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Abstract

These notes prove the basic theorems in commutative algebra required for alge-
braic geometry and algebraic groups. They assume only a knowledge of the algebra
usually taught in advanced undergraduate or first-year graduate courses.
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NOTATIONS AND CONVENTIONS

Our convention is that rings have identity elements,1 and homomorphisms of rings respect
the identity elements. A unit of a ring is an element admitting an inverse. The units of a

c2009 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit
permission from the copyright holder.

1An element e of a ring A is an identity element if eaD aD ae for all elements a of the ring. It is usually
denoted 1A or just 1. Some authors call this a unit element, but then an element can be a unit without being a
unit element. Worse, a unit need not be the unit.
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ring A form a group, which we denote2 A�. Throughout “ring” means “commutative ring”.
Following Bourbaki, we let ND f0;1;2; : : :g.

X � Y X is a subset of Y (not necessarily proper).
X

def
D Y X is defined to be Y , or equals Y by definition.

X � Y X is isomorphic to Y .
X ' Y X and Y are canonically isomorphic (or there is a given or unique isomorphism).
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1 Rings and algebras

Let A be a ring. A subring of A is a subset that contains 1A and is closed under addition,
multiplication, and the formation of negatives. An A-algebra is a ring B together with a
homomorphism iB WA!B . A homomorphism of A-algebras B! C is a homomorphism
of rings 'WB! C such that '.iB.a//D iC .a/ for all a 2 A.

Elements x1; : : : ;xn of an A-algebra B are said to generate it if every element of B can
be expressed as a polynomial in the xi with coefficients in iB.A/, i.e., if the homomorphism
of A-algebras AŒX1; : : : ;Xn�!B acting as iB on A and sending Xi to xi is surjective. We
then write B D .iBA/Œx1; : : : ;xn�.

A ring homomorphism A!B is of finite type, and B is a finitely generated A-algebra,
if B is generated by a finite set of elements as an A-algebra.

A ring homomorphism A! B is finite, and B is a finite3 A-algebra, if B is finitely
generated as an A-module. If A! B and B! C are finite ring homomorphisms, then so
also is their composite A! C .

Let k be a field, and let A be a k-algebra. When 1A ¤ 0, the map k! A is injective,
and we can identify k with its image, i.e., we can regard k as a subring of A. When 1AD 0,
the ring A is the zero ring f0g.

Let AŒX� be the ring of polynomials in the symbol X with coefficients in A. If A is an
integral domain, then deg.fg/D deg.f /Cdeg.g/, and so AŒX� is also an integral domain;
moreover, AŒX�� D A�.

Let A be an algebra over a field k. If A is an integral domain and finite as a k-algebra,
then it is a field, because, for each nonzero a 2 A, the k-linear map x 7! axWA! A is
injective, and hence is surjective, which shows that a has an inverse. If A is an integral
domain and each element of A is algebraic over k, then for each a 2 A, kŒa� is an integral
domain finite over k, and hence contains an inverse of a; again A is a field.

PRODUCTS AND IDEMPOTENTS

An element e of a ring A is idempotent if e2 D e. For example, 0 and 1 are both idempo-
tents — they are called the trivial idempotents. Idempotents e1; : : : ; en are orthogonal if
eiej D 0D ej ei for i ¤ j . Any sum of orthogonal idempotents is again idempotent. A set

2This notation differs from that of Bourbaki, who writes A� for the multiplicative monoid Ar f0g and A�

for the group of units. We shall rarely need the former, and � is overused.
3The term “module-finite” is also used.
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fe1; : : : ; eng of orthogonal idempotents is complete if e1C�� �CenD 1. Any set of orthogo-
nal idempotents fe1; : : : ; eng can be made into a complete set of orthogonal idempotents by
adding the idempotent e D 1� .e1C�� �C en/.

If AD A1� � � ��An (direct product of rings), then the elements

ei D .0; : : : ;
i

1; : : : ;0/; 1� i � n;

form a complete set of orthogonal idempotents in A. Conversely, if fe1; : : : ; eng is a com-
plete set of orthogonal idempotents in A, then Aei becomes a ring4 with the addition and
multiplication induced by that of A, and A' Ae1� � � ��Aen.

2 Ideals

Let A be a ring. An ideal a in A is a subset such that
˘ a is a subgroup of A regarded as a group under addition;
˘ a 2 a, r 2 A) ra 2 a:

The ideal generated by a subset S of A is the intersection of all ideals a containing A —
it is easy to verify that this is in fact an ideal, and that it consists of all finite sums of the
form

P
risi with ri 2A, si 2 S . The ideal generated by the empty set is the zero ideal f0g.

When S D fs1; s2; : : :g, we write .s1; s2; : : :/ for the ideal it generates.
An ideal is ideal!principal if it is generated by a single element. Such an ideal .a/ is

proper if and only a is not a unit. Thus a ring A is a field if and only if 1A ¤ 0 and A
contains no nonzero proper ideals.

Let a and b be ideals in A. The set faC b j a 2 a; b 2 bg is an ideal, denoted aC b.
The ideal generated by fab j a 2 a; b 2 bg is denoted by ab. Clearly ab consists of all finite
sums

P
aibi with ai 2 a and bi 2 b, and if a D .a1; : : : ;am/ and b D .b1; : : : ;bn/, then

abD .a1b1; : : : ;aibj ; : : : ;ambn/. Note that ab� aAD a and ab� AbD b, and so

ab� a\b: (1)

The kernel of a homomorphism A! B is an ideal in A. Conversely, for any ideal a in
a ring A, the set of cosets of a in A forms a ring A=a, and a 7! aCa is a homomorphism
'WA! A=a whose kernel is a. There is a one-to-one correspondence

fideals of A containing ag
b7!'.b/
 �����!
'�1.b/ [b

fideals of A=ag: (2)

For any ideal b of A, '�1'.b/D aCb.
An ideal p in A is prime if p¤ A and ab 2 p) a 2 p or b 2 p. Thus p is prime if and

only if the quotient ring A=p is nonzero and has the property that

ab D 0; b ¤ 0) aD 0;

i.e., A=p is an integral domain. Note that if p is prime and a1 � � �an 2 p, then either a1 2 p

or a2 � � �an 2 p; if the latter, then either a2 2 p or a3 � � �an 2 p; continuing in this fashion,
we find that at least one of the ai 2 p.

4But Aei is not a subring of A if n ¤ 1 because its identity element is ei ¤ 1A: However, the map a 7!
aei WA! Aei realizes Aei as a quotient of A.
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An ideal m in A is maximal if it is a maximal element of the set of proper ideals in A.
Therefore an ideal m is maximal if and only if the quotient ring A=m is nonzero and has no
proper nonzero ideals (by (2)), and so is a field. Note that

m maximal H) m prime.

The radical rad.a/ of an ideal a is

ff 2 A j f r 2 a, some r 2 N, r > 0g:

An ideal a is said to be radical if it equals its radical. Thus a is radical if and only if the quo-
tient ring A=a is reduced, i.e., without nonzero nilpotent elements (elements some power
of which is zero). Since integral domains are reduced, prime ideals (a fortiori maximal
ideals) are radical. The radical of .0/ consists of the nilpotent elements of A — it is called
the nilradical of A.

If b$ b0 under the one-to-one correspondence (2), then A=b' .A=a/=b0, and so b is
prime (resp. maximal, radical) if and only if b0 is prime (resp. maximal, radical).

PROPOSITION 2.1. Let a be an ideal in a ring A.
(a) The radical of a is an ideal.
(b) rad.rad.a//D rad.a/.

PROOF. (a) If a 2 rad.a/, then clearly fa 2 rad.a/ for all f 2 A. Suppose a;b 2 rad.a/,
with say ar 2 a and bs 2 a. When we expand .aCb/rCs using the binomial theorem, we
find that every term has a factor ar or bs , and so lies in a.

(b) If ar 2 rad.a/, then ars D .ar/s 2 a for some s > 0. 2

Note that (b) of the proposition shows that rad.a/ is radical, and so is the smallest radical
ideal containing a.

If a and b are radical, then a\b is radical, but aCb need not be: consider, for example,
aD .X2�Y / and bD .X2CY /; they are both prime ideals in kŒX;Y � (by 4.7 below, for
example), but aCbD .X2;Y /, which contains X2 but not X .

PROPOSITION 2.2. The radical of an ideal is equal to the intersection of the prime ideals
containing it.

PROOF. If aDA, then the set of prime ideals containing it is empty, and so the intersection
is A. Thus we may suppose that a is a proper ideal of A. Then rad.a/ �

T
p�a p because

prime ideals are radical and rad.a/ is the smallest radical ideal containing a.
Conversely, suppose that f … rad.a/ — we have to show that there exists a prime ideal

containing a but not f . Let S be the set of ideals in A containing a but no power of f .
Then S is nonempty because a 2 S . Suppose (for the moment) that S contains a maximal
element c, and let bb0 2 c. If neither b nor b0 is in c, then cC .b/ and cC .b0/ properly
contain c, and so do not lie in S . Therefore

f r D cCab; f r
0

D c0Ca0b0 some r;r 0 � 1, c;c0 2 c, a;a0 2 A:

Hence
f rCr

0

D cc0Cabc0Ca0b0cCaa0bb0 2 c;

which contradicts the definition of c. Therefore c is prime, and so f …
T

p�a p.
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It remains to show that S always contains a maximal element. If A is noetherian (see
�3 below), this is automatic. Otherwise, we apply Zorn’s lemma to S . Let b1 � b2 � �� �

be a chain of ideals in S , and let bD
S

bi . Then b 2 S , because otherwise some power of
f lies in b, and hence in some bi , which contradicts the definition of S . Therefore b is an
upper bound for the chain. As every chain in S has an upper bound, Zorn’s lemma implies
that S has a maximal element. 2

REMARK 2.3. (a) The argument in the last paragraph of the proof applied to the set S of
ideals containing a but not 1 shows that every proper ideal of A is contained in a maximal
ideal.

(b) The above proof is one of many in commutative algebra in which an ideal, maximal
with respect to some property, is shown to be prime. For a general examination of this
phenomenon, see Lam and Reyes 2008.

DEFINITION 2.4. The Jacobson radical J of a ring is the intersection of the maximal ideals
of the ring:

J.A/D
\
fm jm maximal in Ag:

A ring A is local if it has exactly one maximal ideal. For such a ring, the Jacobson
radical is m.

PROPOSITION 2.5. An element c of A is in the Jacobson radical of A if and only if 1�ac
is a unit for all a 2 A.

PROOF. We prove the contrapositive: there exists a maximal ideal m such that c …m if and
only if there exists an a 2 A such that 1�ac is not a unit.
(: As 1�ac is not a unit, it lies in some maximal ideal m of A (by 2.3a). Then c …m,

because otherwise 1D .1�ac/Cac 2m.
): Suppose that c is not in the maximal ideal m. Then mC.c/DA, and so 1DmCac

for some m 2m and a 2 A. Now 1�ac 2m, and so it is not a unit. 2

PROPOSITION 2.6. Let S be a nonempty finite set of ideals in A, at most one of which is
not prime. Any ideal contained in the union of the ideals in S is contained in at least one of
the ideals.

PROOF. We prove the contrapositive:

if the ideal a in not contained in any ideal in S , then it is not contained in their
union.

For jS j D 1, there is nothing to prove, and so we assume that jS j D rC1 > 1 and (induc-
tively) that the statement is true for r . We can list the elements of S as p1; : : : ;prC1 with
prC1 prime. As a is not contained in any of the ideals p1; : : : ;prC1, for each i , there exists
an ai in a not in the union of the ideals p1; : : : ;pi�1;piC1; : : : ;prC1. If some ai does not lie
in pi , then that ai 2 arp1[ : : :[prC1, and the proof is complete. Thus suppose that every
ai 2 pi , and consider

aD a1 � � �arCarC1.

Because prC1 is prime and none of the elements a1; : : : ;ar lies in prC1, their product does
not lie in prC1; however, arC1 2 prC1, and so a … prC1. Next consider a prime pi with
i � r . In this case a1 � � �ar 2 pi because the product involves ai , but arC1 … pi , and so again
a … pi . Now a 2 arp1[ : : :[prC1, and so a is not contained in the union of the pi . 2
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EXTENSION AND CONTRACTION OF IDEALS

Let 'WA! B be a homomorphism of rings.

NOTATION 2.7. For an ideal b of B , '�1.b/ is an ideal in A, called the contraction of b to
A, which is often denoted bc . For an ideal a of A, the ideal in B generated by '.a/ is called
the extension of a to B , and is often denoted ae.

When ' is surjective, '.a/ is already an ideal, and whenA is a subring ofB , bc D b\A.

2.8. There are the following equalities (a;a0 ideals in A; b;b0 ideals in B):

.aCa0/e D aeCa0e; .aa0/e D aea0e; .b\b0/c D bc \b0c ; rad.b/c D rad.bc/:

2.9. Obviously (i) a� aec and (ii) bce � b (a an ideal ofA; b an ideal ofB). On applying e
to (i), we find that ae � aece, and (ii) with b replaced by ae shows that aece � ae; therefore
ae D aece. Similarly, bcec D bc : It follows that extension and contraction define inverse
bijections between the set of contracted ideals in A and the set of extended ideals in B:

fbc � A j b an ideal in Bg
e
�*)�
c
fae � B j a an ideal in Ag

Note that, for any ideal b in B , the map A=bc ! B=b is injective, and so bc is prime
(resp. radical) if b is prime (resp. radical).

THE CHINESE REMAINDER THEOREM

The ideals of A�B are all of the form a� b with a and b ideals in A and B . To see
this, note that if c is an ideal in A�B and .a;b/ 2 c, then .a;0/ D .1;0/.a;b/ 2 c and
.0;b/D .0;1/.a;b/ 2 c. Therefore, cD a�b with

aD fa j .a;0/ 2 cg; bD fb j .0;b/ 2 cg:

THEOREM 2.10 (CHINESE REMAINDER THEOREM). Let a1; : : : ;an be ideals in a ring A.
If ai is coprime to aj (i.e., ai Caj D A/ whenever i ¤ j , then the map

a 7! .: : : ;aCai ; : : :/WA! A=a1� � � ��A=an (3)

is surjective, with kernel
Q

ai D
T

ai .

PROOF. Suppose first that nD 2. As a1Ca2DA, there exist ai 2 ai such that a1Ca2D 1.
Then a1x2Ca2x1 maps to .x1 moda1;x2 moda2/, which shows that (3) is surjective.

For each i , there exist elements ai 2 a1 and bi 2 ai such that

ai Cbi D 1, all i � 2:

The product
Q
i�2.ai Cbi /D 1, and lies in a1C

Q
i�2 ai , and so

a1C
Y
i�2

ai D A:

We can now apply the theorem in the case nD 2 to obtain an element y1 of A such that

y1 � 1 mod a1; y1 � 0 mod
Y
i�2

ai :
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These conditions imply

y1 � 1 mod a1; y1 � 0 mod aj , all j > 1:

Similarly, there exist elements y2; :::;yn such that

yi � 1 mod ai ; yi � 0 mod aj for j ¤ i:

The element x D
P
xiyi maps to .x1 moda1; : : : ;xn modan/, which shows that (3) is sur-

jective.
It remains to prove that

T
ai D

Q
ai . Obviously

Q
ai �

T
ai . Suppose first that nD 2,

and let a1Ca2 D 1, as before. For c 2 a1\a2, we have

c D a1cCa2c 2 a1 �a2

which proves that a1\ a2 D a1a2. We complete the proof by induction. This allows us
to assume that

Q
i�2 ai D

T
i�2 ai . We showed above that a1 and

Q
i�2 ai are relatively

prime, and so
a1 � .

Y
i�2

ai /D a1\ .
Y
i�2

ai /

by the nD 2 case. Now a1 � .
Q
i�2 ai /D

Q
i�1 ai and a1\ .

Q
i�2 ai /D a1\ .

T
i�2 ai /DT

i�1 ai , which completes the proof. 2

3 Noetherian rings

PROPOSITION 3.1. The following conditions on a ring A are equivalent:
(a) every ideal in A is finitely generated;
(b) every ascending chain of ideals a1 � a2 � �� � eventually becomes constant, i.e., for

some m, am D amC1 D �� � :

(c) every nonempty set of ideals in A has a maximal element (i.e., an element not prop-
erly contained in any other ideal in the set).

PROOF. (a)) (b): If a1 � a2 � �� � is an ascending chain, then aD
S

ai is an ideal, and
hence has a finite set fa1; : : : ;ang of generators. For somem, all the ai belong am, and then

am D amC1 D �� � D a:

(b)) (c): Let S be a nonempty set of ideals in A. Let a1 2 S ; if a1 is not maximal in
S , then there exists an ideal a2 in S properly containing a1. Similarly, if a2 is not maximal
in S , then there exists an ideal a3 in S properly containing a2, etc.. In this way, we obtain
an ascending chain of ideals a1 � a2 � a3 � �� � in S that will eventually terminate in an
ideal that is maximal in S .

(c)) (a): Let a be an ideal, and let S be the set of finitely generated ideals contained
in a. Then S is nonempty because it contains the zero ideal, and so it contains a maximal
element cD .a1; : : : ;ar/. If c¤ a, then there exists an element a 2 ar c, and .a1; : : : ;ar ;a/
will be a finitely generated ideal in a properly containing c. This contradicts the definition
of c. 2
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A ring A is noetherian if it satisfies the conditions of the proposition. For example,
fields and principal ideal domains are noetherian. On applying (c) to the set of all proper
ideals containing a fixed proper ideal, we see that every proper ideal in a noetherian ring is
contained in a maximal ideal. We saw in (2.3) that this is, in fact, true for any ring, but the
proof for non-noetherian rings requires Zorn’s lemma.

A quotient A=a of a noetherian ring A is noetherian, because the ideals in A=a are all
of the form b=a with b an ideal in A, and any set of generators for b generates b=a.

PROPOSITION 3.2. Let A be a ring. The following conditions on an A-module M are
equivalent:

(a) every submodule of M is finitely generated;
(b) every ascending chain of submodules M1 �M2 � �� � eventually becomes constant.
(c) every nonempty set of submodules of M has a maximal element.

PROOF. Essentially the same as that of (3.1). 2

AnA-moduleM is noetherian if it satisfies the equivalent conditions of the proposition.
Let AA denote A regarded as a left A-module. Then the submodules of AA are exactly the
ideals in A, and so AA is noetherian (as a module) if and only if A is noetherian (as a ring).

PROPOSITION 3.3. Let
0!M 0

i
�!M

q
�!M 00! 0

be an exact sequence of A-modules. The module M is noetherian if and only if M 0 and
M 00 are both noetherian.

PROOF. ): An ascending chain of submodules in M 0 or in M 00 gives rise to an ascending
chain in M , and therefore becomes constant.
(: That ascending chains of submodules of M eventually become constant follows

from the statement:

SubmodulesN 0�N ofM are equal if q.N 0/D q.N / and i�1.N 0/D i�1.N /.

To prove this, let x 2N ; because q.N 0/D q.N /, there exists an x0 2N 0 such that q.x/D
q.x0/; now q.x�x0/D 0, and so there exists a y 2M 0 such that i.y/D x�x0; in particular,
i.y/ 2N , and so y 2 i�1.N /D i�1.N 0/; therefore i.y/ 2N 0, and so xD x0C i.y/ 2N 0.2

PROPOSITION 3.4. Every finitely generated module over a noetherian ring is noetherian.

PROOF. As such a module is a quotient of .AA/r for some r , it suffice to show that .AA/r

is noetherian, but this can be proved by induction on r using the exact sequences

0! .AA/
r�1 i
�! .AA/

r q
�! AA! 0

(
i.a1; : : : ;ar�1/D .a1; : : : ;ar�1;0/

q.a1; : : : ;ar/D ar : 2

PROPOSITION 3.5. Every finitely generated module M over a noetherian ring A contains
a finite chain of submodules M �Mr � �� � �M1 � 0 such that each quotient Mi=Mi�1 is
isomorphic to A=pi for some prime ideal pi .
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PROOF. The annihilator ann.x/ of an element x of M is fa 2 A j ax D 0g. It is an ideal in
A, which is proper if x ¤ 0. I claim that any ideal a that is maximal among the annihilators
of nonzero elements of A is prime. Suppose aD ann.x/, and let ab 2 a, so that abx D 0.
Then a � .a/C a � ann.bx/. If b … a, then bx ¤ 0, and so a D ann.bx/ by maximality,
which implies that a 2 a.

We now prove the proposition. Note that, for any x 2M , the submodule Ax of M is
isomorphic to A=ann.x/. Therefore, if M is nonzero, then it contains a submodule M1

isomorphic to A=p1 for some prime ideal p1. Similarly, M=M1 contains a submodule
M2=M1 isomorphic A=p2 for some prime ideal p2, and so on. The chain 0�M1 �M2 �

�� � terminates because M is noetherian (by 3.4). 2

THEOREM 3.6 (HILBERT BASIS THEOREM). Every finitely generated algebra over a noethe-
rian ring is noetherian.

