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VALUES OF ZETA FUNCTIONS OF VARIETIES OVER
FINITE FIELDS

By J. S. MILNE

Introduction. The zeta function of a smooth projective variety X of
dimension d over a finite field k£ of g elements has the form

PiX,q7°) - Py (X,q7°)
Po(X, g *)Py(X,q ) -+ Py(X,q7°)

X, 5) =

where P;(X,t) = 1 + --- € Z[t]. Therefore, for r an integer,
(X, s) ~ Cx(r)/(1 — q"%)r as s —.r

for some integer p, and rational number Cx(r). In this article we continue
the investigation of Cx(r) and p, begun in [36], [38], [24], [3], [39], [32],
and [22].

Before stating our results, we introduce some notations. The order of
a group M is denoted by [M], and | |, is the £-adic valuation normalized so
that |¢|; ! = ¢. For a: M — N a map of abelian groups, we let

z(a) = [Ker(a)]/[Coker(a)]

when both orders are finite. If M and N are finitely generated over 7=
lim Z/mZ and « ® 19: M @z Q = N ®z Q is an isomorphism, we let

det(c) = II|det(ay)|; !

provided «, £l a®@1z,:M @z Z; > N Q2 Z, is an isomorphism modulo
torsion for almost all £; in this case

z(a) = [Mo:)/[Nior] det(c)
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298 1. S. MILNE

when all the terms are defined and finite. (Throughout, M,,, will denote
the torsion subgroup of M.)

For ¢ # p, the characteristic of k, H (X, Z,(r)) will denote the f-adic
étale cohomology group, and for ¢ = p it will denote the group defined in
Section 1 below. Let H (X, Z(r)) = II,H (X, Z,r)). There is an obvious
element in H'(k, Z) which defines, by cup-product, canonical maps

eH'(X, Z(r) » H(X, Z(r))
and we let

xx, 2 = T [H(X, Zr)] Y ()

i#2r2r

when all the terms are defined and finite. A theorem of Gabber [12] im-
plies that H' (X, Z(r)) is finite for all/ # 2r, 2r + 1 and that H (X, Z(r)) o
is finite. As the groups H'(X, Z(r)) are finitely generated over Z, x (X, Z(r))
is defined if and only if H*" T (X, Z(r)),., is finite and det(e?") is defined, in
which case

. 2d+1 . . ;
x(X, Z(r)) = _[IO [H (X, Z(r)o: ]V /det(e?).

Let k be the_algebraic closure of ]f’ and let v be the canonical genera-
tor of I' = Gal(k/k); let X = X ®y k. It has been conjectured:

S$S(X, r, £): the minimal polynomial of v acting on H* (X, Q,(r))
does not have 1 as a multiple root.

This conjecture is obviously true if dim H* (X, Q/(») = 1. It is also true
for abelian varieties and the varieties whose cohomology can be expressed
in terms of that of abelian varieties (cf. [10, 6.26]). For ¢ # p, it is equiva-
lent to the minimal polynomial of the Frobenius element acting on
H*(X, Q,) not having ¢" as a multiple root.

THEOREM 0.1. The number x(X, Z(r)) is defined if and only if
SS(X, r, £) holds for all £, in which case

(X, s) ~ £x(X, Z(r)g*%Ox(1 — q ) Pr as s—vr
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where
XX, 0x, ) =L (=1)Ye—DrY O0<i=<r, 0=<j<d,
hY = dim H/(X, Q).

The f-part of (0.1), £ # p, was proved in [3, 3.4] for r > 2d and, in a
slightly different form, in [32, Theorem 5] for all .

THEOREM 0.2. Let d = 2r, and assume SS(X, r, ) holds for all {.
Then
[H2r+1 (X, 2(7'))tor]
g* O H” X, ") )

Py (X,q%) ~ ® det(e?)(1 — g ) as s—r

where

a,X) =@ —s¥@r)+ L (r— ord,(ay. ),

ordq(az,,‘ ,-)<r
s'(r) = dim H'(X, Z,(r)) (as a perfect group scheme), {a;, a;, ...} are
the inverse roots of P;(X, t), and ord,(¢g"u) = m if |u|, = 1.
For small values of d, the expression for «,(X) simplifies:
a(X) = x(X, 0x) — 1 + (1/2)By,
B; = dimg H'(X, Q),  ( # p;

o (X) = x(X, 0x,2) — 2+ (3/2)8; — B, + b3,

by = |2 — ord aj;]|.

1

i

J

There is a canonical non-degenerate skew-symmetric pairing on
H¥" (X, Z(r))mr, and therefore its order is a square or twice a square. In
1966, Swinnerton-Dyer obtained some squares when computing {(X, s), s
near 2, for X the product of three elliptic curves over Q (see [35, p. 155]).
These squares are still unexplained, but in the analogous situation where
Q is replaced by a function field in one variable over a finite field, (0.2)
provides an explanation.
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In order to obtain a less formal expression for Cx(r), we shall need to
assume Tate’s conjecture. Any subvariety Z of X of codimension r defines a
class ¢’ (Z) e H¥ (X, Q,(r)), and the weak form of Tate’s conjecture asserts
the following:

T'(X, r, {): the Q,-subspace of H* (X, Q((r)) generated by the
classes of the form c¢"(Z) is exacgy the space H (X, Q,(r)T of classes left
fixed by the action of I' = Gal(k/k).

Prorosition 0.3. If T'(X, 1, {) holds for one £, then it holds for all
?£; moreover, then SS(X, 1, £) holds for all {.

For X of dimension 2, this is proved in [38] and [24], and the same
arguments suffice in the general case (see Section 8). The conjecture
T'(X, r, ) is obviously true if H r(x, Q/(»)) has dimension 1. It is known
that T'(X, 1, ?) is true for products of abelian varieties, curves, and some
other special varieties [37].

Let K, O x denote the sheaf for the étale topology on X associated with
the presheaf U — K,(I'(U, Oy)), where K,A denotes the ™ Quillen
K-group of a ring A. In particular K(Ox = Z, and K05 = Ox. Write
Ko=1Z,K, = 05,K, = K,0x/{ p-torsion}. It is expected that K, A, for
A a ring of characteristic p, has no p-torsion, and therefore that K, =
K,0Ox, but this has not been proved.! In Section 7 we define canonical
maps 8":H' (X, K,)” - TH" (X, K,) (étale cohomology groups) where,
for any group M, M~ denotes the completion of M for the topology defined
by the subgroups mM and TM = Hom(Q/Z, M). Let

XX, K,) = det(8") "V I [H (X, K, ) ] "'

when all terms are defined and finite. The groups H (X, Z) are torsion for
i # 0 and finite for i # 0, 2; moreover, H*(X, Z) ~ Z and H*(X, Z) ~
H*(X, Z)coror ® Q/Z where H*(X, Z)co1or, the cotorsion subgroup of
H*(X, Z), is finite. As 6°:Z — TH?(X, Z) = Z is the identity map, x(X, Z)
is always defined and

[H(X, Z) o | [H*(X, Z) oo | [H* (X, Z)] - - -
[H'(X, D[H* X, Z)] --- '

xX, Z) =

! A. Suslin has recently shown (Torsion in K of fields, preprint, I H.E.S. 1983) that K,
of a field of characteristic p has no p-torsion. It follows that the sheaf K, = K,0x.
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The groups HiX, (‘)}é) are torsion for i # 1, and are finite for7 # 1, 2, 3;
moreover, H'(X, O% ) is the finitely generated abelian group Pic(X) and
H(X, 0%) = H3(X, 0% ) cotor ® HY (X, 05 ) g1y where H3 (X, O )eorey is
finite and H>(X, 0% ), is divisible. Thus x(X, 0¥ ) is defined if and only if
H*(X, 0 %) is finite and det(5') is defined, in which case

[H°(X, O)IH?(X, ON)][H (X, 0F)] - -+
det(al)[Hl (X, O; )tor][H3(X’ O)>(< )cotor] e

x(X, 05) =

TueorReM 0.4. (a)Ass — 0, {(X,s) ~ £x(X, Z)(1 — g™~ L
(b) If T'(X, 1, ¢) holds for one {, then x(X, 0x)is defined and

qx(X,Ox)

m(l —q'™)7 as s~ 1,

(X, s) ~ =

where p is the rank of Pic(X).

(c) Assume that the order p, of the pole of {(X, s)ats = 2 is equal to
the dimension of the subspace of H*(X, Q »(2)) generated by algebraic cy-
cles. Then x(X, K,) is defined and

§(X, 5) ~ Cox(X, K5)g*%Ox:2(1 — g> )" as s> 2

where Cy is a rational number such that |C, [, = 1.

Except for the definition of the term det(s!), part (b) of (0.4) was
conjectured in [22], which also contains a proof of the non-p-part of (b). A
weak form of the £-part of (b), £ # p, is also proved in [32, Corollary 7].

Unfortunately, K, O is uniquely divisible by all primes { # p, and so
it is not possible to express the number C, in part (c) in terms of it.

After (0.4) it is tempting to conjecture that, for r > 2,

X, 8) ~ Cox(X, K) ™V X001 — g7 =)o a5 5>
q

with Cy a rational number such that |Cy|, = 1. Conversations with Lich-
tenbaum have convinced me however that the true situation is probably
more complicated. It is more natural to raise the following question (see
the discussion at the end of Section 10 below).
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Problem 0.5. Find a canonical complex of étale sh(feaves Z(r) such
that x (X, Z(r)) can be defined in the same way as for Z(0) = Z and Z(1) =
O [—1], and such that

(X, 5) ~ £x(X, Zr)g*XOx (1 — g"™5)"Pr a5 5 > .

There is some additional evidence that x (X, Oy, r) is the correct expo-
nent of g to insert. The complex Z(r) should be defined in terms of the
sheaves K;Oy, and it is expected that these are uniquely divisible by p if
i > dim(X). Thus it should be true that

[¢X, n|; 1 = g% > dimX.

In Section 10 we verify this formula.

When X has dimension 4, it is possible to make a conjecture for the
behaviour of P4(X, g ~*) near s = 2 that is closely analogous to the original
conjecture of Artin and Tate [38] for surfaces, and it is possible to prove
the conjecture under the analogous assumption.

THEOREM 0.6. Let X have the dimension 4; then under the same
hypothesis as in (0.4c), H*(X, K,) is finite and

_ ColH’(X, K;)] det(5°)

_ ,2—sy0r(X)
O, KL, 4 ) e s

PyX,q7)

where Cy is a rational number such that |Cy|, = 1. Moreover, if the cycle
map ¢>:CH*(X) ® Z, -~ H*(X, Z,(2)) is surjective, then

_ ColH’(X, K))] | det(Z;- Z))|

(1 — g? )X a5 552
7P [A2(X) o0 ]2 g

PyX,q77)

where CH*(X ) is the Chow group of codimension 2 cycleson X, det(Z; - Z;)
is the discriminant of the intersection pairing CH*(X) X CH*(X) - Z,
and A;(X) is the image of CH*(X) in H*(X, Z,(2)).

When X is a surface, all of the above results are closely related to the
conjecture of Artin and Tate [38, (C)], and the proofs of their ¢ -parts, £ +
P, and their p-parts follow the same general lines as those in [38] and [24]
respectively. The latter require, however, an extensive development of the
theory of the cohomology groups H'(X, Z,(r)). This is carried out in the
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first three sections of the paper and the fifth. In the fourth section
x(X, Oy, r) is expressed in terms of the slopes of the crystalline cohomo-
logy groups and the infinite parts of the cohomology groups of the trun-
cated deRham-Witt complex. Theorems (0.1) and (0.2) are proved in the
sixth section. The following two sections discuss the cohomology of K, and
Tate’s conjecture respectively. In Section 9, Theorems (0.4) and (0.6) are
proved, and it is shown that the determinants of ¢*" and & are related to
discriminants of intersection pairings on groups of algebraic cycles. Fi-
nally, the compatibility of (0.5) with the functional equation of {(X, s) is
discussed in Section 10.

Notations. Except in Section 2, X will be a complete smooth variety
of dimension d over a perfect field k of characteristic p # 0. In Sections 5,
6, 8,9, and 10, k is finite, and in 6, 8, 9, and 10, X is projective. The ring of
Witt vectors over k is denoted by W, and o is its Frobenius automorphism,
inducing a - a”? on k. The absolute Frobenius map on X is denoted by F,
and the relative Frobenius map with respect to a finite field £ of ¢ = p™
elements is denoted by ¢ (= F™). Cohomology groups will be with respect
to the étale topology, unless stated otherwise. The kernel and cokernel of
multiplication by m on M are denoted respectively by M,, and M.

1. Cohomology of the sheaves v, (r): duality. We begin by reviewing
some of the definitions and results in [26] (see also [4], which gives a more
polished exposition of the material in [26]). Throughout, X will be a
smooth complete variety over a perfect field, although much of the mate-
rial applies to schemes smooth and proper over a perfect scheme.

The Cartier operator C is a semilinear map from the sheaf of closed
differentials Q% ., on X to Q% , and the sheaf »(r) is defined to be the
kernel of 1 — C: Q%1 s = Uy /i

LEmMA 1.1. The sequence of sheaves on X
1-C
0= wr) = Qy/ke— W > 0

is exact (relative to the étale topology).

Proof. [26, 1.3].

Let Pf/k denote the category of perfect affine schemes over %, i.e.,
those of the form spec A with A a k-algebra such that 4 = A”. A group in
the category Pf/k will be called a perfect group scheme over k. Such a
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group scheme G is said to be algebraic if there exists an affine group
scheme G of finite type over k such that G(4) = Gy(A) for all perfect
k-algebras; one then calls G the perfection G¥ of Gy. Let G(p®) denote
the category of commutative algebraic perfect group schemes over k that
are killed by a power of p. When Pf/k is endowed with the étale topology,
G(p*) becomes embedded as a full subcategory of the category of sheaves
on Pf/k.

LemMmaA 1.2.  The sheaf on (Pf/k),; associated with the presheaf T
H' (X7, v(r)) is represented by an object of G(p°).

Proof. This follows easily from (1.1) (see [26, 2.7]).

The perfect group scheme defined by the lemma will be denoted by
Hi(X, v(r)).

