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Abstract

These notes prove the basic theorems in commutative algebra required for algebraic
geometry and algebraic groups. They assume only a knowledge of the algebra usually
taught in advanced undergraduate or first-year graduate courses.
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Notations and conventions

Our convention is that rings have identity elements,1 and homomorphisms of rings respect
the identity elements. A unit of a ring is an element admitting an inverse. The units of a ring
A form a group, which we denote by2 A�. Throughout “ring” means “commutative ring”.
Following Bourbaki, we let ND f0;1;2; : : :g. For a field k, kal denotes an algebraic closure
of k.

X � Y X is a subset of Y (not necessarily proper).
X

def
D Y X is defined to be Y , or equals Y by definition.

X � Y X is isomorphic to Y .
X ' Y X and Y are canonically isomorphic

(or there is a given or unique isomorphism).
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1 Rings and algebras
Let A be a ring. A subring of A is a subset that contains 1A and is closed under addition,
multiplication, and the formation of negatives. An A-algebra is a ring B together with a
homomorphism iB WA! B . A homomorphism of A-algebras B! C is a homomorphism
of rings 'WB! C such that '.iB.a//D iC .a/ for all a 2 A.

Elements x1; : : : ;xn of an A-algebra B are said to generate it if every element of B can
be expressed as a polynomial in the xi with coefficients in iB.A/, i.e., if the homomorphism
of A-algebras AŒX1; : : : ;Xn�! B acting as iB on A and sending Xi to xi is surjective. We
then write B D .iBA/Œx1; : : : ;xn�.

A ring homomorphism A! B is of finite type, and B is a finitely generated A-algebra,
if B is generated by a finite set of elements as an A-algebra.

A ring homomorphism A! B is finite, and B is a finite3 A-algebra, if B is finitely
generated as an A-module. If A! B and B! C are finite ring homomorphisms, then so
also is their composite A! C .

Let k be a field, and let A be a k-algebra. When 1A ¤ 0, the map k! A is injective,
and we can identify k with its image, i.e., we can regard k as a subring of A. When 1A D 0,
the ring A is the zero ring f0g.

Let AŒX� be the ring of polynomials in the symbol X with coefficients in A. If A is an
integral domain, then deg.fg/D deg.f /Cdeg.g/, and so AŒX� is also an integral domain;
moreover, AŒX�� D A�.

1An element e of a ring A is an identity element if eaD aD ae for all elements a of the ring. It is usually
denoted 1A or just 1. Some authors call this a unit element, but then an element can be a unit without being a
unit element. Worse, a unit need not be the unit.

2This notation differs from that of Bourbaki, who writes A� for the multiplicative monoid AXf0g and A�

for the group of units. We shall rarely need the former, and � is overused.
3This is Bourbaki’s terminology (AC V �1, 1). Finite homomorphisms of rings correspond to finite maps of

varieties and schemes. Some other authors say “module-finite”.
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Let A be an algebra over a field k. If A is an integral domain and finite as a k-algebra,
then it is a field because, for each nonzero a 2 A, the k-linear map x 7! axWA! A is
injective, and hence is surjective, which shows that a has an inverse. If A is an integral
domain and each element of A is algebraic over k, then for each a 2 A, kŒa� is an integral
domain finite over k, and hence contains an inverse of a; again A is a field.

Products and idempotents

An element e of a ring A is idempotent if e2D e. For example, 0 and 1 are both idempotents
— they are called the trivial idempotents. Idempotents e1; : : : ; en are orthogonal if eiej D 0
for i ¤ j . Any sum of orthogonal idempotents is again idempotent. A set fe1; : : : ; eng of
orthogonal idempotents is complete if e1C�� �C en D 1. Any set of orthogonal idempotents
fe1; : : : ; eng can be made into a complete set of orthogonal idempotents by adding the
idempotent e D 1� .e1C�� �C en/.

If AD A1� � � ��An (direct product of rings), then the elements

ei D .0; : : : ;
i

1; : : : ;0/; 1� i � n;

form a complete set of orthogonal idempotents in A. Conversely, if fe1; : : : ; eng is a com-
plete set of orthogonal idempotents in A, then Aei becomes a ring4 with the addition and
multiplication induced by that of A, and A' Ae1� � � ��Aen.

2 Ideals
Let A be a ring. An ideal a in A is a subset such that
˘ a is a subgroup of A regarded as a group under addition;
˘ a 2 a, r 2 A) ra 2 a:

The ideal generated by a subset S of A is the intersection of all ideals a containing S — it
is easy to verify that this is in fact an ideal, and that it consists of all finite sums of the formP
risi with ri 2A, si 2 S . The ideal generated by the empty set is the zero ideal f0g. When

S D fa;b; : : :g, we write .a;b; : : :/ for the ideal it generates.
An ideal is principal if it is generated by a single element. Such an ideal .a/ is proper

if and only a is not a unit. Thus a ring A is a field if and only if 1A ¤ 0 and A contains no
nonzero proper ideals.

Let a and b be ideals in A. The set faCb j a 2 a; b 2 bg is an ideal, denoted aCb. The
ideal generated by fab j a 2 a; b 2 bg is denoted by ab. Clearly ab consists of all finite
sums

P
aibi with ai 2 a and bi 2 b, and if a D .a1; : : : ;am/ and b D .b1; : : : ;bn/, then

abD .a1b1; : : : ;aibj ; : : : ;ambn/. Note that ab� aAD a and ab� AbD b, and so

ab� a\b: (1)

The kernel of a homomorphism A! B is an ideal in A. Conversely, for every ideal a in
a ring A, the set of cosets of a in A forms a ring A=a, and a 7! aCa is a homomorphism
'WA! A=a whose kernel is a. There is a one-to-one correspondence

fideals of A containing ag
b7!'.b/
 �����!
'�1.b/ [b

fideals of A=ag: (2)

4But Aei is not a subring of A if n¤ 1 because its identity element is ei ¤ 1A: However, the map a 7!
aei WA! Aei realizes Aei as a quotient of A.
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For every ideal b of A, '�1'.b/D aCb.
The ideals of A�B are all of the form a� b with a and b ideals in A and B . To see

this, note that if c is an ideal in A�B and .a;b/ 2 c, then .a;0/ D .1;0/.a;b/ 2 c and
.0;b/D .0;1/.a;b/ 2 c. Therefore, cD a�b with

aD fa j .a;0/ 2 cg; bD fb j .0;b/ 2 cg:

An ideal p in A is prime if p¤ A and ab 2 p) a 2 p or b 2 p. Thus p is prime if and
only if the quotient ring A=p is nonzero and has the property that

ab D 0; b ¤ 0) aD 0;

i.e., A=p is an integral domain. Note that if p is prime and a1 � � �an 2 p, then at least one
of the ai 2 p (because either a1 2 p or a2 � � �an 2 p; if the latter, then either a2 2 p or
a3 � � �an 2 p; etc.).

An ideal m in A is maximal if it is a maximal element of the set of proper ideals in A.
Therefore an ideal m is maximal if and only if the quotient ring A=m is nonzero and has no
proper nonzero ideals (by (2)), and so is a field. Note that

m maximal H) m prime.

A multiplicative subset of a ring A is a subset S with the property:

1 2 S; a;b 2 S H) ab 2 S:

For example, the following are multiplicative subsets:
the multiplicative subset f1;f; : : : ;f r ; : : :g generated by an element f of A;
the complement of a prime ideal (or of a union of prime ideals);
1Ca

def
D f1Ca j a 2 ag for any ideal a of A.

PROPOSITION 2.1. Let S be a subset of a ring A, and let a be an ideal disjoint from S .
The set of ideals in A containing a and disjoint from S contains maximal elements (i.e., an
element not properly contained in any other ideal in the set). If S is multiplicative, then
every such maximal element is prime.

PROOF. The set ˙ of ideals containing a and disjoint from S is nonempty (it contains a).
If A is noetherian (see �3 below), ˙ automatically contains maximal elements. Otherwise,
we apply Zorn’s lemma. Let b1 � b2 � �� � be a chain of ideals in ˙ , and let bD

S
bi .

Then b 2˙ , because otherwise some element of S lies in b, and hence in some bi , which
contradicts the definition of ˙ . Therefore b is an upper bound for the chain. As every chain
in ˙ has an upper bound, Zorn’s lemma implies that ˙ has a maximal element.

Assume that S is a multiplicative subset of A, and let c be maximal in ˙ . Let bb0 2 c. If
b is not in c, then cC .b/ properly contains c, and so it is not in ˙ . Therefore there exist an
f 2 S \ .cC .b//, say, f D cCab with c 2 c. Similarly, if b0 is not in c, then there exists
an f 0 2 S such that f 0 D c0Ca0b0 with c0 2 c. Now

ff 0 D cc0Cabc0Ca0b0cCaa0bb0 2 c;

which contradicts
ff 0 2 S: 2
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COROLLARY 2.2. Every proper ideal in a ring is contained in a maximal ideal.

PROOF. For a proper ideal a of A, apply the proposition with S D f1g. 2

ASIDE 2.3. The proof of (2.1) is one of many in commutative algebra in which an ideal, maximal
with respect to some property, is shown to be prime. For a general examination of this phenomenon,
see Lam, T. Y. and Reyes, Manuel L., A prime ideal principle in commutative algebra. J. Algebra
319 (2008), no. 7, 3006–3027.

The radical rad.a/ of an ideal a is

ff 2 A j f r 2 a, some r 2 N, r > 0g:

An ideal a is said to be radical if it equals its radical. Thus a is radical if and only if the
quotient ringA=a is reduced, i.e., without nonzero nilpotent elements (elements some power
of which is zero). Since integral domains are reduced, prime ideals (a fortiori maximal
ideals) are radical. The radical of .0/ consists of the nilpotent elements of A — it is called
the nilradical of A.

If b$ b0 under the one-to-one correspondence (2), then A=b' .A=a/=b0, and so b is
prime (resp. maximal, radical) if and only if b0 is prime (resp. maximal, radical).

PROPOSITION 2.4. Let a be an ideal in a ring A.
(a) The radical of a is an ideal.
(b) rad.rad.a//D rad.a/.

PROOF. (a) If a 2 rad.a/, then clearly fa 2 rad.a/ for all f 2 A. Suppose a;b 2 rad.a/,
with say ar 2 a and bs 2 a. When we expand .aCb/rCs using the binomial theorem, we
find that every term has a factor ar or bs , and so lies in a.

(b) If ar 2 rad.a/, then ars D .ar/s 2 a for some s > 0, and so a 2 rad.a/. 2

Note that (b) of the proposition shows that rad.a/ is radical, and so is the smallest radical
ideal containing a.

If a and b are radical, then a\b is radical, but aCb need not be: consider, for example,
aD .X2�Y / and bD .X2CY /; they are both prime ideals in kŒX;Y � (by 4.7 below), but
aCbD .X2;Y /, which contains X2 but not X .

PROPOSITION 2.5. The radical of an ideal is equal to the intersection of the prime ideals
containing it. In particular, the nilradical of a ring A is equal to the intersection of the prime
ideals of A.

