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In (8, pp. 222=223] Langlands made a very precise conjecture describing

how an automorphism of C acts on a Shimura variety and its special points.
The results of Milne-Shih [15], when comnbined with the result of Deligne
[5], give a proof of the conjecture (including its supplement) for all Shimura
varieties of abelian type (this class excludes only those varieties associated
with groups having factors of cxceptional type and most types D). Here
the proof is extended to cover all Shimura varieties. As a consequence,
one obtains a complele proof of Shimura’s conjecture on the existence of
canonical models. The main new ingredients in the proof are the results of
Kazhdan [7] and the mecthods of Borovoi [2].

In the preprint [7], Kazhdan shows that the conjugate (by an automor-
phism of C) of the quotient of a Hermitian symmetric domain by an arith-
metic group is a varicty of the same {orm. (For a precise statement of what
we use from (7], see (3.2).) In sections 2 and 3 we apply this result to prove
the following weak form of Langlands’s conjecture:

(0.1) let M°(G,X™*) be the connected Shimura variety defined by a
simply-connected semi-simple algebraic group G and Hermitian symetric
domain X%; then, for any automorphism 7 of C, there is a connected
Shimura variety M°(G’, X't) for which there exist compalible isomor-
phisms

e TM°(G,XT)— M°(G',X'")
'¢'2 GAJ — GIA"N‘

In [2] Borovoi shows that the analogue of (0.1) for non-connected Shimura
varieties implies the existence of canonical models for all Shimura varieties.
We adapt his methods to show, in section 4, 5, and 6, that (0.1) implies
Langlands’s conjecture for all connected Shimura varieties.
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In the final section we review the main consequences of this result:
Langlands’s conjecture in its original form; the existence of canonical models
in the sense of Deligne; Langlands’s conjecture describing the action of
complex conjugation on a Shimura variety with a real canonical model;
the existence of canonical models in the sense of Shimura. An expository
account of this, and related material, can be found in [11].

I am indebted to P. Deligne for several valuable conversations and,
especially, for suggestions that led to the climination of a hypothesis on the
congruence nature of arithmetic subgroups in the statement of the main
theorem.

Notations. The notations are the same as [4]. In particular, a reduc-
tive group G is connected with centre Z(G). A superscript -+ denotes a
topological conneccted component, and G(Q). denotes the inverse image of
G*Y(R)* under G(Q) — G**(R). The symbol S denotes Resg/r Gm, and,
for any homomorphism h: S — G, pp denotes the restriction of hg to the
first factor in S¢ = G,, X G,

If (G,X) and (G’, X’) are pairs defining Shimura varieties, then a map
(G,X) — (G',X') is a homomorphism G — G’ carrying X into X’. An

inclusion (T',h) — (G,X) will always mean that T is a maximal torus of

IfGisagroupover Q,then G; = Gq, .By ahomomorphism Gps — G'as
we mean a family of homomorphisms of algebraic groups G; — G} whose
product maps G(A7) into G'(Af). (As usual, A/ = ( liE\ Z/mZ) ® Q.)
The closure of G(Q) in G(A') is denoted by G(Q)~.

We say that a group G satisfies the Hasse principle for H* if the map of
Galois cohomology groups H¥(Q,G) — [[, H{(Qi, G) is injective, where [
runs through all primes of Q including | = oo.

If V is an algebraic variety over a field k, and r: k& — K is an inclusion
of fields, then 7V denotes V Qk,r K = V Xgpeck spec K.

The main deflinitions concerning connected Shimura varietics are reviewed
in an Appendix.

§1. Statement of the First Theorem

To a pair (G, X ) satislying (C) (see the Appendix), a special point
h € X*, and an automorphism 7 of C, Langlands [8] associates another
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pair ("G,”X*) also satisfying (C), a special point Th € "X+, and an
isomorphism %, = (g — "g): G(AY)— "G(A). (Scc also [14]; in general,
we shall use the definitions of [14] and [15] rather than [8].)

Theorem 1.1. Assume that G 13 simply-connected; then, with the
above notations, there exists an isomorphism

0 TM°(G,XT)— M°("G,"X )
such that

(a) ps(r[h]) = ["h] (for the particular special h)
(b) <p,.(1’(g$)) = "gp,(z), allz€ MO(G’X+)7 g€ G(AI)

Remark 1.2. This is a weak form of part (a) of Conjecture C°
(15, p. 340]. In §6 we shall sec that it leads to a proof of the full conjecture.

Remark 1.3. The real approximation theorem [3, 0.4] shows that
G(Q)+ is dense in G(R)4. Therefore, for any z € X+, G(Q)4z is (real)
dense in X+, and its image in I' \ Xt is Zariski dense. It follows that there
is at most one map ¢, satisfying the conditions of the theorem.

Remark 1.4. Let G be a semi-simple group over Q, and let : T — G
be the inclusion of a maximal torus. Then Aut(G,?) = T &L T/Z(Q).
Fix a finite Galois extension L/Q and consider triples (G’,7',4) where
(¢, 1T L G') is isomorphic to (G, 1) over L, and % is an isomorphism
(G,9)asr 3 (G',i")ars (i-e., an isomorphism G 5y — G’as carrying i, into
y;). Given such a triple, choose an a: (G,¢), = (G’,+), and define
B = B(G',#, ) € T(AL) by the equation 1 o 8 = a. Let B be the image
of B in T(AL)/T(L). Then (G',7,%) — B(G',',v) defines a one-to-one

correspondence
{isomorphism classes of triples (G’,¢, %)} & (T(Ai/T(L))Gal(L/Q).
Consider now (T, h) <4 (G,X™*). Using the element B(r,un) ex-

plicitly defined in [14, 3.18], one obtains from this correspondence a pair
("G,7i: T=> "G) together with an isomorphism t,: Gos — "G o s carrying
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¢ into "¢. These are the objects in (1.1). The map Th: S — T <54 7@ is that
whose associated cocharacter is Tpp, and "X ¥ is the "G%%(R)*-conjugacy
class containing "h.

One other fact we shall need concerns the class v of ("G, 74) in H(Q,T)
(equal to the image of B(r, ) under

(TAL/T) D & B'(Ca(L/Q), T(L) - HYQ,T).

The existence of 1 shows that the image of v in H}(Q,, T) is zero, for all
finite /; its image in H!(R, T) is represented by ru(—1)/u(—1) [14, 3.14].

