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Introduction: 1In the first three sections we review the definition
of a Shimura variety of abelian type, describe how certain Shimura
varieties are moduli varieties for abelian varieties with Hodge
cycles and level structure, and prove a result concerning

reductive groups that will frequently enable us to replace one such
group by a second whose derived group is simply connected.

To be able to discuss the results in the remaining sections

both concisely and precisely, we shall assume throughout the rest
of the introduction that a pair (G,X) defining a Shimura variety

Sh(G,X) satisfies the following additional
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conditions (Deligne [2, 2.1.1.4, 2.1.1.5]):

(0.1) for any h € X , the weight w, : &, > Gp is defined
over Q@ :

(0.2) ad h(i) 1is a Cartan involution on (G/w((l;m))]R .
These conditions imply that for any special h € X , the associated
cocharacter u = o factors through the Serre group: u = %Joucan’
pu : S>> G . Thus to any such h and any representation of G
there is associated a representation of S , and hence an object
in the category of motives generated by abelian varieties of CM-
type over G

Consider the Taniyama group

1+s+33Ga1(@/m)+1

Sp _
(nf)y ¥ Gal(@/@ , mesp =1 .
m

b ]

For any T € Gal(@/@) ., Ts 95 n_l(T) is an S-torsor with a
distinguished ]Af—point sp(t) . If h € X 1is special, we can
use o, W = Wy o to transform the adjoint action of G on itself
into an action of S on G . We can then use 'S to twist G ,

and so define ''Mg = Ts x SG . Thus ‘''YG is a @-rational

algebraic group such that "'MG(@ = {s.g | s € 's(@ , g € (@ }/~

1 —
where $$7.9 ~ s'pu(sl)gpu(sl) , all S € S(@) . Let TCG
be a @-rational torus through which h factors. Then

T/ Mg af T S

S x °"r =7 , and so T is also a subgroup of TrHg

Define 'h to be the homomorphism & =+ T/HG  with associated

cocharacter Tu : G, > T < T'Hg ,  and let T ¥y be the ''HMe(m) -
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conjugacy class containing Th . The point sp(t) provides us

T'“gd——f— sp(t).qg 3 G(]Af)->

with a canonical isomorphism g &
T’uG(IAf) . The pair ("Va, T:¥y) Qdefines a Shimura variety,

and the first part of the Langlands's conjecture states the

following.

Conjecture ¢ . (a) For any special h € X , with up = u .,
there is an isomorphism b, wt T Sh(G,X) = sh('"Yg, TrHx)  such
that

T
¢, ,(tih,1]) = ['h,1]

b, ot N@ = I ¥qes. g e cmh, Yo =

T,u
Hecke operator.

In order to compare the isomorphisms ¢ corresponding to
two different special points, it is necessary to construct some
isomorphisms. For this the following two lemmas are useful.
Lemma 0.3. Let G be a reductive group over @ such that Gder
is simply connected. Two elements of Hl(Q,G) are equal if

der)

their images in Hl(Q,G/G and Hl(B!,G) are equal.

Lemma 0.4. Let (Gl'xl) and (GZ’XZ) define Shimura varieties,

and suppose there are given:
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fl : Gl — G, mapping X into X, i
£, : o (mh) = 6, @b ;
2 ° 7 2 !

8 € G, (AF) such that fjoad g™l = ¢

1 2

[l

Then ¢ Sh(f))e J(B) : Sh(Gy,X;) — Sh(G,,X,) has the

following properties:

1

¢[h,877] = [£,0h,1], all h € X ;

se g = Jig,(9))08 , all g € gy (),

Moreover, if fl is replaced with f;0ad q, q € Gl(m) , and
B with Bg, then ¢ is unchanged.

Let h and h' be special points of X with cocharacters
u and uy' . A direct calculation shows that pu*(Ts) and

pu.*(TS) have the same image in Hl(BR,G), and they become

equal in Hl(m,G/Gder) because o and oy define the same

map to G/Gder . There is therefore a {-rational isomorphism
. , af

f : Du*(TS) > pu.*(TS) which, because TrHg & Tg x SG =

T G G

S x SGx G==pu*(TS) x G , can be transferred into an iso-

morphism f1 : Mg+ TWG yhich is uniquely determined up to

composition with adg , g € 'Y (@ ; it maps Tr¥y  into

1] 1
Ty | Let f2 : T’“G(ZIAf) > ToH G(mﬁ) be sp(t).g » spl(t).g.

Then there is a B € TG (mf) satisfying £, o ad g™l - ¢

1

whose definition depends on the choice of fl : if fl is

changed to floeg g then B is changed to Bq . There is

2
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therefore a well-defined map ¢(T;u',u) : Sh(T’“G,T'”x) +
T )
sh(T'¥'c, T'"'xy such that o(tip',we 2(T7Hg) = (T H g0

d(T:u', W) .

Conjecture C. (b) For special h,h' € X , the maps ¢T "
’

and ¢, satisfy ¢(Tiu',u)ed, T M

If 1t fixes the reflex field E(G,X) of Sh(G,X) , then
Shimura's conjecture asserting the existence of a canonical model
for Sh(G,X) over E(G,X) shows that 7T Sh(G,X) * Sh(G,X)
canonically. This suggests that, for =t fixing E(G,X), there
should exist a canonical isomorphism ¢{T;u) : Sh(G,X) ~+
Sh(T'uG, T’“X) . Again (0.3) and the result in §3 enable one
to show that, in this case, pu*(TS) ] Hl(Q,G) is trivial. This
allows us to define an isomorphism fl : (G,X) Zs (T¥g, TrHx)

such that the conditions of (0.4) are satisfied for £ f

1 F2 7
(g » sp(t).9) , and a certain B € G(IAf) . Thus the canonical

isomorphism ¢ (T;u) exists.

Theorem 0.5. Let T € Aut(€) fix E(G,X)

(a) Let h € X be special and let u = Choose elements

Uh .
a(t) € 's (@) and c(1) € pu*(TS)(m) , and let v € G(@) and

o € G(Eﬁ) be such that pu(a(r)) = c(t)v and %J(sp(T)) = c(h)a .
Then the element [gg(v)oTh,a] of Sh(G,X) 1is independent of the
choice of a(t) and cfT) .

(b) Assume that Sh(G,X) has a canonical model; then

conjecture C is true for 1t and Sh(G,X) if and only if
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tlh,1] = [adve'h, a]

for all special h € X .
(c) 1If conjecture C is true for Sh(G,X) and all 1

fixing E(G,X) then Sh(G,X) has a canonical model

£ 1

(M(G,X) ,M(G,X); —=3 Sh(G,X)) ; moreover, fo(tf) L =0¢(t,u) top

T,H
for every 1u corresponding to a special h

Let A be an abelian variety over ¢ with complex multi-

plication by a CM-field F (so that Vd=£ Hl(A, @) is of
dimension 1 over F) . Write T for ResF/m Gm , and let
h:8g8->T7T be the homomorphism defined by the Hodge structure

R

on V . The main theorem of complex multiplication describes
the action of Gal(Q/E(G,X)) on 5h(T, {h}) arising from its
identification with a moduli variety. From conjecture C for
sh(csp(V), Si) one can deduce a description of the action of

the whole of Gal(@/@) on "\ J sh(t,{"h}) € sh(csp(V),sT) .
T € Hom(F,D)

This suggests a conjecture (conjecture CM) stated purely in terms

of abelian varieties of CM-type.

Proposition 0.6. Conjecture CM is true if and only if conjecture
C is true for all Shimura varieties of the form Sh(CSp(V),Si)

It is possible to restate conjecture C for connected
Shimura varieties. For this it is first necessary to show that,
for a connected Shimura variety Sh°(G,G',X+) , special h, h' e x*

and T € Aut () , there are maps
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g b T’”g: st (rel ') » TrHg(pt (rel1 Tr¥gr)
¢°(T7u"u) . shO(TIpG' TI]JGnl X+) -+ Sho(Tlu G, T,U G',X+)
compatible with those defined for nonconnected Shimura varieties.

Conjecture C°
(a) For any special h € x* , with u = Uy, » there is an
isomorphism

T+

T Sh°(G,G',x%) » sne(TrHg, TrkMgr, Tyxh

S

T,d

]
such that ¢ (t[h]) = [Th]
+H
#r oTr) = Tyie° vy e c(@T (rel ') .
T T,
(b) For h' a second special element and up' = Hpr

¢)°(T;u',u)o¢T,u = ¢T u

Proposition 0.7. Conjecture C is true for Sh(G,X) if and

only if conjecture C° is true for Sh°(Gad, Gder’ x™)

Using 0.7) we prove the following.
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Theorem 0.8. If conjecture C 1is true for all Shimura
varieties of the form Sh(CSp(V),Si) then it is true for all
Shimura varieties of abelian type.

All of the above continues to make sense if the Taniyama
group is replaced by the motivic Galois group (II.6) except
that the maps ¢(t; u',u) and ¢(1;n) are (possibly) different
and the conjectures have a (possibly) different meaning. We
shall use a tilde to distinguish the objects associated with
the motive Galois group from those associated with the Taniyama
group. A new fact is that, almost by construction of the
motivic Galois group, conjecture CM is true. Thus (d?%) and
(6T§) show that conjecture C 1is true for all Shimura varieties

of CM-type. This has the following consequence.

Theorem 0.9. Let Sh(G,X) be a Shimura variety of abelian type
and let M(G,X) be its canonical model. For any | associated
with a special h ,there is an isomorphism g » g' : G(]Af)+
T’“G(]Af) such that, if g' € T’“G(]Af) is made to act on

T M(G,X) as 1( j(g)) , then T M(G,X) together with this action
is a canonical model for sh('’Mg, Tr¥x)

(0.9) is the original form Langlands's conjecture on Shimura
varieties. (''MG is the same for the motivic Galois group and
the Taniyama group.) Such a result was first proved for Shimura
curves by Doi and Naganuma [1] and for Shimura varieties of
primitive type A and C by Shih [2]. A theorem of Kazhdan [1]

can be interpreted as saying that the conjugate 7t Sh(G,X) of
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a compact Shimura variety is again a Shimura variety but
unfortunately his method gives little information on the
pair (G',X') to which the conjugate corresponds.

We would like to thank P. Deligne and R. Langlands for
making available to us pre-prints of their work and D. Shelstad
for a letter on which we have based Proposition 4.2 and preceding
discussion. One of us was fortunate to be able to spend seven
months during 1978-79 at I.H.E.S. and have numerous discussions

with P. Deligne, which have profoundly influenced this paper.

Notations and conventions.

For Shimura varieties and algebraic groups we generally
follow the notations of Deligne [2]. Thus a reductive algebraic

group G 1is always connected, with derived group Gder , adjoint

group Gad , and centre Z = Z(G) . (We assume also that gad
has no factors of type ES)' A central extension is an

epimorphism G + G' whose kernel is contained in 2(G), and a
covering is a central extension such that G 1is connected and

the kernel is finite. If G 1is reductive, then p : G+ Gder

is the universal covering of Gder .

A superscript + refers to a topological connected component;
for example G(IR)+ is the identity connected component of G(IR)
relative to the real topology, and G((D)+ = G(@m AN G(IR)+ . For
G reductive, G(R)_, is the inverse image of Gad(:[R)+ in
G(R) and G@), = G@ N G(]R)+ . In contrast to Deligne [2],

we use the superscript ~ to denote both completions and

closures since we wish to reserve the superscript - for certain
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negative components.

We write Sh(G,X) for the Shimura variety defined by a
pair (G,X) and Sﬁ(G, G', X+) for the connected Shimura
variety defined by a triple (G, G', X+) . The canonical
model of Sh(G,X) is denoted by MI(G,X) .

Vector spaces are finite-dimensional, number fields are
of finite degree over @ (and usually contained in €) ,
and @ 4is the algebraic closure of @ in € . If V is
a vector space over @ and R 1is the {Q-algebra, we often
write V(R) for V 8 R .

If x € X and g € G(ka) then [x, g] denotes the
element of Sh(G,X) = ¢(@MN\X x a(BY) /2(@®~ containing (x,q) .
The Hecke operator [x,g] b [x,gg'] is denoted by J(g') .

The symbol A af B means A 1is defined to be B or that A
equals B by definition.

For Galois cohomology and torsors (= principal homogeneaus
spaces) we follow the notations of Serre [1].

For the Taniyama group, we use the same notations as in

ITI; we refer the reader particularly to III. 2.9.

If A is an abelian variety, then

Vf(A) af (lim ker(n: A > A)) ®

depends functorially on the isogeny class of A . Throughout
the article, an abelian variety will be regarded as an object

in the category of abelian varieties up to isogeny.
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1. Shimura varieties of abelian type.

