ι,
in (a), we find that eΦ(σι) = ιeΦ(σ) and eΦ(ιτ ) = eΦ(τ ). Since ιτ and τ ι have the same
effect on E, we conclude eΦ(τ ) = ιeΦ(τ ). Thus eΦ(τ ) ∈ (A×

f,K/K
×)〈ι〉 = A×

f,K0
/K×

0 ,

where 〈ι〉 = Gal(K/K0), and (d) shows that eΦ(τ )
2 = 1.

Corollary 3.6. Part (a) of (1.1) is true; part (b) of (1.1) becomes true when f
is replaced by ef with e ∈ A×

f,K0
, e2 = 1.

Proof. Let e ∈ eΦ(τ ). Then e
2 ∈ K×

0 and, since an element of K×
0 that is a square

locally at all finite primes is a square, we can correct e to achieve e2 = 1. Now (1.1) is
true with f replaced by ef , but e (being a unit) does not affect part (a) of (1.1).

We can now sketch the proof of the Theorems 1.1 and 1.3 — for this, we must
prove eΦ(τ ) = 1 for all τ . It seems to be essential to prove this simultaneously for
all abelian varieties. To do this, one needs to define a universal e, giving rise to all
the eΦ. The universal e is a map into the Serre group. In §4 we review some of the
theory concerning the Serre group, and in (5.1) we state the existence of e. The proof
of (5.1), which requires Deligne’s result (Deligne 1982a) on Hodge cycles on abelian
varieties, is carried out in §7 and §8 . The remaining step, proving that e = 1, is less
difficult, and is carried out in §6.

4. The Serre Group

Let E be a CM-field. The Serre group corresponding to E is a pair (SE , µE)
comprising a Q-rational torus SE and a cocharacter µE ∈ X∗(SE) defined over E

whose weight wE df
= −(ι + 1)µE is defined over Q. It is characterized by having the
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following universal property: for any Q-rational torus T and µ ∈ X∗(T ) defined over
E whose weight is Q-rational, there is a unique Q-rational homomorphism ρµ:S

E → T
such that ρµ ◦ µE = µ.

For ρ ∈ Hom(E,C), let [ρ] be the character of the torus E× defined by ρ. Then
{[ρ] | ρ ∈ Hom(E,C)} is a basis for X∗(E×), and SE is the quotient of the torus E×

with

X∗(SE) = {χ ∈ X∗(E×) | (τ − 1)(ι + 1)χ = 0, all τ ∈ Aut(C)}
X∗(µE) =

∑
nρ[ρ] �→ n1:X

∗(SE)→ Z

because this pair has the universal property dual to that of (SE , µE). In particular,
there is a canonical homomorphism E× → SE , and it is known (cf. Serre 1968, II)
that the kernel of the map is the Zariski closure of any sufficiently small subgroup U
of finite index in O×

E .

When E is Galois over Q, the action of σ ∈ Gal(E/Q) on E defines an automor-
phism σ̃ of the torus SE , whose action on characters is∑

nρ[ρ] �→
∑

nρ[ρσ] =
∑

nρσ−1 [ρ].

Lemma 4.1. Let E0 be the maximal real subfield of E; there is an exact sequence
of algebraic tori

1 −−−→ E×
0

(
incl.

NmE0/Q

)

−−−−−−−→ E× ×Q× (can.,wE)−−−−−→ SE → 1.

Proof. It suffices to show that the sequence becomes exact after the functor X∗

has been applied. As

X∗(E0) = {
∑

nρ′ [ρ
′] | ρ′ ∈ Hom(E0,C)}

X∗(E× ×Q×) = {
∑

nρ[ρ] + n | ρ ∈ Hom(E,C)}
X∗(SE) = {

∑
nρ[ρ] | nρ + nιρ = constant}

X∗(
(

incl.
NmE0/Q

)
) =

∑
nρ[ρ] + n �→

∑
nρ[ρ|E0] + n

∑
ρ′
[ρ′]

X∗((can., wE)) =
∑

nρ[ρ] �→
∑

nρ[ρ]− (n1 + nι)

this is trivial.

Lemma 4.2. The map NmE/Q:E
× → Q× factors through SE, and gives rise to a

commutative diagram

SE 1+ι ✲ SE

❅
❅

❅NmE/Q ❘ �
�

�
−wE

✒

Q×.

Proof. The map X∗(NmE/Q) is n �→ n
∑
[ρ], which clearly factors through

X∗(SE) ⊂ X∗(E×). Moreover, the endomorphisms

X∗(−wE ◦ NmE/Q) = (
∑

nρ[ρ] �→ n1 + nι �−→ (n1 + nι)
∑

nρ[ρ])
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X∗(1 + ι) = (
∑

nρ[ρ] �→
∑

nρ)([ρ] + [ιρ]) �→
∑

(nρ + nιρ)[ρ] = (n1 + nι)
∑

[ρ]

are equal.

Let E1 ⊃ E2 be CM-fields. The norm map E×
1 → E×

2 induces a norm map
NmE1/E2

:SE1 → SE2 which is the unique Q-rational homomorphism such that
NmE1/E2

◦µE1 = µE2. The following diagram commutes:

1 −−−→ (E1)
×
0 −−−→ E×

1 ×Q× −−−→ SE1 −−−→ 1�Nm

�Nm × id

�Nm

1 −−−→ (E2)
×
0 −−−→ E×

2 ×Q× −−−→ SE2 −−−→ 1.

Remark 4.3. The Serre group can be defined for all fields of finite degree over Q.

If L contains a CM-field and E is the maximal such subfield, then NmL/K:S
L ≈→ SE;

if not, then NmL/Q:S
L ≈→ SQ = Q×.

Let (K,Φ) be a CM-type with K ⊂ C. Write T = ResK/Q(Gm), and define
µΦ ∈ X∗(T ) by the condition

[ρ] ◦ µΦ =

{
id , ρ ∈ Φ
1, ρ /∈ Φ.

Thus, µΦ is the map

C× →T (C) = (K ⊗Q C)×=
∏
φ∈Φ

C× ×
∏
φ/∈Φ

C×

z �→ (z, . . . , z, 1, . . . , 1).

The weight of µΦ is the map induced by x �→ x−1:Q× ↪→ K×, which is defined over
Q, and µΦ itself is defined over the reflex field of (K,Φ). There is therefore, for any
CM-field E containing the reflex field of (K,Φ), a unique Q-rational homomorphism
ρΦ:S

E → T such that µΦ = ρΦ ◦ µE . From now on, we assume E to be Galois over
Q.

Lemma 4.4. (a) τµΦ = µτΦ, τ ∈ Aut(C).
(b) Let τ ∈ Aut(C) be such that τK = K, so that τ induces an automorphism τ̃ of

T ; then τ̃ ◦ µΦ = µΦτ−1 .

Proof. (a) Consider the canonical pairing

〈·, ·〉:X∗(T )×X∗(T )→ Z.

By definition, for ρ ∈ Hom(K,C),

〈[ρ], µΦ〉 =
{

1 if ρ ∈ Φ
0 otherwise.

For τ ∈ Aut(C),

〈[ρ], τµΦ〉 = 〈τ−1[ρ], µΦ〉 = 〈[τ−1ρ], µΦ〉,
which equals 〈[ρ], µτΦ〉. (b)

[ρ] ◦ τ̃ ◦ µΦ = [ρτ ] ◦ µΦ =

{
id if ρτ ∈ Φ
1 if ρτ /∈ Φ.
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Thus (b) is clear.

Proposition 4.5. (a) For any τ ∈ Aut(C), ρΦ ◦ τ̃−1 = ρτΦ.
(b) If τK = K, then τ̃ ◦ ρΦ = ρΦτ−1 .

Proof. (a) We shall show that τ̃−1 ◦ µE = τ (µE); from this it follows that

ρΦ ◦ τ̃−1 ◦ µE = ρΦ ◦ (τµE)
= τ (ρΦ ◦ µE) (ρΦ is Q-rational)
= τ (µΦ) (definition of ρΦ)
= µτΦ (4.4a),

which implies that ρΦ ◦ τ−1 = ρτΦ. It remains to show that X∗(τ̃−1 ◦µE) = X∗(τµE),
but

X∗(τ̃−1 ◦ µE) = X∗(µE) ◦X∗(τ̃−1) = (
∑

nρ[ρ] �→
∑

nρ[ρτ
−1] �→ nτ)

and

X∗(τµE) = τ (X∗(µE)) = (
∑

nρ[ρ] �→
∑

nρ[τ
−1ρ] �→ nτ).

(b)

τ̃ ◦ ρΦ ◦ µE = τ̃ ◦ µΦ (definition of ρΦ)
= µΦτ−1 (4.4b).

Proposition 4.6. For E1 ⊃ E2,

SE1

❅
❅

❅
❅

❅

ρΦ

❘

SE2

NmE1/E2

❄
ρΦ ✲ T

commutes.

Proof. We have

((ρΦ)2 ◦ NmE1/E2
) ◦ µE1 = (ρΦ)2 ◦ µE2 = µΦ.

Proposition 4.7. Let E be a CM-field, Galois over Q, and consider all maps ρΦ

for Φ running through the CM-types on E; then ∩Ker(ρΦ) = 1.

Proof. We have to show that
∑

Im(X∗(ρΦ)) = X∗(SE); but the left hand side
contains

∑
Φ[φ] for all CM-types on E, and these elements generate X∗(SE).

Proposition 4.8. Let K1 ⊃ K2 be CM-fields, and let Φ1 and Φ2 be CM-types for
K1 and K2 respectively such that Φ1|K2 = Φ2. Then, for any CM-field E containing
the reflex field of (K1,Φ1), the composite of

SE ρΦ2→ K×
2 ↪→ K×

1

is ρΦ1 .
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Proof. Let i:K×
2 ↪→ K×

1 be the inclusion map. Then i ◦ µΦ2 = µΦ1 and so
i ◦ ρΦ2 ◦ µE = i ◦ µΦ2 = µΦ1 , which shows that i ◦ ρΦ2 = ρΦ1 .

5. Definition of eE

Proposition 5.1. Let E ⊂ C be a CM-field, Galois over Q. Then there exists a
unique map eE: Aut(C) → SE(Af )/S

E(Q) such that, for all CM-types (K,Φ) whose
reflex fields are contained in E, eΦ(τ ) = ρΦ(e(τ )).

Proof. The existence of eE will be shown in §7 and §8. The uniqueness follows

from (4.7) for this shows that there is an injection SE ⊂ (ρΦ)
>

∏
TΦ where TΦ =

ResE/QGm and the product is over all CM-types on E. Thus

SE(Af)/S
E(Q) ↪→

∏
TΦ(Af )/TΦ(Q) =

∏
A×

f,E/E
×,

and so any element a ∈ SE(Af )/S
E(Q) is determined by the set (ρΦ(a)).