PROOF. If aD A, then the set of prime ideals containing it is empty, and so the intersection
is A. Thus we may suppose that a is a proper ideal of A. Then rad.a/ �

T
p�a p because

prime ideals are radical and rad.a/ is the smallest radical ideal containing a.
Conversely, suppose that f … rad.a/. According to Proposition 2.1, there exists a

prime ideal containing a and disjoint from the multiplicative subset f1;f; : : :g. Therefore
f …

T
p�a p. 2

DEFINITION 2.6. The Jacobson radical J of a ring is the intersection of the maximal ideals
of the ring:

J.A/D
\
fm jm maximal in Ag:
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A ring A is local if it has exactly one maximal ideal. For such a ring, the Jacobson
radical is m.

PROPOSITION 2.7. An element c of A is in the Jacobson radical of A if and only if 1�ac
is a unit for all a 2 A.

PROOF. We prove the contrapositive: there exists a maximal ideal m such that c …m if and
only if there exists an a 2 A such that 1�ac is not a unit.
(: As 1�ac is not a unit, it lies in some maximal ideal m of A (by 2.2). Then c …m,

because otherwise 1D .1�ac/Cac 2m.
): Suppose that c is not in the maximal ideal m. Then mC .c/DA, and so 1DmCac

for some m 2m and a 2 A. Now 1�ac 2m, and so it is not a unit. 2

PROPOSITION 2.8. Let p1; : : : ;pr , r � 1, be ideals in A with p2; : : : ;pr prime, and let a be
an ideal in A. Then

a�
[

1�i�r
pi H) a� pi for some i:

PROOF. We prove the contrapositive:

if the ideal a in not contained in any of the ideals pi , then it is not contained in
their union.

For r D 1, there is nothing to prove, and so we may assume that r > 1 and (inductively) that
the statement is true for r�1. As a is not contained in any of the ideals p1; : : : ;pr , for each i ,
there exists an ai in a not in the union of the ideals p1; : : : ;pi�1;piC1; : : : ;pr . If there exists
an i such that ai does not lie in pi , then that ai 2 aXp1[ : : :[pr , and the proof is complete.
Thus suppose that every ai 2 pi , and consider

aD a1 � � �ar�1Car .

Because pr is prime and none of the elements a1; : : : ;ar�1 lies in pr , their product does not
lie in pr ; however, ar 2 pr , and so a … pr . Next consider a prime pi with i � r �1. In this
case a1 � � �ar�1 2 pi because the product involves ai , but ar … pi , and so again a … pi . Now
a 2 aXp1[ : : :[pr , and so a is not contained in the union of the pi . 2

Extension and contraction of ideals
Let 'WA! B be a homomorphism of rings.

NOTATION 2.9. For an ideal b of B , '�1.b/ is an ideal in A, called the contraction of b to
A, which is often denoted bc . For an ideal a of A, the ideal in B generated by '.a/ is called
the extension of a to B , and is often denoted ae. When ' is surjective, '.a/ is already an
ideal, and when A is a subring of B , bc D b\A.

2.10. There are the following equalities (a;a0 ideals in A; b;b0 ideals in B):

.aCa0/e D aeCa0e; .aa0/e D aea0e; .b\b0/c D bc \b0c ; rad.b/c D rad.bc/:
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2.11. Obviously (i) a� aec and (ii) bce � b (a an ideal of A; b an ideal of B). On applying
e to (i), we find that ae � aece , and (ii) with b replaced by ae shows that aece � ae; therefore
ae D aece. Similarly, bcec D bc : It follows that extension and contraction define inverse
bijections between the set of contracted ideals in A and the set of extended ideals in B:

fbc � A j b an ideal in Bg
e
�*)�
c
fae � B j a an ideal in Ag

Note that, for every ideal b in B , the map A=bc! B=b is injective, and so bc is prime
(resp. radical) if b is prime (resp. radical).

The Chinese remainder theorem
Recall the classical form of the theorem: let d1; :::;dn be integers, relatively prime in pairs;
then for any integers x1; :::;xn, the congruences

x � xi mod di

have a simultaneous solution x 2 Z; moreover, if x is one solution, then the other solutions
are the integers of the form xCmd with m 2 Z and d D

Q
di :

We want to translate this in terms of ideals. Integers m and n are relatively prime if and
only if .m;n/D Z, i.e., if and only if .m/C .n/D Z. This suggests defining ideals a and b
in a ring A to be relatively prime (or coprime) if aCbD A.

If m1; :::;mk are integers, then
T
.mi /D .m/ where m is the least common multiple of

the mi . Thus
T
.mi /� .

Q
mi /, which equals

Q
.mi /. If the mi are relatively prime in pairs,

then mD
Q
mi , and so we have

T
.mi /D

Q
.mi /. Note that in general,

a1 �a2 � � �an � a1\a2\ :::\an;

but the two ideals need not be equal.
These remarks suggest the following statement.

THEOREM 2.12 (CHINESE REMAINDER THEOREM). Let a1; : : : ;an be ideals in a ring A.
If ai is relatively prime to aj whenever i ¤ j , then the map

a 7! .: : : ;aCai ; : : :/WA! A=a1� � � ��A=an (3)

is surjective with kernel
Q

ai D
T

ai .

PROOF. Suppose first that nD 2. As a1Ca2 DA, there exist ai 2 ai such that a1Ca2 D 1.
Then a1x2Ca2x1 maps to .x1 moda1;x2 moda2/, which shows that (3) is surjective.

For each i , there exist elements ai 2 a1 and bi 2 ai such that

ai Cbi D 1, all i � 2:

The product
Q
i�2.ai Cbi /D 1, and lies in a1C

Q
i�2 ai , and so

a1C
Y
i�2

ai D A:

We can now apply the theorem in the case nD 2 to obtain an element y1 of A such that

y1 � 1 mod a1; y1 � 0 mod
Y
i�2

ai :
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These conditions imply

y1 � 1 mod a1; y1 � 0 mod aj , all j > 1:

Similarly, there exist elements y2; :::;yn such that

yi � 1 mod ai ; yi � 0 mod aj for j ¤ i:

The element x D
P
xiyi maps to .x1 moda1; : : : ;xn modan/, which shows that (3) is

surjective.
It remains to prove that

T
ai D

Q
ai . Obviously

Q
ai �

T
ai . Suppose first that nD 2,

and let a1Ca2 D 1, as before. For c 2 a1\a2, we have

c D a1cCa2c 2 a1 �a2

which proves that a1\a2 D a1a2. We complete the proof by induction. This allows us to
assume that

Q
i�2 ai D

T
i�2 ai . We showed above that a1 and

Q
i�2 ai are relatively prime,

and so
a1 � .

Y
i�2

ai /D a1\ .
Y
i�2

ai /

by the nD 2 case. Now a1 � .
Q
i�2 ai /D

Q
i�1 ai and a1\ .

Q
i�2 ai /D a1\ .

T
i�2 ai /DT

i�1 ai , which completes the proof. 2

3 Noetherian rings
PROPOSITION 3.1. The following three conditions on a ring A are equivalent:

(a) every ideal in A is finitely generated;
(b) every ascending chain of ideals a1 � a2 � �� � eventually becomes constant, i.e., for

some m, am D amC1 D �� � :
(c) every nonempty set of ideals in A has a maximal element.

PROOF. (a)) (b): If a1 � a2 � �� � is an ascending chain, then aD
S

ai is an ideal, and
hence has a finite set fa1; : : : ;ang of generators. For some m, all the ai belong am, and then

am D amC1 D �� � D a:

(b)) (c): Let ˙ be a nonempty set of ideals in A. If ˙ has no maximal element, then
the axiom of dependent choice5 shows that there exists a strictly ascending sequence of
ideals in ˙ , contradicting (b).

(c)) (a): Let a be an ideal, and let ˙ be the set of finitely generated ideals contained
in a. Then S is nonempty because it contains the zero ideal, and so it contains a maximal
element cD .a1; : : : ;ar/. If c¤ a, then there exists an element a 2 aX c, and .a1; : : : ;ar ;a/
will be a finitely generated ideal in a properly containing c. This contradicts the definition of
c. 2

5This says: Let R be a binary relation on a nonempty set X , and suppose that, for each a in X , there exists
a b such that aRb; then there exists a sequence .an/n2N of elements of X such that anRanC1 for all n. It is
strictly stronger than the axiom of countable choice but weaker than the axiom of choice. See the Wikipedia.
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A ring A is noetherian if it satisfies the equivalent conditions of the proposition. For
example, fields and principal ideal domains are noetherian. On applying (c) to the set of all
proper ideals containing a fixed proper ideal, we see that every proper ideal in a noetherian
ring is contained in a maximal ideal. We saw in (2.3) that this is, in fact, true for every ring,
but the proof for non-noetherian rings requires Zorn’s lemma.

A quotient A=a of a noetherian ring A is noetherian, because the ideals in A=a are all of
the form b=a with b an ideal in A, and every set of generators for b generates b=a.

PROPOSITION 3.2. Let A be a ring. The following conditions on an A-module M are
equivalent:

(a) every submodule of M is finitely generated (in particular, M is finitely generated);
(b) every ascending chain of submodules M1 �M2 � �� � eventually becomes constant.
(c) every nonempty set of submodules of M has a maximal element.

PROOF. Essentially the same as that of (3.1). 2

An A-module M is noetherian if it satisfies the equivalent conditions of the proposition.
Let AA denote A regarded as a left A-module. Then the submodules of AA are exactly the
ideals in A, and so AA is noetherian (as an A-module) if and only if A is noetherian (as a
ring).

PROPOSITION 3.3. Let M be an A-module, and let N be a submodule of M . The module
M is noetherian if and if only both N and M=N are noetherian.

PROOF. ): An ascending chain of submodules in N or in M=N gives rise to an ascending
chain in M , and therefore becomes constant.
(: I claim that if M 0 �M 00 are submodules of M such that M 0\N DM 00\N and

M 0 and M 00 have the same image in M=N , then M 0 DM 00. To see this, let x 2M 00; the
second condition implies that there exists a y 2M 0 with the same image as x in M=N , i.e.,
such that x�y 2N . Then x�y 2M 00\N �M 0, and so x 2M 0.

Now consider an ascending chain of submodules of M . If M=N is Noetherian, the
image of the chain in M=N becomes stationary, and if N is Noetherian, the intersection of
the chain with N becomes stationary. Now the claim shows that the chain itself becomes
stationary. 2

More generally, consider an exact sequence

0!M 0!M !M 00! 0

of A-modules. The module M is noetherian if and only if M 0 and M 00 are both noetherian.
For example, a direct sum

M DM1˚M2

of A-modules is noetherian if and only if M1 and M2 are both noetherian (because 0!
M1!M !M2! 0 is exact).

PROPOSITION 3.4. Let A be a noetherian ring. Then every finitely generated A-module is
noetherian.

PROOF. If M is generated by a single element, then M � A=a for some ideal a in A, and
the statement is obvious. We argue by induction on the minimum number n of generators of
M . Since M contains a submodule N generated by n�1 elements such that the quotient
M=N is generated by a single element, the statement follows from (3.3). 2
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PROPOSITION 3.5. Every finitely generated module M over a noetherian ring A contains a
finite chain of submodules M �Mr � �� � �M1 � 0 such that each quotient Mi=Mi�1 is
isomorphic to A=pi for some prime ideal pi .

PROOF. The annihilator ann.x/ of an element x of M is fa 2 A j ax D 0g. It is an ideal in
A, which is proper if x ¤ 0. I claim that any ideal a that is maximal among the annihilators
of nonzero elements of A is prime. Suppose that aD ann.x/, and let ab 2 a, so that abxD 0.
Then a � .a/C a � ann.bx/. If b … a, then bx ¤ 0, and so aD ann.bx/ by maximality,
which implies that a 2 a.

