CHAPTER V 1986h

Abelian Varieties

J. S. MILNE

This chapter reviews the theory of abelian varieties emphasizing those points
of particular interest to arithmetic geometers. In the main it follows Mum-
ford’s book [16] except that most results are stated relative to an arbitrary
base field, some additional results are proved, and étale cohomology is in-
cluded. Many proofs have had to be omitted or only sketched. The reader is
assumed to be familier with [10, Chaps. II, III] and (for a few sections that
can be skipped) some étale cohomology. The last section of Chapter VII,
“Jacobian Varieties”, contains bibliographic notes for both chapters.

Conventions

The algebraic closure of a field k is denoted by k and its separable closure by
k. For a scheme V over k and a k-algebra R, V; denotes V' X, ) SPec(R),
and V(R) denotes Mor,(spec(R), V). By a scheme over k, we shall always
mean a scheme of finite type over k.

A variety V over k is a separated scheme of finite type over k such that V4
is integral (that is, reduced and irreducible). It is nonsingular if ¥ is regular.
Note that with these definitions, if V is a variety (and is nonsingular) then Vj
is a integral (and is regular) for all fields K o k, and a product of (nonsingular)
varieties is a (nonsingular) variety; moreover, V(k,) is nonempty. A k-rational
point of V is often identified with a closed point v of V such that k(v) = k.

All statements are relative to a fixed group field: if V and W are varieties
over k, then a sheaf or divisor on V, or a morphism ¥V — W, is automatically
meant to be a defined over k (not over some “universal domain” as in the
pre-scheme days).

Divisor means Cartier divisor, except that because most of our varieties
are nonsingular we can usually think of them as Weil divisors. If 1: W — V is
a map and D is a divisor on V with local equation f near v, then n*D (or
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n~'D) is the divisor on W with local equation f o m near n*(v). The invertible
sheaf defined by D is denoted by #(D).

The tangent space to V at v is denoted by T,(V). Canonical isomor-
phisms are often denoted by =. The two projection maps p: V x W —» V and
q: V x W— W are always so denoted. The kernel of muitiplication by n,
X — X, is denoted by X,,. An equivalence class containing x is often denoted

by [x].

§1. Definitions

A group variety over k is a variety V over k together with morphisms
mVxV-osV (multiplication),
inv: V-V (inverse),

and an element ¢ € V(k) such that the structure on V(k) defined by m and inv
is that of a group with identity element .

Such a quadruple (V, m, inv, €) is a group in the category of varieties over
k, i.e., the diagrams [22, §2] commute. (To see this, note that two morphisms
with domain a variety W are equal if they become equal over k, and that
W(k) is dense in W4;.) Thus, for every k-algebra R, V(R) acquires a group
structure, and these group structures depend functorially on R.

For ae V(k), the projection map p: ¥ x ¥ — ¥ induces an isomorphism
Vi x {a} 3 W, and we define ¢, to be the composite

Vix Vix {a}c Vi x B V.

On points t, is the translation map P+ m(P,a). Similarly, for any point
aeV, there is a translation map t,: V,,) = Vi(s). In particular, if ae V(k), then
t, maps V into V.

A group variety is automatically nonsingular: as does any variety, it con-
tains a nonempty, nonsingular open subvariety U, and the translates of Uy
cover V;.

A complete group variety is called an abelian variety. As we shall see, they
are projective and (fortunately) commutative. Their group laws will be writ-
ten additively.

An affine group variety is called a linear algebraic group. Each such variety
can be realized as a closed subgroup of GL, for some n [24, 3.4].

§2. Rigidity

Theorem 2.1 (Rigidity Theorem). Let f: V x W — U be a morphism of varie-
ties over k. If Vis complete and

S x {wo}) = {uo} = f({ve} x w)
for some ug e U(k), vy € V(k), woe W(k), then f(V x W) = {uy}.
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Proor. Let U, be an open affine neighborhood of u,. The projection map
q: V x W — W is closed (this is what it means for V to be complete), and so
the set Z = q(f (U — U,)) is closed in W. Note that a closed point w of W
lies outside Z if and only if f(V x {w}) = U,. In particular, woe W — Z and
so W — Z is a dense open subset of W. As V x {w} is complete and U, is
affine, f(V x {w}) must be a point whenever w is a closed point of W — Z,
[14, p. 104]; in fact, f(V x {w}) = f({vo} % {w}) = {uo}. Thus f is constant
on the dense subset V x (W — Z) of V x W, and so is constant. O

Corollary 2.2. Every morphism f: A — B of abelian varieties is the composite of
a homomorphism h: A — B with a translation t,, a = — f(0) e B(k).

Proor. After replacing f with t,o f, a = — f(0), we can assume that f(0) = 0.
Define p: A x A - Btobe fom, — mgo(f x f),so that on points ¢(a, a’) =
fla+a)— f(a) — f(a'). Then ¢(A4 x {0}) =0 = ({0} x 4), and so the
theorem shows that ¢ =0 on A x A. Thus fom, = mgo(f x f), which is
what we mean by f being a homomorphism. O

Remark 2.3. The corollary shows that the group structure on A is uniquely
determined by the choice of a zero element.

Corollary 2.4. The group law on an abelian variety A is commutative.

Proor. Commutative groups are distinguished by the fact that the map
taking an element to its inverse is a homomorphism. The preceding corollary
shows that inv: A — A4 is a homomorphism. O

Corollary 2.5. Let V and W be complete varieties over k with rational
points vy € V(k), wo € W(k), and let A be an abelian variety. Then a morphism
h:V x W— A such that h(vy, wy) =0 can be written uniquely as h=
fop+goq with f:V—>A and g: W - A morphisms such that f(vy) =0,
g(wo) = 0.

Proor. Define f to be V =V x {wo}—h+A and g to be W = {v,} x whoa

so that k< h — (fop +gogq) is the map such that on points k(v, w) =
h(v, w) — h(v, wo) — h(vgy, w). Then

k(V x {wo}) =0=k({vy} x W},
and so the theorem shows that k = 0. O

§3. Rational Maps into Abelian Varieties

We improve some of the results in the last section.
Recall [10, I, 4] that a rational map f: V --» W of varieties is an equivalence
class of pairs (U, f,;) with U a dense open subset of V' and f; a morphism
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U — W; two pairs (U, fy) and (U’, f,.) are equivalent if f,, and f;. agree on
U n U'. There is a largest open subset U of ¥V such that f defines a morphism
U — W, and f is said to be defined at the points of U.

Theorem 3.1. A rational map f: V --» A from a nonsingular variety to an abelian
variety is defined on the whole of V.

Proor. Combine the next two lemmas. O

Lemma 3.2. A rational map f: V -> W from a normal variety to a complete
variety is defined on an open subset U of V whose complement V — U has
codimension > 2

Proor. Let f;: U » W be a representative of f, and let v be a point of V — U
of codimension 1 in V (that is, whose closure {7} has codimension 1). Then
Oy, is a discrete valuation ring (because V is normal) whose field of fractions
is k(V), and the valuative criterion of properness [ 10, I1, 4.7] shows that the
map spec(k(V)) — W defined by f extends to a map spec(Oy ,) - W. This
implies that f has a representative defined on a neighborhood of v, and so the
set on which f is defined contains all points of codimension < 1. This proves
the lemma. O

Lemma 3.3. Let f: V--» G be a rational map from a nonsingular variety to a
group variety. Then either f is defined on all of V or the points where it is not
defined form a closed subset of pure codimension 1 in V.

Proor. See [2, 1.3]. d

Theorem 3.4. Let f: V x W — A be a morphism from a product of nonsingular
varieties into an abelian variety. If

SV x {wo}) = {ao} = f({ve} x W)
Jor some a, e A(K), vy e V(k), and woe W(k), then f(V x W) = {a,}.

Proor. We can assume k to be algebraically closed. Consider first the case
that V has dimension 1. Then ¥ can be embedded in a nonsingular complete
curve ¥, and (3.1) shows that f extends to a map f: V x W — A. Now (2.1)
shows that f is constant.

In the general case, let C be an irreducible curve on V passing through v,
and nonsingular at v,, and let C — C be the normalization of C. Then f
defines a morphism C x W — A which the preceding argument shows to be
constant. Therefore f(C x W) = {a,}, and the next lemma completes the
proof. O

Lemma 3.5. Let Vbe an integral scheme of finite type over a field k, and assume
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V is nonsingular at a point vy V(k); then the union of the integral one-
dimensional subschemes passing through v, and nonsingular at v is dense in V.

Proor. By induction it suffices to show that the union of the integral sub-
schemes of codimension 1 passing through v, and smooth at v, is dense in V.
We can assume that V is affine and v, is the origin. For H a hyperplane
passing through v, but not containing T, (V), V n H is smooth at v,. Let Vy
be the component of ¥V H passing through v,, regarded as an integral
subscheme of V and let Z be a closed subset of V containing all V. Regard
Z as a reduced subscheme of V; and let C, (Z) be the tangent cone to Z at v,
[14, TL3]. Clearly T, (V)nH =T, (Vy) = C,,(Vi) = C,((Z) = C, (V) =
T,,(V), and it follows that C,(Z) = T, (V). As dim C, (Z) = dim(Z) (see
[14, TIL3, p. 320]), this implies that Z = V. O

Corollary 3.6. Every rational map f: G --> A from a group variety to an abelian
variety is the composite of a homomorphism h: G — A with a translation.

Proor. Theorem 3.1 shows that f is a morphism. The rest of the proof is the
same as that of (2.2). O

Remark 3.7. The corollary shows that 4 is determined by k(A) up to the
choice of a zero element. In particular, if A and B are abelian varieties and
k(A) is isomorphic to k(B), then A is isomorphic to B (as an abelian variety).

Corollary 3.8. Every rational map f: P! --> A is constant.

Proor. The variety P! — { co } becomes a group variety under addition, and
P! — {0, o0} becomes a group variety under multiplication. Therefore the
last corollary shows that there exist a, b e A(k) such that

fx+y) =fx)+ f0) +a, al x,yek=Pi(k)— {0},
fxy) = f(x)+ f) + b, all x,yek™ =P'(k)— {0, 0}

This is clearly impossible unless f is constant. ]

Recall that a variety V' of dimension d is unirational if there is an embed-
ding of k(V) into a purely transcendental extension k(X|, ..., X,) of k. Such
an embedding corresponds to a rational map P{ --» 14 whose image is dense
in K.

Corollary 3.9. Every rational map from a unirational variety to an abelian
variety is constant.

Proor. We can suppose k to be algebraically closed. By assumption there
is a rational map A?--» V with dense image, and the composite of this with a
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rational map f: V -» 4 extends to a morphism Pl x - x P!> A. Ac-
cording to (2.5), f (xy, ..., x,) = Y. fi(x;) for some morphisms f;: P! — 4, and
(3.8) shows that each f; is constant. dJ

§4. Review of the Cohomology of Schemes

In order to prove some of the theorems concering abelian varieties, we shall
need to make use of results from the cohomology of coherent sheaves. The
first of these is Grothendieck’s relative version of the theorem asserting that
the cohomology groups of coherent sheaves on complete varieties are finite
dimensional.

Theorem 4.1. Iff: V — Tis a proper morphism of Noetherian schemes and & is
a coherent Oy-module, then the higher direct image sheaves R'f, % are coherent
Or-modules for all r > 0.

Proor. When f is projective, this is proved in [10, III, 8.8]. Chow’s
lemma [10, II, Ex. 4.10] allows one to extend the result to the general case
[9, 111.3.2.1]. O

The second result describes how the dimensions of the cohomology groups
of the members of a flat family of coherent sheaves vary.

Theorem 4.2. Let f: V — T be a proper flat morphism of Noetherian schemes,
and let & be a locally free Oy-module of finite rank. For each t in T, write V,
for the fibre of V over t and %, for the inverse image of & on V,.

(a) The formation of the higher direct images of & commutes with flat base
change. In particular, if T = spec(R) is affine and R’ is a flat R-algebra,
then H'(V', 'Y= H'(V, %) @g R, where V' =V X,.r) SPEC(R’) and
F' is the inverse image of # on V.

(b) The function t+— y(%,) = Y. (— 1y dimy,, H'(V;, &) is locally constant on
T.

(c) For each r, the function t+— dim,, H'(V,, &) is upper semicontinuous (that
is, it jumps on closed subsets).

(d) If T is integral and dim,,, H'(V,, &) is equal to a constant s for all
t in T, then R'f,F is a locally free Op-module and the natural maps
Rf.F ®q, k(t) —» H'(V,, #,) are isomorphisms.

(e) IfH'(V,, #) = Oforalltin T,then R\, F = 0, f, F is locally free, and the
formation of f, F commutes with base change.

Proor. (a) The statement is local on the base, and so it suffices to prove
it for the particular case in which we have given an explicit statement. In
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[16, §5, p. 46], a complex K of R-modules is constructed such that for all
R-algebras R, H'(V', #') = H'(K' ®g R). In our case, R’ is flat over R, and
so H'(K ®z R') = H'(K') ® R, which equals H'(V, #) ®x R'.

(b), (c), (d). These are proved in [16, §57.

(e). The hypothesis implies that R, # =0 ([10, IIL, 12.11a]), and it
follows that f, # ®g. k(t) » H(V,, %) is surjective for all ¢ ([10, 111, 12.11b])
and so is an isomorphism. Now this last reference (applied with i = 0) shows
that f, & is locally free. O

§5. The Seesaw Principle

We shall frequently need to consider the following situation: V is a variety
over k, T is a scheme of finite type over k, and .& is an invertible sheaf on
V x T. For te T, %, will then always denote the invertible sheaf (1 x 1)*.% on
Vi = Viy =(V x T) xpt, where 1 is the inclusion of t = spec(k(t)) into T.
There is the diagram

(V' x T, 2)=(V,, &)
! l

T L

It is often useful to regard & as defining a family of invertible sheaves on V
parametrized by T.