Proposition 5.2. The family of maps eE : Aut(C)→ SE(Af )/S
E(Q) has the fol-

lowing properties:

(a) eE(στ ) = τ̃−1eE(σ) · eE(τ ), σ, τ ∈ Aut(C);
(b) if E1 ⊃ E2, then

Aut(C)
eE1✲ SE1(Af )/S

E1(Q)

❅
❅

❅
❅

❅

eE2

❘

SE2(Af )/S
E2(Q)

❄

Nm

commutes.
(c) eE(ι) = 1;
(d) e(τ ) · ι̃e(τ ) = 1, τ ∈ Aut(C);
(e) eE|Aut(C/E) = 1.

Proof. (a) We have to check that ρΦ(e(στ )) = ρΦ(τ̃
−1e(σ) · e(τ )) for all (K,Φ).

But ρΦ(e
E(στ )) = eΦ(στ ) and

ρΦ(τ̃
−1eE(σ)eE(τ )) = ρΦ(τ̃

−1eE(σ))ρΦ(e
E(τ )) = ρτΦ(e

E(σ)) · ρΦ(e
E(τ )) = eτΦ(σ)eΦ(τ );

thus the equality follows from (3.4a).

(b) This follows from (4.6) and the definition of eE .

(c) ρΦ(e
E(ι)) = eΦ(ι) = 1 (by 3.4c), and so eE(ι) = 1.

(d) This follows from (3.4d).

(e) Assume τ fixes E; then τΦ = Φ whenever E contains the reflex field of (K,Φ),
and so ρΦ(e

E(τ )) = eΦ(τ ) = 1 by (3.4e).

Remark 5.3. (a) Define εE(τ ) = e(τ−1)−1; then the maps εE satisfy the same
conditions (b), (c), (d), and (e) of (5.2) as eE , but (a) becomes the condition
εE(στ ) = σ̃εE(τ ) · εE(σ): εE is a crossed homomorphism.
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(b) Condition (b) shows that eE determines eE
′
for all E ′ ⊂ E. We extend the

definition of eE to all CM-fields E ⊂ C by letting eE = NmE1/E ◦eE1 for any
Galois CM-field E1 containing E.

(c) Part (d) of (5.2) follows from the remaining parts, as is clear from the following
diagram:

Aut(C)
eE

✲ SE(Af )/S
E(Q)

1+ι✲ SE(Af )/S
E(Q)

❅
❅

❅
❅

❅

eQ[i]=1

❘

❅
❅

❅
❅

❅

NmE/Q

❘

SQ[i](Af )/S
Q[i](Q)

❄

NmE/Q[i]

NmQ[i]/Q✲ SQ(Af )/S
Q(Q)

✻

−wE

The right hand triangle is (4.2). (We can assume E ⊃ Q[i]; SQ[i] = Q[i]×, SQ =
Q×). In his (original) letter to Langlands (see Deligne 1979), Deligne showed
that the difference between the motivic Galois group and the Taniyama group
was measured by a family of crossed homomorphisms (eE) having properties
(b), (c), and (e) of (5.2). After seeing Tate’s result he used the above diagram
to show that his maps eE had the same properties as Tate’s eΦ(τ ), namely,
eE(τ ) · ιeE(τ ) = 1, eE(τ )2 = 1.

6. Proof that e = 1

We replace e with τ �→ e(τ−1)−1.

Proposition 6.1. Suppose there are given crossed homomorphisms eE: Aut(C)→
SE(Af)/S

E(Q), one for each CM-field E ⊂ C, such that

(a) eE(ι) = 1, all E;
(b) eE|Aut(C/E) = 1;
(c) if E1 ⊃ E2 then

Aut(C/Q)
eE1✲ SE1(Af)/S

E1(Q)

❅
❅

❅
❅

❅

eE2

❘

SE2(Af)/S
E2(Q)

❄

NmE1/E2

commutes.

Then eE = 1 — i.e., eE(τ ) = 1 for all τ — for all E.

Proof. Clearly, it suffices to show that eE = 1 for all sufficiently large E — in
particular, for those that are Galois over Q.

The crossed homomorphism condition is that

e(στ ) = σ̃e(τ ) · e(σ).
Condition (b) implies that eE(τ ) = eE(τ ′) if τ |E = τ ′|E. In particular, eE(ιτ ) =
eE(τ ι) for all τ ∈ Aut(C). Since{

eE(τ ι) = τeE(ι) · eE(τ ) = eE(τ )
eE(ιτ ) = ιeE(τ ) · eE(ι) = ιeE(τ )
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we conclude that ιeE(τ ) = eE(τ ).

Lemma 6.2. Assume that E is Galois over Q, and let 〈ι〉 be the subgroup of
Gal(E/Q) generated by ι|E.

(a) There is an exact commutative diagram

1 −−−→ Q× −−−→ SE(Q)〈ι〉 −−−→ µ2(E0)
NmE0/Q−−−−→ µ2(Q)�

�
�

�
1 −−−→ A×

f −−−→ SE(Af )
〈ι〉 −−−→ µ2(Af,E0)

Nm−−−→ µ2(Af )

where µ2(R) denotes the set of square roots of 1 in a ring R.
(b) The canonical map

H1(〈ι〉, SE(Q))→ H1(〈ι〉, SE(Af ))

is injective.

Proof. From (4.1) we obtain cohomology sequences

1→ E×
0 → E×

0 ×Q× → SE(Q)〈ι〉→ µ2(E0)
Nm
> µ2(Q)→H1(〈ι〉, SE(Q))→ E×

0 /E
×2
0

1→A×
f,E0

∨
→A×

f,E0
× A×

f

∨
→SE(Af )

〈ι〉
∨

→µ2(Af,E0)
∨

Nm
> µ2(Af)

∨
→H1(〈ι〉, SE(Af))

∨
→A×

f,E0
/A×2

f,E0

∨

It is easy to extract from this the diagram in (a). For (b), let γ ∈ H1(〈ι〉, SE(Q))
map to zero in H1(〈ι〉, SE(Af )). As E

×
0 /E

×2
0 → A×

f,E0
/A×2

f,E0
is injective (an element

of E0 that is a square in E0,v for all finite primes is a square in E0), we see that γ is
the image of ±1 ∈ µ2(Q). The map NmE0/Q:µ2(E0)→ µ2(Q) sends −1 to (−1)[E0:Q].
If [E0:Q] is odd, it is surjective, and therefore γ = 0. Suppose therefore that [E0:Q]
is even, and that γ is the image of −1. The assumption that γ maps to zero in
H1(〈ι〉, SE(Af )) then implies that −1 ∈ Q is in the image of Nm:E0 ⊗Q → Q for
all 1; but this is impossible, since for some 1, [E0v:Q ] will be even for one (hence all)
v dividing 1.

Part (b) of the lemma shows that

SE(Af )
〈ι〉/SE(Q)〈ι〉 = (SE(Af)/S

E(Q))〈ι〉.

The condition ιeE(τ ) = eE(τ ) shows that eE maps into the right hand group, and we
shall henceforth regard it as mapping into the left hand group.

From part (a) we can extract an exact sequence

1→ A×
f /Q

× w→ SE(Af )
〈ι〉/SE(Q)〈ι〉 → µ2(Af,E0)/µ2(E0).

Now assume that E ⊃ Q[i], so that E = E0[i]. We show first that the image of
eE(τ ) in µ2(Af,E0)/µ2(E0) is 1. Let ε represent the image; then ε = (εv), εv = ±1,
and ε itself is defined up to sign. We shall show that, for any two primes v1 and v2,
εv1 = εv2. Choose a totally real quadratic extension E

′
0 of E0 in which v1 and v2 remain

prime, and let E ′ = E ′
0[i]. Let ε

′ represent the image of eE
′
(τ ) in µ2(Af,E′

0
)/µ2(E

′
0).

Then condition (c) shows that NmE′
0/E0

ε′ represents the image of eE(τ ), and so
NmE′

0/E0
ε′ = ±ε. But if v′i|vi, then NmE′

0,v′i
/E0,vi

= 1 for i = 1, 2.
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It follows that eE factors through w(A×
f /Q

×). Consider,

E: 1 −−−→ A×
f /Q

× w−−−→ SE(Af)/S
E(Q)�id

�
Q[i]: 1 −−−→ A×

f /Q
× w−−−→ SQ[i](Af )/S

Q[i](Q).

According to (c), eE(τ ) maps to eQ[i](τ ) under the right hand arrow, which accord-
ing to (a) and (b), is 1. As eE(τ ) lies in A×

f /Q
×, and the map from there into

SQ[i](Af )/S
Q[i](Q) is injective, this shows that eE(τ ) = 1.

Remark 6.3. The argument used in the penultimate paragraph of the above proof
is that used by Shih 1976, p101, to complete his proof of his special case of (1.1). For
the argument in the final paragraph, cf. 5.3c. These two arguments were all that was
lacking in the original version Deligne 1979b of Deligne 1982.

7. Definition of fE

We begin the proof of (5.1) by showing that there is a universal f , giving rise to
the fΦ.

Let E ⊂ C. The Weil group WE/Q of E/Q fits into an exact commutative diagram:

1 > A×
E/E

× >WE/Q > Hom(E,C) > 1

‖
1 > Gal(Eab/E)

∨∨recE

> Hom(Eab,C)

∨∨
> Hom(E,C) > 1

(see Tate 1979). Assume that E is totally imaginary. Then E×
∞E

× ⊂ Ker(recE),
and so we can divide out by this group and its image in WE/Q to obtain the exact
commutative diagram:

1 > A×
f,E/E

× >Wf,E/Q > Hom(E,C) > 1

‖
1 > Gal(Eab/E)

∨∨rE

> Hom(Eab,C)

∨∨
> Hom(E,C) > 1

Assume now that E is a CM-field Galois over Q. The cocharacter µE is defined
over E, and gives rise to a map µE(R):R× → SE(R) for any E-algebra R. Choose

elements wσ ∈W f
E/Q, one for each σ ∈ Hom(E,C), such that

wσ|E = σ, wισ = ι̃wσ all σ,

where ι̃ maps to ι ∈ Hom(Eab,C) (cf. §2). Let τ ∈ Aut(C) and let τ̃ ∈ Wf,E/Q map
to τ |Eab. Then w−1

τσ ◦ τ̃ ◦ wσ ∈ Af,E, and we define

f(τ ) =
∏

σ∈Hom(E,C)

(σ−1µE)(w−1
τσ τ̃wσ) mod SE(E).

Thus f is a map Aut(C)→ SE(Af,E)/S
E(E).
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Proposition 7.1. Let (K,Φ) be a CM-type whose reflex field is contained in E,
and let T = ResK/Q Gm. Identify T (Af)/T (Q) with a subgroup of T (Af,E)/T (E).
Then

ρΦ(f(τ )) = fΦ(τ ).

Proof. Because of (4.8), it suffices to show this with K = E.

Lemma 7.2. With the above notations,

fΦ(τ ) =
∏
φ∈Φ

w−1
τφ ◦ τ̃ ◦ wφ mod E×.