We now prove the proposition. Note that, for every x 2 M , the submodule Ax of
M is isomorphic to A=ann.x/. Therefore, if M is nonzero, then it contains a submodule
M1 isomorphic to A=p1 for some prime ideal p1. Similarly, M=M1 contains a submodule
M2=M1 isomorphicA=p2 for some prime ideal p2, and so on. The chain 0�M1�M2� �� �

terminates because M is noetherian (by 3.4). 2

THEOREM 3.6 (HILBERT BASIS THEOREM). Every finitely generated algebra over a noethe-
rian ring is noetherian.

PROOF. Let A be noetherian. Since every finitely generated A-algebra is a quotient of a
polynomial algebra, it suffices to prove the theorem for AŒX1; : : : ;Xn�. Note that

AŒX1; : : : ;Xn�D AŒX1; : : : ;Xn�1�ŒXn�: (4)

This simply says that every polynomial f in n symbolsX1; : : : ;Xn can be expressed uniquely
as a polynomial in Xn with coefficients in kŒX1; : : : ;Xn�1�,

f .X1; : : : ;Xn/D a0.X1; : : : ;Xn�1/X
r
nC�� �Car.X1; : : : ;Xn�1/:

Thus an induction argument shows that it suffices to prove the theorem for AŒX�.
Recall that for a polynomial

f .X/D c0X
r
C c1X

r�1
C�� �C cr ; ci 2 A; c0 ¤ 0;

c0 is the leading coefficient of f .
Let a be an ideal in AŒX�, and let ci be the set of elements of A that occur as the leading

coefficient of a polynomial in a of degree i (we also include 0). Then ci is obviously an
ideal in A, and ci�1 � ci because, if cX i�1C�� � 2 a, then so also does X.cX i�1C�� �/D
cX i C�� � . As A is noetherian, the sequence of ideals

c1 � c2 � �� � � ci � �� �

eventually becomes constant, say, cd D cdC1 D : : : (and then cd contains the leading coeffi-
cients of all polynomials in a).

For each i � d , choose a finite generating set fci1; ci2; : : :g for ci , and for each .i;j /,
choose a polynomial fij 2 a of degree i with leading coefficient cij . We shall show that the
fij ’s generate a.

Let f 2 a; we have to show that f 2 .fij /. Suppose first that f has degree s � d . Then
f D cXsC�� � with c 2 cd , and so

c D
X

j
aj cdj ; some aj 2 A.
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Now
f �

X
j
ajfdjX

s�d

is either zero and f 2 .fij /, or it has degree < deg.f /. In the second case, we repeat the
argument, until we obtain a polynomial f of degree s < d that differs from the original
polynomial by an element of .fij /. By a similar argument, we then construct elements
aj 2 A such that

f �
X

j
ajfsj

is either zero or has degree < deg.f /. In the second case, we repeat the argument, until we
obtain zero. 2

NAKAYAMA’S LEMMA 3.7. Let a be an ideal in a ring A contained in all maximal ideals
of A, and let M be a finitely generated A-module.

(a) If M D aM , then M D 0:
(b) If N is a submodule of M such that M DN CaM , then M DN .

PROOF. (a) Suppose M ¤ 0. Choose a minimal set of generators fe1; : : : ; eng for M , n� 1,
and write

e1 D a1e1C�� �Canen, ai 2 a:

Then
.1�a1/e1 D a2e2C�� �Canen

and, as 1�a1 lies in no maximal ideal, it is a unit. Therefore e2; : : : ; en generate M , which
contradicts the minimality of the original set.

(b) The hypothesis implies that M=N D a.M=N/, and so M=N D 0. 2

Recall (2.6) that the Jacobson radical J of A is the intersection of the maximal ideals of
A, and so the condition on a is that a � J. In particular, the lemma holds with aD J; for
example, when A is a local ring, it holds with a the maximal ideal in A.

COROLLARY 3.8. Let A be a local ring with maximal ideal m and residue field k def
D A=m,

and letM be a finitely generated module over A. The action of A onM=mM factors through
k, and elements a1; : : : ;an of M generate it as an A-module if and only if

a1CmM;: : : ;anCmM

span M=mM as k-vector space.

PROOF. If a1; : : : ;an generate M , then it is obvious that their images generate the vector
space M=mM . Conversely, suppose that a1CmM;: : : ;anCmM span M=mM , and let N
be the submodule of M generated by a1; : : : ;an. The composite N !M !M=mM is
surjective, and so M DN CmM . Now Nakayama’s lemma shows that M DN . 2

COROLLARY 3.9. Let A be a noetherian local ring with maximal ideal m. Elements
a1; : : : ;an of m generate m as an ideal if and only if a1Cm2; : : : ;anCm2 span m=m2

as a vector space over k def
D A=m. In particular, the minimum number of generators for the

maximal ideal is equal to the dimension of the vector space m=m2.

PROOF. Because A is noetherian, m is finitely generated, and we can apply the preceding
corollary with M Dm. 2
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EXAMPLE 3.10. Nakayama’s lemma may fail if M is not finitely generated. For example,
let Z.p/D fmn j p does not divide ng and letM DQ. Then Z.p/ is a local ring with maximal
ideal .p/ (see �6 below) and M D pM but M ¤ 0.

DEFINITION 3.11. An algebra A over a ring R is finitely presented if it is isomorphic to
the quotient of a polynomial ring kŒX1; : : : ;Xn� by a finitely generated ideal.

The Hilbert basis theorem says that, when R is noetherian, every finitely generated
R-algebra is finitely presented.

DEFINITION 3.12. Let A be a noetherian ring.
(a) The height ht.p/ of a prime ideal p in A is the greatest length d of a chain of distinct

prime ideals
pD pd � pd�1 � �� � � p0: (5)

(b) The (Krull) dimension of A is supfht.p/ j p� A; p primeg.

Thus, the Krull dimension of a ring A is the supremum of the lengths of chains of
prime ideals in A (the length of a chain is the number of gaps, so the length of (5) is d ).
For example, a field has Krull dimension 0, and conversely an integral domain of Krull
dimension 0 is a field. The height of every nonzero prime ideal in a principal ideal domain
is 1, and so such a ring has Krull dimension 1 (provided it is not a field). It is sometimes
convenient to define the Krull dimension of the zero ring to be �1.

We shall see in �16 that the height of every prime ideal in a noetherian ring is finite.
However, the Krull dimension of the ring may be infinite, because it may contain a sequence
p1, p2, p3, . . . of prime ideals such that ht.pi / tends to infinity (see Krull 1938 or Nagata
1962, p.203,6 for examples).

LEMMA 3.13. In a noetherian ring, every set of generators for an ideal contains a finite
generating set.

PROOF. Let S be a set of generators for an ideal a in a noetherian ring A. An ideal maximal
in the set of ideals generated by finite subsets of S must contain every element of S (otherwise
it wouldn’t be maximal), and so equals a. 2

THEOREM 3.14 (KRULL INTERSECTION THEOREM). Let a be an ideal in a noetherian
ring A. If a is contained in all maximal ideals of A, then

T
n�1 a

n D f0g:

PROOF. We shall show that, for every ideal a in a noetherian ring,\
n�1

an D a �
\

n�1
an: (6)

When a is contained in all maximal ideals of A, Nakayama’s lemma shows that
T
n�1 a

n is
zero.

Let a1; : : : ;ar generate a. Then an consists of finite sumsX
i1C���CirDn

ci1���ira
i1
1 � � �a

ir
r ; ci1���ir 2 A:

6Nagata’s example is the following. Let ND I1 t I2 t : : : be a partition of N into finite sets with strictly
increasing cardinality. Let AD kŒX0;X1; : : :�, and let pi be the prime ideal in A generated by the Xj ’s with
j in Ii . Let S be the multiplicative set AX

S
pi . Then S�1A is noetherian and regular, and the prime ideal

S�1pi has height jIi j.
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In other words, an consists of the elements of A of the form g.a1; : : : ;ar/ for some ho-
mogeneous polynomial g.X1; : : : ;Xr/ 2 AŒX1; : : : ;Xr � of degree n. Let Sm be the set of
homogeneous polynomials f of degree m such that f .a1; : : : ;ar/ 2

T
n�1 a

n, and let c be
the ideal in AŒX1; : : : ;Xr � generated by all the Sm. According to the lemma, there exists
a finite set ff1; : : : ;fsg of elements of

S
mSm that generates c. Let di D degfi , and let

d Dmaxdi .
Let b 2

T
n�1 a

n; then b 2 adC1, and so b D f .a1; : : : ;ar/ for some homogeneous
polynomial f of degree d C1. By definition, f 2 SdC1 � a, and so

f D g1f1C�� �Cgsfs

for some gi 2 AŒX1; : : : ;Xn�. As f and the fi are homogeneous, we can omit from each gi
all terms not of degree degf �degfi , since these terms cancel out. In other words, we may
choose the gi to be homogeneous of degree degf �degfi D d C1�di > 0. In particular,
the constant term of gi is zero, and so gi .a1; : : : ;ar/ 2 a. Now

b D f .a1; : : : ;ar/D
X

i
gi .a1; : : : ;ar/ �fi .a1; : : : ;ar/ 2 a �

\
n
an;

which completes the proof of (6). 2

The equality (6) can also be proved using primary decompositions — see (14.15).

PROPOSITION 3.15. In a noetherian ring, every ideal contains a power of its radical; in
particular, some power of the nilradical of the ring is zero.

PROOF. Let a1; : : : ;an generate rad.a/. For each i , some power of ai , say ari

i , lies in a.
Then every term of the expansion of

.c1a1C�� �C cnan/
r1C���Crn ; ci 2 A;

has a factor of the form a
ri

i for some i , and so lies in a. 2

NOTES. (a) In a noetherian ring, every ideal is finitely generated, but there is little that one can say
in general about the number of generators required. For example, in kŒX� every ideal is generated by
a single element, but in kŒX;Y � the ideal .X;Y /n requires at least nC1 generators.

(b) The following example shows that the Krull intersection theorem fails for nonnoetherian
rings. Let A be the ring of germs of C1 functions at 0 on the real line. Then A is a local ring with
maximal ideal m equal to the set of germs zero at 0. Then

T
n�1m

n consists of all germs whose

derivatives at zero are all zero. Therefore it contains e�1=x
2
. [A germ of a function at 0 is represented

by a function f on an open neighbourhood U of 0. Two pairs .f;U / and .f 0;U 0/ represent the same
germ if f and f 0 agree on some neighbourhood of 0 in U \U 0.]

4 Unique factorization
Let A be an integral domain, and let a be an element of A that is neither zero nor a unit.
Then a is said to be irreducible if it admits only trivial factorizations, i.e.,

aD bc H) b or c is a unit.

The element a is said to be prime if .a/ is a prime ideal, i.e.,

ajbc H) ajb or ajc:
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An integral domain A is called a unique factorization domain if every nonzero nonunit
a in A can be written as a finite product of irreducible elements in exactly one way up
to units and the order of the factors, i.e., a D

Q
i2I ai with each ai irreducible, and if

aD
Q
j2J bj with each bj irreducible, then there exists a bijection i 7! j.i/WI ! J such

that bj.i/ D ai � unit for each i . Every principal ideal domain is a unique factorization
domain (proved in most algebra courses).

PROPOSITION 4.1. Let A be an integral domain, and let a be an element of A that is neither
zero nor a unit. If a is prime, then a is irreducible, and the converse holds when A is a
unique factorization domain.