The category G(p*) is equivalent to the category of unipotent com-
mutative quasi-algebraic groups studied by Serre [34] in the case that k is
algebraically closed. The identity component G° of an object G of G(p*)
has a composition series whose quotients are isomorphic to G?, and the
quotient D = G/GY is étale (i.e., D is the perfection of an étale group
scheme). For D étale and in G(p*), define

D* = Hom(D, Q,/Z,)

to be its Pontryagin dual, and for U connected in G(p*) define

U’ = Ext'(U, Q,/Z,)

(Hom and Ext in the category of étale sheaves on Pf/k). Then D* and U®
are also objects of G(p ™) (e.g. (G{,’f)” = G#), and the canonical maps D —
D** and U — U" are isomorphisms. These two autodualities can be com-
bined as follows. Let D?(G( p~)) be the full subcategory of the derived cat-
egory of sheaves on Pf/k whose objects are the bounded complexes with
cohomology in G(p®). For G in D?(Q(p®)), let

G* =R Hom(G', Q,/Z,).

LemMA 1.3. If G is in DY(Q(p™)) then so also is G "', and the ca-
nonical map G* = G " is an isomorphism in D®(G(p>)). Moreover there
is an exact sequence
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0->UTHG )Y > H I(G™) > DG )* -0

where U(G") = H\(G ) and D'(G ") = H (G )/UG").

Proof. This follows from the results recalled above and a vanishing
theorem of Breen [8, 0.1], as is explained in most detail in [4, II].

The direct image (in the sense of derived categories) of »(r) relative to
X — spec k is a bounded complex H (X, »(r)) such that H'(H (X, (r))) =
H'(X, »(r)). Therefore, (1.2) shows that H' (X, v(r)) lies in D(Q(p™)).

The cohomology sequence of

0 d V(d) d Qﬁi\r/k:'gﬂsi(/k i 0

and the trace maps

HY (X7, 4) = I(T, O7)

give rise to a trace map

n:HY(X, v(d)) — Z/pZ.

This and the pairing

w,w P wAw vr) Xvd—r)— vd)

define a morphism

H' (X, v(r)) = R Hom(H (X, »(d — r)), Q,/Z,)[—d]
=H X, wd — r)'[—d].
THEOREM 1.4. The morphism
H (X, v(r) » H' (X, Wd — r)'[—d]

defined above is an isomorphism. In particular, there are canonical iso-
morphisms

UiX, Wr) —> U (X, wd — 7))

Di(X, u(r)) —> D47i(X, vd — r))*
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where U (X, »(r)) = H'(X, »()° and D' (X, »(r)) = Hi(X, v(r))/
U'(X, »(r)).

Proof. [26, 2.4].

CoROLLARY 1.5. When k is finite there are canonical nondegenerate
pairings of finite groups

HiX, v(r)) X HAT' (X, ud — r)) » H*¥T(X, v(d)) = Z/pZ.

Proof. This can be proved the same way as (1.4) or else deduced
from it; see [26, 1.9].

To extend these results to sheaves killed only by higher powers of p, it
is necessary to replace the deRham complex by the deRham-Witt complex.
At the time [26] was written the theory of this complex was still in a primi-
tive form (only [6] was available) and so ad hoc definitions and arguments
had to be used to obtain results strong enough for the intended applica-
tions. The next result suggests another approach to the sheaves »(r).

LeEMMA 1.6. The sheaf v(r) is the additive subsheaf of Q' locally
generated by differentials of the form df/fi Ndf,/f2 N -+ Ndf,/ f,.

Proof. The proof mentioned in [26, 1.4] uses explicit calculation to
obtain the analogous result for »(r)g = Ker(1 — C:Q% k.o = Qr/x ), where
R = k[[t;, ..., t4]], and then applies Artin’s approximation theorem to
deduce the same result for a strictly Henselian subring of R. Another proof
is given in [18, 0.2.4.2], and a stronger result is proved in [19, Section 1].

Let (W,Qx), > be the deRham-Witt pro-complex defined in [18]. In
conflict with [18], I shall denote it by WQ (rather than W.Qy) and call it
the deRham-Witt complex (rather than pro-complex). Recall that W, Qy
is a complex

W,0x = W,0k > -+ 5 w,04

of coherent W, O x-modules. The results of [18, I, 1.13, 1.14] allow us to
regard the W, Q% as sheaves for the étale topology on X (rather than the
Zariski topology) and show that their étale and Zariski cohomology groups
agree (cf. [27, III 3.7, II .17]). For f e I'(U, 0%), let f = (f,0,...,0) be
its multiplicative representative in I'(U, W,0x), and letd log f = d f/f.
Then d log is a homomorphism O = W, O and we define »,, () to be the
additive subsheaf of W, Q% locally generated (for the étale topology) by



VALUES OF ZETA FUNCTIONS 307

sections of the form d log f{ A -+ A d log f,. The maps R: W,Q% —
W, — Q% induce maps v,(r) = »,—(r), and we write ».(r) for the pro-sys-
tem (v, (r)),. As W;Qx = Q. ([18, 11.3]), Lemma 1.6 shows that »,(r) =
»(r). The map d log A *++ Adlog:05 X «++ X 05 = W,Q% factors
through Sym K,Oy, the subsheaf of K, Oy generated by symbols, and so
we could also define », (r) to be the image of Sym K,O0yx — W, Q%. There-
fore, at least whenr < 2, v, (r) is the sheaf defined in [26, 3.14], where the
following result is suggested.

LEmMA 1.7. There is a canonical exact sequence

(171) 0— Vm(r) - Vm+n(r) - V,,(i’) -0

forallm,n,r = 0.

Proof. As multiplication by p is injective on WQY% ([18, 13.5]) it is
also injective on ».(r), and so there is an exact sequence -

0= v.(P)/p"v.(r) = v.(P" T v.(r) = v.(r)/p"v.(r) — 0.

The canonical map v.(r)/p" ».(¥r) = v, (r) is an isomorphism ([18, I5.7.5]),
and the lemma follows.

LeMmMA 1.8.  The sheaf on (Pf/k).cassociated with the presheaf T
Hi(XT, v, (r)) is represented by an object of G(p).

Proof. As G(p®) is an abelian subcategory of the sheaves on Pf/k,
closed under the formation of extensions, this follows from (1.2) and (1.7).

We write H'(X, »,(r)) for the perfect group scheme defined by the
lemma.

In order to define a trace map we need a strengthening of (1.1).

LemMMA 1.9. There is an exact sequence
0= v.(r) = WQy —> W% — 0

of pro-sheaves on X.

Proof. [18, 15.7.2].

Define H'(X, v-(r)) = lim H'(X, v,(r)) and H'(X, WQ%) =
lim H'(X, W, Q%).
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ProrosiTiON 1.10.  There is an exact sequence
(1.10.1)

- > HI(X, n.(r) = HX, WQy) —> H(X, W) = -+~

Proof. An argument, as in the proof of [18, II 5.5], using (1.8) al-
lows this to be deduced from (1.9).

AsHY(X, v(d)) = Z/pZand H (X, v(d)) = 0 fori > d, it follows from
the cohomology sequence of (1.7.1) that [Hd(X, v,(d))] = p" and
H'(X, v,(d)) = 0 fori > d. On the other hand, the isomorphisms

HYX, Wa) = H*¥(X, WQ') = HE . X/W) = W [18,111.4]

lead (as for HY(X, »(d))) to a surjection H*(X, v.(d)) = Z,. Thus the
cohomology sequence of

0 = v.(d) 2> ».(d) = v,(d) = 0
gives an isomorphism 7, :{Id(X, v, (d)) o Z/p"Z. In the next section we
shall define the class of a point in H d(x, v,(d)), and we normalize 7, so
that it maps this class to 1. Now
1 :HYX, v,(d) > Z/p"Z
together with
w, 0w P wAw v, Xv,(d—7r)>v,(d)
define a morphism
H X, v,(r)) > H (X, v,(d — r))'[—d].
TueoreM 1.11. The morphism

H X, v,() > H X, v,d — r)[—d]

defined above is an isomorphism. In particular, there are canonical iso-
morphisms



VALUES OF ZETA FUNCTIONS 309

UiX, v,(r)) > U HX, v, (d — 7))
DX, »,(r)) > DX, v,(d — r))*

where U'(X, v,(r) = Ei(X, v,,(r))o and D'(X, v,(r) =
H X, v,0)/U X, v,r)).

Proof. For n = 1, the theorem is just (1.4), and the general case
follows by induction using the cohomology sequence of (1.7.1).

COROLLARY 1.12. When k is finite, there are canonical nonde-
generate pairings of finite groups,

H' X, v,() X H*"'"" (X, v,(d — 7)) » HT'(X, v,(d)) = Z/p"Z.

Proof. This can be deduced either from (1.5) or (1.11).
We now introduce the notations

H'(X, (Z/p"Z)(r) = H"(X, v,(r))
H'(X,Z,(r) = H™"(X, ».(r))
H'(X,Q,() = HX,Z,n)®Q,

H'(X, (Q,/Z,)(r)) = lim H'™" (X, v,(r).

(Of course, H (X, F) = 0 fori < 0). There are the interpretations
H'(X,Z,(0) = H (X, Z,) (étale cohomology)

H(X, Z,1) = liln H(X, upn) (flat cohomology),

but there is no reason to believe this sequence continues. The notation is
introduced only as a convenience—as we shall see, H'(X, Zp(r)) plays a
role similar to the group H' (X, Z(r)), { # p.

For future reference, we list some consequences of (1.11), (1.12), and
the Poincaré duality theorems for étale cohomology.
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THEOREM 1.13.  Assume k to be algebraically closed.
(a) There is a canonical surjection

HI(X, Z/1"Z)(r)) > H¥™{(X, (Z/0"Z)(d — r)*

whose kernel is zero if { #+ p and is U™ (X, (Z/0"Z))if ¢ = p.
(b) There is a canonical surjection

H(X, Zr)) » Hom(H* (X, Z(d — 7)), Zy)

whose kernel is the torsion subgroup of H' (X, Z(r)).

THEOREM 1.14. Assume k to be finite, and let { be any prime num-
ber.
(a) There is a canonical nondegenerate pairing of finite groups

H{(X, (Z/0"Z)(r)) X HX¥T1=(X (Z/0"Z)(d = r)) > Z/"Z.

(b) There is a canonical surjection
H(X, Zy(r)) » Hom(H* 17X, Z(d — 7)), Zy)
whose kernel is the torsion subgroup of H (X, Z(r)).
For the rest of this section we investigate the relation between

H' (X, Z,(r)) and the crystalline cohomology group H i,ys (X/W). Through-
out, k will be algebraically closed.

ProrosiTION 1.15.  For all i and r there is an exact sequence
0 = Hi(X, Q,(r) = Hiy(X/W)®Q, 5 Hi, (X/W)®Q, — 0
Proof. The spectral sequence
HI(X, W) = H'T (X, WQy) = HH.(X/W)
degenerates when tensored with Q, ([18, 11.3]). Thus

HI(X, Wk) ®Q, = HitI(X/W)®Q,.
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Moreover, the action of F on the left hand term corresponds to that of
p "F on the right. Thus, on tensoring (1.10.1) with Qp, we obtain the
above sequence except for the zeros. The quotient of H' (X, WQY%) by its p-
power torsion submodule H (X, W), is a finitely generated W-module
[18, II 2.13], and this implies that 1 — F is surjective on H' (X, WQ%)/
Hi(X, WQ%),. Therefore (1.10.1) breaks up into short exact sequences
when tensored with Q,,.

The relation between the integral groups H'(X, Z,(r)) and
H'.(X/W) is more subtle.

Let WQx" denote the naive upper truncation

0 > Wy —» Way! - .-

of WQy. Because of the formula dF = pFd ([18, 12.19]), the action of F
on WQ% extends to an action on WQi":

Wy —> Wit — -

lF |7

Wy, —> W — -
LemMA 1.16.  There is an exact sequence
0 = ».(r) = WRF"—>= WQF" — 0

of complexes of pro-sheaves on X.

Proof. As1 — p/F is an automorphism of WQ¥ for allj = 1 ([18,
I 3.30)], this follows immediately from (1.9).

ProposiTION 1.17. There is an exact sequence

(1.17.1)
- > HX, v.(r)) = H'X, WQE") —> H (X, WQ3’") — - -

Proof. Same as (1.10).

Remark 1.18. It would be interesting to know exactly when the
maps 1 — Fin (1.17.1) are surjective. If H(X, WQZ") is complete for the
V-adic topology and H'(X, WQg")/VH' (X, WQZ") is finitely generated as
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a W-module, then 1 — F will be surjective. Unfortunately, these condi-
tions do not necessarily hold—see the example [18, p. 652] for which, nev-
ertheless, 1 — F is surjective.2

Similar remarks apply to the maps 1 — Fin (1.10.1).

There is a commutative diagram

H'(X,Z,(r) — H™"(X, WQ§") =L v, WQz")
(1.18.1) ,—l ,,r,-l

p—F

0 — Hi JX/W)F=F" — Hi (X/W)—> H. (X/W)

in which j is defined by WQz"[—r] = WQy.
PrOPOSITION 1.19. The maps ¢':H' (X, Z,(r) — Hirys(X/W)F:”r

defined by the above diagram are surjective for alli < r + 1if the follow-
ing conditions hold:

(a) H irys (X/W) is torsion-free for all i;

(b) the map H'(X, Q%) = H'(X, Q%) induced by the inclusion
Qy/k.c0 = Qx is surjective for all i;

(c) the Hodge to deRham spectral sequence H' (X, Q) = Hit' (X)
degenerates at E .

Proof. Let Q5/, denote the naive lower truncation
Oxpe = o 2> Uy >0 -

of Qx/k. The obvious map Qx/r — 5/ induces maps Hir(X) —
H'(X, Qx/k)-

LeMMA 1.20. For a fixed i and r with i < r + 1, assume

(a) H"._’_l X, Qyreer) = H 71X, Q% i) is surjective;
(b) Hig'(X) » H(X, Q5 1) is surjective.