Theorem 5.1. Let Vbe a complete variety and Tan integral scheme of finite type
over k, and let & and M be invertible sheaves on V x T. If ¥, =~ M, for all
te T, then there exists an invertible sheaf #" on Tsuch that & ~ M ® q* N .

Proor. By assumption, (¥ ® #7'), is trivial for all teT, and so
H(V, (¢ ® M7"),) ~ H°(V,, Oy) = k(). Therefore (4.2d) shows that the
sheaf /" = ¢, (¥ ® A7) is invertible. Consider the natural map g*A4" =
4 (L QM )DL ® M As (L ® M), = Oy, the restriction of a to
the fibre ¥, is isomorphic to the natural map «: 0y ® I'(V,, Oy) - Oy,
which is an isomorphism. Now Nakayama’s lemma implies that « is surjec-
tive, and because both g* 4" and ¥ ® # ! are invertible sheaves, it follows
that o is an isomorphism (if R is a local ring, then a surjective R-linear map
R - R is an isomorphism because it must send 1 to a unit). d

Corollary 5.2 (Seesaw Principle). Suppose in addition to the hypotheses of the
theorem that &, ~ M, for at least one ve V(k). Then & ~ M.

Proor. The theorem shows that ¥ ~ .# ® qg* 4" for some A4 on T.
On pulling back by T={v} x Ts V x T, we obtain an isomorphism
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LxM D q*N,. As &, = M, and (g*AN"), = A", this shows that A is
trivial. O

The next result shows that the condition % ~ .#, of the theorem needs
only to be checked for ¢ in some dense subset of T (for example, it needs only
to be checked for ¢t the generic point of T).

Theorem 5.3. Let V be a complete variety, and let ¥ be an invertible sheaf on
V x T. Then {t e T| %, is trivial} is closed in T.

Lemma 5.4. An invertible sheaf & on a complete variety is trivial if and only if
both it and its dual £~ have nonzero global sections.

Proor. The sections define nonzero homomorphisms s;: 0, - .% and
Sy: Oy > #71. The dual of s, is a homomorphism s}: % — O, and sjos;,
being nonzero, is an isomorphism (note that Hom(0y,, 0,) = H°(V, 0,) = k).
Because % is an invertible sheaf, this implies that s, is also an isomorphism.

a

ProoF oF (5.3). The lemma identifies the set of ¢t for which %, is trivial with
the set of ¢ for which both dim H°(V,, %) > 0 and dim H°(V,, £ ') > 0. Part
(c) of (4.2) shows that this set is closed. O

Remark 5.5. Let V, T, and .% be as at the start of the section with V complete.
We shall say that & defines a trivial family of sheaves on T if & ~ q*. A for
some invertible sheaf A" on T. According to (5.1), in the case that T is
integral, . defines a trivial family if and only if each %, is trivial. Returning
to the general situation, let Z be the closed subset of T determined by (5.3).
Clearly Z has the following property: A morphism f: T' — T from an inte-
gral scheme to T factors through Z if and only if (1 x f)*.% defines a trivial
family on V. This result can be significantly strengthened: there exists a
unique closed subscheme Z of T (not necessarily reduced) such that a mor-
phism f: T' — T (with T’ not necessarily integral) factors through the inclu-
sion morphism Z < T if and only if (1 x f)*.% defines a trivial family on V.
See [16, §10, p. 89].

§6. The Theorems of the Cube and the Square

Theorem 6.1 (Theorem of the Cube). Let U, V, W be complete varieties over
k with base points uge U(k), voe V(k), woe W(k). An invertible sheaf & on
U x V x Wis trivial if its restrictions to {ug} x V x W, U x {vo} x W, and
U x V x {wqy} are all trivial.

ProoF. Because Z|U x V x {wy} is trivial, the seesaw principle shows that
it suffices to prove that #|z x W is trivial for a dense set of zin U x V. Next
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one shows that U can be taken to be a complete curve ((3.5) accomplishes
this reduction when u, is nonsingular). This case is proved in [16, §6, pp.
57-58] when k is algebraically closed, and the next lemma shows that we
may assume that. O

Lemma 6.2. Let % be an invertible sheaf on a complete variety V over a field k;
if & becomes trivial on Vi then it is trivial on V.

Proor. The triviality of & on V4 implies that both H°_(V;, %) and
HO(V;, #71) are nonzero. As H°(V;, Z*') = HO(V, £*') ®, k (see (4.2a)),
Lemma 5.4 shows that .& is trivial. Od

Remark 6.3. At least in the case that k is algebraically closed, it is not
necessary to assume in (6.1) that W is complete [16, §6, p. 55], nor even that
it is a variety [16, §10, p. 91].

Corollary 6.4. Let A be an abelian variety, and let p;; A x A x A — A be the
projection onto the ith factor; let p;; = p; + p; and p;. = p; + p; + py. For any
invertible sheaf ¥ on A, the sheaf

P @ ph L @ pHL T @ PHL T @ pFL @ pFL @ piL

on A x A x Ais trivial.
Proor. The restriction of the sheaf to {0} x 4 x A (= A4 x A)is

ML RQp*LTIMETRIL T ® U ®P*L ® Y,
which is trivial. Similarly its restrictions to 4 x {0} x 4 and 4 x 4 x {0}
are trivial, which implies that it is trivial on A x 4 x A. O
Corollary 6.5. Let f, g, h be morphisms from a variety Vto an abelian variety A.
For any invertible sheaf & on A, the sheaf

f+9+N* L@ +9rL ' @@+h* 2L @ (f+h*L™!

f*L @g*L Qh*ZL

on Vis trivial.

Proor. The sheaf in question is the inverse image of the sheaf in (6.4) by
(f,g,h): VoA xAx A O

Corollary 6.6. Consider the map n,: A — A equal to multiplication by n. For all
invertible sheaves & on A,

nA*g ~ g(n2+n)/2 ® (_ 1)*3012—")/2‘

In particular,
n}g ~ " if & is symmetric (ie., £ = (—1)52)
¥~ L if £ is antisymmetric (e, L7 & (— 1)52).
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Proor. On applying the last corollary to the maps n,, 1, (—1),: A —> A we
find that (n + 5L ' @ ni L’ @(n— 1)L ' x L' ® (—1)*# L. This
fact can be used to prove the corollary by induction, starting from the easy
casesn =0, 1, —1. O

Theorem 6.7 (Theorem of the Square). For all invertible sheaves ¥ on an
abelian variety A and points a, be A(k),
L QL AL R Y.
Proor. Apply (6.5) with f the identity map on A and g and h the constant
maps with images a and b. O
Remark 6.8. When tensored with %2, the isomorphism in (6.7) becomes
L RL (LR LR R LY.

Thus the map ¢ ¢,

artF ¥ ® L' A(k) - Pic(A),
is a homomorphism. Therefore, if Y ’_; a; = 0 in A(k), then

ERELLRQ - REL L.
Remark 6.9. We write ~ for linear equivalence of divisors, so that D ~ D' if
and only if £(D) =~ £(D’). Also, we write D, for the translate t,D = D + a of

D. Note that 1} #(D) = #(t,* D) = #(D_,). The isomorphisms in (6.7) and
(6.8) become the relations:

D,y +D~D,+D,  abeAk)

D, ~ nD, if Y a,=0in A(k).

M=

1

i

§7. Abelian Varieties Are Projective

For D a divisor on a variety V we write
L(D) = {fek()I(f) + D = 0} U {0} = H°(V, £(D)),
ID| = {(f) + D|feL(D)} = the complete linear system containing D.

A projective embedding of an elliptic curve can be constructed as follows:
let D = P,, where P, is the zero element of 4, and choose a suitable basis 1,
x, y of L(3D); then the map A — P? defined by {1, x, y} identifies 4 with the
cubic projective curve

Y?Z +a,XYZ +a3YZ? = X3 + a,X?*Z + a,XZ? + ag,Z>.

(See [10, 1V, 4.6].) This argument can be extended to every abelian variety.
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Theorem 7.1. Every abelian variety is projective.

Proor. We first prove this under the assumption that the abelian variety A4 is
defined over an algebraically closed field.

Recall [10, I1, 7.8.2] that a variety is projective if it has a very ample linear
system, and that a linear system b is very ample if:

(a) it separates points (for any pair a, b of distinct closed points on the
variety, there is a D in D such that ae D but b¢ D); and

(b) it separates tangent vectors (for any closed point a and tangent vector t
to the variety at a, there exists a D € d such that ae D but ¢ ¢ T,(D)).

The first step of the proof is to show that there exists a linear system that
separates O from the other points of 4 and separates tangent vectors at 0.
More precisely, we show that there exists a finite set {Z;} of prime divisors on
A such that:

(@) ()Z; = {0}; and
(b) for any t e T, (A) there exists a Z; such that t; ¢ T,(Z,).

The second step is to show that if D = Y Z;, then |3D| is very ample.
The existence of the set {Z;} is an immediate consequence of the observa-
tions:

(i) for any closed point a # 0 of A, there is a prime divisor Z such that 0e Z,
a¢Z;

(i) for any te T, (A), there is a prime divisor Z passing through O such that
t¢ To(2).

The proof of (ii) is obvious: choose an open affine neighborhood U of 0, let
Z, be an irreducible component of A N H where H is any hyperplane through
0 not containing t, and take Z to be the closure of Z,. The proof of (i) will be
equally obvious once we have shown that 0 and a are contained in a single
open affine subset of A. Let U again be an open affine neighborhood of 0, and
let U + a be its translate by a. Choose a closed point u of U n (U + a). Then
both u and u + aliein U + a, and so U + a — u is an open affine neighbor-
hood of both 0 and a.

Now let D be the divisor Y Z; where (Z;), <, <, satisfies (a) and (b). For any
family (a;, b;); <;<n Of closed points of A4, the theorem of the square (6.9)
shows that

S Ziay + Zisy, + Zi-ay-1) ~ 3.3Z; = 3D.

Let a and b be distinct closed points of A. By (a), for some i, say i = 1, Z; does
not contain b — a. Choose a; = a. Then Z, , passes through a but not b. The
sets

{b,1Z, 5, passes through b},
{by|Z,,_,, -», passes through b},



114 J. S. MILNE

are proper closed subsets of A. Therefore, it is possible to choose a b, that
lies in neither. Similarly a; and b; for i > 2 can be chosen so that none of
the Z; ., Z;,, or Z; _, _y, passes through b. Then a is in the support of
Z(Z,-,,,i + Z;y, + Z;, _,,—p,) but b is not, which shows that |3D| separates
points. The proof that it separates tangents is similar.

The final step is to show that if Ag is projective, then so also is 4,. Let D
be an ample divisor on Ag; then D is defined over a finite extension of k, and
the following statements explain how to construct from D an ample divisor

on A.

(a) Let D be a divisor on A; if |Dg| is very ample, then so also is |D|. (The
map Az c P" defined by |Dg| is obtained by base change from that
defined by |D|.)

(b) If|D,| and | D, | are ample, then so also is |D; + D,|. (See [10, II, Ex. 7.5].)

(c) If D is a divisor on A,., where k' is a finite Galois extension of k with
Galois group G, then ZaD, o0 €@, arises from a divisor on A. (This is
obvious.)

(d) If D is a divisor on A,., where k' is a finite purely inseparable extension of
k such that k'?™ < k, then p™D arises from a divisor on A. (Regard D as
the Cartier divisor defined by a family of pairs (f;, U;), f;e k’(A), and let
U, be the image of U/ in A4; then k'(4)"" < k(A), and so the pairs (f;*", U))
define a divisor on 4 whose inverse image on A,. is p™D.) O

Corollary 7.2. Every abelian variety has a symmetric ample invertible sheaf.

Proor. According to the theorem, it has an ample invertible sheaf &. As
multiplication by —1 is an isomorphism, (—1)*.% is ample, and therefore
&L ® (—1)*& is ample [10, II, Ex. 7.5] and symmetric. O

Remark 7.3. If % is an ample invertible sheaf on 4, then by definition &" is
very ample for some n. It is an important theorem that in fact £3 will be very
ample (see [16, §17, p. 163]). The three is needed, as in the above proof, so
that one can apply the theorem of the square.

§8. Isogenies

Let f: A —» B be a homomorphism of abelian varieties. The kernel N of f in
the sense of [22, §2] is a closed subgroup scheme of A4 of finite type over k.
When k has characteristic zero, N is reduced [22, §3], and so its identity
component N° is an abelian variety (possibly zero); in general, N will be an
extension of a finite group scheme by an abelian variety. If f is surjective and
has finite kernel then it is called an isogeny.

Proposition 8.1. For a homomorphism f: A — B of abelian varieties, the follow-
ing statements are equivalent:
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(a) fis an isogeny;

(b) dim A = dim B and f is surjective;

(c) dim A = dim B and Ker(f) is a finite group scheme;
(d) fis finite, flat, and surjective.

Proor. As f(A) is closed in B, the equivalence of the first three statements
follows from the theorem on the dimension of fibres of morphisms; see [14,
1.8].

Clearly (d) implies (a), and so assume (a). Because f is a homomorphism,
the translation map ¢, can be used to show that the (scheme-theoretic) fibre
f71(b) is isomorphic to f~'(0),s). Therefore f is quasi-finite. It is also pro-
jective ([ 10, IL, Ex. 4.9]), and this shows that it is finite ([10, ITI, Ex. 11.2]).
The sheaf f, 0, is a coherent Op-module, and dim,,(f, 0, ® k(b)) =
dim,(f,0, ® k(0)) is independent of b, and so (4.2d) shows that f, 0, is
locally free. O

The degree of an isogeny f: A — B is defined to be the order of the kernel
of f (as a finite group scheme); equivalently, it is the rank of f, @, as a locally
free Op-module. Clearly, deg(gof) = deg(g) deg(f). Let n = deg(f); then
Ker(f) < Ker(n,) and so n, factors as n, = go f with g an isogeny B — A.