Remark 1.5. Theorem 1.1 (in fact, Conjecture C°) is proved in
([5], [15]) for Shimura varicties of abelian type. Since we shall need to make
use of this result for groups of type A, we outline the main steps in its proof.
For pairs (G, X *) with G the symplectic group and X+ the Siegel upper
half-space, (1.1) is shown in [15, 7.17] to be a consequence of a statement
about abelian varieties of CM-type. This statement is proved in [5]. Let
G be of type A, and suppose that G is almost simple over Q. Then G can
be embedded into a symplectic group ([4, 2.3.10]), and the following easy
lemma can be applied.

Lemma 1.6. Let (G,X™) satisfy (C), and let H be a reductive sub-
group of G*%. Suppose that some h € Xt factors through Hg, and let
XE be the T[_ad(R)‘*'—conjugacy class containing the composite h' of h.'with
H — H*. Assume that ™ satisfies (C3) and let H be the simply con-
nected covering group ofﬁad. Then (H, X ;) satisfies (C), and there is an

embedding M°(H,X ;) < M°(G,X™) compatible with H(A') — G(AY)
under which [h'] — [h]. If h is special, so also is k', and if (1.1) holds for
(G,X™) and h, then it does also for (H,X};) and k'.

§2. Morphisms of Shimura Varieties

A morphism ¢: M°(G, X+)— M°(G',X't) will be said to be finite and
étale if, for any I'V € ) (G'), there exists aI' € ) (@) such that

gorr,[‘:F \X+-—>F’\X'+

is finite and étale.
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Proposition 2.1.  Let (G,X™) and (G', X'") satisfy (C), and let
P: Gpar — G'As be an isomorphism such that zl)(G(Q);) = ¢'(Q)x. For
any finite étale morphism o: M°(G,X+)— M°(G', X'") compatible with
3, there exists an element g € G(Q); and an isomorphism ¥,: G = G’
such that @ = M°(1,) 0 g. In particular, p i3 an isomorphism.

Proof. Choose an h € X+ and write ©([h]) = ¢'[h'], some h' € X'*,
g’ € G'(Q)7 (see the Appendix). Let g=! = ¢~ !(g’); then

pog: M°(G,X1)— M°(G',X'")

and
Yoadg: Gasr— Gas

satisfy the same conditions as ¢ and 9,and @ o g[h] = [h’]. It therefore
suffices to prove the following proposition.

Proposition 2.2. In addition to the hypotheses of (2.1), suppose there
exist h € Xt and b’ € X't such that o([h]) = [W']. Then ¢ is defined over
Q and ¢ = M°().

Proof. There exists a unique isomorphism @: X +SX'* lifting all o p:
'\ Xt—I'\ X"t and sending h to h’. Let @, be the map
a oao@ i Aut(Xt+) = Aut(X'*). For any

a € G*Q)* C Aut(X),

®.(a) induces an automorphism of M°(G’, X’t); in particular, it lies in
the commensurability group of any I'' € 3(G’') and therefore belongs to
G'**(Q) (see [I, Thm. 2]). Consider a ¢ € G(Q)4, and write goo and gy
for its images in G*4(Q)+ and G(Q);. Then go and g; define the same
automorphism of M°(G,X™), and so ¢,(geo) and 9(qs) deline the same
automorphism of M°(G’,X'"). They therefore have the same image in

G"*(Q)* N (rel G!) = G’(Q);*G’(Q) G"4(Q)*. Therefore ¥(q7) € G'(Q4)
+

(and ,(ge0) = ¥(qy) in G"*4(Q)*). As G(Q)+ is Zariski dense in G, we
conclude that 1 is defined over Q. Write 9, for ¥ regarded as a Q-rational
map, and consider

M (o)~ oo M°(G, X*)— M°(G, X 7).
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It remains to show that this map is the identity. We know that it is
finite and étale, maps [h] to [¢;! o A'], and commutes with the action of
G(Q)%. We have therefore to prove the proposition in the case that G = G’
and 9 is the identity map. The equality noted parenthetically in the last
paragraph shows that in this case $,(q) = ¢ for ¢ € G(Q)+/Z(Q). The
real approximation theorem [3, 0.4] states that G(Q)+ is dense in G(R)4,
and so @, is the identity map on G%¢(R)*. As @, = ad  this means that
@ centralizes G**(R)*, which implies that $ = id [18, II 2.6].

Corollary 2.3. The map

G(Q);.G(Q)f“d(Q)"' — Aut(Mo(G, X+))

identifies Autg(q), (M"(G’,X+)) with {g*xa | adg = o1 in G*¢(AT)}.

Proof. An automorphism of M°(G, X ") commuting with the action of
G(Q)+ commutes (by continuity) with the action of G(Q)7. It can therefore
be written go M °(a) for some g € G(Q)7 and o € Aut(G). In order for this
map to commute with the action of G(Q)4, o~ and adg must be equal.
In particular o must be an inner automorphism, o € G*4(Q), and so the
map is that defined by g * a.

Corollary 2.4. If Z = Z(G) satisfies the Hasse principle for H',
then Autg(q), (M°(G, X)) = Z(AT) N G(Q)5/2(Q); for ezample, if G
is an adjoint group, Autg(q), (M"(G’,X“‘)) =1.

Proof. The hypothesis implies that if an element of G*4(Q)* lifts to
an element of G(A/), then it lifts to an element of G(Q).

FEzample 2.5. The last corollary applies to the Shimura varieties defined
by simply connected groups without factors of type A,, n > 8 (see (3.8)
below). For these groups G(Q); = G(A/) and so

Autg(q), (MD(G’ X+)) = Z(A!)/Z(Q)

The propositions can also be used to compute the automorphism groups
of non-connected Shimura varieties.
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Corollary 2.6. Let (G, X) satisfy [4, 2.1.1.1-2.1.1.8]; then the canoni-
cal map (G(AT)/Z2(Q)7). (Q)G“d(Q) — Aut(M(G, X)) identifies
G

AutG(Al)(M(G,X))
with {g * a | ad(g) = o~ ! in G*¢(AT)}.

Proof. Let p € AutG(A;)(M(G,X)). Then there exists a g € G(AY)
such that g o ¢ maps [h,1] to [h',1] for some h € X* and A’ € X'*.
Then g o p maps M°(G%", X ) into M°(G%",X*) and we can therefore
apply 2.2.