PROOF. Assume that a is prime. If a D bc, then a divides bc and so a divides b or c.
Suppose the first, and write b D aq. Now aD bc D aqc, which implies that qc D 1 because
A is an integral domain, and so c is a unit. Therefore a is irreducible.

For the converse, assume that a is irreducible and that A is a unique factorization domain.
If ajbc, then

bc D aq, some q 2 A:

On writing each of b, c, and q as a product of irreducible elements, and using the uniqueness
of factorizations, we see that a differs from one of the irreducible factors of b or c by a unit.
Therefore a divides b or c. 2

GAUSS’S LEMMA 4.2. Let A be a unique factorization domain with field of fractions F .
If f .X/ 2 AŒX� factors into the product of two nonconstant polynomials in F ŒX�, then it
factors into the product of two nonconstant polynomials in AŒX�.

PROOF. Let f D gh in F ŒX�. For suitable c;d 2A, the polynomials g1 D cg and h1 D dh
have coefficients in A, and so we have a factorization

cdf D g1h1 in AŒX�.

If an irreducible element p of A divides cd , then, looking modulo .p/, we see that

0D g1 �h1 in .A=.p// ŒX�.

According to Proposition 4.1, the ideal .p/ is prime, and so .A=.p// ŒX� is an integral
domain. Therefore, p divides all the coefficients of at least one of the polynomials g1;h1,
say g1, so that g1 D pg2 for some g2 2 AŒX�. Thus, we have a factorization

.cd=p/f D g2h1 in AŒX�.

Continuing in this fashion, we can remove all the irreducible factors of cd , and so obtain a
factorization of f in AŒX�. 2

The proof shows that every factorization f D gh in F ŒX� of an element f of AŒX�
gives a factorization f D .cg/.c�1h/ in AŒX� for a suitable c 2 F .

Let A be a unique factorization domain. A nonzero polynomial

f D a0Ca1XC�� �CamX
m

in AŒX� is said to be primitive if the coefficients ai have no common factor other than units.
Every polynomial f in AŒX� can be written f D c.f / �f1 with c.f / 2 A and f1 primitive.
The element c.f /, well-defined up to multiplication by a unit, is called the content of f .
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LEMMA 4.3. The product of two primitive polynomials is primitive.

PROOF. Let

f D a0Ca1XC�� �CamX
m

g D b0Cb1XC�� �CbnX
n;

be primitive polynomials, and let p be an irreducible element of A. Let ai0 be the first
coefficient of f not divisible by p and bj0

the first coefficient of g not divisible by p. Then
all the terms in

P
iCjDi0Cj0

aibj are divisible by p, except ai0bj0
, which is not divisible

by p. Therefore, p doesn’t divide the .i0C j0/th-coefficient of fg. We have shown that
no irreducible element of A divides all the coefficients of fg, which must therefore be
primitive. 2

LEMMA 4.4. For polynomials f;g 2 AŒX�, c.fg/ D c.f / � c.g/; hence every factor in
AŒX� of a primitive polynomial is primitive.

PROOF. Let f D c.f /f1 and g D c.g/g1 with f1 and g1 primitive. Then

fg D c.f /c.g/f1g1

with f1g1 primitive, and so c.fg/D c.f /c.g/. 2

PROPOSITION 4.5. If A is a unique factorization domain, then so also is AŒX�.

PROOF. From the factorization f D c.f /f1, we see that the irreducible elements of AŒX�
are to be found among the constant polynomials and the primitive polynomials, but a constant
polynomial a is irreducible if and only if a is an irreducible element of A (obvious) and a
primitive polynomial is irreducible if and only if it has no primitive factor of lower degree (by
4.4). From this it is clear that every nonzero nonunit f in AŒX� is a product of irreducible
elements.

Let
f D c1 � � �cmf1 � � �fn D d1 � � �drg1 � � �gs

be two factorizations of an element f of AŒX� into irreducible elements with the ci ;dj
constants and the fi ;gj primitive polynomials. Then

c.f /D c1 � � �cm D d1 � � �dr (up to units in A).

From this it follows that:
(a) mD r and the ci ’s differ from the di ’s only by units and ordering, and
(b) f1 � � �fn D g1 � � �gs (up to units in A). Gauss’s lemma shows that the fi ;gj are

irreducible polynomials in F ŒX� and, on using that F ŒX� is a unique factorization
domain, we see that nD s and that the fi ’s differ from the gi ’s only by units in F
and by their ordering. But if fi D a

b
gj with a and b nonzero elements of A, then

bfi D agj . As fi and gj are primitive, this implies that b D a (up to a unit in A), and
hence that a

b
is a unit in A. 2
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Let k be a field. A monomial in X1; : : : ;Xn is an expression of the form

X
a1

1 � � �X
an
n ; aj 2 N:

The total degree of the monomial is
P
ai . The degree, deg.f /, of a nonzero polyno-

mial f .X1; : : : ;Xn/ is the largest total degree of a monomial occurring in f with nonzero
coefficient. Since

deg.fg/D deg.f /Cdeg.g/;

kŒX1; : : : ;Xn� is an integral domain and kŒX1; : : : ;Xn�� D k�. Therefore, an element f of
kŒX1; : : : ;Xn� is irreducible if it is nonconstant and f D gh H) g or h is constant.

THEOREM 4.6. The ring kŒX1; : : : ;Xn� is a unique factorization domain.

PROOF. This is trivially true when nD 0, and an induction argument using (4), p.10, proves
it for all n. 2

COROLLARY 4.7. A nonzero proper principal ideal .f / in kŒX1; : : : ;Xn� is prime if and
only f is irreducible.

PROOF. Special case of (4.1). 2

5 Integrality
Let A be a subring of a ring B . An element ˛ of B is said to be integral over A if it is a root
of a monic7 polynomial with coefficients in A, i.e., if it satisfies an equation

˛nCa1˛
n�1
C�� �Can D 0; ai 2 A:

If every element of B is integral over A, then B is said to be integral over A.
In the next proof, we shall need to apply Cramer’s formula. As usually stated in linear

algebra courses, this says that, if x1; : : : ;xm is a solution to the system of linear equations

mX
jD1

cijxj D di ; i D 1; : : : ;m;

then

xj D
det.Cj /
det.C /

; where C D .cij / and

Cj D

0B@ c11 � � � c1;j�1 d1 c1;jC1 � � � c1m
:::

:::
:::

:::
:::

cm1 � � � cm;j�1 dm cm;jC1 � � � cmm

1CA :
When one restates the formula as

det.C / �xj D det.Cj /

7A polynomial is monic if its leading coefficient is 1, i.e., f .X/DXnC terms of degree less than n.
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it becomes true over any ring (whether or not det.C / is a unit). The proof is elementary—
expand out the right hand side of

detCj D det

0B@ c11 : : : c1j�1
P
c1jxj c1jC1 : : : c1m

:::
:::

:::
:::

:::

cm1 : : : cmj�1
P
cmjxj cmjC1 : : : cmm

1CA
using standard properties of determinants.

PROPOSITION 5.1. Let A be a subring of a ring B . An element ˛ of B is integral over A if
and only if there exists a faithful8 AŒ˛�-submodule M of B that is finitely generated as an
A-module.

PROOF. )W Suppose

˛nCa1˛
n�1
C�� �Can D 0; ai 2 A:

Then the A-submodule M of B generated by 1, ˛, ..., ˛n�1 has the property that ˛M �M ,
and it is faithful because it contains 1.
(W Let M be an A-module in B with a finite set fe1; : : : ; eng of generators such that

˛M �M and M is faithful as an AŒ˛�-module. Then, for each i ,

˛ei D
P
aij ej , some aij 2 A:

We can rewrite this system of equations as

.˛�a11/e1�a12e2�a13e3�� � � D 0

�a21e1C .˛�a22/e2�a23e3�� � � D 0

� � � D 0:

Let C be the matrix of coefficients on the left-hand side. Then Cramer’s formula tells us that
det.C / �ei D 0 for all i . AsM is faithful and the ei generateM , this implies that det.C /D 0.
On expanding out the determinant, we obtain an equation

˛nC c1˛
n�1
C c2˛

n�2
C�� �C cn D 0; ci 2 A: 2

PROPOSITION 5.2. AnA-algebraB is finite if and only if it is finitely generated and integral
over A.

PROOF. (: Suppose B D AŒ˛1; : : : ;˛m� and that

˛
ni

i Cai1˛
ni�1
i C�� �Caini

D 0; aij 2 A; i D 1; : : : ;m.

Any monomial in the ˛i ’s divisible by some ˛ni

i is equal (in B) to a linear combination of
monomials of lower degree. Therefore, B is generated as an A-module by the monomials
˛
r1

1 � � �˛
rm
m , 1� ri < ni .

): As an A-module, B is faithful (because a �1B D a), and so (5.1) show that every
element of B is integral over A. As B is finitely generated as an A-module, it is certainly
finitely generated as an A-algebra. 2

8An A-module M is faithful if aM D 0, a 2 A, implies aD 0.
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The proof shows that, if an A-algebra B is generated by a finite number of elements each
of which is integral over A, then it is finitely generated as an A-module.

THEOREM 5.3. Let A be a subring of a ring B . The elements of B integral over A form a
subring of B .

PROOF. Let ˛ and ˇ be two elements of B integral over A. As just noted, AŒ˛;ˇ� is finitely
generated as an A-module. It is stable under multiplication by ˛˙ˇ and ˛ˇ and it is faithful
as an AŒ˛˙ˇ�-module and as an AŒ˛ˇ�-module (because it contains 1A). Therefore (5.1)
shows that ˛˙ˇ and ˛ˇ are integral over A. 2

DEFINITION 5.4. Let A be a subring of the ring B . The integral closure of A in B is the
subring of B consisting of the elements integral over A.

PROPOSITION 5.5. Let A be an integral domain with field of fractions F , and let L be a
field containing F . If ˛ 2 L is algebraic over F , then there exists a d 2 A such that d˛ is
integral over A.

PROOF. By assumption, ˛ satisfies an equation

˛mCa1˛
m�1
C�� �Cam D 0; ai 2 F:

Let d be a common denominator for the ai , so that dai 2 A for all i , and multiply through
the equation by dm:

dm˛mCa1d
m˛m�1C�� �Camd

m
D 0:

We can rewrite this as

.d˛/mCa1d.d˛/
m�1
C�� �Camd

m
D 0:

As a1d; : : : ;amdm 2 A, this shows that d˛ is integral over A. 2

COROLLARY 5.6. Let A be an integral domain and let L be an algebraic extension of the
field of fractions of A. Then L is the field of fractions of the integral closure of A in L.

PROOF. In fact, the proposition shows that every element of L is a quotient ˇ=d with ˇ
integral over A and d 2 A. 2

DEFINITION 5.7. An integral domain A is integrally closed if it is equal to its integral
closure in its field of fractions F , i.e., if

˛ 2 F; ˛ integral over A H) ˛ 2 A:

PROPOSITION 5.8. Every unique factorization domain is integrally closed.