For an integer n we write n, or simply n, for the morphism a na: 4 — A.

Theorem 8.2. Let A be an abelian variety of dimension g, and let n > 0 be an
integer. Then ny: A — A is an isogeny of degree n*¢; it is étale if and only if the
characteristic of k does not divide n.

Proor. From (7.2) we know there is an ample symmetric invertible sheaf &
on 4, and according to (6.6) n¥.# ~ #"*. The restriction of an ample inverti-
ble sheaf to a closed subscheme is again ample, and so the restriction of n}.%
to Ker(n,) is both trivial and ample. This is impossible unless Ker(n,) has
dimension zero. We have shown that n, is an isogeny.

In proving that n, has degree n?? we shall use some elementary intersec-
tion theory from [21, IV.1]. Clearly we may assume k is algebraically closed.

Let V be a smooth projective variety of dimension g. If Dy, ..., D, are
effective divisors on V such that () D; has dimension zero, then their inter-
section number is defined by the equations

(Dy,...,D,)=>.(Dy,..., D), (sum over ve () D;),

(Dlv e Dg)v = dimk(@l’,v/(fl,w e 9.}:;,1'))9

where f; , is a local equation for D; near v. The definition is extended by
linearity to noneffective divisors whose components intersect properly. Then
one checks that (D, , ..., D,) is unchanged if each D; is replaced by a linearly
equivalent divisor and shows that this can be used to extend the definition to
all g-tuples of divisors (loc. cit.). In particular (D?) = (D, D, ...) is defined.

Lemma 8.3. Let V and W be smooth projective varieties of dimension g, and let
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f: W — Vbe a finite flat map of degree d. Then for any divisors Dy, ..., D,on V
(f*Dy, ..., f*D,) =d(Dy, ..., D,).

Proor. It suffices to prove the equality in the case that the D; are effective and
(\ D; is finite. Let ve (") D;. Then (£, Ow) ®o, Oy,, = [ | sowy=0 Ow,w» Which is
therefore a free ¢, -module of rank d. If f; , is a local equation for D; near v,
then f; ,o f is a local equation for f*D, near each of the points in f~!(v).
Therefore

Y, (f*Dy,....f*D)= 3 dim(Oy,u/(f1,00f. -, fy00f))

Sf(w)y=v f(w)=v
= dlmk(( f(l_)L (QW,W) ®0y'v (@V,v/(fl,w ey fg,v)))
=d(D,, ..., D,),. 0

We apply this theory to a divisor D on A such that D is linearly equivalent
to (—1)*D (i.e., such that #(D) is symmetric). Let d = deg(n,). Then (8.3)
shows that ((nfD)?) = d(D?), but (6.6) shows that n¥ D is linearly equivalent
to n?D and therefore that ((n}D))? = ((n>D)’) = n?%(D?). These equalities im-
ply d = n?? provided we can find a D for which (D¢) # 0. Choose D to be very
ample (see (7.2)), and let 4 < P¥ be the embedding defined by |D|. Then for
any hyperplane sections H,, ..., H, of A in P¥, (D?) = (Hy, ..., H,), and this
is obviously positive.

It remains to prove the second assertion of the theorem. For a homo-
morphism f: 4 — B, let (df)y: Ty(4) = Ty(B) be the map on tangent spaces
defined by f. It is neither surprising nor difficult to show that d(f + g), =
(df)o + (dg)o (ct. [16, §4, p. 42]). Therefore (dn,), is multiplication by n on the
k-vector-space Ty(4), and so (dn,), is an isomorphism (and n, is étale at zero)
if and only if the characteristic of k does not divide n. By using the translation
maps, one shows that a homomorphism is étale at zero if and only if it is étale
at all points. O

Remark 8.4. If k is separably algebraically closed and # is not divisible by its
characteristic, then the theorem says that the kernel A,(k) of n: A(k) - A(k)
has n?? elements. As this is also true for all n’ dividing n, it follows that A4, (k)
is a free Z/nZ-module of rank 2g. Therefore for all primes ! # char(k), T,4 =
lir_n Apn(k) is a free Z,-module of rank 2g. Note that an element a = (a,) of T;A4
is a sequence a,, a,, as, ... of elements of A(k) such that la, = 0 and la, =
a,_, for all n.

When k is not separably algebraically closed then we define T,4 = T 4, .
In this case there is a continuous action of Gal(k,/k) on T, A.

Remark 8.5. Assume that k is algebraically closed of characteristic p # 0.
Then 4, £ Ker(p,) is a finite group scheme of order p?¢ killed by p. Therefore
(see [22]) A, = (Z/pZ)" x p, x ay, for some r, s, t such that r + s + ¢t = 2g. It
is known that r = s and r < ¢ (the inequality is a consequence of the fact that
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(dp4)o = 0). All values of r, s, and t are possible subject to these constraints.
The case r = g is the “general” case. For example when g = 1, then r = 0 only
for supersingular elliptic curves and there are only finitely many of these over
a given k [16, §22, p. 216].

§9. The Dual Abelian Variety: Definition

Let % be an invertible sheaf on A. Recall (6.8) that the map
0y A(k) - Pic(4), a—t*¥ ® £7!
is a homomorphism. Define
K4 = {ae A|the restriction of m*¥ ® g* %' to {a} x A is trivial}.

According to (5.3), K & is a closed subset of 4, and we regard it as a reduced
subscheme of 4. For a in A(k), the maps

A={a} xAc:.AxA;:,’nA
P
send P —m— (a,P)Ha + ,
— P
and so m* % ® q* L |11 x4 can be identified with t* % ® £~ on 4. Thus
{a} x4
Kyk) = {ac AK)|t} &L ~ £}.

Note that (6.2) implies that the definition of K ¢ commutes with a change of
the base field.

Proposition 9.1. Let & be an invertible sheaf such that H*(A, £) # 0. Then &
is ample if and only if K & has dimension zero, i.e., if and only if tf £ ~ & on
Ay for only a finite set of ae A(k).

Proor. Let s be a nonzero global section of %, and let D be its divisor of
zeros. Then D is effective and ¥ = #(D), and so the result [16, §6, p. 60]
applies. O

We shall be more concerned in this section with the % of opposite type.

Proposition 9.2. For # an invertible sheaf on A, the following conditions are
equivalent:

(@) Kg=4; B
(b) t} % ~ & on Ag for all ae A(k),
) m* ¥ ~p*¥ ® q*&.

Proor. The equivalence of (a) and (b) follows from the remarks in
the first paragraph of this section. Clearly (c) implies that for all ae 4,
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m*¥ ® 4*3—1|{a}x,4 ~ p*Z|(ayxa> Which is trivial. Thus (c) implies (a),
and the converse follows easily from the seesaw principle (5.2) because
m*,?@q*z"ll{,,}m and p*#| .4 are both trivial for all ae4 and
m*% @ q* L yuioy = L = p*Llax(o} O

Define Pic®(A4) to be the group of isomorphism classes of invertible
sheaves on A satisfying the conditions of (9.2). Note that if f and g are maps
from some k-scheme S into 4 and £ € Pic®(4), then

(f+9*ZL ~(Lgrm* LR (f.9*(p* L @ ¢* D)~ [*L ® g* &.
From this it follows that n* ¥ ~ #" all ne Z, & € Pic®(A).

Remark 9.3. An invertible sheaf % lies in Pic® 4 if and only if it occurs in an
algebraic family containing a trivial sheaf, i.e., there exists a connected variety
T and an invertible sheal .# on A x T such that, for some t,, t; € T(k), 4,,
is trivial and .4, ~ %. The sufficiency of the condition can be proved directly
using the theorem of the cube [16, §8, (vi)]; the necessity follows from the
existence of the dual abelian variety (see below).

Roughly speaking, the dual (or Picard) variety A of A is an abelian
variety over k such that 4V(k) = Pic®(Az); moreover, there is to be an inver-
tible sheaf (the Poincaré sheaf) 2 on 4 x A such that for all ae A¥(k), the
inverse image of # on A x {a} = Ay represents a as an element of Pic®(4z).
One usually normalizes 2 so that 2|, 4 is trivial.

The precise definition is as follows: an abelian variety 4 is the dual
abelian variety of 4 and an invertible sheaf 22 on A4 x A" is the Poincaré
sheaf if:

(@) Plio)xav is trivial and 2|, lies in Pic®(A;,) for allae AY; and

(b) for every k-scheme T and invertible sheaf ¥ on A4 x T such that
L0y« I8 trivial and & 4,y lies in Pic®(A,,) for € T, there is a unique
morphism f: T— AY such that (1 x f)*? ~ £.

Remark 9.4. (a) Clearly the pair (4%, 2) is uniquely determined up to a
unique isomorphism by these conditions.

(b) On applying condition (b) with T = spec K, K a field, one finds that
AY(K) = Pic°(Ag). In particular AY(k) = Pic®(4z), and every element of
Pic®(4;) is represented exactly once in the family (Z,),c 4v%- The map
f:T—> A" in condition (b) sends te T(k) to the unique ae A¥(k) such that
b= P,

(c) By using the description of tangent vectors in terms of maps from the
dual numbers to AY [10, II, Ex. 2.8], one can show easily that there is a
canonical isomorphism Ty(A4Y) 3 H'(4, 0,); in particular, dim 4Y = dim A.
In the case that k = C, there is an isomorphism H'(4, 0,) 3 H'(A™, 0,..)
(cohomology relative to the complex topology), and one shows that exp:
Ty(A") - A(C) induces an isomorphism H' (A", 0,..)/H (A", Z) 5 A(C).
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One expects of course that AV = 4. Mumford [16] gives an elegant
proof of this.

Proposition 9.5. Let & be an invertible sheaf on the product A x B of two
abelian varieties of the same dimension, and assume that the restrictions of 2 to
A x {0} and {0} x B are both trivial. Then B is the dual of A and 2 is the
Poincaré sheaf if and only if y(A x B, #) = +1.

Proor. [16, §13, p. 131]. O

Note that the second condition is symmetric between 4 and B; therefore if
(B, 2)is the dual of A4, then (A4, s*2) is the dual of A, wheres: B x A — A x B
is the morphism switching the factors.

§10. The Dual Abelian Variety: Construction
We can include only a brief sketch—for the details, see [16, §8, §§10-12].

Proposition 10.1. Let ¥ be an invertible sheaf on A; then the image of
@4 A(k) = Pic(A) is contained in Pic®(A), if & is ample and k is algebra-
ically closed, then ¢4 maps onto Pic®(A).

Proor. Let be A(k); in order to show that ¢g(b) is in Pic®(A), we have to
check that t¥(¢ (b)) = @«(b) for all ae A(k). But

tHoe®) =33 L @ L) =t & Q@ (L),
which the theorem of the square (6.7) shows to be isomorphic to
L QL' = @gb)

This shows that ¢ maps into Pic®(4), and for the proof that it maps onto,
we refer the reader to [16, §8, p. 77]. O

Let % be an invertible sheaf on A, and consider
Fr=m*¥ Qp*L ' ®q*¥!

on A x A. Then L*|oxa=Z ® £~ which is trivial, and for a in
Alk), ¥ gxy =t L ® £7! = py(a), which, as we have just seen, lies in
Pic®(A4z). Therefore, if & is ample, then £* defines a family of sheaves on 4
parametrized by A such that each element of Pic®(A4;) is represented by £
for a (nonzero) finite number of a in A(k). Consequently, if (4", 2) exists, then
there is a unique isogeny ¢: A — A such that (1 x @)*2 = £*. Moreover
@ = @, and the fibres of A(k) > AY(k) are the equivalence classes for the
relation “a ~ a’ if and only if &, = &,”.

In characteristic zero, we even know what the kernel of ¢ as a finite
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subgroup scheme of 4 must be because it is determined by its underlying set:
it equals K o with its unique reduced subscheme structure. Therefore, in this
case we define A to be the quotient A/K & (see [16, §7, p. 66 or §12, p. 111]
for the construction of quotients). The action of K on the second factor of
A x A lifts to an action on £* over A X A, and on forming the quotient we
obtain a sheaf 2 on A x A" such that (1 x @g)*? = ¥*

Assume further that k is algebraically closed. It easy to check that the
pair (4, 2) just constructed has the correct universal property for families
of sheaves .# parametrized by normal k-schemes. Let .# on Ax T
be such a family, and let & be the invertible sheaf q¥ .# ® q* 2! on
Ax T x AY, where g;; is the projection onto the (i, j)th factor. Then
Flaxan ~ M, @ P;", and so if we let I' denote the closed subset of
T x AY of points (t, b) such % |, is trivial, then I'(k) is the graph of a
map T(k) > A¥(k) sending a point ¢ to the unique point b such that
P, ~ %. Regard I' as a closed reduced subscheme of T x A". Then the
projection I' —» T has separable degree 1 because it induces a bijection on
points (see [21, II, 5]). As k has characteristic zero, it must in fact have
degree 1, and now the original form of Zariski’s Main Theorem [14, IIL.9,
p. 413] shows that I' - T is an isomorphism. The morphism f: T~ T LA
has the property that (1 x f)*# = ., as required.

When k has nonzero characteristic, then 4" is still the quotient of 4 by a
subgroup Ay having support K &, but % need not be reduced. Instead one
defines £, to be the maximal subscheme of A such that the restriction of
m*¥ ® q* %! to Ay x A defines a trivial family on A4 (see 5.5), and takes
AY = A/Ay. The proof that this has the correct universal property is similar
to the above, but involves much more.

§11. The Dual Exact Sequence

Let f: A - B be a homomorphism of abelian varieties, and let 2, be the
Poincaré sheaf on B x B". The invertible sheaf (f x 1)*%; on 4 x B gives
rise to a homomorphism fV: BY — A" such that (1 x fY)*2, =~ (f x 1)*2,.
On points f is simply the map Pic®(B) — Pic®(4) sending the isomorphism
class of an invertible sheaf on B to it inverse image on A.