A Shimura variety Sh(G,X) is defined by a pair (G,X) ,

comprising a reductive group G over @ and a G(IR) -conjugacy
class X of homomorphisms & -+ GIR . that satisfies the
following axioms:

(1.1la) the Hodge structure defined on Lie(GnQ by any
h e x is of type {(-1, 1), (0,0), (1, -1)1};

(1.1b) for any h € X, 23 h(i) is a Cartan involution

ad

on an H

(l.1c) the group Gad

has no factor defined over @ whose
real points form a compact group. Then Sh(G,X) has complex
points G(D) \ X x G(]Af) /2{(®)" , where 2 is the centre of

G and Z(@) " the closure of Z(@) 1in Z(IAE) .

A connected Shimura variety ShO(G,G',X+) is defined by

a triple (G,G',X+) comprising an adjoint group G over @ ,

a covering G' of G, and a G(mJ+—conjugacy class of homo-
morphisms § -+ G]R such that G and the G(IR) -conjugacy class
of X containing xt satisfy (l1.1). The topology T(G') on
G(@) is that for which the images of the congruence subgroups of

G' (@) form a fundamental system of neighbourhoods of the identity

and ShO(G,G',X+) has complex points 1lim F\X+ where T runs
“

over the arithmetic subgroups of G(CD)+ that are open relative to
the topology T(G') (Deligne [2, 2.1.81]).

The relation between the two notions of Shimura variety is
as follows: let (G,X) be as in the first paragraph and let

x* be some connected component of X; then xt  can be regarded
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as a Gad(ﬂui-—conjugacy class of maps § + G;s and
Sho(Gad, Gder'»x+) can be identified with the connected com-
ponent of Sh(G,X) that corntains the image of xt x {1} .

We recall that the reflex field E(G,X) of (G,X) 1is the
subfield of @ that is the field of definition of the G(C) -
conjugacy class of M, . any h € X, (uh = restriction of h(E
to G X 1 Clmm) and that E(G,X+) is defined to equal E(G,X)
if x¥ is a connected component of X (Deligne [2, 2.2.1]1).

The following easy lemma will be needed in comparing the

Shimura varieties defined by (G,X) and (Gad, Gder' X+) .

Lemma 1.2. Let G1 + G be a central extension of reductive
groups over & ; let M be a G(C)-conjugacy class of homomor-
phisms G, + G and let My be a Gl(m)—conjugacy class lifting

M . Then M+ M is bijective.

Proof. The map is clearly surjective and so it suffices to show
that, for up €My lifting p € M , the centralizer of My is

the inverse image of the centralizer of u . Since the centralizer
of ¥y contains the center of Gl , we only have to show the

map on centralizers is surjective. We can construct a diagram

C x G2 + Gy *+ G
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in which the first map, and the composite 62 + G are coverings.
After replacing u; and u by multiples, we can assume 1Y
lifts to a homomorphism (p',u"): €, > C X Gy . Then the
centralizer of (u',p") maps into the centralizer of ¥y o,

and onto the centralizer of y

Let (G,X) be as in (1.1) with G adjoint and Q-simple;

if every IR-simple factor of G]R is of one of the types A,B,
C, DH{, Dn{, or E (in the sense of Deligne [2, 2.3.8]) then
G will be said to be of that type. When G' is a covering of

G , we say that (G,G') (or (G,G',X)) 1is of primitive abelian

type if G 1is of type A, B, C, or pR and G' is the

universal covering of G , or if G is of type p®  ana e
is the double covering described in Deligne [2, 2.3.8] (see
Milne-Shih [l1, Appendix]).

If (G,X) satisfies (1.1) and G 1is adjoint and Q-
simple, then there is a totally real number field Fo and

an absolutely simple group G° over Fy such that G =

Res G® . For any embedding v : FOC—aHR » let G, = G ®

F /8

Fo,vnz’ and write Ic and Inc for the sets of embeddings

for which GV(HU is compact and noncompact. Let F be a
quadratic totally imaginary extension of Fg and let

L= (o) be a set of embeddings Oy : F& ¢ such that

0]
v V€IC

GVIFO = v; we define hz to be the Hodge structure on F
(regarded as a vector space over @) such that (F® E)—l’o .

1 0,0

Q

(F® G)O'- and (F8, @) are the direct summands of
@ ]

FR. T = mHom(F,c)

o corresponding to I , 1I , and
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{o:F>e| o|F e I .} .

Proposition 1.3. Let G be a {-simple adjoint group and assume

that (G,G',X) is of primitive abelian type. For any pair (F,I)

as above there exists a diagram

(G,X) ——— (G ,%)) C— (csp (V) , 5%

ad _ der _ ., _ x
such that Gl = G, G = G', and E(Gl,xl) = E(G,X) E(F ,hz) .

Proof. This is Deligne [2, 2.3.10].

Let (G,X) satisfy (1.1) with G adjoint, and let G'
be a covering of G . We say that (G,G') or (G,G',X) 1is of
abelian type if there exist pairs (Gi’Gi)i of primitive
abelian type such that G = HGi and G' is a quotient of the
covering HGi of IIGi . If (G,X) satisfies (1l.1), we say that
G or (G,X) is of abelian type if (Gad,Gder) is of this type.
Finally, we say that a Shimura variety ShO(G,G',X+) or Sh(G,X)

is of abelian type if (G,G') or G is.
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2. Shimura varieties as moduli varieties.

We shall want to make use of the notion of an absolute
Hodge cycle on a variety (Deligne [3,0.7]) and the important
result (see I.2.11) that any Hodge cycle on an abelian variety
is an absolute Hodge cycle. Let A be an abelian variety
over an algebraically closed field k< €; we shall always
identify a Hodge cycle on A with its Betti realization. By
this we mean the following. Let V = Hl(AE’ @) (usual Betti

homology) and note that V has a natural Hodge structure and

1
dR

cohomology of A over k then there is a canonical isomor-

that its dual G = Hl(A,Q). If H._(A) denotes the de Rham

phism HéR(A) ®k c = 6(@). There is also a canonical iso-

‘morphism Vf(A) i>V(]Z&.f). A Hodge cycle s on A is to be
v

an element of some space V®m ® Vgn(p) such that:

(2.1la) s 1is of type (0,0) for the Hodge structure defined by

that on Vi

v , ®m 1 ®n

. 1 _
(2.1b) there is an s e (HdR(A) ) 2] HdR(A) that corre

dRrR
sponds to s under the isomorphism induced by HéR(A) @k T~ v(T)

and € =z 2wiC;

. £ m £ v, 8n . ®p
(2.1lc) there is an Set e v (a) ® (v (A7) ® (lim “n(k))
that corresponds to s under the isomorphism induced by
N
vimf) = via) ana 2ni 7 2B Limw (D).

Let T be an automorphism of €; then 1A 1is an abelian variety
over Tk &€ @ and the above-mentioned result of Deligne shows that

ts 1is a well-defined Hodge cycle on TtA: it has (-rs)dR = R ® 1

Sa
€ HdR(TA) = HdR(A) 2] . k and (Ts)et = 18

k. et’
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Certain Shimura varieties can be described as parameter
spaces for families of abelian varieties. Let (G,X) satisfy
(1.1), and assume there is an embedding (G,X) C—» (CSp(V), s*)
where V 1is a vector space over @, CSp(V) is the group of
symplectic similitudes corresponding to some non-degenerate skew-
symmetric form ¢ on V, and St is the Siegel double space
(in the sense of Deligne [2, 1.3.1]). There will be some family

. Qm ¥yon
of tensors (Sa) in spaces of the form V eV (p) such

a€d
that G = Aut(V, (Sa)) < GL{V) x Em (see I, Prop. 3.1). We shall
always take ¢ to be one of the sa: then the projection

G~ B is defined by the action of G on y.

Consider triples (A, (ta) k) with A an abelian

a€d '
variety over €, (ta) a family of Hodge cycles on A, and k
is an isomorphism k: Vf(A) = ﬂlﬂmf)) under which ta

corresponds to sa for each o 8 J. We define ¢4(G,X,V) to
be the set of isomorphism classes of triples of this form that

satisfy the following conditions:

(2.2a) there exists an isomorphism Hl(A, D) —=— V under which
Sa corresponds to ta for each o € J;

(2.2b) the map & i) GL(H (A, R)) defined by the Hodge
structure on Hl(A,ZR), when composed with the map

GL(Hl (A, R)) + GL(V(IR) ) induced by an isomorphism as in (a),
lies in X.

We let g € ¢(mf) act on a class Ia, (s): kI € 4(G,X,V) as

follows: [A, (ta)’ klg = [A, (ta)’ g_lk]-
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Proposition 2.3. There is a bijection 5h(G,X) =5 AG,X,V)

f
commuting with the actions of G(IB ) .

Proof: Corresponding to [h,gl € Sh(G,X}) = G(@MI\ X * c(mf)

we choose A to be the abelian variety associated with the Hodge

structure (V,h) . Thus H (A, @) V and the s can be regarded

as Hodge cycles on A . As Vf(A) V(Bﬁ% we can define k to
-1
ve via) = vimf) 95 vmf) . 1t is easily checked that the
class [a, (ta)' k] € JQ(G,X,V) depends only on the class
[h,g] € Sh(G,X) . Conversely, let (A, (ta) , k) represent a
class in A(G,X,V) . We choose an isomorphism f:Hl(A, Q) ~ Vv
as in (2.2a) and define h to be f£ hAf_l (cf. 2.2b) and g
£, kY f £01 £
tobe V(BR") —— V- (A) —— Vv(Bn") . If f 1is replaced by

qf , then (h,g) is replaced by (ag(q) o h, gg), and q € G(Q)

Remark 2.4. The above proposition can be strengthened to show

that ©Sh(G,X) is the solution of a moduli problem over &. Since
the moduli problem is defined over E(G,X), Sh(G,X) therefore

had model over E(G,X) which, because of the main theorem of
complex multiplication, is canonical. This is the proof of Deligne
[2, 2.3.1] hinted at in the last paragraph of the introduction to
that paper. Let K and Ky be compact open subgroups of

G(mf) and CSp(V)(mﬁ) with K small and K such that

1
Sh(G,X)K > Sh(CSp(V),Si)Kl is injective (see Deligne [1,1.15]).
The pullback of the universal family of abelian varieties on

K

families of abelian varieties carrying Hodge cycles (ta) and

Sh(CSp(V),Si) constructed by Mumford, is universal for

a level structure (mod K).
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3. A result on reductive groups:; applications.

The following proposition will usually be applied to
replace a given reduction group by one whose derived group

is simply connected.

Proposition 3.1. (cf. Langlands [3, p 228-29]). Let G be

a reductive group over a field k of characteristic zero

and let L be a finite Galois extension of k that is sufficiently

large to split some maximal torus in G . Let G' ~» Gder

be a covering of the derived group of G . Then there

exists a central extension defined over k
l 5 N — Gl - G — 1

such that G is a reductive group, N 1is a torus whose group

1
of characters X*(N) is a free module over the group ring

der der

zZlGal(L/k)] , and (65%F — &%) = (c* — g%

Proof: The construction of Gl will use the following result

about modules.

Lemma 3.2. Let ¢ be a finite group and M a finitely
generated ¢-module. Then there exists an exact sequence of

@#-modules 0 — P, = P, — M — 0 in which P,

is free and finitely generated as a Z-module and Py is

a free Z[%—module.

Proof: Write MO for M regarded as an abelian group, and

choose an exact sequence
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0 — F — F — M

1 0 — 0

0

of abelian groups with FO (and hence Fl) finitely generated
and free. On tensoring this sequence with Z[¢] we obtain

an exact sequence of Qrmodules
0 — z(3l e F;, — zZ[yH & F, — zly 8N, — O
whose pull-back relative to the injection
(m > Zg@g_lm): M C— Z[H 8 M,

has the required properties.

We now prove (3.1). Let T be a maximal torus in
G that splits over L and let T' be the inverse image of
T under G' GderC: G: it is a maximal torus in G' . An
application of (3.2) to the &%= Gal(L/k)-module M = X, (T)/X,(T')
provides us with the bottom row of the following diagram, and
we define Q +to be the fibred product of Py and X, (T)

over M :

0 0
1) b
X (T') = X, (T)
J
0 — Py —> » X, {(T) — 0

v

0o — Pl Y P

)
Q
I ! 1"
0
)
0
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Since the terms of the middle row of the diagram are torsion-
free, the Z-linear dual of the sequence is also exact, and

hence corresponds, via the functor X* , to an exact sequence

1 -5 N — T - T — 1

1
of tori. The map X, (T') — Q= X*(Tl) corresponds to a
map T' — T, lifting T' — T . Since the kernel of
T = T1 is finite, the torsion-freeness of P0 =

coker (X, (T') — X*(Tl)) thus implies that T' — T1
is injective. On forming the pull-back of the above sequence
of tori relative to 2 &< T , where 2 = Z(G) , we obtain

an exact sequence

1 > N — 24 — z — 1 .