2L, Illusie and M. Raynaud have shown (Les suites spectrales associeés au complexe de
deRham-Witt, Publ. Math. I.H.E.S., 57 (1983), 73-212) that, for X a complete nonsingular
variety over an algebraically closed field, 1 — F:H'(X, WQ%) — H'(X, WQ%) is surjective
for all i andjj. It follows that 1 — F:H'(X, WQx") — H'(X, WQx") is also surjective under
the same hypotheses.
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Then the map H'(X, (Z/pZ)(r)) = H'jz(X) induced by v(r) = QUy/k.c0 =
QXx/k is injective.

Proof. There is an exact sequence 0 = Q[—r] = Q@ > C = 0in
which

Cc = ((‘)X-»QI — e —»Qr_l —9) Qr/QzlL’ Qr+1 - ),
Clearly, H/(X, C') = H/(X, Q=""!) forj < r. From the sequence
HR'X) > H'(X,C") » H™"(X, Q) > HipX)

and condition (b), we see that H'~"(X, Q) = Hz(X) is injective. Now
from the exact sequence (arising from (1.1))

H™ (X, Q) > H 7 7'(X, Q) - H™"(X, »(r) > H ™" (X, Q)

and (a), we see that H " (X, »(r)) = H 7" (X, Q%) is injective. Since
H™"(X, v(r)) = H'(X, (Z/pZ)(r)), this proves the lemma.

Lemma 1.21. In addition to the hypotheses of (1.20), assume that
H'io(X/W) is torsion-free. Then ¢':H'(X, Z,(r)) = H'ipyo(X/W)F=P" is
surjective.

Proof. Lety € Hiyo(X, W)F=P; then (1.15) shows that p"y € Im(¢")
for some n. Let ny be the least such », and suppose ny > 0. Let v, €
Hi(X, Z,(r)) be such that @'(y0) = p"v. Clearly v, EpHi(X, Z,(r)) be-
cause if vo = pv;, ¢'(y;) = p"°'y. Now the diagram

H' (X, Z,(r) —> H'(X, Z,(r)) —> H'(X, (Z/pZ)(r))

l |

Hi:rys(X/W) - HiiR(X)

provides a contradiction.
To complete the proof of the proposition, it remains to note that its
conditions imply that the conditions of (1.21) hold for all 7.

Example 1.22. Nygaard has shown ([18, II 3.11]) that HY(X, WQy)
- HY(X, WOy) is surjective. Therefore, for i = 2, r = 1, the map
J:HY(X, wWQgl) - H2(X, WQy) of (1.18.1) is injective. As
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HO(X, WQz!) » HY(X, WQy) is always injective, H*(X, WQE!) is a fi-
nitely generated W-module and so (1.17) shows that H?*(X, Zp(l)) -
H'(X, WQg') is injective. When HZy(X/W) is torsion-free,
H'(X, WOyx) —» H (X, Oy) is surjective [29, Section 2], and so the surjec-
tivity of H'(X, WQy) — H'(X, WOy) implies that of Hiz(X) —
H'(X, Oy). Thus (1.21) in the case i = 2, r = 1 implies that
¢1:H2(X, Zp(l)) - ngys(X/W)F:” is an isomorphism whenever
H2,(X/W) is torsion-free and H°(X, Qku.o) = H°(X, Q)
(cf. [18, II 5.14)).

2. Cohomology of the sheaves v, (r): the cycle map. In this section X
will be smooth and quasi-projective (but not necessarily complete) over a
perfect field k.

The map d log: 95 — »,(1) induces a map Pic(X) — H'(X, »,(1)
which, in the limit, becomes a cycle map cl:Pic(X) » HY(X, ».(1)) =
Hi(X, Z,(1)). Let CH"(X) denote the Chow group pf algebraic cycles of
codimension 7 on X modulo rational equivalence. We shall extend ¢! to a
family of cycle maps ¢":CH"(X) —» H'(X, v.(r)) = HY(X, Q,(r)) that is
compatible with intersection and cup products over the algebraic closure
of k.

Ifi:Z < X s a closed immersion and F'is a sheaf on X, H7(X, F) will
denote R"i'F where i'F is the subsheaf of F of sections with support on Z
(see [27, p. 76, VL.5]). The crucial first step in the construction of the cycle
maps is the following purity result.

ProrosiTioN 2.1. Let Z be a smooth closed subscheme of X of codi-
mensionr,and lets = r. Then E%(X, v,(s)) = Ofori # r,r + 1and there
is a canonical isomorphism

bz/x:v, (s — 1)z > HZ(X, v,(s)).

Proof. Since Zis a local complete intersection in X, for any locally
free sheaf F of Oy -modules on X, EI%(X, F)=0,i #r, (16,111 8.7]). The
sheaf Q% ., is locally free when regarded as a sheaf on X ) = (X, 9%)and
so it follows from (1.1) thatéI%(X, v(r)) = O0fori # r,r + 1. An induction
argument using (1.7) extends this result to all the sheaves v, (7).

Let Y D Z be smooth of codimension ¢ in X. For any locally free sheaf
F on X, the spectral sequence H, (Y, H/ (X, F)) = H?j(X, F)reducesto a
single isomorphism H% *(Y, Hy(X, F)) 5 H%(X, F).
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In [16, I11.8] there is defined a family of homomorphisms ¢z, : Q3
- H%(X, Q%) with the following properties:

(a) ¢z,x commutes with d.

(b) If Y is as above, then H; (¢y/x) © dz/y = dz/x-

(¢) Assumer = 1, and let A = Oy, for some closed point z € Z. Let
f=0,f€eA, be alocal equation for Z near z. Then the stalk (in
the Zariski sense) of H5(X, Q°) at z is Qi r—11/%y, and (dz/x). is
the map

w b o Adf/f Q) = Q0.

We can regard the ¢, x as maps of sheaves for the étale topology on Z.
From (a) it follows that ¢ ,,x defines a map Q% ., = HZ(X, Q% /). More-
over, the following diagram commutes:

— Cc—1 -
0—=> v —r)z— Q7K el > Q7K —> 0
bz/x l%/x

c—1
0 — H%(X, v(s)) = HZ(X, Qx/k.o) —> HZ(X, Ux/i)-

For » = 1, this follows from (c), and (b) shows that if it is true for ¢, and
dy,/x, then it is true for ¢,/ x; but, locally, we can always find a sequence of
smooth schemes

ZcZ,Cc--CZ =X
F F F

and so this implies the general case. There is therefore a family of maps
dzxivls — 1)z = Hz(X, v(s)).

To show that these maps are isomorphisms is a local problem. There-
fore an argument similar to the one just used allows us to assume that r =
1. Moreover, we can suppose that we are in the situation of (c) above, with
A a strictly local ring. The diagram

0= Qo — Vy110 > HyX, Q)); — 0
(2.1.1) ic—l lC-—l lC-—l

0— Q% — Q1 — HyX, @); =0
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and the snake lemma give an exact sequence

0 = vs)g = v 1) — HL(X, v(s)); — 0.
We have therefore to show that

w b (@ Adf/f)iv(s — 1)g = v(s)a,-11/v(s)4,

where B = A/(f), is an isomorphism. Clearly it is injective. Let A be the
f-adic completion of A. Then B = A/( f), and if we can show that the map
is surjective for A , it will be surjective for A (because, if 1 € v(s) 4 1 is
equal to w A df/f + n’ with n’ € Q%, then in fact n’ will belong to
Q% N QY ,—1; = Q). Thus we can suppose that 4 is complete, and there-
fore ([16, p. 154]) that A = B[[f]]. Ann € Q% ;—1) can be written uniquely
as a finite sum

,7—7+f—+ +<§‘+fj§+ >'Adf(mod9i1)

with each a; € Q5§ and each 8; € @ !. If dn = 0, then

=do+ L ;‘;;; + I ﬁ;’,’i} A df (mod Q%)

where

Clearly

— E C(apl) + E C(6p1+1)

Cln) = 7 fl+1

A df(mod Q5),

and so C(y) = n implies that n = 8 A df/f where dB; = 0 and C(8;) = B,
i.e., that n is in the image of ¢ /x.

This completes the proof in the case that » = 1, and the same argu-
ment works without essential change in the general case.
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CoroLLARY 2.2. With the notations of the proposition,
HY(X, v,(s)) = 0 for i < r, the map H*(Z, v,(s — r)) = H3(X, v,/(s))
defined by ¢7,x is an isomorphism, and there is an exact sequence

0— H'(Z,v,(s — 1) = H)(X, v,(s)) » HYZ, H; ' (X, v,(s))) = -+
Proof. This follows from (2.1) and the spectral sequence
H'(Z, Hy(X, v,(5)) = HF(X, v,(s5)).

Remark 2.3. If in the statement of the proposition one takess < r,
then the conclusion becomes that HQ(X, v(s)) = 0 for i < r. The crucial
case in proving this is» = 1, s = 0, i = 1. The sequence of kernels in
(2.1.1) is then 0 — Z/pZ — Z/pZ — 0 and so HL(X, »(0)); = 0.

Remark 2.4. Unfortunately, H" ' (X, »,(s)) is not usually zero. The
diagram (2.1.1) shows that, in the case that r = 1, the stalk offIé(X, v(s))
is

HY(X, v(s)): = Coker(C — 1: Q=114 = X1y

The calculations in the proof of (2.1) show, for example, that a/f?, a € 0},
is not in the image of C — 1 if da # 0.

Let A = Z/p"Z, and write H;(X, A(r)) = H; "(X, v,(r)). Then (2.2)
and (2.3) show that, if Z is smooth of codimension r in X, H5 (X, A(s)) = 0
for i < 2r, and there is a canonical isomorphism A — HZ (X, A®)).

We can now copy some of the material in [27, V1.9, VI.10].

LemMMA 2.5. For any reduced closed subscheme Z of codimension r
in X, H5(X, A(s)) = 0 fori < 2r and all s.

Proof. We know this already when Z is smooth, and the general case
is proved by descending induction on r. If » = dim(X), then Z is smooth.
In general, we can choose an open subset U of X such that U N Z is
smooth, U is dense in every irreducible component of Z of codimension r,
and X D U D X — Z. The exact cohomology sequence of this last triple is

- = Hy_y(X, A(s)) = H (X, AGs)) = Hiynz(U, AGs)) = - -

and the induction hypothesis shows that H%_,(X, A(s)) = 0 for
i < 2(r + 1). Thus the lemma is now obvious.
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Let Z be an irreducible closed subvariety of X of codimension r, and
choose an open subset as in the above proof. There are maps

A > H¥nz(U, A(r)) = HY (X, A(r)) = H” (X, A(r))

and we define the class, ¢"(Z), of Z to be the image of the element 1 of A in
HY (X, A®r)). Clearly ¢"(Z) is independent of the choice of U.

Let C*(X) denote the graded group @ C"(X) where C"(X) is the group
of algebraic r-cycles on X, and let H*(X, A), or simply H*(X), denote the
cohomology ring @ H¥ (X, A(r)). The maps ¢ extend by linearity to a
homomorphism of graded groups (doubling degrees)

c*:CH*X) —» H*(X, A).

Note that in determining ¢”(Z) when Z is an r-cycle, we are allowed (be-
cause of (2.5)) to remove any closed subvariety of X of codimension >r.

LEMMA 2.6. Let w:Y — X be a map of smooth quasi-projective vari-
eties and let Z be an algebraic cycle on X. If, for every prime cycle Z’ occur-
ringin Z, Y X x Z' is integral, then the cycle w*Z is defined and c(w*Z) =
w¥c(Z).

Proof. We can assume Z to be prime. Then the condition implies
that after X and Y have been replaced by open subvarieties with comple-
ments of large codimension, both Z and Y X x Z will be smooth, and 7*Z
= Y X Z. From the definition of ¢,,x, one sees that

T(bz/x): 0, (0)z = T*HZ(X, v, ()

Dyxz/y: Va0 yxz = Hyxz(Y, v,(r))

commutes (the vertical maps are induced by the canonical maps 7*W, 0,
- W, 0yxz, W, Q% — W,Q%). The lemma follows immediately from
this.

For the rest of this section, we assume k to be algebraically closed. Let
i:Z = X be a smooth closed subvariety of X of codimension ». There is a
homomorphism i, which will be called the Gysin homomorphism

z bz Uc(Z2):HB(Z, A(s)) » HY (X, A(r + s)).
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LemMMma 2.7. (a)IfZ dydd x are closed immersions and Z and Y
are smooth, then (i; © 1)y = i34 © i14.

(b) If i:Z — X is a closed immersion and Z is smooth, then
I ((%(x) U z) = x U gz for any x e H¥(X, A) and z € H*(Z, A).

Proof.  (a) This follows from property (b) of the maps ¢, x: Q5 —
H7(X, Q%) recalled in the proof of (2.1).

(b) The proof is the same as in the case of the étale groups; see
[27, VI 6.5a].

ProposiTION 2.8.  Let E be a vector bundle of rank m over X, and
let P = X be the associated projective bundle. Let ¢ € H?*(P, A(1)) be the
image of the canonical line bundle Op(1) on P under the map Pic(P) —
H?(P, A(1)) defined by d log. Then H*(P) is a free module over H¥(X) with
basis 1, &, ..., "1

Proof. The standard argument using Mayer-Vietoris sequences re-
duces the question to the case that X is affine and F is trivial, and there it
can be proved by a direct calculation using the explicit description of the
cohomology of projective space over a ring [17, II1.5].

The proposition shows that there is a unique sequence of elements
co(E), ¢\ (E), ..., with c,(E) € H* (X, A(r)) such that

e, (E)m =0, co(E) =1, c,(E)=0 for r > m.

The element ¢, (E) is called the ™ Chern class of E.

TrEOREM 2.9. (a) If m: Y — X is a morphism of smooth quasi-pro-
Jective varieties and E is a vector bundle on E, then c,‘(7r_1(E)) =
7*(c,(E)) for all r.

(b) If E is a line bundle on X, then ¢ (E) is the image of E under the
map Pic(X) = H*(X, A(1)) defined by d log.

(0)If0 > E' > E - E” - 0is an exact sequence of vector bundles on
X, then c,(E) = L, 4, =, ¢, (E')c, (E").

These three properties characterize the Chern classes uniquely.