Proof. Let f ′ denote the right hand side. Then rE(f
′) = FΦ(τ ) (obviously), and

the same argument as in the proof of (2.3) shows that f ′ · ιf ′ = χ(τ ).

We now assume that E = K, E/Q Galois. Write i for the map T (Q) → T (E)
induced by Q ↪→ E; then, for any ρ ∈ Hom(E,C) and a ∈ T (Q) = E×, [ρ](i(a)) = ρa.
Thus [ρ](i(fΦ(τ ))) = ρfΦ(τ ) = fΦρ−1(τ ) by (2.6b). On the other hand,

[ρ](ρΦ(f(τ ))) = [ρ]
∏
σ

ρΦ ◦ (σ−1µE)(w−1
τσ τ̃wσ)

= [ρ]
∏
σ

σ−1(ρΦ ◦ µE)(w−1
τσ τ̃wσ)

= [ρ](
∏
σ

σ−1µΦ(w
−1
τσ τ̃wσ))

=
∏
σ

([ρ] ◦ µσ−1Φ)(w
−1
τσ τ̃wσ) ( by 4.4a)

=
∏

σ such that ρ∈σ−1Φ

w−1
τσ τ̃wσ

=
∏

σ∈Φρ−1

w−1
τσ τ̃wσ

= fΦρ−1(τ ).

Corollary 7.3. (a) f(τ ) depends only on E and τ ; we have therefore defined
maps fE : Aut(C)→ SE(Af,E)/S

E(E), one for each CM-field (Galois over Q);
(b) fE(στ ) = τ̃−1fE(σ) · fE(τ ), σ, τ ∈ Aut(C);
(c) if E1 ⊃ E2, then

Aut(C)
eE1✲ SE1(Af )/S

E1(Q)

❅
❅

❅
❅

❅
eE2

❘

SE2(Af )/S
E2(Q)

❄

commutes;
(d) fE(ι) = 1;
(e) fE(τ ) · ı̃fE(τ ) = wE(τ )−1;
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(f) σfE(τ ) = fE(τ ) for all σ ∈ Gal(E/Q).

Proof. (a) f(τ ) is the unique element of SE(Af,E)/S
E(E) such that ρΦ(f(τ )) =

fΦ(τ ) for all (K,Φ). (Cf. the proof of the uniqueness of e
E in (5.1).)

(b), (c), (d), (e). These are proved as (a), (b), (c), (d) of (5.2).

(f).ρΦ(σf
E(τ )) = σ(ρΦ(f

E(τ ))) = σfE
Φ (τ ) = fE

Φ (τ ).

Remark 7.4. Let w̄σ ∈ Wf,E/Q be such that

w̄σ|E = σ, w̄σι = w̄σ ι̃.

Then (Langlands 1979; Milne and Shih 1982a), b̄(τ ) is defined by

b̄(τ ) =
∏

σ∈Gal(E/Q)

σµE(w̄στ̃ w̄
−1
στ ) mod SE(E).

Let wσ = w̄−1
σ−1 ; then wσ|E = σ and wισ = ı̃wσ; moreover,

b̄(τ−1)−1 =
∏

σ∈Gal(E/Q)

σµE(w−1
σ−1τ τ̃wσ−1) = fE(τ ).

Thus, in the notation of Milne and Shih 1982a, 2.9, fE(τ ) = β̄(τ ).

8. Definition of gE

We complete the proof of (5.1) by showing that there is a universal g giving rise
to all gΦ. For simplicity, we shall assume that E is Galois over Q — for a non Galois
field, gE can be defined as the norm of the element from the Galois closure.

Proposition 8.1. Let E ⊂ C be a CM-field. There exists a unique map
gE : Aut(C)→ SE(Af,E)/S

E(E) with the following property: for any CM-type (K,Φ)
whose reflex field is contained in E,

ρΦ(g
E(τ )) = gΦ(τ )

in T (Af,E)/T (E), where T = ResK/Q(Gm).

Proof. The uniqueness follows from (4.7). For the existence, we need the notion
of a Hodge cycle.

For any variety X over C, write Hs(X,Q)(r) = Hs(X, (2πi)rQ) (cohomology
with respect to the complex topology). A Hodge cycle on A is an element s ∈
H2p(Ak,Q)(p), some p, k, that is of type (p, p), i.e., under the embedding (2πi)pQ ↪→
C, s maps into Hp,p ⊂ H2p(X,C). Recall that Hr(Ak,Q) =

∧r(⊕kH1(A,Q)∨), and
so GL(H1(A,Q)) acts by transport of structure on Hr(Ak,Q). The Mumford-Tate
group MT (A) of A is the largest Q-rational algebraic subgroup of GL(H1(A,Q))
such that MT (A)(Q) is the set of α ∈ GL(H1(A,Q)) for which there exists a
ν(α) ∈ Q× such that αs = ν(α)ps for any Hodge cycle s on A (of type (p, p)).

Lemma 8.2. Assume A is of CM-type (K,Φ), where the reflex field of (K,Φ) is
contained in E. Then the image of ρΦ:S

E → K× ⊂ GL(H1(A,Q)) is equal to MT (A).

Proof. Cf. Deligne 1982a, 3.4.
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WriteH2p(Ak,Af)(p) = H2p(Ak,Q)(p)⊗Af . Then there is a canonical isomorphism

H2p(Ak,Af )(p)
≈→

r∧
(⊕kVf (A)

∨)

and so the action of Aut(C) on Vf (A) gives rise to an action on H2p(Ak,Af)(p). We
shall need to use the following important result fo Deligne.

Theorem 8.3. Let s ∈ H2p(Ak,Q)(p) be a Hodge cycle on A, and let sf be the
image of s in H2p(Ak,Af )(p); then for any τ ∈ Aut(C) there exists a Hodge cycle s1

on τA whose image in H2p(Ak,Af)(p) is τsf .

Proof. See Deligne 1982a.

The cycle s1 of the theorem is uniquely determined, and will be written τs.

Proposition 8.4. With the notations of (8.2), there exists a K-linear isomor-

phism α:H1(A,E)
≈→ H1(τA,E) such that α(s) = ν(α)pτ (s) for all Hodge cycles s

on A (of type (p, p)).

Proof. For any Q-algebra R, let

P (R) = {α:H1(A,R)
≈→ H1(τA,R) | α(s) = ν(α)pτ (s), all s}.

Then P (R) is either empty or is a principal homogeneous space over MT (A)(R).
Thus P is either the empty scheme or is a principal homogeneous space overMT (A).
The existence of τ :H1(A,Af) → H1(τA,Af) in P (Af ) shows that the latter is true.
It therefore corresponds to an element of H1(Q,MT (A)). ButMT (A)E ≈ Gm×· · ·×
Gm, and so H1(E,MT (A)) = 0 by Hilbert’s Theorem 90.

Both (8.2) and (8.4) obviously also apply to products of abelian varieties of CM-
type. Let A =

∏
AΦ, where Φ runs through the CM-types on E and AΦ is of type

(E,Φ). Then ρ:SE ≈→ MT (A). Choose α as in (8.4). Then

Vf (A)⊗ E
τ→ Vf (τA)⊗ E

(α⊗1)−1

→ Vf (A)⊗E

is an Af,E-linear isomorphism and sends a Hodge cycle s of type (p, p) to νps, some
ν ∈ A×

f,E. Therefore it is multiplication by an element g ∈MT (A)(Af,E) = SE(Af,E).

The class g(τ ) of g in SE(Af,E)/S
E(E) has the properties required for (8.1).

The map g: Aut(C)→ SE(Af,E)/S
E(E) has the same properties as those listed for

f in (7.3). In particular, g(τ ) is fixed by Gal(E/Q). Set

e(τ ) =
g(τ )

f(τ )
.

Then e(τ ) ∈ (SE(Af,E)/S
E(E))Gal(E/Q), and it remains to show that it lies in

SE(Af)/S
E(Q) — the next proposition completes the proof.

Proposition 8.5. e(τ ) lies in SE(Af)/S
E(Q).

Proof. There is a cohomology sequence

0→ SE(Q)→ SE(Af )→ (SE(Af,E)/S
E(E))Gal(E/Q) → H1(Q, SE).
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Thus, we have to show that the image γ of e(τ ) in H1(Q, SE) is zero. But
H1(Q, SE) ↪→ ∏

 ,∞H1(Q , S
E), as follows easily from (4.1), and the image of e(τ ) in

H1(Q , S
E) is obviously zero for all finite 1. It remains to check that the image of γ

in H1(R, SE) is zero. Let

T = {a ∈
∏

CM-types on E

E× | a · ιa ∈ Q×} ( torus over Q).

Lemma 8.6. The image of γ in H1(Q, T ) is zero.

Proof. In the proof of (3.6) it shown that the image of e in T (Af,E)/T (E) lifts
to an element ε ∈ T (Af). The image of γ in H1(Q, T ) is represented by the cocycle
σ �→ σε− ε = 0.

Lemma 8.7. The map H1(R, SE)→ H1(R, T ) is injective.

Proof. There is a norm map a �→ a · ιa:T � Gm, and we define ST and SMT (A)
to make the rows in

1 > SMT (A) >MT (A) > Gm > 1

‖
1 > ST

∨
∩

> T
∨
∩

> Gm > 1

exact. (Here A =
∏
AΦ.) This diagram gives rise to an exact commutative diagram

R× > H1(R, SMT ) > H1(R,MT ) > 0

‖
R× > H1(R, ST )

∨
> H1(R, T )

∨
> 0.

Note that ST (and hence SMT ) are anisotropic over R; hence, H1(R, SMT ) =
SMT (C)2 and H1(R, ST ) = ST (C)2, and so H1(R, SMT ) ↪→ H1(R, SMT ). The
five-lemma now completes the proof.

See also Milne and Shih, 1982b, §5.
Remark 8.8. It seems to be essential to make use of Hodge cycles, and conse-

quently Shimura varieties (which are used in the proof of (8.3)), in order to show the
eΦ(τ ) have the correct functorial properties. Note that Shih (1976) also needed to
use Shimura varieties to prove his case of the theorem.

9. Re-statement of the Theorem

The following statement of the main theorem of complex multiplication first ap-
peared (as a conjecture) in Milne and Shih 1979.

Theorem 9.1. Let A be an abelian variety of CM-type (K,Φ); let τ ∈ Aut(C),
and let f ∈ f(τ ). Then

(a) τA is of type (K, τΦ);
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(b) there is an K-linear isomorphism α:H1(A,E) → H1(τA,E) where E is the
reflex field of (K,Φ), such that
(i) α(s) = ν(α)pτ (s), for all Hodge cycles s on A, where ν(α) ∈ Q× and 2p is

the degree of s;
(ii)

Vf (A)⊗ E
ρΦ(f)✲ Vf (A)⊗ E

❅
❅

❅
❅

❅
τ

❘

Vf (τA)⊗ E

α⊗1

❄

commutes (note that ρΦ(f) ∈ A×
f,K⊗E).