As T' contains 2' = 2(G') , T' &> T induces an inclusion

1
z' < Z, - The group G <can be written as a fibred sum,
é = G* e % , where G is the universal covering group of
c9®T and 7 = z(8) (Deligne [2,2.0.11). We can identify G
with a quotient of G . Define Gy = G* 7 z, . It is easy
to check that Z, —> Z induces a surjection Gl — G
with kernel N C Z, = Z(Gl) and that G —> G, induces
an isomorphism G' = Gier . Finally, we note that

X, (N) is a free Z[%i-module and X*(N) is the Z-linear

dual of X, (N)

Remark 3.3 (a) The torus N in (3.1) is a product of copies of

1
6 . Thus H (k',N

RESL/k 'm

k.) = 0 for any field k'> k , and
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the sequence 1 + N(k') -+ Gl(k') + G(k') + 1 is exact.

(b) Let T be the inverse image of T (or T') in é .

Then the maps T+ T T, and 2z, ] T, induce an
isomorphism T g 2y —ia T, . Thus T, can be identified with

a subgroup of Gl , and the diagram

1 — N — T.L — T —> 1

| ) [

1 — N —/] Gl — G — 1

commutes. Obviously Tl is a maximal torus in Gl

Application 3.4. Let (G,X) satisfy (1.1) , let h € X be

special, and let T be a maximal torus such that h factors

der

through T Let G' + G be some covering. Take k to

r *
be ® and L to split T , and construct Tl C Gl > G
as above. Choose some My e X*(Tl) mapping to N e X, (T).

Then obviously commutes with 1uy and so defines a

M1
homomorphism hl: g - TEEC: GB%' We let X be the
G(IR)- conjugacy class of maps containing hl . The pair
(Gl,Xl) satisfies (1.1) because, modulo centres, (Gl’xl) and
(G,X) are equal.

It is possible to choose u; so that E(Gl,xl) = E(G,X).
To prove this we first show that the image Eh of My in
M is fixed by Aut(CT/E(G,X)) , where M = X,(T)/X,(T'}) is as

in the proof of (3.1).



301

We have to show tu, -y, 1lifts to an element of X, (T')

for any 1 € Aut(C/E(G,X)) . Since THy ~ Wy € X*(Tder) ,
where 19T = 7 N gaer , and X*(Tder) > X*(Tad) is injective,
where Tad is the image of T in Gad , it suffices to show
that the image of THy — Wy in X*(Tad) lifts to X4 (T') or,
equivalently, to X,.(G') . Let N = {uﬁd | h € X} , where

ad Hh

M is the composite Gm — G —» Gad . Then N 1is a
G(C)-conjugacy class of homomorphisms defined over E = E(G,X) .
For any u € N , the identity component of the pull-back of
G' + G by u 1is a covering w:mﬁ > By that is independent of
u; it is therefore defined over E , and N lifts to a conjugacy
class of N' of maps G > G' defined over E . Any two
elements of N' restrict to the same element on Ker(w) .
Thus if pu' € N' lifts pw € N , then 1 p' - p' factors through
G, by a map that lifts TH ; u

We now use the fact that Xe (N) is a free Gal(LE/E)-
module to deduce the existence of a uy e X*(Tl) mapping to
v € X, (T) and whose image El in Py is fixed by Aut(C/E).
The map G, > G induces an isomorphism W(Gl,Tl) fié W(G,T)
of Weyl groups. Let T € Aut (C/E) and suppose Tp = @ ° u
with u € W(G,T) . If Wy € W(Gl,Tl) maps to w , then
wy o My Mmaps to Tp  in X, (T) and El = Til in Py
thus wy ° up = THY - It follows that 1 fixes E(Gl,xl),

and so E(G,X) D E(Gl’xl)' The reverse inclusion is automatic.
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We can apply this to a triple (G,G',X+) defining a connected

Shimura variety. Thus there exists a pair (Gl,Xl) satisfying
(1.1) and such that (Gid,G?er

E(G,X+) , and X*(Z(Gl)) is a free Gal(L/@)-module for some

+ X L] + —_
,Xl) (G,G",X), E(Gllxl) =
finite Galois extension L of @ (cf. Deligne [2, 2.7.16]).
The last condition implies Gl(k) - Gid(k) = G(k) 1s surjective

for any field kD Q .

Application 3.5. Let G be a reductive group over a field
k of characteristic zero, and let p: G - Gder C G be the uni-
versal covering of Gder . When k is a local or global field

and k' is a finite extension of k , there is a canonical
norm map N, n: G(k')/pG(k') + G(k)/pG(k) (Deligne [2,2.4.8]).
We shall use (3.1) to give a more elementary construction of
this map.
If G is commutative, Nk'/k is just the usual norm
map G(k') > G(k) .
der

Next assume G is simply connected and let

T = G/Gder . If in the diagram

1 —> GK)/G(K') —> T(k') —> H (k'8

l Ny /x

1 — /B0 —> T —3 H (k8

the map G(k')/G(k') + H'(k,&) is a zero, we can define

NL'/k for G to be the restriction of Nk'/k for T
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When k is local and nonarchimedean then Hl(k,a) =0,
and so the map is zero. When k is local and archimedean we

can suppose k = IR and k' =€ ; then N T(TC) » T(IR) maps

¢/R°
into T(R)' , and any element of T(R)T 1lifts to an element
of G(RR) (even to an element of 2Z(G)(IR)) . When k 1is global,

we can apply the Hasse principle.

In the general case we choose an exact sequence

i -5 N — Gl — G — 1

der

as in (3.1) with G1

simply connected. From the diagram

N(k') — G (k')/G(k') —> G(k')/oG(k') — 1

J,Nk'/k lNk'/k

NG — 6, (/&K —  6k)/pGk) — 1

we can deduce a norm map for G .
Let k be a number field. If we take the restricted
product of the norm maps for the completions of k , and form

the quotient by the norm map for k , we obtain the map

N ﬂ(Gk.) —> ﬂ(Gk)

k'/k}
of Deligne [2,2.4.0.1], where 7(G,) = G( mk)/(s(k).pé(mk)) .

Application 3.6. Let G and G' be reductive groups over (

with adjoint groups having no factors over Q@ whose real points
are compact. Assume G' is an inner twist of G , so that for
some Galois extension L of {§ there is an isomorphism

£ : GL ——3—9 Gi such that, for all o € Gal(L/Q) .,
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-1 _ .
(of) o f = @i“g with o € G

ad(L) . %We shall show that

f induces a canonical isomorphism non(f): non(G) + oM (G)
with 7w(-) defined as in Deligne [2,2.0.15] (not Deligne
[1,2.3]1).
If f 4is defined over @ , for example if G 1is commutative,

then ﬂoﬂ(f) exists because T is a functor.

Next assume that G3®F is simply connected, and let f
be the isomorphism from T = G/Gder to T' = G’/G'der induced
by f . A theorem of Deligne [1,2.4] showsthat the vertical arrows

in the following diagram are isomorphisms

l ﬂon(f) _l

ﬂon(T) _ non(T’) .

We define now(f) to make the diagram commute.

In the general case we choose an exact seguence

1> N — G1 - 6 — 1

?er simply connected. Note that G?d = Gad

so that we can use the same cocycle to define an inner twist

as in (3.1) with G

f G The first case considered above allows us to

18 G117 i -
assume fl lifts f . Remark (3.3a) shows that Woﬂ(Gl) > WOH(G)

is surjective, and we define 7y7(f) to make the following

diagram commute:
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() ————— non(Gl) 11 (6 ———— 1

non(le)

ﬂon(f) :ﬂoﬂ(f)

4

TET") —————— noﬁ(Gi) 1y (G') ————— L,

Note that, if £ :

G, + G! and f'; Gi - Gﬂ define G'

L L

and G" as inner twists of G and G', then ﬂon(f')onoﬂ(f) =

ToT(f'ef) . Also that if f is of the form adq : GL - GL

with q € ¢2d(L) , then

non(f) = id . In the case that Gder

is simply connected this is obvious because adq induces id

on T , and the general case follows. On combining these two

remarks we find that =

can only be replaced by

0

n(f) is independent of f , because f

d

. a
fo adqg with g e ¢ (1) , ang

Tam(£) o ﬂoﬂ(ag q) = now(f)
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§4, The conjectures of Langlands.

Let (G,X) satisfy (l1.1) . Before discussing the conjectures
of Langlands concerning Sh(G,X) we review some of the properties
of (G,X) over R .

Let h e X be special (in the sense of Deligne [2,2.2.4]),
and let T be a @-rational maximal torus such that h factors

through ?R . Let u = be the cocharacter corresponding to

Yh
h . According to (1.1b) ag h(i) 4is a Cartan involution on
ad der der

%R , and hence on %R . Thus g = E ® p where
%% = 1ie(@®T) = Lie(q) " and Ad h(i) acts as 1 on k

and -1 on p . According to (l.la) there is a decomposition

-_— + -
g =S ® kg ®r ®p
. . o+ -
where g = Lle(qm) ;¢ = Lie(2(G)lp) » pp =P ®p and Ad u(z)
acts as z on p+ and 1z on p~ . (Thus go,o =cp * Em , g_l'l = E+
and ql'_l =p .) As Tm is a maximal torus in Gm , we also have

a decomposition

Je " ot oodr Lo

v

(o4
A root o is said to be compact or noncompact according as

where t = Lie(gR) and RC t is the set of roots of (G,T) .

S ck °or 9, ¢ Eg

Remark 4.1. If Y e g  then Ad(u(-1))Y = a(u(-1)Y¥ = (-1)<® M7y

Since Adu(-1) acts on k, as *1 andon pp, as -1, this

od

shows that a is compact or noncompact according as <ao,u> is

r
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even or odd.

der

der df . f\Gder is anisotropic because t T~k .

Note that T
Let N be the normalizer of T in G and let W = N(T)/T(C) be
the Weyl group. As 1 acts as -1 on RCZEger
with the action of any reflection Sy - Hence 1 acts trivially

, it commutes
on W and there is an exact cohomology sequence
8

1 + T(R) » N(R) m—,\ W = Hl(IR,T)

where, for w € W 1lifting to w € N(€) , 8§(w) is represented

by wl.iwe Ker(l + 1: T(C) » T(T)) .

Proposition 4.2. The class 6(w) 1is represented by

win-nmene @ .

Proof: Note that &(wjw,) = w;’ 6(w)).8(w,y) while
-1 _ -1 -1 _ -1, _ -
(wywy) “u(=1)/u(-1) = wy,™ (w7 ul-1)/u(=1)) . {wy"u(-1) /u(-1))
and so it suffices to prove the proposition for a generator Sy of W,
We make the identifications T(T) = X,(T) & o, e = X (T) 8 C ,

and E& = X*(T) @ C . If & is a coroot and Ha is the element

of Em corresponding to a , then expniHa = J(—l) . Let .

X, €9, and X_ € g_, be such that X,/ X_,J =H, . As lo = -0,
we have that WH, = -Hj and that X = cX_  and X_ = ax,

with c¢,de € . The conditions [xa,x_a] = Hy and 12 =1 imply
that ed =1 and 1c.d =1, and so ¢ 1is real and 4 = c_l .

If we replace Xa by ax, then we must replace X—a by lx

and ¢ by a2c . Thus, for a given o , there are two possibilities:
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either Xa can be chosen so that 1xa = —X_u or Xu can be

chosen so that 1 X =X__ . In the first case a is compact

and in the second it is noncompact.

Assume that o 1is compact: then the map su, * g such that

(% _g) s Ha , (8 g‘) > xa ’ (_g 8) . X—a lifts to a homomorphism
SU, > G (defined over R) . The image w of (_g é) in GR)
represents s . Thus 6(50‘) =1 in this case. On the other
hand, sa(].l)—u = —<a,p>a¥Y , and so Sau (-1)/u(-1) = a¥ (_1)—<u,u> =
(by 4.1)

If o 1is ﬁoncompact, then the map SJLZ + ¢ such that
((j)_ —é) IS Ha , —]é—(_ji i) - Xoc , %(i _i) - X_a lifts to a
homomorphism SLZ——-\G.R . The image W of ((i) _?_) in G(Q)

-1

-1 0)

s , T w
represents S hen 0 -1

. W is the image of ( , which

is exp miH = a¥(-1) . On the other hand

s u(-1)/u(-1) = a¥(-1) "% H oY (1) (by 4.1).

Corollary 4.3. If the reflex field E(G,X) of (G,X) is real

then there exists an n e N@®R) such that ‘39(“)0“ =1y

Proof: Since 1 fixes E(G,X) there is an element w in G (@) ,
which we can choose to lie in N(€) , such that 1y = adb)eu .
The proposition shows that the image of adw in Hl (C/R,T(T))
is represented by (1-1)p(-1) , and therefore is zero. Thus there
is an n e N@R) representing adwv .

