CHAPTER VII 1986¢

Jacobian Varieties

J. S. MILNE

This chapter contains a detailed treatment of Jacobian varieties. Sections 2,
5, and 6 prove the basic properties of Jacobian varieties starting from the
definition in Section 1, while the construction of the Jacobian is carried out
in Sections 3 and 4. The remaining sections are largely independent of one
another.

The conventions are the same as those listed at the start of Chapter V,
“Abelian Varieties” (see also those at the start of Section 5 of that chapter).

§1. Definitions

Recall that for a scheme S, Pic(S) denotes the group H'(S, 05) of isomor-
phism classes of invertible sheaves on S, and that S+ Pic(S) is a functor from
the category of schemes over k to that of abelian groups.

Let C be a complete nonsingular curve over k. The degree of a divisor
D =Y nP,on Cis ) n;[k(P): k]. Since every invertible sheaf # on C is of the
form #(D) for some divisor D, and D is uniquely determined up to linear
equivalence, we can define deg(¥) = deg(D). Then deg(#") = deg(nD) =
n - deg(D), and the Riemann—Roch theorem says that

2(C, L") =n-deg(¥)+1—g.

This gives a more canonical description of deg(%#): when x(C, £") is written
as a polynomial in n, deg(%#) is the leading coefficient. We write Pic®(C) for
the group of isomorphism classes of invertible sheaves of degree 0 on C.

Let T be a connected scheme over k, and let % be an invertible sheaf
on C x T (by which we mean C X .. T). Then [14,4.2(b)] shows that
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x(C,, £}), and therefore deg(.#,), is independent of t; moreover, the constant
degree of %, is invariant under base change relative to maps T' — T. Note
that for a sheaf # on C x T, (g*.#), is isomorphic to O, and, in particular,
has degree 0. Let

PAT) = {£€Pic(C x T)|deg(Z,) = 0 all t}/q* Pic(T).

We may think of P2(T) as being the group of families of invertible sheaves on
C of degree 0 parametrized by T, modulo the trivial families. Note that P2 is
a functor from schemes over k to abelian groups. It is this functor that the
Jacobian attempts to represent.

Theorem 1.1. There is an abelian variety J over k and a morphism of functors
1: P@ > J such that 1: P2(T) > J(T) is an isomorphism whenever C(T) is
nonempty.

Let k' be a finite Galois extension of k such that C(k’) is nonempty, and let
G be the Galois group of k' over k. Then for every scheme T over k, C(T;.) is
nonempty, and so ((T,.): P2(T;.) = J(T,.) is an isomorphism. As

J(T) = Mory(T, J) = Mor,(Ty, J,)® = J(T;,)S,

we see that J represents the functor T+ P2(T,.)° and this implies that
the pair (J, 1) is uniquely determined up to a unique isomorphism by the
condition in the theorem. The variety J is called the Jacobian variety of C.
Note that for any field k' > k in which C has a rational point, : defines an
isomorphism Pic®(C) 3 J(k').

When C has a k-rational point, the definition takes on a more attractive
form. A pointed k-scheme is a connected k-scheme S together with an element
se S(k). Abelian varieties will always be regarded as being pointed by the zero
element. A divisorial correspondence between two pointed schemes (S, s) and
(T, t) over k is an invertible sheaf % on S x T such that #|S x {t} and
&Z|{s} x T are both trivial.

Theorem 1.2. Let P be a k-rational point on C. Then there is a divisorial
correspondence M* between (C, P) and J such that, for every divisorial corre-
spondence & between (C, P) and a pointed k-scheme (T, t), there exists a unique
morphism @: T — J such that ¢(t) = 0 and (1 x o)* #F ~ &.

Regard .#" as an element of Pic(C x J); then the pair (J, #7%) is uniquely
determined up to a unique isomorphism by the condition in (1.2). Note that
each element of Pic®(C) is represented by exactly one sheaf .#,, ae J(k), and
the map ¢: T — J sends t e T(k) to the unique a such that #, ~ &Z,.

Theorem 1.1 will be proved in Section 4. Here we merely show that it
implies (1.2).

Lemma 1.3. Theorem 1.1 implies Theorem 1.2.
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Proor. Assume there is a k-rational point P on C. Then for any k-scheme T,
the projection q: C x T — T has a section s = (t+— (P, t)), which induces
a map s* = (¥ Z|{P} x T): Pic(C x T)— Pic(T) such that s*og* = id.
Consequently, Pic(C x T) = Im(q*) ® Ker(s*), and so P2(T) can be iden-
tified with

P'(T) = {ZePic(C x T)|deg(Z,) = 0all t, Z|{P} x T is trivial}.

Now assume (1.1). As C(T) is nonempty for all k-schemes T, J represents
the functor P2 = P’. This means that there is an element .# of P'(J) (corre-
sponding to id: J — J under 1) such that, for every k-scheme T and . € P'(T),
there is a unique morphism ¢: T — J such that (1 x @)*# ~ £. In partic-
ular, for each invertible sheaf ¥ on C of degree 0, there is a unique ae J(k)
such that #, ~ &. After replacing . with (1 x t,)* . for a suitable ae J(k),
we can assume that .#, is trivial, and therefore that .# is a divisorial corre-
spondence between (C, P) and J. It is clear that .# has the universal property
required by (1.2). O

Exercise 1.4. Let (J, .#") be a pair having the universal property in (1.2)
relative to some point P on C. Show that J is the Jacobian of C.

We next make some remarks concerning the relation between P2 and J in
the case that C does not have a k-rational point.

Remark 1.5. For all k-schemes T, i(T): P2(T) — J(T) is injective. The proof of
this is based on two observations. Firstly, because C is a complete variety
H°(C, O¢) = k, and this holds universally: for any k-scheme T, the canonical
map O — q,O¢ ¢ is an isomorphism. Secondly, for any morphism g: X - T
of schemes such that 0, 5 q. 0Oy, the functor 4 — q* # from the category
of locally free @ -modules of finite-type to the category of locally free O4-
modules of finite-type is fully faithful, and the essential image is formed of
those modules & on X such that g, % is locally free and the canonical map
q*(q. %) —» & is an isomorphism. (The proof is similar to that of [14, 5.17.)

Now let . be an invertible sheaf on C x T that has degree 0 on the fibres
and which maps to zero in J(T); we have to show that ¥ ~ g*.# for some
invertible sheaf # on T. Let k' be a finite extension of k such that C has a
k'-rational point, and let %’ be the inverse image of & on (C x T),.. Then %’
maps to zero in J(T;.), and so (by definition of J) we must have &' ~ g*. 4’
for some invertible sheaf .4’ on T,.. Therefore g, %" is locally free of rank one
on Ty, and the canonical map g*(q,#’) = &' is an isomorphism. But ¢, %’
is the inverse image of q,.% under T' — T (see [14, 4.2a]), and elementary
descent theory (cf. (1.8) below) shows that the properties of ¥’ in the last
sentence descend to &; therefore & ~ q*.# with 4 = g, &.

Remark 1.6. It is then sometimes possible to compute the cokernel to
1: P2(k) — J(k). There is always an exact sequence

0 — P2(k) — J(k) - Br(k),
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where Br(k) is the Brauer group of k. When k is a finite extension of Q,,
Br(k) = Q/Z, and it is known (see [11, p. 130]) that the image of J(k) in
Br(k) is P~1Z/Z, where P (the period of C) is the greatest common divisor of
the degrees of the k-rational divisor classes on C.

Remark 1.7. Regard P2 as a presheaf on the large étale site over C; then the
precise relation between J and P2 is that J represents the sheaf associated
with P2 (see [6, §5]).

Finally, we show that it suffices to prove (1.1) after an extension of the base
field. For the sake of reference, we first state a result from descent theory. Let
k' be a finite Galois extension of a field k with Galois group G, and let V be
a variety over k'. A descent datum for V relative to k'/k is a collection of
isomorphisms ¢,: oV — V, one for each o € G, such that ¢,, = ¢, o1, for all
o and 7. There is an obvious notion of a morphism of varieties preserving the
descent data. Note that for a variety V over k, V,. has a canonical descent
datum. If V is a variety over k and V' = V,., then a descent datum on
an Op.-module .# is a family of isomorphisms ¢,: c.# — .# such that
@, = @, 0t@, for all o and .

Proposition 1.8. Let k'/k be a finite Galois extension with Galois group G.

(a) The map sending a variety V over k to V. endowed with its canonical de-
scent datum defines an equivalence between the category of quasi-projective
varieties over k and that of quasi-projective varieties over k' endowed with
a descent datum.

(b) Let V be a variety over k, and let V' = V,.. The map sending an (,,-module
Mto M =0y @ M endowed with its canonical descent datum defines
an equivalence between the category of coherent O,-modules and that of
coherent Oy.-modules endowed with a descent datum. Moreover, if M’ is
locally free, then so also is M.

Proor. See [17, V. 20] or [19, §17]. (For the final statement, note that being
locally free is equivalent to being flat, and that V' is faithfully flat over V)
O

Proposition 1.9. Let k' be a finite separable extension of k; if (1.1) is true for C,.,
then it is true for C.

Proor. After possibly enlarging k', we can assume that it is Galois over k
(with Galois group G, say) and that C(k’) is nonempty. Let J' be the Jacobian
of C,.. Then J' represents P2 _, and so there is a universal . in P2(J'). For
any 6 € G, o.# € P2(¢J'), and so there is a unique map ¢,: J' — J' such that
(1 x @,)*# = oM (in PA(aJ')). One checks directly that ¢,, = ¢,01¢,; in
particular, ¢,00¢,-1 = ¢;4, and so the ¢, are isomorphisms and define a
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descent datum on J'. We conclude from (1.8) that J' has a model J over k
such that the map P3(T,.) - J(T,.) is G-equivariant for all k-schemes T. In
particular, for all T, there is a map P(T) — P(T,)® 3 J(k')¢ = J(k). To see
that the map is an isomorphism when C(T) is nonempty, we have to show
that in this case P2(T) — P2(T,.)¢ is an isomorphism. Let se C(T); then (cf.
the proof of (1.3)), we can identify P2(T;) with the set of isomorphism classes
of pairs (&, ) where % is an invertible sheaf on C x T, whose fibres are of
degree 0 and o is an isomorphism Or, 31, s)*&. Such pairs are rigid—
they have no automorphisms—and so each such pair fixed under G has a
canonical descent datum, and therefore arises from an invertible sheaf on
CxT O

§2. The Canonical Maps from C to its
Jacobian Variety

Throughout this section, C will be a complete nonsingular curve, and J will
be its Jacobian variety (assumed to exist).

Proposition 2.1. The tangent space to J at 0 is canonically isomorphic to
HY(C, O); consequently, the dimension of J is equal to the genus of C.

Proor. The tangent space T, (J) is equal to the kernel of J(k[e]) — J(k), where
k[e] is the ring in which & = 0 (see [8, II, Ex. 2.8]). Analogously, we define
the tangent space Ty (P2) to P2 at 0 to be the kernel of P2(k[e]) — P2(k). From
the definition of J, we obtain a map of k-linear vector spaces Ty (P2) = Ty(J)
which is an isomorphism if C(k) # ®. Since the vector spaces and the map
commute with base change, it follows that the map is always an isomorphism.

Let C, = Cy; then, by definition, P2(k[e]) is equal to the group of in-
vertible sheaves on C, whose restrictions to the closed subscheme C of C,
have degree zero. It follows that T,(P?) is equal to the kernel of H'(C,, O¢) —
HY(C, 0%). The scheme C, has the same underlying topological space as C,
but O¢, = Oc ®, k[e] = Oc @ Oce. Therefore we can identify the sheaf
0% on C, with the sheaf OF @ Oce on C, and so H'(C, OF) =
HYC, 0F) ® H'(C, Oce). 1t follows that the map ar>exp(ae) =1 + ae,
Oc — O¢, induces an isomorphism H Y(C, 0.) — T, (P2). This completes the
proof. O

Let PeC(k), and let #” be the invertible sheaf £(A — C x {P} — {P} x C)
on C x C, where A denotes the diagonal. Note that #* is symmetric and
that £°|C x {Q} ~ #(Q — P). In particular, #*|{P} x C and £*|C x {P}
are both trivial, and so .#* is a divisorial correspondence between (C, P) and
itself. Therefore, according to (1.2) there is a unique map f*: C — J such that
fP(P)=0 and (1 x fPy*4" ~ #7. When J(k) is identified with Pic°(C),
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fP: C(k) — J(k) becomes identified with the map Q— £(Q) ® Z(P)™! (or, in
terms of divisors, the map sending Q to the linear equivalence class [Q — P]
of Q — P). Note that the map ) n,Q— > n,f"(Q) = [Y.nyQ] from the group
of divisors of degree zero on C to J(k) induced by f* is simply the map
defined by i In particular, it is independent of P, is surjective, and its kernel
consists of the principal divisors.

From its definition (or from the above descriptions of its action on the
points) it is clear that if P’ is a second point on C, then f* is the composite
of f? with the translation map t;p_p, and that if P is defined over a Galois
extension k' of k, then af ¥ = f°F for all ¢ € Gal(k'/k).

If C has genus zero, then (2.1) shows that J = 0. From now on we assume
that C has genus g > 0.

Proposition 2.2. The map (f*)*: T'(J, Q}) - I'(C, Q) is an isomorphism.

ProoF. As for any group variety, the canonical map h;: I'(J, Q}) —» T,(J)¥
is an isomorphism [18, III, 5.2]. Also there is a well-known duality between
I'(C, Q) and H'(C, 0c). We leave it as an exercise to the reader (unfortu-
nately rather complicated) that the following diagram commutes:

ru,eh’s rc ol

hy| ~ I~
T,(J) 3 HYC,0:)"  (dual of isomorphism in (2.1)).

Proposition 2.3. The map f* is a closed immersion (that is, its image f*(C) is
closed and f* is an isomorphism from C onto f¥(C)); in particular, f¥(C) is
nonsingular.

Proor. It suffices to prove this in the case that k is algebraically closed.