PROOF. An element of the field of fractions of A not in A can be written a=b with a;b 2 A
and b divisible by some irreducible element p not dividing a. If a=b is integral over A, then
it satisfies an equation

.a=b/nCa1.a=b/
n�1
C�� �Can D 0; ai 2 A:

On multiplying through by bn, we obtain the equation

anCa1a
n�1bC�� �Canb

n
D 0:

The element p then divides every term on the left except an, and hence must divide an.
Since it doesn’t divide a, this is a contradiction. 2
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PROPOSITION 5.9. Let A be an integrally closed integral domain, and let L be a finite
extension of the field of fractions F of A. An element of L is integral over A if and only if
its minimum polynomial9 over F has coefficients in A.

PROOF. Let ˛ be integral over A, so that

˛mCa1˛
m�1
C�� �Cam D 0; some ai 2 A; m > 0.

Let ˛0 be a conjugate of ˛, i.e., a root of the minimum polynomial f .X/ of ˛ over F in
some field containing L. Then there is an F -isomorphism10

� WF Œ˛�! F Œ˛0�; �.˛/D ˛0

On applying � to the above equation we obtain the equation

˛0mCa1˛
0m�1

C�� �Cam D 0;

which shows that ˛0 is integral over A. Hence all the conjugates of ˛ are integral over A, and
it follows from (5.3) that the coefficients of f .X/ are integral over A. They lie in F , and A
is integrally closed, and so they lie in A. This proves the “only if” part of the statement, and
the “if” part is obvious. 2

COROLLARY 5.10. Let A be an integrally closed integral domain with field of fractions F ,
and let f .X/ be a monic polynomial in AŒX�. Then every monic factor of f .X/ in F ŒX�
has coefficients in A.

PROOF. It suffices to prove this for an irreducible monic factor g of f in F ŒX�. Let ˛ be a
root of g in some extension field of F . Then g is the minimum polynomial ˛, which, being
also a root of f , is integral. Therefore g has coefficients in A. 2

THEOREM 5.11 (NOETHER NORMALIZATION THEOREM). Every finitely generated alge-
bra A over a field k contains a polynomial algebra R such that A is a finite R-algebra.

In other words, there exist elements y1; : : : ;yr of A such that A is a finitely generated
kŒy1; : : : ;yr �-module and y1; : : : ;yr are algebraically independent11 over k.

PROOF. We use induction on the minimum number n of generators of A as a k-algebra. If
nD 0, there is nothing to prove, and so we may suppose that n� 1 and that the statement is
true for k-algebras generated by n�1 (or fewer) elements.

Let AD kŒx1; : : : ;xn�. If the xi are algebraically independent, then there is nothing to
prove, and so we may suppose that there exists a nonconstant polynomial f .T1; : : : ;Tn/ such
that f .x1; : : : ;xn/D 0. Some Ti occurs in f , say T1, and we can write

f D c0T
N
1 C c1T

N�1
1 C�� �C cN ; ci 2 kŒT2; : : : ;Tn�; c0 ¤ 0:

9Most authors write “minimal polynomial” but the polynomial in question is in fact minimum (smallest
element in the set of monic polynomials having ˛ as a root).

10Recall that the homomorphism X 7! ˛WF ŒX�! F Œ˛� defines an isomorphism F ŒX�=.f /! F Œ˛�.
11Recall that this means that the homomorphism of k-algebras kŒX1; : : : ;Xn�! kŒy1; : : : ;yn� sending Xi to

yi is an isomorphism, or, equivalently, that if

P.y1; : : : ;yn/D 0; P.X1; : : : ;Xn/ 2 kŒX1; : : : ;Xn�;

then P D 0.
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If c0 2 k, then the equation

0D f .x1; : : : ;xn/D c0x
N
1 C c1.x2; : : : ;xn/x

N�1
1 C�� �C cN .x2; : : : ;xn/

shows that x1 is integral over kŒx2; : : : ;xn�. By induction, there exist algebraically indepen-
dent elements y1; : : : ;yr such that kŒx2; : : : ;xn� is finite over kŒy1; : : : ;yr �. It follows that A
is finite over kŒy1; : : : ;yr � (a composite of finite ring homorphisms is finite).

If c0 … k, then we choose different generators for A. Fix an integer m> 0, and let

y1 D x1;y2 D x2�x
m2

1 ; : : : ;yr D xr �x
mr

1 :

Then
kŒy1; : : : ;yn�D kŒx1; : : : ;xn�D A

because each yi 2 kŒx1; : : : ;xn� and, conversely, each xi 2 kŒx1;y2; : : : ;yn�D kŒy1; : : : ;yn�.
Moreover,

f .y1;y2Cy
m2

1 ; : : : ;yrCy
mr

1 /D 0:

In other words, when we let

g.T1; : : : ;Tn/D f .T1;T2CT
m2

1 ; : : : ;TrCT
mr

1 / 2 kŒT1; : : : ;Tn�;

g.y1; : : : ;yn/D 0. I claim that, if m is chosen sufficiently large, then

g.T1; : : : ;Tn/D c
0
0T

N
1 C c

0
1T

N�1
1 C�� �C c0N ; c0i 2 kŒT2; : : : ;Tr �; c00 ¤ 0

with c00 2 k, and so the previous argument applies:
To prove the claim, let

f .T 1; : : : ;Tr/D
X

cj1���jr
T
j1

1 � � �T
jr
r :

Choose m so large that the numbers

j1Cm
2j2C�� �Cm

rjr ; (7)

are distinct when .j1; : : : ;jr/ runs over the r-tuples with cj1;:::;jr
¤ 0. Then

f .T1;T2CT
m2

1 ; : : : ;TrCT
mr

1 /D cTN1 C c1T
N�1
1 C�� �

with c 2 kXf0g and N equal to the largest value of (7). 2

REMARK 5.12. When k is infinite, there is a simpler proof of a somewhat stronger result:
let AD kŒx1; : : : ;xn�; then there exist algebraically independent elements f1; : : : ;fr that
are linear combinations of the xi such that A is finite over kŒf1; : : : ;fr � (see 8.13 of my
algebraic geometry notes).
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6 Rings of fractions
Recall that a multiplicative subset of a ring is a nonempty subset closed under the formation
of finite products.

Let S be a multiplicative subset of A, and define an equivalence relation on A�S by

.a;s/� .b; t/ ” u.at �bs/D 0 for some u 2 S:

Write a
s

for the equivalence class containing .a;s/, and define addition and multiplication of
equivalence classes according to the rules:

a
s
C
b
t
D

atCbs
st

; a
s
b
t
D

ab
st
:

It is easily checked these do not depend on the choices of representatives for the equivalence
classes, and that we obtain in this way a ring

S�1AD fa
s
j a 2 A; s 2 Sg

and a ring homomorphism a 7! a
1
WA

iS
�! S�1A whose kernel is

fa 2 A j saD 0 for some s 2 Sg:

If S contains no zero-divisors, for example, if A is an integral domain and 0 … S , then
iS WA! S�1A is injective. At the opposite extreme, if 0 2 S , then S�1A is the zero ring.

PROPOSITION 6.1. The pair .S�1A;iS / has the following universal property:

every element of S maps to a unit in S�1A, and
any other ring homomorphism A! B with this
property factors uniquely through iS

A S�1A

B:

iS

9Š

PROOF. Let ˛WA! B be a homomorphism, and let ˇWS�1A! B be a homomorphism
such that ˇ ı iS D ˛. Then

s
1
a
s
D

a
1
H) ˇ. s

1
/ˇ.a

s
/D ˇ.a

1
/;

and so
ˇ.a
s
/D ˛.a/˛.s/�1: (8)

This shows that there can be at most one ˇ such that ˇ ı iS D ˛. When ˛ maps the elements
of S to units in B , we define ˇ by the formula (8). Then

a
s
D

b
t
H) u.at �bs/D 0 some u 2 S

˛.u/2B�

H) ˛.a/˛.t/�˛.b/˛.s/D 0;

which shows that ˇ is well-defined, and it is easy to check that it is a homomorphism. 2

As usual, this universal property determines the pair .S�1A;iS / uniquely up to a unique
isomorphism.12

12Recall the proof: let .A1; i1/ and .A2; i2/ have the universal property in the proposition; because every
element of S maps to a unit in A2, there exists a unique homomorphism ˛WA1! A2 such that ˛ ı i1 D i2
(universal property ofA1; i1/; similarly, there exists a unique homomorphism ˛0WA2!A1 such that ˛0 ı i2D i1;
now

˛0 ı˛ ı i1 D ˛
0
ı i2 D i1 D idA1

ıi1;

and so ˛0 ı ˛ D idA1
(universal property of A1; i1); similarly, ˛ ı ˛0 D idA2

, and so ˛ and ˛0 are inverse
isomorphisms (and they are uniquely determined by the conditions ˛ ı i1 D i2 and ˛0 ı i2 D i1).
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When A is an integral domain and S D AXf0g, the ring S�1A is the field of fractions
F of A. In this case, for any other multiplicative subset T of A not containing 0, the ring
T �1A can be identified with the subring of F consisting of the fractions a

t
with a 2 A and

t 2 T .

EXAMPLE 6.2. Let h 2 A. Then Sh D f1;h;h2; : : :g is a multiplicative subset of A, and we
let Ah D S�1h A. Thus every element of Ah can be written in the form a=hm, a 2 A, and

a
hm D

b
hn ” hN .ahn�bhm/D 0; some N:

If h is nilpotent, then Ah D 0, and if A is an integral domain with field of fractions F and
h¤ 0, then Ah is the subring of F of elements of the form a=hm, a 2 A, m 2 N:

PROPOSITION 6.3. For every ring A and h 2 A, the map
P
aiX

i 7!
P ai

hi defines an
isomorphism

AŒX�=.1�hX/! Ah:

PROOF. If hD 0, both rings are zero, and so we may assume h¤ 0. In the ring AŒx�D
AŒX�=.1�hX/, 1D hx, and so h is a unit. Let ˛WA!B be a homomorphism of rings such
that ˛.h/ is a unit in B . The homomorphism

P
aiX

i 7!
P
˛.ai /˛.h/

�i WAŒX�!B factors
through AŒx� because 1�hX 7! 1�˛.h/˛.h/�1 D 0, and this is the unique extension of ˛
to AŒx�. Therefore AŒx� has the same universal property as Ah, and so the two are (uniquely)
isomorphic by an A-algebra isomorphism that makes h�1 correspond to x. 2

Let S be a multiplicative subset of a ring A, and let S�1A be the corresponding ring of
fractions. For every ideal a in A, the ideal generated by the image of a in S�1A is

S�1aD fa
s
j a 2 a; s 2 Sg:

If a contains an element of S , then S�1a contains 1, and so is the whole ring. Thus some of
the ideal structure of A is lost in the passage to S�1A, but, as the next proposition shows,
some is retained.

PROPOSITION 6.4. Let S be a multiplicative subset of the ring A, and consider extension
a 7! ae D S�1a and contraction a 7! ac D fa 2 A j a

1
2 ag of ideals with respect to the

homomorphism A! S�1A. Then

ace D a for all ideals of S�1A

aec D a if a is a prime ideal of A disjoint from S:

Moreover, the p 7! pe is a bijection from the set of prime ideals of A disjoint from S onto
the set of all prime ideals of S�1A; the inverse map is p 7! pc .

PROOF. Let a be an ideal in S�1A. Certainly ace � a. For the reverse inclusion, let b 2 a.
We can write bD a

s
with a 2A, s 2 S . Then a

1
D s.a

s
/ 2 a, and so a 2 ac . Thus bD a

s
2 ace ,

and so a� ace.
Let p be a prime ideal of A disjoint from S . Clearly pec � p. For the reverse inclusion,

let a 2 pec so that a
1
D

a0

s
for some a0 2 p, s 2 S . Then t .as�a0/D 0 for some t 2 S , and

so ast 2 p. Because st … p and p is prime, this implies that a 2 p, and so pec � p.
Let p be a prime ideal of A disjoint from S , and let xS be the image of S in A=p.