When the reflex field E(G,X) is real and 5h(G,X) has a
canonical model over E(G,X) then 1 defines an antiholomorphic
involution of Sh(G,X) . One of the conjectures of Langlands gives

an explicit description of this involution.
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Let h , as before, be special and let 'h be the element of

X corresponding to 1p . If n is as in the corollary, then
ad(n)oh = 'h . Since K, 1is the centralizer of h(i) , and of
'h(i) , we see that n normalizes K, - Thus g~ gn : G(R) ~» G(R)

induces a map on the quotient G(R) /K, ., which we can transfer to

X by means of the isomorphism g & adgeh : G(TR) /K > X . Thus

we obtain an antiholomorphic isomorphism n = (adgoh & ad{(gn)eh : X-+X)

Conjecture B. (Langlands [1, p. 418], [2, p. 2.7, Conjecture B],
[3, p. 234]). The involution of Sh(G,X) defined by 1 1is

[x,9]1 » [n(x),q] .

Remark 4.4. The conjecture is true for all special h if it is true for
one, and it follows from Deligne [1, 5.2] that to prove the con-
jecture it suffices to show 1[h, 1] = [n(h), 11 (=[‘h, 1]) for
a single special h. Conjecture B 1is easy to prove if sh(G,X)
is a moduli variety for abelian varieties over E(G,X) . - (More
generally, if it is a "moduli variety for motives", see (10. 7).
It is proved for all Shimura varieties of abelian type in Milne-
Shih [1].

The conjecture of Langlands concerning conjugates of Shimura

varieties is expressed in terms of the Taniyama group: thus let

1+s>7T T eai@o » 1
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be the extension, and sp : Gal (G/@) —-):‘I‘A(Af) the splitting,

defined in (III. 3. For any t e Gal(@/@) , "sif 77 l(1) is a

right S-torsor, and sp(t) e 'S (mf) defines a trivialization

of TS over af . (For any finite Galois extension L of Q
and T e Gal (Lab/CD) we can also define an SL—torsor Tk :
L

it corresponds to the cohomology class ¥(1) e ml (L/@, s7) ;

(see III. 2.9).)

Let G,X,h,y,T be as at the start of this section. As

ad ad df
K =

R

u P
and so factors into Gm —can g —-E)TadC Gad . Thus S acts

is anisotropic, @ L1 =129 satisfies (III. 1.1)

on G, and we can use 'S to twist G : we define 'G (or '‘¥g)

T S

tobe 'S x "G . (If LOQ@ splits T then there is an

a

isomorphism £ : G -":)TGL such that of = feo ag 80 (,1% )

L

Note that the action of § on T is trivial, and so

T=TSx51CT . Define 'h to be the homomorphism 5 ",

associated with (Em-T—E)TQ: C TGm ., and X (or T'¥"X) to be the

"™h . The

G R)~conjugacy class of maps S-%TGR containing
element sp(t) e 'S (Af) provides a canonical isomorphism
g—-sp(1).9 : G(Af)—-)TG (Af) , which we write as

T,H

gv——)Tg(or g — g) . Langlands has shown [3, p. 231] that

("¢, ™) satisfies (L.1); he asserts [3, p. 233] that if h'
is a second special point of X and u' = Hp then there is
an isomorphism
1 1]
Strut,u) : sh(T'Me, T M) —sn(TrM g, T x)

such that

Hren',u) o g (T Hg) =§"(T'”'g) o ¢lrip',u) .

\
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Conjecture C. (Langlands [3, p. 232-33]) (a) For any special

h e X there is an isomorphism

6 =¢ : 15h (G,x) =2sh ("G, x)
T T'uh
such that
¢ (tlh,11) = [("h,1)
o ctYig) =F(g) o ¢ , all g e cmf).

(b) If h is a second special element of X and u = My v

p' = uH , then

¢
tSh (6,x) —t sn (Tr¥, Tr¥Hx)
l d(tsn' ,u)

1
Sh(TIU G'T'UX)
commutes.

Remark 4.5. For a given h thereis at most one map ¢T'u
satisfying the conditions in part (a) of the conjecture (this
follows from Deligne [1, 5.2]1).

We note one consequence of conjecture C. Assume that Sh (G,X)
has a canonical model M(G,Xx), £ : M(G,X)m E+Sh(G,X)) , and let
h e X be special with associated cocharacter u . Then for

any automorphism 1t of T , T M(G,X) is defined over = E(G,X) ,

and obviously TE(G,X) = E("'Hg,T'¥X) . Moreover, if we make
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Tg e HSG&f) act on TM(G,X) as T?(g) , then

T,H

) orTf T
(M (G,X), ™(G,X)p by sn("'%,"""x) satisfies the condition,

relative to h , to be a canonical model. Part (b) of conjecture C

shows that everything is essentially independent of h , and

™ (G,X) 1is a canonical model for Sh(T’“G,T’uX) . For the

of reference, and because it is the original form of conjecture C,

SO

sake

we state another conjecture which is a weak form of this consequence.

Conjecture A. (Langlands [1, p. 417]1, [2, p. 2.5]) Assume
Sh(G,;X) has a canonical model (M (G,X),f) , and let h be
special point of X with associated cocharacter u . Then
exists an isomorphism gpro g' : GGBf)—aT'“G(Rf) such that,
g' e TG(Z&f) is made to act on T (G,X) as t(¥(g)) , then

is a canonical model for Sh(T’uG,T'uX) .

Remark 4.6. Conjecture A appears to depend on the choice of
One can, however, use the maps ¢(T;u',u) to show that if t
conjecture is true with one special point h then it is tru

with any special h .

We shall need. to use several properties of the maps ¢(T;u',n)

Thus we prove them for the Shimura varieties of interest to
namely those of abelian type. We begin by defining the maps
in an easy case.

Let (G,X) satisfy (1.1). Assume:
{4.7a) for all special h e X and all Tt e Aut (T) ,

(t- 1) (+Duy = 0o = (+1) (1-Dpy s

that
some
there

if

™ (GIX)

h .

he

e

us,

(4.7b) if h is special and P_ : S—G 1is the map defined

h
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o1}

f

by (see III.1l) then the element .X(T,u) oh(K(T))

Mh
of Hl(m,G) is indevendent of h .

Now fix two special points h and h' of X and let u = Hh

Tr¥g , "6 for "'Mg , etc..

and y' We write 'G for

= Uhl

Let L be some large finite Galois extension of @ and let af(t)
. L .

be a section to T — Gal(Lab/Q) . Then there are defined

) esmp) , srow) ¥ o B0 ecmf) , ana

daf £ df
vy df S ¥
Bé&u') ph.(B(r)) e G(BL) , and cocycles a’o(T) . Xo(t,u) ph( o(TJ),
and XO(T,u') . Moreover there are maps f' = (g a(t).g) : G, :4'GL ,
"o . oon _ " ,—l P n

£f" = (g—al(1).qg) : G — GL , and f = f" o f TG — GL
According to (4.7b) there is a v e G(L) such that
Yoltu) = vl ¥ (t,u).ov . Themap £, = £ oad £ (v 1): re gy

is defined over @® and sends 'X into "X . It therefore defines
an isomorphism Sh(f;) : Sh('G,'X) & sh("G,"X) .

df 1

as B Y g(r,u) vl g(r, )7 is fixed by Gal(L/Q) it lies in

cdf) , and hence 'B Y T¥g o rrgir, 7 gir,ut) v lies
in 'G(Af) . We define ¢(t:;u’',u) to be the composite

Sh(f;) o JU'B) . Thus
¢lriu',u) [x,'gl = [£] ox, "(Bg)]
Evidently,
o(tsu',u) o GCg) =F("g) o ¢lriu',u)

Replace a(t) by af(t)u with ue SL(L) » and let uy = ph(u)

and u, = ph.(u) . This forces the following changes:
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£ £ ¥ (t,u) v 8 (1)

-1

ug ‘60 (t,uw)ou) “tu g(t)u .

Thus f; and B are unchanged, and so also is ¢(t;p',uw) . If

vl s replaced by vl ul where u e G(L) satisfies
u = XO(T,U).Uu , then [ad f' Wl e x, £ (u—l)g] = [ x,9] for
any [x,g] e Sh('G,'X) because £f'(u) e 'G(®) . Again

é(t;u',u) is unchanged, and is therefore well-defined.

t
Example 4.8. Let (G,X) = (CSp(V), §) . For h e X special,

R S— CSp(V) to define an action of S on V
Let ''"v = Ts S v ; clearly ''YG = csp(*'™) . The element
sp(t) e S(Rf) defines an isomorphism sp(T,n) : Va&f)—) Trky (Ekf) .

we can use

Under the bijections  Sh(G,X) =».4(G,X,V) defined in (2.3),

#(t;u',u) corresponds to the map [A,t, spl(t,pu) ° kl1—I[A,t,splt,u')ek].
p

Example 4.9. Suppose h' = ad q° h with g e G(@) . Then
B =g and vl o= g . Thus ¢(t;u',u) is the map
1 o ’ o "
(x,'g] = [f ocad £ (@) ° x, (qg)]

Note that, even without the assumption (4.7), this expression
gives a well-defined map.

To be able to apply the above discussion, we need to know when
{4.7) holds. Clearly (4.7a) is valid if G 1is an adjoint group
or if there is a map (G,X)— (CSp(V), Si) such that the kernel

of G—CSp(V) is finite.
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Lemma 4.10. The pair (G,X) satisfies (4.7) if it is of abelian

type and G is adjoint.
Proof. We can assume G to be @-simple. There is a diagram

+
(G,X)¢— (G, ,X,) —(CSp(V), §7)

such that Gi‘d =G, G‘i‘er =G, and G;—CSp(V) has finite kernel

(cf. 1.4). We shall prove (4.7b) holds for (Gl,Xl) . To

show that the two classes ¥(t,u) and ¥(t,u') are equal in

Hl(Q,Gl) it suffices to show they have the same images in

Hl(Q,Gl/G?er) and in Hl(R,Gl) (see 7.3) . The first is

obvious since u and y' map to the same element of

X*(Gl/Gfer) . For the second we use (III.3.14). Thus ¥ = ((Tt-1)u) (-1)
and ¥ = ((t-1)u')(~1l) represent the images of ¥(1,u) and

¥(t,u') in H1CR1G1) . For any z e G(L) we write =z(u) for

ad z oy . A direct calculation shows that if u' = x(u) ,

x e GR) , then

xhox ¥l o L orx - ) (-1) .

Let T be a maximal @-rational torus in G such that u factors
through T(C) , and let N be the normalizer of T . If w e N(T)
then

1w.¥. W .I—l = (ww. w_l) [ (w=1) (t-1)p(-1)]
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According to (4.2), w. w_1 = (1c. c-l) [(w-1)u(-1)] for some
ceT(E) .
Thus
-1 - _
wa¥ew ¥l s e oh [w-Dtu-11
If we choose w to act on the roots of (G,T) as x 1. x. ot ,

then (w-1)tu(-1) = (x Lx-1) u (-1) , and it follows that
x ¥ x T = l(c-lw).x. (c_lw)_l , which completes the proof.
+
Lemma 4.11. Let (G,G',X ) define a connected Shimura variety
and assume (G,X) is of abelian type. Then there exists a map
ad der

EGO,XO)—)(G,X) such that G0 = G, GO =G', GO(Q)—-)G((D) is

surjective, and (G,,X,) satisfies (4.7).
0’70

Proof. Clearly the lemma is true for a product if it is true for
each factor, and is true for (G,G',X+) if it is true for

(G,G,X ) . Thus we can assume G is @{-simple and G' = G .
Choose (Gl,xl) as in the proof of (7.10). Let L be a finite
Galois extension of @ that splits Z(Gl) . There exists a
subjective map M——)X*(Z(Gl)) with M a finitely-generated free
Z[Gal (L/@) ]-module. Let Z(Gl)“ﬁZ be the corresponding map of
tori, and define G, = é*z(é)z (see Deligne [2,2.0.1]1). The

map Z(Gl)L4 Z induces an inclusion Gf—4 Gy - and we define

XO to be the composite of Xy with this inclusion. Then

G, :X,) satisfies (4.7) because (Gy,X,;) " does, and G, (@) —G (@)

is surjective because 2(Gy) =2 and Hl(m,z) =0 .
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+
Let (G,G',X ) and (GO,XO) be as in (4.11), and let h and
+
h' be special elements of X . Write u = My and p' = uh' .
The map

lrsut,u) Sh ("G, 'X,) = Sh("GO,"XO)

induces an isomorphism

¢0(T,']J',]J) : Sho('G,'G','X)-—)Sho("G,"G',"X) .