Lemma 2.4, Let f: V — W be a map of varieties over an algebraically closed
field k, and assume that V is complete. If the map V(k) — W(k) defined by
f is injective and, for all closed points Q of V, the map on tangent spaces
To(V) = Tpo(W) is injective, then f'is a closed immersion.

Proor. The proof is the same as that of the “if” part of [8, 11, 7.3]. (Briefly, the
image of f is closed because V is complete, and the condition on the tangent
spaces (together with Nakayama’s lemma) shows that the maps ¢y, — ¢, on
the local rings are surjective.) O

We apply the lemma to f = f*. If f(Q) = f(Q') for some Q and Q' in C(k),
then the divisors Q — P and Q' — P are linearly equivalent. This implies that
Q — Q' is linearly equivalent to zero, which is impossible if Q # Q' because C
has genus > 0. Consequently, f is injective, and it remains to show that
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the maps on tangent spaces (df 7)o: To(C) = T;o(J) are injective. Because [
differs from f* by a translation, it suffices to do this in *the case that Q = P.
The dual of (dfF)y: To(C) - Ty(J) is clearly T(J, @1)5 T(C, @4) %8 Ty(0),
where h. is the canonical map, and it remains to show that h¢ is surjec-
tive. The kernel of h¢ is {weI'(C, Q')|w(P) = 0} = I'(C, Q'(— P)), which is
dual to HY(C, #(P)). The Riemann—Roch theorem shows that this last
group has dimension g — 1, and so Ker(hc) # I'(C, Q'): h¢ is surjective, and
the proof is complete. O

We now assume that k = C and sketch the relation betwen the ab-
stract and classical definitions of the Jacobian. In this case, I'(C(C), Qb
(where Q' denotes the sheaf of holomorphic differentials in the sense of
complex analysis) is a complex vector space of dimension g, and one shows
in the theory of abelian integrals that the map ¢+ (w [, w) embeds
H,(C(C),Z) as a lattice into the dual space T'(C(C), Q')". Therefore
Jon & I'(C(C), Q')Y/H,(C(C), Z) is a complex torus, and the pairing

H,(C(C), Z) x H{(C(C), Z)~>Z
defined by Poincaré duality gives a nondegenerate Riemann form on J*.
Therefore J*" is an abelian variety over C. For each P there is a canonical
map g°: C - J* sending a point Q to the element represented by (w+— |, ®

where y is any path from P to Q. Define e: I'(C(C), Q')¥ — J(C) to be the
surjection in the diagram:

I(C(C), Q') —» J(C)
= Texp
ry,Qh)y 3 1,0).
Note that if T'(C(C), Q') is identified with Tp(C), then (de), = (df F)p. It
follows that if y is a path from P to Q and | = (w+ |, w), then e(l) = f7(Q).

Theorem 2.5. The canonical surjection e: T (C(C), Q')Y — J(C) induces an
isomorphism J*" — J carrying g* into f*.

Proofr. We have to show that the kernel of e is H,(C(C), Z), but this follows
from Abel’s theorem and the Jacobi inversion theorem.

(Abel) Let P;, ..., P.and Q,, ..., Q, be elements of C(C); then there is a
meromorphic function on C(C) with its poles at the P; and its zeros at the Q,

if and only if for any paths y; from P to P, and y; from P to Q; there exists a y
in H,(C(C), Z) such that

zjw zjm_jw all o,

(Jacobi) Let | be a linear mapping I'(C(C), Q') —» C. Then there exist g
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points Py, ..., P, on C(C) and paths y,, ..., y, from P to P, such that
llw) =3[, wforall we '(C(C), Q).

Let [eT(C(C), Q')¥; we may assume it is defined by g points P;, ..., P,
Then [ maps to zero in J(C) if and only if the divisor ) P, — gP is linearly
equivalent to zero, and Abel’s theorem shows that this is equivalent to [ lying

in H,(C(C), 2). O

§3. The Symmetric Powers of a Curve

Both in order to understand the structure of the Jacobian, and as an aid in
its construction, we shall need to study the symmetric powers of C.

For any variety V, the symmetric group S, on r letters acts on the product
of r copies V" of V by permuting the factors, and we want to define the rth
symmetric power V™ of V to be the quotient S,\V". The next proposition
demonstrates the existence of ¥ and lists its main properties.

A morphism ¢: V" — T is said to be symmetric if poo = ¢ for all ¢ in S,.

Proposition 3.1. Let V be a variety over k. Then there is a variety V" and a
symmetric morphism m: V' — V' having the following properties:

(a) as a topological space, (V", n) is the quotient of V" by S.;
(b) for any open affine subset U of V, U is an open affine subset of V") and
T(UY, Oyw) = T(U", Oy.)5 (set of elements fixed by the action of S,).

The pair (V", ) has the following universal property. every symmetric
k-morphism @: V" — T factors uniquely through m.
The map = is finite, surjective, and separable.

Proor. If V is affine, say V = spec A4, define V) to be spec((4 ®, -+ ®, 4)%).
In the general case, write V' as a union U U, of open affines, and construct V
by patching together the U®. See [16, 11, §7, p. 66 and 111, §11, p. 112] for the
details. O

The pair (V®, n) is uniquely determined up to a unique isomorphism by
the conditions of the proposition. It is called the rth symmetric power of V.

Proposition 3.2. The symmetric power C” of a nonsingular curve is nonsingular.

Proor. We may assume that k is algebraically closed. The most likely
candidate for a singular point on C® is the image of Q of a fixed point
(P, ..., P) of S, on C", where P is a closed point of C. The completion @, of
the local ring at P is isomorphic to k[[X]], and so

pxK[[X]]1® ... ® k[[X]] ~ k[[X,,..., X,]].

PN
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It follows that @Q ~ k[[X;,..., X,]15 where S, acts by permuting the vari-
ables. The fundamental theorem on symmetric functions says that, over
any ring, a symmetric polynomial can be expressed as a polynomial in the
elementary symmetric functions o4, ..., ¢,. This implies that

k[[Xl’ LR Xr]]sr = k[[al’ R Gr]]’

which is regular, and so Q is nonsingular.
For a general point Q = n(P, P, ..., P, ...) with P occuring r' times, P’
occuring r” times, and so on,

O = k[[Xy, ..., X, 1% ® k[[Xy, ..., X, 115 ® ...,

which the same argument shows to be regular. O

Remark 3.3. The reader may find it surprising that the fixed points of the
action of S, on C" do not force singularities on C”. The following remarks
may help clarify the situation. Let G be a finite group acting effectively on a
nonsingular variety ¥, and suppose that the quotient variety W = G\V
exists. Then V — W is ramified exactly at the fixed points of the action. A
purity theorem [5, X, 3.1] says W can be nonsingular only if the ramification
locus is empty or has pure codimension 1 in V. As the ramification locus of
V" over V" has pure codimension dim(V), this implies that ¥V can be
nonsingular only if V is a curve.

Let K be field containing k. If K is algebraically closed, then (3.1a) shows
that C”(K) = S,\C(K)", and so a point of C* with coordinates in K is an
unordered r-tuple of K-rational points. This is the same thing as an effective
divisor of degree r on Cyx. When K is perfect, the divisors on Cx can be
identified with those on Cg fixed under the action of Gal(K/K). Since the
same is true of the points on C, we see again that C*”(K) can be identified
with the set of effective divisors of degree r on C. In the remainder of this
section we shall show that C®(T) has a similar interpretation for any
k-scheme. (Since this is mainly needed for the construction of J, the reader
more interested in the properties of J can pass to the Section 5.)

Let X be a scheme over k. Recall [8, II, 6, p. 145] that a Cartier divisor D
is effective if it can be represented by a family (U;, g;); with the g; in T'(U;, Oy).
Let .#(D) be the subsheaf of Oy such that #(D)|U; is generated by g;. Then
J#(D) = #(— D), and there is an exact sequence

0->FD)> 0y —>0Op—>0,

where 0, is the structure sheaf of the closed subscheme of X associated with
D. The closed subschemes arising from effective Cartier divisors are precisely
those whose sheaf of ideals can be locally generated by a single element that
is not a zero-divisor. We shall often identify D with its associated closed
subscheme.
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For example, let T = A! = Spec k[ Y], and let D be the Cartier divisor
associated with the Weil divisor nP, where P is the origin. Then D is repre-
sented by (Y”, A'), and the associated subscheme is Spec(k[Y]/(Y™)).

Definition 3.4. Let 7: X — T be a morphism of k-schemes. A relative effective
Cartier divisor on X/T is a Cartier divisor on X that is flat over T when
regarded as a subscheme of X.

Loosely speaking, the flatness condition means that the divisor has no
vertical components, that is, no components contained in a fibre. When T is
affine, say T = spec(R), then a subscheme D of X is a relative effective Cartier
divisor if and only if there exists an open affine covering X = ( J U; and
g:€ T (U;, Ox) = R; such that:

(@) DU, = spec(R;/g;Ry);
(b) g;is not a zero-divisor; and
() R;/g;R;is flat over R, for all i.

Henceforth all divisors will be Cartier divisors.

Lemma 3.5. If D; and D, are relative effective divisors on X /T, then so also is
their sum D, + D,.

Proor. It suffices to prove this in the case that T is affine, say T = spec(R).
We have to check that if conditions (b) and (c) above hold for g; and ¢/, then
they also hold for g;g;. Condition (b) is obvious, and the flatness of R;/g;g;R;
over R follows from the exact sequence

0 Ri/g:R; 5 Ri/g:g/R; — R,/giR; =0,

which exhibits it as an extension of flat modules. O

Remark 3.6. Let D be a relative effective divisor on X/T. On tensoring the
inclusion (D) g Oy with (D) we obtain an inclusion 0Oy < £ (D) and
hence a canonical global section s, of £ (D). For example, in the case that T
is affine and D is represented as in the above example, £ (D)|U; is g ! R; and
sp|U; is the identity element in R,.

The map D+—(Z(D), sp) defines a one-to-one correspondence between
relative effective divisors on X/T and isomorphism classes of pairs (&, s)
where & is an invertible sheaf on X and seI'(X, &) is such that

0505 %> LIsOy—0

is exact and #/s0y is flat over T.

Observe that, in the case that X is flat over T, £ /sOy is flat over T if and
only if, for all ¢ in T, s does not become a zero-divisor in & ® 0Oy . (Use that
an R-module M is flat if Tor®(M, N) = 0 for all finitely generated modules N,
and that any such module N has a composition series whose quotients are
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the quotient of R by a prime ideal; therefore the criterion has only to be
checked with N equal to such a module.)

Proposition 3.7. Consider the Cartesian square
X« X.
Lol
T<T

If D is a relative effective divisor on X /T, then its pull-back to a closed sub-
scheme D' of X' is a relative effective divisor on X'/T'.

Proor. We may assume both T and T’ are affine, say T = spec R and T' =
spec R’, and then have to check that the conditions (a), (b), and (c) above are
stable under the base change R — R'. Write U/ = U x; T'; clearly D' n U] =
spec(R;j/g;R;). The conditions (b) and (c) state that

0- R, AR >R/gR,~0

is exact and that R;/g;R; is flat over R. Both assertions continue to hold after
the sequence has been tensored with R'. O

Proposition 3.8. Let D be a closed subscheme of X, and assume that D and X
are both flat over T. If D, £ D x, {t} is an effective divisor on X,/t for all
points t of T, then D is a relative effective divisor on X.

Proor. From the exact sequence
0->F#D)>0x—>0O,—>0

and the flatness of X and D over T, we see that .#(D) is flat over T. The
flatness of @), implies that, for any t € T, the sequence

0— #(D) ®g, k(t) > Ox, - Op -0

is exact. In particular, .#(D) ® k(t) 3 #(D,). As D, is a Cartier divisor, .#(D,)
(and therefore also #(D) ® k(t)) is an invertible Oy -module. We now apply
the fibre-by-fibre criterion of flatness: if X is flat over T and % is a coherent
Ox-module that is flat over T and such that &, is a flat Oy -module for all ¢
in T, then & is flat over X [2, III, 54]. This implies that .#(D) is a flat
Ox-module, and since it is also coherent, it is locally free over (0. Now
the isomorphism .#(D) ® k(t) S #(D,) shows that it is of rank one. It is
therefore locally generated by a single element, and the element is not a
zero-divisor; this shows that D is a relative effective divisor. O

Let n: € — T be a proper smooth morphism with fibres of dimension one.
If D is a relative effective divisor on /T, then D, is an effective divisor on €,,
and if T is connected, then the degree of D, is constant; it is called the degree
of D. Note that deg(D) = r if and only if @, is a locally free ¢;-module of
rank r.
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Corollary 3.9. A closed subscheme D of € is a relative effective divisor on €/T
if and only if it is finite and flat over T; in particular, if s: T — € is a section to
7, then s(T) is a relative effective divisor of degree 1 on €/T.

ProoF. A closed subscheme of a curve over a field is an effective divisor if and
only if it is finite. Therefore (3.8) shows that a closed subscheme D of € is a
relative effective divisor on €/T if and only if it is flat over T and has finite
fibres, but such a subscheme D is proper over T and therefore has finite fibres
if and only if it is finite over T (see [13, I, 1.10] or [8, III, Ex. 11.3]). O

If D and D’ are relative effective divisors on /T, then we write D > D’ if
D o D’ as subschemes of € (that is, (D) = #(D’)).

Proposition 3.10. If D, > D, (as divisors on C,) for all t in T, then D > D'.

ProOF. Represent D as a pair (s, &£) (see 3.6). Then D > D’ if and only if s
becomes zero in £ ® O = £|D'. But ¥ ® O, is a locally free O -module
of finite rank, and so the support of s is a closed subscheme of T. The
hypothesis implies that this subscheme is the whole of T O

Let D be a relative effective divisor of degree r on 4/T. We shall say that
D is split if Supp(D) = ) si(T) for some sections s; to . For example, a
divisor D = Y n;P, on a curve over a field is split if and only if k(P,) = k for
all i.

Proposition 3.11. Every split relative effective divisor D on €/T can be written
uniquely in the form D =Y n;s,(T) for some sections s;.