Theorem 11.1. If f: A — B is an isogeny with kernel N, then f¥: BY — AV is an
isogeny with kernel NV, the Cartier dual of N. In other words, the exact
sequence

0-N—->A4A->B->0
gives rise to a dual exact sequence

0->NY—>BY—> AY 0.

Proor. See [16, §15, p. 143]. O
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There is another approach to this theorem which offers a different insight.
Let % be an invertible sheaf on 4 whose class is in Pic®(4), and let L be the
line bundle associated with #. The isomorphism p*¥ ® ¢*¥ - m*¥ of
(9.2) gives rise to a map m;: L x L — Llying over m: A x A — A. The absence
of nonconstant regular functions on A forces numerous compatibility prop-
erties of m;, which are summarized by the following statement.

Proposition 11.2. Let G(£) denote Lwith the zero section removed; then, for
some k-rational point e of G(Z), m;, defines on G(&) the structure of a commu-
tative group variety with identity element e relative to which G(%) is an exten-
sion of A by G,,,.

Thus £ gives rise to an exact sequence
E(#):0->G,—>G(¥)—»A4-0.

The commutative group varieties over k form an abelian category, and so
it is possible to define Ext} (4, G,,) to be the group of classes of extensions of
A by G, in this category. We have:

Proposition 11.3. The map & +— E(%) defines an isomorphism
Pic®(A4) — Ext} (4, G,,).
Proofs of these results can be found in [20, VII, §3]. They show that the

sequence
0 — NY(k) - B¥(k) > A¥(k)

can be identified with the sequence of Exts
0 - Hom,(N, G,,) - Exti(B, G,;,) > Ext} (4, G,,).

(The reason for the zero at the left of the second sequence is that
Hom,(4, G,,) =0.)

The isomorphism in (11.3) extends to any base [17, II1.18]. This means
that if we let &z¢" denote Ext in the category of sheaves on the flat site
over spec(k) (see [13, IIL.1.5(e)]), then AY can be identified with the sheaf
éz¢1(A, G,,), and the exact sequence

0->NY->B" > A4V >0
can be identified with
0 - #om(N, G,) = Ez¢1(B, G,,) = &z£1(A, G,,) — 0.

§12. Endomorphisms

The main result in this section is that End®(A) £ End(4) ® Q is a finite-
dimensional semisimple algebra over Q. As in the classical case, the semi-
simplicity follows from the existence of approximate complements for abelian
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subvarieties. If W is a subspace of a vector space V, one way of constructing
a complement W’ for W is to choose a nondegenerate bilinear form on ¥ and
take W' = W+; equivalently, choose an isomorphism ¥V — V and take W' to
be the kernel of ¥ — V — W. The same method works for abelian varieties.

Proposition 12.1. Let B be an abelian subvariety of A; then there is an
abelian variety B = A such that B n B’ is finite and B + B' = A, i.e., such that
B x B' — A is an isogeny.

Proor. Choose an ample sheaf ¥ on A and define B’ to be the reduced

subscheme of the zero component of the kernel of 4 &9 AY — BY; this is an
abelian variety. From the theorem on the dimension of fibres of morphisms,
dim B’ > dim 4 — dim B. The restriction of the morphism 4 — BY to B is
¢ 3: B— BY, which has finite kernel because #|B is ample. Therefore B B’
is finite, and so B x B’ — A is an isogeny. O

Define an abelian variety to be simple if it has no proper nonzero abelian
subvarieties. Then, as in the classical case, each abelian variety A is isogenous
to a product [ | A¥ of powers of nonisogenous simple abelian varieties A;; the
r; are uniquely determined and the A; are uniquely determined up to isogeny.
Each End®(4,) is a skew field, End®(4}) is equal to the matrix algebra
M, (End®(4;)), and End®(4) = [ | End®(47).

Lemma 12.2. For any prime | # char(k), the natural map
Hom(A4, B) » Homg (T} A, T;B)

is injective; in particular, Hom(A, B) is torsion free.

Proor. Let ¢: A— B be a homomorphism such that T;¢ =0; then
¢©(A,.(k)) = 0 for all n. For any simple abelian subvariety A’ of A4, this implies
that the kernel of ¢|A’ is not finite and therefore must equal the whole of A4'.
It follows that ¢ = 0. O

A function f: ¥V — K on a vector space V over a field K is said to
be a (homogeneous) polynomial function of degree d if for every finite linearly
independent set {e, ..., e,} of elements of V, f(x,e, + - + x,e,) is a (homo-
genous) polynomial function of degree d in the x; with coefficients in K.

Lemma 12.3. Assume K is infinite, and let f: V — K be a function such that
f(xv + w) is a polynomial in x with coefficients in K, for all v, w in V; then f is
a polynomial function.

Proor. We show by induction on n that, for every subset {v,, ..., v,, w} of V,
flx;v + -+ + x,v, + w) is a polynomial in the x;. For n = 1, this is true by
hypothesis; assume it for n — 1. The original hypothesis applied with v = v,
shows that

f(xlvl + -+ XnUp + W) = aO(x1>"‘ﬂxn—1) + o+ ad(x17 -~-axn—1)x:li
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for some d, with the a; functions k"~! — k. Choose distinct elements cq, ..., ¢4
of K; on solving the system of linear equations

f(xlvl + 0+ Xn—1Un-1 + cjvn + W) = zai(xl’ AR xn—l)cj7
j=0,1,....d,

for a;, we obtain an expression for g; as a linear combination of the terms
fxyv; + - + X,y 0,y + ¢;jv, + w), which the induction assumption says
are polynomials in X, ..., X,_;. O

Let A be an abelian variety of dimension g over k. For ¢ € End(A), we
define deg ¢ to be the degree of ¢ in the sense of Section 8 if ¢ is an isogeny
and otherwise we set deg ¢ = 0. As deg(ng) = deg n, deg ¢ = n?? deg ¢, we
can extend this notion to all of End®(4) by setting deg ¢ = n~29 deg(no) if
ne € End(A).

Proposition 12.4. The function ¢+ deg ¢: End°(4) - Q is a homogeneous
polynomial function of degree 2g on End®(A).

ProoF. As deg(ng) = n?? deg ¢, the lemma shows that it suffices to prove
that deg(ng + ) is a polynomial of degree < 2g in n for ne Z and fixed o,
Y eEnd(A). Let D be a very ample divisor on A4, and let D, = (np + y)*D.
Then (see (8.3)), deg(ng + Y)(D?) = (D?), where g = dim A, and so it suffices
to prove that (D?) is a polynomial of degree < 2g in n. Corollary (6.5) applied
to the maps nep + , @, : A > A and the sheaf ¥ = £(D) shows that

Dn+2 - 2l)n+1 - (2(»0)*D + Dn + Z(QD*D) ~ 07

ie., D,., —2D,,; + D,= D', where D’ =2(¢*D)— (2¢)*D.
An induction argument now shows that
p,="" =Y b, — -1,
and so
o = (" w4 -
is a polynomial in n of degree < 2g. O

Theorem 12.5. For any abelian varieties A and B, Hom(A, B) is a free
Z-module of finite rank < 4 dim A dim B; for each prime | # char(k), the
natural map

Hom(A4, B) ® Z, - Hom(T, A, T;B)
is injective with torsion-free cokernel.

Proor. Clearly it suffices to prove the second statement.
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Lemma 12.6. Let o € Hom(A, B); if ¢ is divisible by " in Hom(T, A, T,B), then
it is divisible by 1" in Hom(A, B).

Proor. The hypothesis implies that ¢ is zero on A,.(k). As A, is an étale
subgroup scheme of A, this means that ¢ is zero on A4,. and therefore factors
as @ = @'ol™

05 A.>AB 450

\e Lo
B O

Lemma 12.7. If A is simple, then End(4) ® Z, — End(T,A) is injective.

Proor. We have to show that if ey, ..., e, are linearly independent over Z in
End(A), then Te,), ..., Ti(e,) are linearly independent over Z, in End(T,A).
Let P be the polynomial function on End®(A) such that P(¢) = deg(¢) for all
¢. Note that every nonzero element ¢ of End(A) is an isogeny, and therefore
P(p) is a positive integer. Let M be the Z-submodule of End®(A4) generated
by the e;. The map P: QM — Q is continuous for the real topology, and so
U = {v|P(v) < 1} is an open neighborhood of 0. As (QM N End 4)n U =0,
we see that QM n End(A) is discrete in @M, and therefore is a finitely
generated Z-module. It follows that:

(%) there exists an integer N such that N(QM n End 4) = M.

Suppose that T(e,), ..., Ti(e,) are linearly dependent, so that there exist
a;€ Z;, not all divisible by I, such that " g;T;(e;) = 0. Choose integers n; close
to the g, for the l-adic topology. Then T,(}_ n;e;) = Y n;Tj(e;) is divisible by a
high power of [ in End(T;A4), and so Y n;e; is divisible by a high power of / in
End(A). This contradicts () when the power is sufficiently great, because
then, for some m, (N/I™)Y n;e; will lie in N(QM ~ End A) but not M. O

We are now ready to prove (12.5). Because Hom(4, B) and Hom(T; 4, T;B)
are direct summands of End(4 x B) and End(T,(4 x B)), it suffices to prove
(12.5) in the case that 4 = B. Lemma 12.7 shows that End®(4) is finite
dimensional over Q if 4 is simple, and this implies that it is finite dimensional
for all A. It follows that End(A) is finitely generated over Z because it is
obviously torsion-free. Clearly now condition (*) holds, and so the same
argument as above shows that End(4) ® Z, » End(T,4) is injective. Lemma
12.6 shows that its cokernel is torsion-free. O

Define the Néron—Severi group NS(A) of an abelian variety to be
the quotient group Pic(A4)/Pic®(4). Clearly £+ @, defines an injection
NS(4) o Hom(A, AY), and so (12.5) has the following consequence.

Corollary 12.8. The Néron—Severi group of an abelian variety is a free
Z-module of finite rank.
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Proposition 12.4 shows that, for each o in End®(A), there is a polynomial
P,(X)e Q[X] of degree 2g such that, for all rational numbers r, P,(r) =
deg(a — r,). Let e End(A), and let D be an ample symmetric divisor on A;
then the calculation in the proof of (12.4) shows that

P,(—n) = deg(x + n) = (D)/(D?),
where D, = (n(n — 1)/2)D’ + n(x + 1,)*D — (n — 1)a*D, with
D' = 2D — 25D ~ 2D.

In particular, we see that P, is monic and that it has integer coefficients when
o€ End(A4). We call P, the characteristic polynomial of o and we define the
trace of o by the equation

P(X)= X% — Tr() X' + -+ + deg(a).

Proposition 12.9. For all | # char(k), P,(X) is the characteristic polynomial of
o acting on T,A ® Q,; hence the trace and degree of o are the trace and
determinant of o acting on /A ® Q,.

Proor. We need two elementary lemmas.

Lemma 12.10. Let P(X) = [ [(X — a;) and Q(X) = [[(X — b;) be monic poly-
nomials of the same degree with coefficients in Q; if || F(a)l, = |[ [ F(b)I, for
all FeZ[T], then P = Q.

Proor. See [12, VII, 1, Lemma 1]. O

Lemma 12.11. Let E be an algebra over a field K, and let 6: E - K be a
polynomial function on E (regarded as a vector space over K) such that 5(af) =
5()8(B) for all o, BeE. Let aeE, and let P = [[(X — a;) be the polynomial
such that P(x) = (e — x). Then 6(F(a)) = +] ] F(a;) for any FeK[T].

Proor. After extending K, we may assume that the roots b, b,, ... of F and
of P lie in K; then

S(F (@) = 6(11 = b,«)) = 16— ) = [1P®) =1 — @)
= il_[ F(a;). Od

We now prove (12.9). Clearly we may assume k = k. For any € End(4)
|deg(B)l; = | #(Ker(B))l, = #(Ker(B)(D)™
= #(Coker(T;8))"! = [det(T,B)l;.

Consider «e End(A4), and let a,, a,,...be the roots of P,. Then for any ‘
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polynomial Fe Z[T1].

ITTF (@), = |deg F(o)], by (12.11)
= [det Ty(F (),
= [[TF®), by (12.11)
where the b; are the eigenvalues of T;8. By Lemma 12.10, this proves the
proposition. O

Let D be a simple algebra of finite degree over @, and let K be the centre
of D. The reduced trace and reduced norm of D over K satisfy

Trp k() = [D : K] Trdpk(a), Np, k(@) = Nrdp g ()P, aeD.

We shall always set Trd = TrggoTrdpx and Nrd = Ny goNrdp . Let
Vi,.... V;, f = [K:Q], be the nonisomorphic representations of D over Q;
each has degree d where d> = [D: K]. The representation V = PV, is de-
fined over Q and is called the reduced representation of D. For any « in D,
Trd(x) = Tr(x|V) and Nrd(a) = Det(a| V).

Proposition 12.12. Let D be a simple subalgebra of End®(A) (this means D and
End®(A) have the same identity element), and let d, f, K, and V be as above.
Then 2g/fd is an integer, and Q, ® T,A is a direct sum of 2g/fd copies of
Q, ®q V; consequently Tr(x) = (2g/fd) Trd(«) and deg(a) = Nrd(«)?9/? for all
oin D.

Proor. Assume @; ® T,V becomes isomorphic to (Pm;V; over Q, m; >0,
and let o; be the embedding of K into @ corresponding to V;. Then, for any
a in K, the characteristic polynomial of « on V; is (X — ¢;2), and so P,(X) =
[T(X — g;0)™™. As P,(X) has coefficients in @, it follows easily that the m;
must be equal. O

Remark 12.13. The group NS(A) is a functor of 4. Direct calculations show
that £, acts as the identity on NS(A) for all a in A(k) (because ¢, ¢ = @) and
n acts as n? (because — 1 acts as 1, and so n*%£ = #"* in NS(A) by (6.6)).