Corollary 2.7. Assume, in (2.6), that the centre Z of G satisfies the
Hasse principle for H' for finite primes. Then

Autgar)(M(G, X)) = Z(A7)/2(Q)".

Proof. This follows from (2.6) as (2.4) follows from (2.3).

§3. Proof of a Weak Form of (1.1)

This section is devoted to proving the following result.

Proposition 3.1. Let (G, X ) satisfy (C), and assume that G 1s simply
connected; then, for any automorphism 1 of C, there is a pair (G',X'T)
satisfying (C) for which there exist compatible tsomorphisms

e: TM(G,X*)— M°(G', X't)
¥: Gar — Glar.

We begin by recalling a theorem of Kazhdan. Let X+ be a Hermitian
symmetric domain, so that the identity component G of Aut(X™) is a
product of connected non-compact simple real Lie groups. For I' an arith-
metic subgroup of G, I' \ X carries a unique structure of an algebraic
variety, and so 7([' \ X %) is defined, 7 € Aut(C).
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Theorem 3.2 (Kazhdan). (a) The universal covering space X't of
(' \ X ) is a Hermitian symmetric domain.

(b) Let G' be the identity component of Aut(X't), and identify the
fundamental group T’ of 7(I' \ X+) with a subgroup of G'; then I' is a
lattice in G'.

Proof. The assumption that I' is an arithmetic subgroup of G means
that there exists a group G, over Q and a surjective homomorphism
f: G{(R)* —» G with compact kernel carrying an arithmetic subgroup of
G, into a group commensurable with I'. If G; is the symplectic group, then
the theorem follows from the theory of moduli varieties of abelian varieties.
If Gy has no Q-simple factor G such that Gor is of type Eg¢ or E; or has
factors of both types DR and DY, then the Q-simple factors of (7 can
be embedded into symplectic groups, and this case follows from the last
case. When I' \ Xt is compact (so that G| has Q-rank zero), the theorem
is proved in [6] (it also follows from Yau’s theorem [21] on the existence of
Einstein metrics). The remaining cases are treated in [7].

Remark 3.3. IfI' is irreducible (for example, if G is Q-simple) then [ is
also irreducible because otherwise 7(I'\ X *), and hence I'\ X *, would have a
finite étale covering that was a product. Consequently, when rankg G/ > 1,
Margulis’s theorem [10, Thm. 1] shows that I'/ is arithmetic.

Let (G, X ™) be as in the statement of (3.1). In proving the proposition,
we can assume that G is almost simple over Q and is not of type A (because
when G is of type A we know much more — see (1.5)). This last assumption
implics that G, is not compact for any .

Choose a compact open subgroup K of G(A7) containing Z(Q), and let
I' = G(Q) N K be the corresponding congruence subgroup. Then

M4 (G, X)) =GQ)\ Xt X GA/)/K =T\ X*.

On applying (3.2), one obtains a Hermitian symmetric domain X7, a real
Lie group G’ such that G’ = Aut(X{)*, and an irreducible lattice I'! in
G’ such that TM % (G, X ) =T\ X{.

For any g € G(Q), let Ty = I' N g~ 'I'g. There are two obvious maps
1,g:T,\ Xt 33 I'\ X%, namely the projection map and the projection
map preceded by left multiplication by g. On applying 7, we obtain maps

(1), 7(g): (T, \ X1) =3 7(C\XF)=1"\ XT.
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Choose X{ — 7([', \ X ) so as to make the following diagram commute
with the upper arrows, and choose § to make it commute with the lower
arrows:

! " l (3.3.1)
o\ X% 3 Xt

~

The double coset TGl C Aut(X7) is well-defined, and we let
ro=Jrsr, g€6(Q).

Then Ty is a subgroup of Aut(X7) and is independent of the choice of K.
(In [7] it is denoted by G°.)

There is a map v — v;: ['o— G(A7)/Z(Q) that can be characterized
as follows: for all ' = K N G(Q) (as above), and all g € G(Q) N K,
the diagram (3.3.1) commutes with g replaced by 7. We have thercfore a
canonical embedding

v (Yoor 17 ): To— Aut(X'l") X G(A‘f)/Z(Q).

Both 7, and vy act on TM°(G,X ™), the first through its action on xt
and the second through its action on M°(G, X*). These actions are equal.

Lemma 3.4. Regard Ty as a subgroup of G(AT)/Z(Q).

(a) Ty is dense in G(AT)/Z(Q).
(b) Ton Z(A7)/2(Q)=1.
(c) For any compact open subgroup K of G(A') containing Z(Q),

TM(C,XT)=(TonK/Z(Q)\ XT =T\ X{ X GAT)/K.

Proof. (a) it is clear from the definition of 4y — ~, that, for any K,
Ty — G(AT)/Z(Q)K is surjective.

(b) Suppose 4 € T is such that v; € Z(Q7)/Z(Q). Then the remark
preceding the statement of the lemma shows that 7o centralizes ['g in G'.

As Ty has finite covolume in G’, this implies that v is in the centre of G’
[17, 5.4, 5.18], and s0 Yoo = 1.
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(¢) We can assume that K is the group used in the construction of Ty.
It is then clear that I'Y =19 N K /Z(Q). The second equality follows from
the first and (a).

Later we shall show that I'y is contained in the identity component G’
of Aut(X7), but for the present we define I'f =Ty N G'.

We now fix an integral structure for G and define, for any finite set S of
finite primes, G(AL) = [lies G(Qi) X I1igs G(Z:). Let To,s = ToNG(AL);
then F(T,S 4 Ig,sNI'F can be regarded as a subgroup of G5 LG’ X [lics Gi-

Lemma 3.5. The group 1“6',5 8 an trreducible lattice in G's.

Proof. It follows from (3.4c) that T’y is a discrete subgroup of
G' X G(A), and therefore Fg:s is a discrete subgroup of G’ X G(Aé). As
[ligs G(Z1) is compact, the projection G’ X [[,z5 G(Z1) — G’ takes dis-
crele groups to discrete groups [20, p. 4], and so I‘({S is discrete in G'.