Proor. Let Supp(D) = | s;(T), and suppose that the component of D with
support on s;(T) has degree n;. Then D, = (Y. n;s,(T)), for all ¢, and so (3.10)
shows that D =Y n;s,(T). O

Example 3.12. Consider a complete nonsingular curve C over a field k. For
each i there is a canonical section s; to g: C x C" — C', namely, (P,, ..., P)—
(P, Py, ..., P). Let D, to be s;,(C") regarded as a relative effective divisor on
C x C’/C", and let D = Y D;. Then D is the unique relative effective divisor
C x C’/C" whose fibre over (Py, ..., P,) is Y P;. Clearly D is stable under the
action of the symmetric group S,, and D, = S,\D (quotient as a subscheme
of C x C") is a relative effective divisor on C x C"/C" whose fibre over
DeCP(k)is D.

For C a complete smooth curve over k and T a k-scheme, define Divy(T)
to be the set of relative effective Cartier divisors on C x T/T of degree r.
Proposition 3.7 shows that Divg. is a functor on the category of k-schemes.
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Theorem 3.13. For any relative effective divisor D on C x T/Tof degree r, there
is a unique morphism @: T — C*") such that D = (1 x ¢)~'(D,,,). Therefore C
represents Divg.

ProoF. Let us first assume that D is split, so that D =Y n;s/(T) for some
sections s;; T— C x T. In this case, we define T — C" to be the map
(poSy,...,pos,y, pos,,...), where s; occurs n; times, and we take ¢ to be the
composite T — C"— C™. In general, we can choose a finite flat covering
Y: T' > T such that the inverse image D’ of D on C x T’ is split, and let
¢@": T' —» C” be the map defined by D'. Then the two maps ¢'op and ¢’ oq
from T’ x; T’ to C™ are equal because they both correspond to the same
relative effective divisor

p (D) =Wop) (D) =Woq) (D) =g (D)

on T' x; T'. Now descent theory [13, [, 2.17] shows that ¢’ factors through
T. |

Exercise 3.14. Let E be an effective Cartier divisor of degree r on C, and
define a subfunctor DivE of Divy by

DivE(T) = {DeDivi(T)|D, ~ Eall te T}.

Show that DivE is representable by P(V) where V is the vector space
[(C, Z(E)) (use [8, I1, 7.12]) and that the inclusion Div§ < Div defines a
closed immersion P(V) c C®.

Remark 3.15. Theorem 3.13 says that C” is the Hilbert scheme Hilb¢,, where
P is the constant polynomial r.

§4. The Construction of the Jacobian Variety

In this section, C will be a complete nonsingular curve of genus g > 0, and P
will be a k-rational point on C. Recall (1.9), that in constructing J, we are
allowed to make a finite separable extension of k.

For a k-scheme T, let

PL(T) = {L €Pic(C x T)|deg(&,) =rallt}/~,

where & ~ % means ¥ ~ ¥ ® q*.4# for some invertible sheaf .# on T.
Let &, = #(rP), then £+— % ® p*<, is an isomorphism P2(T)— P{(T),
and so, to prove (1.1), it suffices to show that P{. is representable for some r.
We shall do this for a fixed r > 2g.

Note that there is a natural transformation of functors f: Divg — P¢
sending a relative effective divisor D on C x T/T to the class of £ (D) (or, in
other terms, (s, &) to the class of £).
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Lemma 4.1. Suppose there exists a section s to f: Divp — Pg. Then Pg is
representable by a closed subscheme of C.

Proor. The composite ¢ = so f is a natural transformation of functors
Divi. — Divy and Div} is representable by C”, and so ¢ is represented by a
morphism of varieties. Define J' to be the fibre product,

c"
(L o) l
" x ¢ & o,
Then
J'(T) = {(a, b)e C"(T) x C"(T)|a = b, a = @b}
= {aeC"(T)la = ¢(a)}
= {ae C"(T)|a = sc, some ce PH(T)}
~ Pe(T),
because s is injective. This shows that P{ is represented by J', which is a

closed subscheme of C® because A is a closed immersion. O

The problem is therefore to define a section s or, in other words, to find
a natural way of associating with a family of invertible sheaves % of degree r
a relative effective divisor. For % an invertible sheaf of degree r on C,
the dimension h°(%) of H°(C, %) is r + 1 — g, and so there is an (r — g)-
dimensional system of effective divisors D such that £ (D) =~ ¥. One way to
cut down the size of this system is to fix a family y = (Py,..., P,_;) of
k-rational points on C and consider only divisors D in the system such that
D > D, where D, = Y P.. As we shall see, this provides a partial solution to
the problem.

Proposition 4.2. Let y be an (r — g)-tuple of k-rational points on C, and let
L, =L peyP).
(a) There is an open subvariety C* of C" such that, for all k-schemes T,

C!(T) = {DeDivi(T)|h°(D, — D,) = 1,all te T}.

If k is separably closed, then C® is the union of the subvarieties C*.
(b) For all k-schemes T, define

P/(T) = {LePyT(&L ® £,')=1allteT}.
Then P? is a subfunctor of P{ and the obvious natural transformation

f: C? > P? has a section.

Proor. (a) Note that for any effective divisor D of degree r on C,
h°(D — D,) > 1, and that equality holds for at least one D (for example,
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D=D,+ Q; + -+ Q,for a suitable choice of points @, ..., Q,; see the ele-
mentary result (5.2b) below). Let D, be the canonical relative effective divi-
sor of degree r on C x C"/C". Then [14, 4.2c] applied to #(D.,, — p~'D,)
shows that there is an open subscheme C” of C* such that h°((D.,,), — D,) = 1
for ¢t in C” and h°((D..,), — D,) > 1 otherwise. Let T be a k-scheme, and
let D be a relative effective divisor of degree r on C x T/T such that
h°(D, — D,) = 1. Then (3.13) shows that there is a unique morphism
¢@: T - C" such that (1 x ¢)"'(D.,,) = D, and it is clear that ¢ maps T into
C’. This proves the first assertion.

Assume that k is separably closed. To show that C = (] C", it suffices
to show that C(k) = ( ) C’(k), or that for every divisor D of degree r on C,
there exists a y such that h°(D — D,) = 1. Choose a basis ey, ..., e,_, for
HO(C, #(D)), and consider the corresponding embedding 1: C < P"79. Then
1(C) is not contained in any hyperplane (if it were contained in ) a;X; =0,
then ) a;e; would be zero on C), and so there exist r — g points P;, ..., P,_,
on C disjoint from D whose images are not contained in any linear subspace
of codimension 2 (choose P;, P,, ... inductively so that P;, ..., P, are
not contained in a linear subspace of dimension i — 2). The (r — g)-tuple
y = (P4, ..., P,_,) satisfies the condition because

HY(C, 4D =Y P)) =Y awe)ly aie(P)=0,j=1,....r — g},

which has dimension < 2.

(b). Let # be an invertible sheaf on C x T representing an element of
P?(T). Then h°(D, — D,) = 1 for all t, and the Riemann-Roch theorem shows
that h'(D,— D,)=0 for all t. Now [14, 4.2e] shows that # g«
4,(Z ® p*#;')is an invertible sheaf on T and that its formation commutes
with base change. This proves that P{ is a subfunctor of P¢. On tensoring the
canonical map qg*.# — &£ ® p*£," with g*.# ', we obtain a canonical map
Ocxr— & ® p*¥;' ® q*M . The natural map &, — O induces a map
p*&,;' = Oc 1, and on combining this with the preceding map, we obtain
a canonical map s,: Ocyr—> £ ® q*.#7'. The pair (s,, & ® q*#7 ") is a
relative effective divisor on C x T/T whose image under f in P*(T) is repre-
sented by & ® q* A4~ ~ £ (see 3.6). We have defined a section to C'(T) —»
P?(T), and our construction is obviously functorial. O

Corollary 4.3. The functor P? is representable by a closed subvariety J of C*.
Proor. The proof is the same as that of (4.1). O

Now consider two (g — r)-tuples y and y’, and define P?*?" to be the functor
such that P*Y(T) = P?(T) n P¥(T) for all k-schemes T. It easy to see that
P is representable by a variety J”? such that the maps J”" < J” and
J»" 5 J defined by the inclusions P" < P? and P"? c P are open
immersions.

We are now ready to construct the Jacobian of C. Choose tuples yy, ..., ¥,
of points in C(k,) such that C®” = ( | C". After extending k, we can assume
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that the y; are tuples of k-rational points. Define J by patching together the
varieties J? using the open immersions J**% c J¥, J¥i It is easy to see that J
represents the functor P., and therefore also the functor P2. Since the latter
is a group functor, J is a group variety. The natural transformations Divf —
P~ — P2 induce a morphism C” — J, which shows that J is complete and is
therefore an abelian variety. The proof of (1.1) is complete. |

§5. The Canonical Maps from the Symmetric
Powers of C to its Jacobian Variety

Throughout this section C will be a complete nonsingular curve of genus
g > 0. Assume there is a k-rational point P on C, and write f for the map f*
defined in Section 2.

Let f" be the map C" — J sending (P, ..., P,) to f(P,) + - + f(P,). On
points, f" is the map (P,,..., P)—[P, + ... + P, — rP]. Clearly it is sym-
metric, and so induces a map f: C"” — J. We can regard f as the map
sending an effective divisor D of degree r on C to the linear equivalence class
of D — rP. The fibre of the map f©: C”(k)— J(k) containing D can be
identified with the space of effective divisors linearly equivalent to D, that is,
with the linear system |D|. The image of C” in J is a closed subvariety W" of
J, which can also be written W™ = f(C) + ... + f(C) (r summands).

Theorem 5.1. (a) For all r < g, the morphism f©: C” — W" is birational; in
particular, f@ is a birational map from C® onto J.

(b) Let D be an effective divisor of degree r on C, and let F be the fibre of [
containing D. Then no tangent vector to C” at D maps to zero under (df ")
unless it lies in the direction of F; in other words, the sequence

0— Ty(F) = Tp(C") > T,(J), a=f"(D),

is exact. In particular, (df ©)p: TH(C"™) — T,(J) is injective if | D| has dimen-

sion zero.
Proor. For D a divisor on C, we write h°(D) for the dimension of

HO(C, 2(D)) = {f €k(C)|(f) + D > 0}
and h!(D) for the dimension of H!(C, £ (D)). Recall that
h°(D) — h'(D) = deg(D) + 1 — g,

and that H!(C, #(D))¥ = H°(C, Q!(— D)), which can be identified with the

set of w € Q¢ Whose divisor (w) > D.

Lemma 5.2. (a) Let D be a divisor on C such that h'(D) > O; then there is a
nonempty open subset U of C such that h*(D + Q) = h'(D) — 1 for all
closed points Q in U, and h*(D + Q) = h*(D) for Q ¢ U.
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(b) For any r < g, there is an open subset U of C" such that Q. P)=1 for
all(Py,...,P)inU.

Proor. (a) If Q is not in the support of D, then H'(C, £Z(D + Q))" =
I'(C, Q!(—D — Q)) can be identified with the subspace of I'(C, Q'(—D)) of
differentials with a zero at Q. Clearly therefore we can take U to be the com-
plement of the zero set of a basis of H'(C, #(D)) together with a subset
of the support of D.

(b) Let D, be the divisor zero on C. Then h'(D,) = g, and on applying (a)
repeatedly, we find that there is an open subset U of C" such that h'(} P) =
g —rforall (P,,..., P)in U. The Riemann—Roch theorem now shows that
WO P)y=r+(1—g)+(g—r)=1forall(P,...,P)in U. O

In proving (5.1), we can assume that k is algebraically closed. If U’ is the
image in C™ of the set U in (5.2b), then f©: C®)(k) — J(k) is injective on U'(k),
and so f®: C" — W" must either be birational or else purely inseparable of
degree > 1. The second possibility is excluded by part (b) of the theorem, but
before we can prove that we need another proposition.

Proposition 5.3. (a) For all r > 1, there are canonical isomorphisms
[(C, QY 3, Q) 3T(Ch, Q)

Let weI'(C, Q') correspond to o’ e T(C", Q'); then for any effective divisor
D of degree r on C, (w) = D if and only if ' has a zero at D.
(b) Forallr > 1, the map fV*: T'(J, Q') » I'(C™", Q) is an isomorphism.

ProoFr. A global 1-form on a product of projective varieties is a sum of global
1-forms on the factors. Therefore I'(C", Q') = @ p¥T'(C, Q!), where the p; are
the projection maps onto the factors, and so it is clear that the map wi— Y p¥w
identifies I'(C, Q') with I'(C", Q!)5-. Because n: C"— C"® is separable,
n*: T(C", Q') -» I'(C", Q') is injective, and its image is obviously fixed by the
action of S,. The composite map

I'(J, Q') - T(C”, Q') c I(C, Q) =T(C, Q)

sends  to the element ' of I'(C, Q') such that f™*w =) p¥w’. As f" =
Y fo p;,clearly o = f*w, and so the composite map is f* which we know
to be an isomorphism (2.2). This proves that both maps in the above sequence
are isomorphisms. It also completes the proof of the proposition except for
the second part of (a), and for this we need a combinatorial lemma.

Lemma 5.4. Let 64, ..., 0, be the elementary symmetric polynomials in X,, ...,
X,,and let t; = Y X/ dX;. Then

OpTo — Om_1T1 +  + (= 1)"1,, = dopsy,s alm<r—1.

Proor. Let o,,(i) be the mth elementary symmetric polynomial in the variables
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Xivooos Xi1s Xis1s---, X,. Then
Om—n = 0',","(1') + Xio-m—n—l(i)’

and on multiplying this by (— 1)"X"and summing over n (so that the successive
terms cancel out) we obtain the identity

Om — O-m—IXi + -+ (_ l)mX:": Jm(i)'
On multiplying this with dX; and summing, we get the required identity. [J

We now complete the proof of (5.3). First let D = rQ. Then @Q =k[[X]]
and @, = k[[o,, ..., 6,]1] (see the proof of (3.2); by ¢/, we mean the local ring
at the point D on C"). If w = (ap + a; X + a, X% + --*)dX, a;ek, when
regarded as an element of Qéqlk, then o' = ag7g + a,7; + . We know that
{do, ..., do,} is a basis for Q}_, as an 0 -module, but the lemma shows that
To, ---» Tp—; 1 also a basis. Now (w) > D and w'(D) = 0 are both obviously
equivalent to ay=a, =---=a,_;, =0. The proof for other divisors is
similar. d

We finally prove the exactness of the sequence in (5.1). The injectivity of
(di)p follows from the fact that i: F o C" is a closed immersion. Moreover
the sequence is a complex because f oi is the constant map x+ a. It remains
to show that

dim Im(di), = dim Ker(df "),.