Proof. The preceding results show that the hypotheses of [14, Theo-
rem 1] are fulfilled.

The cycle maps c¢*:C*X) - H¥X, A), A = Z/p"Z, define in the
limit a cycle map C*(X) — H*(X, Zp) 4 @ HY(X, Z,(r)), and hence a
cycle map C*(X) — H*(X, Qp) =®HYX, Q, ().
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THEOREM 2.10. The cycle map c*:C*(X) — H*(X, Q,) factors
through the Chow ring CH*(X), and is a homomorphism of rings; it is
Junctorial for maps of smooth quasi-projective varieties.

Proof. Formula 16 of [14] allows the cycle map to be expressed in
terms of the Chern class maps, and so (2.10) follows from (2.9). (See also
[27, VI.10], but note that the proof there of 10.6 is incorrect.)

Let H(X/W) denote the crystalline cohomology ring.

COROLLARY 2.11. There is a canonical homomorphism CH*(X) —
H¥,(X) @ K that is functorial for maps of smooth quasi-projective vari-
eties.

Proof. As we saw in Section 1, there is a canonical map
H*X, Q,) - HY X/ W) ®K.
Remark 2.12. 1 conjecture that there is an exact sequence

0—-v,@F) — i.v,r—1), — @ i.v,r —1), — -
l dim??):d 7 )i dim@)=d—1 F " *

of sheaves on X,, generalizing that in [28, 4.3], and analogous to
that of Bloch and Ogus [7]. Such a sequence would define a map
CH (X)/p"CH"(X) — H> (X, v, (r)) whose composite with C"(X) —
CH'(X) is ¢'.

Remark 2.13. Forr < 2, thedlogmap K,Ox — », (r) defines a cycle
map CH' (X) = H' (X,,,,K,Ox) > H' (X, , v,(r)) > H(X,,, v,(r)). This
agrees with that defined above and is automatically compatible with inter-
section and cup products (see [13]).

3. The dimension of H (X, Z p(r)). Let s'(r) denote the dimension of
the perfect pro-algebraic group scheme H'(X, Z,(r) = H (X, v.(r).
Thus s'(r) = o unlessﬁi(X, z, ) is algebraic, in which case s'(r) is the
number of copies of G# occurring as quotients in a composition series for
H'(X, Z,(r))°. We shall show that s'(r) is finite for all { and r and shall
calculate Z(—1)'s'(r) in terms of the deRham-Witt complex.

Let WQ=" denote the naive lower truncation

WOy » WQL —» -+ > WQ} — 0
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of WQy. The formula Vd = pdV ([18, 12.19]) shows that there is an endo-
morphism V of WQi":

WOy —> WQk —> -+ —> Wk

v v

WOy —> WQL —> -« —> Wa.

The noncommutative ring W[[V]] (in which aV = Va’, a € W) therefore
acts on H'(X, WQ5"), and it is shown in [18, II 2.11] that H (X, WQ5") is
a finitely generated W[[V]]-module for all { and ». More precisely, there is
an exact sequence

0 - H'(X, WQg"), - H(X, WQ5") > M - 0

of W[[V]]-modules in which M is a free W-module of finite rank and
H{(X, WQ5"), is a finitely generated (W/p" W)[[V]]-module for some n.
Let d'(r) be the length of H (X, WQE"), Qwiivyy W(V)) as a W((V))-mod-
ule. Thus d'(r) is finite and is equal to the number of copies of k[[V]] oc-
curring as quotients in a composition series for H ‘X, WQ 7).

ProposITION 3.1.  With the above notations, s'(r) < o for all i and
r,and Z(— 1) sl + 1) = ©(—1)'d' ().

Proof. Let WQZ"t! denote the naive upper truncation of WQy. The
exact sequence

0> Wz 1 [—r — 1] > WQy > WQ5" - 0

of pro-complexes gives rise to an exact sequence
- H'(X, WQy) » HT'(X, WQi")

i Hi(X, WQ§r+1) — Hi+r+l(X, WQX) N

in which H’(X, WQy) is isomorphic to the crystalline cohomology group
H{;rys(X/W) ([18, IX 1.4]). In particular, the kernel and cokernel of d are
finitely generated W-modules. It follows that H (X, WQz"*!) is the exten-
sion of a free W-module of finite rank by a submodule H'(X, WQz 1),



322 J. S. MILNE

that is killed by a power of p. The formula dF = pFd ([18, I 2.19]) shows

that there is an endomorphism F of WQz"+1:

0 —> WQL'! w2
lF lpF

0 — W — woytt — - -
The following diagram

Hi+r(X, WQ)_(Sr)t "‘_/')Hi+r(X, WQj(Sr)t-i’Hl(X, W9§r+l)t
(3.1.1) lV—l ll—F
Hi+r(X, WQ)_(Sr)t Hi(X, WQ)%r-"_l)t

commutes because of the formula FdV = d ([18, 12.19]). It can be re-
garded, in a canonical way, as a diagram of perfect pro-algebraic group
schemes and morphisms of such schemes. For o a morphism of perfect
pro-algebraic group schemes, let

x(a) = dim(Ker(«)) — dim(Coker(c))

when both these numbers are finite. If « is an endomorphism of M, we also
write x(a | M) for x(c). The proof will proceed by comparing the x’s of the
various maps in (3.1.1), but first we need an easy lemma.

LemMaA 3.2. (a) Let v = B ° «; if any two of x(a), x(B), x(y) are
defined, then so also is the third, and

x(y) = x(a) + x(B).

(b) Consider a:M | = M,; if M| and M, have finite dimension then
x(a) = dim(M;) — dim(M;).

(c) Let o be an endomorphism of M, and let M’ C M be such that
a(M’) C M’; then

x(a|M) = x(a|M’) + x(a|M/M").

Proof. (a) Use the exact sequence

0 — Ker(a) — Ker(y) — Ker(B8) — Coker(a)
— Coker(y) = Coker(B) — 0.
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(b) Obvious.
(c) Apply the snake lemma.

The map V — 1:k[[V]] — k[[V]] is an isomorphism of perfect pro-
algebraic groups, and so x(V — 1|k[[V]]) = 0. On the other hand, if M is
a finitely generated torsion W-module, then (3.2b) shows that
x(V—1|M) = 0. As H*"(X, WQ5"), has a finite filtration whose quo-
tients are isomorphic to k[[V]] or are finitely generated over W, (3.2c)
shows that x(V — 1|H'*"(X, WQ5"),) = 0

Clearly x(V|k[[V]]) = —1, and so a similar argument to the above
shows that x(V|H'™" (X, WQ5"),) = —d"" ().

The remarks made at the start of the proof show that x(d) is defined.
Therefore, on applying (3.2a), we find that x(1 — F|H (X, WQg'*!),) is
defined and equal to d7(r). It remains to relate x(1 — F) to sH(r).

As we saw in (1.17), there is an exact sequence

C o> HI(X, v.(r + 1)) > HI(X, WQz") _lil__lf(X"WQ?rH) .

Recall that H ‘X, WQz ") is an extension of a free W-module M of finite
rank by H'(X, WQg'*1),. In fact

(3.2.1) x(1 — F|H (X, Wag't") = x(1 — FIH' (X, WQg"™),).

For this to be true, x(1 — F|M) must be zero. Since we are computing the
kernel and cokernel of 1 — F as a map of group schemes, we can assume
that k is algebraically closed. Then there is a submodule M of M admit-
ting a W-basis of elements fixed by ¥ and such that F is topologically nilpo-
tent on M/M (see for example, [11, IV]). On M/M,, 1 — F has an inverse
LF" andso x(1 — F|M/M,) = 0. On M, 1 — Fis surjective and has as
kernel a free Z,-module of finite rank, and so x(1 — F|My) = 0. Thus
(3.2.1) holds. From the preceding sequence we can extract exact sequences

0 - Cok(l — F'™!)y > HI(X, ».(r + 1)) » Ker(1 — F') - 0
where F' denotes F acting on H (X, WQE"*!). Thus
(=1 e+1) = T(—1)'(dim(Cok (1 — F™1)) + dim(Ker(1 — F')))

= L(—=1)'x(1 — F)
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=I(—1)x(1 — F|H'(X, WQg"t!),) by (3.2.1)

= X(— 1) @),

Remark 3.3. If1— F:H'(X, WQg"™1), » HI(X, WQz"™"), is sur-
jective fori =j — 1,j, then the above argument shows that s’ "1 (» + 1) =
d(r). (Cf. (1.18)).

Example 3.4. Let X be a surface and consider the case » = 0. Then
s'(1) = 0 except fori = 3 ([1, p. 554]) and d’(0) = 0 except fori = 2 ([33,
Section 7, Proposition 4]). Thus in this case (3.1) becomes the equality
s3(1) = d*(0). There is another proof of this. Consider the morphism of
flat sites w: X ; = (spec k). The sheaf R’ T, upn is representable by a group
scheme H'(X, p,») of finite-type over k (Artin, unpublished; cf. [1, 3.1])
and it is easily seen that H'(X, »,(1)) = H'*'(X, u,»)”. On taking typical
curves in the exact sequence

n
P
- = R?7,G,, — R?’7,G,, - R37r*p,pu - e

one obtains an exact sequence

<> HX (X, WOy)t> HX(X, WOy) » TCH3(X, p,n)) = 0
p

(see [2, 114.3]). In the limit, this becomes an isomorphism

H*(X, WOx) = TC(lim H> (X, p,»)).

Since TC(G,) = k[[V]] and the module of typical curves of a finite group
scheme has finite length over W, it follows immediately from the isomor-
phism that d%(0) = s3(1).

In this case, H (X, Z,(1))° = H*(X, (Z/p"Z)(1))" for all n sufficiently
large, and so the equality d?(0) = s3(1) is the statement in the second
paragraph of [24, 1.3]. The above proof is essentially the one I intended,
but neglected, to include in [25].

Remark 3.5. It seems to be very difficult to compute the invariants
d'(r) and s'(r) attached to X.
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4. A formula for x (X, Oy, r). In this section, k will be algebraically
closed. Let

(X, Oy, r) = ‘f:o (=1 — Dx(X, Q) = L (=) — iy
1= l,{]

where, for any sheaf F of Oy-modules on X, x(X, F) =
I(—1)'dim H'(X, F), and A7 = dim H/(X, Q). We shall prove a formula
for x(X, Oy, r) in terms of the crystalline cohomology groups of X general-
izing that for x(X, Ox) (= x(X, Oy, 1)) in [24, 7.1].

Let K be the field of fractions of W and let K[F] be the noncommuta-
tive ring in which Fa = a’F, a € K. For each positive rational number A,
define a K[F]-module

EM = K[F)/(F"— p°®), A=s/r gcd(r,s)=1.

It has dimension r over K. Let M be a K[F]-module of finite dimension
over K such that F acts as an injection. Then there is a decomposition

M = (E)‘l)’"l @ . @(E)\,)m,

with distinct A;’s. The numbers A, ..., A, are called the slopes of M, and
m;r;, where \; = s;/r;, is the multiplicity of \;. In the case that M =
Hirys(X/ W) ® K, the \; are called the slopes of H';rys(X/W).

ProrositiON 4.1. For all r,
XX, Ox,7) = m;ér (=D'mylr = Ny + Z(=D'd'¢ — 1)
where {N\;1, N2, ...} is the set of slopes of Hirys(X/W)
m ; is the multiplicity of N
d'(r — 1) = lengthyy)H' (X, WQ=""1) Quyvy WI(V)).
Proof. For M a W[[V]]-module, define

xv(M) = lengthy,(Ker(V)) — lengthy (Coker(V))

when both these numbers are finite.
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LEMMA 4.2.  Let M be a finitely generated W[[V]]-module such that
M/VM has finite length as a W-module, and assume that there is a o-
linear operator F on M such that FV = p” = VF. Then

where the \; are the slopes of K @ M and m is the multiplicity of \;.

Proof. The hypotheses imply that, for some 2, M is the extension of
a free W-module of finite rank by a (W/p” W) [[V]]-module [6, 111 2.4]. By
considering a filtration of M, one reduces the problem to the following
three cases: M has finite length over W; M = k[[V]]; M is free of finite
rank over Wand K @ M = K[F|/(F™ — p””')‘), A < r. In the first case
xv(M) = 0, and in the second, x(M) = —1. In the third case K M
contains a lattice M’ = W[F, V]/(F""~N — y™M) and clearly x (M) =
xv(M’). But an elementary calculation using the basis F N, pm=N=1
.oy 1, ..., V"™ shows that x(M’) = —mr(r —\). As K @ M’ has
slope A and multiplicity mr, this completes the proof.
According to [18, I12.11], the lemma applies to H (X, WQ=""1), and
it is known ([18, 11 3.5]) that the slopes of H' (X, WQ=""") are precisely the
slopes \ of Hérys(X/ W) with N < r. Thus

@21 xvH'X, Wo="1) = = L my(r — N) —d'¢ — 1.

u =

Next, as multiplication by p and V are injective on WQY ([18, I 3.5]),
there is an exact sequence

0— woF 'S war ! > weslviwes ) - 0
of pro-complexes, which gives rise to an exact sequence
Lo HI(X, WoFT™") > HI(X, Weg ")
- Hi(X, Wz H/viwag 1) - ---
From this we get that

(4.2.2) L(— D Iy (HI(X, WRE™1) = x(X, Wa=""1/V).
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Finally, there is an exact sequence of pro-complexes

0
l . d d .

W=V WOy /pTlV— - — WQTl/V —> 0
| b b I

WQ=/V 0 WOx/p'V — - = W pV —> WiV

T

(o} WOyx/p —> -+ —> WQ l/p — WQ'/V
0

in which C~ is quasi-isomorphic to Q5/; (see [18, I 3.20]) and so

XX, Q) = x(X, WQ=1/V) — x(X, WQ=""1/V).