Let U be a compact open subgroup of Hles Gy, and let

r= U x J[6(z))nrg.
12s
Then UTg,s \ G = I'"\ G’, which carries an invariant finite measure. It
follows that I'g, s is of finite covolume in G%.

Our assumption that G is almost simple over Q implies that I'y s is
irreducible (cf. 3.3).

Now assume that S is nonempty and sufficiently large that rank(G%) > 2.
Then Margulis’s theorem [10, Thm. 7] shows that I'g 5 is arithmetic. More
precisely, there is the following result.

Lemma 3.6. There exists an algebraic group G, over Q and a map
Ys: Gys— Gy, where G1g = Gir X Hles G1,1, having the following
properties:

(a) there exists an S-arithmetic subgroup I's in G1(Q) such that ¥g(T's)
i3 commensurablc with I‘(T,s;

(b) write s = Yoo X [Ijcs¥1; then Yoo is surjective with a compact
kernel, and each 1, s an isomorphism.

Moreover, (G1,vs) 18 uniquely determined by the conditions (a) and (b).
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Proof. Margulis’s theorem gives us a pair (G1,s) satisfying (a) and
such that g is surjective with a compact kernel. We can suppose that I'g
is irreducible. Then G, is almost simple over @ and so cannot be of type
A. Thercfore Gy; does not have any compact factors and 4; must be an
isomorphism.

Let A be a subgroup of Ty s of finite index, and let Ay =
() € TesT(G1, 0c) | 1N € @, 1) = fe(), all LT € S,% € A}.
Then, for all sufficiently small A, A, is independent of A and Spec Ay = G;.
This shows the uniqueness.

When we enlarge S, to S’ say, then G; does not change and
¥s:|G1s = s. We therefore get a map

P = Poo X T/’f:GlR X Giar—G' X Gay

such that for all finite S, ¥/(G1,s) is commensurable with I'g g, where
Gi1s = G1(Q) N G1(AL). Let G{° be the product of the anisotropic
factors of G1r, and consider

GY(Q) = (G1/GT™)(R) X G1(AT)
1%
Ty < Aut(XT)X GAN/Z(Q).

For any finite set S, f‘o,s ar E_I(FO,S) is commensurable with G1(Q)s.
Ultimately we shall show that Ty = G(Q)/Z(Q), but we begin with a

weaker result.
Lemma 3.7. The group Ty C 9(G1(Q)) .- Z(AL).

Proof. Let y €Ty, and let 5 € Aut(X7) X G1(Af) map to 4 regarded
as an element of Aut(X7) X G(Af)/Z(Q). For large enough S, v € Ty,s,
and ad 4 maps f‘o,s into fo,s~

Choose an irreducible representation T: G ¢d < GL, of G%¢, and
consider the representation adyoT of I'g s N G1(Q). The Zariski closure of
(ad ﬁoT)(f‘o’sﬂGl(Q)) in GL, is T(G%%), and so [10, Thm. 8] can be applied
to show that there is a morphism @: G;— G%¢ whose restriction to f‘o,s
is ad¥y. Lift @ to an isomorphism a: G;1— G;. Then o and ad? agree on
a subgroup of I'g s of finite index (therefore also on a subgroup of G1(Q)s
of finite index). As I'g,s is dense in [[,cs G(Q:)/Z(Q), this shows that
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a = ady on [] G(Q:)/Z(Q). In particular,  is an inner automorphism,
ie., @ € G$4(Q). Moreover, o has the property that it lifts to G(Q,) for
alll € S, and hence for all  because we can extend S. The next lemma
shows that this implies that « lifts to an element a; € G'1(Q). This element
a1 has the same image as v in Aut(X7) X G*¢(A'), which completes the
proof.

Lemma 3.8. Let G be a simply connected semi-simple group over @
number field k, and let Z = Z(G). Then H(k, ﬂ') I, finiee H (ku,@
18 injective, provided G has no factors of type A,,, n> 4.

Proof. We can assume G is absolutely almost simple. Then
Z(k) = Z/22 X Z/2Z or Z/nZ, n < 4. If Z(k) = Z(k), then the result
is obvious from class field theory. In any case, Z(k) = Z(L) for L a Galois
extension of k& with Galois group S3 or Z/nZ, n < 3. The exact sequence

0— HY(L/k,Z) - H'(k,Z) - H(L, 2)

shows that is suffices to prove that H(L/k, Z) — [1 H'(L,/k,, Z) is injec-
tive. In fact it suffices to do this with k replaced by the fixed field of a
Sylow subgroup of Gal(L/k). But then the Galois group is cyclic, and the
result is obvious.

Lemma 3.7 implies that I'g and G;(Q) have the same image in
G*(AT) = G24(AY). If we form the quotient of M °(G, X *) by the action
of Z(A'), we get Z(A7)\ M°(G,X*+) = M°(G*¢, X ). Therefore,

TM°(G*, X*) =TeZ(A')\ XT X G(AY)
= GIQ)Z(AN)\ X} x Gi(A!) = M°(G*, X7).

We have proved (3.1) with G replaced by G®¢. An argument of Borovoi
(see 5.2a below; it is not necessary to assume there that G is simply
connected) shows that the map Gf\ — G2, defined by ¢ identifies Gy¢
with an inner form of G®¢. Therefore ¥/: Gos — Gias has the same
property, and so ¥7|Z(G) is defined over Q, i.e., 3/ identifies Z & Z(G)
with Z; 8L Z(G)).

From (3.4) we know that [y N Z(A7)/Z(Q) = 1. Therefore any ele-
ment g of G1(Q)/Z(Q) can be written uniquely as ¢ = 5 - 2z, v €Ty,
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z, € Z(A7)/Z(Q). The map g — 2, is a homomorphism ’

G1(Q)/Z(Q) — Z(A).

If we knew, as is conjectured, that G1(Q)/Z(Q) is simple, then this homo-
morphism would have to be zero, and we would have achieved our im-
mediate goal of showing that Ty D G1(Q)/Z(Q). Instead, we argue as
follows.

Let F be a totally real Galois extension of Q with Galois group A; let
G. = Resp;q GF and let X} be such that there is an embedding

(G, X)) —(G.,X).