Identify T,(J)¥ with T'(C, Q') using the isomorphisms arising from (2.1).Then
(5.3) shows that w is zero on the image of T,(C™") if and only if (w) > D,
that is, weI'(C, Q'(—D)). Therefore the image of (df ), has dimension
g — h°(Q'(—D)) = g — h*(D), and so its kernel has dimension r — g + h'(D).
On the other hand, the image of (di),, has dimension | D|. The Riemann—Roch
theorem says precisely that these two numbers are equal, and so completes
the proof. O

Corollary 5.5. For allr < g, f": C" > W" is of degree r!.
ProoF. It is the composite of n: C" — C® and f©. O

Remark 5.6. (a) The theorem shows that J is the unique abelian variety
birationally equivalent to C. This observation is the basis of Weil’s con-
struction of the Jacobian. (See Section 7.)

(b) The exact sequence in (5.1b) can be regarded as a geometric statement
of the Riemann—Roch theorem (see especially the end of the proof). In fact it
is possible to prove the Riemann—Roch theorem this way (see [12]).

(c) As we observed above, the fibre of f: C*”(k) — J(k) containing D can
be identified with the linear system | D|. More precisely, the fibre of the map of
functors C™” — J is the functor Div2 of (3.14); therefore the scheme-theoretic
fibre of £ containing D is a copy of projective space of dimension h°(D) — 1.
Corollary 3.9 of [14] shows that conversely every copy of projective space in
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C™" is contained in some fibre of ). Consequently, the closed points of
the Jacobian can be identified with the set of maximal subvarieties of C*”
isomorphic to projective space.

Note that for r > 2g — 2, |D| has dimension r — g, and so (df), is
surjective, for all D. Therefore [ is smooth (see [8, III, 10.4]), and the fibres
of £ are precisely the copies of P" ¢ contained in C*”. This last observation
is the starting point of Chow’s construction of the Jacobian [3].

§6. The Jacobian Variety as Albanese Variety;
Autoduality

Throughout this section C will again be a complete nonsingular curve of
genus g > 0 over a field k, and J will be its Jacobian variety.

Proposition 6.1. Let P be a k-rational point on C. The map f*: C — J has the
following universal property: for any map ¢: C — A from C into an abelian
variety sending P to 0, there is a unique homomorphism : J — A such that

o=yof"

ProoF. Consider the map C?— A, (P, ..., P)— Y y(P,). Clearly this is
symmetric, and so it factors through C®. It therefore defines a rational
map Y:J — A, which [14, 3.1] shows to be a morphism. It is clear from
the construction that o ff = ¢ (note that fF is the composite of
0—Q0+(g—1)P:C—-CY with f@:C® - J). In particular, y maps 0
to 0, and [14, 2.2] shows that it is therefore a homomorphism. If ¥ is
a second homomorphism such that ¢'o f¥ = ¢, then Y and ¢’ agree on
fP(C) + -+ + fP(C) (g copies), which is the whole of J. O

Corollary 6.2. Let A~ be a divisorial correspondence between (C, P) and J such
that (1 x fPy* N =~ £PF; then /" ~ M (notations as in Section 2 and (1.2)).

Proor. Because of [14, 6.2], we can assume k to be algebraically closed.
According to (1.2) there is a unique map ¢: J — J such that 4" ~ (1 x @)*.#".
On points ¢ is the map sending a e J(k) to the unique b such that
MP|C x {b} ~ /|C x {a}.
By assumption,
NIC x {fTQ} ~ LT|C x {Q} ~ MT|C x {f7Q},

and so (¢ o fF)(Q) = fP(Q) for all Q. Now (6.1) shows that f is the identity
map. ad

Corollary 6.3. Let C, and C, be curves over k with k-rational points P, and P,,
and let J, and J, be their Jacobians. There is a one-to-one correspondence
between Hom,(J,, J,) and the set of isomorphism classes of divisorial corre-
spondences between (C,, P,) and (C,, P,).



186 J. S. MILNE

Proor. A divisorial correspondence between (C,, P,) and (C,, P;) gives
rise to a morphism (C,, P;) = J, (by 1.2), and this morphism gives rise to
homomorphism J; = J, (by 6.1). Conversely, a homomorphism y: J;, — J,
defines a divisorial correspondence (1 x (ff1oy))*.#*> between (C,, P,) and
(Cl > Pl ) D

In the case that C has a point P rational over k, define F: C x C — J to be
the map (P, P,)— fP(P,) — fF(P,). One checks immediately that this is
independent of the choice of P. Thus, if P e C(k') for some Galois extension k’
of k, and F: C,. x C,. — J,. is the corresponding map, then oF = F for all
o € Gal(k'/k); therefore F is defined over k whether or not C has a k-rational
point. Note that it is zero on the diagonal A of C x C.

Proposition 6.4. Let A be an abelian variety over k. For any map ¢: C x C - A
such that @(A) =0, there is a unique homomorphism :J — A such that

YoF = o.

Proor. Let k' be a finite Galois extension of k, and suppose that there exists
a unique homomorphism ¥: C,. — J,. such that o F,. = ¢,.. Then the uni-
queness implies that oy = y for all ¢ in Gal(k'/k), and so  is defined over
k. 1t suffices therefore to prove the proposition after extending k, and so we
can assume that C has a k-rational point P. Now [14, 2.5] shows that there
exist unique maps ¢, and ¢, from C to A such that ¢,(P) =0 = @,(P)
and ¢(a, b) = @,(a) + @,(b) for all (a, b)e C x C. Because ¢ is zero on the
diagonal, ¢, = —¢,. From (6.1) we know that there exists a unique homo-
morphism  from J to A such that ¢, = o f, and clearly ¥ is also the
unique homomorphism such that ¢ = o F. a

Remark 6.5. The proposition says that (A, F) is the Albanese variety of C in
the sense of [9, I1.3, p. 45]. Clearly the pairs (J, ) and (J, F) are characterized
by the universal properties in (6.1) and (6.4).

Assume again that C has a k-rational point P, and let ® = W? ! Itis a
divisor on J, and if P is replaced by a second k-rational point, ® is replaced
by a translate. For any effective divisor D on J, write

Z'(D)=m*Z(D) ® p*¥£(D)”! ® ¢*£ (D)™
=%Ym'Y(D)—D xJ—J x D).

Recall [14, 9.1 and §10], that D is ample if and only if @, J — JV is an
isogeny, and then (1 X @ g p))*(2) = £'(D), where 2 is the Poincaré sheaf on
J x JV. Write ®~ for the image of ® under the map (—1);: J - J, and ®, for
t,® = O + a, ae J(k). Abbreviate (®7), by O, .

Theorem 6.6. The map ¢ p@): J — J* is an isomorphism; therefore, 1 X ¢ )
is an isomorphism (J x J, £'(®)) > (J x JY, ).
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Proor. As usual, we can assume k to be algebraically closed. Recall [14,

12.13] that @ge = (—1)*@ge = Pze) and that @ge, = @@ for all
aeJ(k).

Lemma 6.7. Let U be the largest open subset of J such that:

(i) the fibre of f¥: C® — J at any point of U has dimension zero; and
(i) if ae U(k) and D(a) is the unique element of C*”(k) mapping to a, then D(a)
is a sum of g distinct points of C(k).

Then f~Y(®;) = D(a) (as a Cartier divisor) for all aeU(k), where f =
frC-J.

Proor. Note first that U can be obtained by removing the subset over which
the fibres have dimension > 0, which is closed (see [18, 1.6, Theorem 7]),
together with the images of certain closed subsets of the form A x C972.
These last sets are also closed because C? — J is proper ([18, II, 4.8]), and it
follows that U is a dense open subset of J.

Let ae U(k), and let D(a) = ) P;, P, # P;fori # j. A point Q, of C maps to
a point of ®; if and only if there exists a divisor Y %, Q; on C such that
fP©Q,) = =Y f7(Q:) + a. The equality implies Y ?_; Q; ~ D, and the fact
that | D| has dimension 0 implies that ) Q; = D. It follows that the support of
f7U®;)is {P,, ..., P}, and it remains to show that f '(®,) has degree <g
for all a.

Consider the map ¥: C x ® — J sending (Q, b) to f(Q) + b. As the com-
posite of Y with 1 x f471: C x C9! - C x @ is f9: C? - J, and these maps
have degrees (g — 1)! and ¢! respectively (5.5), Y has degree g. Also ¥ is
projective because C x O is a projective variety (see [8, I1, Ex. 4.97). Consider
ae U, the fibre of  over a is f~1(®;) (more accurately, it is the subscheme
of C associated with the Cartier divisor f ~}(®;)). Therefore the restriction of
Y to Yy~Y(U) is quasi-finite and projective, and so is finite (see [8, III, Ex.
11.2]). As U is normal, this means that all the fibres of y over points of U are
finite schemes of rank < g (cf. [18, IL5, Theorem 6]). This completes the
proof of the lemma. O

Lemma 6.8. (a) Let ac J(k), and let f9)(D) = a; then f*£(©;) ~ ZL(D).
(b) The sheaves (f x (—1),)*%'(07) and " on C x J are isomorphic.

Proor. Note that (6.7) shows that the isomorphism in (a) holds for all a in a
dense open subset of J. Note also that the map C - C x {a} »J x J = J,
mo(f x (=1)e(Q—(Q.a) =t_,0f,
and so
(f x (=))*m*Z(©7)|C x {a} = L(1=,07)|f(C) = L(©;)|/(C)
~ f*Z(O,).
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Similarly
(f x (=1))*p*2(O7)|C x {a} ~ f*£(©®7), and
(f x (=1)*q*&L(©7)|C x {a} is trivial.
On the other hand, .#" is an invertible sheaf on C x J such that:

(i) #7|C x {a} ~ L(D — gP) if D is an effective divisor of degree g on C
such that f©(D) = a;
(ii) #P|{P} x J is trivial.

Therefore (a) is equivalent to (f x (—1))*m*#£(©7)|C x {a} being iso-
morphic to 4" ® p*L(gP)|C x {a} for all a. As we know this is true for
all a in a dense subset of J, [14, 5.3] applied to

M*Q p*L(gP) ® (f x (—=)*m*L(©7)!

proves (a). In particular, on taking a = 0, we find that f*£(®7) ~ Z(gP),
and so (f x (—1)*p*L(O7) =~ p*L(gP). Now [14, 5.1] shows that
(f x (—D))*m*ZL(O7)® p*Z(O7) )~ #F ® g* & for some invertible
sheaf 4" on J. On computing the restrictions of the sheaves to {P} x J, we
find that & =~ (— 1)*#(®7), which completes the proof. O

Consider the invertible sheaf (f x 1)*2 on C x JV. Clearly it is a divisorial
correspondence, and so there is a unique homomorphism fV: JY — J such
that (1 x fV)*.#" ~ (f x 1)*2. The next lemma completes the proof of the
theorem.

Lemma 6.9. The maps —f": JY - J and ¢ o). J = JV are inverse.

PRrOOF. Write Yy = — @ ye) = — @ ge-- We have
(U x Y1 x fY)* M7 = (1 x Y)*(f x 1)*P
X (f X PP 2 (f % (D)1 X 9g0)*2
r(f x(-1)*&£ O )~ ./#".

Therefore, f¥ oy is a map a: J — J such that (1 x a)*.#* ~ .#*; but the only
map with this property is the identity. O

Remark 6.10. (a) Lemma 6.7 shows that f(C) and ® cross transversely at any
point of U. This can be proved more directly by using the descriptions of the
tangent spaces implicitly given near the end of the proof of (5.1).

(b) In (6.8) we showed that #° ~ (f x (—1))*#'(®"). This implies

MP (f x (=1)*(1 x (P.Sf’(@*))*g) R(f x(=1))*1 x (P.Sf’(@))*g
~(f x (=1))*Z'(O).
Also, because D — ¢ g (p, is @ homomorphism, ¢ »(_¢) = — @ ¢(e), and so
M2 (f < (D)1 X 9p@)*P = (f x D*(1 X @ge)*?
~(f x )*Z'(—0).
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(c) The map on points JV(k) - J(k) defined by fV is induced by
f*: Pic(J) — Pic(C).

(d) Lemma 6.7 can be generalized as follows. An effective canonical divisor
K defines a point on C'?9~2 whose image in J will be denoted k. Let a
be a point of J such that a — k is not in (W9 2)", and write a = f(P)
with Py, ..., P, points on C. Then W" and (W?™"), intersect properly, and
Wi (W), =3 (w;,..;,) Where

Wiii, = f(P:,) + f(P.,)

and the sum runs over the (¢) combinations obtained by taking r elements
from {1, 2, ..., g}. See [20, §39, Prop. 17].

Summary 6.11. Between (C, P) and itself, there is a divisorial correspondence
PP =LA —-{P} x C—C x{P})

Between (C, P) and J there is the divisorial correspondence .#7; for
any divisorial correspondence ¥ between (C, P) and a pointed k-scheme
(T, t), there is a unique morphism of pointed k-schemes ¢: T — J such that
(1 x @)* 4" ~ £. In particular, there is a unique map fF:C—J such
that (1 x fP)y*.#" ~ #* and f(P) = 0.

Between J and JV there is a canonical divisorial correspondence £ (the
Poincaré sheaf); for any divisorial correspondence . between J and a pointed
k-schemes (T, t) there is a unique morphism of pointed k-schemes y: T — J
such that (1 x y)*2 ~ Z.