When summed over i, 0 < i < r — 1, this gives

r—1

I X(X, QFh) = x(x, wa="1/V),
But
r—1 )
L XX, 0570 = x(X, Ox, 1)

and
XX, WQ="1/v) = (=) xy(H (X, Weg'™') by (4.2.2)

= 4?(_1)1.()\"2"”1{]'(7 - )\g,‘)

+d'i(r — 1)) by (4.2.1)

and so the proof is complete.
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Remark 4.3. When X is defined over a finite field, then the slopes of
Hirys(X/W) are precisely the numbers ord, (a;), where {a;1, a;5, ...} is
the set of eigenvalues of ¢ on H,, (X/ W) ® Q,, (cf. (5.2) below). On apply-
ing this remark and (3.1), we find that the formula in (4.1) can be rewrit-
ten,

XX, 0x, 1) = L (—=1)(r — ord,(a;)) — Z(—1)'s'(r)).

Ordq(tlil)Sr
Remark 4.4. From (4.1) we find that
(=D"x(X, Q%) = x(X, Ox, r + 1) — 2x(X, Oy, r) + x(X, Ox,r — 1)

= )Y (_1)imi,'(” - >\g/)
r—1<N\,<r+1 k

1=

r—1 <)\”Sr

+ Z(—1)d() — dir — 1))
— I (1 — 1) — di(r — 2)

r—1<\;<rt+1

y—

r—1<)\,_-,-sr * :

+ L (=18 () — D (=D — 1),

where 8'(r) = length vy H (X, WQ") Quyyvy WIV)).
This formula has also been found by R. Crew (Etale p-covers in char-
acteristic p, Compositio Math. to appear).

5. The action of v on H' (X, Q,(r)). In this section k is a finite field
with ¢ = p™ elements. The canonical generator a + a? of Gal(k/k) is
denoted by . The rings of Witt vectors over k and k are denoted by W and
W respectively and their fields of fractions by K and K .



VALUES OF ZETA FUNCTIONS 329

Let L be a field containing Q,,. Then L ®Qp K is a Galois (ring) exten-
sion of L with Galois group generated by 1 ® o, which we will again denote
0. By an F-isocrystal over L @ K we mean a free L @ K-module of finite
rank together with an injective o-linear map F:M — M. The endomor-
phism F" of M is L ® K-linear. Let M = K ®y M and let v and F act on
Masy®1land1 QF.

LEMMA S.1.  Let \ € Q and assume that L contains an element p™.
Then

d _ _
My L Ker(F — p*:M — M)
is finite-dimensional over L, and
det(1 — y¢t|M,) = II(1 — (¢"/a))

where the product is over those eigenvalues of F" on M such that
ord, (a) = A.

Proof. Itiseasy to show, using the classification of F-isocrystals over
K, that F — p» is surjective on M. Therefore an exact sequence

0O-M->M-M"—0

of F-isocrystals over L & K gives rise to an exact sequence

0 = Mj = My > M{ = 0.

Thus the lemma will be true for M if it is true for M’ and M ”. Moreover, in
proving the lemma for M we can replace L by a larger field and therefore
we can assume that F™ possesses an eigenvector e in M generating a free
submodule of M. These two remarks, and induction on the rank of M,
allow us to assume that M has rank 1.

Let e € M be a basis for M over L X K. Then Fe = ae, some o €
L ® K, and the sole eigenvalue of F” acting on M isa = o™ !(a) -
o(a)a = Nygg/r (). An arbitrary element of M can be written 8 ® e with
BeL®K, and

FB®e) =p*(B®e) & o(B)/B =p/a.
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Therefore M, = 0 unless |a/p)‘|p =1, i.e., ord,(a) = A, in which case
M\ = {bBy®e|beL}

where 3, is an element of L @ K such that ¢(8,)/8y) = pM/a. (Note that
there does exist such an element 3, because W* /(e — 1)W* = 0, as can
be seen by examining o — 1 on the natural filtration of W ™). In particu-
lar, M) has dimension zero or one over L according as ord,(a) # X\ or
ordq (a) = . In the second case,

YBo®e) = 0" (ByRe) = 0" (By) Ve

_ 0”1(60) 0111—1(60) U(BO)(60®6)
011171(50) 0171*2(60) 60

(g"/a)(By R e).

Remark S.2. Let M be an F-isocrystal over K, and let L be an exten-
sion of Q,, containing all s roots of p for a suitably large integer s. From
the classification of F-isocrystals over K, it is clear that (L & M), has di-
mension equal to the multiplicity of A as a slope of M. Thus the lemma
allows us to recover the result of Manin [23, Theorem 2.2] that the multi-
plicity of A as a slope of M is equal to the number of eigenvalues a of F* on
M such that ordq(a) = A.

Remark 5.3. We shall need (5.1) only in the case that M is an
F-isocrystal over K and A is an integer. Then (5.1) says that

det(1 — y¢|MF="y = I (1 — (¢ak).
ordq(u):)\

ProrosiTiON S.4. Let X be a complete smooth variety over k; then

det(1 — y¢t|H' (X, ».(r)) ® Q,) = IT 1 —(q"/ai+r j)t)

ord,(a, 4, ,)=r

where II(1 — a4, ;t) = det(1 — F"t|HL(X/W)®Q,).

Proof. As we have already observed (1.15), the exact sequence

0= () > WQ —> WQ% — 0
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leads to an exact sequence
0— Hi(X, n.())®Q, — Hit/(X/W)®K “5 Hit/(X/W)®RK — 0.

On applying (5.3) with M = HLI(X/W) ® K and N\ = r, we obtain the
proposition.
From now on we write ¢ for F".

Remark 5.5. If X is projective, the eigenvalues of ¢ acting on
Hirys(X/W) X Qp are the same as those of ¢ acting on H{X, Q), any { #

p, (see [21]). In particular, they have absolute value qi/z.

Remark 5.6. We can restate (5.4) as

det(1 — yt|H'X, Q,(m) = II (1 — (g"/a;)n)

ord, (a;)=r

where the a;; are the eigenvalues of ¢ on HX/W)® Q,,. This is close to
the analogous result for ¢ # p:

det(1 — vt|H'(X, Q(r) = II(1 — (q"/a;))
where the a;; are the eigenvalues of ¢ on H (X, Q).

6. Proofs of (0.1) and (0.2). We now assume that X is projective so
that there exist algebraic integers a;;, a;, . . . that can be unambiguously
defined as the eigenvalues of ¢ = F" on H (X, Q) any ¢ # p or as the
eigenvalues of ¢ on Hf;rys(X/W) ® Q,,. As in the introduction, P;(X, t) =
IL(A = ago).

If M is a T-module, we let M" and My denote the kernel and cokernel
respectively of v — 1: M — M, and we always use f to denote the map
M" — My induced by the identity map on M. Recall the following elemen-
tary lemma from [38, z.4].

LEmMMA 6.1. Let M be a I'-module that is a finitely generated
Z-module. Then z(f) is defined if and only if the minimal polynomial of vy
on Q,® M does not have 1 as a multiple root, in which case

2(f) = | II (@; — D,
a,#1

where {a, a,, ...} is the set of eigenvalues of y on Q,&Q M.
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LEMMA 6.2. Let f be the map H'(X, Z,(r))" = H (X, Zr))y in-
duced by the identity map. Then z(f) is defined if and only if the minimal
polynomial of vy on H(X, Q(r)) does not have 1 as a multiple root, in
which case

z(f) = | I;I (U —ay;/qN,| 1 qr/azj\pqsi("), {=p,
al-, q

ordq(a,:,-)<r

Z(f)=| Hr(l—a,,/qr)h, f:,tp,
a;#q

Proof. The case { # p is an immediate consequence of (5.6) and
(6.1), since |g"/a;|, = 1. For £ = p, we use the sequence from Section 1,

0->U > H(X,Z,(r)) > D" =0

in which U’ is a connected perfect algebraic group scheme and D' is pro-
étale. The map y — 1:U'(k) = U'(k) is surjective because it is étale and
U' is connected. Therefore, on applying a snake lemma argument, we can
get an exact commutative diagram

0—U'k)' —H'(X,Z,(r)" —> D'(k)" —>0

A

0— 0 —HX,Z,(r)r—>D'(k)p—>0

Clearly z(f’) is defined and equals [U'(k)] = ¢* ). As D'(k) is a
finitely generated Z,-module and D'(k) ® Q, = H'(X, Q,(r)), on apply-
ing (6.1) to it we find that z(f”) is defined if and only if the minimal poly-
nomial of vy on H(X, QI, (r)) does not have 1 as a multiple root, and then

2(f") = |1 — q"/ay)|,,

where the product is over the a; such that ordq (a,:,-) =rbuta; # q". This
can be rewritten

Z(f”) - |H(a,,/qr - 1)q'/a,,|p = |H(1 - a,:,-/qr)lp.
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Note that

laj/q"|, if ord,(a;) <r

|11 —a;/q"|, = {
v 1 it ord,(ay) > r.

Thus

z(f") = | I;EI LA —ai/gD),| 1L g"/ayl,
a4jj#q

ordq(a,:,)<r

On combining these results for f* and f”, we obtain the required result
for f.

PrOPOSITION 6.3. Letf:Hi()?, 72 - H'(X, Z(r))p be the map
induced by the identity map. When i + 2r, z(f) is always defined, and
when i = 2r, z(f) is defined if and only if SS(X, r, {) ho{dsfor all 0. If z(f)
is defined then

2= I (1 —az/q) g

a,:,:af:q

where e = Si(") - Z:ordq(a,-,)<r (r — Ordq(aii))‘

Proof. The Riemann hypothesis and (5.6) show that, when i # 2r,
1 is not an eigenvalue of v on H'(X, Q,(r)) and therefore the formulas in
(6.2) hold for all £; moreover H (X, Z(r))" is torsion. The theorem in [12]
implies that H'(X , Z(r)), is finite, and now (6.2) shows that H (X, Z(r))r
is finite. Clearly z(f) is defined.

The case i = 2r can be proved by a similar argument.

The formula in the proposition can be proved by multiplying together
the formulas for the different ¢ in (6.2).

COROLLARY 6.4. Assume i # 2r; then H(X, Z@)" and
H'(X, Z(r)); are both finite, and
(H' (X, Z(r))"]

S — A = Pi(Xv q—r)*l qe
[H' (X, Z(r))r] | |

where e = S‘(r) - Ecrdq(a,:,-)<r (r — ordq(aij))'
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Proof. In this case z(f) = [H'(X, Z(r))"1/[H (X, Z(r));].

The isomorphism y*  «:Gal (k/k) — Z defines a canonical element
0o € H'(k, Z). We can pull 6, back to an element 6 of H'(X, Z), and then
cup-product with 0 defines a map H'(X, Z(r)) — H'*'(X, Z(r)) which we
denote €.

PROPOSITION 6.5.  For any sheaf F of Z-modules on X, the map
x> 0Ux:H X, F) - H" (X, F)
is equal to the composite of the obvious maps
H'(X,F) > H'(X,F), H'(X,F)- H'(X,F)p
with the map Hi()?, F r— HTY(X, F) arising from the Hochschild-Serre

spectral sequence.

Proof. This can be proved easily using the description of the first
map on the level of complexes in [31, 1.2].

ProposiTION 6.6. The determinant of e¢*:H* (X, Z(r)) -
H* (X, Z(r)) is defined if and only if SS(X, r, () holds for all ¢, in which
case H"T1(X, Z(r))tor is finite, 2(e%") is defined, and

[H* (X, 2(r)"]
[H* (X, Z(r)r]

2(f) = z(e*")

_ 1 (H* X, Z)ie]  [H” (X, Z6))"]
det(e”) [H* (X, Z0))or) [H* (X, Z(r)r]

with f as in (6.3).
Proof. Consider the diagram

H” (X, Z(r)) A HY" (X, Z(r))

| Tf

HY(X, 20)" 1> B (X, Z()p,

which commutes becguse of (6.5). AsH” (X, Z(r))tor and H* (X, Z(r))mr
are finite [12], H>" (X, Z(r))tor is finite. Therefore, the observations in the
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introduction show that z(e?") is defined if and only if H>*1(X, Z(r))tOr is
finite and det(e?") is defined. Clearly z(7) is defined (see (6.4)), and

z() = [H* (X, Z()r].
Also z(j) is defined, and

2(j) = [H¥ (X, Z(r))r] ™"

Thus z(¢?) is defined if and only if z(f) is defined, and we know z(f) is
defined if and only if SS(X, r, ¢) holds for all . Supposing these three
equivalent statements to be true, we find that

2(f) = z() " z(e)z2(j) 7!

- L EYME, 20
[H*~Y(X, Z(r)r]

as required.

We are now in a position to prove (0.1). It follows from (6.4) that
H (X, Z(r)) is finite except possibly for i = 2r, 2r + 1, and (using that
HY (X, Z(r))o, is finite [12]) that H* (X, Z(r)), is finite. From (6.6) it
follows that, if det(e¢?') is defined, then SS(X, r, £) holds for all ¢ and,
conversely, that if SS(X, , ) holds for all ¢, then x(X, Z(r)) is defined.
Moreover,

0 - H™YX, Zrm)r » H'(X, Z(r) > H'X, Z))" - 0
shows that

2r)

[H (X, Zr)'] ><—1>" [HY (X, Z()7]

x(X,Z(r))=H< e — 2
(H' (X, Z(r)r] [H "' (X, Z(r))r]

i#2r

which (6.4) and (6.6) show equals

= I (g ) 2
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where

d=L (—Us¢)+ L (=" L (r— ordy(ay).
1 F2r ’

[#2r ordq(a,_-,-)<r
Now (6.3) and (4.3) allow us to rewrite this as

x(X, Z(r)) = (lim £(X, s)(1 — g ~*)Pr)g ~XX:Oxn),

This completes the proof of (0.1).
Before proving (0.2), we need a lemma.

LEmMA 6.7. Letd = 2r; then

_32r+l )

1 [H* "X, Zr)r] _
[H” (X, 2] [HY X, Z6)D'] [HY (X, Z6)%, )2

Proof. From (1.13a), we have an exact sequence
0 - U k) » H" (X, Z(r)) » H" (X, (Q/Z)(r))* —~ 0

where U1 = H>*1(X, Z,(r))°. As U* " is connected, U* ! (k) = 0
and so there is an exact sequence

0 U (k) > H""'(X, Zr)" > H” (X, (Q/Z)(r))r)* = 0.
On passing to the direct limit in

0 H" (X, Zr)"™ -» H* ' (X, Z/nZ)(r) » H" (X, Zr)), = 0
we obtain an exact sequence

0~ H”'(X,Z¢)®Q/Z ~ H* "X, (Q/D)(r) » H* (X, Zr));o: = 0.