Then .S�1A/=pe ' xS�1.A=p/ because S�1A=pe has the correct universal property, and
xS�1.A=p/ is an integral domain because A=p is an integral domain and xS doesn’t contain 0.
Therefore pe is prime. From �2 we know that pc is prime if p is, and so p 7! pe and p 7! pc

are inverse bijections on the two sets. 2
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COROLLARY 6.5. If A is noetherian, then so also is S�1A for any multiplicative set S:

PROOF. As bc is finitely generated, so also is .bc/e D b. 2

EXAMPLE 6.6. Let p be a prime ideal in A. Then Sp D AXp is a multiplicative subset of
A, and we let Ap D S

�1
p A. Thus each element of Ap can be written in the form a

c
, c … p, and

a
c
D

b
d
” s.ad �bc/D 0, some s … p:

According to (6.4), the prime ideals of Ap correspond to the prime ideals of A disjoint from
AXp, i.e., contained in p. Therefore, Ap is a local ring with maximal ideal mD pe D fa

s
j

a 2 p; s … pg.

PROPOSITION 6.7. Let m be a maximal ideal of a ring A, and let nDmAm be the maximal
ideal of Am: For all n, the map

aCmn 7! aCnnWA=mn! Am=n
n

is an isomorphism. Moreover, it induces isomorphisms

mr=mn! nr=nn

for all pairs .r;n/ with r � n.

PROOF. The second statement follows from the first, because of the exact commutative
diagram .r < n/:

0 mr=mn A=mn A=mr 0

0 nr=nn Am=n
n Am=n

r 0:

' '

We consider extension and contraction with respect to a 7! a
1
WA! Am. In order to

show that the map A=mn! Am=n
n is injective, we have to show that .mn/ec D mn. If

a 2 .mn/ec , then a
1
D

b
s

with b 2 mn and s 2 S . Then s0sa 2 mn for some s0 2 S , and so
s0saD 0 in A=mn. The only maximal ideal containing mn is m, and so the only maximal
ideal in A=mn is m=mn. As s0s is not in m=mn, it must be a unit in A=mn, and so aD 0 in
A=mn, i.e., a 2mn. We have shown that .mn/ec �m, and the reverse inclusion is always
true.

We now prove that A=mn! Am=n
n is surjective. Let a

s
2 Am, a 2 A, s 2 AXm. The

only maximal ideal of A containing mn is m, and so no maximal ideal contains both s
and mn; it follows that .s/Cmn D A. Therefore, there exist b 2 A and q 2 mn such that
sbCq D 1. Because s is invertible in Am=n

n, a
s

is the unique element of this ring such that
s a
s
D a. As s.ba/D a.1�q/, the image of ba in Am also has this property and therefore

equals a
s

. 2

PROPOSITION 6.8. In a noetherian ring, only 0 lies in all powers of all maximal ideals.

PROOF. Let a be an element of a noetherian ringA. If a¤ 0, then its annihilator fb j baD 0g
is a proper ideal, and so it is contained in some maximal ideal m. Then a

1
is nonzero in Am,

and so a
1
… .mAm/

n for some n (by the Krull intersection theorem 3.14), which implies that
a …mn (by 6.7). 2
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Modules of fractions
Let S be a multiplicative subset of the ring A, and let M be an A-module. Define an
equivalence relation on M �S by

.m;s/� .n; t/ ” u.tm� sn/D 0 for some u 2 S:

Write m
s

for the equivalence class containing .m;s/, and define addition and scalar multipli-
cation by the rules:

m
s
C
n
t
D

mtCns
st

; a
s
m
t
D

am
st
; m;n 2M; s; t 2 S; a 2 A:

It is easily checked these do not depend on the choices of representatives for the equivalence
classes, and that we obtain in this way an S�1A-module

S�1M D fm
s
jm 2M; s 2 Sg

and a homomorphism m 7! m
1
WM

iS
�! S�1M of A-modules whose kernel is

fa 2M j saD 0 for some s 2 Sg:

EXAMPLE 6.9. LetM be anA-module. For h2A, letMhDS
�1
h
M where ShDf1;h;h2; : : :g.

Then every element of Mh can be written in the form m
hr , m 2M , r 2 N, and m

hr D
m0

hr0
if

and only if hN .hr
0

m�hrm0/D 0 for some N 2 N.

PROPOSITION 6.10. The pair .S�1M;iS / has the following universal property:

every element of S acts invertibly on S�1M , and
any other homomorphism M !N of A-modules
such that every element of S acts invertibly on N
factors uniquely through iS

M S�1M

N:

iS

9Š

PROOF. Similar to that of Proposition 6.1. 2

In particular, for any homomorphism ˛WM ! N of A-modules, there is a unique
homomorphism S�1˛WS�1M ! S�1N such that S�1˛ ı iS D iS ı˛:

M S�1M

N S�1N:

iS

˛ S�1˛

iS

In this way, M  S�1M becomes a functor.

PROPOSITION 6.11. The functor M  S�1M is exact. In other words, if the sequence of
A-modules

M 0
˛
�!M

ˇ
�!M 00

is exact, then so also is the sequence of S�1A-modules

S�1M 0
S�1˛
�! S�1M

S�1ˇ
�! S�1M 00:
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PROOF. Because ˇı˛D 0, we have 0DS�1.ˇı˛/DS�1ˇıS�1˛. Therefore Im.S�1˛/�
Ker.S�1ˇ/. For the reverse inclusion, let m

s
2 Ker.S�1ˇ/ where m 2M and s 2 S . Then

ˇ.m/
s
D 0 and so, for some t 2 S , we have tˇ.m/D 0. Then ˇ.tm/D 0, and so tmD ˛.m0/

for some m0 2M 0. Now
m
s
D

tm
ts
D

˛.m0/
ts
2 Im.S�1˛/: 2

EXERCISE 6.12. A multiplicative subset S of a ring A is said to be saturated if

ab 2 S) a and b 2 S:

(a) Show that the saturated multiplicative subsets of A are exactly the subsets S such that
AXS is a union of prime ideals.

(b) Let S be a multiplicative subset of A, and let zS be the set of a 2 A such that ab 2 S
for some b 2 A. Show that zS is a saturated multiplicative subset of A (hence it is the
smallest such subset containing S), and that AX zS is the union of the prime ideals
of A not meeting S . Show that for any A-module M , the canonical homomorphism
S�1M ! zS�1M is bijective. (Cf. Bourbaki AC, II �2, Exercises 1,2.)

7 Direct limits
DEFINITION 7.1. A partial ordering � on a set I is said to be directed, and the pair .I;�/
is called a directed set, if for all i;j 2 I there exists a k 2 I such that i;j � k.

DEFINITION 7.2. Let .I;�/ be a directed set, and let A be a ring.

A direct system of A-modules indexed by .I;�/
is a family .Mi /i2I of A-modules together with a
family .˛ij WMi !Mj /i�j of A-linear maps such

that ˛ii D idMi
and ˛j

k
ı˛ij D ˛

i
k

all i � j � k.

Mk

Mi Mj

˛i
k

˛i
j

˛
j

k

AnA-moduleM together with a family .˛i WMi!

M/i2I of A-linear maps satisfying ˛i D ˛j ı˛ij
all i � j is said to be a direct limit of the sys-
tem ..Mi /; .˛

i
j // if it has the following universal

property: for any other A-module N and fam-
ily .ˇi WMi ! N/ of A-linear maps such that
ˇi D ˇj ı˛ij all i � j , there exists a unique mor-
phism ˛WM ! N such that ˛ ı ˛i D ˇi for all
i .

M

Mi Mj

N

˛i

˛i
j

˛j

ˇ i

ˇj

˛

As usual, the universal property determines the direct limit (if it exists) uniquely up to a
unique isomorphism. We denote it lim

�!
.Mi ;˛

j
i /, or just lim

�!
Mi .

Criterion

An A-module M together with A-linear maps ˛i WMi !M such that ˛i D ˛j ı˛ij for all

i � j is the direct limit of a system .Mi ;˛
j
i / if and only if

(a) M D
S
i2I ˛

i .Mi /, and
(b) mi 2Mi maps to zero in M if and only if it maps to zero in Mj for some j � i .
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Construction
Let

M D
M
i2I

Mi=M
0

where M 0 is the A-submodule generated by the elements

mi �˛
i
j .mi / all i < j , mi 2Mi :

Let ˛i .mi /Dmi CM 0. Then certainly ˛i D ˛j ı˛ij for all i � j . For every A-module N
and A-linear maps ˇj WMj !N , there is a unique mapM

i2I

Mi !N;

namely,
P
mi 7!

P
ˇi .mi /, sending mi to ˇi .mi /, and this map factors through M and is

the unique A-linear map with the required properties.
Direct limits of A-algebras, etc., are defined similarly.

An example

PROPOSITION 7.3. For every multiplicative subset S of a ring A, S�1A' lim
�!

Ah, where
h runs over the elements of S (partially ordered by division).

PROOF. When hjh0, say, h0 D hg, there is a unique homomorphism Ah! Ah0 respecting
the maps A! Ah and A! Ah0 , namely, a

h
7!

ag
h0

, and so the rings Ah form a direct system
indexed by the set S . When h 2 S , the homomorphism A! S�1A extends uniquely to a
homomorphism a

h
7!

a
h
WAh! S�1A (see 6.1), and these homomorphisms are compatible

with the maps in the direct system. Now apply the criterion p. 25 to see that S�1A is the
direct limit of the Ah. 2

8 Tensor Products

Tensor products of modules
Let A be a ring, and let M , N , and P be A-modules. A map �WM �N ! P of A-modules
is said to be A-bilinear if

�.xCx0;y/D �.x;y/C�.x0;y/; x;x0 2M; y 2N

�.x;yCy0/D �.x;y/C�.x;y0/; x 2M; y;y0 2N

�.ax;y/D a�.x;y/; a 2 A; x 2M; y 2N

�.x;ay/D a�.x;y/; a 2 A; x 2M; y 2N;

i.e., if � is A-linear in each variable.
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M �N T

T 0:

�

�0 9Š linear

An A-module T together with an A-bilinear map

�WM �N ! T

is called the tensor product of M and N over A if it has the
following universal property: every A-bilinear map

�0WM �N ! T 0

factors uniquely through �.
As usual, the universal property determines the tensor product uniquely up to a unique

isomorphism. We write it M ˝AN . Note that

HomA-bilinear.M �N;T /' HomA-linear.M ˝AN;T /:

CONSTRUCTION

LetM andN be A-modules, and let A.M�N/ be the free A-module with basisM �N . Thus
each element A.M�N/ can be expressed uniquely as a finite sumX

ai .xi ;yi /; ai 2 A; xi 2M; yi 2N:

Let P be the submodule of A.M�N/ generated by the following elements

.xCx0;y/� .x;y/� .x0;y/; x;x0 2M; y 2N

.x;yCy0/� .x;y/� .x;y0/; x 2M; y;y0 2N

.ax;y/�a.x;y/; a 2 A; x 2M; y 2N

.x;ay/�a.x;y/; a 2 A; x 2M; y 2N;

and define
M ˝AN D A

.M�N/=P:

Write x˝y for the class of .x;y/ in M ˝AN . Then

.x;y/ 7! x˝yWM �N !M ˝AN

isA-bilinear — we have imposed the fewest relations necessary to ensure this. Every element
of M ˝AN can be written as a finite sum13X

ai .xi ˝yi /; ai 2 A; xi 2M; yi 2N;

and all relations among these symbols are generated by the following relations

.xCx0/˝y D x˝yCx0˝y

x˝ .yCy0/D x˝yCx˝y0

a.x˝y/D .ax/˝y D x˝ay:

The pair .M ˝AN;.x;y/ 7! x˝y/ has the correct universal property because any bilinear
map �0WM �N ! T 0 defines an A-linear map A.M�N/ ! T 0, which factors through
A.M�N/=K, and gives a commutative triangle.