Between J and J there is the divisorial correspondence #'(®). The unique
morphism J — J¥ such that (1 x Y)*? =~ £'(0) is ¢ 4@, Which is an iso-
morphism. Thus ¢, is a principal polarization of J, called the canonical
polarization. There are the following formulas:

M (f x (=D (O)=(f x )*L'(O) L.
Consequently,
PP (f x fI*Z(©)7
If fV:JY > J is the morphism such that (f x 1)*2 ~ (1 x fV)*.#*, then
V= *905’1(@)-

Exercise 6.12. It follows from (6.6) and the Riemann—Roch theorem [14,
13.3] that (®7) = g!. Prove this directly by studying the inverse image of ®
(and its translates) by the map C? — J. (Cf. [14, 8.3], but note that the map is
not finite.) Hence deduce another proof of (6.6).

§7. Weil’s Construction of the Jacobian Variety
As we saw in (5.6a), the Jacobian J of a curve C is the unique abelian variety

that is birationally equivalent to C®. To construct J, Weil used the Riemann—
Roch theorem to define a rational law of composition on C® and then
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proved a general theorem that allowed him to construct an algebraic group
out of C*® and the rational law. Finally, he verified that the algebraic group
so obtained had the requisite properties to be called the Jacobian of C. We
give a sketch of this approach.

A birational group over k (or a nonsingular variety with a normal law of
composition in the terminology of Weil [20, V]) is a nonsingular variety V
together with a rational map m: V x V --» V such that

(a) mis associative (that is, (ab)c = a(bc) whenever both terms are defined);
(b) the rational maps (a, b)— (a, ab) and (a, b)+— (b, ab) from V x VtoV x V
are both birational.

Assume that C has a k-rational point P.

Lemma 7.1. (a) There exists an open subvariety U of C®% x C9 such that for
all fields K containing k and all (D, D') in U(K), h°(D + D’ — gP) = 1.

(b) There exists an open subset V of C® x C® such that for all fields K
containing k and all (D, D') in V(K), h°(D' — D + gP) = 1.

Proor. (a) Let D, be the canonical relative effective divisor on
C x C?9/C29 constructed in Section 3. According to the Riemann—Roch
theorem, h°(D — gP) > 1 for all divisors of degree 2g on C, and so [14, 4.2¢]
shows that the subset U of C®? of points t such that h°((D_,,), — gP) = 1 is
open. On the other hand, (5.2b) shows that there exist positive divisors D of
degree g such that h°((D + gP) — gP) = 1, and so U is nonempty. Its inverse
image in C¥ x C@ is the required set.

(b) The proof is similar to that of (a): the Riemann—Roch theorem shows
that h°(D’ — D + gP) > 1 for all D and D', we know there exists a D’ such
that h°(D’ — gP + gP) = h°(D’) = 1, and [14, 4.2] applied to the appropriate
invertible sheaf on C x C¥ x C¥ gives the result. O

Proposition 7.2. There exists a unique rational map m: C® x C® --» C9 whose
domain of definition contains the subset U of (7.1a) and which is such that for
all fields K containing k and all (D, D') in U(K), m(D,D’) ~ D + D' — gP;
moreover m makes C9 into a birational group.

Proor. Let T be an integral k-scheme. If we identify C® with the functor it
represents (see (3.13)), then an element of U(T) is a pair of relative effective
divisors (D, D') on C x T/T such that, for all te T, h°(D, + D, — gP) = 1.
Let = 2D+ D' —g-P x T). Then [14, 4.2d] shows that ¢,(%) is an
invertible sheaf on T. The canonical map g*q,.¥ — % when tensored with
(q*q,%)"" gives a canonical global section s: 07 > £ ® (q*q,#)"!, which
determines a relative effective divisor m(D, D’) of degree g on C x T/T (see
(3.6)). The construction is clearly functorial. Therefore we have constructed a
map m: U — C¥ as functors of integral schemes over k, and this is represented
by a map of varieties. On making the map explicit in the case that K is the
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spectrum of a field, one sees easily that m(D, D') ~ D + D’ — gP in this case.
The uniqueness of the map is obvious. Also associativity is obvious since
it holds on an open subset of U(K): m((D, D'), D") = m(D, (D', D")) because
each is an effective divisor on C linearly equivalent to D + D' + D" — 2gP,
and in general h°(D + D' + D" — 2gP) = 1.
A similar argument using (7.1b) shows that there is a map r: V — C*® such
that (p, r) is a birational inverse to

(a, by (a, ab): C¥ x C9 --» C® x C9,

Because the law of composition is commutative, this shows that (a, b)—
(b, ab) is also birational. The proof is complete. O

Theorem 7.3. For any birational group V over k, there is a group variety G over
k and a birational map f:V --» G such that f(ab) = f(a)f(b) whenever ab is
defined; moreover, G is unique up to a unique isomorphism.

Proor. In the case that V' (k) is dense in V (for example, k is separably closed),
this is proved in [1, §2]. (Briefly, one replaces V by an open subset where m
has better properties, and obtains G by patching together copies of translates
of U by elements of V(k).) From this it follows that, in the general case, the
theorem holds over a finite Galois extension k' of k. Let o € Gal(k'/k). Then
af: oV,.-» oG is a birational map, and as oV, = V., the uniqueness of G
shows that there is a unique isomorphism ¢,: ¢G — G such that ¢,ocaf = f.
For any o, e Gal(k'/k),

((pforwd)o(ro-f)=(P‘L’ot(qod'oo-f)=f=(ptdotaf"

and so ¢, 01, = @,,. Descent theory (see (1.8)) now shows that G is defined
over k. O

Let J be the algebraic group associated by (7.3) to the rational group de-
fined in (7.2).

Proposition 7.4. The variety J is complete.

Proor. This can be proved using the valuative criterion of properness. (For
Weil’s original account, see [20, Théoréme 16, et seq.].) (]

Corollary 7.5. The rational map f: C®->J is a morphism. If D and D’
are linearly equivalent divisors on Cg for some field K containing k, then

J(D) = f(D").

Proor. The first statement follows from [14, 3.1]. For the second, recall that
if D and D’ are linearly equivalent then they lie in a copy of projective space
contained in C? (see (3.14)). Consequently [14, 3.9] shows that they map to
the same point in J. O
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We now prove that J has the correct universal property.
Theorem 7.6. There is a canonical isomorphism of functors 1: P2 — J.

Proor. As in Section 4, it suffices to show that P is representable by J
for some r. In this case we take r = g. Let . be an invertible sheaf with fibres
of degree g on C x T. If dim, I'(C,, %) = 1 for some ¢, then this holds for
all points in an open neighborhood U, of t. As in the proof of (7.2), we
get a relative effective divisor s: 05— & ® (¢*q, L)™' of degree g on U,.
This family of Cartier divisors defines a map U, — C*® which when composed
with f gives a map Y : U, — J. On the other hand, if dim, I'(C,, &) > 1,
then we choose an invertible sheaf ¥’ of degree zero on C such that
dim(I(C,, &, ® #')) = 1, and define Y &: U, » C% on a neighborhood of t to
be the composite of Y g, With t_,, where a = f(D) for D an effective
divisor of degree g such that £ (D — gP) ~ #'. One checks that this map
depends only on ., and that the maps for different ¢ agree on the overlaps
of the neighborhoods. They therefore define a map T — J. O

Remark 7.7. Weil of course did not show that the Jacobian variety represented
a functor on k-schemes. Rather, in the days before schemes, the Jacobian
variety was characterized by the universal property in (6.1) or (6.4), and
shown to have the property that Pic®(C) 3 J(k). See [20] or [9].

§8. Generalizations

It is possible to construct Jacobians for families of curves. Let n: € — S be a
projective flat morphism whose fibres are integral curves. For any S-scheme
T of finite-type, define

Py(T) = {L e Pic(% x4 T)|deg(L) = rall t}/~,

where & ~ ¥’ ifand only if ¥ ~ ¥ ® g*.# for some invertible sheaf .# on
T. (The degree of an invertible sheaf on a singular curve is defined as in the
nonsingular case: it is the leading coefficient of y(C, &#") as a polynomial in
n.) Note that P is a functor on the category of S-schemes of finite-type.

Theorem 8.1. Let n: € — S be as above; then there is a group scheme §
over S with connected fibres and a morphism of functors P$ — ¢ such that
PS(T) — #(T) is always injective and is an isomorphism whenever € xs T — T
has a section.

In the case that S is the spectrum of a field (but ¥ may be singular),
the existence of # can be proved by Weil’s method (see [17, V]). When
% is smooth over S, one can show as in Section 3 that € (quotient of
€ Xs... x5 by S,) represents the functor Divi,s sending an S-scheme T to
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the set of relative effective Cartier divisors of degree r on € xg T/T. In general
one can only show more abstractly that Divg is represented by a Hilbert
scheme. There is a canonical map Divg,s — Pg,s and the second part of the
proof deduces the representability of Py from that of Divgs. (The only
reference for the proof in the general case seems to be Grothendieck’s original
rather succinct account [4, Exposé 232]; we sketch some of its ideas below.)

As in the case that the base scheme is the spectrum of a field, the conditions
of the theorem determine _# uniquely; it is called the Jacobian scheme of €/S.
Clearly # commutes with base change: the Jacobian of € xg T over T is
F xg T. In particular, if %, is & smooth curve over k(t), then _# is the Jacobian
of %, in the sense of Section 1. Therefore if € is smooth over S, then ¢ is an
abelian scheme, and we may think of it as a family of Jacobian varieties. If
is not smooth over S, then ¢ need not be proper, even in the case that S is
the spectrum of a field.

Example 8.2. Let C be complete smooth curve over an algebraically closed
field k. By a modulus for C one means simply an effective divisor m = ) npP
on C. Let m be such a modulus, and assume that deg(m) > 2. We shall
associate with C and m a new curve C,, having a single singularity at a point
to be denoted by Q. The underlying topological space of C,, is (C — S) u {Q},
where S is the support of m. Let Oy = k + ¢4, where

co = {f€k(C)lord(f) > npall Pin S},

and define Oc to be the sheaf such that I'(U, O) = () Op, where the
intersection is over the P in U. The Jacobian scheme J,,, of C,, is an algebraic
group over k called the generalized Jacobian of C relative to m. By definition,
J(k) is the group of isomorphism classes of invertible sheaves on C,, of
degree 0. It can also be described as the group of divisors of degree 0 on C
relatively prime to m, modulo the principal divisors defined by elements
congruent to 1 modulo m (an element of k(C) is congruent to 1 modulo m if
ordp(f — 1) > np for all P in S). For each modulus m with support on S there
is a canonical map f,,: C — S — J,, and these maps are universal in the
following sense: for any morphism f: C — S — G from C — S into an algebraic
group, there is a modulus m and a homomorphism ¢: J,, = G such that f is
the composite of f,,o¢ with a translation. (For a detailed account of this
theory, see [17].)

We now give a brief sketch of part of Grothendieck’s proof of (8.1). First
we need the notion of the Grassmann scheme.

Let & be a locally free sheaf of (¢s-modules of finite rank, and, for an
S-scheme T of finite-type, define Grass?(T) to be the set of isomorphism
classes of pairs (¥, h), where ¥ is a locally free O7-module of rank n and h is
an epimorphism 0 ®, & - ¥". For example, if & = O, then Grass?(T) can
be identified with the set of isomorphism classes of pairs (¥ ,(ey, ..., €,))
where 7 is a locally free sheaf of rank n on T and the e; are sections of ¥~
over T that generate ¥”; two such pairs (¥",(e;, ..., e,)) and (¥, (e}, ..., €y))
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are isomorphic if there is an isomorphism ¥" 3 ¥ carrying each ¢; to ). In
particular, Grass{" "' (T) = PY(T) (cf. [8, I1, 7.1]).

Proposition 8.3. The functor T Grass{(T) is representable by a projective
variety G¢ over S.

ProoF. The construction of G¢ is scarcely more difficult than that of P} (see

[7,9.7]). O

Choose an r > 2g — 2 and an m > 2g — 2 + r. As in the case that S is
the spectrum of a field, we first need to construct the Jacobian under the
assumption that there is a section s: S —» %. Let E be the relative effective
divisor on %/S defined by s (see (3.9)), and for any invertible sheaf % on
€ xs T, write £(m) for ¥ ® L (mE). The first step is to define an embedding
of Divgs into a suitable Grassmann scheme.

Let D e Divi,5(T), and consider the exact sequence

0> 2L(=D)> Ogxr—>0p—0

on € xg T (we often drop the S from € xg T). This gives rise to an exact
sequence

0 — Z(—D)(m) — Og xr(m) - Op(m) — 0,
and on applying g, we get an exact sequence
0 q,Z(—D)(m) - q,Og x (M) = 4,,0p(m) > R' g, £ (—D)(m) > ....

Note that, for all t in T, H!(%,, #(— D)(m)) is dual to H°(C,, #(K + D —mE,)),
where E, is the divisor s(t) of degree one on %,. Because of our assumptions,
this last group is zero, and so (see [14, 4.2¢]) R'q,, £ (— D)(m) is zero and we
have an exact sequence

0— g, Z(—=D)(m) = 4, Og x 7(m) = 4, Op(m) > 0.

Moreover g, Op(m) is locally free of rank r, and q,(Og (M) = q,Ok(m) @ Or
(loc. cit.), and so we have constructed an element ®(D) of Grass?«™(T).

On the other hand, suppose a = (q,0g«r(m) — ¥’) is an element of
Grass®?«"(T). If o is the kernel of g*q,, Og , +(m) — g*¥", then A (—m) is
a subsheaf of g*q, Oy « 1, and its image under g*q, Oy« =0y« r is an ideal in
Oy« r- Let ¥(a) be the subscheme associated to this ideal. It is clear from the
constructions that W®(D) = D for any relative divisor of degree r. We have a
diagram of natural transformations

Diviy(T) ® Grass™%™(T)¥ £ (T) > Divi(T), Yo = id,
where &(T) denotes the set of all closed subschemes of € xg T. In particular,

we see that @ is injective.