§13. Polarizations and the Cohomology of
Invertible Sheaves

For many purposes the correct higher dimensional analogue of an elliptic
curve is not an abelian variety but a polarized abelian variety.

A polarization A on an abelian variety A is an isogeny A: 4 - A" such that
Az = @4 for some ample invertible sheaf % on Az. The degree of a polariza-
tion is its degree as an isogeny. An abelian variety together with a polariza-
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tion is called a polarized abelian variety; there is an obvious notion of a
morphism of polarized abelian varieties. If A has degree 1, then (4, 1) is said
to belong to the principal family and A is said to be a principal polarization.

Example 13.1. If 4 has dimension 1, then NS(A4) = Z. For each integer d,
there is a unique polarization of degree d?; it is ¢ where ¥ = £ (D) for D
any effective divisor of degree d.

Remark 13.2. If 4 is a polarization, there need not exist an % on A4 such
that A = ¢4. Suppose, for example, that k is perfect and G = Gal(k/k). By
assumption, there is an % on Ay such that g, = A;. As Ay is fixed by the
action of G on Hom(Az, A3), the class [#] of £ in NS(A4y) will also be fixed
by G. Unfortunately this does not imply that [.#] lifts to an element of
Pic(A): there is a sequence of Galois cohomology groups

0 — A¥(k) - Pic(4) — NS(4;)¢ - H(G, 4¥(k))

and the obstruction in H!(G, A"(k)) may be nonzero. However, if k is finite,
an easy lemma [16, §21, p. 205] shows that H!(G, 4¥(k)) = O and therefore
A = @y for some &£ in Pic(A).

There is an important formula for the degree of a polarization, which it is
convenient to state as part of a more general theorem.
Theorem 13.3. Let £ be an invertible sheaf on A, and write
w(&) =Y (- 1) dim, H(4, £).

(@) The degree of @y is y(£)*.

(b) (Riemann—Roch). If & = L(D), then y(&£) = (D%)/g!.

(c) If dim K4 = 0, then there is exactly one integer r for which H'(A, &) is
nonzero.

Proor. Combine [16, §16, p. 150] with (4.2a). d
Exercise 13.4. Verify (13.3) for elliptic curves using only the results in [10, IV].

Remark 13.5. The definition of polarization we have adopted is the one that
is most useful for moduli questions. It differs from Weil’s original notion (see

[12, p. 193], [19, §51).

§14. A Finiteness Theorem

Theorem 14.1. Let k be a finite field, and let g and d be positive integers. Up to
isomorphism, there are only finitely many abelian varieties A over k of dimen-
sion g possessing a polarization of degree d*.
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Proor. First assume dim A = 1. Then 4 automatically has a polarization of
degree 1, defined by ¥ = £(P) for any Pe A(k). The linear system |3P|
defines an embedding 4 < P2, and the image is a cubic curve in P2 The
cubic curve is determined by a polynomial of degree 3 in three variables. As
there are only finitely many such polynomials with coefficients in k, we have
shown that there are only finitely many isomorphism classes of A4’s.

The proof in the general case is essentially the same. By (13.2) we know
there exists an ample invertible sheaf % on A such that ¢ is a polarization
of degree d2. Let & = #(D); then, by (13.3), (&) = d and (D?) = y(&L)g! =
d(g!). As &3 = 2(3D), (&3 =((3D)y)/g! = 3?d. Moreover £3 is very
ample (see (7.3)); in particular H°(4, #3) # 0, and so (13.3c) shows that
dim H%(A, £3) = x(£3) = 3%d. The linear system |3D| therefore gives an
embedding 4 < P31,

Recall [21, 1.6] that if V is a smooth variety of dimension g in P¥, then the
degree of V is (Dy, ..., D) where Dy, ..., D, are hyperplane sections of V.
Moreover, there is a polynomial, called the Cayley or Chow form of V,

0 0. .
F @, ...,a;...;a¥, ..., ad¥)

associated with V, which is a polynomial separately homogeneous of degree
deg V in each of g + 1 sets of N + 1 variables. If we regard each set of
variables af, ..., al? as defining a hyperplane,

H?: g Xy + -+ + af Xy =0,
then F, is defined by the condition:
F,(H®,...., H"M =0 & AnH® N+~ H? is nonempty.

A theorem states that F), uniquely determines V.

Returning to the proof of (14.1), we see that the degree of A4 in is
((3D)?) = 39d(g!). It is therefore determined by a polynomial F, of degree
3%d(g!) in each of g + 1 sets of 37d variables with coefficients in k. There are
only finitely many such polynomials.

[p39d—1

Remark 14.2. Of course, Theorem 14.1 is trivial if one assumes the existence
of moduli varieties. However, everything used in the above proof (and much
more) is required for the construction of moduli varieties.

Remark 14.3. The assumption that A has a polarization of a given degree
plays a crucial role in the above proof. Nevertheless, we shall see in (18.9)
below that it can be removed from the statement of the theorem.

§15. The Etale Cohomology of an Abelian Variety

The usual cohomology groups H'(A(C), Z) of an abelian variety are described
by the statements:
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(a) A representation of A(C) as a quotient A(C) = CY/L determines an iso-
morphism H'(A(C), Z) 3 Hom(L, Z).
(b) The cup-product pairings define isomorphisms

A"H'(A(C), Z) 35 H'(A(C), Z) forallr.

To prove (a), note that C? is the universal covering space of A(C), and that L
is its group of covering transformations. Therefore, n,(A(C), 0) = L, and for
any pointed manifold (M, m), H'(M, Z) = Hom(rn,(M, m), Z). Statement (b)
can be proved by observing that A(C) is homeomorphic to a product of 2g
circles and using the Kiinneth formula (see [16, §1, p. 3]), or by using the
same argument as that given below for the étale topology.

Theorem 15.1. Let A be an abelian variety of dimension g over an algebraically
closed field k, and let | be a prime different from char(k).

(a) There is a canonical isomorphism H'(A,,, Z;) > Homy (T, A, Z,).
(b) The cup-product pairings define isomorphisms

A'HY(A,,Z)3 H (A, Z) forallr.
In particular, H'(A,,, Z,) is a free Z -module of rank (*9).

ProoF. If n¢(A4, 0) now denotes the étale fundamental group, then H'(4, Z,) =
Hom,,,(7$'(4, 0), Z,). For each n, I}: A— A is a finite étale covering of
A with group of covering transformations Ker(l}) = A,.(k). By definition
n{'(4, 0) classifies such coverings, and therefore there is a canonical epi-
morphism 7§'(A4, 0) & A,.(k) (see [13, 1.5]). On passing to the inverse limit,
we get an epimorphism 75'(4, 0) - T;A, and consequently an injection
Homg (T)A, Z)) < H'(A, Z,)).

To proceed further we need to work with other coefficient groups. Let R
be Z,, |, or @, and write H*(A) for @P),»o H (4., R). The cup-product
pairing makes this into a graded, associative, anticommutative algebra. There
is a canonical map H*(A) ® H*(A) » H*(A x A), which the Kiinneth formula
shows to be an isomorphism when R is a field. In this case, the addition map
m: A x A — A defines a map

m*: H*(A) » H*(A x A) = H*(A) @ H*(A).

Moreover, the map ar(a, 0): A > A x A identifies H*(A) with the direct
sumrand H*(4) ® H°(A) of H*(A) ® H*(A). As mo(a+(a, 0)) = id, the
projection of H*(4) ® H*(A) onto H*(A) ® H°(A) sends m*(x) to x ® 1. As
the same remark applies to a+ (0, a), this shows that

mx)=x®1+1Q@x+>x &y, deg(x;), deg(y;) > 0.
Lemma 15.2. Let H* be a graded, associative, anticommutative algebra over a

perfect field K. Assume that there is map m*: H* - H* ® H¥* satisfying the
above identity. If H® = K and H" = 0 for all r greater than some integer d, then
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dim(H') < d, and when equality holds, H* is isomorphic to the exterior algebra
on H'.

Proor. A fundamental structure theorem for Hopf algebras [ 3, Theorem 6.1]
shows that H* is equal to the associative algebra generated by certain ele-
ments x; subject only to the relations imposed by the anticommutativity of
H* and the nilpotence of each x;. The product of the x; has degree ) deg(x;),
from which it follows that ) deg(x;) < d. In particular, the number of x; of
degree 1 is < d; as this number is equal to the dimension of H?, this shows
that its dimension is < d. When equality holds, all the x; must have degree 1;
moreover their squares must all be zero because otherwise there would be a
nonzero element x, x,...x2...x, of degree d + 1. Hence H* is identified with
the exterior algebra on H*. O

When R is Q, or F, the conditions of the lemma are fulfilled with d = 2g
[13, VI, 1.1]. Therefore H'(A, @,) has dimension < 2g. But H'(4, Q) =
H'(A,Z,) ® Q,, and so the earlier calculation shows that H!(4, Q,) has
dimension 2g. The lemma now shows that H"(4, @,) = A"(H!(A4, @,)), and, in
particular, that its dimension is (2¢). This implies that H"(A4, Z,) has rank (39).
The exact sequence [13, V, 1.11]

> H'(A,Z) > H'(A, Z) > H'(A, F) > HY (A, Z) > H*Y (4, Z) —

now shows that dim(H'(4, ) > 2g, and so the lemma implies that this
dimension equals 2g and that dim(H"(4, F)) = (?9). On looking at the exact
sequence again, we see that H"(A4, Z,) must be torsion-free for all r. Con-
sequently, A"H*(A, Z,) — H'(A, Z,) is injective because it becomes so when
tensored with @,, and it is surjective because it becomes so when tensored
with [,. This completes the proof.

Remark 15.3. In the course of the above proof, we have shown that the
maximal abelian [-quotient of n§'(4, 0) is isomorphic to T;A. In fact, it is
known that n§'(4, 0) = TA, where TA = lim A, (k). In order to prove this
one has to show that the all finite étale coverings of A are isogenies. This is
accomplished by the following theorem ([ 14, §18, p. 167]): Let A be an abelian
variety over an algebraically closed field, and let f: B— A be a finite étale
covering with B connected; then it is possible to define on B the structure of an
abelian variety relative to which f is an isogeny.

Remark 15.4. We have shown that the following three algebras are isomorphic:

(i) H*(A, Z,) with its cup-product structure;
(i) A*H'(A, Z,) with its wedge-product structure;
(iii) the dual of A*T; 4 with its wedge-product structure.
If we denote the pairing
TA x H'(4,2)~ 2,
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by <+|*), then the pairing
NTA x H(A, Z)) > Z,
is determined by

(ay A Aa,byu--Ub) = det({a;lb;)).
See [5, §8].

Remark 15.5. Theorem 15.1 is still true if k is only separably closed (see [13,
I1, 3.17]). If A is defined over a field k, then the isomorphism

A*Hom(T;, Z,) » H¥(A, . Z,)

is compatible with the natural actions of Gal(k,/k).

§16. Pairings

As we discussed in Section 11, if M and N denote the kernels of an isogeny f
and its dual fV, then there is a canonical pairing M x N — G,, which iden-
tifies each group scheme with the Cartier dual of the other. In the case that f
is multiplication by m, m,: 4 > A, then f is my,.: AY —> A", and so the
general theory gives a pairing e,,: 4,, x A,, > G,,. If we assume further that
m is not divisible by the characteristic of k, then this can be identified with a
nondegenerate pairing of Gal(k/k)-modules

e A, (k) x A%(k)—k*.
This pairing has a very explicit description. Let a€ A,,(k) and let a’ € A(k) <
Pic®(Ag). If @' is represented by the divisor D on Ag, then m;'D is linearly
equivalent to mD (see the paragraph following (9.2)), which is linearly equi-

valent to zero. Therefore there are functions f and g on A3 such that mD = (f)
and m;'D = (g). Since the divisor

(fomy) = mg*((f)) = my* (mD) = m(my'D) = (g™),
we see that g™/f om, is a constant function ¢ on Az. In particular,
g(x + a)" = cf(mx + ma) = cf(mx) = g(x)™.

Therefore g/got, is a function on Az whose mth power is one. This means
that it is an mth root of 1 in k(A4) and can be identified with an element of k.
It is shown in [ 16, §20, p. 184] that €,,(a, a’) = g/got,.

Lemma 16.1. Let m and n be integers not divisible by the characteristic of k.
Then for all a€ A,,,(k) and a’ € A,,,(k),

e.n(a, a)' = e,(na, na).
Proor. Let D represent a’, and let (mn)*(D) = (g) and m;*(nD) = (¢'). Then
(9'onq) = ng'((¢") = ng* (my' (nD) = n(mn)* (D) = (¢"),
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and so g" = ¢(g’ on,) for some constant function c. Therefore

(9(x)/g(x + a))" = ¢'(nx)/g'(nx + na),

and this equals e,,(na, na’) for all x. d

Regard e, as taking values in u,, = {CGEM"" =1}, and let Z,(1) = 1121 Uy
for I a prime not equal to the characteristic of k. (Warning: We sometimes
write Z,(1) additively and sometimes multiplicatively.) The lemma allows us
to define a pairing e¢;: ;4 x T;AY — Z,(1) by the rule

el(ay), (a,)) = (er(ay, a,)).
For a homomorphism 4: 4 - AV, we define pairings
e A, x Ay W (a,d)— e,(a, Ad),
et: TTA x T)A - Z,(1), (a, a')—ela, Aa').

If 1 = @y, & € Pic(A4), then we write 27 and e;Z for e} and e}.

Lemma 16.2. There are the following formulas: for a homomorphism f: A — B,
(@) en(a, fY(b) =&,(f(a).b), a€A,, beB,;
(b) efa, [7(b)) = e(f(a),b), aeT A beTB;
(c) e/ °**f(a, a) = e}(f(a), f(@)), a,aeT,A, Ac Hom(B, BY);
(d) e,f*"y(a, a) = eZ(f(a), f(@)), a,a' € T)A, & € Pic(B).
Moreover,
() L+ e is a homomorphism Pic(4) » Hom(A2T, A4, Z,(1)).