Proof. The theorem is true (by definition) if f(τ ) is replaced by g(τ ), but we
have shown that g(τ ) = f(τ ).

Remark 9.2. Let T be a torus such that

MT (A) ⊂ T ⊂ {a ∈ K× | a · ιa ∈ Q×}
and let h be the homomorphism defining the Hodge structure on H1(A,R). Then
the Shimura variety Sh(T, {h}) is, in a natural way, a moduli scheme, and the (new)
main theorem of complex multiplication gives a description of the action of Aut(C)
on Sh(T, {h}) (see Milne and Shih 1982, §6).

Remark 9.3. Out of his study of the zeta functions of Shimura varieties, Lang-
lands (1979) was led to a conjecture concerning the conjugates of Shimura varieties.
The conjecture is trivial for the Shimura varieties associated with tori, but in Milne
and Shih 1982b it is shown that for groups of symplectic similitudes the conjecture is
equivalent to (9.1). It is also shown (ibid.) that the validity of the conjecture for a
Shimura variety Sh(G,X) depends only on (Gder, X+). Thus (ibid.) similar methods
to those used in Deligne 1979a can be used to prove Langlands’s conjecture for exactly
those Shimura varieties for which Deligne proves the existence of canonical models in
that article.

10. The Taniyama Group

By an extension of Gal(Qal/Q) by SE with finite-adèlic splitting, we mean an exact
sequence

1→ SE → TE πE→ Gal(Qal/Q)→ 1

of pro-algebraic groups over Q (Gal(Qal/Q) is to be regarded as a constant pro-
algebraic group) together with a continuous homomorphism spE : Gal(Qal/Q) →
TE(Af ) such that spE ◦ πE = id. We always assume that the action of Gal(Qal/Q)
on SE given by the extension is the natural action. Assume E ⊂ C is Galois over Q,
and a CM-field.
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Proposition 10.1. (a) Let (TE, spE) be an extension of Gal(Qal/Q) by SE with
finite-adèlic splitting. Choose a section aE: Gal(Qal/Q)→ (TE)E that is a mor-
phism of pro-algebraic groups. Define h(τ ) ∈ SE(Af,E)/S

E(E) to be the class of
spE(τ ) · aE(τ )−1.
(i) h(τ ) is well-defined;
(ii) σh(τ ) = h(τ ), σ ∈ Gal(E/Q);
(iii) h(τ1τ2) = h(τ1) · τ̃1h(τ2), τ1, τ2 ∈ Gal(Qal/Q);
(iv) h lifts to a continuous map h′: Gal(Qal/Q) → SE(Af,E) such that the map

(τ1, τ2) �→ dτ1,τ2
df
= h′(τ1) · τ̃1h

′(τ2) · h′(τ1τ2)
−1 is locally constant.

(b) Let h: Gal(Qal/Q) → SE(Af,E)/S
E(E) be a map satisfying conditions (i), (ii),

(iii), (iv); then h arises from a unique extension of Gal(Qal/Q) by SE with
finite-adèlic splitting.

Proof. Easy; see Milne and Shih 1982a, §2.
Let S = lim←−SE , where E runs through the CM-fields E ⊂ C that are Galois over Q.

By an extension of Gal(Qal/Q) by S with finite-adèlic splitting, we mean a projective
system of extensions of Gal(Qal/Q) by SE with finite-adélic splitting, i.e., a family

1 −−−→ SE1 −−−→ TE1 −−−→ Gal(Qal/Q) −−−→ 1�NmE1/E2

�NmE1/E2

�id

1 −−−→ SE2 −−−→ TE2 −−−→ Gal(Qal/Q) −−−→ 1

TE1(Af )

�❅
❅

❅
spE1

Gal(Qal/Q)

✠�
�

�
spE2

TE2(Af )

NmE1/E2

❄

of commutative diagrams.

Theorem 10.2. Let T1 and T2 be two extensions of Gal(Qal/Q) by S with finite-
adèlic splittings. Assume:

(a) for each E, and i = 1, 2, there exists a commutative diagram

1 > SE > ET
E
i > Gal(Qal/Q) > 1

‖
1 > SE >ME

∨
> Gal(Qal/E)ab

∨∨
> 1

compatible with the finite-adèlic splittings, where ET
E is the inverse image of

Gal(Qal/Q) in TE and the lower row is the extension constructed by Serre (1968,
II).

(b) for each τ ∈ Gal(Qal/Q), π−1
1 (τ ) ≈ π−1

2 (τ ) as principal homogeneous spaces
over SE.

(c) spE(ι) ∈ TE
i (Q), i = 1, 2.
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Then there is a unique family of isomorphisms φE :TE
1 → TE

2 making the following
diagrams commute:

1 −−−→ SE −−−→ TE
1 −−−→ Gal(Qal/Q) −−−→ 1�id

�φE

�id

1 −−−→ SE −−−→ TE
2 −−−→ Gal(Qal/Q) −−−→ 1

TE1
1

NmE1/E2−−−−−→ TE2
1�φE1

�φE2

TE2
2

NmE1/E2−−−−−→ TE2
2

TE
1 (Af )

spE
1←−−− Gal(Qal/Q)�

�id

TE
2 (Af )

spE
2←−−− Gal(Qal/Q)

Proof. Let (hE
1 ) and (hE

2 ) be the families of maps corresponding as in (10.1a)
to T1 and T2. The hypotheses of the theorem imply that the family (eE), where
eE = hE

1 /h
E
2 , satisfies the hypotheses of (6.1). Thus h

E
1 = hE

2 for all E, and we apply
(10.1b).

Definition 10.3. The extension corresponding to the family of maps (fE)
(rather, τ �→ fE(τ−1)−1) defined in (7.3) is called the Taniyama group.

Remark 10.4. In (1982b), Deligne proves the following:

(a) let T ′ be the group associated with the Tannakian category of motives over
Q generated by Artin motives and abelian varieties of potential CM-type; then
T ′ is an extension of Gal(Qal/Q) by S with finite-adèlic splitting in the sense
defined above. (From a more naive point of view, T ′ is the extension defined by
the maps (gE) of §8.)

(b) Theorem 10.2, by essentially the same argument as we have given in §6, except
expressed directly in terms of the extensions rather than cocycles.

These two results combine to show that the motivic Galois group is isomorphic to
the explicitly constructed Taniyama group (as extensions with finite-adèlic splitting).
This can be regarded as another statement of the (new) main theorem of complex
multiplication.

Note however that without the Taniyama group, Deligne’s result says very7 little.
This is why I have included Langlands as one of the main contributors8 to the proof
of (1.1) even though he never explicitly considered abelian varieties with complex
multiplication (and neither he nor Deligne explicitly considered a statement like (1.1)).

7It is only a uniqueness result: it says that there is at most extension consistent with the theorem
of Shimura and Taniyama; Langlands wrote down an explicit extension with this property.

8Probably Shih and Tate should also be included.
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11. Zeta Functions

Lemma 11.1. There exists a commutative diagram

TE(C) <
spE∞ WQ

TE(Q)
∪

∧

> Gal(Qal/Q)
∨

where WQ is the Weil group of Q and T is the Taniyama group.

Proof. Easy; see Milne and Shih 1982a, 3.17.

Theorem 11.2. Let A be an abelian variety over Q of potential CM-type (K,Φ).
Let E be a CM-field containing the reflex field of (K,Φ). Then there exists a repre-
sentation ρ:TE → Aut(H1(AC,Q)) such that

(a) ρf
df
= ρ ◦ spE : Gal(Qal/Q)→ Aut(Vf (A)) describes the action of Gal(Qal/Q) on

Vf (A);
(b) L(s, A/Q) = L(s, ρ∞) where ρ∞ = ρ ◦ spE∞ is a complex representation of WE.

Proof. The existence of ρ is obvious from the interpretation of T as the mo-
tivic Galois group M (see 10.4a) or, more naively, as the extension corresponding to
(gE(τ−1)−1).

Remark 11.3. The proof of (11.2) does not require the full strength of Deligne’s
results, and in fact is proved by Deligne (1979b). Subsequently Yoshida (1981) found
another proof that L(s, A/Q) = L(s, ρ∞) for some complex representation ρ∞ of
WQ. When Gal(Qal/Q) stabilizes K ⊂ End(AQal) ⊗ Q, this last result was proved
independently by Milne (1972) (all primes) and Shimura (1971) (good primes only).
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Addendum (June 1998)
The sections of the Addendum are largely independent.

12. The Origins of the Theory of Complex Multiplication for

Abelian Varieties of Dimension Greater Than One

On this topic, one can not do better than to quote Weil’s commentary (Œuvres, Vol
II, pp 541–542) on his articles in the Proceedings9 of the International Symposium
on Algebraic Number Theory, held in Tokyo and Nikko, September 8–13, 1955.

Comme contribution au colloque, j’apportais quelques idées que je croy-
ais neuves sur l’extension aux variétés abéliennes de la théorie clas-
sique de la multiplication complexe. Comme chacun sait, Hecke avait
eu l’audace, stupéfiante pour l’époque, de s’attaquer à ce problème
dès 1912; il en avait tiré sa thèse, puis avait poussé son travail assez
loin pour découvrir des phénomènes que lui avaient paru inexplicables,
après quoi il avait abandonné ce terrain de recherche dont assurément
l’exploration était prématurée. En 1955, à la lumière des progrès ef-
fectués en géométrie algébrique, on pouvait espérer que la question était
mûre.
Elle l’était en effet; à peine arrivé à Tokyo, j’appris que deux jeunes

japonais venaient d’accomplir sur ce même sujet des progrès décisifs.
Mon plaisir à cette nouvelle ne fut un peu tempéré que par ma crainte
de n’avoir plus rien à dire au colloque. Mais il apparut bientôt, d’abord
que Shimura et Taniyama avaient travaillé indépendamment de moi et
même indépendamment l’un de l’autre, et surtout que nos résultats à
tous trois, tout en ayant de larges parties communes, se complétaient
mutuellement. Shimura avait rendu possible la réduction modulo p
au moyen de sa théorie des intersections dans les variétés définies sur
un anneau local (Am. J. of Math. 77 (1955), pp. 134–176); il s’en
était servi pour l’étude de variétés abéliennes à multiplication complexe,
bien qu’initialement, à ce qu’il me dit, il eût plutôt eu en vue d’autres
applications. Taniyama, de son côté, avait concentré son attention
sur les fonctions zêta des variétés en question et principalement des
jacobiennes, et avait généralisé à celles-ci une bonne partie des résultats
de Deuring sur le cas elliptique. Quant à ma contribution, elle tenait
surtout à l’emploi de la notion de “variété polarisée”; j’avais choisi
ce terme, par analogie avec “variétés orientées” des topologues, pour
désigner une structure supplémentaire qu’on peut mettre sur une variété
complète et normale quand elle admet un plongement projectif. Faute
de cette structure, la notion de modules perd son sens.
Il fut convenu entre nous trois que je ferais au colloque un exposé

général ([Weil 1956b]) ésquissant à grands traits l’ensemble des résultats
obtenus, exposé qui servirait en même temps d’introduction aux com-
munications de Shimura et de Taniyama; il fut entendu aussi que par
la suite ceux-ci rédigeraient le tout avec des démonstrations détaillées.