Proposition 8.4. The functor ® identifies Divyy with a closed subscheme of
Grass? 9«
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Proor. See [4, Exposé 221, p. 12] (or, under different hypotheses, [15,
Lecture 15]). O

Finally, one shows that the fibres of the map Divg,s — Pgs are represented
by the projective space bundles associated with certain sheaves of (¢)s-modules
([4, Exposé 232, p. 11]; cf. (5.6c)) and deduces the representability of Pgs
(loc. cit.).

§9. Obtaining Coverings of a Curve from its Jacobian;
Application to Mordell’s Conjecture

Let V be a variety over field k, and let n: W — V be a finite étale map. If
there is a finite group G acting freely on W by V-morphisms in such a way
that ¥V = G\W, then (W, n) is said to be Galois covering of ¥ with Galois
group G. When G is abelian, then (W, =) is said to be an abelian covering of
V. Fix a point P on V. Then the Galois coverings of V are classified by the
(étale) fundamental group =, (V, P) and the abelian coverings by the maximal
abelian quotient =,(V, P)*® of n,(V, P). For any finite abelian group M,
Hom(x,(V, P), M) (set of continuous homomorphisms) is equal to the set of
isomorphism classes of Galois coverings of V' with Galois group M. If, for
example, V is nonsingular and we take P to be the generic point of V¥, then
every finite connected étale covering of Vis isomorphic to the normalization
of V in some finite extension of K’ of k(P) contained in a fixed algebraic
closure K of K; moreover, «, (V, P) = Gal(K""/K) where K"" is the union of
all finite extensions K’ of k(P) in K such that the normalization of V in K’ is
étale over V. The covering corresponding to a continuous homomorphism
a: Gal(K""/K) — M is the normalization of V in K¥'®_ (See [13, 1, 5] for a
more detailed discussion of étale fundamental groups.)

Now let C be a complete nonsingular curve over a field k, and let f = f*
for some P in C(k). From a finite étale covering J' — J of J, we obtain an étale
covering of C by pulling back relative to f:

Je«C=Cx,J

ol
iLc
Because all finite étale coverings of J are abelian (cf. [14, 15.3]), we only
obtain abelian coverings of C in this way. The next proposition shows that
we obtain all such coverings.
Henceforth, k will be separably closed.

Proposition 9.1. If J' > J is a connected étale covering of J, then C' =
C x;J' > C is a connected étale covering of C, and every connected
abelian covering of C is obtained in this way. Equivalently, the map
n,(C, P)*® - nt,(J, 0) induced by f* is an isomorphism.
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Proor. The equivalence of the two assertions follows from the interpretation
of Hom(n, (V, P), M) recalled above and the fact that z,(J, 0) is abelian. We
shall prove the second assertion. For this it suffices to show that for all
integers n, the map Hom(=,(J, 0), Z/nZ) - Hom(n,(C, P), Z/nZ) induced by
f* is an isomorphism. The next two lemmas take care of the case that n is
prime to the characteristic of k.

Lemma 9.2. Let V be complete nonsingular variety and let P be a point of V,
then for all integers n prime to the characteristic of k, Hom(n,(V, P), Z/nZ) ~
Pic(V),.

Proor. Let D be a (Weil) divisor on V such that nD = (g) for some gek(V),
and let V' be the normalization of V in the Kummer extension k(V)(g'") of
k(V). A purity theorem [5, X.3.1] shows that V' — V is étale if, for all prime
divisors Z on V, the discrete valuation ring @, (local ring at the generic point
of Z) is unramified in k(V’). But the extension k(V')/k(V) was constructed by
extracting the nth root of an element g such that ord,(g) = 0 if Z is not in the
support of D and is divisible by n otherwise, and it follows from this that @,
is unramified. Conversely, let V' — V be a Galois covering with Galois group
Z/nZ. Kummer theory shows that the k(V')/k(V) is obtained by extracting
the nth root of an element g of k(V). Let Z be a prime divisor on V. Because
0, is unramified in k(V'), ord,(g) must be divisible by n (or is zero), and so
(g) = nD for some divisor D. Obviously D represents an element of Pic(V),.
It is easy to see now that the correspondence we have defined between
coverings of V and elements of Pic(V), is one-to-one. (For a proof using étale
cohomology, see [14, 111, 4.11].) O

Lemma 9.3. The map Pic(J) — Pic(C) defined by f induces an isomorphism
Pic°(J) — Pic®(C).

Proor. This was noted in (6.10c). O

In the case that n = p = characteristic(k), (9.2) and (9.3) must be replaced
by the following analogues.

Lemma 9.4. For any complete nonsingular variety V and point P,
Hom(n,(V, P), Z/pZ) ~ Ker(1 — F: H'(V, O,) » H'(V, 0})), where F is the

map induced by ar a®: O, — O,,.

Proor. See [14, p. 127] for a proof using étale cohomology as well as for
hints for an elementary proof. d

Lemma 9.5. The map f*: C — J induces an isomorphism H'(J, ©;) - H'(C, O).

Proor. See [17, VII, Théoréme 9]. (Alternatively, note that the same argu-
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ment as in the proof of (2.1) gives an isomorphism H'(J, 0;) 3 Ty(JV), and
we know that J ~ JV.) O

To prove the case n = p™, one only has to replace ¢ and 0, by the sheaves
of Witt vectors of length m, W, 0. and W,,0,. (It is also possible to use a
five-lemma argument starting from the case m = 1.)

Corollary 9.6. For all primes I, the map of étale cohomology groups H*(J, Z,) —
HY(C, Z,) induced by f'is an isomorphism.

Proor. For any variety V, H'(V,,, Z/nZ) = Hom(n,(V, P), Z/nZ) [13, 111, 4].
Therefore, there are isomorphisms

H'(J, Z/I"Z) 3 Hom(x,(J, P), Z/I"Z) 5 Hom(xn,(C, P), Z/I"Z)
S HYC, 7/1"2),

and we obtained the required isomorphism by passing to the limit. a

To obtain ramified coverings of C, one can use the generalized Jacobians.

Proposition 9.7. Let C' — C be a finite abelian covering of C that is unramified
outside a finite set X. Then there is a modulus m with support on X and an étale
isogeny J' — J,, whose pull-back by f,, is C' — f"}(Z).

Proor. See [17]. O

Example 9.8. In the case that the curve is P! and m = 0 + oo, we have
Jm = P! — {0, o}, which is just the multiplicative group GL,, and f,, is
an isomorphism. For any n prime to the characteristic, there is a unique
unramified covering of P! — {0, co} of degree n, namely multiplication by n
on P! — {0, c0}. When k = C, this covering is the usual unramified covering
z—z" C — {0} - C — {0}.

Proposition 9.9. Let C be a curve of genus g over a number field k, and let P be
a k-rational point of C. Let S be a finite set of primes of k containing all primes
dividing 2 and such that C has good reduction outside S. Then there exists a
field k' of degree < 229 over k and unramified outside S, and a finite map
fp: Cp = C of degree < 22*°@~D*20%1 wamified exactly over P, and such that
Cp has good reduction outside S.

Proor. Sketch. Let C' be the pull-back of 2:J — J; it is an abelian étale
covering of C of degree 229, and the Hurwitz genus formula [8, 1V, 2.4] shows
that the genus g’ of C’ satisfies

29 — 2 =12%(2g - 2),
so that ¢’ = 229(g — 1) + 1. Let D be the inverse image of P on C'. It is a
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divisor of degree 22 on C/, and after an extension k' of k of degree < 22
unramified over S, some point P of D will be rational. Let m = D — P’, and
let C" be the pull-back of the covering 2:J,, — J,, (of degree < 229') by
C — X - J,,, where X = Supp(D) — {P}. Then C" is a curve over k', and we
take Cp to the associated complete nonsingular curve. O

This result has a very striking consequence. Recall that a conjecture of
Shafarevich states the following:

(9.10) For any number field k, integer g, and finite set S of primes of k, there are
only finitely many isomorphism classes of curves C of genus g over k having
good reduction at all primes outside S.

Theorem 9.11. Shafarevich’s conjecture (9.10) implies Mordell’s conjecture.

Proor. Let C be curve of genus g > 2 over k with good reduction outside a
set S containing all primes of k lying over 2. There is a finite field extension K
of k containing all extensions k' of k of degree < 22¢ that are unramified out-
side S. For each k-rational point P on C, Proposition 9.9 provides a map
fp: Cp = Cy of degree < a fixed bound B(g) which is ramified exactly over P;
moreover, Cp has good reduction outside S. The Hurwitz genus formula
shows that

29(Cp) —2 < B(9)(29 — 2) + B(g) — 1.

Therefore Shafarevich’s conjecture implies that there can be only finitely
many curves Cp. A classical result of de Franchis [10, p. 223] states that for
each Cp, there are only finitely many maps Cp — C (this is where it is used
that g > 2). Therefore there can be only finitely many k-rational points on C,
as predicted by Mordell. |

§10. Abelian Varieties Are Quotients of
Jacobian Varieties

The main result in this section sometimes allows questions concerning abelian
varieties to be reduced to the special case of Jacobian varieties.

Theorem 10.1. For any abelian variety A over an infinite field k, there is a
Jacobian variety J and a surjective homomorphism J —» A.

Lemma 10.2. Let n: W — V be a finite morphism of complete varieties, and let
& be an invertible sheaf on V. If £ is ample, then so also is n*%.

Proor. We shall use the following criterion ([8, III, 5.3]): an invertible sheaf
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% on a complete variety is ample if and only if, for all coherent @,-modules
F,HV,F ® £") =0 for all i >0 and sufficiently large n. Also we shall
need an elementary projection formula: if 4" and .# are coherent sheaves of
modules on W and V respectively, then

T (N @ *M)y=n, N Q M.

(Locally, this says that if B is an A-algebra and N and M are modules over B
and A respectively, then N ®; (B ®, M)~ N ®, M as A-modules.)

Let # be a coherent Oy-module. Because = is finite (hence affine), we have
by [8, I1, Ex. 4.1 or Ex. 8.2] that

H(W, F ® n*%") ~ H(V, 1 (F @ n*&L™).

The projection formula shows that the second group equals H'(V, n,# ® £"),
which is zero for all i > 0 and sulfficiently large n because & is ample and
n,Z is coherent ([8, 4.1]). The criterion now shows that n*.% is ample. []

Lemma 10.3. Let V be a nonsingular projective variety of dimension > 2 over a
field k, and let Z be a hyperplane section of V relative to some fixed embedding
V < P". Then, for any finite map n from a nonsingular variety W to V, n~1(Z)
is geometrically connected (that is, n~'(Z); is connected).

Proor. The hypotheses are stable under a change of the base field, and so we
can assume that k is algebraically closed. It then suffices to show that n7(Z)
is connected. Because Z is an ample divisor on V, the preceding lemma shows
that n~!(Z) is the support of an ample divisor on W, which implies that it is
connected ([8, III, 7.9]). |

We now prove the theorem. Since all elliptic curves are their own Jacobians,
we can assume that dim(A4) > 1. Fix an embedding A < P" of A into pro-
jective space. Then Bertini’s theorem [8, II, 8.18] shows that there exists an
open dense subset U of the dual projective space P¢" of P¢ such that, for all
hyperplanes H in U, A; n H is nonsingular and connected. Because k is
infinite, U(k) is nonempty (consider a line L in P§Y), and so there exists
such an H with coordinates in k. Then A n H is a (geometrically connected)
nonsingular variety in P". On repeating the argument dim(4) — 1 times, we
arrive at a nonsingular curve C on A that is the intersection of 4 with a
linear subspace of P". Now (10.3) applied several times shows that for any
nonsingular variety W and finite map n: W — A4, n~!(C) is geometrically
connected.

Consider the map J — A arising from the inclusion of C into A4, and let
A, be the image of the map. It is an abelian subvariety of A, and if it is
not the whole of A4, then there is an abelian subvariety 4, of 4 such that
A; x A, > Ais an isogeny (see [14, 12.1]); in particular, 4; N A, is finite. As
C < A,, this implies that C n A, is finite. Let W = A, x 4, and take 7 to
be the composite of 1 x n,,: A, x A, > A; x A, with 4; x 4, > A, where
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n>1 is an integer prime to the characteristic of k. Then n~(C) is not
geometrically connected. This is a contradiction, and so 4; must equal A.

Remark 10.4. (a) Lemma 10.2 has the following useful restatement: let V be a
variety over a field k and let D be divisor on V such that the linear system | D|
is without base points; if the map V — P" defiried by |D| is finite, then D is
ample.

(b) If some of the major theorems from étale cohomology are assumed,
then it is possible to give a very short proof of the theorem. They show that,
for any curve C on A constructed as in the above proof, the map H!(4, Z,) —»
HY(C, Z,) induced by the inclusion of C into 4 is injective (see [13, VI.5.6]).
But H(4, Z,) is dual to T,4 and H'(C, Z,) is dual to T,J, and so this says that
the map T;J — T;A induced by J — A is surjective. Clearly this implies that J
maps onto A.

Open Question 10.5. Let A be an abelian variety over an algebraically closed
field k. We have shown that there is a surjection J — A with J a Jacobian
variety. Let A, be the subvariety of J with support the identity component
of the kernel of this map. Then A, is an abelian variety, and so there is a
surjection J; — 4,. Continuing in this way, we obtain a sequence of abelian
varieties 4, 4, A,, ... and a complex

sy, Ji > A4-0.

Is it possible to make the constructions in such a way that the sequence
terminates with 0? That is, does there exist a resolution (up to isogeny) of an
arbitrary abelian variety by Jacobian varieties?

§11. The Zeta Function of a Curve

Let C be a complete nonsingular curve over a finite field k = F,. The best way
to prove the Riemann hypothesis for C is to use intersection theory on C x C
(see [8, V, Ex. 1.10]), but in this section we show how it can be derived
from the corresponding result for the Jacobian of C. Recall [14, §19] that the
characteristic polynomial of the Frobenius endomorphism 7, of J acting on
T,J is a polynomial P(X) of degree 2g with integral coefficients whose roots
a; have absolute value g'2.