As H¥ 71X, Z()yp is finite, clearly (H*'(X, Z()) ® Q/Z)r
H” (X, Z(r))r ® Q/Z is zero. Thus

H” (X, (Q/Z)(")r = HY (X, Z())ior)r -
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But H*" (X, Z(r))tor is finite, and so

2r+1 (I’)‘

[H (X, Zr)ioe] = [(H> (X, ZO)o)r] = [H (X, Z0)' 1~
The lemma now follows from the exact sequence
0~ H" (X, Z0)r = H¥ (X, Z(r))sor = H¥ (X, Z(r)%, = 0.

We now prove (0.2). From (6.3), (6.6), and (6.7), we find that

(6.3)

II (1—ay /") =2(f)""q% e =5¥() — L (r—ord,(ay.;)
az. ,#q ord, (ap, )<r

OOMH ' (X, Zr)oe] [H (X, Z())r]

. = det 2ry e
HY X, Z0))  (HP X, 20)7] M

6.7) [H” "' (X, Z(r))or)
[H” (X, Z(r))io I

2r+1(r)

det(EZr)qe—s

which is the formula in (0.2).
We now obtain another expression for o, (X).

LEMMA 6.8. Let d = 2r; then

d—1
x(X, Oy, r) = _;0 (—1)b; + > (r — ord, (a5, ;)

ordq(azrhf)sr
+ E(=1)"s'(r)

where b; = X |r — ord,(ay)| forall i
j

b, =@ —1i/2)8;, i<r.

Proof. We have to reinterpret the terms in (4.3). Because of
Poincaré duality, the inverse roots of Py, (X, ) are {ayq—; ; = q%/a;}.
Asd = 2r, ordq(azd_,-J) < r if and only if ordq(aij) = r. Hence, for a fixed
i9
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L  (r— ord,(ay) + L (r = ordy(azs—, 1)) = 0.

ordq(a,:,)zr Ordq("Zd—l,j)S"
Thus, for a fixed i,

E (r - ordq(aii)) + E (r - ordq(aZd_i,J-)) = b,‘,

ord, (a;)=r ord, (azy—; ,)=r
and, the sum over all / and j,

L (~1¢ — ordy(;) = £ (—1)b,

d—1
ordq(a(,)sr =0

+(—1¢ L G —ord,(ay )

ord, (ap, )=r
It remains to show that b; = (» — i/2)B3; for i < r. Note that

q):i[r—ordq(a,:,)) — inqr/alj
J

= 4P /(coeff. of t% in P,(X, 1))

qB,-(r—i/Z).

In particular, when i < r, ord,(a;) < r (because @, is also an algebraic
integer, and a;a; = ¢') and so

Lir— ord,(a;)| = X(r — ord,(a;)) = B;(r — i/2).
J
ProposiTION 6.9. Ford =2, a;(X) = x(X, Ox) — 1 + 1/28,. For

d =4, X)) = x(X, 0x,2) — 2+ 3/28, — B, + bj.
Proof. Letd = 2; then

XX, 0x, 1) =By —1/28;+ L (1 —ord,(ay)) + s3(1)

ord, (ap;)=<1

while

aX)= L (1—ord,ay) + s3(1),

ordq(azj)sl

which immediately gives the required formula as x(X, Oy, 1) = x(X, Oy).
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Let d = 4; then

x(X, ©0x,2) =260 = 3/26, + B — by + L (2 — ord,ay)
ordq(a4j)52

+53(2) — s*(2) + 5°Q2) — 5°),
while
X)) = L (2—ord,(ay)) +s°2) — s*2).
ordq(a4,)52 ‘

Thus,

ar)(X) = x(X, 0x,2) — 2+ 3/28; — B, + by — s>(2) + s°Q2).
For large N, there is a sequence
0-HX,Z,2) > H X, Z/p"2)2)° > H*'(X,Z,2)° ~> 0

that_is exact modulo finite groups. As 1_'12()?, Z,,(Z))O = 0 and
H'(X,Z,(2))° = 0, we have

s3(2) = dim H*(X, (Z/p"Z)(2))
s°(2) = dim H°(X, (Z/p"Z)(2)),

but (1.11) shows that these two numbers are equal.

ProPOSITION 6.10. If H (X, Z(r))or and H** 27X, Z(r)),o, are
both finite, then they are canonically dual; moreover, the pairing on
Hit(x, Z(r))mr is skew-symmetric.

Proof. The exact sequence

0 - H'(X, Z(N) ® Q/Z » H'(X, (Q/Z)(r)) > H'(X, Z(r))ior = 0

shows that

H' X, Z)or = H (X, (Q/Z)("))/H ™' (X, (Q/Z)())giy -
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Now the duality between H'~1(X, (Q/Z)(r)) and H**t27/(X, Z(r)) (see
(1.14)) induces a duality between H'(X, Z(r))ir and H** 274X, Z(r))or
(see [24, 2.3]). The skew-symmetry of the pairing on HYTY(X, Z(r)) can be
proved as in [24, 2.4].

Remark 6.11. If in (0.1) and (0.2) the hypotheses are weakened so
that SS(X, r, ) holds for any one or some primes £, then one obtains corre-
spondingly weakened conclusions.

7. The cohomology of K,, r < 2. For any regular scheme Y, we
write K, Y for the presheaf U — K,(I'(U, Oy)) on Y,, and K,Oy for the
sheaf associated with K, Y. If Y = spec A, we also write K, A for K, Y and
K, A for K,Oy.

ProrosiTioN 7.1. Let Y be a regular scheme of finite type over a
field k. Then H'(Y, K,Oy) is torsion forj > r.

Proof. Forr = 1, this was proved by Grothendieck [15, 1.4] using
the exact sequence

0 - 0y = ik(Y)* = Div — 0,

and our proof will be along the same lines.

Let y be a point of Y and i the inclusion map i:y — Y; let P be a
presheaf ony (= speck(y)), and let i, P be the direct image of P. There is a
canonical map a(i,P) — i,(aP) from the sheaf associated with 7, P to the
direct image of the sheaf associated with P. If P commutes with direct lim-
its of rings, then for any z € { y}, the map on stalks a(iyP); = (i, P); is
P(k(y)””);{’(k(y))G where k(y) is the separable closure of k(y) and
k(y)“ = k(y)© is the maximal subextension of k(y) unramified over z.
When P = K,k(y), then the kernel and cokernel of this map are torsion, as
follows from the statement: for any finite Galois extension j:F < E of
fields, there exist mapsj,:K,F = K, F,j*:K,E — K, Fsuchthatj*oj, =
[E:F]landj, °j*(a) = Loa, 0 € Gal(E/F). Thus, a(i K, k(y)) = i, K, k(y)
has a kernel and cokernel that are torsion.

The theorem of Quillen [30, 5.11] shows that there is an exact se-
quence of presheaves,

0->KY - K ..
- dim%_?)=d l*I_{,.k(y) - dim(yC—)B=d—1 1*1_(, lk(y) -
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On applying the functor a to this sequence, we get an exact sequence
0 K, 0y 2> ©aliuKk(y) = @ aliK,—1k(y)) —> -

A standard argument [15, 1.1], using that Galois cohomology groups are
torsion except in dimension 0, shows that H/(Y, i.K, k(y)) is torsion for
7 > 0. Hence H/(Y, a(i4K,k(y)) is torsion for j > 0, and the proposition
follows from this.

Now define Ky = Z, K; = 0y, K, = K,y /torsion.

COROLLARY 7.2. Supposer < 2;then H' (Y, K, )is torsion forj > r.

Proof. Obvious.
It is known [28, Section 3] that the d log map

{f, e} dlog fAdlog g: K;0x = »,(2)

factors through K,.
ProposiTiON 7.3.  Forr < 2, there is an exact sequence
p" d log
0 > K,—K,—>v,(r) =0

of sheaves on X, .

Proof. As K, is torsion-free, it suffices (because of (1.7.1)) to prove
this for n = 1. The sequences for r = 0, 1 are

0> 27— Z/pZ — 0

0— 0 >0 % 1) — 0

which are obviously exact. The definitions of K, and »,(2) have been cho-
sen so as to make the sequence exact at the end-points. Consider

0 —> K,0x —> ai Ko k(n) —> @ i k(x)*

bl i

0 —> K,0y —> ai Kok(n) —> @ i k(x)*

|

V(Z) I ai* V(Z)k('r[)
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where 7 is the generic point of X. Bloch has shown (unpublished)? that the
sequence of groups

d lo,
K k(n) —2> Kok(n) =3 vy

is exact, and this implies that the middle column of the diagram becomes
exact once one divides the top two terms by their p-torsion subgroups. A
diagram chase now shows that the first column becomes exact after the
same modification, and this completes the proof.

CoOROLLARY 7.4. Forr < 2, there are exact sequences
0~ H'X,K)"" > HX, »,0) > H' (X, K,),» = 0.
For the rest of this section, we assume X to be projective and & to be

finite. If M is an abelian group, M" denotes the completion lim M @ of M
relative to the topology defined by the subgroups {nM }.

ProrosiTiON 7.5. Forr < 1, there are exact sequences
0- H'X,K)" - H*'(X, Zr) > TH' (X, K,) = 0.
For r = 2, there are exact sequences
0> HX,K)">H"X,2,r) > TH"' (X, K,) - 0.
Proof. The p-part is obtained by passing to the limit in the se-

quences in (7.4) (note that H(X, v,(r)) is finite). The (-part, { # p, is
obtained similarly.

COROLLARY 7.6. Letr be <2.

(a) Fori > r + 2, H(X, K,) is finite, and
H(X, K,) > H"X, ), r=<I1

H(X,K,) > H(X, Z,(r)), r=2

3The proof will appear in: S. Bloch and K. Kato, p-adic étale cohomology.
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(b)Fori =r + 1,7 + 2, H(X, K,) is torsion, and H' (X, K,),, is
finite for all integers m.

(c) H'(X, K,) is finite; H' (X, K)o, is finite for i = 0, 1, and
H (X, K)o N H(X, Ky)gy = 0.

Proof. We have seen in Section 6 that H' (X, Z(r)) is finite fori # 2r,
2r + 1. As TH' "' (X, K,) is torsion-free, this shows that TH' ™! (X, K,) =
0 and H'(X, K,)" = H""(X, Z,(r)) or H'*" (X, Z(r)) for i # r,r + 1.
Since H'(X, K,) is torsion fori > r, TH'(X, K,) = 0,i #r + 1,7 + 2,
implies that H'(X, K, ) is finite for i > r + 2. This proves (a), and (b) is
obvious.

For (¢), H(X, K ) = k*, which is finite. As TH' (X, K,) = 0fori =
0,1, H (X, K, ), can have no p-divisible subgroup, and so the remaining
assertions of (c) are obvious.

Remark 7.7. (a) If SS(X, r, ¢) holds for all ¢, then
H 12X, K,)g, = (Q/Z)", r=0,]1,
H4(X’ KZ)div = (Qp/z/z)pr’ r = 2’

where p, is the order of the pole of {(X, s) at s = r (because then
TH 12X, K,) = H" (X, Z,(r))/torsion = H* (X, Z(r))p/torsion =~
Zgr).

(b) Consider

CH'X)®Z, —> H¥X,Z/(r)"
a d

H'(X, K,)"QZ~> HY(X, Z{r)
where ¢” is the cycle map, and a is defined by
CH'(X) = H'(Xz4, K,) —> H'(X,,, K,.).

Note that b is injective with cokernel T,H"*'(X, K,) and d is surjective
with finite kernel. Thus if CH" (X) ® Q, — H> (X, Q)" is surjective (i.e.
Tate’s conjecture T'(X, r, ) holds), then TpH’H(X, K,) = 0 and the
¢-primary component H'*1(X, K,)(¢) of H'"!(X, K,) is finite. Forr < 1,
a is an isomorphism, and so the converse assertion also holds.
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It would be interesting to know if
ag:H (Xz4, K,)®Z, > H (X, K,)RZ,

is an isomorphism also for » = 2. For X a surface it is: there is an isomor-
phism HZ(XZM, K)®Z, > X)) ® Z, (see [28, Section 8]), and
(X)) ® Z, is dual to H'(X, Q,/Z,), which in turn is dual to
H*(X, ».Q2)) = H*(X,,, K>,).

ProrosiTiON 7.8. Forr < 1, there are exact sequences
0~ H'KX, K,)®Q/Z~ H" (X, (Q/Z)1") » H (X, K,)or = 0.
For r = 2, there are exact sequences
0-HX,K,)®Q,/Z, ~> H*" (X, (Q,/Z,)(r) = H' (X, K,)ior = 0.

Proof. The p-part is obtained by passing to the direct limit in the
sequences in (7.4). The {-part, { # p, can be proved similarly.

ProrosiTtioN 7.9. Assumethat0 <r,d —r < 2. Foralli, thereis a
canonical pairing

HE(X’ Kr)tors X Hd+2_i(X’ Kd—r)tors - Q/Z
whose left and right kernels consist exactly of the divisible elements in each
group.
Proof. The nondegenerate pairing (1.14)
H™Y (X, Z(r)) X H¥T177(X, (Q/2)d — r)) > Q/Z
induces a nondegenerate pairing
HY (X, Z(r))iors X H¥T'77(X, (Q/Z)(d — 7))/D — Q/Z

where D is the divisible subgroup of H2At1—imr(x Q/Z)d — r)
(see [24, 2.3]). From (7.5) it is clear that HT (X, Z(r))tors
H X, K,)w/H X, K,))daw, and from (7.8) it is clear that

H> 177X, (Q/Z)(d — 1)/D

= Hd+2_i(X, Kd—r)tor/(Hd+2_i(Xy Kd—r)tor)div'
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Remark 7.10. The most interesting case of the above resultisd = 4,
r = 2,i = 3. It then says that there is a canonical pairing

(7.10.1) H3(X,K,) X H* (X, K,) - Q/Z

whose kernels are equal to the divisible subgroup of H3(X, K,). As in the
cased = 2,r = 1,i = 2 (see [24, 2.4]) one can show that the pairing is
skew-symmetric. If Tate’s conjecture 7(X, 2, p) holds, then (7.10.1) is a
nondegenerate skew-symmetric pairing of finite groups.