Then A acts on G, and X}, and G is the unique subgroup of G, such that

[lsca GF () (G.)r is an isomorphism. The group A as continues to
act when we make the above constructions for (G.,XF). In particular, A
acts on G, and there is an inclusion G; — G;. that identifies G, with
Resp;q G1. We can conclude:

Lemma 3.9. For any F as above, the diagram

g z: G1(Q)/Z(Q) —~ Z(AT)/2(Q)

[ [

g 2z Gl*(Q)/Z,(Q)—)Z,(Af)/Z*(Q)

commutes, where Z, = Resp;q Z.
Let v € G1(Q); we shall show that 7(mod Z(Q)) € To.

Lemma 3.10. There exist fundamental mazimal tori T; C Gy,
i=1,...,k and elements v; = Ty(Q) such that vy = ;... 7.

Proof. Let U be the set of g € G;(R) such that the centralizer of
g is a compact maximal torus. Then, the usual argument using the Lie
algebra, shows that U is open in G{(R). Moreover, U generates G1(R). Let
v =44...7% with 7% € U. According to the real approximation theorem,
the set G1(Q)NU is dense in U. We can therefore choose v; € G1(Q)N U,
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i=2,3,...,k so close to v} that 7; 3L ~(y2...4x)"! also lies in U. As
71 € G4(Q), the clements 7y, ...,k fulfill the requirements of the lemma.

Thus we can assume v € T(Q) C G(Q), where T is a maximal torus such
that T(R) is compact. This last condition on 7" implies that T splits over a
CM-field L, which can be chosen to be Galois over Q. Let F be the maximal
totally real subfield of L and let G. = Resp;q G. The construction of
Borovoi recalled below in §4, gives a reductive group H,, of type A; such
that T, C Hy C Gy.. After possibly extending I' we can assume no (Hgy )
is anisotropic. Consider

7€ Gi(Q)/2(Q)— Z(AT)/2(Q)
n N
G1.(Q)/2.(Q) —Z.(AT)/2.(Q).

Note that v € H,(Q)/ Z.(Q)NH,(Q). A theorem of Platonov and Rapinéuk
[16] shows that H,(Q) has no non-central normal subgroup. Therefore, the
lower map is zcro on Hy(Q)/Z.(Q) N Ha(Q) and so ¥ maps to zero. It
therefore lies in I'y.

We have shown I'y D G4(Q)/Z(Q). Therefore, for any compact open
K C G(AY) containing Z(Q), we have a finite étale map

To\ XT X G(AT)/K — Gi(Q)\ XT X G1(AT)/K.
We therefore have a [inite étale map
TM°(G,Xt) > M°(Gy, XT)

which is G(Af)-equivariant when we identify G o with G;s by means of
%f. When we apply 7! to this map, and repeat the whole of the above
construction for (Gl,X'f) and 771, we obtain maps

M°(G,X*)—» 77 'M°(G1, XT) = M°(G2, X3).

The composite map satisfies the hypotheses of (2.1) and therefore is an
isomorphism. This implies that the first map

M°(G,X*) - T-IM"(GI,X'I")

1

is an isomorphism and, on applying 77", we get that

TM°(G,Xt) - M°(G, X})
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is an isomorpism; this is what we had to prove.

Corollary 3.11. Suppose in (3.2) that T' is a congruence group,
i.e., that there exists a simply-connected semi-simple group G over Q and
a surjective homomorphism f: G{(R)— G with compact kernel carrying a
congruence subgroup of G(Q) into a subgroup of I' with finite index. Then
7(T\X ) is the quotient of a Hermitian symmetric domain by a congruence
group.

§4. Embedding Forms of SL, into G

In this section, we recall some results of Borovoi [2]. Let (G, X *) satisfy
(C), and let (T,h) C (G,X). Throughout the section, we assume the
following conditions hold:

(4.1a) G = Resp;q G’, where F is totally real and G’ is absolutely
almost simple;

(4.1b) the maximal torus TV C G’ such that Resp;q T’ = T splits over
a quadratic, totally imaginary extension L of F'.

Remark 4.2. The condition (b) implies that 7/, and any subtorus, is a
product of one-dimensional tori, and therefore satisfies the Hasse principle

for H.
As T, is split, we can write

Lie G, = Lie T}, @D (Lie G1)a
a€ER

where R = R(G'g, T's). An a € R will be said to be totally compact if it is

a compact root of (G’ @+ R)c for all embeddings 0: F <— R. Let Rnte
denote the set of roots that are not totally compact. Then, for a € R™,

B, & Lie T}, @ (Lie G} )a ® (Lie G})—a

is defined over F, and we let H’, be the corresponding connected subgroup
of G'. Write Hy = Resp/q H!, and Z, = Z(H,).
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Proposition 4.3 (Borovoi, Oniséic). Z(G) =), Za, (a € R™*).

Proof. Trom the formula [p,p] = kK, valid whenver § = K@ p is the

Cartan decomposition of a non-compact real Lie algebra, it follows that

R™c 4 R™ 5 R. Thus
N 2, = ()] Ker(a)= [) Ker(a) = 2(G"),

aeRntc aeRntc QER

and the proposition follows by applying Resp /Q

Corollary 4.4. Let T = T/Z and Z, = Zo|Z where Z = Z(G).
Regard Zo(A7)/Z4(Q) as a subgroup of T(AY)/T(Q). Then

N Za(A?)/Zo(Q) = 1,(c € R™).

Proof. 'This follows easily from the fact that (1 Z, = 1.

§5. Completion of the Proof of (1.1)

In this section, we use the methods of Borovoi [2] to deduce (1.1) from
(3.1).

Let (G,X™) satisfy (C), and consider (T,h) C (G,X*). For any
q € T(Q), q[h] = [h], and so there is a representation p;, of T on the tangent
space t, to M°(G, X ™) at [h].

Lemma 5.1 (cf. [2, 3.2, 3.3]). (a) pp ~ Da, a € R(Go,Tc),
((1, I‘h) =1.
(b) Suppose that (G, X't) also satisfies (C), and that

(1-1’ h’) C (G,X'+);
ifPh ~ Ph, then h = h' (andX"" == X+).

Proof. (a) According to (Cy) there is a decomposition of § = Lie(G)

Io=0°"Dr* Dy

such that Adp(z) acts trivially on §°°, as 2z on p*, and as 27! on p—.
Thus §, C p* if and only if a(p,(z)) = z, i.e., (o, u) = 1. The canonical
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maps p St and P <> po = pt @ p~ induce a C-linear, equivariant
isomorphism p* = t; (sec [4, 1.1.14]).
(b) It follows from [4, 1.2.7] that X'+ = X*. Since

{a | (a’f"h) = 1} = {a l (Aayl“l') = 1};

h and h' define the same Hodge filtration on Lie(G), but this implies that
they are equal [4, p. 254].