Theorem 11.1. The number N of points on C with coordinates in k is equal to
1 — Y a; + q. Therefore, [N — g — 1| < 2gq'>.

The proof will be based on the following analogue of the Lefschetz trace
formula. A map a: C — C induces a unique endomorphism o of J such that
fPoa = a o fF for any point P in C(k) (cf. (6.1)).
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Proposition 11.2. For any endomorphism a of C,
(Ty,-A)=1—Tr() + deg(x).
Recall [14, §12] that if P.(X) = [[(X — a;), then Tr(a) = Y a;, and that
Tr(«') = Tr(e'| T;J). We now show that the proposition implies the theorem.

Let nc: C; — Cy, be the Frobenius endomorphism of C (see [14, §19]).
Before proving (11.2) we need a lemma.

Lemma 11.3. Let A be an abelian variety of dimension g over a field k, and let
H be the class of an ample divisor in NS(A). For any endomorphism o of A,
write Dy(a) = (o + 1)*(H) — o*(H) — H. Then

T - g(Hg':I-igH(a»
Proor. The calculation in [14, 12.4] shows that
(@ + n)*(H) = n(n — 1)H + n(e + 1)*H — (n — 1)a*(H)
(because (2,)*H = 4H in NS(A)), and so
(¢ + m)*H = n*H + nDy(o) + o*(H).
Now the required identity can be read off from the equation
P,(—n) = deg(o + n) = (((« + n)*H)?)/(H?) (see [14, 8.3])
because P,(—n) = n*? + Tr(a)n®* ™1 + -+, O

We now prove (11.2). Consider the commutative diagram

cxcll s gy

R
c Ly

where f = f? for some rational point P of C. Consider the sheaf ¥'(®) £

Lm*® — 0O x J —J x ®)onJ x J(see Section 6). Then
(@ x a)(f x [H*Z(O) = ((f x /)1 x 0))*Z'(®)
= (1 x )*(f x [*Z'(O) = (1 x a)*(£L")™
by a formula in (6.11). Now
A*(1 x a)*#? = LI, (A— P x C—C x P)),

which has degree (I, - A) — 1 — deg(«). We next compute the sheaf by going
round the diagram the other way. As (1 x a)oA = (1, ), we have

(1 x 1)o A)P*F(Mm*O) =~ (1 + 0)*£(®) and
deg f*Z((1 + 0)*(©)) = deg f*(1 + 0)*O.
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Similarly deg f*((1 x a)o A)*#£(® x J) ~ deg f*® and
deg f*((1 x a)o AY*#L(J x O) = deg f*(a*6),
and so we find that
I — (I, - A) + deg(a) = deg f*(De ().

We know (6.12) that (®7) = g!, and it is possible to show that f*(Dg(x)) =
(f(C) - Dg()) is equal to (g — I(®?! - Dg(a)) (see [9, IV, §3]). Therefore
(11.3) completes the proof. O

Corollary 11.4. The zeta function of C is equal to

P
2CN=0"ya=q

Remark 11.5. As we saw in (9.6), H'(C,,, Z,) = H'(J,,, Z,) = (T;J)", and so
(11.2) can be rewritten as

(To - A) = Y. (=1) Tr(@[H(C,,, Z,)).

§12. Torell’s Theorem: Statement and Applications

Torelli’s theorem says that a curve C is uniquely determined by its canonically
polarized Jacobian (J, 4).

Theorem 12.1. Let C and C' be complete smooth curves over an algebraically
closed field k, and let f: C — J and f': C' — J' be the maps of C and C’ into their
Jacobians defined by points P and P’ on C and C'. Let B: (J, ) > (J', ') be an
isomorphism from the canonically polarized Jacobian of C to that of C'.

(a) There exists an isomorphism o: C —» C' such that f'oa = + o f + ¢, for
some c in J'(k).

(b) Assume that C has genus > 2. If C is not hyperelliptic, then the map o, the
sign +, and c are uniquely determined by 8, P, P'. If C is hyperelliptic, the
sign can be chosen arbitrarily, and then o and c are uniquely determined.

Proor. (a) The proof involves complicated combinatorial arguments in the
W"—we defer it to the next section.

(b) Recall [8, IV, 5] that a curve C is hyperelliptic if there is a finite map
n: C — P! of degree 2; the fibres of such a map form a linear system on C of
degree 2 and dimension 1, and this is the unique such linear system on
C. Conversely if C has a linear system of degree 2 and dimension 1, then
the linear system defines a finite map n: C —» P! of degree 2, and so C is
hyperelliptic; the fibres of 7 are the members of the linear system, and so the
nontrivial automorphism : of C such that mo: = n preserves these individual
members.
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Now suppose that there exist a, o', ¢, and ¢’ such that
floa=+Pof+c (12.1.1)
flod = +fof +¢
Then f'(2(Q)) — f'(«'(Q)) = ¢ — ¢’ for all Q € C(k), which is a constant. Since

the fibres of the map Div2(k) — J(k) defined by f' are the linear equivalence
classes (see Section 2), this implies that for all Q and Q' in C(k),

a(Q) — a'(Q) ~ a(Q) — &' (Q), or
Q) + o' (Q) ~ o'(Q) + Q).

Suppose a # «'. Then a(Q,) # «'(Q,) for some Qye C(k) and, for a suitable
Qo> a(Q) # a(Qp). Therefore |a(Qy) + «'(Qp) is a linear system of dimen-
sion > 1 (and degree 2) on C'. If C (hence C’) is nonhyperelliptic, there is no
such system, and we have a contradiction. If C is hyperelliptic, then there is
amap m: C - P’ of degree 2 such that n(x(Q)) = n(«'(Q")) for all Q, Q'. Again
we have a contradiction. We conclude that « = «', and this implies that
c=c.

On the other hand, suppose that the equations (12.1.1) hold with different
signs, say with a plus and a minus respectively. Then the same argument
shows that

Q) + o(Q) ~ a(Q) + (@), all @, Q"in C(k).

Therefore {a(Q) + «'(Q)|Q € C(k)} is a linear system on C’ of dimension > 1,
which is impossible if C is nonhyperelliptic. (In the case C is hyperelliptic,
there is an involution 1 of C’' such that ioa = o'))

The case that the equations (12.1.1) hold with minus signs can be treated
the same way as the first case.

Finally let C’ be hyperelliptic with an involution 7 such that |Q' 4+ :1Q’|is a
linear system and f'(Q’) + f'(:Q') = constant. Then if f'oa = Bo f + c, we
have f'oi0 = —fof + . O

Corollary 12.2. Let C and C’ be curves of genus > 2 over a perfect field k. If the
canonically polarized Jacobian varieties of C and C' are isomorphic over k, then
so also are C and C'.

Proor. Choose an isomorphism f: (J, 1) — (J', 2') defined over k. For each
choice of a pair of points P and P’ in C(k) and C'(k), there is a unique
isomorphism «: C — C’ such that

fPou=+fof"+c

for some c in J'(k) (in the case that C is hyperelliptic, we choose the sign to be
+). Note that if (P, P') are replaced by the pair (Q, Q'), then f¢ = f* + d and
f2 = P + efor some de J(k) and ee J'(k), and so

fPoa=fPoate=x4fof tcte=£PofOFPd) +c+e
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In particular, we see that o does not depend on the choice of the pair (P, P').
On applying o € Gal(k/k) to the above equation, we obtain an equation

of Pooo = +Boaff + ac.

As of ¥ = f°P and of ¥ = f°F, we see that oo = «, and so « is defined over k.

O

Corollary 12.3. Let k be an algebraic number field, and let S be a finite set of
primes in k. The map C+— (J¢, A) sending a curve to its canonically polarized
Jacobian variety defines an injection from the set of isomorphism classes of
curves of genus > 2 with good reduction outside S into the set of isomorphism
classes of principally polarized abelian varieties over k with good reduction
outside S.

Proor. Let R be the discrete valuation ring in k corresponding to a prime of
k not in S. Then C extends to a smooth proper curve € over spec(R), and (see
Section 8) the Jacobian _# of & has generic fibre the Jacobian of C and special
fibre the Jacobian of the reduction of C. Therefore J. has good reduction at
the prime in question. The corollary is now obvious. O

Corollary 12.4. Suppose that for any number field k, any finite set S primes of
k, and any integer g, there are only finitely many principally polarized abelian
varieties of dimension g over k having good reduction outside S. Then Mordell’s
conjecture is true.

Proor. Combine the last corollary with (9.11). O

Remark 12.5. Corollary 12.2 is false as stated without the condition that the
genus of C is greater than 1. It would say that all curves of genus zero over k
are isomorphic to P! (but in general there exist conics defined over k having
no rational point in k), and it would say that all curves of genus 1 are
isomorphic to their Jacobians (and, in particular, have a rational point).
However, it is obviously true (without restriction on the genus) that two
curves over k having k-rational points are isomorphic over k if their canon-
ically polarized Jacobians are isomorphic over k.

§13. Torelli’s Theorem: The Proof

Throughout this section, C will be a complete nonsingular curve of genus
g = 2 over an algebraically closed field k, and P will be a closed point of C.
The maps f*: C — J and f®: C" — J corresponding to P will all be denoted
by f. Therefore f(D + D') = f(D) + f(D’'), and if f(D) = f(D’), then

D~ D +rP where r=deg(D)— deg(D’).

As usual, the image of C® in J is denoted by W". A canonical divisor K on C
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defines a point on C®?~2 whose image in J will be denoted by k. For any
subvariety Z of J, Z* will denote the image of Z under the map x—x — x

Lemma 13.1. For all a in J(k), (Wg™')* = W41,

Proor. For any effective divisor D of degree g — 1 on C,
h°(K — D) = h'(K — D) = h°(D) > 1,
and so there exists an effective divisor D' such that K — D ~ D’. Then
k — f(D) — a = f(D') — a, which shows that (W?™')* = W2, . On replacing
aby —a, we get that (W9, 1)* < W1, and so W9, ! = (WI 1 )** < (WI 1)*
O

Lemma 13.2. For any r such that 0 <r <g — 1,

W Wt < ae Wt

Proor. <=: If ¢ = f(D) + a with D an effective divisor of degree r, and
a= f(D')+ b with D' an effective divisor of degree g — 1 —r, then ¢ =
f(D + D’) + b with D + D’ an effective divisor of degree g — 1.

=: As ae W¥!, there is an effective divisor A of degree g — 1 such
that a = f(4A) + b. Let D be effective of degree r. The hypothesis states
that f(D) + a = f(D) 4+ b for some D effective of degree g — 1, and so
J(D) + f(4) = f(D) and

D+ A~D+rP.

Choose effective divisors A" and D' of degree g — 1 such that 4 + A’ and
D + D’ are linearly equivalent to K (cf. the proof of (13.1)). Then

D+K—A~K-—D +rP, andso
D+ D ~A +rP.

As the D’s form a family of dimension r, this shows that h°(4’ + rP) > r + 1.
(In more detail, |4’ 4 rP| can be regarded as a closed subvariety of C**¢71),
and we have shown that it projects onto the whole of C®.) It follows from
the Riemann—Roch theorem that h°(K — A’ — rP) > 1, and so there is an
effective divisor A of degree g — 1 + r such that

A+ A+rP~K.
Therefore A + rP ~ K — A’ ~ A, and so f(4) = f(A') and a = f(A) + be
u/bg—l—r' D
Lemma 13.3. For any r such that 0 <r <g — 1,
W t=r = (\(Weae W'} and (WOTTy* = () {WS ae W)

Proor. Clearly, for a fixed a in J(k),
Wg—l—r c Wfa_l P u/;g—l—r c Wg—l’
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and (13.2) shows that both hold if ae W". Therefore
Wt e (\{Wo ae W},

Conversely, ce W9, 1 < ae W9, and so if ce W% ! for all ae W’, then
W< Wit and W) = W91, According to (13.2), this implies that ce W91,
which completes the proof of the first equality. The second follows from the

first and the equation

N {WetaeWw} = (V{(We ) *lae W'} = (N{WwetlaeWrh*. O

Lemma 13.4. Let r be such that 0 < r < g — 2, and let a and b be points of J (k)
related by an equation a + x = b + y with xe W' and ye W 1" I[f WI* &
Wo™L, then W n W21 = W, uSwithS = WJ* (W2

Proor. Write x = f(X) and y = f(Y) with X and Y effective divisors of
degree landg — 1 — r. If Y > X, then, because f(X) + a = f(Y) + b, we will
have a = f(Y — X) + b with Y — X an effective divisor of degree g — 2 —r.
Therefore ae W#™27", and so W' < W#™! (by (13.2)). Consequently, we
may assume that X is not a point of Y.

Let ce W' nWg. Then ¢ = f(D) + a = f(D') + b for some effective
divisors D and D’ of degree r + 1 and g — 1. Note that

fD)y+y=fD)+a+x—b=f(D)+x,

andsoD + Y~ D + X.

IfD+Y=D+ X,thenD > X,andsoc= f(D)+a=f(D— X)+ x + a;
in this case ce W/, ,.

If D+ Y # D + X, then h°(D + Y) > 2, and so for any point Q of C(k),
h°(D + Y — Q) > 1, and there is an effective divisor Q of degree g — 1 such
that D + Y ~ Q + Q. Then

c=f(D)+a=f(Q)+a—y+fQ),

and so ceﬂ{lfi{,"_'y1+d|de Wiy =W )k, (by (13.3)). As (Wo2)k, =
(Wg2)* and c is in W' by assumption, this completes the proof that
u/ar+1 A Vng—l — VVar+x U S
The reverse inclusion follows from the obvious inclusions:
l/V:zr+x < v‘/azr+l; I/Var+x = I/Vbr+y < V[/;)g—l; (vvyg—_az)* < (I/Vy—_nl—x)* = I/ng_l'
O

Lemma 13.5. Let aeJ(k) be such that W' W2™!; then there is a unique
effective divisor D(a) of degree g on C such that

f(D@) =a+« (13.5.1)

and W' - W' when regarded as a divisor on C, equals D(a).