(As before, we have substituted ' and for the superscripts
7,4 and 7,p'.) The usual argument shows that ¢0 is independent
of (GO,XO) . Moreover, the surjectivity of GO(Q]-—aG(Q) shows

that
¢0(T:u’,u) °o '¥. = "¥. o cbo(r,-u’,u)

o
for all ¥ e G(@) (rel G') where Y. denotes the canonical
left action on ShY . (For the fact that ¥+ Y¥' = Tryg maps

c@* inte @', see 8.1.)

Proposition 4.12. Let (G,X) be such that (Gad,x) is of abelian

type. Then there is a unique family of isomorphisms
) 1
¢(t:u',u) : Sh(T'¥, T ¥x)— sn(T/H ¢, ¥'x) ,

T e Aut(T) , p = My u' = My with h and h' special, such

that:
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(@ Srsnt ) o Flg) =%("g) o Hrrutu) , g ecah)

(b)  dlrsu",u') o drru',u) = Tiu",u)

(c) if h and h' belong to the same connected component X+
of X , then &(t;u',u) restricted to the connected component
of sh("'M,"'¥X) 1is the map ¢O(T;u',u) defined above;

(@) if n' = gg(q) ° h with gq e G(@) , then ¢(t;u',u) is the
map defined in (4.9).

Proof. There is clearly at most one family of maps with these

properties. To show the existence one uses the standard technique

for extending a map from the connected component of a variety to

the whole variety (see Deligne [2, 2.7], or § 9).

Remark 4.13. In the case that 7t fixes E(G,X) , we define in
( 7.8) below a map ¢(t;u) : Sh(G,X)——%Sh(T’“G,T'uX) . On

comparing the two definitions one finds that
] - oy 1 o -1
o(tsu' ,u) = oltsu) dltsn)
Remark 4.14. Let h' = ad(q) ° h with g e G(@) , and assume

part (a) of conjecture C holds. One checks directly that

d = ¢ltsu',n) ° 4 " has the following properties:

o(xlh',11) = ¢(xlh,q 2 = ("*'n',1]
bo g = (T Mg o ¢
Thus ¢ = ¢ , ,» and part (b) of the conjecture holds (for u
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§5. A cocycle calculation. (cf. IV C).

Let A be an abelian variety over & of CM-type, so that
there is a product F of CM-fields acting on A in such a way
that Hl(A,Q) is a free F-module of rank 1. Assume that there
is a homogeneous polarization [y] on A whose Rosati
involution stabilizes F ¢ End{(A) and induces 1 on it. Let
Fo= {fe Fl1f = £} ; thus F, is a product of totally real
fields. Note that the Hodge structure h on V = Hl(A,@) is
compatible with the action of F . Let ¢ e [¢) be a
polarization of A (or (V,h)) ; for any choice of an element
feF' with 1f = -f there exists a unique F-Hermitian form
¢ on V such that u¢(x,y) = TrF/Q (£¢ (x,¥)) (see I.4.6).

Let I be the set of embeddings Focﬁ C ; then

- = ; — <
Hl(A,I) =V emm Soezvo , where \0 vV GFO,OE .
Moreover:
v is a free F @F C-module of rank 1:;
° 0,0
v =v' eV, wh h(z) v’ ana
g - Vs g + Where 2 acts as z on g an 12 on

¢ defines a Hermitian form ¢U on V0 such that

+ -
¢0 >0 on Vo and ¢o < 0 on V0 .

Let T be an automorphism of T and let V' = Hl(TA,Q] .
The action of F on A induces an action of F on TA , and
[¢y] gives rise to a homogeneous polarization [Ty] on TA .
. s - ® . .
Thus there is a decomposition Hl(TA,E) Gel V; where the V_

have similar structures to the VU .

~
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Our purpose is to construct an isomorphism © : Hl(A,C}——qﬂl(rA,E)
that is F ® C-linear and takes [¢y] to [Tty] . It will suffice
to define € on each component V0 of Hl(A,E] .
As Hl(A,E) is canonically dual to the de Rham cohomology
1 1 _ ol
group HdR(A) » and  Hgp (TA) = HdR(A) QB,TE , Wwe see that

Hl(TA,I) = Hl(A,E) @m TE . Under this identification, the two

actions of F correspond, and T¥ corresponds to ¢ .
Fix a o e £ , and consider V0 and V'U . Since FO
acts on V0 ®m TE through 710 , we see that we must have
r
e = ) . T i @ C-1i i i
v o VT_10 .¢,TI here is an FO linear isomorphism

X . + -
] :Vc —avy and, since F acts on Vo and V0 through

1
distinct enbeddings F =T , exactly one of the following must

hold:

1

as

D

'—I

<
Q

Ju Jre
< <
a- a-

Choose a basis for Vg, compatible with the decomposition

+ -
= i i +
Vo=V, 8V  and define 6, to be 6, in case (+) and
to be the composite of 6, with (g 3) in case (-) . Then

8 is an F @

1 . . . :
. r TL-linear isomorphism Vo—a V0 taking ¢0 to

0’9
a multiple of ¢3 .

Lemma 5.1. With the above notations, there exists an isomorphism

o s Hl(A,E)—+ Hl(TA,E) such that:
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(a) 6 © £ =f 906 for all f ePF ;
(b) e(tlyl) = (Y] ;
(c) 16 = 8. (tp(-1)/u(-1))

Proof. Define 0 = &060 and note that 160 = 60 in case (+)
while 180 = —60 in case (-) . On the other hand, u(-1) acts

0 -i ot - _ _ _ . 5
as (i 0) on V_ =V_ ® V_ and Tu(-1) = p(-1) in case (+)
while tu(-1) = (0 ©) in case (-)

We shall need a slightly more precise result.

Proposition 5.2. Let A be an abelian variety over T that is

of CM-type, and let 1 be an automorphism of T . There exists

an isomorphism 8 : Hl(A,E)——éﬁl(TA,E) such that:

(a) 6(s) = s for all Hodge cycles s on A ;

(b) 190 =8.% where ¥ is the class in H1(R,MT(A))

represented by Tu(-1)/p(-1) . (MT (A) = Mumford-Tate group

of AA.)

Proof. Note that, if we let
P(R) = {6 : H  (A,R) > H (tA,R)|8 satisfies (5.2a)}

for any @-algebra R , then P is a right MT (A)-torsor.

Proposition (5.2) describes the class of Pp in Hl(R,MT(A)) .
The lemma shows that image of the class in Hl(R,T) is correct,
where T is the subtorus of F. of elements whose norm to F0

. . x
lies in @ .
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We shall complete the proof of the proposition by showing
that HI@®, MT(a)) = H'R,T) is injective.
The noxrm map N defines a surjection T—&_ , and
}E‘/F0 m
we define ST and SMT to make the rows in the following

diagram exact:

1— SMT—»MT—’:Gm—v 1

|

1— ST — T —»Gm—wl .
This diagram gives rise to an exact commutative diagram

R* —nl ®,smr) — H ®,MT)— 0
il

R* — ul ®,s7) — 8!

‘.R'T) — 0 .

Note that ST (and hence SMT) is anisotropic over R , and
that for an anisotropic torus S’ Hl(R,S’) = Ker (s1€) 2 /@) .
Thus Hl(R,SMT)—--;Hl R, ST) is injective, and the five-lemma

shows that Hl(]R,MT)—':Hl(R,T) is injective.

Remark 5.3. Let A,F, and V = Hl (A,Q) be as in the first
paragraph. Then h can be regarded as a map h § —F" M)
(thinking of F* as a Q-rational torus). It is clear from the
discussion preceeding (5.1) that tA is the abelian variety
corresponding to v,™h) , where Th is the map §9F ®R)

with associated cocharacter Ty, e X, F") .




323

§6, Conjugates of abelian varieties of CM-type.

Let A be an abelian variety of CM-type over T , let
vV = Hl(A,W) , and let h be the (natural) Hodge structure on V .
Fix some family (Sa)aeJ of tensors such that the Mumford-Tate
group MT(A) of A is Autﬁh(sa)) (see I.3). The canonical
map S 2 MT(A) induces an action of S on v,(s,)) and, for

any automorphism <t of € , we define (TV,(TSa)) = TSXS(V,(SOL‘) .

The element sp(T)eTS(Af) defines an isomorphism
v s (v At s S (vah, s )
which we shall again denote by sp(t) .
Lemma 6.1. There is an isomorphism £ : (Hl(tA,Q),(TSa))—E%(TV,(TSG))

Proof. Let PA be the functor such that, for any @-algebra R ,

PA(R) is the set of isomorphisms (Hl(A,R),(Sa))'54(Hl(TA,R),(TSa))

Clearly PA is representable, and is a right MT (A)-torsor. Since

MT (A) _ .
2% (Hl(A,Q),(Sa)) = (Hl(TA,m),(Tsa)) , to prove the lemma it
suffices to show that P, 1is isomorphic to the MT (A)-torsor pe (F8) .
We shall show this simultaneously for all abelian varieties (over
T , of CM-type) whose Mumford-Tate groups are split by a fixed
finite Galois extension L of @ .

According to (III.1.7), SP=lim MT(A) , and it will suffice to

L s TL

show that the two S -torsors P =_1lim PA and S are
isomorphic. As Hl(Q,SL) satisfies the Hasse principle (III.

1.5) this only has to be shown locally. The isomorochisms
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B A,0p = vi@) 5vi(rA) = H (18,0,) show P to be trivial

over {p , while SP(T)eTSL(Qe) shows TSme to be trivial.

Finally (III. 3.14) and (5.2) show TSE& and’ P define the same
cohomology class in Hl(R,SL) and are therefore isomorphic.

Note that £ is uniquely determined up to right multiplication

by an element of MT (A) (@)

Conjecture CM (first form). The isomorphism £ of (6.1) can be

chosen to make the following diagram commute:

T
viay — via

] lr o

v (Af) sp (1), TV(Bf)

We next restate the conjecture in a form that is closer to
the usual statements of the main theorem of complex multiplication.
Let T = MT(A) , and choose a polarization ¢ for (V,h) which we
shall assume to be one of the Sy * From the inclusion

+
(T,{h})e— (CSp(V),S”) we obtain, as in §2, a bijection
Sh(T, {h}) <»4(T, {h},V)

where A(T,{h},V) consists of certain isomorphism classes of
triples (A', (t ), k) .

The torus T continues to act on '

V , and in fact
T = Aut(TV,(Tsa)) . One of the Tsa is Tw , which is a
polarization for (TV,Th), where 'h is the homomorphism $—T

corresponding to THy - Thus we have an inclusion
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t
(T,{"h})es (cSp('V),S”) and, as before, a bijection
Sh(T,{"h}) ST, {"h}, V) .

We define X : AT, {h} V) > AT, ("h},™V ) to be the

mapping that sends [A',(ta),k] to the class [TA',(Tta),Tk]
T

val)

Lemma (6.1) shows that [TA',(Tta),Tk] satisfies condition (2.la)

-1
where 'k is the composite Vf(TA) T——‘:Vf(zl\)—k;v (Af) i’ﬂ,
to lie in 4 (T,{"h},™) and (5.3) shows that it satisfies {(2.1b).

Conjecture CM (second form). The following diagram commutes:

(h,g] Sh(T,{h}) 2y A(T,{h},V)
I J/: XT Lx

[Th,g]  Sh(T,{"n}) 54T, {h},™v)

It is easy to check that the two forms of the conjecture are

equivalent.

Remark 6.2. When T fixes the reflex field E(T,{h}) , then
conjecture CM becomes the main theorem of complex multi-

plication (see Milne-Shih [1, 2.6]).

Example 6.3. Let F be a CM-field and I a CM-type for F .
Let A be an abelian variety (an actual abelian variety - not
an isogeny class of abelian varieties!) of type (F,X) . Then
Hl(A,E) is a locally free module of rank one over the ring of
integers OF in F , and hence defines an element I(A) of

Pic(OF) . Consider
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(s" @f) /st )Gt /D)

!

l——%T(Af)/T(Q)__%(T(Ai)/T‘L)]Gal(L/Q)

— sl @w/e,m)

where T = ResF/Q B, - L is a (sufficiently large) finite

Galois extension of @ , and the vertical map is induced by

the canonical map o : SL-—aT . As Hl(L/Q,T) = 0 , the
image of B(t) in (T(Ai)/T(L))Gal(L/m) arises from an
element R' (1) e'TGAf)/T(Q) . This defines an ideal class

I(1) e Pic(OF) ,- and the conjecture predicts that

I(tA) = I(t) I(A) .

Remark 6.4. Let A be an abelian variety of potential CM-type
defined over a number field k . Conjecture CM would imply
that the zeta function of A is an alternating product of
L-series associated to complex representations of the Weil group
of k . Deligne has proved this result without, however,

proving the conjecture (cf. TIV.).
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§ 7. Conjecture C, conjecture CM, and canonical models.