9This is the same conference where Taniyama gave his somewhat enigmatic statement of the
Taniyama conjecture.
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Leur livre a paru en 1961 sous le titre Complex multiplication of abelian
varieties and its application to number theory (Math. Soc. of Japan,
Tokyo); mais Taniyama était mort tragiquement en 1958, et Shimura
avait dû l’achever seul.
D’autre part, tout en restant loin des résultats de Taniyama sur les

fonctions zêta des variétés “de type CM” (comme on dit à présent),
j’avais aperc.u le rôle que devaient jouer dans cette théorie certains
caractères de type (A0)”, ainsi que les caractères à values P-adiques
qu’ils permettent de définir (cf. [Weil 1955b], p6). Je trouvai là une
première explication du phénomène qui avait le plus étonné Hecke; il
consiste en ce que, dès la dimension 2, les modules et les points de
division des variétés de type CM définissent en géneral des extensions
abéliennes, non sur le corps de la multiplication complexe, mais sur
un autre qui lui est associé. Ce sujet a été repris et plus amplement
développé par Taniyama (J. Math. Soc. Jap. 9 (1957), pp. 330–366);
cf. aussi [Weil 1959].

As mentioned in the text, the first theorem extending the Main Theorem of Com-
plex Multiplication to automorphisms not fixing the reflex field was that of Shih 1976.
This theorem of Shih was used in Milne and Shih 1981 to give an explicit description
of the involution defined by complex conjugation on the points of Shimura variety
whose reflex field is real (Conjecture of Langlands 1979, p 234).

Apparently, it was known to Grothendieck, Serre, and Deligne in the 1960s that
the conjectural theory of motives had as an explicit consequence the existence of a
Taniyama group — these ideas inform the presentation in Chapters I and II of Serre
1968 — but they were unable to construct such a group. It was not until 1977, when
Langlands’s efforts to understand the conjugates of Shimura led him to define his
cocycles, that the group could be constructed (and it was Deligne who recognized
that Langlands’s cocycles answered the earlier problem).

The rest of the story is described in the text of the article.

13. Zeta Functions of Abelian Varieties of CM-type

In this section I explain the elementary approach (Milne 1972), not using the the-
orems in the first part of this article, to the zeta function of abelian varieties of
CM-type.

First some terminology: For abelian varieties A and B over a field k, Hom(A,B)
denotes the group of homomorphisms A → B defined over k, and Hom0(A,B) =
Hom(A,B)⊗Z Q. Similar notations are used for endomorphisms. An abelian variety
over k is simple if it contains no nonzero proper abelian subvariety defined over k,
and it is absolutely simple if it is simple10 over kal. An abelian variety A over a field
k of characteristic zero is said to be of CM-type if its Mumford-Tate group is a torus.
Thus, A is of CM-type if, for each simple isogeny factor B of Akal, End0(B) is a CM-
field of degree 2 dimB over Q. For an abelian variety A over a number field k ⊂ C

10An older terminology, based on Weil’s Foundations, uses “simple” where we use “absolutely
simple”, see, for example, Lang 1983 or Shimura 1998.
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and finite prime v of k, the polynomial

Pv(A, T ) = det(1− FvT |V (A)
Iv)

where 1 is any prime number different from the characteristic of the residue field at v,
Iv is the inertia group at a prime v′|v, and Fv is a Frobenius element in the quotient
of the decomposition group at v′ by Iv — it is known that Pv(A, T ) is independent
of the choice of 1, v′, and Fv. Finally, the zeta function of A is

ζ(A, s) =
∏
v

1

Pv(N(v)−s)

where v runs over all finite primes of k and N(v) is the order of the residue field at
v. Clearly ζ(A, s) depends only on the isogeny class of A, and if A is isogenous to
A1 × · · · × Am, then ζ(A, s) =

∏m
i=1 ζ(Ai, s).

Case that all endomorphisms of A are defined over k. In this subsection, A
is an abelian variety of CM-type such that End(A) = End(Akal). Because ζ(A, s)
depends only on the isogeny class of A, we may suppose that A is isotypic, i.e., that
it is isogenous to a power of a simple abelian variety. Then there exists a CM-field
K ⊂ End0(A) of degree 2 dimA over Q.

The tangent space T to A is a finite-dimensional vector space over Q on which
both k and K act. Since K acts k-linearly, the actions commute. An element α ∈ k×

defines an automorphism of T viewed asK-vector space, whose determinant we denote
ψ0(α). Then ψ0: k

× → K× is a homomorphism. Let Ik denote the group of idèles of
k.

Theorem 13.1. There exists a unique homomorphism

ε: Ik → K×

such that

(a) the restriction of ε to k× is ψ0;
(b) the homomorphism ε is continuous, in the sense that its kernel is open in Ik;
(c) there is a finite set S of primes of k, including those where A has bad reduction,

such that for all finite primes v /∈ S, ε maps any prime element at v to Fv.

Proof. This is a restatement of the Theorem of Shimura and Taniyama (1961,
p148) — see Serre and Tate 1968, Theorem 10.

There is a unique continuous homomorphism χ: Ik → (K ⊗Q R)× that is trivial on
k× and coincides with ε on the group I∞k of idèles whose infinite component is 1 (ib.
p513). For each σ:K → C, let χσ be the composite

Ik
χ→ (K ⊗Q R)× σ⊗1→ C×.

It is continuous and trivial on k×, that is, it is a Hecke character in the broad sense
(taking values in C× rather than the unit circle).

Theorem 13.2. The zeta function of A,

ζ(A, s) =
∏

σ:K↪→C

L(s, χσ).
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Proof. This is proved in Shimura and Taniyama 1961 except for the factors cor-
responding to a finite set of primes, and for all primes in Serre and Tate 1968.

General Case. We now explain how to extend these results to abelian varieties that
are of CM-type, but whose endomorphisms are not defined over the given field of
definition.

Let k be a field of characteristic zero, and let A be an abelian variety over a finite
extension k′ of k. The restriction of scalars Resk′/kA of A to k is the variety A∗
over k representing the functor of k-algebras, R �→ A(R⊗k k

′). For any finite Galois
extension k̄ of k containing k′, there is a canonical isomorphism

P :A∗k̄
≈→

∏
σ∈Homk(k′,k̄)

σA.

Lemma 13.3. Let k be a number field, and let A∗ be the abelian variety over k
obtained by restriction of scalars from an abelian variety A over a finite extension k′

of k. Then ζ(A∗, s) = ζ(A, s).

Proof. It is immediate from the definition of A∗ that V (A∗) is the Gal(kal/k)-
module induced from the Gal(kal/k′)-module V (A). This implies the statement. (See
Milne 1972, Proposition 3.)

Lemma 13.4. Let A be an abelian variety over a field k, and let k′ be a finite
Galois extension of k of degree m and Galois group G. Suppose that there exists a Q-
subalgebra R ⊂ End0(Ak′) such that RG is a field and [R:RG] = m. Then Resk′/kAk′

is isogenous to Am.

Proof. Let α1, . . . , αm be an RG-basis for R over RG, and let φ:Am
k′ → Am

k′ be
the homomorphism (σiαj)1≤i,j≤m, where G = {σ1, . . . , σm}. Then φ is an isogeny.
When we identify the second copy of Am

k′ with
∏
σiAk′ and compose φ with P−1, we

obtain an isogeny Am
k′ → A∗k′ that is invariant under G, and hence defined over k

(ibid. Theorem 3).

Example 13.5. Let A be a simple abelian variety over a field k. Let R be the
centre of End0(Akal), and let k′ be the smallest field containing k and such that all
elements of R are over defined over k′. Then A, k′, and R satisfy the hypotheses
of Lemma 13.4 (ibid. p186), and so Am is isogenous to (Ak′)∗. Hence, when k is a
number field

ζ(A, s)m = ζ(Ak′ , s).

Example 13.6. Let A be an abelian variety over a number field k that, over C,
becomes of CM-type (K,Φ) for some field K. Assume that K is stable under the
action of Gal(kal/k) on End0(Akal), and let k′ be the smallest field containing k such
that all elements of K are defined over k′. Then A, k′, and K satisfy the hypotheses
of Lemma 13.4, and so

ζ(A, s)m = ζ(Ak′, s)
(13.2)
=

∏
σ∈Σ

L(s, χσ), Σ = Hom(K,C).

In this case, we can improve the result. The group G = Gal(k′/k) acts faithfully on
K, and a direct calculation shows that L(s, χσ◦τ) = L(s, χσ) for all σ ∈ Σ and τ ∈ G.
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Therefore, ∏
σ∈Σ

L(s, χσ) = (
∏

σ∈Σ/G

L(s, χσ))
m.

We can take an mth root, and obtain

ζ(A, s) =
∏

σ∈Σ/G

L(s, χσ).

Now we consider the general case. Let A be an abelian variety of CM-type over a
number field k. As noted earlier, we may suppose A to be simple. Then ζ(A, s)m =
ζ(Ak′, s) where k

′ is the smallest field containing k over which all endomorphisms in
the centre of End0(Akal) are defined. Replacing A/k with Ak′/k

′, we may suppose
that the endomorphisms in the centre of End0(Akal) are defined over k, and we may
again suppose that A is simple. Then Akal is isotypic, and, for example, if it is simple,
we can apply (13.5) to obtain the zeta function of A.

14. Hilbert’s Twelfth Problem

This asks for

. . . those functions that play for an arbitrary algebraic number field
the role that the exponential function plays for the field of rational num-
bers and the elliptic modular functions play for an imaginary quadratic
number field.

The classical result, referred to by Hilbert, can be stated as follows: for any quadratic
imaginary field E, the maximal abelian extension of E is obtained by adjoining to it
the moduli of elliptic curves and their torsion points with complex multiplication by
E.

AsWeil observed (see §12), in dimension> 1, the moduli of abelian varieties of CM-
type and their torsion points generate abelian extensions, not of the field of complex
multiplication, but of another field associated with it — the latter is now called the
reflex field. In principle, the theory of Shimura and Taniyama allows one to list the
abelian varieties of CM-type whose reflex field is contained in a given CM-field E,
and to determine the extensions of E obtained from the moduli. However, the results
in the published literature are unsatisfactory — for example, they don’t give a good
description of the largest abelian extension of a field obtainable in this fashion (see
Shimura and Taniyama 1961, Chapter IV; Shimura 1962; Shimura 1998, Chapter IV).
Thus, the next theorem is of considerable interest.