PROOF. Let A be noetherian. Since every finitely generated A-algebra is a quotient of a
polynomial algebra, it suffices to prove the theorem for AŒX1; : : : ;Xn�. Note that

AŒX1; : : : ;Xn�D AŒX1; : : : ;Xn�1�ŒXn�: (4)

This simply says that every polynomial f in n symbols X1; : : : ;Xn can be expressed
uniquely as a polynomial in Xn with coefficients in kŒX1; : : : ;Xn�1�,

f .X1; : : : ;Xn/D a0.X1; : : : ;Xn�1/X
r
nC�� �Car.X1; : : : ;Xn�1/:

Thus an induction argument shows that it suffices to prove the theorem for AŒX�.
Recall that for a polynomial

f .X/D c0X
r
C c1X

r�1
C�� �C cr ; ci 2 A; c0 ¤ 0;

c0 is the leading coefficient of f .
Let a be an ideal in AŒX�, and let ci be the set of elements of A that occur as the leading

coefficient of a polynomial in a of degree i (we also include 0). Then ci is an ideal in A,
and ci�1 � ci , because if cX i�1C�� � 2 a, then so also does X.cX i�1C�� �/D cX i C�� � .
As A is noetherian, the sequence of ideals

c1 � c2 � �� � � ci � �� �

eventually becomes constant, say, cd D cdC1D : : : (and cd contains the leading coefficients
of all polynomials in a).

For each i � d , choose a finite generating set fci1; ci2; : : :g for ci , and for each .i;j /,
choose a polynomial fij 2 a of degree i with leading coefficient cij . We shall show that the
fij ’s generate a.

Let f 2 a; we have to show that f 2 .fij /. Suppose first that f has degree s � d . Then
f D cXsC�� � with c 2 cd , and so

c D
X

j
aj cdj ; some aj 2 A.

Now
f �

X
j
ajfdjX

s�d
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is either zero and f 2 .fij /, or it has degree < deg.f /. In the second case, we repeat the
argument, until we obtain a polynomial f with degree s < d that differs from the original
polynomial by an element of .fij /. By a similar argument, we then construct elements
aj 2 A such that

f �
X

j
ajfsj

is either zero or has degree < deg.f /. In the second case, we repeat the argument, until we
obtain zero. 2

PROPOSITION 3.7 (NAKAYAMA’S LEMMA). Let a be an ideal in a ring A contained in all
maximal ideals of A, and let M be a finitely generated A-module.

(a) If M D aM , then M D 0:
(b) If N is a submodule of M such that M DN CaM , then M DN .

PROOF. (a) SupposeM ¤ 0. Choose a minimal set of generators fe1; : : : ; eng forM , n� 1,
and write

e1 D a1e1C�� �Canen, ai 2 a:

Then
.1�a1/e1 D a2e2C�� �Canen

and, as 1�a1 is a unit (see 2.5), e2; : : : ; en generate M . This contradicts the minimality of
the set.

(b) The hypothesis implies that M=N D a.M=N/, and so M=N D 0. 2

Now let A be a noetherian local ring with maximal ideal m. When we regard m as an
A-module, the action of A on m=m2 factors through k def

D A=m.

COROLLARY 3.8. The elements a1; : : : ;an of m generate m as an ideal if and only if a1C
m2; : : : ;anCm2 generate m=m2 as a vector space over k. In particular, the minimum
number of generators for the maximal ideal is equal to the dimension of the vector space
m=m2.

PROOF. If a1; : : : ;an generate the ideal m, it is obvious that their images generate the vector
space m=m2. Conversely, suppose that a1Cm2; : : : ;anCm2 generate m=m2, so that mD

.a1; : : : ;an/Cm2. As A is noetherian, the ideal m is finitely generated, and so Nakayama’s
lemma, applied with M Dm, N D .a1; : : : ;an/, aDm, shows that mD .a1; : : : ;an/. 2

DEFINITION 3.9. Let A be a noetherian ring.
(a) The height ht.p/ of a prime ideal p in A is the greatest length d of a chain of distinct

prime ideals
pD pd � pd�1 � �� � � p0: (5)

(b) The (Krull) dimension of A is supfht.p/ j p� A; p primeg.

Thus, the Krull dimension of a ring A is the supremum of the lengths of chains of
prime ideals in A (the length of a chain is the number of gaps, so the length of (5) is d ).
For example, a field has Krull dimension 0, and conversely an integral domain of Krull
dimension 0 is a field. The height of every nonzero prime ideal in a principal ideal domain
is 1, and so such a ring has Krull dimension 1 (provided it is not a field). It is convenient to
define the Krull dimension of the zero ring to be �1.



3 NOETHERIAN RINGS 11

We shall see in �15 that the height of any prime ideal in a noetherian ring is finite.
However, the Krull dimension of the ring may be infinite, because it may contain a sequence
p1, p2, p3, . . . of prime ideals such that ht.pi / tends to infinity (see Krull 1938 or Nagata
1962, p.203, for examples).

LEMMA 3.10. In a noetherian ring, every set of generators for an ideal contains a finite
generating set.

PROOF. Let a be an ideal in a noetherian ring A, and let S be a set of generators for a.
An ideal maximal in the set of ideals generated by finite subsets of S must contain every
element of S (otherwise it wouldn’t be maximal), and so equals a. 2

THEOREM 3.11 (KRULL INTERSECTION THEOREM). Let a be an ideal in a noetherian
ring A. If a is contained in all maximal ideals of A, then

T
n�1 an D f0g:

PROOF. We shall show that, for any ideal a in a noetherian ring,\
n�1

an D a �
\

n�1
an: (6)

When a is contained in all maximal ideals of A, Nakayama’s lemma shows that
T
n�1 an is

zero.
Let a1; : : : ;ar generate a. Then an consists of finite sumsX

i1C���CirDn

ci1���ira
i1
1 � � �a

ir
r ; ci1���ir 2 A:

In other words, an consists of the elements of A of the form g.a1; : : : ;ar/ for some ho-
mogeneous polynomial g.X1; : : : ;Xr/ 2 AŒX1; : : : ;Xr � of degree n. Let Sm be the set of
homogeneous polynomials f of degree m such that f .a1; : : : ;ar/ 2

T
n�1 an, and let c be

the ideal in AŒX1; : : : ;Xr � generated by all the Sm. According to the lemma, there exists
a finite set ff1; : : : ;fsg of elements of

S
mSm that generates c. Let di D degfi , and let

d Dmaxdi . Let b 2
T
n�1 an; then b 2 adC1, and so b D f .a1; : : : ;ar/ for some homoge-

neous polynomial f of degree d C1. By definition, f 2 SdC1 � a, and so

f D g1f1C�� �Cgsfs

for some gi 2AŒX1; : : : ;Xn�. As f and the fi are homogeneous, we can omit from each gi
all terms not of degree degf �degfi , since these terms cancel out. Thus, we may choose
the gi to be homogeneous of degree degf �degfi D dC1�di > 0. Then gi .a1; : : : ;ar/ 2
a, and so

b D f .a1; : : : ;ar/D
X

i
gi .a1; : : : ;ar/ �fi .a1; : : : ;ar/ 2 a �

\
n
an;

which completes the proof of (6). 2

The equality (6) can also be proved using primary decompositions — see (13.15).

PROPOSITION 3.12. In a noetherian ring, every ideal contains a power of its radical; in
particular, some power of the nilradical of the ring is zero.

PROOF. Let a1; : : : ;an generate rad.a/. For each i , some power of ai , say ari

i , lies in a.
Then every term of the expansion of

.c1a1C�� �C cnan/
r1C���Crn ; ci 2 A;

has a factor of the form a
ri

i for some i , and so lies in a. 2
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4 Unique factorization

Let A be an integral domain. An element a of A is irreducible if it is not zero, not a unit,
and admits only trivial factorizations, i.e., those in which one of the factors is a unit. If every
nonzero nonunit in A can be written as a finite product of irreducible elements in exactly
one way up to units and the order of the factors, then A is called a unique factorization
domain: In such a ring, an irreducible element a can divide a product bc only if it divides b
or c (write bcD aq and express b;c;q as products of irreducible elements). Every principal
ideal domain, for example, the polynomial ring kŒX� over a field k, is a unique factorization
domain (proved in most algebra courses).

PROPOSITION 4.1. Let .a/ be a nonzero proper principal ideal in an integral domain A.
If .a/ is a prime ideal, then a is irreducible, and the converse holds when A is a unique
factorization domain.

PROOF. Assume that .a/ is prime. Because .a/ is neither .0/ nor A, a is neither zero nor
a unit. If a D bc, then bc 2 .a/, which, because .a/ is prime, implies that b or c is in .a/,
say b D aq. Now aD bc D aqc, which implies that qc D 1, and that c is a unit.

For the converse, assume that a is irreducible. If bc 2 .a/, then ajbc, which (as we
noted above) implies that ajb or ajc, i.e., that b or c 2 .a/. 2

PROPOSITION 4.2 (GAUSS’S LEMMA). Let A be a unique factorization domain with field
of fractions F . If f .X/ 2 AŒX� factors into the product of two nonconstant polynomials
in F ŒX�, then it factors into the product of two nonconstant polynomials in AŒX�.

PROOF. Let f D gh in F ŒX�. For suitable c;d 2A, the polynomials g1D cg and h1D dh
have coefficients in A, and so we have a factorization

cdf D g1h1 in AŒX�.

If an irreducible element p of A divides cd , then, looking modulo .p/, we see that

0D g1 �h1 in .A=.p// ŒX�.

According to Proposition 4.1, the ideal .p/ is prime, and so .A=.p// ŒX� is an integral
domain. Therefore, p divides all the coefficients of at least one of the polynomials g1;h1,
say g1, so that g1 D pg2 for some g2 2 AŒX�. Thus, we have a factorization

.cd=p/f D g2h1 in AŒX�.

Continuing in this fashion, we can remove all the irreducible factors of cd , and so obtain a
factorization of f in AŒX�. 2

Let A be a unique factorization domain. A nonzero polynomial

f D a0Ca1XC�� �CamX
m

in AŒX� is said to be primitive if the coefficients ai have no common factor other than units.
Every polynomial f in AŒX� can be written f D c.f / �f1 with c.f / 2A and f1 primitive.
The element c.f /, well-defined up to multiplication by a unit, is called the content of f .



4 UNIQUE FACTORIZATION 13

LEMMA 4.3. The product of two primitive polynomials is primitive.

PROOF. Let

f D a0Ca1XC�� �CamX
m

g D b0Cb1XC�� �CbnX
n;

be primitive polynomials, and let p be an irreducible element of A. Let ai0 be the first
coefficient of f not divisible by p and bj0

the first coefficient of g not divisible by p. Then
all the terms in

P
iCjDi0Cj0

aibj are divisible by p, except ai0bj0
, which is not divisible

by p. Therefore, p doesn’t divide the .i0C j0/th-coefficient of fg. We have shown that
no irreducible element of A divides all the coefficients of fg, which must therefore be
primitive. 2

LEMMA 4.4. For polynomials f;g 2 AŒX�, c.fg/ D c.f / � c.g/; hence every factor in
AŒX� of a primitive polynomial is primitive.

PROOF. Let f D c.f /f1 and gD c.g/g1 with f1 and g1 primitive. Then fgD c.f /c.g/f1g1
with f1g1 primitive, and so c.fg/D c.f /c.g/. 2

PROPOSITION 4.5. If A is a unique factorization domain, then so also is AŒX�.

PROOF. From the factorization f D c.f /f1, we see that the irreducible elements of AŒX�
are to be found among the constant polynomials and the primitive polynomials, but a con-
stant polynomial a is irreducible if and only if a is an irreducible element of A (obvious)
and a primitive polynomial is irreducible if and only if it has no primitive factor of lower
degree (by 4.4). From this it is clear that every nonzero nonunit f in AŒX� is a product of
irreducible elements.

Let
f D c1 � � �cmf1 � � �fn D d1 � � �drg1 � � �gs

be two factorizations of an element f of AŒX� into irreducible elements with the ci ;dj
constants and the fi ;gj primitive polynomials. Then

c.f /D c1 � � �cm D d1 � � �dr (up to units in A),

and, on using that A is a unique factorization domain, we see that mD r and the ci ’s differ
from the di ’s only by units and ordering. Hence,

f1 � � �fn D g1 � � �gs (up to units in A).

Gauss’s lemma shows that the fi ;gj are irreducible polynomials in F ŒX� and, on using
that F ŒX� is a unique factorization domain, we see that nD s and that the fi ’s differ from
the gi ’s only by units in F and by their ordering. But if fi D a

b
gj with a and b nonzero

elements of A, then bfi D agj . As fi and gj are primitive, this implies that b D a (up to a
unit in A), and hence that a

b
is a unit in A. 2

Let k be a field. A monomial in X1; : : : ;Xn is an expression of the form

X
a1

1 � � �X
an
n ; aj 2 N:
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The total degree of the monomial is
P
ai . The degree, deg.f /, of a nonzero polynomial

f .X1; : : : ;Xn/ is the largest total degree of a monomial occurring in f with nonzero coef-
ficient. Since

deg.fg/D deg.f /Cdeg.g/;

kŒX1; : : : ;Xn� is an integral domain and kŒX1; : : : ;Xn�� D k�. Therefore, an element f of
kŒX1; : : : ;Xn� is irreducible if it is nonconstant and f D gh H) g or h is constant.

THEOREM 4.6. The ring kŒX1; : : : ;Xn� is a unique factorization domain.

PROOF. This is trivially true when nD 0, and an induction argument using (4), p.9, proves
it for all n. 2

COROLLARY 4.7. A nonzero proper principal ideal .f / in kŒX1; : : : ;Xn� is prime if and
only f is irreducible.

PROOF. Special case of (4.1). 2

5 Integrality

Let A be a subring of a ring B . An element ˛ of B is said to be integral over A if it is a
root of a monic5 polynomial with coefficients in A, i.e., if it satisfies an equation

˛nCa1˛
n�1
C�� �Can D 0; ai 2 A:

If every element of B is integral over A, then B is said to be integral over A.
In the next proof, we shall need to apply Cramer’s formula. As usually stated in linear

algebra courses, this says that, if x1; : : : ;xm is a solution to the system of linear equations
mX
jD1

cijxj D di ; i D 1; : : : ;m;

then

xj D
det.Cj /
det.C /

; where C D .cij / and

Cj D

0B@ c11 � � � c1;j�1 d1 c1;jC1 � � � c1m
:::

:::
:::

:::
:::

cm1 � � � cm;j�1 dm cm;jC1 � � � cmm

1CA :
When one restates the formula as

det.C / �xj D det.Cj /

it becomes true over any ring (whether or not det.C / is a unit). The proof is elementary—
expand out the right hand side of

detCj D det

0B@ c11 : : :
P
c1jxj : : : c1m

:::
:::

:::

cm1 : : :
P
cmjxj : : : cmm

1CA
using standard properties of determinants.

5A polynomial is monic if its leading coefficient is 1, i.e., f .X/DXnC terms of degree less than n.
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PROPOSITION 5.1. Let A be a subring of a ring B . An element ˛ of B is integral over
A if and only if there exists a faithful6 finitely generated A-submodule M of B such that
˛M �M .

PROOF. )W Suppose

˛nCa1˛
n�1
C�� �Can D 0; ai 2 A:

Then the A-submoduleM of B generated by 1, ˛, ..., ˛n�1 has the property that ˛M �M ,
and it is faithful because it contains 1.
(W Let M be a nonzero A-module in B such that ˛M �M , and let e1; : : : ; en be a

finite set of generators for M . Then, for each i ,

˛ei D
P
aij ej , some aij 2 A:

We can rewrite this system of equations as

.˛�a11/e1�a12e2�a13e3�� � � D 0

�a21e1C .˛�a22/e2�a23e3�� � � D 0

� � � D 0:

Let C be the matrix of coefficients on the left-hand side. Then Cramer’s formula tells us
that det.C / � ei D 0 for all i . As the ei generate M and M is faithful, this implies that
det.C /D 0. On expanding out the determinant, we obtain an equation

˛nC c1˛
n�1
C c2˛

n�2
C�� �C cn D 0; ci 2 A: 2

PROPOSITION 5.2. An A-algebra B is finite if and only if it is finitely generated and inte-
gral over A.

PROOF. (: Suppose B D AŒ˛1; : : : ;˛m� and that

˛
ni

i Cai1˛
ni�1
i C�� �Caini

D 0; aij 2 A; i D 1; : : : ;m.

Any monomial in the ˛i ’s divisible by ˛ni

i is equal (in B) to a linear combination of
monomials of lower degree. Therefore, B is generated as an A-module by the monomi-
als ˛r1

1 � � �˛
rm
m , 1� ri < ni .

): As an A-module, B is faithful (because a �1B D a), and so (5.1) implies that every
element of B is integral over A. As B is finitely generated as an A-module, it is certainly
finitely generated as an A-algebra. 2

THEOREM 5.3. Let A be a subring of the ring B . The elements of B integral over A form
a subring of B .

PROOF. Let ˛ and ˇ be two elements of B integral over A. Then AŒ˛;ˇ� is a faithful
finitely generated A-submodule of B , which is stable under multiplication by ˛˙ˇ and
˛ˇ. According to (5.1), this implies that ˛˙ˇ and ˛ˇ are integral over A. 2

6An A-module M is faithful if aM D 0, a 2 A, implies aD 0.
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DEFINITION 5.4. Let A be a subring of the ring B . The integral closure of A in B is the
subring of B consisting of the elements integral over A .

PROPOSITION 5.5. Let A be an integral domain with field of fractions F , and let L be a
field containing F . If ˛ 2 L is algebraic over F , then there exists a d 2 A such that d˛ is
integral over A.

PROOF. By assumption, ˛ satisfies an equation

˛mCa1˛
m�1
C�� �Cam D 0; ai 2 F:

Let d be a common denominator for the ai , so that dai 2 A for all i , and multiply through
the equation by dm:

dm˛mCa1d
m˛m�1C�� �Camd

m
D 0:

We can rewrite this as

.d˛/mCa1d.d˛/
m�1
C�� �Camd

m
D 0:

As a1d; : : : ;amdm 2 A, this shows that d˛ is integral over A. 2

COROLLARY 5.6. Let A be an integral domain and let L be an algebraic extension of the
field of fractions of A. Then L is the field of fractions of the integral closure of A in L.

PROOF. In fact, the proposition shows that every element of L is a quotient ˇ=d with ˇ
integral over A and d 2 A. 2

DEFINITION 5.7. An integral domain A is integrally closed if it is equal to its integral
closure in its field of fractions F , i.e., if

˛ 2 F; ˛ integral over A H) ˛ 2 A:

PROPOSITION 5.8. Every unique factorization domain is integrally closed.

PROOF. An element of the field of fractions of A not in A can be written a=b with a;b 2A
and b divisible by some irreducible element p not dividing a. If a=b is integral over A, then
it satisfies an equation

.a=b/nCa1.a=b/
n�1
C�� �Can D 0; ai 2 A:

On multiplying through by bn, we obtain the equation

anCa1a
n�1bC�� �Canb

n
D 0:

The element p then divides every term on the left except an, and hence must divide an.
Since it doesn’t divide a, this is a contradiction. 2

PROPOSITION 5.9. Let A be an integrally closed integral domain, and let L be a finite
extension of the field of fractions F of A. An element of L is integral over A if and only if
its minimum polynomial7 over F has coefficients in A.

7Most authors write “minimal polynomial” but the polynomial in question is in fact minimum (smallest
element in the set of monic polynomials having ˛ as a root).
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PROOF. Let ˛ be integral over A, so that

˛mCa1˛
m�1
C�� �Cam D 0; some ai 2 A; m > 0.

Let ˛0 be a conjugate of ˛, i.e., a root of the minimum polynomial f .X/ of ˛ over F in
some field containing L. Then there is an F -isomorphism8

� WF Œ˛�! F Œ˛0�; �.˛/D ˛0

On applying � to the above equation we obtain the equation

˛0mCa1˛
0m�1

C�� �Cam D 0;

which shows that ˛0 is integral over A. Hence all the conjugates of ˛ are integral over
A, and it follows from (5.3) that the coefficients of f .X/ are integral over A. They lie in
F , and A is integrally closed, and so they lie in A. This proves the “only if” part of the
statement, and the “if” part is obvious. 2

COROLLARY 5.10. LetA be an integrally closed integral domain with field of fractions F ,
and let f .X/ be a monic polynomial in AŒX�. Then every monic factor of f .X/ in F ŒX�
has coefficients in A.

PROOF. It suffices to prove this for an irreducible monic factor g of f in F ŒX�. Let ˛ be a
root of g in some extension field of F . Then g is the minimum polynomial ˛, which, being
also a root of f , is integral. Therefore g has coefficients in A. 2

THEOREM 5.11 (NOETHER NORMALIZATION THEOREM). Every finitely generated alge-
bra A over a field k contains a polynomial algebra R such that A is a finite R-algebra.