Let (M(G,X), £: M(G,X), —=> 5h(G,X)) be a canonical
model for Sh(G,X) (Deligne [2, 2.2.5]) and, for each automor-
phism 1 of € fixing E(G,X), set y_= f o (t£) L.  These
isomorphisms wT: TSh(G,X) » Sh(G,X) satisfy the following

conditions:

{(7.1a) Y =9 ° (leT ) TyeTy € Aut (T/E(G,X));

T1t2 1 2
(7.16) g TCH(@)) = ¥Hg) o ¥, T € AUL(T/E(G,X)), g € G(AT);

(7.1c) let h € X be special and assume that 1t fixes the
reflex field E(h) of h; then wT(T[h,l]) = [h, £(1)]. (Here
E(T) e Gcmf) represents rEKT,h](T) e T(Af)/T(Q)A where T

is some (-rational torus such that h factors through TR and
rE(T,h) is the reciprocity morphism (Deligne [2, 2.2.3]).) Note

that the family (wT) is uniquely determined by (G,X): if

(M(G,X)', £') 1is a second canonical model, there is an isomor-
phism gq: M(G,X)' — M(G,X) such that £f' = f o dg - and so

f' o ('rf')_l = f o ('rf)-l = wT. Moreover, descent theory shows
that every family (wT) satisfying (7.1) arises from a canonical

model for Sh(G,X).

If t fixes E(G,X) and M(G,X) 1is a canonical model for
Sh(G,X), then TM(G,X) = M(G,X) is again canonical model for
Sh(G,X), and so conjecture A suggests that we should have
Sh{(G,X) —=> sh('G,"'X). We shall prove this. Thus let (G,X) be

any pair satisfying (l1.1l) and let h € X be special. Choose a
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@-rational maximal torus T in G such that h factors through
TH(’ and let u = My If 1 1is an automorphism of & that
fixes E(G,X) then +tp and p have the same weight; thus
(L 4 tp = (L + 1)y, and (see III. 3.18) there is a well-defined

cohomology class vy (t,u) € Hl(m, T) .

Lemma 7.2. The image of vy (t1,u) 1in Hl(Q,G) is trivial.
Proof: After replacing (G,X) with the pair (Gl,Xl) con-
structed in (3.4), we can assume Gder is simply connected.

Let H = G/Gder and let ' be the composite of y with G » H.
As tp 1is conjugate to u, Tp' = p' and (III. 3.10) shows that

Y(t,u') is trivial.

Let w € G(T) normalize T(C) and be such that Ty =
egw ° y. According to (III. 3.14), the image of vy (t,u) 1in ﬁlCR,G)
is represented by tup(-1)/p(-1) = {ggw ° u) (-1)/u(-1) which
(see 4.2) is also represented by w: 1w_l; it is therefore

trivial. The lemma is now a consequence of the following easy

result.
Sublemma 7.3. Let G be a reductive group over {0 such that
Gder is simply connected. An element <y of HI(Q,G) is trivial

if its images in Hl(m, G/Gder) and Hl(HL G) are trivial.

We continue with the notations of the second paragraph of
this section; thus h e X 1is special, u = uh' and 1 fixes
E(G,X). Choose an element af(t) € TS(ﬁ) and let f:(36 - TG@
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be the isomorphism g +— a(t).g . It will often be con-
venient to regard f as being defined over L where L 1is
some sufficiently large finite Galois extension of @ con-

tained in @ . Let B(T) = sp(‘r)_1 a(t) € S(/Ai) and let

8(t, u) be the image of B(T) in ’I'ad

— af
pi : S + TE’Ld defined by uad d=fu d=‘

that we have also defined an element RB{T,u) € T('Ai) J/T(LYT (@) "~.

(A i) under the map

(@ ¥+ 1% | Recall (111.3.18)
Since B(T,n) and B(T,u) have the same image in T(/AE)/

Z(ka') T(L) T(R)" we can choose an element é(r,p) € T(/Ai) that

lifts both B(t,u) and B(7T,u); it is determined up to multi-
plication by an element of Z(AD) N T(L) T(®)" = z(L) z(®".

(Note that T@z(@) " = T(®)~ because Tad(m) is a discrete
subgroup of Tad( /Af).) Let oB(T,u) = B(T,U)’Yo i then (y,) is

a l-cocycle representing vy(t,u) € Hl((D,T). We have of = £ oé&iyo.
The lemma shows that there is an element v € G(Q) such that

= v—l.cv for all o0 € Gal(Q/@®). We define an isomorphism

Yo =
fl: G+~ 'G and an element Bl(T,u) € G(/Af) by the formulas:

£ = f o ad v 1 (7.4a)
1 WY
=8 -1 (7.4b)
By (T u) = B(T,W)V -2
Remark 7.5. In the above we have had to choose an af(t),

E(T,]J), and v. For example, if a(t) is replaced by a(t)u,
u e s(L), then B(t,n) is replaced by B8(T,n) pi(u). We show
that the cosets defined by Bl(r,u) and Bl('r,u)_l in

G(D) \G(/Af)/Z,(OJ)” are independent of all choices.
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Consider the exact commutative diagram

1> r@N\tah — (rw\ ra)))t WO oyl o)

1> e N\eah — (em\eah® WO ylig,6w)

in which the vertical arrows are induced by the inclusion T ¢2G.

On dividing by 2(@)" we obtain

Cal(L/D _; gl (1r/p,1(1))

! l }

1— s\ 6(ah) /2 — (Gm\e(ah /2@ )%, 4l 1/g,6(1)).

1 — nahy/r@ — (r@Nrwah raer)

Lemma 7.2. shows that the image of B(T,nu) (or §(T,u)—l)

under the middle vertical arrow lies in G(m)\\G(mf)/Z(Q)A 7

it is represented by Bl(T,u).

Remark 7.6. Everything is much simpler when u satisfies
(ITITI. 1.1). Then there is‘'a map pu : 8§ + T and we can choose
§(T,u) = B(1T,H) d==fpu(t3(r)). A change in the choices of a(r)

and v forces the following changes:

a(t) B(t.,u) Yg v i Bl(T,u)

-1 -1
a(T)u0 B('r,u)u2 u, yoou2 u3vu2 f o aguz Bl(T,u)u3

ug € S(L), u, = ou(u ) € T(L),.u3 € G{®m)

0

We shall abuse notation by writing 'h also for the

. . T .
map § - GIR associated with Tu: Gm > GE ;  thus h (in

the sense of §4) = £ o Th(this sense) .
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Shimura Varieties V.7

emma 7.7. Regard v as an element of G(T): then

adv o Th e X.
ag

Proof. Let w € G(T) normalize T(C) and be such that

-1
Tu = adw ° u. Then (see the proof of 7.2) v and w repre-
sent the same cocycle, and so vw € G(IR) . Hence adv o 'h =

adv o agw o h € X.

Since ng ° Th e X, and fl o adv o Th = Th e TX, we

see that f, :G — G gefines an isomorphism Sh(£,) :Sh(G,X)

=5 sni'e, Tx).

Proposition 7.8. Let ¢(T;u) be the map
Sh(£)) o % (B (1,1)) : Sh(G,x) — sh("'"g, "'¥x).

Then ¢ (t;y) 1is independent of the choices of af(r1), é(r,u),

and v ; moreover

1

¢(t:u) [agv o "h, B (T, 1 = ["h,1]

ot o g =4 ("M o d(tiw).

Proof. The formula ¢(t;u)([x,9] = [fl ° X, fl(gﬁl(r,u))]

shows immediately that ¢(t:;u) maps [ggv o Th, Bl(r,u)—l] to

["h,1]1 and that ¢(t:;u) #(g) =%(g") ¢(1;u) with g' =

fl(BiggBl) =f o ad B(T,n) (g) Tg. The independence assertion

I

is a consequence of this, the following lemma, and Deligne [1,5.2].
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Lemma 7.9. The element [adv o Th, Bl(T,u)_ll € Sh(G,X)

is independent of the choices of a(1), E(T,u), and V.

Proof. Suppose that, after a change in the choices of a(71),

N

B(t,u) and v , the elements Bl and v are replaced by

Bi and v'. Remark (7.5) shows that (Bi)_1 = uBilz with

u € G(Q) and z € Z(®" ; moreover ad(B, v') = gg[B(r,ﬁ)ul)

. ad -1 -1
gg(al v ul) with uy € T (L). Thus ad(z Blu v') =
ad(B; vu;) and, on cancelling the B,, we find ag(u_lv') =
At T ' -1 ' -

ad(vu;). Hence [agv' o 'h, (By) 71 = lagv' o "h, uBllZ]
-1, 1 -1, _ o T -1, _ T -1

agu “v' o "h, 8,71 = [adv ° adu, o 'h, By7] = [adv ° 'h, B, ]

because 'h maps into T(IR) and uy e Tad(L).

Remark 7-10. Under the hypothesis of (7.6) , the map ¢ (t:u)

becomes [x,g] +—> (f o egv—l o x, f(v_1 gB(T,n))] and the
element in (7.9) becomes [agdv o Th, VB(T,u)_l]. Both can be

directly shown to be independent of all choices.

Proposition 7.11. Assume that Sh(G,X) has a canonical model

and let (wT), T € Aut(C/E(G,X)), be the corresponding family
of maps as in (7.1) above. Conjecture C 1is true for Sh(G,X)

and a particular +t € Aut(L/E(G,X)) if
P T -1
wT(T[n,ll) = [adv o "h, 8,(t,u) "] (7.12)

holds for all special h € X.
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Proof: Note that Lemma 7.9 shows (7.12) makes sense. Define

¢ . = ¢(T:p) © ¢_. Then

T, T
b,y (TAD = s tagy = Tho BT by (7.12)
- [h1] by (7.8)
Moreover,
bp,y © (@) = e(tin) o Yg) o U,
ol SSRCIICIE N by (7-8)

Thus ¢T " satisfies condition (a) of conjecture C. Let h'

be a second special point and let p' = Myre Then

dlTsu’,pm) o ¢T,Ll = ¢(t:u',u) o d(tsu) o v

1

because ¢(Tip',u) = ¢{t;u') o ¢lTsu) (4.13).

Remark 7.13 In certain situations, (7.12) simplifies.

For example, under the hypothesis of (7.6) it becomes

1

¢ (tlh,1]) = [adv o "h, v B(t,u) "] (7.13a)

(see 7.10). On the other hand, if we identify Sh(G,X) with

M(G,X)m, then (7.12) becomes
-1
tlh,1] = [agv o 'h, B, (t,u) "] (7.13b)

If y(t,u) af p_(y(t)) is trivial in Hl(m, p (S)) then there
I

=}

Y. (mod Z(G)).

exists a u € S(L) such that p_(u)_l(op_(un s

u H
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After replacing a(t) with a(tr)u one finds that £ is
defined over @, that @B(t,u) can be chosen to lie in T(Af),

and consequently that v = 1. Thus (7.12) becomes

(Th, B(t,w (7.13c)

I

v (tlh,1])

Finally, if 1t fixes E(h) then the hypothesis of (7.6) is

satisfied, vy(t1) is trivial 1in Hl(m, SE(h)), and (7.12)

can be written
v (i1 = [h, Bt Tl = [h, (1) (7.13d)

(see 11I.3.10), which is one of the defining conditions for

M(G,X) to be canonical model (see 7.1lc).

Proposition 7.14. Assume that conjecture C 1is true for

Sh(G,X) and all T € Aut(C/E(G,X)); then 5h(G,X) has a
canonical model and the maps wT(as in 7.1) satisfy wT =
¢(T:uh)—l o ¢T,U for any special h € X; equation (7.12). is
true for all hfixing E(G,X) and all special h € X.

Proof: Choose a special h and set Vo = ¢(r;u)—l o ¢Lu with
TR T Arguments reverse to those in the proof of (7.11) show
that y_ is independent of h, that Y ° t%(g) = %(q) o Vo
and that y_(t(h,1]) = [adv * "n, Bl(r,u)_l]. To complete the

proof it must be shown that wT =y ° (tle ), but it can
2

12 N1
be checked directly that the two maps agree at the point Tsz[h,l],

and this implies they agree everywhere.
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Corollary 7.15. In addition to the assumption of (7.14)

suppose that E(G,X)CC IR . Then conjecture B 1is true for
Sh(G,X).

Proof. If we identify Sh(G,X) with M(G,X)m then (7.14)

and (7.13) show that 1({h,1] = ['h, E(1,u)_l] for any special

h, where B(i,u) has been chosen to be in T(zAf) . But,
according to (III. 3.9), B(i,u) =1 Qnd so B(1,u) € T(P) . Thus
1[h,1] = [Ih, §(1,ufl]==[1h, 1], which implies conjecture B (4.4).