Proposition 5.2 (Borovoi [2]). Let (G,X7), (G',X't), and 7,0,
and ¢ be as in (3.1). Consider i: (T, h) < (G, XT).

(a) There exists an inclusion i': T < G' and a g € G(A') such that
poad(g)oias = t'as.

(b) There exists an h' € X' factoring through i’ such that pp = Tup
(as maps into T').

(c) The pair (G',5') is a form of (G,j); its class in I'(Q,T),
T3 T/Z(G), has image zero in HY(Qy, T) for alll # oo and is represented
by rpun(—1)/pn(=1) for I = oo.

Proof. (a)Let p(r[h]) = ¢'[M], h' € X'*, ¢’ € G(A) (see the Appendix).
For any t € z(T(Q ) t|h] = [h], and so ¥(¢t)g'[h'] = ¢'[F'], Le.,

(o '9(t)g" )R] = [A'].

This implies that ¢’ !4(t)d € G'(Q). let g = %~ (¢g'"!); then
poadgoi: Tas— G'ar maps T(Q) into G'(Q). As T(Q) is Zariski dense
in T, this means that 9 o adgo ¢ is defined over Q; we denote it by #'.

(b) Let A’ be as in (a); then pp = 7p, because (o o g)(r[h]) = ['] and
@ o g is T(Q)-equivariant. Therefore (b) follows from (5.1b).

(¢) Astoadgis an isomorphism (G,7)as = (G’,iP)ays, it is clear that
the class of (G,:) in H'(Q,,T) is trivial for all finite I. The clement
adp(—1) is a Cartan involution on G; therefore the class of pu(—1) in
HY(R,T) corresponds to the (unique) compact form of G¢. Similarly,
the class of 7u(—1) corresponds to the compact form of G = G¢. The
conclusion is now clear.

Remark 5.8. 1f in (5.2) we replace <p by wog and 3 by Ypoad (g) then
© and 1 are still compatible, but now o(7[h]) = [#'] and P ot =17,
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Corollary 5.4.  Consider (T,h) = (G,X7*), and assume that G is
simply-connected and that T & T/Z(G) satisfies the Hasse principle for
H'. Let (T,"h) <I+("G,”X*) be as in §1. Then there exist isomorphisms

M (G, X+)— M°("G, "X )
’l/): GA/ — TGAy

such that

(a) o(r[h]) = ["h];
(b) ¢ and v are compatible;

(c) Yoiar ="Tias.

Proof. Let (G',X'*) be as in (3.1), and let ¢/: T/ <— G’ and A’ € X'+
be as in (5.2a) and (5.2b). Choose ¢ and 9 as in (5.3). Then (5.2¢) shows

that there exists an isomorphism (G’,¢') = ("G, 7¢) (cf. (1.4)), and (5.2b)
shows that the isomorphisms carries A’ into "h. The corollary is now clear.

We now prove (1.1). Let (G,X7), h, and 7 be as in the statement
of (1.1). We can assume that G is almost simple over Q. Then
G = Resp, yq G for some totally real field Iy and absolutely almost-simple
group G;. Let (T, h) C (G,X™) and let T| be the maximal torus in G,
such that Resp /@ T1 = T. As Tr is anisotropic, Ty splits over a CM-
field L D F. Let I' be the maximal totally real subfield of L and let
G. = Resp;q G’ where G’ = G1p. Let h, be the composite of h with the
canonical inclusion G < G,. Then the G.(R)*-conjugacy class X, con-
taining h., together with G, satisfy (C), and (1.6) shows that it suffices to
prove (1.1) for (G.,X.) and h,. This allows us to assume that the original
objects, (T, h) < (G,X™), satisfy (4.1).

Let ¢ and % be isomorphisms as in (5.4). As both 1 and 3, (see §1)
are isomorphisms (G,%)as ("G, i)as, there exists a t € T(A/) such that

¥, = ad(t) o 9. To any non totally compact root «, there corresponds a
subgroup H, of G containing T (see §4). Let H/, = H2" and let X}
h

be the H2%R)*-conjugacy class containing ho 3L (S = H, — H%Y).
Then ¢ maps TM°(H,, X }) into M°("H,,” X }) because it maps 7(g[ka])
to adt™(¢-(g))["ha| for all ¢ € H,(A') and II'(A').[ha] is dense in
M°(H',, X ). Since H! is of type Ay, we know (1.1) for it: there exists an
isomorphism ¢,: TM°(H,,X})— M°("H',,"X}), compatible with ¥,
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and taking 7[ho] to ["he]. The map
et o) MO(H,, X T)— M°(I1,, X3)

fixes [h,] and is compatible with adt: H' (A/)— H/(Af). Therefore
(2.2) shows that adt, regarded as element of H24(AT), lies in H24(Q),
ie., t € Zo(AT)/Z+(Q). Now (4.4) shows that ¢t € T(Q), and so p ot and
a_d(t) o 1) fulfill the requirements of the theorem.

§6. Compatibility of the Maps ¢, for Different Special Points

Let (G, X ) satisfy (C) and let (T,h) C (G,X*). Then Langlands’s

constructions lead to the definition of a map
¥y = (g "9): G*HQ) Nrel G)— "G*H(Q)N(rel "G)

that is compatible with the maps of the same name, G(Af) — "G(A/),
G AT) - TGY(AT) (see [14, §8]).

Proposition 8.1.  Assume that G i3 simply connected, and let p, be
an iscmorphism TM°(G,X*) - M°("G,” X ) with the properties (a) and
(6) of (1.1). Then (1.1b) holds for all g € G*4(Q)*"(rel G).

Proof. Let G, = ResF/Q(GF) for some totally real field F, and let
h. be the composite of h with G <— G.. Then there is a commutative
diagram

TM°(G,Xt) B M°("G,’X™)
™G, X} B M°("G.,"X}).