13“An element of the tensor product of two vector spaces is not necessarily a tensor product of two vectors,
but sometimes a sum of such. This might be considered a mathematical shenanigan but if you start with the
state vectors of two quantum systems it exactly corresponds to the notorious notion of entanglement which so
displeased Einstein.” Georges Elencwajg on mathoverflow.net.
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EXTENSION OF SCALARS

Let A be a commutative ring and let B be an A-algebra (not necessarily commutative) such
that the image of A! B lies in the centre of B . Then M  B˝AM is a functor from left
A-modules to left B-modules, which has the following universal property:

HomA-linear.M;N /' HomB-linear.B˝AM;N/; N a B-module. (9)

If .e˛/˛2I is a family of generators (resp. basis) for M as an A-module, then .1˝e˛/˛2I is
a family of generators (resp. basis) for B˝AM as a B-module.

BEHAVIOUR WITH RESPECT TO DIRECT LIMITS

PROPOSITION 8.1. Direct limits commute with tensor products:

lim
�!
i2I

Mi ˝A lim
�!
j2J

Nj ' lim
�!

.i;j /2I�J

Mi ˝ANj :

PROOF. Using the universal properties of direct limits and tensor products, one sees easily
that lim
�!
.Mi ˝ANj / has the universal property to be the tensor product of lim

�!
Mi and

lim
�!

Nj . 2

Tensor products of algebras
Let k be a ring, and letA andB be k-algebras. A k-algebra C together with homomorphisms
i WA! C and j WB ! C is called the tensor product of A and B if it has the following
universal property:

for every pair of homomorphisms (of k-algebras)
˛WA! R and ˇWB ! R, there exists a unique
homomorphism  WC !R such that  ı i D ˛ and
 ıj D ˇ,

A C B

R

i j

˛ ˇ9Š 

If it exists, the tensor product, is uniquely determined up to a unique isomorphism by this
property. We write it A˝k B . Note that the universal property says that

Homk-algebra.A˝k B;R/' Homk-algebra.A;R/�Homk-algebra.B;R/. (10)

CONSTRUCTION

RegardA andB as k-modules, and form the tensor productA˝kB . There is a multiplication
map A˝k B �A˝k B! A˝k B for which

.a˝b/.a0˝b0/D aa0˝bb0; all a;a0 2 A; b;b0 2 B:

This makes A˝k B into a ring, and the homomorphism

c 7! c.1˝1/D c˝1D 1˝ c

makes it into a k-algebra. The maps

a 7! a˝1WA! A˝k B and b 7! 1˝bWB! A˝k B

are homomorphisms, and they make A˝kB into the tensor product of A and B in the above
sense.
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EXAMPLE 8.2. The algebra A, together with the maps

k �! A
idA
 � A,

is k˝k A (because it has the correct universal property). In terms of the constructive
definition of tensor products, the map c˝a 7! caWk˝k A! A is an isomorphism.

EXAMPLE 8.3. The ring kŒX1; : : : ;Xm;XmC1; : : : ;XmCn�, together with the obvious inclu-
sions

kŒX1; : : : ;Xm� ,! kŒX1; : : : ;XmCn�  - kŒXmC1; : : : ;XmCn�

is the tensor product of the k-algebras kŒX1; : : : ;Xm� and kŒXmC1; : : : ;XmCn�. To verify
this we only have to check that, for every k-algebra R, the map

Homk-alg.kŒX1; : : : ;XmCn�;R/! Homk-alg.kŒX1; : : :�;R/�Homk-alg.kŒXmC1; : : :�;R/

induced by the inclusions is a bijection. But this map can be identified with the bijection

RmCn!Rm�Rn:

In terms of the constructive definition of tensor products, the map

kŒX1; : : : ;Xm�˝k kŒXmC1; : : : ;XmCn�! kŒX1; : : : ;XmCn�

sending f ˝g to fg is an isomorphism.

REMARK 8.4. (a) Let k ,! k0 be a homomorphism of rings. Then

k0˝k kŒX1; : : : ;Xn�' k
0Œ1˝X1; : : : ;1˝Xn�' k

0ŒX1; : : : ;Xn�:

If AD kŒX1; : : : ;Xn�=.g1; : : : ;gm/, then

k0˝k A' k
0ŒX1; : : : ;Xn�=.g1; : : : ;gm/:

(b) If A and B are algebras of k-valued functions on sets S and T respectively, then the
definition

.f ˝g/.x;y/D f .x/g.y/; f 2 A, g 2 B , x 2 S , y 2 T;

realizes A˝k B as an algebra of k-valued functions on S �T .

The tensor algebra of a module
Let M be a module over a ring A. For each A� 0, set

T rM DM ˝A � � �˝AM (r factors),

so that T 0M D A and T 1M DM , and define

TM D
M

r�0
T rM:

This can be made into a noncommutative A-algebra, called the tensor algebra of M , by
requiring that the multiplication map

T rM �T sM ! T rCsM

send .m1˝�� �˝mr ; mrC1˝�� �˝mrCs/ to m1˝�� �˝mrCs .
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M TM

R

A-linear 9ŠA-algebra

The pair .TM;M ! TM/ has the following universal prop-
erty: every A-linear map from M to an A-algebra R (not neces-
sarily commutative) extends uniquely to an A-algebra homomor-
phism TM !R.

If M is a free A-module with basis x1; : : : ;xn, then TM is
the (noncommutative) polynomial ring over A in the noncommut-
ing symbols xi (because this A-algebra has the same universal
property as TM ).

The symmetric algebra of a module
The symmetric algebra Sym.M/ of an A-module M is the quotient of TM by the ideal
generated by all elements of T 2M of the form

m˝n�n˝m; m;n 2M:

It is a graded algebra Sym.M/D
L
r�0Symr.M/ with Symr.M/ equal to the quotient of

M˝r by the A-submodule generated by all elements of the form

m1˝�� �˝mr �m�.1/˝�� �˝m�.r/; mi 2M; � 2 Br (symmetric group).

M Sym.M/

R

A-linear 9ŠA-algebra

The pair .Sym.M/;M ! Sym.M// has the following
universal property: every A-linear mapM !R fromM

to a commutative A-algebra R extends uniquely to an
A-algebra homomorphism Sym.M/!R (because it ex-
tends to an A-algebra homomorphism TM !R, which
factors through Sym.M/ because R is commutative).

If M is a free A-module with basis x1; : : : ;xn, then
Sym.M/ is the polynomial ring over A in the (commut-
ing) symbols xi (because this A-algebra has the same universal property as TM ).

9 Flatness
Let M be an A-module. If the sequence of A-modules

0!N 0!N !N 00! 0 (11)

is exact, then the sequence

M ˝AN
0
!M ˝AN !M ˝AN

00
! 0

is exact, but M ˝AN 0!M ˝AN need not be injective. For example, when we tensor the
exact sequence of Z-modules

0! Z
m
�! Z! Z=mZ! 0

with Z=mZ, we get the sequence

Z=mZ
mD0
���! Z=mZ ���! Z=mZ! 0:
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Moreover, M ˝AN may be zero even when neither M nor N is nonzero. For example,

Z=2Z˝ZZ=3ZD 0

because it is killed by both 2 and 3.14

DEFINITION 9.1. An A-module M is flat if

N 0!N injective H) M ˝AN
0
!M ˝AN injective.

It is faithfully flat if, in addition,

M ˝AN D 0 H) N D 0:

A homomorphism of rings A! B is said to be (faithfully) flat when B is (faithfully) flat as
an A-module.

Thus, an A-module M is flat if and only if M ˝A� is an exact functor, i.e.,

0!M ˝AN
0
!M ˝AN !M ˝AN

00
! 0 (12)

is exact whenever (11) is exact.
The functor M ˝� takes direct sums to direct sums, and therefore split-exact sequences

to split-exact sequences. Therefore, all vector spaces over a field are flat, and nonzero vector
spaces are faithfully flat.

PROPOSITION 9.2. Let A! B be a faithfully flat homomorphism of rings. A sequence of
A-modules

0!N 0!N !N 00! 0 (13)

is exact if
0! B˝AN

0
! B˝AN ! B˝AN

00
! 0 (14)

is exact.

PROOF. Let N0 be the kernel of N 0!N . Because A!B is flat, B˝AN0 is the kernel of
B˝AN

0! B˝AN , which is zero by assumption; because A! B is faithfully flat, this
implies that N0 D 0. We have proved the exactness at N 0, and the proof of the exactness
elsewhere is similar. 2

REMARK 9.3. There is a converse to the proposition: suppose that

(13) is exact , (14) is exact;

then A! B is faithfully flat. The implication “)” shows that A! B is flat. Now let N be
an A-module, and consider the sequence

0! 0!N ! 0! 0.

If B˝AN D 0, then this sequence becomes exact when tensored with B , and so is itself
exact, which implies that N D 0. This shows that A! B is faithfully flat.

14It was once customary to require a ring to have an identity element 1¤ 0 (see, for example, Northcott 1953,
p.3). However, without the zero ring, tensor products don’t always exist. In fact, Bourbaki’s first example of a
ring is the zero ring.
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COROLLARY 9.4. Let A! B be faithfully flat. An A-module M is flat (resp. faithfully
flat) if B˝AM is flat (resp. faithfully flat) as a B-module.

PROOF. Assume that MB
def
D B˝AN is flat, and let N 0! N be an injective map of A-

modules. We have that

B˝A .M ˝AN
0
!M ˝AN/'MB˝B .N

0
B !NB/,

and the map at right is injective because A! B is flat and MB is flat. Now (9.2) shows that
M ˝AN

0!M ˝AN is injective. Thus M is flat.
Assume that MB is faithfully flat, and let N be an A-module. If M ˝AN D 0, then

MB˝B NB is zero because it is isomorphic to .M ˝AN/B . Now NB D 0 because MB is
faithfully flat, and so N D 0 because A! B is faithfully flat. 2

PROPOSITION 9.5. Let i WA! B be a faithfully flat homomorphism. For every A-module
M , the sequence

0!M
d0
�! B˝AM

d1
�! B˝AB˝AM (15)

with �
d0.m/ D 1˝m;

d1.b˝m/ D 1˝b˝m�b˝1˝m

is exact.