We come now to the relation between conjectures C and CM.
Let A be an abelian variety of CM-type, let V = Hl(A,Q), let
h be the natural Hodge structure on V, and let | be a
Riemann form for A. If T is the Mumford-Tate group of A

then we have an embedding (T,h) &~— (CSp(V), Si).

Proposition 7.16. Conjecture CM 1is true for A and a

given T € Aut(C) if and only if (7.12) holds for Sh(CSp(V),Si),
h, and 1.

Proof. Write (G,X) for (CSp(V), §Y). Recall (2.3) that
there is a bijection Sh(G,X) — A{G,X,V) where NG, X,V)
consists of certain isomorphism classes of triples (A',t,k).

Let u =y, ; we define : 4(G,X, V) —> ¢¢(T’“G, Toby, Trig

T,u

to be the map [A',t,k] +— [TA',Tt,Tk] where 'k is the
-1

composite vi(ma')y 1< vi@ay Xs vy =@, Ty pfy

Clearly there is a commutative diagram
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A(T, h, V) “—— 4G, X, V.
X
lXT ‘l T,
AT, h, T M) e—— A(FrHg, TPy, T M)

where X is as defined in §6. On the other hand, as the
canonical model for Sh(G,X) 1is the moduli variety,

T: Sh(G,X) » Sh(G,X) corresponds to the map T :4(G,X,V) ».4(G,X,V)
such that [A',t,k] +— [TA',Tt, tk] (where 1k = k o© . 1t

is easily verified that ¢(t;u) corresponds to the map

[A',t, k] — [A',t,sp(T) o k]; thus ¢(1:;u) o 1 corresponds to
X, ° Since ¢(t;p) is an isomorphism, (7.12) is equivalent

to the equation ¢(t;u) (t[h,1]) = [Th,l],vor, to the assertion

that Xe,u maps the triple corresponding to [h,1] to the

triple corresponding to {h,1]. But this is precisely the

second form of conjecture CM.

Corollary 7.17. Conjecture CM 1is true if and only if con-
jecture C 1is true for all Shimura varieties of the form
sh(csp(v), s%).

Proof. Combine (7.16) with (7.11) and (7.14).

Remark 7.18. The same arguments as above show that conjecture
CM implies conjecture C for Shimura varieties of the form
Sh(G,X) when (G,X) embeds into (CSp(V), S%). We shall show,
however, that conjecture C for Shimura varieties of the form

Sh(Csp(V), Si) implies conjecture C for all Shimura varieties
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of abelian type, see Theorem 9.8. Thus, at least for these
varieties, conjecture C 1is equivalent to a statement involving

nothing more than abelian varieties of CM-type.

Remark 7.19. It is easy to verify conjecture CM in the case

that 1 = 1 (cf. 4.4). On combining this remark with (6.2).

we find that conjecture CM is true whenever T fixes the

maximal real subfield of E(G,X). In particular, conjecture

CM is true for elliptic curves. WNow (7.16) shows that con-

jecture C 1is true for Sh(GL,, Si). (cf. Shimura [1, 6.9]).
Even if T does not fix the maximal totally real subfield

of EI(G,X), conjecture CM still holds in some cases. Such

examples are given in Milne-Shih (1, 2.7]. They arise naturally

when one analyzes conjecture B , for details see (ibid, §6).
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§ 8. Statement of conjecture C°.

Let (G,X) satisfy (1.1), let h e X be special, and let

By - Recall that there is a unique homomorphisn PL : S--‘>Gad

_ — df ad | _ . ;
such that p“ o “can =y = y ;s then Dp defines an action

of S on G , and we write Te for 'S x° ¢ and

grs g : G(Af)—)TG@Af) for g spl(t).g .

Lemma 8.1. The isomorphism g 'g : G(Af)—) Ta (B\f) maps the
N RN a
subgroup G (@) of G@F) into TG@' ana c@, into

W,

Proof. Choose an element af{t) e 'S{L) for some finite Galois
extension L of @ , and let £ : GL—bTGL be the
isomorphism g— a(t).g . In (3.6) we have defined an isomorphism

memE) 2 myr(G) - nov(TG) and it is easily checked that the following

diagram commutes:

g—Tg : cal) 5 Tcal)
[

“Oﬂ(f) : won(G) - TIOW(TG)

Since the kernels of the two vertical arrows in this diagram are
G((D)+A and G (x]))+h (Deligne (2, 2.5.11), gp—-)Tg maps the
first group into the second. Clearly g'_;rg maps 2 (G) (@)
into 2(7G) (@) and so it maps G(O)): = G(\D)+A Z (&) into

w, = @’ (z@) .
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. + s . .
Lemma 8.2. Let (G,G',X ) define a connected Shimura variety,

let h e X be special, and let u = Then there exists a

“h .
. . . T, +° . T +° Ta,
unique isomorphism g+ g : G(@) (rel G')— G(R) (rel G')
with the following property: for any map (Gl,Xl) — (G,X) such
ad der

that G1 = G and Gl is a covering of G' , the diagram

~

g ‘g : Gl(Q); — 6, (@),
T

g1 %9 : a@ " (rel g —TG@* (rel ')
commutes.

Proof. According to (3.4) we can choose a (Gl,xl) , as in the
statement of the lemma, such that Z(Gl) is a torus having trivial

cohomology. Then Gl((D)—-)G(Q) is surjective, and the equality

@7 * @t

+
G(R) " (rel G') =G
+ Gl(s‘n)+

1
. +n

(Deligne [2, 2.1.6.2]) shows that Gl(m):—)G(W) (rel G') is

surjective. Thus we can define gn—ng to be the map induced

by its namesake on Gl(flil)+

Let (G2,X2)—¥ (G,X) be a second map as in statement of the
lermma and define G; to be the identity component of G %g Gy -
There is an X3 for which there are maps (G3,X3)—) (Gl,Xl) and

(G3,X3)—)(G2,X2) . Since I\'er(G3—-)G2) = Ker(Gl—-yG),
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G3(Q)—+ Gz(m) is surjective and the image of GB(W); is dense
in Gz(W); . Clearly the maps g— 'g for Gy » Gy and G
are compatible, as are the same maps for G3 and G2 . This
forces the maps g1 Tg for G2 and G to be compatible.

When necessary, we shall denote the map defined in the
lemma by ¥ =Ty,

Recall that any Y e G(Q)+A(rel G') defines an
automorphism ¥. of sh® (G,G',X') which, when Ye @’ ,

+ 1+
is equal to the family of maps ad¥ : I'\X —¥I'¥ x' .

+ .
Conjecture C°. Let (G,G',X ) define a connected Shimura variety
and let Tt be an automorphism of T .
+ .
a) For any special h e X , with u = My v there is an

isomorphism

+ +
0 =62 T8h° (G,G',X )= sh° (‘G,"c','x ")

such that
$2 (tlh]) = [Thl
0% o t(8) = "X o8, e c@™ (rel ")

+ .
b) If h' e X is a second special element and p' = LI then
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6° N
+ TiHayr T
TSh® (G,G',X ) —+ky sne(Tr¥g,TrHer, TPy

WI ld)o(THJ',U)
I

1] 1 1 +
she (TrHg, UM, T xT)

commutes.

(For ¢°(t;u',u), see §4.)
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§ 9. Reduction of the proof of conjecture C to the case of the

symplectic group.

a

Let (G,X) satisfy (1.1), let ¥ e c2% (@) , and let h e X

be special. If the image of ¥ in Gad(R) lifts to an element

of GMR) , then h' = ag Je h 1is also a special point of X
Write p = Wy u' o= TH and choose an al(1) e TSL(L) for
some finite Galois extension of @ . Then

fl = (a(t).g— alt). ng—l) is @-rational isomorphism Tilg o g

which is independent of the choice of a(1) and maps Tr¥x  into
TrH y

Lemma 9.1. With the above notations, the composite
T e ] [ 1
Sh(T'“G,T’pX) 8’; Sh(T'uG,T'UX) $ltiu r]J)’ Sh(T'“ G,T'u X)
is equal to Shi(f,)

Proof. If ¥ 1lifts to an element of G(®) , this is immediate
from the definition of ¢(t;u',u) (see 4.12d). Since we can
always find a group with the same adjoint and derived groups as
G , but with cohomologically trivial centre, this shows that the
two maps agree on a connected component of sh(T'¥e,Tr¥x) . To
complete the proof we only have to note that both maps transfer
the action of %§(g) on Sh(T'YG,T'"X) into the action of

TJ(£; (g)) on sh(T'F'G,TH'x)




Lemma 9.2. Suppose conjecture C 1is true for (G,X) and let
h e X be special with W = up Then for any ¥y e Gad(m)+ '
¢ o T(y.) = Ty. o ¢
T, U T, 4
R . ad . . +
Proof. Note that the image of y in G~ (R) . being in G(R) ,
lifts to G(IR) . Let h' = 39 yeh and u' = upr, and consider
the diagram
9 T,U~ T,H
TSh(G,x) —E3 sh( 'YG, ""X)
lT(x.) T3
¢
1Sh(G,x) —&3 sh(*'¥e,TrHx) | sh(f,)
O, lMT:u',u)
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1] 1
sh("Me, T ¥ x)

Since we are assuming that the bottom triangle commutes, it

suffices to show that the diagram commutes with the lower ¢T
’

u

removed. But clearly
Sh(£y) o ¢, (r(h,1]) = [("n',11 = ¢, o o Tly.) (xlh, 1D,
Sh(fy) o &, ° tHg) = "M aa yig)) o Sh(fy)od, .
b, e Tly) o Tl =7 Vaa Yl e b e Ty

T,

which completes the proof.

M
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Remark 9.3. If, in (9.2) , ¥ 1lifts to 6 e G(@) , then the
statement of the lemma becomes ¢ y 0'5(5—1) = 5(T5_l) cdiu
r ’

which is part of (a) of conjecture C.

+
Proposition 9.4. Let (G,X) satisfy (1.1) and let X be one

connected component of X . Then conjecture C is true for Sh(G,X)

+
if and only if conjecture C° is true for Sh°(Gad,Gder,X ) .

+
Proof. Assume conjecture C and let h e X be special. Then

¢T w o with W = My o maps T[h,1] to [Th,l] and therefore
14
+ +
it maps Sh°(G,G',X ) into Sh°(TG,TG',TX ) .. We can therefore
+
define ¢; u to be the restriction of ¢T " to Sh°(G,G',X )
14 14

Part (a) of conjecture C° follows from part (a) of conjecture C
and (9.2), while part (b) of conjecture C° follows from part (b)

of conjecture C.

Next assume conjecture C° holds for Sh°(Gad,Gder.X+)

Suppose that, for special h e X+ , we have extended ¢° , H o=
T,H

)lh '
to a map ¢T;u TSh(G,X) =+ Sh(TG,Tx) satisfying
¢, ° tHg) =23 (g) ° ¢ - Then ¢  (t(h,1]) = ("h,1] and,
for y' = Hp o with h' e x* , Qr,u' = d(t;p', ) °¢T,u , because
the maps ¢° have the corresponding properties. If h' is a
special element of X , but h' ¢ X+ , we write h' = éﬂ q°h
with h e X+ and q e G (@) , and define ¢T,u' to be
lrru',u) ° Qr,u . We have already noted in (4.14) that this

map automatically satisfies part (a) of conjecture C. That the
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entire family, (¢T " ) , h e X special, satisfies part b of
‘*h

conjecture C follows easily from the definitions and from (4.12b).
It remains to see how to extend ¢; b For this we use
7

Deligne [2, 2.7.3]. Write tSh for tSh(G,X) and 'Sh for
sn('e,™x) . Recall (Deligne [2, 2.1.16]) that G@&F%) acts
transitively on 1, (tSh) (=tmy(Sh)) and that the stabilizer

N .
of te ¥ csn° (¢ ,cd%T x*) is cw), . Similarly ‘c@h

acts transitively on nO(TSh) and the stabilizer of ‘e
is TG((D)+ . We have compatible isomorphisms

G(Bf)-—§TG(Af) and 7, (tSh)— no(TSh) (see the proof of 8.1).

Thus giving a morphism 1S5h~— Tsh that is compatible with these

two morphisms is equivalent to giving a morphism Te— e
that is equivariant for the actions of the stabilizers of

T .
Te and e . But ¢; , is such a morphism.
Lemma 9.5. Suppose that (G,X) and (G',X') satisfy (1.1)
and that there is a map (G,X)— (G',X') with G—=G'

injective. If conjecture C is true for Sh(G',X') then it is

also true for Sh(G,X)

Proof. According to Deligne [1, 1.15.1] the map
Sh(G,X)—3>5h(G',X') is injective. A special point h of X
maps to a special point h' of X' , and the map ¢y sends

T luh'
t[h,1] to ['h,1] e sh('G,"®x) < sn('e',Tx') . It therefore
sends <tlh,g] to [Th,Tg] e Sh(TG,TX) for any g e(Ska) ,
which implies that it maps 15h(G,X) into Sh('G,'X) . We define

¢r,uh to be the restriction of ¢T'“h' to 1tSh(G,X) .
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+ "
Lemma 9.6. If conjecture C° is true for Sh°(G,G',X ) , and G
is a quotient of G' , then conjecture C° is true for

+
Sh° (G,G",X ) .