Proor. Let a and b be as in (a); let the divisor D on B represent b, and let
mg'D = (g). Then e,,(f(a), b) = g(x)/g(x + f(a)) for all x. On the other hand,
f7ID represents fY(b) on A, and m'f'D = f'mzg'D = (gof), and so
e.(a, f¥(b)) = g(f(x))/g(f(x) + f(a)). This proves (a), and (b) and (c) follow
immediately. Formula (d) follows from (c) because

Oprp(@) =5 f*L @ [*L7 = f¥h L @ [*L 7 = [Xog(fa)
= fYepgo fla),

which shows that @+ = ¥ o @go f. Finally, (e) follows from the fact that
Proe = Qe+ Qg

Example 16.3. Let A be an abelian variety over C. The exact sequence of
sheaves on A(C) (here @, denotes the sheaf of holomorphic functions on
AC))

0-2Z2-0, ﬂ@} -0
gives rise to an exact sequence

H'(A(C), Z) » H*(A(C), ©) > H'(A(C), 0*) - H*(A(C), Z) - H*(A(C), 0).
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As HY(A(C), 0*) = Pic(A) and H'(A(C), O)/H*(A(C), Z) = A¥(C) (see (9.4c)),
we can extract from this an exact sequence

0 — NS(A4) — H*(A(C), Z) » H*(A(C), 0,,).

Let 2e NS(4), and let E* be its image in H?(A(C), Z). Then (see Section 15)
E* can be regarded as a skew-symmetric form on H,(A(C), Z). It is a non-
degenerate Riemann form if and only if A is ample. As was explained above,
X induces a pairing e}, and it is shown in [16, §24, p. 237] that the diagram

E* H(A,Z) x H{(A,Z)> Z

l ! l
el TA x TA -7,

commutes with a minus sign if the maps H*(A(C), Z) —» T, A are taken to be
the obvious ones and Z — Z,(1) is taken to be m—{™, { = (..., e2™/", ...} in
other words, ef*(a, a') = {TF@ @,

In the remainder of this section, we shall show how étale cohomology can
be used to give short proofs (except for the characteristic k part) of some
important results concerning polarizations. Proofs not using étale cohomol-
ogy can be found in [16, §§20, 23].

The family of exact sequences of sheaves

O_’/"l"_’GmﬂGmﬁos

I # char(k), n > 1, plays the same role for the étale topology that the ex-
ponential sequence in (16.3) plays for the complex topology. As Pic(A4) =
H'(A, G,,) (étale cohomology), these sequences give rise to cohomology
sequences

0 — Pic(dg)/I" Pic(Az) > H*(Ag. up) > H*(Ag, G )i — 0.

Note that Pic®(A;) = AV(k) is divisible, and so Pic(4g)/I" Pic(4z) =
NS(A4z)/I" NS(Az). On passing to the inverse limit over these sequences, we
get an exact sequence

0 - NS(4p) ® Z, ~> H*(Ag, Z,(1)) > TH?(4z, G,) — 0,

where T,M for any group M is lim M,.. Note that ;M is always torsion-
free. As in the above example, an element 4 of NS(Ay) defines a skew-
symmetric pairing Ef: ;A x T,A — Z/(1), and one can show as in the previous
case that E} = —e} (in fact, this provides a convenient alternative definition
of e} in the case that A arises from an element of NS(45)).

We now assume that k is algebraically closed.

Theorem 16.4. Let f: A — B be an isogeny of degree prime to the characteristic
of k, and let A€ NS(A). Then A = f*(1') for some A’ € NS(B) if and only if, for
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all | dividing deg(f), there exists an e, in Hom(A*T; B, Z/(1)) such that e}(a, a’) =
e(f(a), f(a) all a,a’ e T A.

Proor. The necessity is obvious from (16.2¢c). For the converse, consider for
each [ # char(k) the commutative diagram

0 - NS(4) ® Z,~ H*(4, Z,(1)) > T(H*(4, G,,))

T T T
0-NS(B) ® Z,—» H*(B, Z,(1)) » T(H*(B, G,,)).

The right-hand vertical arrow is injective because there exists an isogeny
f': B— A such that fo f' is multiplication by deg(f) on B (see Section 8) and
T,(H*(B, G,,) is torsion-free. A diagram chase now shows that 1 is in the
image of NS(B) ® Z, - NS(4) ® Z, for all | dividing deg(f), and the existence
of f" shows that it is in the image for all remaining primes. This implies that
it is in the image of NS(B) - NS(A) because NS(A) is a finitely generated
Z-module. O

Corollary 16.5. Assume | # char(k). An element A of NS(A) is divisible by I" if
and only if e} is divisible by I" in Hom(A2T, A, Z,(1)).

Proor. Apply the proposition to I5: A — A. O

Proposition 16.6. Assume char(k) # 2, . A homomorphism A: A — A" is of the
form @o for some £ € Pic(A) if and only if e is skew-symmetric.

Proor. If 4 is in the subgroup NS(A4) of Hom(A4, 4"), we already know that
el is skew-symmetric. Conversely, suppose e} is skew-symmetric, and let
& be the pull-back of the Poincaré sheaf 2 by (1,1): 4 - A x A". For all
a,a’ € TA,

ea, pza’) = e’ (a,a') = ¢ ((a, 2a), (@', Aa’))  (by 16.2d)
= e/a, Aa') — e|(a’, Aa) (see the next lemma)

=elMa,a') — e}Ma', a)

= 2e}(a, a') (because e} is skew-symmetric)

= e/(a, 2Aa’).
As ¢, is nondegenerate, this shows that 24 = ¢, and (16.5) shows that & is
divisible by 2 in NS(A). O

Lemma 16.7. Let 2 be the Poincaré sheaf on A x AY. Then
e’ ((a, b), (@', b)) = ey(a, b') — e/(a’, b)
fora,a’'e TTAand b, b'e T,A".
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Proor. Because Z,(1) is torsion-free, it suffices to prove the identity for b and
b’ in a subgroup of finite index in T;A". Therefore we can assume that b = Ac
and b’ = Ac’ for some polarization 1 = @4 of A and elements ¢ and ¢’ of T A.
From Section 10 we know that (1 x )*? = m*¥ ® p*¥£ ! ® q¢*¥ 7}, and
o)

ef’((a, b), (a', b)) = e * P ((a, c), (@', "))

= e,’g)(a +ca +c)— e,’g)(a, a')— e,“f(c, c')

= e,‘z)(a, c') — ef?(a’, c)

— ¢/a,b) — ea’, b) O
For a polarization A: A - AV, define
e*: Ker(1) x Ker(4) - u,,

as follows: suppose m kills Ker(4), and let a and a’ be in Ker(A); choose a b
such that mb = a’, and let e’*(a, a’) = e,,(a, Ab); this makes sense because
m(Ab) = A(mb) = 0. Also it is independent of the choice of b and m because if
mnb' = a’ and nc = a, then

en(a, Ab') =¢,,.(c, Ab')" = e,(a, Anb") (by 16.1)
and so
2m(a, Ab')/e,(a, Ab) = e, (a, A(nb' — b)) = e}(a, nb’ — b)
=el(nb' — b, a)!
=1 as la=0.
Let a = (a,) and a’ = (a,) be in T} A. If Aa,, = 0 = Aa,, for some m, then
eMay, ay) = €m(ay, Aasy,) = Eam(azm, Aas,)" = ehm(Ams Qi)

Note that this implies that e* is skew-symmetric.

Proposition 16.8. Let f: A — B be an isogeny of degree prime to char(k), and
let A: A — A" be a polarization of A. Then A = f*(1") for some polarization A’
on B if and only if Ker(f) = Ker(1) and e* is trivial on Ker(f) x Ker(f).

Proor. We will assume the second condition and construct an e, in
Hom(A2T,B, Z,(1)) such that e}(a, a’) = ¢,(fa, fa') for all a, a’ in T,A; then
(16.4) will show the existence of A'. Let b, b’ € T,B; for some m there will exist
a, a'€ T,A such that I™b = f(a) and I"b' = f(a'). If we write a = (a,) and
a’ = (a,), then these equations imply that f(a,) = 0 = f(a,,), and therefore
that a,, and a,, are in Ker(1) and that e*(a,, a,,) = 0. The calculation pre-
ceding the statement of the proposition now shows that ehm(as,,, as,) = 0
and therefore that ef(a, a’) is divisible by I?>™. We can therefore define
e/b, b') = I"2™ef(a, a’). This proves the sufficiency of the second condition,
and the necessity is easy. O
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Remark 16.9. The degrees of 1 and A’ are related by deg(4) = deg(4)-
deg(f)?, because A = fYol'of.

Corollary 16.10. Let A be an abelian variety having a polarization of degree
prime to char(k). Then A is isogenous to a principally polarized abelian variety.

Proor. Let 4 be a polarization of A, and let [ be a prime dividing the degree
of A. Choose a subgroup N of Ker(4) of order [, and let B = A/N. As e* is
skew-symmetric, it must be zero on N x N, and so the last proposition
implies that B has a polarization of degree deg(1)/12. O

Corollary 16.11. Let A be a polarization of A, and assume that Ker(A) < A,
with m prime to char(k). If there exists an element o of End(A) such that
a(Ker(4)) =« Ker(4) and o¥oloa = —1 on A, then A x A is principally
polarized.

Proor. Let N = {(a, aa)| ae Ker(4)} = A x A. Then N = Ker(4 x 4), and for
(a, aa) and (a’, aa’) in N
e**((a, aq), (a’, aa’) = e*(a, a’) + e*(xa, aa’)
=e,(a, Ab) + e,(a, a¥ o Aoa(b)) where mb=a’
= e¢,,(a, Ab) + e,,(a, — Ab)
= 0.

Therefore, (16.8) applied to A x A — (4 x A)/N and the polarization A x 4
on A x A shows that (4 x A)/N is principally polarized. The kernel of
(a,a)y—(a,0a +a'): A x A—- (A x A)/N is Ker(4) x {0}, and so the map
induces an isomorphism 4 x 4 —» (A4 x A)/N. O

Remark 16.12 (Zarhin’s Trick). Let 4 and A be as in the statement of the
corollary. Then there always exists an « satisfying the conditions for (4%, 1%)
and therefore (4 x AY)* is principally polarized. To see this choose integers
a, b, ¢, d such that a®> + b + ¢? + d* = — 1 (mod m?), and let

a —b —c¢c —d
b a d —c
a= € M,(Z) = End(A).
¢ —d a b
d ¢ —b a

Clearly a(Ker(4%)) = Ker(A*). Moreover «" can be identified with the trans-
pose a'f of a (as a matrix), and so

aVoAtoa =a"oA oo = Atoaoan.

But o oa = (a® + b2 + % + d?)I,.
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Remark 16.13. In [ 16, §§20, 23] there is a different and much more profound
treatment of the above theory using finite group schemes. In particular, it is
possible to remove the restrictions on | or a degree being prime to the
characteristic in the results (16.4) through (16.12).

Remark 16.14. Some of the above results extend to fields that are not alge-
braically closed. For example, if A is an abelian variety over a perfect field,
then (16.5) implies immediately that a polarization A of 4 can be written as [™
times a polarization if and only if e}! is divisible by I™; similarly (16.11) implies
that the same result holds over a perfect field. On the other hand (16.10)
seems to be false unless one allows a field extension (roughly speaking, it is
necessary to divide out by half the kernel of the polarization A, which need
not be rational over k).

§17. The Rosati Involution

Fix a polariza}fion A on A. As A is an isogeny A — AV, it has an inverse in
Hom®(4Y, A) = Hom(A4", A) ® Q. The Rosati involution on End®(4) cor-
responding to A is

aal = A toavo

This has the following obvious properties:

@+ pt =at + g, @p) = ptal, a'=a for aeQ.
Foranya,a’'e ;A ® Q, | # char(k),

et(aa, a') = e(aa, Aa') = ea, a¥ o Aa’) = ef(a, ata’),
from which it follows that ot = o.
Remark 17.1. The second condition on « in (16.11) can now be stated as
afoa = —1 on A,, (provided o lies in End(A)).
Proposition 17.2. Assume that k is algebraically closed. Then the map
L 2lopy, NS(4) ® Q — End®(A),

identifies NS(A) ® Q with the subalgebra of End®(A) of elements fixed by t.
Proor. Let « € End®(A), and let | be an odd prime # char(k). According to

(16.6), Aoa is of the form ¢4 if and only if ef°%(a, a') = —ej°*(a’, a) for all
a,a'e A ® Q. But

Aoa

el°*a, a’) = el(a,aa’) = —el(aa’, a) = —ea’, a0 A(a)),

and so this is equivalent to Aoa = a¥ o A, thatis,to a = of. O
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Theorem 17.3. The bilinear form
(o, B)— Tr(ao p1): End®(4) x End®(4) > Q
is positive definite. More precisely, if 1 = @g(p), then

Tr(aoal) = (lz)—gg)(m—l - oa*(D)).

Proor. As D is ample and a*(D) is effective, the intersection number
(Dt - a*(D)) is positive. Thus the second statement implies the first. Clearly
it suffices to prove it with k algebraically closed.

Lemma 17.4. Let A be an abelian variety over an algebraically closed
field, and let Z,(g) = Z,(1)®%. Then there is a canonical generator & of
Hom(A?%(T,A), Z,(g)) with the following property: if D, ..., D, are divisors
on A and e; = ef?'® e Hom(A?T A4, Z,(1)), then e, A -+ A e, is the multiple
(Dy, Dy, ..., Dy)e of e.