In other words, there exist elements y1; : : : ;yr of A such that A is a finite kŒy1; : : : ;yr �-
algebra and y1; : : : ;yr are algebraically independent over k.

PROOF. We may suppose that

AD kŒx1; : : : ;xn�D kŒX1; : : : ;Xn�=a:

Let y1; : : : ;yn be elements of kŒX1; : : : ;Xn� such that kŒX1; : : : ;Xn� is a finite kŒy1; : : : ;yn�-
algebra, and let Nyi be the image of yi in A. We may suppose that the yi have been
numbered so that Ny1; : : : ; Nyr are nonzero but NyrC1 D �� � D Nyn D 0. Then A is a finite
kŒ Ny1; : : : ; Nyr �-algebra (generated by the images of any set of generators for kŒX1; : : : ;Xn� as
a kŒy1; : : : ;yn�-module). We shall show that, if Ny1; : : : ; Nyr are not algebraically independent,
then it is possible to replace fy1; : : : ;yng with a similar set having fewer nonzero images
in A. By repeating the argument, we will eventually arrive at an n-tuple whose nonzero
images in A are algebraically independent.

If Ny1; : : : ; Nyr are algebraically dependent, then there exists a nonconstant polynomial
f .T1; : : : ;Tr/ such that z def

D f .y1; : : : ;yr/ 2 a. Some Ti occurs in f , say T1, and we can
write

f D cTN1 C c1T
N�1
1 C�� �C cN ; ci 2 kŒT2; : : : ;Tr �; c ¤ 0:

8Recall that the homomorphism X 7! ˛WF ŒX�! F Œ˛� defines an isomorphism F ŒX�=.f /! F Œ˛�.
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If c 2 k, then the equation

cyN1 C c1.y2; : : : ;yr/y
N�1
1 C�� �C cN .y2; : : : ;yr/�z D 0

shows that y1 is integral over kŒz;y2; : : : ;yr �. Therefore the elements z;y2; : : : ;yn have the
property that kŒX1; : : : ;Xn� is a finite kŒz;y2; : : : ;yn�-algebra but, because z 2 a, at most
r �1 < r of them have nonzero image in A.

If c … k, we choose an integer m and make the change of variables

z2 D y2�y
m2

1 ; : : : ; zr D yr �y
mr

1 :

Then kŒy1;z2; : : : zr ;yrC1; : : : ;yn�D kŒy1; : : : ;yn� and

f .y1;z2Cy
m2

1 ; : : : ; zrCy
mr

1 /D z 2 a:

When m is chosen sufficiently large,

f .T1;T2CT
m2

1 ; : : : ;TrCT
mr

1 /D cTN1 Cc1T
N�1
1 C�� �CcN ; c;ci 2 kŒT2; : : : ;Tr �; c¤ 0

with c 2 k.9 Therefore, the previous argument applies with y1;z2; : : : ; zr ;yrC1; : : :yn for
y1; : : : ;yn: 2

EXAMPLE 5.12. Let

AD kŒX1; : : : ;Xn�=.f /D kŒx1; : : : ;xn�

where f is a nonconstant polynomial. Some Xi occurs in f , say X1, and we can write

f .X1; : : : ;Xn/D cX
N
1 C c1X

N�1
1 C�� �C c0; ci 2 kŒX2; : : : ;Xn�; c ¤ 0:

If c 2 k, then the equation

0D cxN1 C c1.x2; : : : ;xn/x
N�1
1 C�� �C c0.x2; : : : ;xn/;

in A shows that x1 is integral over kŒx2; : : : ;xn� and so A is a finite kŒx2; : : : ;xn�-algebra.
As X1 occurs in every nonzero multiple of f , the elements x2; : : : ;xn are algebraically
independent in A.

If c … k, then we setw2D x2�xm
2

1 ; : : : ;wnD xn�x
mn

1 . The ringAD kŒx1;w2; : : : ;wn�
and

f .x1;w2Cx
m2

1 ; : : : ;wnCx
mn

1 /D 0:

If m is chosen sufficiently large,

f .X1;W2CX
m2

1 ; : : :/D cNX
N
1 C�� �

with cN 2 k, and so A is finite over kŒw2; : : : ;wn�.
9Let

f .T 1; : : : ;Tr /D
X

cj1���jr
T
j1

1 � � �T
jr
r :

If m is chosen so large that the numbers

j1Cm
2j2C�� �Cm

rjr ;

with j1; : : : ;jr running over the r-tuples such that cj1;:::;jr
¤ 0, are distinct, say with largest value N , then

f .T1;T2CT
m2

1 ; : : : ;Tr CT
mr

1 /D cTN1 C c1T
N�1
1 C�� �

with c 2 kr f0g:
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REMARK 5.13. When k is infinite, there is a simpler proof of a somewhat stronger result:
let A D kŒx1; : : : ;xn�; then there exist algebraically independent elements f1; : : : ;fr that
are linear combinations of the xi such that A is finite over kŒf1; : : : ;fr � (see 8.13 of my
algebraic geometry notes).

6 Rings of fractions

A multiplicative subset of a ring A is a subset S with the property:

1 2 S; a;b 2 S H) ab 2 S:

In other words, it is a nonempty subset closed under the formation of finite products.10

Let S be a multiplicative subset of A, and define an equivalence relation on A�S by

.a;s/� .b; t/ ” u.at �bs/D 0 for some u 2 S:

Write a
s

for the equivalence class containing .a;s/, and define addition and multiplication
of equivalence classes in the obvious way:

a
s
C
b
t
D

atCbs
st

; a
s
b
t
D

ab
st
:

It is easy to show that these do not depend on the choices of representatives for the equiva-
lence classes, and that we obtain in this way a ring

S�1AD fa
s
j a 2 A; s 2 Sg

and a ring homomorphism a 7! a
1
WA

iS
�! S�1A whose kernel is

fa 2 A j saD 0 for some s 2 Sg:

If S contains no zero-divisors, for example, if A is an integral domain and 0 … S , then
iS WA! S�1A is injective. At the opposite extreme, if 0 2 S , then S�1A is the zero ring.

PROPOSITION 6.1. The pair .S�1A;iS / has the following universal property:

every element of S maps to a unit in S�1A, and
any other ring homomorphism ˛WA!B with this
property factors uniquely through iS

A

˛
""EE

EE
EE

EE
E
iS // S�1A

9Š
��
B:

PROOF. Let ˛WA! B be a homomorphism, and let ˇWS�1A! B be a homomorphism
such that ˇ ı iS D ˛. Then

s
1
a
s
D

a
1
H) ˇ. s

1
/ˇ.a

s
/D ˇ.a

1
/;

and so
ˇ.a
s
/D ˛.a/˛.s/�1: (7)

10Recall that, in a commutative monoid, products over subsets are defined so as to satisfy�Q
a2S a

�
�
�Q

a2T a
�
D
�Q

a2S[T a
�

if S \T D ;:

In particular, the product over the empty subset is 1.
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This shows that there can be at most one ˇ such that ˇ ı iS D ˛. When ˛ maps the elements
of S to units in B , we define ˇ by the formula (7). Then

a
s
D

b
t
H) u.at �bs/D 0 some u 2 S

˛.u/2B�

H) ˛.a/˛.t/�˛.b/˛.s/D 0;

which shows that ˇ is well-defined, and it is easy to check that it is a homomorphism. 2

As usual, this universal property determines the pair .S�1A;iS / uniquely up to a unique
isomorphism.11

When A is an integral domain and S D Ar f0g, the ring S�1A is the field of fractions
F of A. In this case, for any other multiplicative subset T of A not containing 0, the ring
T �1A can be identified with the subring of F consisting of the fractions a

t
with a 2 A and

t 2 T .

EXAMPLE 6.2. Let h 2A. Then Sh D f1;h;h2; : : :g is a multiplicative subset of A, and we
let Ah D S�1h A. Thus every element of Ah can be written in the form a=hm, a 2 A, and

a
hm D

b
hn ” hN .ahn�bhm/D 0; some N:

If h is nilpotent, then Ah D 0, and if A is an integral domain with field of fractions F and
h¤ 0, then Ah is the subring of F of elements of the form a=hm, a 2 A, m 2 N:

PROPOSITION 6.3. For any ring A and h 2 A, the map
P
aiX

i 7!
P ai

hi defines an iso-
morphism

AŒX�=.1�hX/! Ah:

PROOF. If h D 0, both rings are zero, and so we may assume h ¤ 0. In the ring AŒx� D
AŒX�=.1�hX/, 1D hx, and so h is a unit. Let ˛WA!B be a homomorphism of rings such
that ˛.h/ is a unit inB . The homomorphism

P
aiX

i 7!
P
˛.ai /˛.h/

�i WAŒX�!B factors
through AŒx� because 1�hX 7! 1�˛.h/˛.h/�1 D 0, and this is the unique extension of ˛
toAŒx�. ThereforeAŒx� has the same universal property asAh, and so the two are (uniquely)
isomorphic by an A-algebra isomorphism that makes h�1 correspond to x. 2

Let S be a multiplicative subset of a ring A, and let S�1A be the corresponding ring of
fractions. For any ideal a in A, the ideal generated by the image of a in S�1A is

S�1aD fa
s
j a 2 a; s 2 Sg:

If a contains an element of S , then S�1a contains 1, and so is the whole ring. Thus some of
the ideal structure of A is lost in the passage to S�1A, but, as the next lemma shows, some
is retained.

11Recall the proof: let .A1; i1/ and .A2; i2/ have the universal property in the proposition; because every
element of S maps to a unit in A2, there exists a unique homomorphism ˛WA1 ! A2 such that ˛ ı i1 D i2
(universal property of A1; i1/; similarly, there exists a unique homomorphism ˛0WA2! A1 such that ˛0 ı i2 D
i1; now

˛0 ı˛ ı i1 D ˛
0
ı i2 D i1 D idA1

ıi1;

and so ˛0 ı ˛ D idA1
(universal property of A1; i1); similarly, ˛ ı ˛0 D idA2

, and so ˛ and ˛0 are inverse
isomorphisms (and they are uniquely determined by the conditions ˛ ı i1 D i2 and ˛0 ı i2 D i1).
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PROPOSITION 6.4. Let S be a multiplicative subset of the ring A, and consider extension
a 7! ae D S�1a and contraction a 7! ac D fa 2 A j a

1
2 ag of ideals with respect to the

homomorphism A! S�1A. Then

ace D a for all ideals of S�1A

aec D a if a is a prime ideal of A disjoint from S:

Moreover, the p 7! pe is a bijection from the set of prime ideals of A disjoint from S onto
the set of all prime ideals of S�1A; the inverse map is p 7! pc .

PROOF. Let a be an ideal in S�1A. Certainly ace � a. For the reverse inclusion, let b 2 a.
We can write bD a

s
with a 2A, s 2S . Then a

1
D s.a

s
/2 a, and so a 2 ac . Thus bD a

s
2 ace,

and so a� ace.
Let p be a prime ideal of A disjoint from S . Clearly pec � p. For the reverse inclusion,

let a 2 pec so that a
1
D

a0

s
for some a0 2 p, s 2 S . Then t .as�a0/D 0 for some t 2 S , and

so ast 2 p. Because st … p and p is prime, this implies that a 2 p, and so pec � p.
Let p be a prime ideal of A disjoint from S , and let NS be the image of S in A=p.

Then .S�1A/=pe ' NS�1.A=p/ because S�1A=pe has the correct universal property, and
NS�1.A=p/ is an integral domain because A=p is an integral domain and NS doesn’t contain
0. Therefore pe is prime. From �2 we know that pc is prime if p is, and so p 7! pe and
p 7! pc are inverse bijections on the two sets. 2

COROLLARY 6.5. If A is noetherian, then so also is S�1A for any multiplicative set S:

PROOF. As bc is finitely generated, so also is .bc/e D b. 2

EXAMPLE 6.6. Let p be a prime ideal in A. Then Sp D Arp is a multiplicative subset of
A, and we let Ap D S

�1
p A. Thus each element of Ap can be written in the form a

c
, c … p,

and
a
c
D

b
d
” s.ad �bc/D 0, some s … p:

It follows from (6.4b) that Ap is a local ring with maximal ideal mD fa
s
j a 2 p; s … pg.

PROPOSITION 6.7. Let m be a maximal ideal of a noetherian ring A, and let nD mAm be
the maximal ideal of Am: For all n, the map

aCmn 7! aCnnWA=mn! Am=n
n

is an isomorphism. Moreover, it induces isomorphisms

mr=mn! nr=nn

for all pairs .r;n/ with r < n.

PROOF. The second statement follows from the first, because of the exact commutative
diagram .r < n/:

0 ����! mr=mn ����! A=mn ����! A=mr ����! 0??y ??y' ??y'
0 ����! nr=nn ����! Am=n

n ����! Am=n
r ����! 0:
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We consider extension and contraction with respect to a 7! a
1
WA! Am. In order to

show that the map A=mn ! Am=n
n is injective, we have to show that .mn/ec D mn. If

a 2 .mn/ec , then a
1
D

b
s

with b 2 mn and s 2 S . Then s0sa 2 mn for some s0 2 S , and so
s0sa D 0 in A=mn. The only maximal ideal containing mn is m, and so the only maximal
ideal in A=mn is m=mn. As s0s is not in m=mn, it must be a unit in A=mn, and so aD 0 in
A=mn, i.e., a 2 mn. We have shown that .mn/ec � m, and the reverse inclusion is always
true.

We now prove that A=mn! Am=n
n is surjective. Let a

s
2 Am, a 2 A, s 2 Arm. The

only maximal ideal of A containing mn is m, and so no maximal ideal contains both s
and mn; it follows that .s/Cmn D A. Therefore, there exist b 2 A and q 2 mn such that
sbCq D 1. Because s is invertible in Am=n

n, a
s

is the unique element of this ring such that
s a
s
D a. As s.ba/D a.1� q/, the image of ba in Am also has this property and therefore

equals a
s

. 2

PROPOSITION 6.8. In a noetherian ring, only 0 lies in all powers of all maximal ideals.

PROOF. Let a be an element of a noetherian ring A. If a¤ 0, then fb j baD 0g is a proper
ideal, and so it is contained in some maximal ideal m. Then a

1
is nonzero in Am, and so

a
1
… .mAm/

n for some n (by the Krull intersection theorem 3.11), which implies that a …mn

(by 6.7). 2

MODULES OF FRACTIONS

Let S be a multiplicative subset of the ring A, and let M be an A-module. Define an
equivalence relation on M �S by

.m;s/� .n; t/ ” u.mt �ns/D 0 for some u 2 S:

Write m
s

for the equivalence class containing .m;s/, and define addition and multiplication
of equivalence classes by the formulas:

m
s
C
n
t
D

mtCns
st

; a
s
m
t
D

am
st
; m;n 2M; s; t 2 S; a 2 A:

It is easy to show that these definitions do not depend on the choices of representatives for
the equivalence classes, and that we obtain in this way an S�1A-module

S�1M D f
m

s
jm 2M; s 2 Sg

and a homomorphism m 7! m
1
WM

iS
�! S�1M of A-modules whose kernel is

fa 2M j saD 0 for some s 2 Sg:

PROPOSITION 6.9. The pair .S�1M;iS / has the following universal property:
every element of S acts invertibly on S�1M ,
and any other homomorphism ˛WM ! N of A-
modules such that the elements of S act invertibly
on N factors uniquely through iS

M

˛
##GG

GG
GG

GG
G
iS // S�1M

9Š
��
N:

PROOF. Similar to that of Proposition 6.1. 2
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EXAMPLE 6.10. Let M be an A-module. For h 2 A, let Mh D S�1
h
M where Sh D

f1;h;h2; : : :g. Then every element of Mh can be written m=hr , m 2 M , r 2 N, and
m=hr Dm0=hr

0

if and only if hN .hr
0

m�hrm0/D 0 for some N 2 N.

PROPOSITION 6.11. The functor M  S�1M is exact.

In other words, if the sequence of A-modules

M 0!M !M 00

is exact, then so also is the sequence of S�1A-modules

S�1M 0! S�1M ! S�1M 00:

The proof is an easy exercise, which we leave to the reader.

7 Direct limits

DEFINITION 7.1. A partial ordering � on a set I is said to be directed, and the pair .I;�/
is called a directed set, if for all i;j 2 I there exists a k 2 I such that i;j � k.

DEFINITION 7.2. Let .I;�/ be a directed set, and let A be a ring.
(a) An direct system of A-modules indexed by .I;�/ is a family .Mi /i2I of A-modules

together with a family .˛ij WMi !Mj /i�j of A-linear maps such that ˛ii D idMi
and

˛
j

k
ı˛ij D ˛

i
k

all i � j � k.
(b) An A-module M together with a family .˛i WMi !M/i2I of A-linear maps satisfy-

ing ˛i D ˛j ı˛ij all i � j is said to be a direct limit of the system in (a) if it has the
following universal property: for any other A-module N and family .ˇi WMi ! N/

of A-linear maps such that ˇi D ˇj ı˛ij all i � j , there exists a unique morphism
˛WM !N such that ˛ ı˛i D ˇi for i .

As usual, the universal property determines the direct limit (if it exists) uniquely up to a
unique isomorphism. We denote it lim

�!
.Mi ;˛

j
i /, or just lim

�!
Mi .

CRITERION

An A-module M together with A-linear maps ˛i WMi !M is the direct limit of a system
.Mi ;˛

j
i / if and only if

(a) M D
S
i2I ˛

i .Mi /, and
(b) mi 2Mi maps to zero in M if and only if it maps to zero in Mj for some j � i .

CONSTRUCTION

Let
M D

M
i2I

Mi=M
0

where M 0 is the A-submodule generated by the elements

mi �˛
i
j .mi / all i < j , mi 2Mi :
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Let ˛i .mi /D mi CM 0. Then certainly ˛i D ˛j ı˛ij for all i � j . For any A-module N
and A-linear maps ˇj WMj !N , there is a unique mapM

i2I

Mi !N;

namely,
P
mi 7!

P
ˇi .mi /, sending mi to ˇi .mi /, and this map factors through M and is

the unique A-linear map with the required properties.
Direct limits of A-algebras, etc., are defined similarly.

AN EXAMPLE

PROPOSITION 7.3. For any multiplicative subset S of a ring A, S�1A' lim
�!

Ah, where h
runs over the elements of S (partially ordered by division).

PROOF. When hjh0, say, h0 D hg, there is a unique homomorphism Ah! Ah0 respecting
the maps A!Ah and A!Ah0 , namely, a

h
7!

ag
h0

, and so the rings Ah form a direct system
indexed by the set S . When h 2 S , the homomorphism A! S�1A extends uniquely to a
homomorphism a

h
7!

a
h
WAh! S�1A (see 6.1), and these homomorphisms are compatible

with the maps in the direct system. Now apply the criterion p.23 to see that S�1A is the
direct limit of the Ah. 2

8 Tensor Products

TENSOR PRODUCTS OF MODULES

Let A be a ring, and let M , N , and P be A-modules. A map �WM �N ! P of A-modules
is said to be A-bilinear if

�.xCx0;y/D �.x;y/C�.x0;y/; x;x0 2M; y 2N

�.x;yCy0/D �.x;y/C�.x;y0/; x 2M; y;y0 2N

�.ax;y/D a�.x;y/; a 2 A; x 2M; y 2N

�.x;ay/D a�.x;y/; a 2 A; x 2M; y 2N;

i.e., if � is A-linear in each variable.

M �N
� //

�0 ##HHHHHHHHH T

9Š linear
��
T 0

An A-module T together with an A-bilinear map �WM �
N ! T is called the tensor product of M and N over A if
it has the following universal property: every A-bilinear map
�0WM �N ! T 0 factors uniquely through �.

As usual, the universal property determines the tensor prod-
uct uniquely up to a unique isomorphism. We write itM ˝AN .
Note that

HomA-bilinear.M �N;T /' HomA-linear.M ˝AN;T /:

Construction

Let M and N be A-modules, and let A.M�N/ be the free A-module with basis M �N .
Thus each element A.M�N/ can be expressed uniquely as a finite sumX

ai .xi ;yi /; ai 2 A; xi 2M; yi 2N:
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Let P be the submodule of A.M�N/ generated by the following elements

.xCx0;y/� .x;y/� .x0;y/; x;x0 2M; y 2N

.x;yCy0/� .x;y/� .x;y0/; x 2M; y;y0 2N

.ax;y/�a.x;y/; a 2 A; x 2M; y 2N

.x;ay/�a.x;y/; a 2 A; x 2M; y 2N;

and define
M ˝AN D A

.M�N/=P:

Write x˝y for the class of .x;y/ in M ˝AN . Then

.x;y/ 7! x˝yWM �N !M ˝AN

is A-bilinear — we have imposed the fewest relations necessary to ensure this. Every
element of M ˝AN can be written as a finite sumX

ai .xi ˝yi /; ai 2 A; xi 2M; yi 2N;

and all relations among these symbols are generated by the following relations

.xCx0/˝y D x˝yCx0˝y

x˝ .yCy0/D x˝yCx˝y0

a.x˝y/D .ax/˝y D x˝ay:

The pair .M ˝AN;.x;y/ 7! x˝y/ has the correct universal property because any bilin-
ear map �0WM �N ! T 0 defines an A-linear map A.M�N/! T 0, which factors through
A.M�N/=K, and gives a commutative triangle.