8. Complements on Tate’s conjecture. In this section, X will be pro-
jective and k finite. Recall that there are cycle maps

¢;:CH"(X) » H” (X, Qr))

compatible with intersection and cup products and such that ¢} is the obvi-
ous map on Pic(X). Define

A5(X) = CH'(X)/CH}(X),  CH}(X) = Ker(c})
N"(X) = CH"(X)/CH 1y (X),
CHpymX) ={Z|Z-Z' =0allZ’' € CH"(X)}
1(X) = ¢;{(CH"(X))Q, = subspace of H* (X, Q,(r))

generated by algebraic cycles.
We shall need to consider two forms of Tate’s conjecture [36].

T'(X,r, 0): Bj(X) = H”(X, Qir)".
T(X, r, 0) : the dimension of B}(X) is the multiplicity of q" as an in-
verse root of P,,(X, t).

Remark 8.1. It has been conjectured that CH;(X) is independent of
fand that A5 (X)®Q, = H* (X, Q,(r)) is injective. When these statements
hold, as they do for » = 0, 1, d, the conjecture 7(X, r, () is independent
of .

Recall that there is also the following conjecture:

SS(X, r, f)i 1 is not a multiple root of the minimal polynomial of v
acting on H* (X, Q(r)).
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This is equivalent to the map f: H* (X, Q,(r))" = H* (X, Q(r))r in-
duced by the identity map being an isomorphism. For ¢ # p, it is also
equivalent to ¢g" not being a multiple root of the minimal polynomial of ¢
acting on H> (X, Q,).

ProrosiTioN 8.2. Forall r and ¢,
TX,r, 0) e (T'X, r, £) and SS(X, 7, £)).
Proof. 'There are inclusions
Bi(X) C H”(X, Qr)' C H*(X, Qir);
where
H” (X, Qr))' = Ker(y — 1)
H¥(X, Q) = U Ker(y — D
Moreover,
(X)) = H"(X, Q) & T'(X, r, 0)
HY(X, Qi)' = H” (X, Q) & SSKX, r, D)
By(X) = H"(X, Qi(r), & T(X, r, 0).

The proposition is now obvious.

CoRroLLARY 8.3. Forall r and ?,
(T'X,r,)and TX,d — r, 0)) = TX, r, 0).

Proof. Since H (X, Q,r)) is dual to H2 (X, Q,r)),
SS(X, d — r, £) implies SS(X, r, 0).

ProposiTiON 8.4.  There are the following implications:
(T'X, r, ) and CHy(X) = CH,,, (X))

= T(X,d —r,{) = CH{(X) = CH},;m(X).
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Proof. The hypothesis CH;(X) = CH),,(X) implies that
¢":CH"(X) > H¥ (X, Q(r)) factors through N”(X). Because the intersec-
tion pairing N"(X) ® Q X N7 X)® Q — Q is nondegenerate, elements
of N'(X) ® Q that are linearly independent over Q will have images in
HY(X, Q,(r)) that are linearly independent over Q,. There is therefore an
injection N"(X) ® Q, — H¥(X, Qp(r))r which 77(X, r, £) implies is an
isomorphism.

Assume the first statement, and consider the maps

foc

CH™" (X0 ® Q= H* (X, Qud — r)r —> (H” (X, Qur)")*

AN T" —= (V" (X) @ Qp)*.

\ —
HZ([—Zr(X’ Q(’(d _ l”))F

The right-most isomorphism is the linear dual of that just noted; the other
isomorphism is defined by Poincaré duality; f is induced by the identity
map on H*~ % (X, Q.(d — r)) and c is the cycle map. The nondegeneracy
of the intersection product shows that the composite CHY "(X) ® Q, —
(N"(X) ® Qp* is surjective. Hence f © ¢, and f are also surjective. But the
domain and range of f have the same dimension, and so f is an isomor-
phism: condition S5(X, d — r, ¢) holds. It now also follows that c is surjec-
tive: condition 7(X, d — r, £) holds. Now (8.2) shows that 7(X, d — r, )
holds.

Assume T(d — r, £) holds. Then SS(d — r, ¢) holds, and so Poincaré
duality induces a nondegenerate pairing

H” (X, Q)" X H¥ (X, Qud — r) — Z,.

But 7(d — r, ¢) implies that H*? " 2"(X, Qud — ) = B¢™"(X). As
c(A¢77(X)) is dense in B{~"(X), this implies that CH{(X) D CH;n,(X).
But we always have CH,,,, (X) D CH}(X), and so this implies that we have
equality: CH{(X) = CH}y (X).

Remark 8.5. Forr =0, 1, d, CHy(X) = CH’,,,(X) and so, for
these values of r, T'(X, r, {) implies T(X, r, ). Moreover (see (8.1)),
T(X, r, £) is independent of ¢. Thus, for » = 0, 1, or d, if T'(X, r, ¢) holds
for one ¢, then T(X, r, ) holds for all ¢. This completes the proof of (0.3).
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Remark 8.6. For any eigenvalue a of v on H (X, Q,(r)), let
Hi(X, Q/(r), = U Ker((y — a)"). By Poincaré duality, a ~! occurs as an
eigenvalue of vy on H* (X, Q,(d — r)). Clearly

H'(X, Qr), ® H¥ (X, Qd — r),~1 C H¥(X X X, Q/d));,

and so if T(X X X, ¢, d) holds, then a is not a multiple root of the minimal
polynomial of vy on H (X, Q,(r)): T(X X X, ¢, d) implies v acts semisimply
on the cohomology groups H (X, Q,(r)) (for ¢ # p, this is equivalent to ¢
acting semisimply on H (X, Q,)).

In particular we see that if 7(X, ¢, ) holds for all X and r, then ¢
acts semisimply on H'(X, Q,) for all i, and CH{(X) = CH};n(X) for all
r and X.

Remark 8.7. As was pointed out to the author by S. Bloch, the
strong Lefschetz theorem shows that if 7(X, 1, ¢) holds for all surfaces X,
then T(X, d — 1, £) holds for all varieties of dimension d (¢ fixed, ¢ # p).
The proof is by induction on d. Let i: Y < X be a smooth hyperplane
section of X (if necessary, we can enlarge the finite field k), and consider

HY X, Qud — 2)) &> H¥ %Y, Qud — 2)
5 g% Qud — 1)).

The composite is x b i,i*(x) = x U c!(Y) (see [27, VI 11.6d])—call this
map L. Then the strong Lefschetz theorem states that the composite L¢ ™!

HAXX, Q) X pra4(x, Qid — 2) > H¥2(X, Qd — 1))

is an isomorphism. In particular L, and therefore i, are surjective. With
the notation of the proof of (8.2), iy:H* *(Y, Qud — 2)), —
sz_z()?, Q,(d — 1)); is also surjective. By induction CHY™%(y) -
H?* %Y, Qid — 2)), is surjective, and so this proves T(X, d — 1, ?).

9. Proofs of (0.4) and (0.6), and additional remarks. Let » < 1.
Then, as we saw in (7.5), there are exact sequences

0 H'X,K)" - H" (X, Z(r) > THT (X, K,) - 0.
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AsTH (X, K ,) is torsion-free, there are isomorphisms
(9.0.1) H' (X, K)foe = H (X, Z()) o

LEMMA 9.1. Let r < 1 and, in the case that r = 1, assume that
T'(X, 1, ) holds for at least one £. Then H (X, K.) is finite, and z(8")
and z(e*") are defined; moreover,

z(8") = [H™(X, K,)]z(e*").

Proof. It is obvious that T(X, 0, £) holds for all ¢, and we have seen
in (8.5) that the hypothesis in the lemma implies that 7(X, 1, ¢) holds for
all ¢. Thus, by (6.6), z(¢?") is defined and H* "' (X, Z(r))y, is finite. By
(7.7b), H'"1(X, K,)(¢) is finite, and so

HYX, KD, = H'X, K)wor = H" VX, Z0))1or -

As H' (X, K,) is torsion, it is finite.
Consider

H'(X, K,)) > TH™ (X, K,)

e

€

HY (X, Z(r)) — H* (X, Z(r)).

The cokernel of i is TH' (X, K ) which, by the preceding remark, is zero.
The kernel of j is H'1 (X, K,). Thus z(@), 2(e?"), and z(j) are all defined,
and therefore z(6") is defined and

z(8") = z(D)z(e*")z(j) = z(*)[HT (X, K,)].

We now prove (0.4)(a) and (b). Lemma 9.1, (9.0.1), and (0.1) show
that x(X, K,) is defined under the hypotheses of (0.1)(a), (b). Moreover,

XX, Zor) =TT [H(X, 2]V 2(e)
i#2r,2r+1

= I [HX KNIV 260 HTIX, K,)] !

i#ryr+1
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= T [H (X, K00 det (57)

i
= x(X, K,)CV

Thus (0.4)(a) and (b) follow from (0.1).

Part (c) of (0.4) is proved similarly (note that the hypothesis in (0.4c)
is TX, 2, p)).

Conjecture 7(X, ¢, r) says that

CH'(X) ® Q, = H”(X, Q)"

is surjective. Assume the integral cycle map factors through the Chow
group, and consider

CH' X)®RZ, > H¥ (X, Zyr)).

Clearly, T(X, ¢, r) implies that the cokernel of this map is finite; we then
denote the determinant of the map by ¢(X, ¢, ), i.e., (X, {, r) is the order
of the cokernel of CH" (X) ® Z, = H?* (X, Z(r))/torsion.

Let A" denote the discriminant of the intersection pairing

Z,Z) > (Z-Z'):N"(X) X N "(X) - Z.

ProrosITION 9.2. Assume both T(X, ¢, r)and T(X, {,d — r) hold,
then

det(e?’) = |A"|; (X, 0, ) 'eX, 0,d — )7}

where 7" is the {-component of €*'.

Proof. Let C}, and C{~" denote the images of CH"(X) ® Z, and
CHY"(X) ® Z; in H¥ (X, Z,(r)) and H**~?"(X, Z,(d — r)). We saw in
(8.4) that, under the above hypotheses, C;/{torsion} = Nj and C{ " /{tor-
sion} = N¢~". Therefore, the discriminant of the pairing

Cy X C{" = Zy

defined by the intersection product is |A”|; 1.



VALUES OF ZETA FUNCTIONS 351

Consider

C'l; (C?—r)/

17 I

2r ~
H2r(X’ Zg(r)) E_)H2r+1(X, Zg(r)) __>H2d~2r(X’ Zg(d _ r)),

in which M’ = Hom(M, Z,). A direct calculation of the determinants of
the four nonisomorphisms in this diagram proves the proposition.

CoroLLArY 9.3. If CH'(X) ® Z, — HY(X, Zr) and
CHT" "(X)®Z, > H¥ ¥ (X, Z,(d — r)) are both surjective, then

det(e?’) = |A"|{ L

Proof. Immediate consequence of the proposition.
We now prove (0.6). From (0.2) we know that

[H(X, Z,,(2)) o] det(e;)
gV H (X, Z,2))e )

[Py(X, g )|, ~ (1 —¢g> %)y as s— 2.

But, under the hypotheses of (0.6), H*(X, K,) is finite of order
[H>(X, Z,(2))], and the first vertical map in

2
H (X, K,)" > TH*(X, K,)

R

H'(X, Z,(2) — H%(X, Z,(2))

is an isomorphism and the second has a finite kernel. It follows that
det(6%) = det(e*). Finally, H*(X, Z,(2))1r = H*(X, K3){:, which com-
pletes the proof of the first assertion in (0.6).

The second assertion follows from the first and (9.3), since if
CH*X)® z, — HY(X, Z,(2)) is surjective, so also is CH*X) ® z, ~
H'X,Z,2) .

Remark 9.4. It would be interesting to know exactly when
CH'(X)®Z — H” (X, Z(r)) is surjective. For » = d one in fact knows
more: CH(X) is finitely generated and CHY(X) —» H* (X, Z(d)) is injec-
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tive with dense image. As H'(X, Q/Z) is dual to both H?*¥ (X, Z(d)) and the
abelian fundamental group 7 (X), this statement is equivalent to the ca-
nonical map CH(X) — m;(X)* being injective with dense image (see
[20]).

10. Compatibility of (0.5) with the functional equation; after-
thoughts. The functional equation for {(X, s) is

(X, d —s) = q 92X, 5)

where x is the self-intersection number of the diagonal on X X X (see [27,
VI1.12.6]). The number x can also be expressed as

d o o
x = xt L L(—1) dimg H'(X, Q). ¢ # p,
& T
= Xerys — L(—1) dimgH .y (X/ W) Q@ K

df o .
= Xdr EE L(—1) dimH g (X).

(The last representation, x = x4r, can be deduced from the preceding
one; see [S, p. 7-34]). Thus

. {X,d —5s) .
1 S ) (d/2 I)X‘
o s !

We shall compare this result with (0.5).

LemMa 10.1. Ifr and r’ are integers such that r + r’ = d, then
7 1 ’
X(X’ (C-)er) - X(Xv Oer ) = 3(" - r )XdR'

Ift < 0, we set x(X, Ox,t) =0.)
Proof. Duality shows that

dim HY(X, Q%) = dim H* 7 (X, Q¢7")
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and therefore that

x(X, Q) = (—1)4x(X, @477,

From this one calculates that

d/2—1
2 L (DX, 0) + (=D’x(X, 2¥?),  deven

XdrR —
[d/2)
d odd.

2 T (—1ixx, @)
In proving the lemma we can suppose that » = r’, and therefore that
r = d/2. Then

1~

XX, 0x,r) — x(X, Ox, 1) = A r — r)(—D'x(X, @)

+ i (r — D(—1)x(X, Q).
r'+1

The second term of this sum can be expressed in terms of the x(X, Q') for i
=< d/2. When this is done, and the result compared with expressions for

X4R s One obtains the result.