Proof. This follows immediately from the general fact that
+
Sh°(G,G“,x+) is the quotient of 5h°(G,G',X ) by the kernel

of the surjective map

@t (rel e )— @ (re1 6™ .

+ s
Lemma 9.7. If conjecture C° is true for Sh°(Gi,Gi,Xi), i=1l,c..m:

+
then the conjecture is true for Sh°(HGi,HGi,HXi) .
Proof. Easy.

Theorem 9.8. If conjecture C is true for all varieties of the
o
form Sh(CSp(V), S ) then it is true for all Shimura varieties

of abelian type.

Proof. If conjecture C is true for varieties of the form
Sh(Csp (V), Si) then (1.4), (9.5), and (9.4) show that
conjecture C° is true for all connected Shimura varieties of
primitive abelian type. Then (9.6) and (9.7) show that
conjecture C° is true for all connected Shimura varieties of
abelian type. Finally (9.4) then implies that conjecture C

is true for all Shimura varieties of abelian type.

Corollary 9.9. Conjecture CM implies that conjecture C is

true for all Shimura varieties of abelian type.

Proof. Combine (7.17) with (9.8).
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§ 10. Application of the motivic Galois group.

Let M be an extension of Gal(@/@) by the Serre group § ,

1— 38 —M - Gal (B/@) —> 1 (10.1)

together with a splitting §§ over AAf , in the sense defined
in (III.2). This means, in particular, that the action of

Gal (/@) on S by inner automorphisms in M is the algebraic
action described in (III 1.8), and that (10.1) is the projective

limit of a system of extensions

1— st — M — 5 Ga1(t?P/g) — 1 (10.2)
over fields L finite and Galois over @ where mc.Lc:LaQ: [TR=X
_df __
We assume in addition that the right S-torsor g =7 l(T)

is isomorphic to the S-torsor Ts arising from the Taniyama

group (see §4). Since the existence of 8§p(t) implies that
Tgé is trivial for all £ , (III 1.5) shows that the assumption
£

holds if TS]R z TgIR as Sp-torsors .

Let A be an abelian variety over @ of potential CM-type
and let V = Hl(A(m),m) . We identify the Mumford-Tate group
MT(A) of A with the algebraic group Aut(V,(sa)) , Wwhere (su)
is the family of all Hodge cycles on A (and its powers etc).
There is a canonical map p : S5 » MT(A) (and S = }im MT(A))

As in (6.1) we let 2% be the MT(A)-torsor such that, for any
@-algebra R ,



348

P, (R) = {a:Hl(A,R)—:—)Hl(TA,R) | ats,) = ts, , all a)

The proof of (6.1) shows that there exists an S-equivariant

moxrphism TS-—-;PA . Note that, as Hl(A,AAf) = Vf(A) and

Hl(TA,Akf) = Vf(TA) , PA(AAf) contains a canonical element,

namely T , the map induced by letting Tt act on the points of

_ T

finite order of A . As in § 6, we let (TV,(Tsa)) S x S(V,(Su)) .

Lemma 10.3. The following are equivalent:

:Tg + P such

(a) there exists an S-equivariant morphism p A

that p(p(1)) = 1

(b) there exists an isomorphism f : (Hl(TA,m), (Tsa)) -+ (TV,(Tsa))
such that
via — T v
H J’fﬁl
$p(1) ot Y. f
v(mf) v (mF)

is commutative.

Proof. First note that if P, is one S-equivariant morphism
Ts -+ PA then the other such morphisms are of the form
mop , M € MT (A) (@) , and that if fo is one isomorphism
(Hl(TA'm)’TSa) - (TV,(Tsa)) then the others are of the form
fo om, m & MT(A) (@) . Choose a Py and define f0 to be

the inverse of

s.v > p (s) (V) : 'V —H (1A,0) .
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-1
Then (fo@l)

oQE(T) is the map v|——9po(§§(r))(v) . The
equivalence of (a) and (b) now obvious.

Note that (b) of the lemma says that, if in the statement
of conjecture CM, T is revlaced by M , then the conjecture
becomes true for A .

By the motivic Galois group we shall mean the group associated
with the Tannakian category of (absolute Hodge) motives generated
by the abelian varieties over @ of potential CM-type: ie.
the group called the Serre group in (II.6). It is an extension

of Gal(Q/@) by S in the sense of the first paragraph of this

section (see II.6, and 1V, especially B).

Proposition 10.4. (a) If, in the statement of conjecture CM,

T 1is replaced by the motivic Galois group, then the conjecture
becomes true for all abelian varieties over (@ of potential
CM~type.

(b) Let M be an extension of Gal(@/0) by S as in the

first paragraph of this section. If conjecture CM becomes

true for all abelian varieties over {Q of potential CM-type
when T is replaced by M , then M is isomorphic to the motivic
Galois group (as extensions of Gal(@/@) by S with splittings

over AAf) .

Proof. (a) It is shown in (II.6) that the motivic Galois group
satisfies (a) of (10.3).

(b) Fix a finite Galois extension L of @ such that LcQ .
For each abelian variety A over @ of potential CM-type

whose Mumford-Tate group is split by L , (10.3) gives us an
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S-equivariant morphism Py ¢ T§L-—apA such that pA(§§(T)) =T
(here T§L is the inverse image of T in (10.2)). On passing

to the inverse limit over A , we obtain an isomorphism
p : Tgh___3"8Y  such that p(Sp(t)) = Sp(1) , where TS and

~ ; o~
sp(1) refer to all motivic Galois group. Choose sections a

and @ to wm for M and the motivic Galois group, and define

~ ~ . L, f
g(t) and B(t) in S (AAL) by the formulas (see II1I.2.9)

|

Sp(1) B(1) = &(1)

SB(1) B =73

I
o))
—_
A

Since p(F(1)) =4§f1)a , ae SL(L) , it follows that

~
B(1) mod SL(L)

~
B (1)
This implies (b) (by (III.2.7, 2.9)).

For the remainder of this article, M will denote the motivic
Galois group. We retain the notations of the first paragraph of
this section.

Much of sections 84 - §9 of this paper remains valid when
the Taniyama group T 1is replaced by the motivic Galois group

M . In particular, there are isomorphisms
] 1
$tsut,u") = sh("¥e, TPy —sn(T M 6, M x)

as in (4.12) except now defined relative to M . The isomorphisms
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E(T;U) : Sh(G,X) ———3 sh(""¥g, "'¥x)

of (7.8) are not defined in the same generality because, in
their definition, we have used that b(t,u) is defined whenever
u satisfies (III.3.3) (rather than III.1l.1). The alternative
definition (see 7.6, 7.10) is, however, valid and provides a

map $(T;u) when (G,X) satisfies (0.1) and (0.2).

Theorem 10.5. If, in the statement of conjecture C , the Taniyama
group is replaced with the motivic Galois group, then the conjecture

becomes true for all Shimura varieties of abelian type.

Proof. As in (7.17) one proves that conjecture CM implies that
conjecture C is true for Shimura varieties of the form
Sh(CSp(V),St) , and as in (9.8) that this implies that conjecture

C is true for all Shimura varieties of abelian type.

Corollary 10.6. Conjecture A is true for all Shimura varieties

of abelian type.

Proof. We remark that, because the S-torsors W_l(T) and

%_I(T) defined by T and M are isomorphic, so also are the

(TIUG'TIU

pairs X) defined by the two groups. (The maps

g—"""g : cmh) — T Vc(mf) coula however, aiffer.)
The discussion preceding the statement of conjecture A in § 4

therefore shows that the corollary follows from (10.5).
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Corollary 10.7. If (G,X) 1is of abelian type and satisfies (0.1)

and (0.2), then conjecture B is true for Sh(G,X)

Proof. The torsor 'S is trivial because 1 : A(T)—s1A(T)
is a homeomorphism and therefore induces a map Hl(A,Q)—ﬁHl(lA,Q)
which can be shown to map the Hodge cycle Sy to 1S, .

Thus in (0.5) (whose relevant part is implied by (7.14)) we can

take af(1) € 'sS(@®), c() = pu(a(l)) r v=1,and a = Du(g(l)_l)
where g(1) is defined by @ap(t) B(1) = a(1) . Hence (10.5)
implies 1[h,1] = [lh,pu(ﬁ(l)—l)] . But conjecture CM in its
original form is true when <t = 1 (see 7.19) and this implies
(1) = B(1) mod s®(L) . Since B8(1) = 1 mod SV(L) by (III.3.9),

we have 1[h,1l] = [1h,1]

Remark 10.8. In (Milne-Shih [1]) conjecture B is proved for all
Shimura varieties of abelian type. There is a good reason why
it is easy to prove conjecture B under the assumption of (0.1)
and (0.2): these conditions should imply Sh(G,X) is a moduli

variety for motives.

Remark 10.9. Theorem 10.5 together with the proof of (7.14) show
that Sh(G,X) has a canonical model whenever (G,X) is of
abelian type and satisfies (0.l1) and (0.2). Presumably if the
maps z(T,u) were defined (using M) for all Shimura varieties
of abelian type, then one would recover the main theorem of
Deligne [2], but there seems little point in this (except that

it would give a proof not involving EE(G,G', X+))
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Deligne has conjectured the following:

Conjecture D. The Taniyama group and the motivic Galois group
are isomorphic (as extensions of Gal(Q/@) by S together
with a splitting over PAf) .
See IV, where the two groups are shown to be isomorphic
as extensions of Gal(®/@Q) by S . (It therefore remains to
show that the isomorphism can be chosen to carry sp into §§ .)
Deligne also suggested that his conjecture D should be

equivalent to Langlands's conjecture C. We prove:

Proposition 10.10. Conjecture D is true if and only if conjecture

C is true for all Shimura varieties of abelian type (equivalently,

for all Shimura varieties of the form Sh(CSp(V),St)) .

Proof. If conjecture D is true, then (10.5) shows that conjecture
C is true for Shimura varieties of abelian type. Conversely, if
conjecture C is true for varieties of the form Sh(CSp(V),St)

then (7.17) shows that conjecture CM is true, and (10.4b) that

conjecture D is true.

Remark 10.11. Let L<Q@ be a finite Galois extension of Q

and let K be subfield of L . We write KTL and KML for

the pull-backs of TL and ML relative Gal(Lab/K)C—q Gal(Lab/Q)
Assume that L is a CM-field. If A is an abelian variety of
CM-type whose Mumford-Tate group is split by L , then the reflex

field of A 1is contained in L , and the main theorem of complex
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multiplication shows that conjecture CM is true for all such

A and all 1 fixing L (cf. 6.2) . Thus an obvious variant

of (10.4b) shows that LTL < LML as extensions of Gal(Lab/L)
L

by S with splittings over AAf . Since conjecture CM is

known to be true for T = 1 , it is therefore also true for

any T fixing the maximal totally real subfield K of L ;

thus KTL z KML (as extensions ...) . The results of Shih[1]

(see also Milne-Shih [1]) often allow one to replace K in this
isomorphism by a subfield of L over which L has degree 4.
For example, let FJ be a totally real field of finite

degree over @ and let F and F be distinct quadratic

1 2
totally imaginary extensions of Fo . Let Fy =TF; 2] F F, and
o
qf
choose a subset Eo of Io Hom(Fo,HU . For each o € IO
choose extensions o, and o, of ¢, to F, and F, . ILet
I, = Hom(F,,T) , %; = {o)]o ez}
I, = Hom(F,,T) , I, = {o,lo ¢ £}
I3 = Hom(F3,E) ’ Il X I 12
o
I, = {(ol,cz)lo e Io}u{wl,cz)lc e Zo}u{(ol,mz)lo ¢ Zo} .
Define E; to be the subfield of € of elements fixed by
{te Aut(m) |t I;c Ei} ,i=20,1,2, 3. Then E  is totally
real and E3 = ElE2 is a CM—fleéd. In general, [E3 H Eo] =4 .
BE
When E, is Galois over @ , T 32 EM 3 (as extensions ...) .
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Remark 10.12 Our original approach to the results of this
section was a little more elementary. We showed directly that

there exists a compatible family of maps
el Galwe — st@ah/st@
such that if M' is the extension and splitting defined by
s B(ma(n) : Gal@®/m —— st /st (L)
with b as in (IIr.3.11) (cf. III.2.7) then conjecture CM
holds for M' . Thus, in all of the above, the motivic Galois

group can be replaced by M' . 0f course (10.4b) shows that M'

is isomorphic to the motivic Galois group (as extensions P I
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