Extension of scalars

Let A be a commutative ring and let B be an A-algebra (not necessarily commutative) such
that the image of A!B lies in the centre of B . Then M  B˝AM is a functor from left
A-modules to left B-modules, which has the following universal property:

HomA-linear.M;N /' HomB-linear.B˝AM;N/; N a B-module. (8)

If .e˛/˛2I is a family of generators (resp. basis) for M as an A-module, then .1˝ e˛/˛2I
is a family of generators (resp. basis) for B˝AM as a B-module.

Behaviour with respect to direct limits

PROPOSITION 8.1. Direct limits commute with tensor products:

lim
�!
i2I

Mi ˝A lim
�!
j2J

Nj ' lim
�!

.i;j /2I�J

Mi ˝ANj :

PROOF. Using the universal properties of direct limits and tensor products, one sees eas-
ily that lim

�!
.Mi ˝ANj / has the universal property to be the tensor product of lim

�!
Mi and

lim
�!

Nj . 2
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TENSOR PRODUCTS OF ALGEBRAS

Let k be a ring, and let A and B be k-algebras. A k-algebra C together with homomor-
phisms i WA! C and j WB ! C is called the tensor product of A and B if it has the
following universal property:

for every pair of homomorphisms (of k-algebras)
˛WA! R and ˇWB ! R, there exists a unique
homomorphism  WC !R such that  ı i D ˛ and
 ıj D ˇ,

A
i //

˛ ��@
@@

@@
@@

C

9Š 

��

B
joo

ˇ~~~~
~~

~~
~

R
If it exists, the tensor product, is uniquely determined up to a unique isomorphism by this
property. We write it A˝k B . Note that the universal property says that

Homk-algebra.A˝k B;R/' Homk-algebra.A;R/�Homk-algebra.B;R/. (9)

Construction

Regard A and B as k-modules, and form the tensor product A˝k B . There is a multiplica-
tion map A˝k B �A˝k B! A˝k B for which

.a˝b/.a0˝b0/D aa0˝bb0; all a;a0 2 A; b;b0 2 B:

This makes A˝k B into a ring, and the homomorphism

c 7! c.1˝1/D c˝1D 1˝ c

makes it into a k-algebra. The maps

a 7! a˝1WA! A˝k B and b 7! 1˝bWB! A˝k B

are homomorphisms, and they makeA˝kB into the tensor product ofA andB in the above
sense.

EXAMPLE 8.2. The algebra A, together with the given map k! A and the identity map
A! A, has the universal property characterizing k˝k A. In terms of the constructive
definition of tensor products, the map c˝A 7! cAWk˝k A! A is an isomorphism.

EXAMPLE 8.3. The ring kŒX1; : : : ;Xm;XmC1; : : : ;XmCn�, together with the obvious in-
clusions

kŒX1; : : : ;Xm� ,! kŒX1; : : : ;XmCn�  - kŒXmC1; : : : ;XmCn�

is the tensor product of kŒX1; : : : ;Xm� and kŒXmC1; : : : ;XmCn�. To verify this we only have
to check that, for every k-algebra R, the map

Homk-alg.kŒX1; : : : ;XmCn�;R/! Homk-alg.kŒX1; : : :�;R/�Homk-alg.kŒXmC1; : : :�;R/

induced by the inclusions is a bijection. But this map can be identified with the bijection

RmCn!Rm�Rn:

In terms of the constructive definition of tensor products, the map

kŒX1; : : : ;Xm�˝k kŒXmC1; : : : ;XmCn�! kŒX1; : : : ;XmCn�

sending f ˝g to fg is an isomorphism.
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REMARK 8.4. (a) Let k ,! k0 be a homomorphism of rings. Then

k0˝k kŒX1; : : : ;Xn�' k
0Œ1˝X1; : : : ;1˝Xn�' k

0ŒX1; : : : ;Xn�:

If AD kŒX1; : : : ;Xn�=.g1; : : : ;gm/, then

k0˝k A' k
0ŒX1; : : : ;Xn�=.g1; : : : ;gm/:

(b) If A and B are algebras of k-valued functions on sets S and T respectively, then
definition

.f ˝g/.x;y/D f .x/g.y/; f 2 A, g 2 B , x 2 S , y 2 T;

realizes A˝k B as an algebra of k-valued functions on S �T .

THE TENSOR ALGEBRA OF A MODULE

Let M be a module over a ring A. For each A� 0, set

T rM DM ˝A � � �˝AM (r factors),

so that T 0M D A and T 1M DM , and define

TM D
M

r�0
T rM:

This can be made into a noncommutative A-algebra, called the tensor algebra of M , by
requiring that the multiplication map

T rM �T sM ! T rCsM

send .m1˝�� �˝mr ; mrC1˝�� �˝mrCs/ to m1˝�� �˝mrCs .

M //

A-linear ""EEEEEEEE TM

9ŠA-algebra
��
R

The pair .TM;M ! TM/ has the following universal prop-
erty: any A-linear map from M to an A-algebra R (not nec-
essarily commutative) extends uniquely to an A-algebra homo-
morphism TM !R.

If M is a free A-module with basis x1; : : : ;xn, then TM is
the (noncommutative) polynomial ring over A in the noncom-
muting symbols xi (because this A-algebra has the same universal property as TM ).

THE SYMMETRIC ALGEBRA OF A MODULE

The symmetric algebra Sym.M/ of an A-module M is the quotient of TM by the ideal
generated by all elements of T 2M of the form

m˝n�n˝m; m;n 2M:

It is a graded algebra Sym.M/D
L
r�0Symr.M/ with Symr.M/ equal to the quotient of

M˝r by the A-submodule generated by all elements of the form

m1˝�� �˝mr �m�.1/˝�� �˝m�.r/; mi 2M; � 2 Br (symmetric group).
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M //

A-linear
$$IIIIIIIIII Sym.M/

9ŠA-algebra
��
R

The pair .Sym.M/;M ! Sym.M// has the following
universal property: any A-linear map M ! R from
M to a commutative A-algebra R extends uniquely to
an A-algebra homomorphism Sym.M/! R (because
it extends to an A-algebra homomorphism TM ! R,
which factors through Sym.M/ because R is commutative).

IfM is a freeA-module with basis x1; : : : ;xn, then Sym.M/ is the polynomial ring over
A in the (commuting) symbols xi (because this A-algebra has the same universal property
as TM ).

9 Flatness

Let M be an A-module. If the sequence of A-modules

0!N 0!N !N 00! 0 (10)

is exact, then the sequence

M ˝AN
0
!M ˝AN !M ˝AN

00
! 0

is exact, butM ˝AN 0!M ˝AN need not be injective. For example, when we tensor the
exact sequence of Z-modules

0! Z
m
�! Z! Z=mZ! 0

with Z=mZ, we get the sequence

Z=mZ
mD0
���! Z=mZ ���! Z=mZ! 0:

Moreover,M ˝AN may be zero even when neitherM norN is nonzero. For example,

Z=2Z˝Z Z=3ZD 0

because it is killed by both 2 and 3.12

DEFINITION 9.1. An A-module M is flat if

N 0!N injective H) M ˝AN
0
!M ˝AN injective.

It is faithfully flat if, in addition,

M ˝AN D 0 H) N D 0:

A homomorphism of rings A! B is said to be (faithfully) flat when B is (faithfully) flat
as an A-module.

12It was once customary to require a ring to have an identity element 1¤ 0 (see, for example, Northcott 1953,
p.3). However, the example shows that tensor products do not always exist in the category of such objects, .
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Thus, an A-module M is flat if and only if M ˝A� is an exact functor, i.e.,

0!M ˝AN
0
!M ˝AN !M ˝AN

00
! 0 (11)

is exact whenever (10) is exact.
The functorM˝� takes direct sums to direct sums, and therefore split-exact sequences

to split-exact sequences. Therefore, all vector spaces over a field are flat, and nonzero vector
spaces are faithfully flat.

PROPOSITION 9.2. Let i WA! B be a homomorphism of rings. If i is faithfully flat, then
a sequence of A-modules

0!N 0!N !N 00! 0 (12)

is exact if and only if

0! B˝AN
0
! B˝AN ! B˝AN

00
! 0 (13)

is exact. Conversely, if
(12) exact ” (13) exact,

then i WA! B is faithfully flat.

PROOF. For the first statement, we have to show that (12) is exact if (13) is exact. Let
N0 be the kernel of N 0 ! N . Then, because A! B is flat, B ˝AN0 is the kernel of
B˝AN

0! B˝AN , which is zero by assumption. Because A! B is faithfully flat, this
implies that N0 D 0. This proves the exactness at N 0, and the proof of exactness elsewhere
is similar.

For the converse statement, the condition implies that i is flat (this is the definition).
Now let N be an A-module, and consider the sequence

0! 0!N ! 0! 0.

If B˝AN D 0, then this sequence becomes exact when tensored with B , and so is itself
exact, which implies that N D 0. This shows that i is faithfully flat. 2

PROPOSITION 9.3. Let i WA! B be a faithfully flat homomorphism. For any A-module
M , the sequence

0!M
d0
�! B˝AM

d1
�! B˝AB˝AM (*)�

d0.m/ D 1˝m;

d1.b˝m/ D 1˝b˝m�b˝1˝m

is exact.

PROOF. Assume first that there exists an A-linear section to A! B , i.e., an A-linear map
f WB! A such that f ı i D idA, and define

k0WB˝AM !M; k0.b˝m/D f .b/m

k1WB˝AB˝AM ! B˝AM; k1.b˝b
0
˝m/D f .b/b0˝m:

Then k0d0 D idM , which shows that d0 is injective. Moreover,

k1 ıd1Cd0 ık0 D idB˝AM
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which shows that, if d1.x/D 0, then x D d0.k0.x//, as required.
We now consider the general case. Because A!B is faithfully flat, it suffices to prove

that the sequence (*) becomes exact after tensoring in B . But the sequence obtained from
(*) by tensoring with B is isomorphic to the sequence (*) for the homomorphism of rings
B 7! 1˝BWB! B˝AB and the B-module B˝AM , because, for example,

B˝A .B˝AM/' .B˝AB/˝B .B˝AM/:

Now B ! B ˝A B has an B-linear section, namely, f .B ˝B 0/ D BB 0, and so we can
apply the first part. 2

COROLLARY 9.4. If A! B is faithfully flat, then it is injective with image the set of
elements on which the maps�

b 7! 1˝b

b 7! b˝1
WB! B˝AB

agree.

PROOF. This is the special case M D A of the Proposition. 2

PROPOSITION 9.5. LetA!A0 be a homomorphism of rings. IfA!B is flat (or faithfully
flat), then so also is A0! B˝AA

0.

PROOF. For any A0-module M ,

.B˝AA
0/˝A0M ' B˝A .A

0
˝A0M/' B˝AM;

from which the statement follows. 2

PROPOSITION 9.6. For any multiplicative subset S of a ring A and A-module M ,

S�1A˝AM ' S
�1M:

Therefore the homomorphism a 7! a
1
WA! S�1A is flat.

PROOF. To give an S�1A-module is the same as giving anA-module on which the elements
of S act invertibly. Therefore S�1A˝AM and S�1M satisfy the same universal property
(see �8, especially (8)), which proves the first statement. As M  S�1M is exact (6.11),
so also is M  S�1A˝AM , which proves the second statement. 2

PROPOSITION 9.7. The following conditions on a flat homomorphism 'WA!B are equiv-
alent:

(a) ' is faithfully flat;
(b) for every maximal ideal m of A, the ideal '.m/B ¤ B;
(c) every maximal ideal m of A is of the form '�1.n/ for some maximal ideal n of B .

PROOF. (a)) (b): Let m be a maximal ideal of A, and let M D A=m; then

B˝AM ' B='.m/B:

As B˝AM ¤ 0, we see that '.m/B ¤ B .
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(b) ) (c): If '.m/B ¤ B , then '.m/ is contained in a maximal ideal n of B . Now
'�1.n/ is a proper ideal in A containing m, and hence equals m.

(c) ) (a): Let M be a nonzero A-module. Let x be a nonzero element of M , and
let a D fa 2 A j ax D 0g. Then a is an ideal in A, and M 0 def

D Ax ' A=a. Moreover,
B˝AM

0 'B='.a/ �B and, because A!B is flat, B˝AM 0 is a submodule of B˝AM .
Because a is proper, it is contained in a maximal ideal m of A, and therefore

'.a/� '.m/� n

for some maximal ideal n ofA. Hence '.a/ �B � n¤B , and soB˝AM �B˝AM 0¤ 0.2

THEOREM 9.8 (GENERIC FLATNESS). Let A an integral domain with field of fractions F ,
and let B be a finitely generated A-algebra such that B � F ˝AB . Then for some nonzero
elements a of A and b of B , the homomorphism Aa! Bb is faithfully flat.

PROOF. As F ˝AB is a finitely generated F -algebra, the Noether normalization theorem
(5.11) shows that there exist elements x1; : : : ;xm of F ˝AB such that F Œx1; : : : ;xm� is a
polynomial ring over F and F ˝AB is a finite F Œx1; : : : ;xm�-algebra. After multiplying
each xi by an element of A, we may suppose that it lies in B . Let b1; : : : ;bn generate
B as an A-algebra. Each bi satisfies a monic polynomial equation with coefficients in
F Œx1; : : : ;xm�. Let a 2A be a common denominator for the coefficients of these polynomi-
als. Then each bi is integral over Aa. As the bi generate Ba as an Aa-algebra, this shows
that Ba is a finite AaŒx1; : : : ;xm�-algebra (by 5.2). Therefore, after replacing A with Aa
and B with Ba, we may suppose that B is a finite AŒx1; : : : ;xm�-algebra.

B
injective
����! F ˝AB ����! E˝AŒx1;:::;xm�Bx??finite

x??finite

x??finite

AŒx1; : : : ;xm� ����! F Œx1; : : : ;xm� ����! E
def
D F.x1; : : : ;xn/x?? x??

A ����! F

Let E D F.x1; : : : ;xm/ be the field of fractions of AŒx1; : : : ;xm�, and let b1; : : : ;br be
elements of B that form a basis for E˝AŒx1;:::;xm�B as an E-vector space. Each element
of B can be expressed a linear combination of the bi with coefficients in E. Let q be
a common denominator for the coefficients arising from a set of generators for B as an
AŒx1; : : : ;xm�-module. Then b1; : : : ;br generate Bq as an AŒx1; : : : ;xm�q-module. In other
words, the map

.c1; : : : ; cr/ 7!
P
cibi WAŒx1; : : : ;xm�

r
q! Bq (14)

is surjective. This map becomes an isomorphism when tensored withE overAŒx1; : : : ;xm�q ,
which implies that each element of its kernel is killed by a nonzero element ofAŒx1; : : : ;xm�q
and so is zero (because AŒx1; : : : ;xn�q is an integral domain). Hence the map (14) is an
isomorphism, and Bq is free of finite rank over AŒx1; : : : ;xm�q . Let a be some nonzero
coefficient of the polynomial q, and consider the maps

Aa! AaŒx1; : : : ;xm�! AaŒx1; : : : ;xm�q! Baq:

The first and third arrows realize their targets as nonzero free modules over their sources,
and so are faithfully flat. The middle arrow is flat by (9.6). Let m be a maximal ideal in Aa.
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Then mAaŒx1; : : : ;xm� does not contain the polynomial q because the coefficient a of q is
invertible in Aa. Hence mAaŒx1; : : : ;xm�q is a proper ideal of AaŒx1; : : : ;xm�q , and so the
map Aa! AaŒx1; : : : ;xm�q is faithfully flat (apply 9.7). This completes the proof. 2

REMARK 9.9. The theorem holds for any finitely generated B-algebra, i.e., without the
requirement that B � F ˝AB . To see this, note that F ˝AB is the ring of fractions of B
with respect to the multiplicative subsetArf0g (see 9.6), and so the kernel ofB!F ˝AB

is the ideal
nD fb 2 B j ab D 0 for some nonzero a 2 Ag:

This is finitely generated (Hilbert basis theorem 3.6), and so there exists a nonzero c 2 A
such that cbD 0 for all b 2 n. I claim that the homomorphism Bc! F ˝Ac

Bc is injective.
If b
cr lies in its kernel, then a

cs
b
cr D 0 in Bc for some nonzero a

cs 2 Ac , and so cNab D 0
in B for some N ; therefore b 2 n, and so cb D 0, which implies that b

cr D 0 already in Bc .
Therefore, after replacing A, B , and M with Ac , Bc , and Mc , we may suppose that the
map B ! F ˝AB is injective. On identifying B with its image, we arrive at the situation
of the theorem.

10 The Hilbert Nullstellensatz

THEOREM 10.1 (ZARISKI’S LEMMA). Let k � K be fields. If K is finitely generated
as a k-algebra, then it is algebraic over k (hence K is finite over k, and equals it if k is
algebraically closed).

PROOF. We shall prove this by induction on r , the smallest number of elements required to
generate K as a k-algebra. The case r D 0 being trivial, we may suppose that

K D kŒx1; : : : ;xr � with r � 1:

IfK is not algebraic over k, then at least one xi , say x1, is not algebraic over k. Then, kŒx1�
is a polynomial ring in one symbol over k, and its field of fractions k.x1/ is a subfield ofK.
Clearly K is generated as a k.x1/-algebra by x2; : : : ;xr , and so the induction hypothesis
implies that x2; : : : ;xr are algebraic over k.x1/. Proposition 5.5 shows that there exists
a c 2 kŒx1� such that cx2; : : : ; cxr are integral over kŒx1�. Let f 2 K. For a sufficiently
large N , cNf 2 kŒx1; cx2; : : : ; cxr �, and so cNf is integral over kŒx1� by 5.3. When we
apply this statement to an element f of k.x1/, it shows that cNf 2 kŒx1� because kŒx1�
is integrally closed. Therefore, k.x1/ D

S
N c
�NkŒx1�, but this is absurd, because kŒx1�

(' kŒX�) has infinitely many distinct monic irreducible polynomials13 that can occur as
denominators of elements of k.x1/. 2

THEOREM 10.2 (NULLSTELLENSATZ). Every proper ideal a in kŒX1; : : : ;Xn� has a zero
in .kal/n

def
D kal�� � ��kal, i.e., there exists a point .a1; : : : ;an/2 .kal/n such that f .a1; : : : ;an/D

0 for all f 2 a.

PROOF. We have to show that there exists a k-algebra homomorphism kŒX1; : : : ;Xn�! kal

containing a in its kernel. Let m be a maximal ideal containing a. Then kŒX1; : : : ;Xn�=m

13When k is infinite, there are infinitely many polynomialsX�a, and when k is finite, we can adapt Euclid’s
argument: if p1; : : : ;pr are monic irreducible polynomials in kŒX�, then p1 � � �pr C 1 is divisible by a monic
irreducible polynomial distinct from p1; : : : ;pr .
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is a field, which is algebraic over k by Zariski’s lemma, and so there exists a k-algebra
homomorphism kŒX1; : : : ;Xn�=m ! kal. The composite of this with the quotient map
kŒX1; : : : ;Xn�! kŒX1; : : : ;Xn�=m contains a in its kernel. 2

COROLLARY 10.3. When k is algebraically closed, the maximal ideals in kŒX1; : : : ;Xn�
are exactly the ideals .X1�a1; : : : ;Xn�an/, .a1; : : : ;an/ 2 kn.

PROOF. Clearly, kŒX1; : : : ;Xn�=.X1�a1; : : : ;Xn�an/' k, and so .X1�a1; : : : ;Xn�an/
is maximal. Conversely, because k is algebraically closed, a proper ideal a has a zero
.a1; : : : ;an/ in kn. Let f 2 kŒX1; : : : ;Xn�; when we write f as a polynomial in X1 �
a1; : : : ;Xn� an, its constant term is f .a1; : : : ;an/. Therefore, if f 2 a, then f 2 .X1�
a1; : : : ;X �an/. 2

THEOREM 10.4 (STRONG NULLSTELLENSATZ). For an ideal a in kŒX1; : : : ;Xn�, letZ.a/
be the set of zeros of a in .kal/n. If a polynomial h 2 kŒX1; : : : ;Xn� is zero on Z.a/, then
some power of h lies in a.