Theorem 14.1 (Wei 1993, 1994). Let E be a CM-field. Let F be the maximal
totally real subfield of E, and let H be the image of Gal(F ab/F ·Qab) in Gal(Eab/E)
under the Verlagerung map

Gal(Qal/F )ab → Gal(Qal/E)ab.

Then the field obtained by adjoining to E the moduli of all polarized abelian varieties
of CM-type (and their torsion points) with reflex field contained in E is

ME = EabH
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The theorem is proved by combining the three lemmas below.

Let T be a torus over Q and µ a cocharacter of T . We are only interested in pairs
(T, µ) satisfying the conditions:

(a) T is split by a CM-field; equivalently, for all automorphisms τ of C, the actions
of τ ι and ιτ on X∗(T ) agree;

(b) the weight −µ− ιµ of µ is defined over Q.

Let (T, µ) be a pair satisfying (a) and (b). Its reflex field E(T, µ) is the field
of definition of µ — because of (a), E(T, µ) is a subfield of a CM-field. Let E ⊃
E(T, µ). On applying ResE/Q (Weil restriction) to the homomorphism µ:Gm → TE

and composing with the norm map, we obtain a homomorphism N(T, µ):

ResE/Q Gm

ResE/Q µ−−−−−→ ResE/Q TE

NormE/Q−−−−−→ T

For any Q-algebra R, this gives a homomorphism

(E ⊗Q R)
× → T (R).

Let T (Q) be the closure of T (Q) in T (Af). The reciprocity map

r(T, µ): Gal(Eab/E)→ T (Af)/T (Q)

is defined as follows: let τ ∈ Gal(Eab/E), and let t ∈ A×
E be such that recE(t) = τ ;

write t = t∞ · tf with t∞ ∈ (E ⊗Q R)× and tf ∈ (E ⊗Q Af)
×; then

r(T, µ)(τ )
df
= N(T, µ)(tf) mod T (Q).

Lemma 14.2. Let E be a CM-field, and let H be as in the statement of the theorem.
Then

H =
⋂

Ker(r(T, µ))

where (T, µ) runs over the pairs satisfying (a) and (b) and such that E(T, µ) ⊂ E.

Proof. There is a universal such pair, namely, (SE, µE), and so⋂
Ker r(T, µ) = Ker r(SE , µE).

Because SE has no R-split subtorus that is not already split over Q, SE(Q) is closed
in SE(Af). Thus, to prove the lemma, one must show that H is the kernel of

r(SE , µE): Gal(Eab/E)→ SE(Af )/S
E(Q).

This can be done by direct calculation (Wei 1994, Theorem 2.1).

For any CM-field K with CM-type Φ, we obtain a pair (K×, µΦ) satisfying (a) and
(b) (see §4).

Lemma 14.3. Let E be a CM-field, and let H be as above. Then

H =
⋂

Ker r(K×, µΦ)

where the intersection is over all CM-types (K,Φ) with reflex field contained in E.



32 J.S. MILNE

Proof. For each (K,Φ) with reflex field contained in E, we obtain a homomor-
phism ρΦ:S

E → K× (see §4), and (cf. the preceding proof) it suffices to show that⋂
Ker ρΦ = 1. But X∗(SE) is generated by the CM-types Ψ on E, and Ψ occurs in

ρΦ for Φ the reflex of Ψ (ibid. 1.5.1).

Lemma 14.4. Let (A, i) be an abelian variety over C of CM-type (K,Φ), and let
E be the reflex field of (K,Φ). The field of moduli of (A, i) and its torsion points is
(Eab)H(Φ) where H(Φ) is the kernel of r(K×,Φ).

Proof. This is (yet another) restatement of the Theorem of Shimura and
Taniyama.

In fact, (ibid.) for a CM-field E, the following fields are equal:

(a) the fixed field of H;
(b) the field generated over E by the fields of moduli of all CM-motives and their

torsion points with reflex field contained in E;
(c) the field generated over E by the fields of moduli of the CM-motive and its

torsion points defined by any faithful representation of SE;
(d) the field generated over E by the fields of moduli of the polarized abelian

varieties and their torsion points of CM-type with reflex field contained in E;

Moreover, for some Siegel modular variety and special point z, this is the field gener-
ated by the values at z of the E-rational modular functions on the variety (ib. 3.3.2;
see also the next section).

Special Values of Modular Functions. 11

Abelian class field theory classifies the abelian extensions of a number field k, but
does not explain how to generate the fields. In his Jugendtraum, Kronecker suggested
that the abelian extensions of Q can be generated by special values of the exponential
function, and that the abelian extensions of an imaginary quadratic number field can
be generated by special values of elliptic modular functions. This idea of generating
abelian extensions using special values of holomorphic functions was taken up by
Hilbert in his twelfth problem, where he suggested “finding and discussing those
functions that play the part for any algebraic number field corresponding to that of
the exponential function for the field of rational numbers and of the elliptic modular
functions for imaginary quadratic number fields.”

Here we explain how the theory of Shimura varieties allows one to define a class of
modular functions naturally generalizing that of the elliptic modular functions, and
that it allows one to identify the fields generated by the special values of the functions
as the fields of moduli of CM-motives.

Modular functions over C. To define a Shimura variety, one needs a reductive group
G over Q and a G(R)-conjugacy class X of homomorphism S → GR satisfying the
following conditions:

SV1: for each h ∈ X, the Hodge structure on the Lie algebra g of G defined by
Ad◦h: S → GL(gR) is of type {(−1, 1), (0, 0), (−1, 1)};

SV2: for each h ∈ X, adh(i) is a Cartan involution on Gad
R ;

11This subsection is a manuscript of mine dated May 6, 1993.
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SV3: the adjoint group Gad of G has no factor defined over Q whose real points
form a compact group, and the identity component of the centre of G splits over
a CM-field.

The condition (SV1) implies that the restriction of h to Gm ⊂ S is independent of
h ∈ X. We denote its reciprocal by wX:Gm → GC, and call it the weight of the
Shimura variety. The weight is always defined over a totally real number field, and
we shall be especially interested in Shimura varieties for which it is defined over Q.

Consider a pair (G,X) satisfying the Axioms (SV1-3). The set X has a canonical
G(R)-invariant complex structure for which the connected components are isomorphic
to bounded symmetric domains.

For each compact open subset K of G(Af ),

ShK(G,X)
df
= G(Q)\X ×G(Af )/K

is a finite disjoint union of quotients of the connected components of X by arithmetic
subgroups of Gad(Q)+, say

ShK(G,X) =
⋃

Γi\Xi.

For K sufficiently small, each space Γi\Xi will be a complex manifold, and, according
to Baily and Borel (1966), it has a natural structure of a quasi-projective variety
over C. Hence ShK(G,X) is an algebraic variety over C, and the Shimura variety
Sh(G,X) is the projective system of these varieties, or (what amounts to the same
thing) the limit of the system, together with the action of G(Af ) defined by the rule:

[x, a] · g = [x, ag], x ∈ X, a, g ∈ G(Af ).

A rational function f on ShK(G,X) is called an automorphic function over C when
dimX > 0. Such a function defines (for each i) a meromorphic function fi on each
Xi invariant under Γi. Conversely a family (fi) of invariant meromorphic functions
defines an automorphic function f provided each fi is “meromorphic at infinity” (this
condition is automatically satisfied except when Xi has dimension 1).

When the weight wX of the Shimura variety is defined over Q, we shall call the au-
tomorphic functions modular functions. Classically this name is reserved for functions
on Shimura varieties that are moduli variety for abelian varieties, but it is known that
most Shimura varieties with rational weight are moduli varieties for abelian motives,
and it is hoped that they are all moduli varieties for motives, and so our nomenclature
is reasonable. This class of functions is the most natural generalization of the class
of elliptic modular functions.

Note that it doesn’t yet make sense to speak of the algebraic (much less arithmetic)
properties of the special values of modular functions, because, for example, the prod-
uct of a modular function with a complex number is again a modular function.

Example 14.5. Let G = GL2 and let X be the G(R)-conjugacy class of homo-
morphism S → GL2,R containing the homomorphism

a + ib �→
(
a −b
b a

)
.
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The map h �→ h(i)·i identifiesX with {z ∈ C |  (z) �= 0}, and in this case ShK(G,X)

is a finite union of elliptic modular curves over C. If K = GL2(Ẑ), then the field of
modular functions on ShK(G,X) is C[j].

Example 14.6. Let T be a torus over Q split by a CM-field, and let µ ∈ X∗(T ).
Define h: S → TR by h(z) = µ(z) · µ(z). Then (T, {h}) defines a Shimura variety.

Remark 14.7. Shimura varieties have been studied for 200 years12...Gauss, Pi-
card, Poincaré, Hilbert, Siegel, Shimura,... The axiomatic definition given above is
due to Deligne (except that he doesn’t require that the identity component of the
centre split over a CM-field). The name is due13 to Langlands.

Special points. A point x ∈ X is said to be special if there exists a torus T ⊂ G
(this means T is rational over Q), such that Im(hx) ⊂ TR. By a special pair (T, x)
in (G,X) we mean a torus T ⊂ G together with a point x ∈ X such that hx factors
through TR.

Example 14.8. In the Example 2, the special points correspond to points z ∈ C\R
such that [Q[z]:Q] = 2. For such a z, the choice of a Q-basis for E =df Q[z] determines
an embedding Q[z]× ↪→ GL2(Q), and hence an embedding T =df (Gm)E/Q ↪→ GL2.
The map hz factors through TR ↪→ GL2,R.

Modular functions defined over number fields. To a torus T defined over Q and a
cocharacter µ of T defined over a number field E, we attach a reciprocity map

r(T, µ): Gal(Eab/E) −−−→ T (Af)/T (Q)−

as in (Milne 1992, p164)14. The reflex field E(G,X) is defined to be the field of
definition of the G(C)-conjugacy class of homomorphisms Gm → GC containing µx

for x ∈ X. It is a number field, and is a subfield of a CM-field. Hence it is either
itself a CM-field or is totally real.

By a model of Sh(G,X) over a subfield k of C, we mean a scheme S over k en-
dowed with an action of G(Af ) (defined over k) and a G(Af )-equivariant isomorphism
Sh(G,X) → S ⊗k C. We use this isomorphism to identify Sh(G,X)(C) with S(C).

Theorem 14.9. There exists a model of Sh(G,X) over E(G,X) with the following
property: for all special pairs (T, x) ⊂ (G,X) and elements a ∈ G(Af ), the point [x, a]
is rational over E(T, x)ab and τ ∈ Gal(E(T, x)ab/E(T, x)) acts on [x, a] according to
the rule:

τ [x, a] = [x, ar(τ )], where r = r(T, µx).

The model is uniquely determined by this condition up to a unique isomorphism.

The model in the theorem is said to be canonical.

Remark 14.10. For Shimura varieties of PEL-type, models over number fields
were constructed by Mumford and Shimura (and his students Miyake and Shih).
That they satisfy condition in the theorem follows from the theorem of Shimura and
Taniyama. Shimura defined the notion of a canonical model more generally, and
proved the existence in one interesting case where the weight is not defined over Q.