Proor. See [16, §20, Theorem 3, p. 190]. (From the point of view of étale
cohomology, ¢ corresponds to the canonical generator of H?(4, Z/(g)),
which is equal to the cohomology class of any point on A. If ¢; is the class of
D; in H?(A, Z,(1)), then the compatibility of intersection products with cup-
products shows that (D, ..., D,)e = ¢; U+ U ¢,. Consequently, the lemma
follows from (15.4).) O

Proor oF (17.3). From the lemma, we find that
el A Ael = (D%,

et A A et A e = (D971 a¥(D))e.

It suffices therefore to show that, for some basis a,, ..., a,, of TA ® Q,
@1 £ A dagled A 1 A e ff‘u» = iTr(aoaT).
{ay Aot Aagglel A Aef) 2g
(See (15.4).) Choose the basis a,, a,, ..., a,, so that
el (azi—1, ay) = 1 = —ef(ay;, aziy), i=12..,9,
ef(a;, a) =0, otherwise.
Let f, ..., f2, be the dual basis; then for j # j,
1 ifi=j i =j,

Sila)  fyla)

ai Aaplfi A S = filai)  fi(ay)

=<—1 ifi=j, i'=]

0 otherwise.

Therefore ef =7, foi-1 A foi, and so e} A Aef =gl(fi A" A fo,)
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Thus
{ay A nagglet Ao nely =Kag A Aaglg!(f A A foy)) =gl
Similarly,
{ay A e A agglet A A el A ey
g9
=(g— 1 Z ef(aay;_y, %ay;)
i=1
(g — 1!
= 2 Z(efl(azi—p afaaz,.) + ell(“T“azi-l » Gz;))
g!
= ZTr(ofo),
29
which completes the proof. O

Proposition 17.5. Let A be a polarization of the abelian variety A.

(a) The automorphism group of (A, A) is finite.
(b) For any integer n > 3, an automorphism of (A, A) acting as the identity on

A, (k) is equal to the identity.

ProoFr. Let o be an automorphism of A. In order for « to be an automorphism
of (A4, A), we must have 1 = a¥odoa, and therefore afoe = 1, where t is the
Rosati involution defined by A. Consequently,

«eEnd(4) N {x€End(4) ® R|Tr(a'a) = 2g},

and the first of these sets is discrete in End(4) ® R, while the second is
compact. This proves (a).

Assume further that o acts as the identity on A4,. Then a — 1 is zero on A4,,
and so it is of the form nf with e End(A) (see (12.6)). The eigenvalues of
and B are algebraic integers, and those of a are roots of 1 because it has finite
order. The next lemma shows that the eigenvalues of « equal 1.

Lemma 17.6. If { is a root of 1 such that for some algebraic integer y and
rational integer n > 3,{ =1 + ny, then{ = 1.

Proor. If { # 1, then after raising it to a power, we may assume that it is a
primitive pth root of 1 for some prime p. Then Ng),q(1 — {) = p, and so the
equation 1 — ¢ = —ny implies p = +n? ' N(y). This is impossible because p
is prime. O

We have shown that « is unipotent and therefore that « — 1 =nf is
nilpotent. Suppose that f # 0. Then ' = Bt # 0, because Tr(f'p) > 0. As
B = B, this implies that Tr(f'2) > 0 and so f' # 0. Similarly, p"* # 0, and
so on, which contradicts the nilpotence of f. d
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Remark 17.7. Let (A, 1) and (A4', 2') be polarized abelian varieties over a field
k, and assume that 4 and A’ have all their points of order n rational over k
for some n > 3. Then any isomorphism a: (4, A) = (4, A') defined over the
separable closure k, of k is automatically defined over k because, for all
o € Gal(k,/k), a0 g is an automorphism of (4, A) fixing the points of order
n and therefore is the identity map.

Remark 17.8. On combining the results in Section 12 with (17.3), we see that
the endomorphism algebra End®(A4) of a simple abelian variety A4 is a skew
field together with an involution 1 such that Tr(aoa) > 0 for all nonzero o.

§18. Two More Finiteness Theorems

The first theorem shows that an abelian variety can be endowed with a
polarization of a fixed degree d in only a finite number of essentially different
ways. The second shows that an abelian variety has only finitely many non-
isomorphic direct factors.

Theorem 18.1. Let A be an abelian variety over a field k, and let d be an integer;
then there exist only finitely many isomorphism classes of polarized abelian
varieties (A, A) with 1 of degree d.

Fix a polarization A, of A4, and let 1 be the Rosati involution on End®(A)
defined by A,. The map 1+ 45" o A identifies the set of polarizations of 4 with
a subset of the set End®(A4)" of elements of End®(4) fixed by 1. As NS(4y) is
a finitely generated abelian group, there exists an N such that all the Ago 1
are contained in a lattice L = N"'End(4)" in End®(4)*. Note that L is stable
under the action

ar>utou, ueEnd(4)%, ae End®(4)

of End(4)* on End®(A).

Let A be a polarization of A, and let ue End(4)*. Then u defines an
isomorphism (4, u¥olou) 3 (4,7), and Ag'o(Voldou)=ulo(iglod)ou
Thus to each isomorphism class of polarized abelian varieties (4, A), we can
associate an orbit of End(A4)> in L. Recall (12.12) that the map a+— deg(a) is
a positive power of the reduced norm on each simple factor of End®(4), and
so Nrd is bounded on the set of elements of L with degree d. These remarks
show that the theorem is a consequence of the following result on algebras.

Proposition 18.2. Let E be a finite-dimensional semisimple algebra over Q
with an involution t, and let R be an order in E. Let L be a lattice in E' that
is stable under the action e—u'eu of R* on E. Then for any integer d,
{veL|Nrd(v) < d} is the union of a finite number of orbits.
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This proposition will be proved using a general result from the reduction
theory of arithmetic subgroups.

Theorem 18.3. Let G be a reductive group over Q, and let I be an arithmetic
subgroup of G; let G — GI(V) be a representation of G over Q, and let L be a
lattice in V that is stable under T. If X is a closed orbit of G in V, then Ln X
is the union of a finite number of orbits of T".

ProOF. See [4, 9.11]. O

Remark 18.4. (a) An algebraic group G is reductive if its identity component
is an extension of a semisimple group by a torus. A subgroup I' of G(Q) is
arithmetic if it is commensurable with G(Z) for some Z-structure on G.

(b) The following example may give the reader some idea of the nature of
the above theorem. Let G = SL,, and let I' = SL,(Z). Then G acts in a
natural way on the space V of quadratic forms in n variables with rational
coefficients, and I" preserves the lattice L of such forms with integer coeffi-
cients. Let g be a quadratic form with nonzero discriminant d. By the orbit X
of ¢ we mean the image G g of G under the map of algebraic varieties
g—g - q: G - V. The theory of quadratic forms shows that X (Q) is equal to
the set of all quadratic forms (with coefficients in @) of discriminant d. Clearly
this is closed, and so the theorem shows that X n L contains only finitely
many SL,(Z)-orbits: the quadratic forms with integer coefficients and dis-
criminant d fall into a finite number of proper equivalence classes.

We shall apply (18.3) with G a reductive group such that
G(Q) = {e€E|Nrd(e) = 1},

I'=R*, V = E',and L < V the lattice in (18.2). In order to prove (18.2), we
shall show

(a) there exists a reductive group G over @ with G(Q) as described and
having I" as an arithmetic subgroup;

(b) the orbits of G on V are all closed;

(c) for any rational number d, V, = {ve V|Nrd(v) = d} is the union of a
finite number of orbits of G.

Then (18.3) will show L n ¥V, comprises only finitely many I'-orbits, as is
asserted by (18.2).

To prove (a), embed E into some matrix algebra M,(Q). Then the condi-
tion that Nrd(e) = +1 can be expressed as a polynomial equation in the
matrix coefficients of e, and this polynomial equation defines a linear alge-
braic group G over Q such that G(S) = {ee E ® S|Nrd(e) = +1} for all
Q-algebras S. Over Q, E is isomorphic to a product of matrix algebras
[1M,,(@); consequently, G(Q) = {(e))e[] GL,,(@)|[]det(e;) = +1}. From
this it is clear that the identity component of G is an extension of [ [ PGL,,
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by a torus, and so G is reductive. It is easy to see that I' is an arithmetic
subgroup of G(Q).

To prove (b), we need the following lemma from the theory of algebras
with involution.

Lemma 18.5. Let E be a semisimple algebra over an algebraically closed field
K of characteristic zero, and let T be an involution of E fixing the elements of
K. Then every element e of E such that e' = e can be written e = ca'a where ¢
is in the centre of E and Nrd(a) = 1.

Proor. Lacking a good proof, we make use of the classification of pairs (E, t).
Each pair is a direct sum of pairs of the following types:

(A,) E = M,(K) x M,(K) and (e, , e;)" = (e, e});
(B,) E is the matrix algebra M,(K) and e = ¢';
(C,) E = M,,(K)and e' = J™'e"J with J an invertible alternating matrix.

(See, for example, [25].) In the cases (B,) and (C,), the lemma follows from
elementary linear algebra; in the case (A,), e = (e, e'""), and we can take
c=d(l, I,)and a = (e'/d, I,,), where d = det(e')*". ]

From the lemma, we see that if G, is the isotropy group at ee V, then there
is an isomorphism g+ ag: G, —» G, defined over Q. In particular, all isotropy
groups have the same dimension, and therefore all orbits of G in V have the
same dimension. This implies that they are all closed, because every orbit of
minimal dimension is closed (see, for example, [11, 8.3]).

It remains to prove (c). Let v, v'e ¥, ® C, and write v = ca'a, v’ = ¢'a’fa’
with ¢, ¢’ and a, a’ as in the lemma. Clearly v and v’ are in the same orbit if
and only if ¢ and ¢’ are. Note that ¢ and ¢’ lie in V; ® C. Let Z be the
subalgebra of the centre of E ® C of elements fixed by f. Then ¢ and ¢’ are in
Z, and they lie in the same orbit of G if ¢/c’ € Z2. But Z is a finite product of
copies of R and C, and so Z*/Z *? is finite. O

Corollary 18.6. Let k be a finite field, and let g and d be positive integers. Up
to isomorphism, there are only finitely many polarized abelian varieties (A, 1)
over k with dim A = g and deg 1 = d*.

Proor. From (14.1) we know that there are only finitely many possible A’s,
and (18.1) shows that for each A there are only finitely many A’s. O

We come now to the second main result of this section. An abelian variety
A' is said to be a direct factor of an abelian variety A if 4 ~ A’ x A" for some
abelian variety 4".

Theorem 18.7. Up to isomorphism, an abelian variety A has only finitely many
direct factors.
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Proor. To each direct factor A" of A, there corresponds an element e of
End(A4) defined by A3 4' x A" B A > A4 x A" 3 A. Moreover e* =e,
and A’ is determined by e because it equals the kernel of 1 — e. If ' = ueu™
with u in End(4)*, then u(1 — e)u! = 1 — ¢/, and so e and e’ correspond to
isomorphic direct factors. These remarks show that the theorem is a conse-
quence of the next lemma. O

Lemma 18.8. Let E be a semisimple algebra of finite dimension over Q, and let
R be an order in E. Then R*, acting on the set of idempotents of R by inner
automorphisms, has only finitely many orbits.

Proor. Apply (18.3) with G the algebraic group such that G(Q) = E*; take I’
to be the arithmetic group R*, V to be E with G acting by inner auto-
morphisms, and L to be R. Then the idempotents in E form a finite set of
orbits under G, and each of these orbits is closed. In proving these statements
we may replace Q by @ and assume E to be a matrix algebra. Then each
idempotent is conjugate to one of the form e = diag(1,..., 1,0, ...,0), and
the stabilizer G, of e is a parabolic subgroup of G and so G/G, is a projective
variety (see [ 11, 21.3]) which implies that its image Ge in V is closed. a

Corollary 18.9. Let k be a finite field;, for each integer g, there exist only
finitely many isomorphism classes of abelian varieties of dimension g over k.

Proor. Let 4 be an abelian variety of dimension g over k. From (16.12) we
know that (4 x AY)* has a principal polarization, and according to (14.1), the
abelian varieties of dimension 8¢ over k having principal polarizations form
only finitely many isomorphism classes. The result therefore follows from

(18.7). O

§19. The Zeta Function of an Abelian Variety

Throughout this section, 4 will be an abelian variety over a finite field k with
q elements, and k,, will be the unique subfield of k with g™ elements. Thus the
elements of k,, are the solutions of ¢?" = ¢. We write N,, for the order of
A(k,,).

Theorem 19.1. There are algebraic integers a,, ..., a,, such that:

(a) the polynomial P(X) = [ [(X — a;) has coefficients in Z;
(b) N, =[] — a) forallm > 1; and
(c) (Riemann hypothesis) |a;| = q*.

In particular, |N,, — q"™| < 2gq™ 2 + (29 — 2g — 1)g™ L.

The proof will use the Frobenius morphism. For a variety V over k, this is
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defined to be the morphism 7,: V' — V which is the identity map on the
underlying topological space of V and is the map f+ f9 on 0O,. For example,
if V= P" = Proj(k[X,, ..., X, 1), then n, is defined by the homomorphism of
rings

Xi—> XA k[ X, ..., X, = k[ X, ..., X,]
and induces the map on points
(Xg:.nr1x,) > (xd ... x9): P'(k) - P"(k).

For any map ¢: W—V, it is obvious that @om, = n,o@. Therefore,
if A< P" is a projective embedding of A4, then =n, induces the map
(Xp:...:X,)—=(x&:...:x9) on A(k). In particular, we see that the kernel of
1 —nm A(k) > A(k) is A(k,). Note that m, maps zero to zero, and
therefore (see (2.2)) is a homomorphism. Clearly © always defines the zero
map on tangent spaces (look at its action on the cotangent space), and so
d(l — nif)o: To(A) — Ty(A) is the identity map. Therefore, 1 — =7 is étale, and
the order N,, of its kernel in A(k) is equal to its degree. Let P be the charac-
teristic polynomial of 4. It is a monic polynomial of degree 2g with integer
coefficients, and if we let a, ..., a,, be its roots, then (12.9) shows that
[1(X — al") is the characteristic polynomial of nf. Consequently,

N, =deg(zy — 1) =[](1 — a).