PROOF. We may assume h ¤ 0. Let g1; : : : ;gm generate a, and consider the system of
mC1 equations in nC1 variables, X1; : : : ;Xn;Y;�

gi .X1; : : : ;Xn/ D 0; i D 1; : : : ;m

1�Yh.X1; : : : ;Xn/ D 0:

If .a1; : : : ;an;b/ satisfies the first m equations, then .a1; : : : ;an/ 2 Z.a/; consequently,
h.a1; : : : ;an/ D 0, and .a1; : : : ;an;b/ doesn’t satisfy the last equation. Therefore, the
equations are inconsistent, and so, according to the Nullstellensatz (10.2), there exist fi 2
kŒX1; : : : ;Xn;Y � such that

1D

mX
iD1

fi �gi CfmC1 � .1�Yh/

in kŒX1; : : : ;Xn;Y �. On applying the homomorphism�
Xi 7!Xi
Y 7! h�1

WkŒX1; : : : ;Xn;Y �! k.X1; : : : ;Xn/

to the above equality, we obtain the identity

1D
X

i
fi .X1; : : : ;Xn;h

�1/ �gi .X1; : : : ;Xn/ (15)

in k.X1; : : : ;Xn/. Clearly

fi .X1; : : : ;Xn;h
�1/D

polynomial in X1; : : : ;Xn
hNi

for some Ni . Let N be the largest of the Ni . On multiplying (15) by hN we obtain an
identity

hN D
X

i
(polynomial in X1; : : : ;Xn/ �gi .X1; : : : ;Xn/;

which shows that hN 2 a. 2
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PROPOSITION 10.5. The radical of an ideal a in a finitely generated k-algebra A is equal
to the intersection of the maximal ideals containing it: rad.a/D

T
m�a m. In particular, if

A is reduced, then
T

m maximal mD 0.

PROOF. Because of the correspondence (2), p.3, it suffices to prove this forAD kŒX1; : : : ;Xn�.
Let a be an ideal in kŒX1; : : : ;Xn�. Because rad.a/ is the smallest radical ideal contain-

ing a and maximal ideals are radical rad.a/�
T

m�a m. Conversely, suppose h is contained
in all maximal ideals containing a, and let .a1; : : : ;an/ 2Z.a/. The evaluation map

f 7! f .a1; : : : ;an/WkŒX1; : : : ;Xn�! kal

has image a subring of kal which is algebraic over k, and hence is a field (see �1). Therefore,
the kernel of the map is a maximal ideal, which contains a, and therefore also contains h.
This shows that h.a1; : : : ;an/ D 0, and we conclude from the strong Nullstellensatz that
h 2 rad.a/. 2

11 The max spectrum of a ring

Let A be a ring, and let V be the set of maximal ideals in A. For an ideal a in A, let

V.a/D fm 2 V jm� ag:

PROPOSITION 11.1. There are the following relations:
(a) a� b H) V.a/� V.b/I

(b) V.0/D V ; V.A/D ;I

(c) V.ab/D V.a\b/D V.a/[V.b/I

(d) V.
P
i2I ai /D

T
i2I V.ai / for any family of ideals .ai /i2I .

PROOF. The first two statements are obvious. For (c), note that

ab� a\b� a;b H) V.ab/� V.a\b/� V.a/[V.b/:

For the reverse inclusions, observe that if m … V.a/[V.b/, then there exist an f 2 arm

and a g 2 brm; but then fg 2 abrm, and so m … V.ab/. For (d) recall that, by definition,P
ai consists of all finite sums of the form

P
fi , fi 2 ai . Thus (d) is obvious. 2

Statements (b), (c), and (d) show that the sets V.a/ satisfy the axioms to be the closed
subsets for a topology on V : both the whole space and the empty set are closed; a finite
union of closed sets is closed; an arbitrary intersection of closed sets is closed. This topol-
ogy is called the Zariski topology on V . We let spm.A/ denote the set of maximal ideals in
A endowed with its Zariski topology.

For h 2 A, let
D.h/D fm 2 V j h …mg.

Then D.h/ is open in V , being the complement of V..h//. If S is a set of generators for an
ideal a, then

V rV.a/D
[

h2S
D.h/;

and so the sets D.h/ form a base for the topology on V . Note that, because maximal ideals
are prime,

D.h1 � � �hn/DD.h1/\� � �\D.hn/:
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For any element h of A, spm.Ah/'D.h/ (see 6.4), and for any ideal a in A, spm.A/=a'
V.a/ (isomorphisms of topological spaces).

The ideals in a finite product of rings ADA1�� � ��An are all of the form a1�� � ��an
with ai an ideal in Ai (cf. p.6). The prime (resp. maximal) ideals are those of the form

A1� � � ��Ai�1�ai �AiC1� � � ��An

with ai prime (resp. maximal). It follows that spm.A/ D
F
i spm.Ai / (disjoint union of

open subsets).

THE MAX SPECTRUM OF A FINITELY GENERATED k-ALGEBRA

Let k be a field, and let A be a finitely generated k-algebra. For any maximal ideal m of
A, the field k.m/ def

D A=m is a finitely generated k-algebra, and so k.m/ is finite over k
(Zariski’s lemma, 10.1). In particular, it equals k.m/D k when k is algebraically closed.

Now fix an algebraic closure kal. The image of any k-algebra homomorphism A! kal

is a subring of kal which is an integral domain algebraic over k and therefore a field (see
�1). Hence the kernel of the homomorphism is a maximal ideal in A. In this way, we get a
surjective map

Homk-alg.A;k
al/! spm.A/: (16)

Two homomorphisms A! kal with the same kernel m factor as

A! k.m/! kal;

and so differ by an automorphism14 of kal. Therefore, the fibres of (16) are exactly the
orbits of Gal.kal=k/. When k is perfect, each extension k.m/=k is separable, and so each
orbit has Œk.m/Wk� elements, and when k is algebraically closed, the map (16) is a bijection.

Set AD kŒX1; : : : ;Xn�=a. Then to give a homomorphism A! kal is the same as giving
an n-tuple .a1; : : : ;an/ of elements of kal (the images of theXi ) such that f .a1; : : : ;an/D 0
for all f 2 a, i.e., an element of the zero-set Z.a/ of a. The homomorphism corresponding
to .a1; : : : ;an/ maps k.m/ isomorphically onto the subfield of kal generated by the ai ’s.
Therefore, we have a canonical surjection

Z.a/! spm.A/ (17)

whose fibres are the orbits of Gal.kal=k/. When the field k is perfect, each orbit has
ŒkŒa1; : : : ;an� W k�-elements, and when k is algebraically closed, Z.a/' spm.A/.
ASIDE 11.2. Let k D R or C. Let X be a set and let A be a k-algebra of k-valued functions on X .
In analysis, X is called the spectrum of A if, for each k-algebra homomorphism 'WA! k, there
exists a unique x 2X such that '.f /D f .x/ for all f 2A, and every x arises from a ' (cf. Cartier
2007, 3.3.1, footnote).

Let A be a finitely generated algebra over an arbitrary algebraically closed field k, and let
X D spm.A/. An element f of A defines a k-valued function

m 7! f modm

onX . WhenA is reduced, Proposition 10.5 shows that this realizesA as a ring of k-valued functions
on X . Moreover, because (17) is an isomorphism in this case, for each k-algebra homomorphism
'WA! k, there exists a unique x 2 X such that '.f / D f .x/ for all f 2 A. In particular, when
k D C and A is reduced, spm.A/ is the spectrum of A in the sense of analysis.

14Let f and g be two k-homomorphisms from a finite field extension k0 of k into kal. We consider the
set of pairs .K;˛/ in which ˛ is a k-homomorphism from a subfield K of kal containing f .k0/ into kal such
that ˛ ıf D g. The set is nonempty, and Zorn’s lemma can be applied to show that it has a maximal element
.K0;˛0/. For such an element K0 will be algebraically closed, and hence equal to kal.
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JACOBSON RINGS

DEFINITION 11.3. A ring A is Jacobson if every prime ideal in A is an intersection of
maximal ideals.

A field is Jacobson. The ring Z is Jacobson because every nonzero prime ideal is max-
imal and .0/ D

T
pD2;3;5;:::.p/. A principal ideal domain (more generally, a Dedekind

domain) is Jacobson if it has an infinite number of maximal ideals.15 A local ring is Ja-
cobson if and only if its maximal ideal is its only prime ideal. Proposition 10.5 shows that
every finitely generated algebra over a field is Jacobson.

PROPOSITION 11.4. The radical of an ideal in a Jacobson ring is equal to the intersec-
tion of the maximal ideals containing it. (Therefore, the radical ideals are precisely the
intersections of maximal ideals.)

PROOF. Proposition 2.2 says that the radical of an ideal is an intersection of prime ideals,
and so this follows from the definition of a Jacobson ring. 2

ASIDE 11.5. Any ring of finite type over a Jacobson ring is a Jacobson ring (EGA IV 10.4.6).
Moreover, if B is of finite type over A and A is Jacobson, then the map A!B defines a continuous
map spm.B/! spm.A/.

THE TOPOLOGICAL SPACE spm.A/

We study more closely the Zariski topology on spm.A/. For each subset S of A, let V.S/
denote the set of maximal ideals containing S , and for each subset W of spm.A/, let I.W /
denote the intersection of the maximal ideals in W :

S � A; V.S/D fm 2 spm.A/ j S �mg;

W � spm.A/; I.W /D
\

m2W
m:

Thus V.S/ is a closed subset of spm.A/ and I.W / is a radical ideal in A. If V.a/ � W ,
then a � I.W /, and so V.a/ � VI.W /. Therefore VI.W / is the closure of W (smallest
closed subset of spm.A/ containing W ); in particular, VI.W /DW if W is closed.

PROPOSITION 11.6. Let V be a closed subset of spm.A/.
(a) The points of V are closed for the Zariski topology.
(b) If A is noetherien, then every ascending chain of open subsets U1 � U2 � �� � of V

eventually becomes constant; equivalently, every descending chain of closed subsets of V
eventually becomes constant.

(c) If A is noetherian, every open covering of V has a finite subcovering.

PROOF. (a) Clearly fmg D V.m/, and so it is closed.
(b) We prove the second statement. A sequence V1 � V2 � � � � of closed subsets of V

gives rise to a sequence of ideals I.V1/� I.V2/� : : :, which eventually becomes constant.
If I.Vm/D I.VmC1/, then VI.Vm/D VI.VmC1/, i.e., Vm D VmC1.

15In a principal ideal domain, a nonzero element a factors as aD upr11 � � �p
rs
s with u a unit and the pi prime.

The only prime divisors of a are p1; : : : ;ps , and so a is contained in only finitely many prime ideals. Similarly,
in a Dedekind domain, a nonzero ideal a factors as aD p

r1
1 � � �p

rs
s with the pi prime ideals (cf. 13.17 below),

and p1; : : : ;pr are the only prime ideals containing a. On taking aD .a/, we see that again a is contained in
only finitely many prime ideals.
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(c) Let V D
S
i2I Ui with each Ui open. Choose an i0 2 I ; if Ui0 ¤ V , then there

exists an i1 2 I such that Ui0 &Ui0[Ui1 . If Ui0[Ui1 ¤ V , then there exists an i2 2 I etc..
Because of (b), this process must eventually stop. 2

A topological space V having the property (b) is said to be noetherian. This condition
is equivalent to the following: every nonempty set of closed subsets of V has a minimal el-
ement. A topological space V having property (c) is said to be quasicompact (by Bourbaki
at least; others call it compact, but Bourbaki requires a compact space to be Hausdorff). The
proof of (c) shows that every noetherian space is quasicompact. Since an open subspace of
a noetherian space is again noetherian, it will also be quasicompact.

DEFINITION 11.7. A nonempty topological space is said to be irreducible if it is not the
union of two proper closed subsets. Equivalent conditions: any two nonempty open subsets
have a nonempty intersection; every nonempty open subset is dense.

If an irreducible space W is a finite union of closed subsets, W DW1[ : : :[Wr , then
W DW1 or W2[ : : :[Wr ; if the latter, then W DW2 or W3[ : : :[Wr , etc.. Continuing in
this fashion, we find that W DWi for some i .

The notion of irreducibility is not useful for Hausdorff topological spaces, because the
only irreducible Hausdorff spaces are those consisting of a single point — two points would
have disjoint open neighbourhoods.

PROPOSITION 11.8. Let W be a closed subset of spm.A/. If W is irreducible, then I.W /
is prime; the converse is true if A is a Jacobson ring. In particular, the max spectrum of a
Jacobson ring A is irreducible if and only if the nilradical of A is prime.

PROOF. ): Let W be an irreducible closed subset of spm.A/, and suppose fg 2 I.W /.
Then fg lies in each m inW , and so either f 2m or g 2m; henceW � V.f /[V.g/, and
so

W D .W \V.f //[ .W \V.g//:

As W is irreducible, one of these sets, say W \V.f /, must equal W . But then f 2 I.W /.
We have shown that I.W / is prime.
(: Assume I.W / is prime, and suppose W D V.a/[V.b/ with a and b radical ideals

— we have to show that W equals V.a/ or V.b/. Recall that V.a/[V.b/D V.a\b/ (see
11.1c) and that a\ b is radical; hence I.W / D a\ b (by 11.4). If W ¤ V.a/, then there
exists an f 2 arI.W /. For all g 2 b,

fg 2 a\bD I.W /:

Because I.W / is prime, this implies that b� I.W /; therefore W � V.b/. 2

Thus, in the max spectrum of a Jacobson ring, there are one-to-one correspondences

radical ideals $ closed subsets

prime ideals $ irreducible closed subsets

maximal ideals $ one-point sets:
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EXAMPLE 11.9. Let f 2 kŒX1; : : : ;Xn�. According to Theorem 4.6, kŒX1; : : : ;Xn� is a
unique factorization domain, and so .f / is a prime ideal if and only if f is irreducible
(4.1). Thus

V.f / is irreducible ” f is irreducible.

On the other hand, suppose f factors,

f D
Y
f
mi

i ; fi distinct irreducible polynomials.

Then

.f /D
\
.f

mi

i /; .f
mi

i / distinct ideals,

rad..f //D
\
.fi /; .fi / distinct prime ideals,

V.f /D
[
V.fi /; V .fi / distinct irreducible algebraic sets.

PROPOSITION 11.10. Let V be a noetherian topological space. Then V is a finite union
of irreducible closed subsets, V D V1[ : : :[Vm. If the decomposition is irredundant in the
sense that there are no inclusions among the Vi , then the Vi are uniquely determined up to
order.

PROOF. Suppose that V can not be written as a finite union of irreducible closed subsets.
Then, because V is noetherian, there will be a closed subsetW of V that is minimal among
those that cannot be written in this way. But W itself cannot be irreducible, and so W D
W1[W2, with each Wi a proper closed subset of W . Because W is minimal, both W1 and
W2 can be expressed as finite unions of irreducible closed subsets, but then so can W . We
have arrived at a contradiction.

Suppose that
V D V1[ : : :[Vm DW1[ : : :[Wn

are two irredundant decompositions. Then Vi D
S
j .Vi \Wj /, and so, because Vi is irre-

ducible, Vi D Vi \Wj for some j . Consequently, there exists a function f W f1; : : : ;mg !
f1; : : : ;ng such that Vi � Wf .i/ for each i . Similarly, there is a function gW f1; : : : ;ng !
f1; : : : ;mg such that Wj � Vg.j / for each j . Since Vi � Wf .i/ � Vgf .i/, we must have
gf .i/D i and Vi DWf .i/; similarly fgD id. Thus f and g are bijections, and the decom-
positions differ only in the numbering of the sets. 2

The Vi given uniquely by the proposition are called the irreducible components of V .
They are the maximal closed irreducible subsets of V . In Example 11.9, the V.fi / are the
irreducible components of V.f /.

COROLLARY 11.11. A radical ideal a in a noetherian Jacobson ring is a finite intersection
of prime ideals, aD p1\ : : :\ pn; if there are no inclusions among the pi , then the pi are
uniquely determined up to order.

PROOF. Write V.a/ as a union of its irreducible components, V.a/D
S
Vi , and take pi D

I.Vi /. 2

REMARK 11.12. (a) An irreducible topological space is connected, but a connected topo-
logical space need not be irreducible. For example, Z.X1X2/ is the union of the coordinate
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axes in k2, which is connected but not irreducible. A closed subset V of spm.A/ is not
connected if and only if there exist ideals a and b such that a\bD I.V / and aCbD A.

(b) A Hausdorff space is noetherian if and only if it is finite, in which case its irreducible
components are the one-point sets.

(c) In a noetherian ring, every proper ideal a has a decomposition into primary ideals:
a D

T
qi (see �13). For radical ideals, this becomes a simpler decomposition into prime

ideals, as in the corollary. For an ideal .f / in kŒX1; : : : ;Xn� with f D
Q
f
mi

i , it is the
decomposition .f /D

T
.f

mi

i / noted in Example 11.9.

MAPS OF MAX SPECTRA

Let 'WA!B be a homomorphism of finitely generated k-algebras (k a field). BecauseB is
finitely generated over k, its quotientB=m by any maximal ideal m is a finite field extension
of k (Zariski’s lemma, 10.1). Therefore the image of A in B=m is an integral domain finite
over k, and hence is a field (see �1). Since this image is isomorphic to A='�1.m/, this
shows that the ideal '�1.m/ is maximal in A. Therefore ' defines a map

'�Wspm.B/! spm.A/; m 7! '�1.m/;

which is continuous because .'�/�1.D.f // D D.'.f //. In this way, spm becomes a
functor from finitely generated k-algebras to topological spaces.

THEOREM 11.13. Let 'WA!B be a homomorphism of finitely generated k-algebras. Let
U be a nonempty open subset of spm.B/, and let '�.U /� be the closure of its image in
spm.A/. Then '�.U / contains a nonempty open subset of each irreducible component of
'�.U /�.

PROOF. Let W D spm.B/ and V D spm.A/, so that '� is a continuous map W ! V .
We first prove the theorem in the case that ' is an injective homomorphism of integral

domains. For some b ¤ 0, D.b/ � U . According to Proposition 11.14 below, there exists
a nonzero element a 2 A such that every homomorphim ˛WA! kal such that ˛.a/ ¤ 0
extends to a homomorphism ˇWB ! kal such that ˇ.b/¤ 0. Let m 2D.a/, and choose ˛
to be a homomorphismA! kal with kernel m. The kernel of ˇ is a maximal ideal n2D.b/

such that '�1.n/Dm, and so D.a/� '�.D.b//.
We now prove the general case. If W1; : : : ;Wr are the irreducible components of W ,

then '�.W /� is a union of the sets '�.Wi /�, and any irreducible component C of '�.U /�

is contained in one of '�.Wi /�, say '�.W1/�. Let qD I.W1/ and let pD '�1.q/. Because
W1 is irreducible, they are both prime ideals. The homomorphism 'WA! B induces an
injective homomorphism N'WA=p!B=q, and N'� can be identified with the restriction of '�

to W1. From the first case, we know that N'�.U \W1/ contains a nonempty open subset of
C , which implies that '�.U / does also. 2

In the next two statements, A and B are arbitrary commutative rings — they need not
be k-algebras.

PROPOSITION 11.14. Let A � B be integral domains with B finitely generated as an al-
gebra over A, and let b be a nonzero element of B . Then there exists an element a¤ 0 in A
with the following property: every homomorphism ˛WA!˝ from A into an algebraically
closed field˝ such that ˛.a/¤ 0 can be extended to a homomorphism ˇWB!˝ such that
ˇ.b/¤ 0.
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We first need a lemma.

LEMMA 11.15. Let B � A be integral domains, and assume B D AŒt�D AŒT �=a. Let c�

A be the ideal of leading coefficients of the polynomials in a. Then every homomorphism
˛WA!˝ from A into an algebraically closed field ˝ such that ˛.c/¤ 0 can be extended
to a homomorphism of B into ˝.

PROOF. If aD 0, then cD 0, and every ˛ extends. Thus we may assume a¤ 0. Let ˛ be a
homomorphism A!˝ such that ˛.c/¤ 0. Then there exist polynomials amTmC�� �Ca0
in a such that ˛.am/ ¤ 0, and we choose one, denoted f , of minimum degree. Because
B ¤ 0, the polynomial f is nonconstant.

Extend ˛ to a homomorphism AŒT �!˝ŒT �, again denoted ˛, by sending T to T , and
consider the subset ˛.a/ of ˝ŒT �.