12This seems to be an exaggeration.
13Earlier Shimura curves had been so named by Ihara.
14Better, see above
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Deligne modified Shimura’s definition, proved that the canonical model is unique (if
it exists) (1971), and showed that it exists for all Shimura varieties of abelian type
(1979a). In 1981 Borovoi suggested using a trick of Piateski-Shapiro to extend the
proof to the remaining cases, and this was carried out by Milne in 1982 (Milne 1983).

Write Sh(G,X)E for the model in the theorem, and for any k ⊃ E, write Sh(G,X)k
for Sh(G,X)E ⊗E k.

For a connected variety V over a field k, the field of rational functions on V is a
subfield of the field of rational functions on V ⊗k C. We say that a modular function
f on ShK(G,X) is rational over a subfield k of C if it arises from a rational function
on ShK(G,X)k.

Let x ∈ X be special, say Im(hx) ⊂ TR. Then the field of definition of µx is written
E(x) — it is the reflex field of (T, hx), and is a finite extension of E(G,X).

The fields generated by special values of modular functions. Let V be a connected
algebraic variety over a field k. A point P ∈ V (kal) is a morphism Spec kal → V —
we also use P to denote the image of the map. It corresponds to a k-homomorphism
OV,P → kal. This homomorphism factors through OV,P/mP , and hence its image in
kal is a subfield of kal, which we denote k[P ].

For any open affine neighbourhood U of P , the field of rational functions k(V ) on
V is the field of fractions of k[U ]. For f = g/h ∈ k(V ), we can speak of

f(P )
df
= g(P )/h(P ) ∈ kal

whenever f does not have a pole at P , i.e., when h /∈ mP.

Lemma 14.11. With the above notations,

k[P ] =
⋃

k[f(P )]

where the union runs over the f ∈ k(V ) without a pole at P (i.e., over f ∈ OV,P).

Proof. We may replace V with an open affine neighbourhood, and embed V in
An. Then k[P ] is the field generated by the coordinates (a1, . . . , an) of P . Clearly,
for any rational function f(X1, · · · , Xn) with coordinates in k, f(a1, . . . , an) ∈ k[P ]
(if it is defined). Conversely, k[P ] =

⋃
k[f(a1, . . . , an)] where f runs through the

polynomials in X1, . . . , Xn.

For a number field k, let kc be the subfield of kal corresponding to⋂
Ker(r(T, µ))

where (T, µ) runs over the pairs (T, µ) consisting of a torus T split by a CM-field and
µ is a cocharacter of T whose weight −µ − ιµ is defined over Q. (Equivalently over
the pairs (T, µ) consisting of a torus T over Q and a cocharacter µ of T satisfying the
Serre condition15.)

Theorem 14.12. Let k be an algebraic number field. For any Shimura variety
Sh(G,X) such that E(G,X) ⊂ k, modular function f on ShK(G,X) rational over k,
and special point x of X such that E(x) ⊂ k, f(x) ∈ kc (if it is defined, i.e., f doesn’t

15This is the condition (σ − 1)(ι + 1)µ = 0 = (ι + 1)(σ − 1)µ.
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have a pole at x). Moreover, if k contains a CM-field, then kc is generated by these
special values.

Proof. Let (T, x) be a special pair in (G,X). I claim that T splits over a CM-field.
To prove this, it suffices to show that the action ι on X∗(T ) (or even X∗(T ) ⊗ Q)
commutes with that of τ , for all τ ∈ Gal(Qal/Q). But

X∗(T )⊗Q = X∗(T ′)⊗Q⊕X∗(Gab)

where T ′ = T/Z(G) (use that G→ Gad ×Gab is an isogeny). By assumption (SV3),
X∗(Gab) splits over a CM-field, and it follows from (SV2) that ι acts as -1 on X∗(T ′)
and hence commutes with everything. From Theorem 5, it is clear that k([x, 1]) is
fixed by Ker(r(T, µx)) and so is contained in kc. From the lemma, this implies that
f(x) ∈ kc for all f .

Before proving the converse, we need a construction. Let E be a CM-field, with
maximal totally real subfield F . Let N be the kernel of

(Gm)E/Q −−−→ SE .

It is a subgroup of (Gm)F/Q, and hence is contained in the centre of GL2,F , and we
define G = GL2,F /N . The choice of a basis for E as an F -space determines an
inclusion (Gm)E/Q ↪→ GL2,F , and hence an inclusion SE ↪→ G. Let X be the G(R)
conjugacy class of the composite

S
hcan−−−→ SE −−−→ G.

Then Sh(G,X) is a Shimura variety of dimension [F :Q] with weight defined over Q

and whose reflex field is Q.

On applying this construction to the largest CM-field contained in k, we obtain a
Shimura variety Sh(G,X) containing Sh(Sk, hcan), where S

k = SE is the Serre group
for k. The statement is now (more-or-less) obvious.

Nonabelian solutions to Hilbert’s Twelfth Problem. By applying the new
Main Theorem of Complex Multiplication (Theorem 9.1) in place of the original, one
obtains explicit non-abelian extensions of number fields (Milne and Shih 1981, §5).

15. Algebraic Hecke Characters are Motivic

16 Weil’s Hecke characters of type A0 are now called algebraic Hecke characters. In
this section, I show that they are all motivic (and explain what this means).

Algebraic Hecke characters. In this subsection, I explain the description of alge-
braic Hecke characters given in Serre 1968.

Notations: Qal is the algebraic closure of Q in C; K is a fixed CM-field, Σ =
Hom(K,Qal) = Hom(K,C), and I = I∞ × If is the group of idèles of K. For a finite
extension k′/k, (Gm)k′/k is the torus over k obtained from Gm/k′ by restriction of
scalars.

I define an algebraic Hecke character to be a continuous homomorphism χ: I → Qal×

such that

(a) χ = 1 on I∞;

16This section is the notes of a seminar talk.
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(b) the restriction of χ to K× ⊂ I is given by an algebraic character of the torus
(Gm)K/Q.

Condition (b) means that there exists a family of integers (nσ)σ∈Σ such that χ(x) =∏
σ(x)nσ for all x ∈ K× ⊂ I. Condition (a) means that χ factors through I → If .

Thus, there is a one-to-one correspondence between algebraic Hecke characters and
continuous homomorphisms If → Qal× satisfying the analogue of (b) (restriction to
K× ⊂ If ) (cf. the definition in Harder and Schappacher).

Let χ be a Hecke character.

The character χ admits a modulus. Let m be a modulus for K. Because K has no
real primes, m can be regarded as an integral ideal

∏
v pmv

v . Define

Wm =
∏
v|∞

K×
v ×

∏
v|m

(1 + p̂mv
v )×

∏
Uv

(as in my class field theory notes, Milne 1997, about V.4.6). The Wm’s are open
subgroups of I and any neighbourhood of 1 containing I∞ contains a Wm. Let V be a
neighbourhood of 1 in C× not containing any subgroup �= 1. Because χ is continuous
and 1 on I∞, χ(Wm) ⊂ V for some m, and hence χ(Wm) = 1. Such an m will be called
a modulus for χ. If m is a modulus for χ and m|m′, then m′ is also a modulus for χ.

The infinity type of χ. Let ZΣ be the free abelian group generated by Σ, with
τ ∈ Gal(Qal/Q) acting by τ (

∑
σ∈Σ nσσ) =

∑
nσ(τ ◦ σ). The character group

X∗((Gm)K/Q) = ZΣ, and so χ|K× =
∑

nσσ for some nσ ∈ Z. The element
∑

σ∈Σ nσσ
is called the infinity type of χ.

Let Um,1 = K× ∩ Wm — this is a subgroup of finite index in the units U of K
defined by congruence conditions at the primes dividing m. If m is a modulus for χ,
χ = 1 on Um,1, and this implies that nσ +nσ̄ = constant, independent of σ (apply the
Dirichlet unit theorem).

The Serre group. Let Ξ be the group of infinity types, i.e.,

Ξ = {
∑
σ∈Σ

nσσ | nσ + nσ̄ = constant} ⊂ ZΣ.

It is a free Z-module of finite rank on which Gal(Qal/Q) acts, and we define the Serre
group SK to be the torus over Q with character group Ξ. Thus, for any field L ⊂ Qal,

SK(L) = Hom(X∗(SK),Qal)Gal(Qal/L).

Because X∗(SK) ⊂ X∗((Gm)K/Q), S
K is a quotient of (Gm)K/Q. The map on Q-

rational points K× → SK(Q) sends x ∈ K× to the map ξ �→ ξ(x), ξ ∈ Ξ.

Serre’s extension. I claim that there exists a modulus m such that Um,1 is contained
in Ker(ξ) for all ξ ∈ Ξ. Indeed, in order for ξ =

∑
nσσ to lie in Ξ, its restriction to

the totally real subfield F of K must be a power of the norm. Thus all ξ = 1 on some
subgroup U of index at most 2 in UF . But UF is of finite index in UK (Dirichlet unit
theorem again), and so U has finite index in UK . An old theorem of Chevalley states
that every subgroup of finite index in UK is a congruence subgroup, i.e., contains Um,1

for some m.
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From now on, m will denote a modulus with this property; thus the canonical map
K× → SK(Q) factors through K×/Um,1.

Recall (e.g., Milne 1997, V.4.6) that I/Wm · K× = Cm, the ray class group with
modulus m (= IS(m)/i(Km,1)). In particular, it is finite. There is an exact sequence

1→ K×/Um,1 → I/Wm → Cm → 1.

Serre shows that there is a canonical exact sequence of commutative algebraic
groups over Q

1→ SK → Tm → Cm → 1

(here Cm is regarded as a finite constant algebraic group) for which there is a com-
mutative diagram

1 → K×/Um,1 → I/Wm → Cm → 1
↓ ↓ ε ‖

1 → SK(Q) → Tm(Q) → Cm → 1.

Moreover, there is a natural one-to-one correspondence between the algebraic Hecke
characters χ of K admitting m as a modulus and the characters of Tm as an algebraic
group. [The proofs of these statements are straightforward.] The algebraic Hecke
character corresponding to a character χ of Tm is the composite

I → I/Wm
ε−→Tm(Q

al)→ Qal×.

From now on, I’ll define an algebraic Hecke character to be a character of Tm for some
m. Its infinity type is its restriction to SK . The Dirichlet characters are the Hecke
characters with trivial infinity type (and hence factor through Cm).

Warning! Our notations differ from those of Serre—in particular, he switches the
S and the T .

The 1-adic representation. One checks that the two maps

α : I
proj−−→ (K ⊗Q Q )

× → SK(Q )→ Tm(Q )

and

ε: I → Tm(Q)

coincide on K×. Therefore, ε 
df
= ε · α−1

 : I → Tm(Q ) factors through I/K×I∞, and
hence through Gal(Kab/K) — thus ε is a continuous homomorphism

Gal(Kab/K)→ Tm(Q ).