ProrosiTioN 10.2. For all r,

§X, d — 5)g XX Oxd™n
m — - = 1.
s=r §'(X, S)q X(X.Ox.r)

Proof. This follows immediately from the preceding calculations.
Remark 10.3. The hypothetical complexes Z(r) and Z(d — r) should
therefore satisfy

x(X, Z(r)) = xX, Z(d — r)).

This should be explained by a duality theorem.
Proposirion 10.4. Ifr > dim X, | (X, r)|, | = gXX:Ox "),
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Proof. The first calculation above shows that
(X, 1) = 0(X, d — gt

Asd —r<0,]1 —a,-jqd_’lp = 1foralliandj, andso |{(X,d —r)|, =
1; thus | £(X, r) |, = q""¥PX. Forr > d, (10.1) shows that x(X, Ox, )
= x(r — d/2), which completes the proof.

Remark 10.5. As mentioned in the introduction, (10.4) is consistent
with (0.5) and the expectation that K, is uniquely divisible by p forr > d.

Afterthought 10.6. O. Gabber has pointed out to the author that it
is possible to compute the sign of lim,_,, {(X, s)/(1 — g"¥)*r for X smooth
and projective. Since, by definition, all other terms in the formulas in
(0.1), (0.2), (0.4), and (0.6) are positive, this means that in those formulas
the term & can be replaced with a definite sign.

Note: (a) for s large and real, {(X, s) is positive;
(b) as s passes an integer point on the real axis, the sign of
{(X, s) changes exactly when {(X, s) has an odd zero or pole at the point;
(c) the sign does not change as s passes an odd integer.

To prove (c) we use the nondegenerate pairing
V:H (X, Q) X H'(X, Q) ~ Q,

given by the strong Lefschetz theorem. (We are identifying Q,with Q,(1)).
This pairing is symmetric if i is even and skew-symmetric if 7 is odd. Let
Hi(X, Q,); = U Ker(¢/¢q”?> — 1)V. Then y is nondegenerate on
H'(X, Q,); and so, if i is odd, this space must have even dimension: ¢’
occurs as an eigenvalue of ¢ on H (X, Q,) an even number of times. Simi-
larly —g"? occurs an even number of times.

It follows that the sign in question is (—1)**= where b,, is the order of
the zero or pole of {(X, s) at 2m, and the sum is over all m such that 2m > r
and 2m = 2d — r.

Afterthought 10.7. S. Lichtenbaum (talk at Journées Arithméti-
ques, Noordwijkerhout, July, 1983) predicts the existence of a complex
Z(r) of sheaves on X, having, among others, the following properties:

(a,,) for all n prime to p, there is an isomorphism in the derived cate-
gory,
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W& [—1] = (Z0) > L))

(b) H'(X, Z(r)) is finite for i # 2r, 2r + 1, 2r + 2; H” (X, Z(r)) is
finitely generated; H r+2(x . 7(r)) is torsion;
(¢) H¥ (X, Z(r)) is finite.

In the present context it is natural also to predict
(a,) there is an isomorphism in the derived category
v ([ —r — 1] = (Zr) = Zr)).
The complexes Z(0) = Z and Z(1) = (‘)}é [—1] satisfy conditions (a)
and (b). Condition (c) for Z(0) is obvious, but for Z(1) it is the statement
that H%(X, L‘)}f) is finite which, as we have seen, is equivalent to Tate’s

conjecture. Results announced by Gabber and Suslin show that, for »
prime to p, there is an exact sequence

» n
0- M KZr—lOX - K2r—1®X -0
of sheaves on X,,. Since we know there is an exact sequence
m

0~ K,04 > K,04 — »,,(2) > 0,

it at least seems plausible that there should exist such a complex Z(2) =
(z' > Z?) with

H*(Z' - 7%) = K,04
H'(Z! - Z%) = K;04/(symbolic part)
as predicted by Lichtenbaum.
Now assume that there exists a complex Z(r) satisfying (a), (b), and
(c). From (a) we get exact sequences
= H'(X, Zr) = H'(X, Zr) ~> H'X, Z/nZ)() >

for all » which, in the limit, become

0 - H'(X, Z(r))" » H'(X, Z(r)) » TH' (X, Z(r)) = 0.
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Note that (b) and (c) imply
H X, Z)" = H(X, Z(r)), i+ 2r,2r +2,
HY (X, Z)" = H" (X, Z(r) ® Z
HY 12X, Z(r)" = H¥ 21X, Z(r))coor (2 finite group)
TH ' (X,Z(r)) =0, i#+2r+1

Let e : H¥ (X, Z(r)) - grHi(x, Z(r)) be as in Section 6, and define 6" so
as to make the following diagram commute:

H (X, Z(r) ® Z—> TH (X, Z(r))

VoL

€

H” (X, Z(r)) — H¥T1(X, Z(r)).

Condition (c¢) implies that 7 is an isomorphism and that j is surjective with
finite kernel H T (X, Z(r)). Thus z(8") is defined provided z(e?") is de-
fined, and then

2(8") = z(e)z(j) = z()[H (X, Z(r))).
Define

x (X, Z(r))

; _y HY X, Z(0))ior ) [H T2(X, Z(r)) cotor )
— i (—1) tor cotor
i¢2rI}r+2 [H(X, Z()] det(8") ’

The observations just made show that
HX, Z)or = H X, Z0)) e, 1§ # 2r + 2,

H” 22X, Z0F)) cotor = H 72X, Z(r))or s
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and
[Hzrﬂji;(ﬁfj”t“] = 2(8") = 2(*)[H* (X, Z(r))]
_ [H”X, Z(1)ior]
det(e”")
Thus
XX, Z(r))

[H” (X, Z(r))tor]

2r+2 7
det(ezr) [H X, Z(r))tor]

= I [HX, 20"
+2

i#2r,2r
= x(X, Zr))
and it follows from (0.1) that
(X, 5) ~ £x(X, Z(r)gXEOx (1 — g"75) " as s > r.

We remark that if one assumes only (a) and (c) and that z(¢?") is de-
fined, then the same argument shows that

(X, 5) ~ £x'X, ZeNgX XA — ") as s o
where

X'(X, Z(r)) = TL[HI (X, Z(r)) ]V det(67) 7

Since K,,—; O x[—r] satisfies the non-p-part of (a), this shows that, under
the assumptions that the non-p-part of z(¢?") is defined and the non-p-part
of H1(X, K,,_,0y) is finite,

(X, 5) ~ C(x(X, Kg—1)(non-p))~ V' gxX0xn(1 — gr=s)=o,

ass — r where |C| is a power of p and x(X, K,,—) is defined analogously
to x (X, Z(r)).
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It should be noted that although det(8") is defined as the determinant
of a mapping of Z-modules, it is possible to realize it as the determinant of
a mapping of finitely generated Z-modules: let

T’ = {x e TH* (X, Z(r)) | mx € §"(H¥ (X, Z(r))) some m # 0};

then T is finitely generated and det(6") is the determinant of the map
H¥ (X, Z(r)) = T’ induced by 6" (cf. [22, 2.5, 2.6]). The approach to the
determinant (or regulator) term in x (X, Z(r)) adopted in this paper avoids
the double dualizing in [22].

Of course, it should be possible to interpret det(8”) in terms of inter-
sections of algebraic cycles. For this it is natural to make the following
assumption: (d) there exists a cycle map CH"(X) > H 2r(X, Z(r)) such that
the composite

CH'(X) » H” (X, Z()" - H” (X, Z(r)) Rz Q

is the product of the f-adic étale cycle maps with the p-adic cycle map de-
fined in Section 2.

Now assume (a), (b), and (d) (but not (c)). If T(X, r, ¢) holds for all ¢,
then it is possible to prove by the same methods as in (9.1) that (c) holds.
Moreover then the cokernel of CH’ (X) — H?* (X, Z(r)) will be torsion, with
finite {-primary component for all £. As we are assuming that H* (X, Z(r))
is finitely generated, this means that the cokernel will be finite, and we
denote its order by #(X, r). Now assume also that T(X, d — r, £) holds for
all £. Then it is possible to prove, as for (9.2), that

det(8") = A"t(X, r) 't X,d — r)"!

where A" is the discriminant of the intersection pairing

(Z,Z') > (Z-Z'):N'(X) X NI7"(X) > Z.

UNIVERSITY OF MICHIGAN




VALUES OF ZETA FUNCTIONS 359

REFERENCES

[1] M. Artin, Supersingular K3 surfaces, Ann. Scient. Ec. Norm. Sup., 7(1974), 543-568.
[2] and B. Mazur, Formal groups arising from algebraic varieties, Ann. Scient. Ec.
Norm. Sup., 10 (1977), 87-132.
[3] P. Bayer and J. Neukirch, On values of zeta functions and ¢-adic Euler characteristics.
Inventiones Math, 50 (1978), 35-64.
[4] P. Berthelot, Le théoréme de dualité plate pour les surfaces, in Surfaces Algébriques,
Springer Lecture Notes, 868 (1981), 203-237.
and A. Ogus, Notes on Crystalline Cohomology, Math. Notes 21, Princeton,
1978.
[6] S. Bloch, Algebraic K-theory and crystalline cohomology, Publ. Math. 1. H.E.S., 47
(1978), 187-268.
and A. Ogus, Gersten’s conjecture and the homology of schemes, Ann. Scient.
Ec. Norm. Sup., 7 (1974), 181-202.
[8] L. Breen, Extensions du groupe additif sur le site parfait, in Surfaces Algébriques,
Springer Lecture Notes, 868 (1981), 238-262.
[9] P. Deligne, Séminaire de Géométrie Algébrique du Bois-Marie, SGA4 1/2, Springer
Lecture Notes, 569 (1977).
and J. Milne, Tannakian categories, in Hodge Cycles, Motives, and Shimura
Varieties, Springer Lecture Notes, 900 (1982), 101-228.
[11] M. Demazure, Lectures on p-Divisible Groups, Springer Lecture Notes, 302 (1972).
[12] O. Gabber, Sur la torsion dans la cohomologie ¢-adique d’une variété, C.R. Acad. Sc.,
Paris, (to appear).
[13] D. Grayson, Products in K-theory and intersecting algebraic cycles, Inventiones Math. ,
47 (1978), 71-84.
[14] A. Grothendieck, La théorie des classes de Chern, Bull. Soc. Math. de France, 86
(1958), 137-154.
, Le groupe de Brauer, 11, in Dix Exposés sur la Cohomologie des Schémas,
North-Holland, Amsterdam, 1968, 66-87.
[16] R. Hartshorne, Ample Subvarieties of Algebraic Varieties, Springer Lecture Notes, 156
(1970).
[17] , Algebraic Geometry, Springer, Heidelberg, 1977.
[18] L. Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Scient. Ec.
Norm. Sup., 12 (1979), 501-661.
[19] K. Kato, Galois cohomology of complete discrete valuation fields, in Springer Lecture
Notes, 967 (1982), 215-238.
[20] and S. Saito, Unramified class field theory of arithmetical surfaces. Preprint.
[21] N. Katz and W. Messing, Some consequences of the Riemann hypothesis for varieties
over finite fields. Inventiones Math., 23 (1974), 73-77.
[22] S. Lichtenbaum, Zeta-functions of varieties over finite fields ats = 1, in Arithmetic and
Geometry, Progress in Math 35, Birkhduser, 1983, 173-194.
[23] Y. Manin, The theory of commutative formal groups over fields of finite characteristic,
Russ. Math. Surveys, 18 No. 6 (1963), 1-83.
[24] J. Milne, On a conjecture of Artin and Tate, Ann. of Math., 102 (1975), 517-533.
[25] , Flat homology, Bull. Amer. Math. Soc., 82 (1976), 118-120.

[5]

[7]

[10]

[15]




360 J. S. MILNE

[26] , Duality in the flat cohomology of a surface. Ann. Scient. Ec. Norm. Sup., 9
(1976), 171-202.

[27] , Etale Cohomology, Princeton Univ. Press, Princeton, 1980.

[28] , Zero cycles on algebraic varieties in nonzero characteristic: Rojtman’s theorem,

Compositio Math. , 47 (1982), 271-287.

[29] N. Nygaard, Closedness of regular 1-forms on algebraic surfaces, Ann. Scient. Ec.
Norm. Sup., 12 (1979), 33-4S.

[30] D. Quillen, Higher algebraic K-theory, 1, in Springer Lecture Notes, 341 (1973), 85-
147.

[31] M. Rapoport and Th. Zink, Uber die lokale Zetafunktion von Shimuravarietiten, In-
ventiones Math., 68 (1982), 21-101.

[32] P. Schneider, On the values of the zeta function of a variety over a finite field, Composi-
tio Math. , 46 (1982), 133-143.

[33] J.-P. Serre, Sur la topologie des variétés algébriques en caractéristique p, in Symposium
Internacional de Topologia Algebraica, Mexico, 1958, 24-53.

[34] , Groupes proalgébriques, Publ. Math. I.H.E.S., 7 (1960), 341-403.

[35] H. Swinnerton-Dyer, The conjectures of Birch and Swinnerton-Dyer, and of Tate, in
Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, 132-157.

[36] I. Tate, Algebraic cycles and poles of zeta functions, in Arithmetical Algebraic Geome-
try, Harper and Row, New York, 1965, 93-110.

[37] , Endomorphisms of abelian varieties over finite fields, Inventiones Math., 2
(1966), 134-144.
[38] , On a conjecture of Birch and Swinnerton-Dyer and a geometric analogue, in

Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam,
1968, 189-214.

[39] Yu. Zarhin, The Brauer group of abelian varieties over finite fields (in Russian), Izv.
Akad. Nauk. USSR, 46 (1982), 211-243.



	Introduction
	1. Cohomology of the sheaves \nu: duality
	2. Cohomology of the sheaves \nu: the cycle map
	3. The dimension of H^i.
	4. The formula for Chi(X,O_X,r).
	5. The action of gamma on H^i.
	6. The proofs of (0.1) and (0.2).
	7. The cohomology of K_r, r<3.
	8. Complements on Tate's conjecture
	9. The proofs of (0.4) and (0.6), and additional remarks.
	10. Compatibility of (0.5) with the functional equation; afterthoughts.
	References