FIRST CASE: ˛.a/ DOES NOT CONTAIN A NONZERO CONSTANT. If the ˝-subspace
of ˝ŒT � spanned by ˛.a/ contained 1, then so also would ˛.a/,16 contrary to hypothesis.
Because

T �
P
ci˛.gi /D

P
ci˛.giT /; ci 2˝; gi 2 a;

this ˝-subspace an ideal, which we have shown to be proper, and so it has a zero c in ˝.
The composite of the homomorphisms

AŒT �
˛
�!˝ŒT � �!˝; T 7! T 7! c;

factors through AŒT �=aD B and extends ˛.
SECOND CASE: ˛.a/ CONTAINS A NONZERO CONSTANT. This means that a contains

a polynomial

g.T /D bnT
n
C�� �Cb0 such that ˛.b0/¤ 0; ˛.b1/D ˛.b2/D �� � D 0:

On dividing f .T / into g.T / we obtain an equation

admg.T /D q.T /f .T /C r.T /; d 2 N; q;r 2 AŒT �; degr < m:

When we apply ˛, this becomes

˛.am/
d˛.b0/D ˛.q/˛.f /C˛.r/:

Because ˛.f / has degreem>0, we must have ˛.q/D 0, and so ˛.r/ is a nonzero constant.
After replacing g.T / with r.T /, we may suppose n <m. IfmD 1, such a g.T / can’t exist,
and so we may suppose m > 1 and (by induction) that the lemma holds for smaller values
of m.

For h.T / D crT r C cr�1T r�1C �� � C c0, let h0.T / D cr C �� � C c0T r . Then the A-
module generated by the polynomials T sh0.T /, s � 0, h 2 a, is an ideal a0 in AŒT �. More-
over, a0 contains a nonzero constant if and only if a contains a nonzero polynomial cT r ,
which implies t D 0 and AD B (since B is an integral domain).

When a0 does not contain a nonzero constant, we set B 0 D AŒT �=a0 D AŒt 0�. Then a0

contains the polynomial g0 D bnC �� � C b0T n, and ˛.b0/¤ 0. Because degg0 < m, the

16Use that, if a system of linear equation with coefficients in a field k has a solution in some larger field, then
it has a solution in k.
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induction hypothesis implies that ˛ extends to a homomorphism B 0!˝. Therefore, there
exists a c 2˝ such that, for all h.T /D crT rC cr�1T r�1C�� �C c0 2 a,

h0.c/D ˛.cr/C˛.cr�1/cC�� �C c0c
r
D 0:

On taking h D g, we see that c D 0, and on taking h D f , we obtain the contradiction
˛.am/D 0. 2

PROOF (OF 11.14) Suppose that we know the proposition in the case that B is generated
by a single element, and write B D AŒt1; : : : ; tn�. Then there exists an element bn�1 such
that any homomorphism ˛WAŒt1; : : : ; tn�1�!˝ such that ˛.bn�1/¤ 0 extends to a homo-
morphism ˇWB!˝ such that ˇ.b/¤ 0. Continuing in this fashion (with bn�1 for b), we
eventually obtain an element a 2 A with the required property.

Thus we may assume B D AŒt�. Let a be the kernel of the homomorphism T 7! t ,
AŒT �! AŒt�.

Case (i). The ideal aD .0/. Write

b D f .t/D a0t
n
Ca1t

n�1
C�� �Can; ai 2 A;

and take a D a0. If ˛WA!˝ is such that ˛.a0/¤ 0, then there exists a c 2˝ such that
f .c/¤ 0, and we can take ˇ to be the homomorphism

P
di t

i 7!
P
˛.di /c

i .
Case (ii). The ideal a ¤ .0/. Let f .T / D amTmC �� �C a0, am ¤ 0, be an element

of a of minimum degree. Let h.T / 2 AŒT � represent b. Since b ¤ 0, h … a. Because f
is irreducible over the field of fractions of A, it and h are coprime over that field. In other
words, there exist u;v 2 AŒT � and a nonzero c 2 A such that

uhCvf D c:

It follows now that cam satisfies our requirements, for if ˛.cam/ ¤ 0, then ˛ can be ex-
tended to ˇWB!˝ by the lemma, and ˇ.u.t/ �b/D ˇ.c/¤ 0, and so ˇ.b/¤ 0. 2

REMARK 11.16. In case (ii) of the last proof, both b and b�1 are algebraic over A, and so
there exist equations

a0b
m
C�� �Cam D 0; ai 2 A; a0 ¤ 0I

a00b
�n
C�� �Ca0n D 0; a0i 2 A; a00 ¤ 0:

One can show that aD a0a00 has the property required by the proposition.

ASIDE 11.17. The spectrum spec.A/ of a ring A is the set of prime ideals in A endowed with the
topology for which the closed subsets are those of the form

V.a/D fp j p� ag; a an ideal in A:

Thus spm.A/ is the subspace of spec.A/ consisting of the closed points. When A is Jacobson, the
map U 7! U \ spm.A/ is a bijection from the set of open subsets of spec.A/ onto the set of open
subsets of spm.A/; therefore spm.A/ and spec.A/ have the same topologies — only the underlying
sets differ.
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12 Dimension theory for finitely generated k-algebras

Throughout this section, A is both a finitely generated algebra over field k and an integral
domain. We define the transcendence degree of A over k, trdegkA, to be the transcendence
degree over k of the field of fractions of A (see FT17 �8). Thus A has transcendence degree
d if it contains an algebraically independent set of d elements, but no larger set (FT 8.12).

PROPOSITION 12.1. For any linear forms `1; : : : ; `m in X1; : : : ;Xn, the quotient ring

kŒX1; : : : ;Xn�=.`1; : : : ; `m/

is an integral domain of transcendence degree equal to the dimension of the subspace of kn

defined by the equations
`i D 0; i D 1; : : : ;m:

PROOF. This follows from the more precise statement:

Let c be an ideal in kŒX1; : : : ;Xn� generated by linearly independent linear
forms `1; : : : ; `r , and let Xi1 ; : : : ;Xin�r

be such that

f`1; : : : ; `r ;Xi1 ; : : : ;Xin�r
g

is a basis for the linear forms in X1; : : : ;Xn. Then

kŒX1; : : : ;Xn�=c' kŒXi1 ; : : : ;Xin�r
�:

This is obvious if the forms `i are X1; : : : ;Xr . In the general case, because fX1; : : : ;Xng
and f`1; : : : ; `r ;Xi1 ; : : : ;Xin�r

g are both bases for the linear forms, each element of one set
can be expressed as a linear combination of the elements of the other. Therefore,

kŒX1; : : : ;Xn�D kŒ`1; : : : ; `r ;Xi1 ; : : : ;Xin�r
�;

and so

kŒX1; : : : ;Xn�=cD kŒ`1; : : : ; `r ;Xi1 ; : : : ;Xin�r
�=c

' kŒXi1 ; : : : ;Xin�r
�: 2

PROPOSITION 12.2. For any irreducible polynomial f in kŒX1; : : : ;Xn�, the quotient ring
kŒX1; : : : ;Xn�=.f / has transcendence degree n�1.

PROOF. Let
kŒx1; : : : ;xn�D kŒX1; : : : ;Xn�=.f /; xi DXi C .f /;

and let k.x1; : : : ;xn/ be the field of fractions of kŒx1; : : : ;xn�. Since f is not zero, someXi ,
say, Xn, occurs in it. Then Xn occurs in every nonzero multiple of f , and so no nonzero
polynomial in X1; : : : ;Xn�1 belongs to .f /. This means that x1; : : : ;xn�1 are algebraically
independent. On the other hand, xn is algebraic over k.x1; : : : ;xn�1/, and so fx1; : : : ;xn�1g
is a transcendence basis for k.x1; : : : ;xn/ over k. 2

17FTD Fields and Galois Theory, available on my website.
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PROPOSITION 12.3. For any nonzero prime ideal p in a k-algebra A,

trdegk.A=p/ < trdegk.A/:

PROOF. We may suppose

AD kŒX1; : : : ;Xn�=aD kŒx1; : : : ;xn�:

For f 2 A, let Nf denote the image of f in A=p, so that A=p D kŒ Nx1; : : : ; Nxn�. Let d D
trdegkA=p, and number the Xi so that Nx1; : : : ; Nxd are algebraically independent (see FT
8.9 for the proof that this is possible). I shall show that, for any nonzero f 2 p, the d C 1
elements x1; : : : ;xd ;f are algebraically independent, which shows that trdegkA� d C1.

Suppose otherwise. Then there is a nontrivial algebraic relation, which we can write

a0.x1; : : : ;xd /f
m
Ca1.x1; : : : ;xd /f

m�1
C�� �Cam.x1; : : : ;xd /D 0;

with ai 2 kŒX1; : : : ;Xd � and a0 ¤ 0. Because A is an integral domain, we can cancel a
power of f if necessary to make am.x1; : : : ;xd / nonzero. On applying the homomorphism
A! A=p to the above equality, we find that

am. Nx1; : : : ; Nxd /D 0;

which contradicts the algebraic independence of Nx1; : : : ; Nxd . 2

PROPOSITION 12.4. Let A be a unique factorization domain. If p is a prime ideal in A
such that trdegkA=pD trdegkA�1, then pD .f / for some f 2 A.

PROOF. The ideal p is nonzero because otherwise A and A=p would have the same tran-
scendence degree. Therefore p contains a nonzero polynomial, and even an irreducible
polynomial f , because it is prime. According to (4.1), the ideal .f / is prime. If .f /¤ p,
then

trdegkA=p
12.3
> trdegkA=.f /

12.2
D trdegkA�1;

which contradicts the hypothesis. 2

THEOREM 12.5. Let f 2 A be neither zero nor a unit, and let p be a prime ideal that is
minimal among those containing .f /; then

trdegkA=pD trdegkA�1:

We first need a lemma.

LEMMA 12.6. LetA be an integrally closed integral domain, and letL be a finite extension
of the field of fractionsK ofA. If ˛ 2L is integral overA, then NmL=K˛ 2A, and ˛ divides
NmL=K ˛ in the ring AŒ˛�.

PROOF. Let Xr Car�1Xr�1C�� �Ca0 be the minimum polynomial of ˛ over K. Then r

divides the degree n of L=K, and NmL=K.˛/D˙a
n
r

0 (FT 5.40). Moreover, a0 lies in A by
(5.9). From the equation

0D ˛.˛r�1Car�1˛
r�2
C�� �Ca1/Ca0

we see that ˛ divides a0 in AŒ˛�, and therefore it also divides NmL=K ˛. 2
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PROOF (OF THEOREM 12.5). Write rad.f / as an irredundant intersection of prime ideals
rad.f /D p1\ : : :\pr (see 11.11). Then V.a/D V.p1/[� � �[V.pr/ is the decomposition
of V.a/ into its irreducible components. There exists an m0 2 V.p1/r

S
i�2V.pi / and an

open neighbourhood D.h/ of m0 disjoint from
S
i�2V.pi /. The ring Ah (resp. Ah=S�1p)

is an integral domain with the same transcendance degree as A (resp. A=p) — in fact, with
the same field of fractions. In Ah, rad.f

1
/ D rad.f /e D pe1. Therefore, after replacing A

with Ah, we may suppose that rad.f / is prime, say, equal to p.
According to the Noether normalization theorem (5.11), there exist algebraically inde-

pendent elements x1; : : : ;xd in A such that A is a finite kŒx1; : : : ;xd �-algebra. Note that
d D trdegkA. According to the lemma, f0

def
D Nm.f / lies in kŒx1; : : : ;xd �, and we shall

show that p\kŒx1; : : : ;xd �D rad.f0/. Therefore, the homomorphism

kŒx1; : : : ;xd �=rad.f0/! A=p

is injective. As it is also finite, this implies that

trdegkA=pD trdegkkŒx1; : : : ;xd �=rad.f0/
12.2
D d �1;

as required.
By assumption A is finite (hence integral) over its subring kŒx1; : : : ;xd �. The lemma

shows that f divides f0 in A, and so f0 2 .f /� p. Hence .f0/� p\kŒx1; : : : ;xd �, which
implies

rad.f0/� p\kŒx1; : : : ;xd �

because p is radical. For the reverse inclusion, let g 2 p\kŒx1; : : : ;xd �. Then g 2 rad.f /,
and so gm D f h for some h 2 A, m 2 N. Taking norms, we find that

gme D Nm.f h/D f0 �Nm.h/ 2 .f0/;

where e is the degree of the extension of the fields of fractions, which proves the claim. 2

COROLLARY 12.7. Let p be a minimal nonzero prime ideal in A; then trdegk .A=p/ D
trdegk .A/�1.

PROOF. Let f be a nonzero element of p. Then f is not a unit, and p is minimal among
the prime ideals containing f . 2

THEOREM 12.8. The length d of any maximal (i.e., nonrefinable) chain of distinct prime
ideals

pd � pd�1 � �� � � p0 (18)

in A is trdegk .A/. In particular, every maximal ideal of A has height trdegk .A/, and so
the Krull dimension of A is equal to trdegk .A/.

PROOF. From (12.7), we find that

trdegk.A/D trdegk.A=p1/C1D �� � D trdegk.A=pd /Cd:

But pd is maximal, and soA=pd is a finite field extension of k. In particular, trdegk.A=pd /D
0. 2



13 PRIMARY DECOMPOSITIONS 45

EXAMPLE 12.9. Let f .X;Y / and g.X;Y / be nonconstant polynomials with no common
factor. Then kŒX;Y �=.f / has Krull dimension 1, and so kŒX;Y �=.f;g/ has dimension zero.

EXAMPLE 12.10. We classify the prime ideals p in A D kŒX;Y �. If A=p has dimension
2, then p D .0/. If A=p has dimension 1, then p D .f / for some irreducible polynomial
f of A (by 12.4). Finally, if A=p has dimension zero, then p is maximal. Thus, when k
is algebraically closed, the prime ideals in kŒX;Y � are exactly the ideals .0/, .f / (with f
irreducible), and .X �a;Y �b/ (with a;b 2 k).

REMARK 12.11. Let A be a finitely generated k-algebra (not necessarily an integral do-
main). Every maximal chain of prime ideals in A ending in fixed prime ideal p has length
trdegk.A=p/, and so the Krull dimension of A is max.trdegk.A=p// where p runs over the
minimal prime ideals of A. In the next section, we show that a noetherian ring has only
finitely many minimal prime ideals, and so the Krull dimension of A is finite.

If x1; : : : ;xm is an algebraically independent set of elements of A such that A is a finite
kŒx1; : : : ;xm�-algebra, then dimADm.

13 Primary decompositions

In this section, A is an arbitrary commutative ring.

DEFINITION 13.1. An ideal q in A is primary if it is proper and

ab 2 q, b … q H) an 2 q for some n� 1:

Thus, a proper ideal q in A is primary if and only if all zero-divisors in A=q are nilpotent.
A radical ideal is primary if and only if it is prime. An ideal .m/ in Z is primary if and only
if m is a power of a prime.

PROPOSITION 13.2. The radical of a primary ideal q is a prime ideal containing q, and
it is contained in every other prime ideal containing q (i.e., it is the smallest prime ideal
containing p).

PROOF. Suppose ab 2 rad.q/ but b … rad.q/. Then some power, say anbn, of ab lies in q,
but bn … q, and so a 2 rad.q/. The shows that rad.q/ is primary, and hence prime (because
it is radical).

Let p be a second prime ideal containing q, and let a 2 rad.q/. For some n, an 2 q� p,
which implies that a 2 p. 2

When q is a primary ideal and p is its radical, we say that q is p-primary.

PROPOSITION 13.3. Every ideal q whose radical is a maximal ideal m is primary (in fact,
m-primary); in particular, every power of a maximal ideal m is m-primary.

PROOF. Every prime ideal containing q contains its radical m, and therefore equals m. This
shows that A=a is local with maximal ideal m=a. Therefore, every element of A=a is either
a unit, and hence is not a zero-divisor, or it lies in m=a, and hence is nilpotent. 2

PROPOSITION 13.4. Let 'WA! B be a homomorphism of rings. If q is a p-primary ideal
in B , then qc

def
D '�1.q/ is a pc-primary ideal in A.
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PROOF. The map A=qc! B=q is injective, and so every zero-divisor in A=qc is nilpotent.
This shows that qc is primary, and therefore rad.qc/-primary. But (see 2.8), rad.qc/ D
rad.q/c D pc , as claimed. 2

LEMMA 13.5. Let q and p be a pair of ideals in A such that q� p� rad.q/ and

ab 2 q H) a 2 p or b 2 q. (19)

Then p is a prime ideal and q is p-primary.

PROOF. Clearly q is primary, hence rad.q/-primary, and rad.q/ is prime. By assumption
p � rad.q/, and it remains to show that they are equal. Let a 2 rad.q/, and let n be the
smallest positive integer such that an 2 q. If n D 1, then a 2 q � p; on the other hand, if
n > 1, then an D aan�1 2 q and an�1 … q, and so a 2 p by (19). 2

PROPOSITION 13.6. A finite intersection of p-primary ideals is p-primary.

PROOF. Let q1; : : : ;qn be p-primary, and let q D q1\ : : :\ qn. We show that the pair of
ideals q� p satisfies the conditions of (13.5).

Let a 2 p; since some power of a belongs to each qi , a sufficiently high power of it will
belong to all of them, and so p� rad.q/.

Let ab 2 q but a … p. Then ab 2 qi but a … p, and so b 2 qi . Since this is true for all i ,
we have that b 2 q. 2

The minimal prime ideals of an ideal a are the minimal elements of the set of prime
ideals containing a.

DEFINITION 13.7. A primary decomposition of an ideal a is a finite set of primary ideals
whose intersection is a. A primary decomposition S of a is minimal if

(a) the prime ideals rad.q/, q 2 S , are distinct, and
(b) no element of S can be omitted, i.e., for no q0 2 S is q0 �

T
fq j q 2 S , q¤ q0g.

If a admits a primary decomposition, then it admits a minimal primary decomposition,
because Proposition 13.6 can be used to combine primary ideals with the same radical, and
any qi that fails (b) can simply be omitted. The prime ideals occurring as the radical of an
ideal in a minimal primary decomposition of a are said to belong to a.

PROPOSITION 13.8. Suppose a D q1 \ � � � \ qn where qi is pi -primary for i D 1; : : : ;n.
Then the minimal prime ideals of a are the minimal elements of the set fp1; : : : ;png.

PROOF. Let p be a prime ideal containing a, and let q0i be the image of qi in the integral
domain A=p. Then p contains q1 � � �qn, and so q01 � � �q

0
n D 0. This implies that, for some i ,

q0i D 0, and so p contains qi . Now (13.2) shows that p contains pi : 2

In particular, if a admits a primary decomposition, then it has only finitely many mini-
mal prime ideals, and so its radical is a finite intersection of prime ideals.

For an ideal a in A and an element x 2 A, we let

.aWx/D fa 2 A j ax 2 ag:

It is again an ideal in A, which equals A if x 2 a.
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LEMMA 13.9. Let q be a p-primary ideal and let x 2 Arq. Then .qWx/ is p-primary (and
hence rad.qWx/D p).

PROOF. For any a 2 .qWx/, we know that ax 2 q and x … q, and so a 2 p. Hence .qWx/� p.
On taking radicals, we find that rad.qWx/D p. Let ab 2 .qWx/. Then xab 2 q, and so either
a 2 p or xb 2 q (because q is p-primary); in the second case, b 2 .qWx/ as required. 2

THEOREM 13.10. Let aD q1\ : : :\qn be a minimal primary decomposition of a, and let
pi D rad.qi /. Then

fp1; : : : ;png D frad.aWx/ j x 2 A; rad.aWx/ primeg.

In particular, the set fp1; : : : ;png is independent of the choice of the minimal primary de-
composition.

PROOF. For any a 2 A,
.aWa/D .

T
qi Wa/D

T
.qi Wa/;

and so
rad.aWa/D rad

T
.qi Wa/

(13.9)
D

T
a…qi

pi : (20)

If rad.aWa/ is prime, then it equals one of the pi (otherwise, for each i there exists an
ai 2 pi rp, and a1 � � �an 2

T
a…qi

pi but not p, which is a contradiction). Hence RHS�LHS.
For each i , there exists an a 2

T
j¤i qj rqi because the decomposition is minimal, and (20)

shows that rad.aWa/D pi . 2

THEOREM 13.11. In a noetherian ring, every ideal admits a primary decomposition.

The theorem is a consequence of the following more precise statement, but first we need
a definition: an ideal a is said to be irreducible if

aD b\ c (b, c ideals) H) aD b or aD c:

PROPOSITION 13.12. Let A be a noetherian ring.
(a) Every ideal in A can be expressed as a finite intersection of irreducible ideals.
(b) Every irreducible ideal in A is primary.

PROOF. (a) Suppose (a) fails, and let a be maximal among the ideals for which it fails.
Then, in particular, a itself is not irreducible, and so aD b\ c with b and c properly con-
taining a. Because a is maximal, both b and c can be expressed as finite intersections of
irreducible ideals, but then so can a.

(b) Let a be irreducible in A, and consider the quotient ring A0 def
D A=a: Let a be a

zero-divisor in A0, say ab D 0 with b ¤ 0. We have to show that a is nilpotent. As A0 is
noetherian, the chain of ideals

..0/Wa/� ..0/Wa2/� �� �

becomes constant, say, ..0/Wam/D ..0/WamC1//D �� � . Let c 2 .am/\ .b/. Then c 2 .b/
implies caD 0, and c 2 .am/ implies that c D dam for some d 2 A. Now

.dam/aD 0) d 2 .0WamC1/D .0Wam/) c D 0:

Hence .am/\ .b/ D .0/. Because a is irreducible, so also is the zero ideal in A0, and it
follows that am D 0. 2
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A p-primary ideal a in a noetherian ring contains a power of p by Proposition 3.12. The
next result proves a converse when p is maximal.