("G,"X*) and ("G.,” X¥) dcfined using h and h,). This shows that ¢,
(for G) is compatible with the action of g for all g € G,(A7) (any F) and-att

, but these elements generate a dense

G-E€HAQYtay Ha T G vee §4)
subgroup of G%¢(Q)*"(rel G). torm

Remark 6.2.  Theorem 1.1 and (6.1) prove part (a) of Conjecture C°
(see [14, p. 340]) for simply connecled groups.

ko*
Cova TR
w51
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We shall now need to consider two special points h and k' for a given
(G,X*). To distinguish the objects "G," X, v,,... constructed relative
to h from the similar objects constructed relative to h’, we shall write the
former "G, "X+ 0, h,. .. .

Let B(r,h) and B(r,h') be the elements of (G“d(Ai)/G“d(L))GaI(L/Q)
corresponding to h and k' respectively (see (1.4)). The image of B(r, h) and
B(r, ') in HY(Q, G*) are trivial at the finitc primes and are equal at the
infinite primes (see [15, p. 315-316]). As G°¢ satisfies the Hasse principal
for H* ([9, VIL. 6]) this shows that B(r, k) and B(7, k') have the same image
in H'(Q, G*%) and therefore B &L B(r, h')B(r, h)~! lies in G*4(A')/G*4(Q).
Moreover, there is an isomorphism f: ""*G — ™*' @ such that

far = Yrw o Boy ) "*G(AT)— T¥ G(AT).

Define
(po(T; hl, h) . MO(T’hG, r,hX+) ~ Mo(r,h'G, r,h'X+)

to be ("""B)_l o M°(f). It carries the action of ""g, g € G(AY), into the
action of "*g. (See [15, p. 312-318].)

Theorem 6.3. Assume that G 1s stmply connected; then for any
spectal h,h' € X+, the diagram

e,

MG, X+) =5 Me(th@,ThX+)
Y l w(7;h' k)

Mo(r,h'G’ r,h'X+)

commutes.

Proof. We first prove this under the assumption that
W = adqoh,q € G*(Q)*. In this case B = g (see [15, 9.1]) so that
Me(f) = ("7 q) 0 ¢°(r; ', h) = ¢°(r; ', k) o (Thq).
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Consider the diagram

¢r,
TMO(G,X*) 5 MO(ThG,ThX+)
1) s L7
TMO(G,X*) 5 Mo("h@,RX ) | Me(n)

° .,
©rn 1 ¢(r;h',h)

Mo(r,h'G, r,h'X+)

The upper square commutes because of (6.1). The outside of the diagram
commutes because both maps send [h] to ["h'] = [f o "h] and the action of
7(g) to that of 7k 9. Thus the lower triangle commutes.

Before proving the general case, we need some lemmas.

Lemma 6.4. Consider an inclusion 1: (G,X) < (G',X’). Theorem
(6.8) holds for h and h' (as elements of X ) if and only if it holds for ioh

and to h'.

Proof. Since i induces an embedding M°(G, X +)<» M°(G',X'*) and
the maps @; ion, ¢r,ion, and ¢(7;¢ 0 h',% o h) restrict to @, n, ér n, and
é(r;h',h) on M°(G,X), the sufficiency is clear. The necessity follows
from the facts that G'(Q)+[i o k] is dense in M°(G’,X't) and ¢; ;on and
¢(r;i0 ' ioh)o ¢y ion have the same behaviour with respect to the Hecke
operators.

Lemma 6.5. If (6.3) is true for the pairs (h,h') and (k', h"), then it is
also true for the pair (h, h").

Proof. This is immediate, since ¢(7;h”,h’) o ¢(r; h’, h) = ¢(r; h", h).

Lemma 6.6 (Borovoi). Let G be a simple noncompact group over R
and let X be a G(R)-conjugacy class of homomorphisms S — G satisfying
(C1) and (C2). Suppose h,h’ € X factor through the same marimal torus
T CG. Then k' = h of h' = h~1.

Proof. Let K. be the centralizer of h(S). Then [4, 1.2.7], K is a
maximal connected compact subgroup of G. The pair (G, T') determines the
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set of compact roots in R(G g, Tg), which determines K,. The centre Z of
K is 1-dimensional (loc. cit.), and h dcfines an isomorphism S/G,, = Z;
it is therefore determined up to sign.

We now complete the proof of (6.3). As usual, we can assume that G
is almost simple over Q and therefore that G = Resp/q G1, where F is
totally real and G, is absolutely almost simple. Let (T, k) C (G, X ) and
(T",n') C (G, X ), and let Ty, T C Gy be such that Resp;q Ty = T and
Resp/q T, = T'. There exists a CM-field L splitting both T and 7. After
replacing G with G, = Resp//q G1,F/, where F’ is the maximal totally
real subfield of L, and using (6.4), we can assume that L is a quadratic
extension of F. As Ty, and T’ ; are split, there exists a 8 € G1(L) such
that BTy8~! = T). For each real prime v: F <— R of I, choose an
extension (also denoted by v) of v to L and write H, for H ®Fr, R, any
F-group H. As Ty,, and T' , are compact, there exists a v, € G,(R) such
that v, T1,,7, ' = T'l',,. Let ¢, = B! . 0B, where o generates Gal(L/F).
Then ¢, € N(L), where N is the normalizer of T, and so it defines a class
c€ HY(L/F,N). As v;! - v(8) € N(C) and

_ -1 -

v(co) = (45" - 0(B)) ™ - o(v3 - w(B)),
where ¢ denotes complex conjugation, we see that ¢ maps to 1 in
HY(L,/F,,N). Let w, be the image of ;' - »(8) in W(L,), where
W = N/T. The image w of ¢, in W(L) is « because v(w) = w; ! - ww, and
¢ acts trivially on W(L,) (see [15, p. 307]). Thus ¢, € T(L) and

¢ € Ker(H'(L/F,T) - @ H'(L./F,, N)).
The following diagram is useful:

N(F) — W(F) — HL/F,T) - HL/F,N)

! ! ! !
DN F)-~Pw(F.,)~PH L, /F,, T)>EDH (Ly/Fys, N)

We now prove (6.3) by induction on | = Y, l(w,), where l(w,) is the
length of w, as an element of W(C). Suppose first that [ = 0. Then
5! - v(B) € T(L,) and so ¢ maps to 1 in H!(L,/F,, T) for all v. Note that
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T = UT some r, where U is the unique one-dimensional non-split F-torus
split by L, and therefore H'(L/F,T) = (F>*/NL>*)". The penultimate
assertion shows that ¢ is represented by a family (cy,...,c,) of totally
positive elements of FF*. After adjoining /c; to F', 1 = 1,...,r, we can
assume ¢ = 1. Then ¢, = t~! - ot some t € T(L) and so, after replacing
with 8t~!, we can assume it lics in G;(F). Regard f as an element of G(Q).
Lemma (6.5) and the first part of the proof show that we need only prove
the theorem for ad Boh and A'. This means that we can assume that h and
k' factor through the same torus. But then they must be equal because,
in the context of (6.6), h~! does not lie in the same connected component
as h.