The Hecke character in the usual sense. The same argument with 1 replaced by ∞
gives a homomorphism ε∞: I → Tm(R) that is not usually trivial on the connected
component of I. Its composite with any character of Tm defined over C is a Hecke
character in the usual (broad) sense: continuous homomorphism I → C× trivial on
K×.
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Motivic Hecke Characters. Let k be a subfield of C. An abelian variety A over
k is said to be of CM-type if there exists a product of fields E ⊂ End0(AC) such that
H1

B(A,Q) is a free E-module of rank 1. It is said to have CM over k if E ⊂ End0(A).
It is possible to choose E so that it is stabilized by the Rosati involution of some
polarization of A, which implies that it is a product of CM-fields.

Let A be an abelian variety with CM by E over K. Then Gal(Kal/K) acts on
V (A) by E ⊗Q Q -linear maps. But V (A) is a free E ⊗Q Q -module of rank one, so
this action defines a homomorphism

ρ : Gal(K
ab/K) → (E ⊗Q Q )

× ⊂ GL(V (A)).

The main theorem of Shimura-Taniyama theory can be stated17 as follows:

15.1. For m sufficiently large, there exists a unique homomorphism χ:Tm →
(Gm)E/Q of tori such ρ = χ(Q ) ◦ ε .
An embedding σ of E into Qal×, defines a character χσ of Tm, which (by definition)

is an algebraic Hecke character. Such characters are certainly motivic.

The infinity type of a Hecke character arising in this way is a CM-type on K, i.e.,
nσ ≥ 0, nσ + nσ̄ = 1, and Casselman showed that conversely every Hecke character
with infinity type a CM-type arises in this fashion.

More generally, I discussed motives of type M = (A, e), A an abelian variety of
CM-type, e2 = e, e ∈ Cg(A × A)/∼ (algebraic classes of codimension g = dimA
modulo numerical equivalence). Such anM has an endomorphism ring and Betti and
étale cohomology groups, and so one can make the same definitions as for A. Note
that M = (A, e) may have CM over k without A having CM over k. The analogue of
(15.1) holds. A Hecke character arising from such a motive, or the product of such a
character with a Dirichlet character, will be called motivic.

If we assume the Hodge conjecture, then every algebraic Hecke character is motivic.

After a theorem of Deligne (1982a), we no longer need to assume the Hodge con-
jecture, but at the cost of replacing e with an absolute Hodge class.

The proof. (that all algebraic Hecke characters are motivic). The CM-motives dis-
cussed above over a field k form a category CM(k) that looks like the category
of representations of an algebraic group: it is Q-linear, abelian, has a tensor prod-
uct, duals, and every object has rank equal to a nonnegative integer. The theory
of Tannakian categories then shows that it is the category of representations of a
pro-algebraic group. (We are using absolute Hodge classes to define motives.)

What is the pro-algebraic group? When k = C, one sees easily that it S = lim←−SK

(projective limit over the CM-subfields of Qal). Hint: The abelian varieties of CM-
type over C are classified up to isogeny by CM-types, and SK is generated by the
CM-types on K.

When k = Qal, the group is again S (base change Qal → C gives an equivalence of
categories of CM-motives).

When k = Q, the general theory tells us it is an extension

1→ S → T → Gal(Qal/Q)→ 1.

17Cf. 13.1.
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Following Langlands, we call T the Taniyama group.

Deligne, Grothendieck, and Serre knew in the 1960s that the general theory pre-
dicted the existence of such an extension, but couldn’t guess what it was. (Although
he doesn’t say so, these ideas must have suggested to Serre his interpretation of alge-
braic Hecke characters.) In the late 1970s, in trying to understand the zeta functions
of Shimura varieties, Langlands wrote down some cocycles, which Deligne recognized
should give the above extension. He verified they do by proving that there is only
one such extension having certain natural properties shared by both extensions.

When k = K ⊂ Qal, the group attached to the category of CM-motives over K is
the subextension

1→ S → TK → Gal(Qal/K)→ 1

of the above extension. Thus, to give a CM-motive over K is to give a representation
of TK on a finite-dimensional Q-vector space.

From Langlands’s description of this extension, one sees that, for any m, there is a
canonical map (see 10.2a) of extensions:

1 → S → TK → Gal(Qal/K) → 1
↓ ↓ ↓

1 → SK → Tm → Cm → 1

Let E be a CM-field. A homomorphism Tm → (Gm)E/Q defines by composition a
representation TK → (Gm)E/Q ↪→ GL(E ′) where E ′ = E regarded as a Q-vector
space. Therefore a Hecke character χ defines a CM-motiveM(χ) with CM by E over
K. The motive M(χ) is related to χ as in 15.1, and so χ is motivic.

16. Periods of Abelian Varieties of CM-type

Deligne’s theorem (Deligne 1978, Deligne 1982a) allows one to define a category of
CM-motives over any field of characteristic zero (Deligne and Milne 1982, §6).
Let M be a simple CM-motive over Qal ⊂ C. Then End(M) is a CM-field K.

The Betti realization HB(M) of M is a vector space of dimension 1 over K, and the
de Rham realization HdR(M) is free of rank 1 over K ⊗Q Qal. For σ:K ↪→ Qal, let
HdR(M)σ denote the Qal-subspace of HdR(M) on which x ∈ K acts as σ(x) ∈ Qal.
Then HdR(M) being free of rank 1 means that each HdR(M)σ has dimension 1 and

HdR(M) = ⊕σ:K↪→QalHdR(M)σ.

Let e be a nonzero element of HB(M), and let ωσ be a nonzero element of HdR(M)σ.
Under the canonical isomorphism

HB(M) ⊗Q C → HdR(M) ⊗Qal C

e maps to a family (eσ), eσ ∈ HdR(M)σ ⊗Qal C. Define p(M,σ) ∈ C by the formula

p(M,σ) · eσ = ωσ.

When regarded as an element of C×/Q×, p(M,σ) is independent of the choices of e
and of ωσ — the p(M,σ) are called the periods of M . Clearly, p(M,σ) depends only
on the isomorphism class of M .

Let S be the Serre group — it is the projective limit of the Serre groups SE for E
a CM-field contained in C. It is the protorus over Q whose character group X∗(S)
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consists of locally constant functions φ: Gal(Qcm/Q) → Z such that φ(τ ) + φ(ιτ ) is
independent of τ . The Betti fibre functor defines an equivalence from the category of
CM-motives over Qal to the category of finite-dimensional representations of S. Thus
the set of simple isomorphism classes of CM-motives over Qal is in natural one-to-one
correspondence with the set of Gal(Qal/Q)-orbits in X∗(S). Let φ ∈ X∗(S), and let
M(φ) be the CM-motive corresponding to φ. The endomorphism algebra of M(φ) is
K = QalH, where H is the stabilizer of φ in Gal(Qal/Q). Thus, for each φ ∈ X∗(S)
and coset representative for H in Gal(Qal/Q), we obtain a period

p(φ, σ)
df
= p(M(φ), σ).

Any relation among the φ’s yields an isomorphism among the motives, and hence a
relation among the periods. When φ is taken to be a CM-type, then p(φ, σ) is the
period of an abelian variety of CM-type. Thus, we see that Deligne’s theorem (Deligne
1978) yields an array of relations among the periods of abelian varieties of CM-type.

(See Deligne’s talk at the Colloq., École Polytech., Palaiseau, 1979 (Deligne 1980);
also Shimura’s talk at the same conference (Shimura 1980).)

In this context, one should also mention Blasius 1986.

17. Review of: Lang, Complex Multiplication, Springer 1983.

The 18 theory of complex multiplication for elliptic curves describes how an auto-
morphism of C acts on an elliptic curve with complex multiplication and its torsion
points. As a consequence, when the curve is defined over a number field, one obtains
an expression for its zeta function in terms of Hecke L-series. The theory was general-
ized to abelian varieties in so far as it concerned automorphisms fixing the reflex field
by Shimura, Taniyama, and Weil in the fifties. As a consequence, when the abelian
variety is defined over a number field containing the reflex field, they obtained an
expression for its zeta function (except for finitely many factors) in terms of Hecke
L-series. A thorough account of this is given in Shimura and Taniyama (1961). Im-
provements are to be found in Shimura 1971 (Sections 5.5 and 7.8). Serre and Tate
(1968) extended the result on the zeta function to all the factors, and computed the
conductor of the variety. Serre (1968), Chapters 1 and 2, re-interpreted some of this
work in terms of algebraic tori. In 1977 Langlands made a conjecture concerning
Shimura varieties which was shown to have as a corollary a description of how every
automorphism of C acts on an abelian variety with complex multiplication and its
torsion points, and in 1981 Deligne proved the corollary (Deligne et al. 1982). Since
this gives an expression for the zeta function of such a variety over any number field
in terms of Weil L-series, it completes the generalization to abelian varieties of the
basic theory of complex multiplication for elliptic curves.

The first four chapters of the Lang’s book are devoted to the same material as that
in (the sections of) the works of Shimura and Taniyama, Shimura, and Serre and Tate
cited above: the analytic theory of abelian varieties with complex multiplication, the
reduction of abelian varieties, the main theorem of complex multiplication, and zeta
functions. Lang’s account is less detailed but probably more readable than his sources.
For example, whereas Shimura and Taniyama’s discussion of reduction is painfully
detailed (they, like the author, use the language of Weil’s Foundations), that of the

18This is the author’s version of MR 85f:11042.
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author is brief and sketchy. The result of Serre and Tate on the conductor is not
included and, in the statement of the main theorem, it is unnecessarily assumed that
the abelian variety is defined over a number field.

Chapter 5 discusses fields of moduli and the possibility of descending abelian va-
rieties with complex multiplication to smaller fields (mainly work of Shimura), and
Chapter 6 introduces some of the algebraic tori associated with abelian varieties hav-
ing complex multiplication and uses them to obtain estimates for the degrees of the
fields generated by points of finite order on the varieties.

The final chapter (based on a manuscript of Tate)19 gives the most down-to-earth
statement of the new main theorem of complex multiplication (the corollary of Lang-
lands’s conjecture) and includes part of the proof (but, unfortunately, only the more
technical, less illuminating, part). Zeta functions are not discussed in this general
context.

The exposition is very clear in parts, but in others it is marred by carelessness. For
example, in Chapter 3, the definition of a-multiplication is incorrect (the universal
property is not universal), in the proof of (3.1) it is nowhere shown that the reduction
of an a-multiplication is an a-multiplication, and in the proof of the Main Theorem
6.1 it is not possible to write the idèle s in the way the author claims on p. 82 under
his assumptions.

In summary, this book will be useful, in much the same way as a good lecture
course, for someone wishing to obtain a first understanding of the subject, but for a
more complete and reliable account it will be necessary to turn to the original sources
mentioned in this review. James Milne (1-MI)
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