PROPOSITION 13.13. Let m be a maximal ideal of a noetherian ring. Any proper ideal a

of A that contains a power of a maximal ideal m is m-primary.

PROOF. Suppose that mr � a, and let p be a prime ideal belonging to a. Then mr � a� p,
so that m � p, which implies that m D p. Thus m is the only prime ideal belonging to a,
which means that a is m-primary. 2

EXAMPLE 13.14. We give an example of a power of a prime ideal p that is not p-primary.
Let

AD kŒX;Y;Z�=.Y 2�XZ/D kŒx;y;z�:

The ideal .X;Y / in kŒX;Y;Z� is prime and contains .Y 2�XZ/, and so the ideal pD .x;y/

in A is prime. Now xz D y2 2 p2, but one checks easily that x … p2 and z … p, and so p2 is
not p-primary.

REMARK 13.15. Let a be an ideal in a noetherian ring, and let b D
T
n�1 an. We give

another proof that abD b (see p.11). Let

abD q1\ : : :\qs; rad.qi /D pi ;

be a minimal primary decomposition of ab. We shall show that b � ab by showing that
b� qi for each i .

If there exists a b 2 brqi , then

ab � ab� qi ,

from which it follows that a� pi . We know that pri � qi for some r (see 3.12), and so

bD
\

an � ar � pri � qi ,

which is a contradiction. This completes the proof.

DEFINITION 13.16. A Dedekind domain is a noetherian integrally closed integral domain
of dimension 1.

THEOREM 13.17. Every proper nonzero ideal a in a Dedekind domain can be written in
the form

aD pr1

1 � � �p
rs
s

with the pi distinct prime ideals and the ri > 0; the ideals pi are exactly the prime ideals
containing a, and the exponents ri are uniquely determined.

PROOF. For the proof, which is quite elementary, see Chapter 3 of my notes Algebraic
Number Theory. 2
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14 Artinian rings

A ring A is artinian if every descending chain of ideals a1 � a2 � �� � in A eventually
becomes constant; equivalently, if every nonempty set of ideals has a minimal element.
Similarly, a module M over a ring A is artinian if every descending chain of submodules
N1 �N2 � �� � in M eventually becomes constant.

PROPOSITION 14.1. An artinian ring has Krull dimension zero; in other words, every
prime ideal is maximal.

PROOF. Let p be a prime ideal of an artinian ring A, and let A0 D A=p. Then A0 is an
artinian integral domain. For any nonzero element a of A0, the chain .a/ � .a2/ � �� �
eventually becomes constant, and so an D anC1b for some b 2 A0 and n � 1. We can
cancel an to obtain 1D ab. Thus a is a unit, A0 is a field, and p is maximal: 2

COROLLARY 14.2. In an artinian ring, the nilradical and the Jacobson radical coincide.

PROOF. The first is the intersection of the prime ideals (2.2), and the second is the inter-
section of the maximal ideals (2.4). 2

PROPOSITION 14.3. An artinian ring has only finitely many maximal ideals.

PROOF. Let m1 \ : : :\mn be a minimal element in the set of all finite intersections of
maximal ideals in the artinian ring A, and let m be a maximal ideal in A. Then m equals
one of the mi , because otherwise there exists an ai 2 mi rm for each i , and a1 � � �an lies
in m1\ : : :\mn but not m (because m is prime); thus m\m1\ : : :\mn is smaller than
m1\ : : :\mn, which contradicts the definition of m1\ : : :\mn. 2

PROPOSITION 14.4. In an artinian ring, some power of the nilradical is zero.

PROOF. Let N be the nilradical of the artinian ring A. The chain N�N2 � �� � eventually
becomes constant, and so Nn DNnC1 D �� � for some n� 1. Suppose Nn ¤ 0. Then there
exist ideals a such that a �Nn ¤ 0, for example N, and we may suppose that a has been
chosen to be minimal among such ideals. There exists an a 2 a such that a �Nn ¤ 0, and
so aD .a/ (by minimality). Now .aNn/Nn D aN2n D aNn ¤ 0 and aNn � .a/, and so
aNn D .a/ (by minimality again). Hence aD ax for some x 2Nn. Now aD ax D ax2 D

�� � D a0D 0 because x 2N. This contradicts the definition of a, and so Nn D 0. 2

LEMMA 14.5. Let A be a ring in which some finite product of maximal ideals is zero.
Then A is artinian if and only if it is noetherian.

PROOF. Suppose m1 � � �mn D 0 with the mi maximal ideals (not necessarily distinct), and
consider

A�m1 � �� � �m1 � � �mr�1 �m1 � � �mr � �� � �m1 � � �mn D 0:

The action ofA on the quotientMr
def
Dm1 � � �mr�1=m1 � � �mr factors through the fieldA=mr ,

and the subspaces of the vector space Mr are in one-to-one correspondence with the ideals
of A contained between m1 � � �mr�1 and m1 � � �mr . If A is either artinian or noetherian, then
Mr satisfies a chain condition on subspaces and so it is finite-dimensional as a vector space
and both artinian and noetherian as an A-module. Now repeated applications of Proposition
3.3 (resp. its analogue for artinian modules) show that if A is artinian (resp. noetherian),
then it is noetherian (resp. artinian) as an A-module, and hence as a ring. 2
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THEOREM 14.6. A ring is artinian if and only if it is noetherian of dimension zero.

PROOF. ): Let A be an artinian ring. After (14.1), it remains to show that A is noetherian,
but according to (14.2), (14.3), and (14.4), some finite product of maximal ideals is zero,
and so this follows from the lemma.
(: Let A be a noetherian ring of dimension zero. The zero ideal admits a primary

decomposition (13.11), and so A has only finitely many minimal prime ideals, which are all
maximal because dimAD 0. Hence N is a finite intersection of maximal ideals (2.2), and
since some power of N is zero (3.12), we again have that some finite product of maximal
ideals is zero, and so can apply the lemma. 2

THEOREM 14.7. Every artinian ring is (uniquely) a product of local artinian rings.

PROOF. Let A be artinian, and let m1; : : : ;mr be the distinct maximal ideals in A. We saw
in the proof of (14.6) that some product mn1

1 � � �m
nr
r D 0. For i ¤ j , the ideal m

ni

i Cm
nj

j is
not contained in any maximal ideal, and so equals A. Now the Chinese remainder theorem
2.10 shows that

A' A=mn1

1 � � � ��A=m
nr
r ,

and each ring A=mni

i is obviously local. 2

PROPOSITION 14.8. Let A be a local artinian ring with maximal ideal m. If m is principal,
so also is every ideal in A; in fact, if mD .t/, then every ideal is of the form .tr/ for some
r � 0.

PROOF. Because m is the Jacobson radical of A, some power of m is zero (by 14.4); in
particular, .0/ D .tr/ for some r . Let a be a nonzero ideal in A. There exists an integer
r � 0 such that a � mr but a 6� mrC1. Therefore there exists an element a of a such that
aD ctr for some c 2 A but a … .trC1/. The second condition implies that c …m, and so it
is a unit; therefore aD .a/. 2

15 Dimension theory for noetherian rings

LetA be a noetherian ring and let p be a prime ideal inA. LetApDS
�1Awhere S DArp.

We begin by studying extension and contraction of ideals with respect to the homomor-
phism A! Ap (cf. 2.7). Recall (6.6) that Ap is a local ring with maximal ideal pe

def
D pAp.

The ideal �
pn
�ec
D fa 2 A j sa 2 pn for some s 2 Sg

is called the nth symbolic power of p, and is denoted p.n/. If m is maximal, then m.n/Dmn

(see 6.7).

LEMMA 15.1. The ideal p.n/ is p-primary.

PROOF. According to Proposition 13.3, the ideal .pe/n is pe-primary. Hence (see 13.4),
..pe/n/c is .pe/c-primary. But pec D p (see 6.4), and

...pe/n/c
2.8
D ..pn/e/c

def
D p.n/: (21)

2
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LEMMA 15.2. Consider ideals a � p0 � p with p0 prime. If p0 is a minimal prime ideal of
a, then p0e is a minimal prime ideal of ae (extension relative to A! Ap).

PROOF. If not, there exists a prime ideal p00 ¤ p0e such that p0e � p00 � ae. Now, by (6.4),
p0 D p0ec and p00c ¤ p0ec , and so

p0 D p0ec ' p00c � aec � a

contradicts the minimality of p0. 2

THEOREM 15.3 (KRULL’S PRINCIPAL IDEAL THEOREM). LetA be a noetherian ring. For
any nonunit b 2 A, the height of a minimal prime ideal p of .b/ is at most one.

PROOF. Consider A! Ap. According to Lemma 15.2, pe is a minimal prime ideal of
.b/e D .b

1
/, and (6.4) shows that the theorem for Ap � pe � .b

1
/ implies it for A� p� .b/.

Therefore, we may replace A with Ap, and so assume that A is a noetherian local ring with
maximal ideal p.

Suppose that p properly contains a prime ideal p1: we have to show that p1 � p2 H)

p1 D p2.
Let p

.r/
1 be the r th symbolic power of p1. The only prime ideal of the ring A=.b/ is

p=.b/, and so A=.b/ is artinian (apply 14.6). Therefore the descending chain of ideals�
p
.1/
1 C .b/

�
=.b/�

�
p
.2/
1 C .b/

�
=.b/�

�
p
.3/
1 C .b/

�
=.b/� �� �

eventually becomes constant: there exists an s such that

p
.s/
1 C .b/D p

.sC1/
1 C .b/D p

.sC2/
1 C .b/D �� � : (22)

We claim that, for any m� s,

p
.m/
1 � .b/p

.m/
1 Cp

.mC1/
1 : (23)

Let x 2 p
.m/
1 . Then

x 2 .b/Cp
.m/
1

(22)
D .b/Cp

.mC1/
1 ;

and so x D abC x0 with a 2 A and x0 2 p
.mC1/
1 . As p

.m/
1 is p1-primary (see 15.1) and

abD x�x0 2 p
.m/
1 but b … p1, we have that a 2 p

.m/
1 . Now xD abCx0 2 .b/p.m/1 Cp

.mC1/
1

as claimed.
We next show that, for any m� s,

p
.m/
1 D p

.mC1/
1 .

As b 2 p, (23) shows that p
.m/
1 =p

.mC1/
1 D p �

�
p
.m/
1 =p

.mC1/
1

�
, and so p

.m/
1 =p

.mC1/
1 D 0 by

Nakayama’s lemma (3.7).
Now

ps1 � p
.s/
1 D p

.sC1/
1 D p

.sC2/
1 D �� �

and so ps1 �
T
m�s p

.m/
1 . Note that\

m�s
p
.m/
1

(21)
D

\
m�s

..pe1/
m/c D .

\
m�s

.pe1/
m/c

3.11
D .0/c ;

and so for any x 2 ps1, there exists an a 2Arp1 such that axD 0. Let x 2 p1; then axs D 0
for some a 2 Ar p1 � Ar p2, and so x 2 p2 (because p2 is prime). We have shown that
p1 D p2, as required. 2
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In order to extend Theorem 15.6 to non principal ideals, we shall need a lemma.

LEMMA 15.4. Let p be a prime ideal in a noetherian ring A, and let S be a finite set of
prime ideals in A, none of which contains p. If there exists a chain of distinct prime ideals

p� pd�1 � �� � � p0;

then there exists such a chain with p1 not contained in any ideal in S .

PROOF. We first prove this in the special case that the chain has length 2. Suppose that
p � p1 � p0 are distinct prime ideals and that p is not contained in any prime ideal in S .
According to Proposition 2.6, there exists an element

a 2 pr .p0[
S
fp0 2 Sg/:

As p contains .a/Cp0, it also contains a minimal prime ideal p01 of .a/Cp0. Now p01=p0
is a minimal prime ideal of the principal ideal ..a/Cp0/=p0 in A=p0, and so has height 1,
whereas the chain p=p0 � p1=p0 � p0=p0 shows that p=p0 has height at least 2. Therefore
p� p01 � p0 are distinct primes, and p01 … S because it contains a. This completes the proof
of the special case.

Now consider the general case. On applying the special case to p � pd�1 � pd�2, we
see that there exists a chain of distinct prime ideals p� p0

d�1
� pd�2 such that p0

d�1
is not

contained in any ideal in S . Then on applying the special case to p0
d�1
� pd�2 � pd�1, we

we see that there exists a chain of distinct prime ideals p� p0
d�1
� p0

d�2
� pd�2 such that

p0
d�2

is not contained in any ideal in S . Repeat the argument until the proof is complete. 2

THEOREM 15.5. Let A be a noetherian ring. For any proper ideal a D .a1; : : : ;am/, the
height of a minimal prime ideal of a is at most m.

PROOF. FormD 1, this was just proved. Thus, we may supposem� 2 and that the theorem
has been proved for ideals generated by m�1 elements. Let p be a minimal prime ideal of
a, and let p01; : : : ;p

0
t be the minimal prime ideals of .a2; : : : ;am/. Each p0i has height at most

m�1. If p is contained in one of the p0i , it will have height�m�1, and so we may suppose
that it isn’t.

Let p have height d . We have to show that d �m. According to the lemma, there exists
a chain of distinct prime ideals

pD pd � pd�1 � �� � � p0; d � 1;

with p1 not contained in any p0i , and so Proposition 2.6 shows that there exists a

b 2 p1r
Sr
iD1 p0i :

We next show that p is a minimal prime ideal of .b;a2; : : : ;am/. Certainly p contains a
minimal prime ideal p0 of this ideal. As p0 � .a2; : : : ;am/, p contains one of the p0i s, but, by
construction, it cannot equal it. If p¤ p0, then

p� p0 � pi

are distinct ideals, which shows that Np def
D p=.a2; : : : ;am/ has height at least 2 in NA def

D

A=.a2; : : : ;am/. But Np is a minimal ideal in NA of the principal ideal .a1; : : : ;an/=.a2; : : : ;an/,
which contradicts Theorem 15.3. Hence p is minimal, as claimed.
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But now p=.b/ is a minimal prime ideal of .b;a2; : : : ;am/ in R=.b/, and so the height
of p=.b/ is at most m�1 (by induction). The prime ideals

p=.b/D pd=.b/� pd�1=.b/� �� � � p1=.b/

are distinct, and so d �1�m�1. This completes the proof that d Dm. 2

The height of an ideal a in a noetherian ring is the minimum height of a prime ideal
containing it,

ht.a/D min
p�a, p prime

ht.p/:

The theorem shows that ht.a/ is finite.
The following provides a (strong) converse to Theorem 15.5.

THEOREM 15.6. Let A be a noetherian ring, and let a be a proper ideal of A of height r .
Then there exist r elements a1; : : : ;ar of a such that, for each i � r , .a1; : : : ;ai / has height
i .

PROOF. If r D 0, then we take the empty set of ai s. Thus, suppose r � 1. There are only
finitely many prime ideals of height 0, because such an ideal is a minimal prime ideal of
.0/, and none of these ideals can contain a because it has height � 1. Proposition 2.6 shows
that there exists an

a1 2 ar
S
fprime ideals of height 0g:

By construction, .a1/ has height at least 1, and so Theorem 15.3 shows it has height exactly
1.

This completes the proof when r D 1, and so suppose that r � 2. There are only finitely
many prime ideals of height 1 containing .a1/ because such an ideal is a minimal prime
ideal of .a1/, and none of these ideals can contain a because it has height � 2. Choose

a2 2 ar
S
fprime ideals of height 1 containing .a1/g:

By construction, .a1;a2/ has height at least 2, and so Theorem 15.5 shows that it has height
exactly 2.

This completes the proof when r D 2, and when r > 2 we can continue in this fashion
until it is complete.

COROLLARY 15.7. Every prime ideal of height r in a noetherian ring arises as a minimal
prime ideal for an ideal generated by r elements.

PROOF. According to the theorem, an ideal a of height r contains an ideal .a1; : : : ;ar/ of
height r . If a is prime, then it is a minimal ideal of .a1; : : : ;ar/. 2

COROLLARY 15.8. Let A be a commutative noetherian ring, and let a be an ideal in A that
can be generated by n elements. For any prime ideal p in A containing a,

ht.p=a/� ht.p/�ht.p=a/Cn:
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PROOF. The first inequality follows immediately from the correspondence between ideals
in A and in A=a.

Denote the quotient map A! A0
def
D A=a by a 7! a0. Let ht.p=a/ D d . Then there

exist elements a1; : : : ;ad in A such that p=a is a minimal prime ideal of .a01; : : : ;a
0
d
/. Let

b1; : : : ;bn generate a. Then p is a minimal prime ideal of .a1; : : : ;ad ;b1; : : : ;bn/, and hence
has height � d Cn. 2

We now use dimension theory to prove a stronger version of “generic flatness” (9.8).

THEOREM 15.9 (GENERIC FREENESS). Let A be a noetherian integral domain, and let B
be a finitely generated A-algebra. For any finitely generated B-module M , there exists a
nonzero element a of A such that Ma is a free Aa-module.

PROOF. Let F be the field of fractions of A. We prove the theorem by induction on the
Krull dimension of F ˝AB , starting with the case of Krull dimension �1. Recall that this
means that F ˝AB D 0, and so a1B D 0 for some nonzero a 2 A. Then Ma D 0, and so
the theorem is trivially true (Ma is the free Aa-module generated by the empty set).

In the general case, and argument as in (9.9) shows that, after replacing A, B , and M
with Aa, Ba, and Ma for a suitable a 2 A, we may suppose that the map B ! F ˝AB

is injective — we identify B with its image. The Noether normalization shows that there
exist algebraically independent elements x1; : : : ;xm of F ˝AB such that F ˝AB is a finite
F Œx1; : : : ;xm�-algebra. As in the proof of (9.8), there exists a nonzero a 2A such that Ba is
a finite AaŒx1; : : : ;xm�-algebra. Hence Ma is a finitely generated AaŒx1; : : : ;xm�-module.

As any extension of free modules is free18, Proposition 3.5 shows that it suffices to
prove the theorem for Ma D AaŒx1; : : : ;xm�=p for some prime ideal p in AaŒx1; : : : ;xm�.
If pD 0, then Ma is free over Aa (with basis the monomials in the xi ). Otherwise, F ˝A
.AaŒx1; : : : ;xm�=p/ has Krull dimension less than that of F ˝AB , and so we can apply the
induction hypothesis. 2

16 Regular local rings

Throughout this section, A is a noetherian local ring with maximal ideal m and residue field
k. The Krull dimension d of A is equal to the height of m, and

ht.m/
(15.5)
� minimum number of generators of m

(3.8)
D dimk.m=m

2/:

When equality holds, the ring A is said to be regular. In other words, dimk.m=m2/ � d ,
and equality holds exactly when the ring is regular.

For example, when A has dimension zero, it is regular if and only if its maximal ideal
can be generated by the empty set, and so is zero. This means that A is a field; in particular,
it is an integral domain. The main result of this section is that all regular rings are integral
domains.

LEMMA 16.1. Let A be a noetherian local ring with maximal ideal m, and let c 2mrm2.
Denote the quotient map A! A0

def
D A=.c/ by a 7! a0. Then

dimkm=m2 D dimkm0=m02C1

where m0
def
Dm=.c/ is the maximal ideal of A0.

18If M 0 is a submodule of M such that M 00 def
DM=M 0 is free, then M �M 0˚M 00.



16 REGULAR LOCAL RINGS 55

PROOF. Let e1; : : : ; en be elements of m such that fe01; : : : ; e
0
ng is a k-linear basis for m0=m02.

We shall show that fe1; : : : ; en; cg is a basis for m=m2.
As e01; : : : ; e

0
n span m0=m02, they generate the ideal m0 (see 3.8), and so mD .e1; : : : ; en/C

.c/, which implies that fe1; : : : ; en; cg spans m=m2.
Suppose that a1; : : : ;anC1 are elements of A such that

a1e1C�� �CanenCanC1c � 0 mod m2. (24)

Then
a01e
0
1C�� �Ca

0
ne
0
n � 0 mod m02,

and so a01; : : : ;a
0
n 2 m0. It follows that a1; : : : ;an 2 m. Now (24) shows that anC1c 2 m2.

If anC1 … m, then it is a unit in A, and c 2 m2, which contradicts its definition. Therefore,
anC1 2m, and the relation (24) is the trivial one. 2

PROPOSITION 16.2. If A is regular, then so also is A=.a/ for any a 2 mrm2; moreover,
dimAD dimA=.a/C1.