Proor. We use the notations of Section 6; in particular, ® = W9 1. For
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=0, (13.1) says that (@), = ©. Therefore, on applying (6.8), we find that
W W™t = f(C) (O ysx = f (O )usn) = D, where D is a divisor of
degree g on C such that f¥ (D) = a + . This is the required result. O

We are now ready to prove (12.1a). We use f to identify J with J’, and
write V" for the image of C' in J. As W9 ! and V¢! define the same
polarization of J, they give the same element of NS(J) (see [14, §12]), and
therefore one is a translate of the other, say W9 ! = V97! ceJ(k). To prove
(12.1a), we shall show that V! is a translate of W* or of (W1)*.

Let r be the smallest integer such that V! is contained in a translate of
Wt or (W)*, The theorem will be proved if we can show that r = 0.
(Clearly, r < g — 1.) Assume on the contrary that r > 0. We may suppose
(after possibly replacing f by — f) that V' = W;*!. Choose an x in W' and
ayin W17 and set b = a + x — y. Then, unless W, ™' = W', we have
(with the notations of (13.4))

LAWS  =ViaWr AW =V aW, ) u(linS).

Note that, for a fixed a, W/, . depends only on x and S depends only on y.

Fix an x; we shall show that for almost all y, V* & W¢™!, which implies
that W't ¢ W' for the same y. As y runs over W9 '7", —b runs over
W L. Now,if V! < Wy~ forall —bin WZ L then V! < W), (by (13.3)).
This contradicts the definition of r, and so there exist b for which V! & Wg™1.
Note that V' < W& (= V¢)< —be V2?2 (by (13.2)). Therefore V7~ : ¢
W24, and so the intersection of these sets is a lower dimensional subset
of W45} whose points are the —b for which V! < Weg

We now return to the consideration of the intersection V* n W#™!, which
equals (V! A W.,.,)u (V! S)for almost all y. We first show that V! n W),
contains at most one point. If not, then as — b runs over almost all points of
WSy (for a fixed x), the element D'(b) £ f'~1 (V' - W¥™') (cf. (13.5)) will
contain at least two fixed points (because W,,, = Wf . = Wy™'), and
hence f(D'(b)) will lie in a translate of V9~2. As f'(D’(b)) = b + «', we would
then have (W?~17")* contained in a translate of V972, say V¢~ 2, and so

NV ue Ve 2} c V(W ue(Wo ).

On applying (13.3) to each side, we then get an inclusion of V in a translate
of (W")*, contradicting the definition of r.

Keeping y fixed and varying x, we see from (13.5.1) that V! n W/, must
contain at least one point, and hence it contains exactly one point; according
to the preceding argument, the point occurs in D’(b) with multiplicity one for
almost all choices of y.

It is now easily seen that we can find x, x' in W*! and y in W*™'7" such
that(D'(b) =)D'(a+x—y)=Q + Dand(D'(b’) =)D'(a+x —y)=Q + D
where Q, Q' are in C’ and D is an effective divisor of degree g — 1 on C' not
containing Q or Q. By equation (13.5.1), f(Q) — f(Q') = x — x', and hence
W1 has two distinct points in common with some translate of V''. Now, if x,



208 J. S. MILNE

x' arein W, then W9l n Wol = W92 U (W2 2)* (by 13.4)). According to
(13.3), we now get an inclusion of some translate of V972 in W92 or (W9~ 2)*,
Finally (13.3) shows that

Vi=N{V_]eecVi?}

which is contained in a translate of W! or W'* according as V972 is con-
tained in a translate of W92 or (W9~ 2)*, This completes the proof. O

Bibliographic Notes for Abelian Varieties and
Jacobian Varieties

The theory of abelian varieties over C has a long history. On the other hand,
the “abstract” theory over arbitrary fields, can be said to have begun with
Weil’s famous announcement of the proof of the Riemann hypothesis for
function fields [Sur les fonctions algébriques a corps de constantes fini, Comp.
Rendu. 210 (1940), 592—-594]. Parts of the projected proof (for example, the
key “lemme important”) can best be understood in terms of intersection
theory on the Jacobian variety of the curve, and Weil was to spend the next
six years developing the foundational material necessary for making his
proof rigorous. Unable in 1941 to construct the Jacobian as a projective
variety, Weil was led to introduce the notion of an abstract variety (that is, a
variety that is not quasi-projective). He then had to develop the theory
of such varieties, and he was forced to develop his intersection theory by
local methods (rather than the projective methods used by van der Waerden
[Einfiihring in die algebraische Geometrie, Springer-Verlag, 1939]). In 1944
Weil completed his book [Foundations of Algebraic Geometry, AMS Coll.,
XXIX, 1946], which laid the necessary foundations in algebraic geometry,
and in 1946 he completed his two books [Sur les Courbes algébriques et les
Variétés qui s’en déduisent, Hermann, 1948] and [20], which developed the
basic theory of abelian varieties and Jacobian varieties and gave a detailed
account of his proof of the Riemann hypothesis. In the last work, abelian
varieties are defined much as we defined them and Jacobian varieties are
constructed, but it was not shown that the Jacobian could be defined over the
same field as the curve.

Chow ([Algebraic systems of positive cycles in an algebraic variety, Amer.
J. Math., 72 (1950), 247-283] and [3]) gave a construction of the Jacobian
variety which realized it as a projective variety defined over the same ground
field as the original curve. Matsusaka [On the algebraic construction of the
Picard variety, Japan J. Math., 21 (1951), 217-235 and 22 (1952), 51-62]
gave the first algebraic construction of the Picard and Albanese varieties
and demonstrated also that they were projective and had the same field of
definition as the original varieties. Weil showed that his construction of a
group variety starting from a birational group could also be carried out
without making an extension of the ground field [On algebraic groups of



JACOBIAN VARIETIES 209

transformations, Amer. J. Math., 77 (1955), 355-391], and in [The field
of definition of a variety, Amer. J. Math., 78 (1956), 509—524] he further
developed his methods of descending the field of definition of a variety.
Finally Barsotti [A note on abelian varieties, Rend. Circ. Mat. di Palermo, 2
(1953), 236-257], Matsusaka [Some theorems on abelian varieties, Nat. Sci.
Report Ochanomizu Univ., 4 (1953), 22-35], and Weil [On the projective
embedding of abelian varieties, in Algebraic geometry and topology, A sympo-
sium in Honor of S. Lefschetz, Princeton, 1957, pp. 177-1817 showed that all
abelian varieties are projective. In a course at the University of Chicago,
1954-55, Weil made substantial improvements to the theory of abelian
varieties (the seesaw principle and the theorem of the cube, for example), and
these and the results mentioned above together with Chow’s theory of the
“k-image” and “k-trace” [Abelian varieties over function fields, Trans. Amer.
Math. Soc., 78 (1955), 253-275] were incorporated by Lang in his book [9].
The main lacuna at this time (1958-59) was a satisfactory theory of isogenies
of degree p and their kernels in characteristic p; for example, it was not
known that the canonical map from an abelian variety to the dual of its dual
was an isomorphism (its degree might have been divisible by p). Cartier
[Isogenies and duality of abelian varieties, Ann of Math., 71 (1960), 315-351]
and Nishi [The Frobenius theorem and the duality theorem on an abelian
variety, Mem. Coll. Sc. Kyoto (A), 32 (1959), 333-350] settled this particular
point, but the full understanding of the p-structure of abelian varieties required
the development of the theories of finite group schemes and Barsotti—Tate
groups. The book of Mumford [16] represents a substantial contribution to
the subject of abelian varieties: it uses modern methods to give an compre-
hensive account of abelian varieties including the p-theory in characteristic p,
and avoids the crutch of using Jacobians to prove results about general
abelian varieties. (It has been a significant loss to the mathematical community
that Mumford did not go on to write a second volume on the topics sug-
gested in the introduction: Jacobians; Abelian schemes: deformation theory
and moduli; the ring of modular forms and the global structure of the moduli
space; the Dieudonné theory of the “fine” characteristic p structure; arithmetic
theory: abelian schemes over local, global fields. We still lack satisfactory
accounts of some of these topics.)

Much of the present two articles has been based on these sources. We now
give some other sources and references. “Abelian Varieties” will be abbreviated
by AV and “Jacobian Varieties” by JV.

The proof that abelian varieties are projective in AV, Section 7 is Weil’s
1957 proof. The term “isogeny” was invented by Weil: previously, “iso-
morphism” had frequently been used in the same situation. The fact that the
kernel of m, has m?¢ elements when m is prime to the characteristic was one
of the main results that Weil had to check in order to give substance to his
proof of the Riemann hypothesis. Proposition 11.3 of AV is mentioned briefly
by Weil in [Variétés Abéliennes. Colloque d’Algébre et Théorie des Nombres,
1949, pp. 125-128], and is treated in detail by Barsotti [Structure theorems
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for group varieties, Annali di Mat., 38 (1955), 77-119]. Theorem 14.1 is
folkiore: it was used by Tate in [Endomorphisms of abelian varieties over
finite fields, Invent. math., 2 (1966), 134—144], which was one of the starting
points for the work that led to Faltings’s recent proof of Mordell’s conjecture.
The étale cohomology of an abelian variety is known to everyone who knows
étale cohomology, but I was surprised not to be able to find an adequate
reference for its calculation: in Kleiman [Algebraic cycles and the Weil con-
jectures, in Dix Exposés sur la Cohomologie des Schémas, North-Holland, 1968,
pp. 359-386] Jacobians are used, and it was unaccountably omitted from
[13]. In his 1940 announcement, Weil gives a definition of the e,,-pairing (in
our terminology, e,-pairing) for divisor classes of degree zero and order m on
a curve which is analogous to the explicit description at the start of Section 16
of AV. The results of that section mainly go back to Weil’s 1948 monograph
[20], but they were reworked and extended to the p-part in Mumford’s book.
The observation (see (16.12) of AV) that (4 x AY)* is always principally
polarized is due to Zarhin [A finiteness theorem for unpolarized Abelian
varieties over number fields with prescribed places of bad reduction, Invent.
math., 79 (1985), 309—3217]. Theorem 18.1 of AV was proved by Narasimhan
and Nori [Polarizations on an abelian variety, in Geometry and Analysis,
Springer-Verlag (1981), pp. 125-128]. Proposition 20.1 of AV is due to
Grothendieck (cf. Mumford [Geometric Invariant Theory, Springer-Verlag,
1965, 6.1]), and (20.5) of AV (defining the K/k-trace) is due to Chow (reference
above). The Mordell-Weil theorem was proved by Mordell [On the rational
solutions of the indeterminate equations of the third and fourth degrees,
Proc. Cambridge Phil. Soc., 21 (1922), 179-192] (the same paper in which he
stated his famous conjecture) for an elliptic curve over the rational numbers
and by Weil [L’arithmétique sur les courbes algébriques, Acta Math., 52
(1928), 281-315] for the Jacobian variety of a curve over a number field.
(Weil, of course, stated the result in terms of divisors on a curve.)

The first seven sections of JV were pieced together from two disparate
sources, Lang’s book [9] and Grothendieck’s Bourbaki talks [4], with some
help from Serre [17], Mumford [15], and the first section of Katz and Mazur
[Arithmetic Moduli of Elliptic Curves, Princeton, 1985].

Rosenlicht [ Generalized Jacobian varieties, Ann. of Math., 59 (1954), 505—
530, and A universal mapping property of generalized Jacobians, ibid. (1957),
80887, was the first to construct the generalized Jacobian of a curve relative
to a modulus. The proof that all abelian coverings of a curve can be obtained
from isogenies of its generalized Jacobians (Theorem 9.7 of JV) is due to Lang
[Sur les séries L d’une variété algébrique, Bull. SMF, 84 (1956), 555-563].
Results close to Theorem 8.1 of JV were obtained by Igusa [Fibre systems of
Jacobian varieties L, I1, III, Amer. J. Math., 78 (1956), 171-199, 745-760, and
81 (1959), 453—-476]. Theorem 9.11 is due to Parshin [Algebraic curves over
function fields, I, Math. USSR—Izvestija, 2 (1968), 1145-1169]. Matsusaka
[On a generating curve of an abelian variety, Nat. Sc. Rep. Ochanomizu Univ.,
3(1952), 1-4] showed that every abelian variety over an algebraically closed
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field is generated by a curve (cf. (10.1) of JV). Regarding (11.2) of JV, Hurwitz
[Math. Ann., 28 (1886)] was the first to show the relation between the number
of fixed points of a correspondence on a Rieman surface C and the trace of a
matrix describing its action on the homology of the surface (equivalently that
of its Jacobian). This result of Hurwitz inspired both Lefschetz in his proof of
his trace formula and Weil in his proof of the Riemann hypothesis for curves.

Proofs of Torelli’s theorem can be found in Andreotti [On a theorem of
Torelli, Amer. J. Math., 80 (1958), 801-821], Matsusaka [On a theorem
of Torelli, Amer. J. Math., 80 (1958), 784-800], Weil [Zum Beweis des
Torellischen Satzes, Gott. Nachr., 2 (1957), 33-53], and Ciliberto [On a proof
of Torelli’s theorem, in Algebraic Geometry—Open problems, Lecture Notes
in Math., 997, Springer-Verlag, 1983, pp. 113-223]. The proof in Section 13
of JV is taken from Martens [A new proof of Torelli’s theorem, Ann. Math.,
78 (1963), 107-111]. Torelli’s original paper is [Sulle varieta di Jacobi, Rend.
R. Acad. Sci. Torino, 50 (1914—15), 439-455]. Torelli’s theorem shows that
the map from the moduli space of curves into that of principally polarized
abelian varieties is injective on geometric points; a finer discussion of the map
can be found in the paper by Oort and Steenbrink [The local Torelli problem
for algebraic curves, in Algebraic Geometry Angers 1979, Sijthoff & Noordhoff,
1980, pp. 157-204].

Finally, we mention that Mumford [ Curves and Their Jacobians, University
of Mich] provides a useful survey of the topics in its title, and that the
commentaries in Weil [Collected Papers, Springer-Verlag, 1979] give a fasci-
nating insight into the arigins of parts of the subject of arithmetic geometry.
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