This proves (a) and (b) of the theorem with the added information that P is
the characteristic polynomial of n,. Part (c) follows from the next two
lemmas.

Lemma 19.2. Let 1 be the Rosati involution on End®(A) defined by a polariza-
tion of A; then mlhom, = q,.

PrOOF. As was noted in (13.2), the polarization will be defined by an ample
sheaf £ on A. We have to show that njopgomn, = qpg. It follows from the
definition of n, that n} ¥ ~ £4. Therefore, for all ae A(k),

Tio@gomy(a) = mi(t5. L @ L) = i1 L) ® (nf L) = qpgla),

as required. O

Lemma 19.3. Let o be an element of End®(A) such that o' o o is an integer r; for
any root a of P,, |a|* =r.

Proor. Note that Q(a) is stable under {. The argument terminating the proof
of (17.5) shows that Q(x) contains no nilpotent elements, and therefore is a
product of fields. The tensor product Q(a) ® R is a product of copies of R
and C. Moreover T extends to an R-linear involution of Q(x) ® R, and
Tr(B'B) = 0 for all B # 0, with inequality holding on a dense subset. It fol-
lows easily that each factor K of Q(a) ® R is stable under  and that t is the
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identity map if K is real, and is complex conjugation if K is complex. Thus,
for each homomorphism 1 of Q(a) into C, 1(a') is the complex conjugate of
1. The hypothesis of the theorem therefore states that |iwx|?> = r, which, in
essence, is also the conclusion. O

The zeta function of a variety V over k is defined to be the formal power
series Z(V, t) = exp(}_ N,,t™/m).

Corollary 19.4. Let P,(t) = [ [(1 — a; ,t), where the a;, run through the prod-
ucts a; a;,...a; ,0 < i, <---<i, <2g,a;aroot of P(t).

Pi(t)... Pyy_y (D)
h =
Then Z(4.1) [Po(t). .. Py(1)]

Proor. Take the logarithm of each side, and use the identity
—log(l —t)=1+t+ 22 +13/3 4. 0

Remark 19.5. (a) The polynomial P,(t) is the characteristic polynomial of 7
acting on A"T;A4.

(b) Let L(V, s) = Z(V, q°); then (19.1¢c) implies that the zeros of {(V, s) lie
on the lines Re(s) = 1/2, 3/2, ..., (29 — 1)/2 and the poles on the lines Re(s) =
0,1,...,2g.

Remark 19.6. The isomorphism A'T)A ~ H'(A,,, Q,)" and the above results
show that

N, =Y (=1 Tr(n|H (A, Q)
and that
Z(A, t) = [[det(1 — nt|H"(A.,, Q)"

§20. Abelian Schemes

Let S be a scheme; a group scheme n: o — S over S is an abelian scheme if ©
is proper and smooth and the geometric fibres of = are connected. The second
condition means that, for all maps 5§ — S with 5 the spectrum of an alge-
braically closed field, the pull-back .« of .7 to 5 is connected. In the presence
of the first condition, it is equivalent to the fibres of © being abelian varieties.
Thus an abelian scheme over S can be thought of as a continuous family of
abelian varieties parametrized by S.
Many results concerning abelian varieties extend to abelian schemes.

Proposition 20.1 (Rigidity Lemma). Let S be a connected scheme, and let
n: ¥ — S be a proper flat map whose fibres are varieties; let n': ¥ — S be a
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second S-scheme, and let f: ¥~ — ¥ be a morphism of S-schemes. If for some
point s of S, the image of ¥ in ¥ is a single point, then f factors through S
(that is, there exists amap f': S — ¥ such that f = f’ o).

Proor. See [15, 6.1]. O

Corollary 20.2. (a) Every morphism of abelian schemes carrying the zero section

into the zero section is a homomorphism.

(b) The group structure on an abelian scheme is uniquely determined by the
choice of a zero section.

(c) An abelian scheme is commutative.

Proor. (a) Apply the proposition to the map ¢: of x of — % defined as in
the proof of (2.2).

(b) This follows immediately from (a).

(c) The map ar>a™! is a homomorphism. O

Our next result shows that an abelian variety cannot contain a non-
constant algebraic family of subvarieties.

Proposition 20.3. Let A be an abelian variety over a field k, and let S be a
k-scheme such that S(k) # &. For any injective homomorphism f: B c A x S
of abelian schemes over S, there is an abelian subvariety B of A (defined over k)
such that f(#) = B x S.

Proor. Let se S(k), and let B = %,. Then f, identifies B with a subvariety

of A. The map h: & Laxs» (A/B) x S has fibre B, —» A — A/B, over s,

which is zero, and so (20.1) shows that h = 0. It follows that f(#) = B x S.
O

Recall that a finitely generated extension K of a field k is regular if it is
linearly disjoint from k.

Corollary 20.4. Let K be a regular extension of a field k.

(a) Let A be an abelian variety over k. Then every abelian subvariety of Ay is
defined over k.

(b) If A and B are abelian varieties over k, then every homomorphism
o: Ax = By is defined over k.

Proor. (a) There exists a variety V over k such that k(V) = K. After V has
been replaced by an open subvariety, we can assume that B extends to an
abelian scheme over V (cf. (20.9) below). If V has a k-rational point, then the
proposition shows that B is defined over k. In any case, there exists a finite
Galois extension k' of k and an abelian subvariety B’ of 4,. such that By, =
By, as subvarieties of Ag,.. The equality uniquely determines B’ as a sub-
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variety of A,.. As oB has the same property for any o e Gal(k'/k), we must
have 6B = B, and this shows that B is defined over k.
(b) Part (a) shows that the graph of o is defined over k. d

Theorem 20.5. Let K/k be a regular extension of fields, and let A be an abelian
variety over K. Then there exists an abelian variety B over k and a homo-
morphism f: By — A with finite kernel having the following universal property:
for any abelian variety B' and homomorphism f': By - A with finite kernel,
there exists a unique homomorphism ¢: B' — B such that ' = fo @y.

Proor. Consider the collection of pairs (B, f) with B an abelian variety
over k and f a homomorphism By — A4 with finite kernel, and let 4* be the
abelian subvariety of A generated by the images the f. Consider two pairs
(B,, f1) and (B,, f,). Then the identity component C of the kernel of
(f1, f2): (By x B,)x —A is an abelian subvariety of B; x B,, which (20.4)
shows to be defined over k. The map (B; x B,/C)x — A has finite kernel and
image the subvariety of A generated by f,(B,) and f,(B). It is now clear that
there is a pair (B, f) such that the image of f is A*. Divide B by the largest
subgroup scheme N of Ker(f) to be defined over k. Then it is not difficult to
see that the pair (B/N, f) has the correct universal property (given f': By —» A,
note that for a suitable C contained in the kernel of (B/N)x x By — A, the
map b+ (b, 0): B/[N — (B/N) x B’/C is an isomorphism). O

Remark 20.6. The pair (B, f') is obviously uniquely determined up to a unique
isomorphism by the condition of the theorem; it is called the K/k-trace of A.
(For more details on the K/k-trace and the reverse concept, the K/k-image,
see [12, VIII].)

Proposition 20.7. Let </ be an abelian scheme of relative dimension g over S,
and let n be multiplication by n on /. Then ny is flat, surjective, and finite,
and its kernel o, is a finite flat group scheme over S of order n*°. Moreover
n, (and therefore its kernel) is étale if and only if n is not divisible by any of the
characteristics of the residue fields of S.

Proor. The map n is flat because .o/ is flat over S and multiplication by n is
flat on each fibre of &7 over S (see Section 8). (For the criterion of flatness
used here, see [7, IV, 5.9] or [6, 111, 5.4, Prop. 2.3].) Moreover n,, is proper
[10, II, 4.8¢] with finite fibres, and hence is finite (see, for example, [13, I,
1.10]). It follows that .o, is flat and finite, and (8.2) shows that it has order n*.
The remaining statement also follows from (8.2). O

Corollary 20.8. Let S be an connected normal scheme, and let A be an abelian
variety over the field of rational functions k of S. Assume that A extends to an
abelian scheme over S, and let n be an integer which is prime to the charac-
teristics of the residue fields of S. Then for any point P € A(k), the normaliza-
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tion of S in k(n~'P) is étale over S. (By k(n~' P) we mean the field generated over
k by the coordinates of the points Q such that nQ = P.)

Proor. The hypotheses imply that .7, is étale over S. Let k' be the composite
of the fields of rational functions of the components of .«/,, and let k" be the
Galois closure of k'. Then the normalization of S in k” is étale over S and
A,(k") has n? elements. We may replace k with k” and so assume A has all
its points of order n rational in k. The point P extends (by the valuative
criterion of properness) to a section s of &/ over S. The pull-back of the
covering ny: &/ — o/ to S by means of the section s is a finite étale covering
S' — S, and s lifts to a section in &/(S’). Let S, be any connected component
of §'; then the field K of rational functions of S contains k(n~!P), and S, is the
normalization of S in K. O

Remark 20.9. Let S be an integral Noetherian scheme, and let 4 be an abelian
variety over its field of rational functions K. Choose a projective embedding
A g P"and let &/ be the closure of A in Pg. Then n: &/ — S is projective, and
its generic fibre is a smooth variety. As O — 7,0, is an isomorphism at the
generic point and Og and n,0, are coherent, there will be an open subset
over which it is an isomorphism and therefore over which = has connected
fibres [10, III, 11.5]. The existence of a section implies the fibres will be
geometrically connected there. Also there will be an open subset over which
of is smooth [10, ITI, Ex. 10.2], and an open subset where the group structure
extends. These remarks show that there is an open subset U of S such that &/
extends to an abelian scheme over U.

When S is locally the spectrum of a Dedekind domain, we can be more
precise. Then the projective embedding of 4 determines a unique extension
of A to a flat projective scheme 7: o — S (see [10, III, 9.8]). The R-module
7,0, is finitely-generated (because 7 is proper) and torsion-free (because 7 is
flat). It is therefore a projective R-module, and its rank is one because its
tensor product with K is I'(4, ¢,) = K. Now, as before, the geometric fibres
of o/ are connected. We conclude: the choice of a projective embedding
defines a flat projective extension &7 of 4 to S; o/ will be an abelian scheme
over an open set U of S.

It is clear from looking at the example of an elliptic curve, that the ex-
tended scheme o over S depends on the choice of the projective embedding
of 4, but [2, 1.4] shows that its restriction to U does not. The purpose of the
theory of Néron models is to replace ./ by a “minimal” (nonproper) exten-
sion which is unique.

Using the above results, it is possible to give a short proof of a weak form
of the Mordell-Weil theorem.

Theorem 20.10. Let A be an abelian variety over a number field k, and let n be
integer such that all points of A of order n are rational over k. Then A(k)/nA(k)
is a finite group.
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Proor. Let ae A(k), and let b e A(k) be such that nb = a. For ¢ in the Galois
group of k over k, define @,(c) to be ab — b. Then a— ¢, defines an injection
A(k)/nA(k) s Hom(G, A,(k)).

Let spec(R) be an open subset of the spectrum of the ring of integers of k
such that 4 extends to an abelian scheme &/ over spec(R) and n is invertible
in R. Let k' be the maximal abelian extension of k of exponent n unramified
outside the finite set of primes not corresponding to prime ideals of R. Then
(20.8) shows that ¢, factors through the group Gal(k’/k) for all a. This proves
the theorem because k' is a finite extension of k. O

Remark 20.11. Using the theory of heights, one can show that for an abelian
variety over a number field k, A(k)/nA(k) finite implies A(k) is finitely
generated (see [23]). As the hypothesis of (20.10) always holds after a finite
extension of k, this proves the Mordell-Weil theorem: for any abelian variety
A over a number field k, A(k) is finitely generated.

Remark 20.12. Let 4 and B be polarized abelian varieties over a number field
k, and assume that they both have good reduction outside a given finite set
of primes S; let [ be an odd prime. If 4 and B are isomorphic over k (as
polarized abelian varieties), then they are isomorphic over an extension k' of
k unramified outside S and I and of degree < (order of Gl,,(F))?. (Because
the I-torsion points of 4 and B are rational over such a k', and we can apply
(17.7).)

In contrast to abelian varieties, abelian schemes are not always projective,
even if the base scheme is the spectrum of an integral local ring of dimension
one or an Artinian ring (see [18, XII]). If &/ is projective over S, then the dual
abelian scheme /" is known to exist (see [8]); if o is not projective then o7
exists only as an algebraic space (see [1]). In either case, a polarization of </
is defined to be a homomorphism 1: &/ — /" such that, for all geometric
points 5 of the base scheme S, A; is of the form ¢ for some ample invertible
sheaf £ on .. Alternatively, 1 is a polarization if A;: &, — </, is a polariza-
tion of abelian varieties for all se S. If S is connected, then the degree of A, is
independent of s and is called the degree of A.

For a field k and fixed integers g and d, let &, , be the functor associating
with each k-scheme of finite type the set of isomorphism classes of polarized
abelian schemes of dimension g and which have a polarization of degree d2.

Theorem 20.13. There exists a variety M, , over k and a natural transformation

i: %, 4~ M, ; such that:

(@) i(K): #, 4(K) —> M, 4K) is a bijection for any algebraically closed field
containing k;

(b) for any variety N over k and natural transformation j: %, ;— N, there is a
unique morphism @: M, ; — N such that g oi = j.

Proor. This one of the main results of [15]. O
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The variety M, , is uniquely determined up to a unique isomorphism by
the conditions of (20.13); it is the (coarse) moduli variety for polarized abelian
varieties of dimension g and degree d2. By introducing level structures, one
can define a functor that is representable by a fine moduli variety—see the
article by C.-L. Chai in these proceedings.
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