PROOF. With the usual notations, (15.8) shows that

ht.m0/� ht.m/� ht.m0/C1:

Therefore

dimk.m
0=m02/� ht.m0/� ht.m/�1D dimk.m=m

2/�1D dimk.m
0=m02/:

Equalities must hold throughout, which proves thatA0 is regular with dimension dimA�1.2

THEOREM 16.3. Every regular noetherian local ring is an integral domain.

PROOF. Let A be a regular local ring of dimension d . We have already noted that the
statement is true when d D 0.

We next prove that A is an integral domain if it contains distinct ideals a � p with
aD .a/ principal and p prime. Let b 2 p, and suppose b 2 an D .an/ for some n� 1. Then
b D anc for some c 2 A. As a is not in the prime ideal p, we must have that c 2 p� a, and
so b 2 anC1. Continuing in this fashion, we see that b 2

T
n an

3.11
D f0g. Therefore pD f0g,

and so A is an integral domain.
We now assume d � 1, and proceed by induction on d . Let a 2 mrm2. As A=.a/ is

regular of dimension d � 1, it is an integral domain, and so .a/ is a prime ideal. If it has
height 1, then the last paragraph shows that A is an integral domain. Thus, we may suppose
that, for all a 2 mrm2, the prime ideal .a/ has height 0, and so is a minimal prime ideal
of A. Let S be the set of all minimal prime ideals of A — recall (�13) that S is finite. We
have shown that mrm2 �

S
fp j p 2 Sg, and so m � m2[

S
fp j p 2 Sg. It follows from

Proposition 2.6 that either m� m2 (and hence mD 0) or m is a minimal prime ideal of A,
but both of these statements contradict the assumption that d � 1: 2

COROLLARY 16.4. A regular noetherian local ring of dimension 1 is a principal ideal do-
main (with a single nonzero prime ideal).
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PROOF. Let A be a regular local ring of dimension 1 with maximal ideal m;and let a be
a nonzero proper ideal in A. The conditions imply that m is principal, say m D .t/. The
radical of a is m because m is the only prime ideal containing a, and so a � mr for some
r (by 3.12). The ring A=mr is local and artinian, and so aD .ts/Cmr for some s � 1 (by
14.8). This implies that aD .ts/ by Nakayama’s lemma (3.7). 2

THEOREM 16.5. Let A be a regular noetherian local ring.
(a) For any prime ideal p in A, the ring Ap is regular.
(b) The ring A is a unique factorization domain (hence is integrally closed).

PROOF. The best proofs use homological algebra, and are beyond a primer. See Matsumura
1986 19.3, 20.3. 2

17 Connections with geometry

Throughout this section, k is a field.

AFFINE k-ALGEBRAS

Let A be a finitely generated k-algebra. Recall (10.5) that the nilradical of A is equal to the
intersection of the maximal ideals of A.

PROPOSITION 17.1. Let A be a finitely generated k-algebra over a perfect field k. If A is
reduced, then so also is K˝k A for every field K � k.

PROOF. Let .ei / be a basis for K as a k-vector space, and suppose ˛ D
P
ei ˝ ai is a

nonzero nilpotent element in K˝k A. Because A is reduced, there exists a maximal ideal
m inA such that some ai do not belong to m. The image N̨ of ˛ inK˝k .A=m/ is a nonzero
nilpotent, but A=m is a finite separable field extension of k, and so this is impossible.19

2

When k is not perfect, Proposition 17.1 fails, because then k has characteristic p ¤ 0
and it contains an element a that is not a pth power. The polynomial Xp�a is irreducible
in kŒX�, but Xp �a D .X �˛/p in kalŒX�. Therefore, AD kŒX�=.Xp �a/ is a field, but
kal˝k AD k

alŒX�=.X �˛/p is not reduced.

DEFINITION 17.2. An affine k-algebra is a finitely generated k-algebraA such that kal˝k
A is reduced.

Let A be a finitely generated k-algebra. If A is affine, then K ˝k A is reduced for
every finite extension K of k, because a k-homomorphism K ! kal defines an injective
homomorphism K˝k A! kal˝k A. Conversely, if A is reduced and k is perfect, then
(17.1) shows that A is affine.

PROPOSITION 17.3. If A is an affine k-algebra and B is a reduced k-algebra, then A˝kB
is reduced.

19Every finite separable field extension of k is of the form kŒX�=.f .X// with f .X/ separable and therefore
without repeated factors in any extension field of k; hence K˝k kŒX�=.f .X//' KŒX�=.f .X// is a product
of fields.
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PROOF. Let .ei / be a basis for A as a k-vector space, and suppose ˛ D
P
ei ˝ bi is a

nonzero nilpotent element of A˝k B . Let B 0 be the k-subalgebra of B generated by the
(finitely many) nonzero bi . Because B 0 is reduced, there exists a maximal ideal m in B 0

such that some bi do not belong to m. Then the image N̨ of ˛ in A˝k .B 0=m/ is a nonzero
nilpotent, but B=m is a finite field extension of k (Zariski’s lemma, 10.1), and so this is
impossible. 2

COROLLARY 17.4. If A and B are affine k-algebras, then so also is A˝k B .

PROOF. By definition, kal˝kA is reduced, and kal˝k .A˝kB/' .k
al˝kA/˝kB , which

is reduced by (17.2). 2

EXERCISE 17.5. Let k be a field k of characteristic p¤ 0, and letA be a finitely generated
k-algebra. We say that an element a of A is p-nilpotent if ap

r

D 0 for some r .
(a) Let N 0 be the set of all p-nilpotent elements of A. Show that N 0 is an ideal in A and

that A=N 0 has no nonzero p-nilpotent elements.
(b) Assume k is perfect. Show that if A has no nonzero p-nilpotents, then neither does

K˝k A for any field K containing k.
(c) Let A and B be finitely generated k-algebras with no nonzero p-nilpotents. Show

that if k is perfect, then A˝k B has no nonzero p-nilpotent elements.

LOCALLY RINGED SPACES

Let V be a topological space, and let k be a k-algebra. A presheaf O of k-algebras on
V assigns to each open subset U of V a k-algebra O.U / and to each inclusion U 0 � U a
“restriction” map

f 7! f jU 0WO.U /!O.U 0/I

when U D U 0 the restriction map is required to be the identity map, and if

U 00 � U 0 � U;

then the composite of the restriction maps

O.U /!O.U 0/!O.U 00/

is required to be the restriction map O.U /! O.U 00/. In other words, a presheaf is a
contravariant functor to the category of k-algebras from the category whose objects are
the open subsets of V and whose morphisms are the inclusions. A homomorphism of
presheaves ˛WO!O0 is a family of homomorphisms of k-algebras

˛.U /WO.U /!O0.U /

commuting with the restriction maps, i.e., a natural transformation.
A presheaf O is a sheaf if for every open covering fUig of an open subset U of V

and family of elements fi 2 O.Ui / agreeing on overlaps (that is, such that fi jUi \Uj D
fj jUi \Uj for all i;j ), there is a unique element f 2 O.U / such that fi D f jUi for all
i .20 A homomorphism of sheaves on V is a homomorphism of presheaves.

20This condition implies that O.;/D 0.
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For v 2 V , the stalk of a sheaf O (or presheaf) at v is

Ov D lim
�!

O.U / (limit over open neighbourhoods of v/:

In other words, it is the set of equivalence classes of pairs .U;f /withU an open neighbour-
hood of v and f 2 O.U /; two pairs .U;f / and .U 0;f 0/ are equivalent if f jU 00 D f jU 00

for some open neighbourhood U 00 of v contained in U \U 0.
A ringed space is a pair .V;O/ consisting of topological space V together with a sheaf

of rings. If the stalkOv ofO at v is a local ring for all v 2 V , then .V;O/ is called a locally
ringed space.

A morphism .V;O/! .V 0;O0/ of ringed spaces is a pair .'; / with ' a continuous
map V ! V 0 and  a family of maps

 .U 0/WO0.U 0/!O.'�1.U 0//; U 0 open in V 0,

commuting with the restriction maps. Such a pair defines homomorphism of rings vWO0'.v/!
Ov for all v 2 V . A morphism of locally ringed spaces is a morphism of ringed space such
that  v is a local homomorphism for all v.

Let B be a base for the topology on V that is closed under finite intersections. A sheaf
on B can be defined in the obvious way, and such a sheafO extends to a sheafO0 on V : for
any open subset U of V , define O0.U / to be the set of families

.fU 0/U 0�U;U 02B; fU 0 2O.U 0/;

agreeing on overlaps. Then O0 is a sheaf of k-algebras on V , and there is a canonical
isomorphism O!O0jB.

AFFINE ALGEBRAIC SPACES AND VARIETIES

Let A be a finitely generated k-algebra, and let V D spm.A/. Recall (�11) that the set of
principal open subsets of V

B D fD.f / j f 2 Ag

is a base for the topology on V which is closed under finite intersections. If D.g/�D.f /,
then V.g/ � V.f /, and so some power of g lies in .f / (by 10.4), say, gr D cf with
a 2 A. Therefore f becomes a unit in Ag , and so there is a well-defined “restriction”
homomorphism Af ! Ag of k-algebras. When D.g/DD.f / this homomorphism is an
isomorphism. For each principal open subset D of spm.A/, we choose an fD such that
D DD.fD/.

PROPOSITION 17.6. There exists a sheaf O of k-algebras on spm.A/ such that
(a) for all basic open subsets D, the k-algebra O.D/D AfD

, and
(b) for all inclusions D0 �D of basic open subsets, the restriction map O.D/!O.D0/

is the canonical map AfD
! AfD0

.
For any other sheaf O0 satisfying (a) and (b), there exists a unique isomorphism O! O0
inducing the identity map O.D/!O0.D/ for every basic open subset.

PROOF. It suffices to check that D  AfD
is a sheaf on the base of basic open subsets.

This is straightforward but tedious, and so is left as an exercise. 2

We write Spm.A/ for spm.A/ endowed with this sheaf of k-algebras. It is independent
of the choice of the elements fD (up to a unique isomorphism).
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PROPOSITION 17.7. For every m2 spm.A/, the stalkOm is canonically isomorphic toOm.

PROOF. Apply (7.3). 2

Thus Spm.A/ is a locally ringed space. An affine algebraic space is topological space
V together with a sheaf of k-algebrasO such that .V;O/ is isomorphic to Spm.A/ for some
finitely generated k-algebra A. A regular mapof affine algebraic spaces is morphism of
locally ringed spaces.

EXAMPLE 17.8. Affine n-space An D Spm.kŒX1; : : : ;Xn�/. To give a regular map V !
A1 is the same as giving a homomorphism of k-algebras kŒX�!O.V /, i.e., an element of
O.V /. For this reason, O.V / is often called the ring (or k-algebra) of regular functions
on V .

PROPOSITION 17.9. For any affine algebraic space .V;OV / and locally ringed space .W;OW /,
the canonical map

Hom.V;W /! Homk-alg.OW .W /;OV .V //

is an isomorphism.

PROOF. Exercise for the reader. 2

An affine algebraic space V defines a functor

R V.R/
def
D Homk-alg.O.V /;R/: (25)

from k-algebras to sets. For example, An.R/'Rn for all k-algebras R.
An affine algebraic variety is an affine algebraic space V such that OV .V / is an affine

algebra.

TANGENT SPACES; NONSINGULAR POINTS; REGULAR POINTS

Let kŒ"� be the ring of dual numbers (so "2 D 0). For an affine algebraic space V over k,
the map " 7! 0WkŒ"�! k defines a map

V.kŒ"�/! V.k/.

For any a 2 V.k/, we define the tangent space to V at a, Tgta.V /, to be the inverse image
of a under this map.

PROPOSITION 17.10. There is a canonical isomorphism

Tgta.V /' Homk-lin.ma=m
2
a;k/:

This follows from the next two lemmas.
Let V D V.a/ � kn, and assume that the origin o lies on V . Let a` be the ideal gen-

erated by the linear terms f` of the f 2 a. By definition, To.V / D V.a`/. Let A` D
kŒX1; : : : ;Xn�=a`, and let m be the maximal ideal in kŒV � consisting of the functions zero
at o; thus mD .x1; : : : ;xn/.

LEMMA 17.11. There is a canonical isomorphism

Homk-lin.m=m
2;k/

'
�! Homk-alg.A`;k/:
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PROOF. Let n D .X1; : : : ;Xn/ be the maximal ideal at the origin in kŒX1; : : : ;Xn�. Then
m=m2 ' n=.n2Ca/, and as f �f` 2 n2 for every f 2 a, it follows that m=m2 ' n=.n2C

a`/. Let f1;`; : : : ;fr;` be a basis for the vector space a`. From linear algebra we know that
there are n� r linear forms Xi1 ; : : : ;Xin�r

forming with the fi;` a basis for the linear forms
on kn. Then Xi1Cm2; : : : ;Xin�r

Cm2 form a basis for m=m2 as a k-vector space, and the
lemma shows that A` ' kŒXi1 : : : ;Xin�r

�. A homomorphism ˛WA`! k of k-algebras is
determined by its values ˛.Xi1/; : : : ;˛.Xin�r

/, and they can be arbitrarily given. Since the
k-linear maps m=m2! k have a similar description, the first isomorphism is now obvious.2

LEMMA 17.12. There is a canonical isomorphism

Homk-alg.A`;k/
'
�! To.V /:

PROOF. To give a k-algebra homomorphism A` ! k is the same as to give an element
.a1; : : : ;an/ 2 k

n such that f .a1; : : : ;an/D 0 for all f 2 A`, which is the same as to give
an element of TP .V /. 2

REMARK 17.13. Let V D SpmkŒX1; : : : ;Xn�=.f1; : : : ;fm/, and let .a1; : : : ;an/ 2 V.k/.
Then Tgta.V / is canonically isomorphic to the subspace of kn defined by the equations

@fi

@X1

ˇ̌̌̌
a

X1C�� �C
@fi

@Xn

ˇ̌̌̌
a

Xn, i D 1; : : : ;m:

When a is the origin, this is a restatement of (17.12), and the general case can be deduced
from this case by a translation.

The dimension of an affine algebraic space V is the Krull dimension of O.V /. If V
is irreducible, then O.V /=N is an integral domain, and the dimension of V is equal to the
transcendence degree over k of the field of fractions of O.V /=N; moreover, all maximal
ideals have height dimV (12.11).

PROPOSITION 17.14. Let V be an affine algebraic space over k, and let a 2 V.k/. Then
dimTgta.V /� dimV , and equality holds if and only if O.V /ma

is regular.

PROOF. Let n be the maximal ideal of the local ring A D O.V /ma
. Then A=n D k, and

dimk n=n2 � ht.n/, with equality if and only if A is regular. As ma=m
2
a ' n=n2 (6.7),

Proposition 17.10 implies that dimTgta.V / D dimk n=n2, from which the statement fol-
lows. 2

An a 2V.k/ is nonsingular if dimTgta.V /D dimV ; otherwise it is singular. An affine
algebraic space V is regular if all of its local rings O.V /m are regular, and it is smooth if
Vkal is regular. Thus an algebraic space over an algebraically closed field is smooth if and
only if all a 2 V.k/ are nonsingular. A smooth algebraic space is regular, but the converse
is false. For example, let k0 be a finite inseparable extension of k, and let V be a smooth
algebraic space over k0; when we regard V is an algebraic space over k, it is regular, but
not smooth.

PROPOSITION 17.15. A smooth affine algebraic space V is a regular affine algebraic vari-
ety; in particular,O.V / is an integral domain. Conversely, if k is perfect, then every regular
affine algebraic space over k is smooth.
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PROOF. Let A D O.V /. If V is smooth, then all the local the local rings of kal˝k A

are regular; in particular, they are integral domains (16.3). This implies that kal˝k A is
reduced, because it implies that the annihilator of any nilpotent element is not contained in
any maximal ideal, and so is the whole ring. Therefore A is an affine algebra, and so V is
an affine algebraic variety. Let m be a maximal ideal in A, and let nD m.kal˝k A/. Then
n is a maximal ideal of kal˝k A, and

n=n2 ' kal
˝ .m=m2/;

and so dimk.m=m2/D dimkal.n=n2/. This implies that Am is regular. In particular, Am is
an integral domain for all maximal ideals of A, which implies that A is integral domain,
because it implies that the annihilator of any zero-divisor is not contained in any maximal
ideal. Conversely, if V is regular, A is an integral domain, and hence an affine k-algebra if
k is perfect. 2

PROPOSITION 17.16. Let V be an irreducible affine algebraic space over an algebraically
closed field k, and identify V with V.k/. The set of nonsingular points of V is open, and it
is nonempty if V is an algebraic variety.

PROOF. We may suppose V D SpmkŒX1; : : : ;Xn�=.f1; : : : ;fm/. Let d D dimV . Accord-
ing to Remark 17.13, the set of singular points of V is the zero-set of the ideal generated by
the .n�d/� .n�d/ minors of the matrix

Jac.f1; : : : ;fm/.a/D

0BB@
@f1

@X1
.a/ � � � @f1

@Xn
.a/

:::
:::

@fm

@X1
.a/ � � � @fm

@Xn
.a/

1CCA ;
which is closed. Therefore the set of nonsingular points is open.

Now suppose that V is an algebraic variety. The next two lemmas allow us to sup-
pose that V D kŒX1; : : : ;Xn�=.f / where f is a nonconstant irreducible polynomial. Then
dimV D n�1, and so we have to show that the equations

f D 0;
@f

@X1
D 0; � � � ;

@f

@Xn
D 0

have no common zero. If @f
@X1

is identically zero on V.f /, then f divides it. But @f
@X1

has

degree less than that of f and f is irreducible, and so this implies that @f
@X1
D 0. Therefore

f is a polynomial in X2; : : : ;Xn (characteristic zero) or Xp1 ;X2; : : : ;Xn (characteristic p).
Continuing in this fashion, we find that either f is constant (characteristic zero) or a pth
power (characteristic p), which contradict the hypothesis. 2

Let V be an irreducible affine algebraic variety. Then O.V / is an integral domain, and
we let k.V / denote its field of fractions. Two irreducible affine algebraic varieties V and
W are said to be birationally equivalent if k.V /� k.W /.

LEMMA 17.17. Two irreducible varieties V and W are birationally equivalent if and only
if there are open subsets U and U 0 of V and W respectively such that U � U 0.
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PROOF. Assume that V andW are birationally equivalent. We may suppose thatADO.V /
and B D O.W / have a common field of fractions K. Write B D kŒx1; : : : ;xn�. Then
xi D ai=bi , ai ;bi 2 A, and B � Ab1:::br

. Since Spm.Ab1:::br
/ is a basic open subvariety

of V , we may replace A with Ab1:::br
, and suppose that B � A. The same argument shows

that there exists a d 2 B � A such A� Bd . Now

B � A� Bd H) Bd � Ad � .Bd /d D Bd ;

and so Ad D Bd . This shows that the open subvarieties D.b/ � V and D.b/ � W are
isomorphic. This proves the “only if” part, and the “if” part is obvious. 2

LEMMA 17.18. Every irreducible algebraic variety of dimension d is birationally equiva-
lent to a hypersurface in AdC1.

PROOF. Let V be an irreducible variety of dimension d . According to FT 8.21, there exist
algebraically independent elements x1; : : : ;xd 2 k.V / such that k.V / is finite and separable
over k.x1; : : : ;xd /. By the primitive element theorem (FT 5.1), k.V /D k.x1; : : : ;xd ;xdC1/
for some xdC1. Let f 2 kŒX1; : : : ;XdC1� be an irreducible polynomial satisfied by the xi ,
and let H be the hypersurface f D 0. Then k.V /� k.H/. 2

ALGEBRAIC SCHEMES, SPACES, AND VARIETIES

An algebraic space over k is a locally ringed space that admits a finite open covering by
affine algebraic spaces. An algebraic variety over k is a locally ringed space .X;OX /
that admits a finite open covering by affine algebraic spaces and satisfies the following
separation condition: for every pair '1;'2WZ ! X of locally ringed space with Z and
affine algebraic variety, the subset of Z on which '1 and '2 agree is closed.

Let .X;OX / be an algebraic scheme over k, i.e., a scheme of finite type over k, and let
X 0 be the subset of X obtained by omitting all the nonclosed points. Then .X 0;OX jX 0/ is
an algebraic space over k. Conversely, let .X;OX / be an algebraic space over k; for each
open subset U of X , let U 0 be the set of irreducible closed subsets of U , and regard U 0 as a
subset of X 0 in the obvious way; then .X 0;OX 0/ where OX 0.U 0/DOX .U / is an algebraic
scheme over k.
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stalk, 58
subring, 2
subset

multiplicative, 19
symbolic power, 50
system

direct, 23

tensor product
of algebras, 26
of modules, 24

theorem
Chinese remainder, 6
generic flatness, 31
Hilbert basis, 9
Krull intersection, 11
Krull’s principal ideal, 51
Noether normalization, 17
Nullstellensatz, 32
strong Nullstellensatz, 33

topological space
irreducible , 37
noetherian, 37
quasicompact, 37

topology
Zariski, 34

unit, 1

variety
affine algebraic, 59
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