Finally, suppose l(w,,) 5 0, say w,, = sqw)_with () ) < l(wy,)
and s, the reflection corresponding to the root a. If o is compact at v,
then s, lifts to 7, € N(F3) (see (15, p. 308]) and we can replace ~,, with
Yv,72". Then w,, is replaced with w)_ and we can apply the induction
hypothesis. Supposc therefore that a is not compact at v and define
H!, C Gy, H', D Ty, H!, of type Ay, as in §4. Let II, be the derived
group of H! and let Ty = Ho N T. Then T, =~ U, which implies that
HY(L/F,Ts) = @, H(Lv/Fy, Ta) is surjective. Choose co € HY(L/F,T,)
mapping to (c,) where ¢, = 1 for v # v, and ¢y, = §(3q) where § is the
boundary map

Wﬂ(Fvo) — Hl(Lyo/FvoyTa)y Wo = a/Ta,

No = Norm(T,). Then c, maps to 1 in @H'(L,/F,, Ng). The Hasse
principle therefore shows that cq splits in HY(L/F,Hy) : (ca)e = g1 - 09,
g € Hy(L). Lift sq to ng € Ng(L); then va((ca)a) = n_!.in, and so
gn,' € Hy(R). Since we know the theorem for Resp;q Ha, (6.4) allows
us to replace (T, k) with (adg o T,ad(gn!) o h). This replaces g with
ﬂg_lx Vv, With 7‘00'"'09_1) v with '71/9_1’ v 7é Vg, Wy, With gs;lwvog*l =
gw!, g7, and w, with gwyg™', v % v,. Thus 37 I(w,) is diminished, and
we can apply the induction hypothesis.

§7. Conclusions

We have shown that Conjecture C° of [15, p. 340-341] is true for (G, X )
whenever G is simply connected. As is remarked in [15, 9.6], this implies
the general case.
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Theorem 7.1.  The conjecture of Langlands [8, p. 232-283] (see also
[15, p. 811]) is true for all Shimura varieties.

Proof. In [15, 9.4] it is shown that this conjecture is equivalent to
Conjecture C°.

Theorem 7.2.  Canonical models (in the sense of [4, 2.2.5]) exist for

all Shimura varieties.
Proof. This is a consequence of (7.1) (see [15, §7]).

Theorem 7.3. The conjecture of Langlands describing the action of
complex conjugation on a Shimura variety having a real canonical model

[8, p. 234] is true.
Proof. This again follows from (7.1)

Theorem 7.4.  The main theorems of [13], viz. (4.6) and (4.9), are
true for all Shimura varieties.

Proof. They are proved in [13] under the assumption that G is classical
and the canonical model exists, but the first assumption is only used to
simplify the proof of [13, 1.3], and we can instead deduce this theorem
from Proposition 2.1 above.

Remark 7.5. Theorem 7.4 gives a deflinitive answer to the question of
Shimura [19, p. 347].

Remark 7.6.  For Shimura varicties of Abelian type, (7.1), (7.2), and
(7.3) were first proved in ([5], [15]), [4], and [12] respectively.

Appendix

We say that (G, X ) satisfies (C) if G is a semi-simple group over Q and
X7 is a G(R)*-conjugacy class of maps S — G§! for which the following
hold:



o

THE ACTION OF AN AUTOMORPHISM OF C 263

(Cy) for all h € X, the lHodge structure on Lie(Gr) defined by h is of
type {(_11 1),(0,0), (1, “1)};

(C2) ad h(s) is a Cartan involution on Gg;

(C3) G*? has no non-trivial factors defined over Q that are anisotropic
over R.

Such a (G, X?) defines a connected Shimura variety M°(G,X*). The
topology 7(G) on G%¢(Q) is that for which the images of the congruence
subgroups of G(Q) form a fundamental system of neighbourhoods of the

identity, and
M°(G,X*) = l}gl r\x+

where the limit is over the set ) (G) of torsion-free arithmetic subgroups of
G*4(Q) that are open relative to the topology 7(G). For h € X%, [h] and
[r]r denote the images of hin M°(G,X*) and tM°(G,X ) Er\x+.

Any a € G*4(Q)* acts on M °(G, X *) by transport of structure: afh|r =
[ o hlor). Any g € G(Q); acts as follows: Let I' € 33(G) and let K
be a compact open subgroup of G(Af) such that ' contains the image of
K N G(Q)4; then g € gK some q € G(Q)4, and glhlr &£ [adq o hlyrg-1.
These actions combine o give an action of G(Q)7 X G*¢(Q)* (semi-
direct product for the obvious action of G?¢(Q)* on G(Q)7). The map
g — (g,adq7!) identifies G(Q)4+ with a normal subgroup of the product,
and the quotient

C(Q)1+a(q), C* Q)Y L G(Q)F X G*(Q)H/G(Q)+

continues to act on M°(G, X *). The completion of G*4(Q)™ for the topol-
ogy (@), G*4(Q)* " (rel G), is equal to G(Q)Ifc(q);rcad(Q)_Fr and this
identification is compatible with the actions of the groups on M°(G,X ™)
(see [4, 2.1.6.2]).

Auny z € M°(G,X™) can be written £ = g[h] for some g € G(Q)F and
h € X*. For suppose zr = [h]r; then, for any I'y C T, zr, = T, [h] some
I, €T let v =limpr, 1 7, and let v = g * o then z = v[h] = gla(h)].

If G is simply connected, then G(Q); = G(A/); moreover

rMO(G,XH) =T\ X+ =G(Q)\ X+ X G(A)/K

if K is a compact open subgroup of G(A') containing Z(Q), and T is the
image of K N G(Q) in G*4(Q)*.
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