PROOF. Assume first that there exists an A-linear section to A! B , i.e., an A-linear map
f WB! A such that f ı i D idA, and define

k0WB˝AM !M; k0.b˝m/D f .b/m

k1WB˝AB˝AM ! B˝AM; k1.b˝b
0
˝m/D f .b/b0˝m:

Then k0d0 D idM , which shows that d0 is injective. Moreover,

k1 ıd1Cd0 ık0 D idB˝AM

which shows that, if d1.x/D 0, then x D d0.k0.x//, as required.
We now consider the general case. Because A! B is faithfully flat, it suffices to prove

that the sequence (15) becomes exact after tensoring in B . But the sequence obtained from
(15) by tensoring with B is isomorphic to the sequence (15) for the homomorphism of rings
b 7! 1˝bWB! B˝AB and the B-module B˝AM , because, for example,

B˝A .B˝AM/' .B˝AB/˝B .B˝AM/:

Now B! B˝AB has an B-linear section, namely, f .b˝b0/D bb0, and so we can apply
the first part. 2

COROLLARY 9.6. If A! B is faithfully flat, then it is injective with image the set of
elements on which the maps�

b 7! 1˝b

b 7! b˝1
WB! B˝AB

agree.
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PROOF. This is the special case M D A of the Proposition. 2

PROPOSITION 9.7. Let A!A0 be a homomorphism of rings. If A!B is flat (or faithfully
flat), then so also is A0! B˝AA

0.

PROOF. For any A0-module M ,

.B˝AA
0/˝A0M ' B˝A .A

0
˝A0M/' B˝AM;

from which the statement follows. 2

PROPOSITION 9.8. For every multiplicative subset S of a ring A and A-module M ,

S�1A˝AM ' S
�1M:

The homomorphism a 7! a
1
WA! S�1A is flat.

PROOF. To give an S�1A-module is the same as giving an A-module on which the elements
of S act invertibly. Therefore S�1A˝AM and S�1M satisfy the same universal property
(see �8, especially (9)), which proves the first statement. As M  S�1M is exact (6.11), so
also is M  S�1A˝AM , which proves the second statement. 2

PROPOSITION 9.9. A homomorphism of rings 'WA! B is flat if A'�1.n/! Bn is flat for
all maximal ideals n in B .

PROOF. Let N 0!N be an injective homomorphism of A-modules, and let n be a maximal
ideal of B . Then pD '�1.n/ is a prime ideal in A, and Ap˝A .N

0!N/ is injective (9.8).
Therefore, the map

Bn˝A .N
0
!N/' Bn˝Ap .Ap˝A .N

0
!N//

is injective, and so the kernel M of B˝A .N 0! N/ has the property that Mn D 0. Let
x 2M , and let aD fb 2B j bx D 0g. For each maximal ideal n of B , x maps to zero in Mn,
and so a contains an element not in n. Hence aD B , and so x D 0. 2

PROPOSITION 9.10. The following conditions on a flat homomorphism 'WA! B are
equivalent:

(a) ' is faithfully flat;
(b) for every maximal ideal m of A, the ideal '.m/B ¤ B;
(c) every maximal ideal m of A is of the form '�1.n/ for some maximal ideal n of B .

PROOF. (a)) (b): Let m be a maximal ideal of A, and let M D A=m; then

B˝AM ' B='.m/B:

As B˝AM ¤ 0, we see that '.m/B ¤ B .
(b)) (c): If '.m/B ¤ B , then '.m/ is contained in a maximal ideal n of B . Now

'�1.n/ is a proper ideal in A containing m, and hence equals m.
(c)) (a): Let M be a nonzero A-module. Let x be a nonzero element of M , and let

aD ann.x/ def
D fa 2 A j ax D 0g. Then a is an ideal in A, and M 0 def

D Ax ' A=a. Moreover,
B˝AM

0 ' B='.a/ �B and, because A! B is flat, B˝AM 0 is a submodule of B˝AM .
Because a is proper, it is contained in a maximal ideal m of A, and therefore

'.a/� '.m/� n

for some maximal ideal n of A. Hence '.a/ �B � n¤B , and so B˝AM �B˝AM 0¤ 0.2
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THEOREM 9.11 (GENERIC FLATNESS). Let A an integral domain with field of fractions
F , and let B be a finitely generated A-algebra contained in F ˝AB . Then for some nonzero
elements a of A and b of B , the homomorphism Aa! Bb is faithfully flat.

PROOF. As F ˝AB is a finitely generated F -algebra, the Noether normalization theorem
(5.11) shows that there exist elements x1; : : : ;xm of F ˝AB such that F Œx1; : : : ;xm� is a
polynomial ring over F and F ˝AB is a finite F Œx1; : : : ;xm�-algebra. After multiplying
each xi by an element of A, we may suppose that it lies in B . Let b1; : : : ;bn generate B as an
A-algebra. Each bi satisfies a monic polynomial equation with coefficients in F Œx1; : : : ;xm�.
Let a 2A be a common denominator for the coefficients of these polynomials. Then each bi
is integral over Aa. As the bi generate Ba as an Aa-algebra, this shows that Ba is a finite
AaŒx1; : : : ;xm�-algebra (by 5.2). Therefore, after replacing A with Aa and B with Ba, we
may suppose that B is a finite AŒx1; : : : ;xm�-algebra.

B F ˝AB E˝AŒx1;:::;xm�B

AŒx1; : : : ;xm� F Œx1; : : : ;xm� E
def
D F.x1; : : : ;xn/

A F:

injective

finite finite finite

Let E D F.x1; : : : ;xm/ be the field of fractions of AŒx1; : : : ;xm�, and let b1; : : : ;br be
elements of B that form a basis for E˝AŒx1;:::;xm�B as an E-vector space. Each element
of B can be expressed a linear combination of the bi with coefficients in E. Let q be
a common denominator for the coefficients arising from a set of generators for B as an
AŒx1; : : : ;xm�-module. Then b1; : : : ;br generate Bq as an AŒx1; : : : ;xm�q-module. In other
words, the map

.c1; : : : ; cr/ 7!
P
cibi WAŒx1; : : : ;xm�

r
q! Bq (16)

is surjective. This map becomes an isomorphism when tensored with E over AŒx1; : : : ;xm�q ,
which implies that each element of its kernel is killed by a nonzero element ofAŒx1; : : : ;xm�q
and so is zero (because AŒx1; : : : ;xn�q is an integral domain). Hence the map (16) is an
isomorphism, and so Bq is free of finite rank over AŒx1; : : : ;xm�q . Let a be some nonzero
coefficient of the polynomial q, and consider the maps

Aa! AaŒx1; : : : ;xm�! AaŒx1; : : : ;xm�q! Baq:

The first and third arrows realize their targets as nonzero free modules over their sources,
and so are faithfully flat. The middle arrow is flat by (9.8). Let m be a maximal ideal in Aa.
Then mAaŒx1; : : : ;xm� does not contain the polynomial q because the coefficient a of q is
invertible in Aa. Hence mAaŒx1; : : : ;xm�q is a proper ideal of AaŒx1; : : : ;xm�q , and so the
map Aa! AaŒx1; : : : ;xm�q is faithfully flat (apply 9.10). This completes the proof. 2

REMARK 9.12. The theorem holds for every finitely generated B-algebra, i.e., without the
requirement that B � F ˝AB . To see this, note that F ˝AB is the ring of fractions of B
with respect to the multiplicative subset AXf0g (see 9.8), and so the kernel of B! F ˝AB

is the ideal
nD fb 2 B j ab D 0 for some nonzero a 2 Ag:
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This is finitely generated (Hilbert basis theorem 3.6), and so there exists a nonzero c 2 A
such that cb D 0 for all b 2 n. I claim that the homomorphism Bc! F ˝Ac

Bc is injective.
If b
cr lies in its kernel, then a

cs
b
cr D 0 in Bc for some nonzero a

cs 2 Ac , and so cNab D 0
in B for some N ; therefore b 2 n, and so cb D 0, which implies that b

cr D 0 already in Bc .
Therefore, after replacing A, B , and M with Ac , Bc , and Mc , we may suppose that the map
B! F ˝AB is injective. On identifying B with its image, we arrive at the situation of the
theorem.

EXERCISE 9.13. Let .Ai ;˛ij / be a direct system of rings, and let .Mi ;ˇ
i
j / be a direct

system of abelian groups with the same indexing set. Suppose that each Mi has the structure
of an Ai -module, and that the diagrams

Ai �Mi Mi

Aj �Mj Mj

˛i
j
�ˇ i

j
ˇ i

j

commute for all i � j . Let AD lim
�!

Ai and M D lim
�!

Mi .
(a) Show that M has a unique structure of an A-module for which the diagrams

Ai �Mi Mi

A�M M

˛i �ˇ i ˇ i

commute for all i .
(b) Show that M is flat as an A-module if each Mi is flat as an Ai -module.

(Bourbaki AC, I, �2, Prop. 9.)

10 Finitely generated projective modules
In many situations, the correct generalization of “finite-dimensional vector space” is not
“finitely generated module” but “finitely generated projective module”. From a different
perspective, they are the algebraists analogue of the differential geometers vector bundle.
Throughout this section, A is a commutative ring.

Projective modules
DEFINITION 10.1. An A-module P is projective if, for each surjective A-linear map
f WM ! N and A-linear map gWP ! N , there exists an A-linear map hWP !M (not
necessarily unique) such that f ıhD g:

P

M N 0:
f

g9h
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In other words, P is projective if every map from P onto a quotient of a module M lifts to a
map to M . Equivalently, P is projective if the functor M  HomA-lin.P;M/ is exact.

As
Hom.

L
i Pi ;M/'

L
i Hom.Pi ;M/

we see that a direct sum of A-modules is projective if and only if each direct summand
is projective. As A itself is projective, this shows that every free A-module is projective
and every direct summand of a free module is projective. Conversely, let P be a projective
module, and write it as a quotient of a free module,

F
f
�! P �! 0I

because P is projective, there exists an A-linear map hWP ! F such that f ıhD idP ; then

F � Im.h/˚Ker.f /� P ˚Ker.f /;

and so P is a direct summand of F . We conclude: the projective A-modules are exactly the
direct summands of free A-modules.

Finitely presented modules
DEFINITION 10.2. An A-module M is finitely presented if there exists an exact sequence
Am! An!M ! 0, some m;n 2 N.

A finite family .ei /i2I of generators for an A-module M defines a homomorphism
.ai / 7!

P
i2I aiei WA

I !M . The elements of the kernel of this homomorphism are called
the relations between the generators. Thus,M is finitely presented if it admits a finite family
of generators whose module of relations is finitely generated. Obviously

finitely presented ) finitely generated,

and the converse is true when A is noetherian (by 3.4).

PROPOSITION 10.3. If M is finitely presented, then the kernel of every surjective homo-
morphism Am!M , m 2 N, is finitely generated.

In other words, if M is finitely presented, then the module of relations for every finite
generating set is finitely generated.

PROOF. We are given that there exists a surjective homomorphism An!M with finitely
generated kernel R, and we wish to show that the kernel R0 of Am!M is finitely generated.
Consider the diagram:

0 R An M 0

0 R0 Am M 0

idMf g

The map g exists because An is projective, and it induces the map f . From the diagram, we
get an exact sequence

R
g
�!R0! Am=gAn! 0,

either from the snake lemma or by a direct diagram chase. As R and Am=gAn are both
finitely generated, so also is R0. 2
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IfM is finitely generated and projective, then the kernel ofAn!M is a direct summand
(hence quotient) of An, and so is finitely generated. Therefore M is finitely presented.

Finitely generated projective modules
According to the above discussion, the finitely generated projective modules are exactly the
direct summands of free A-modules of finite rank.

THEOREM 10.4. The following conditions on an A-module are equivalent:
(a) M is finitely generated and projective;
(b) M is finitely presented and Mm is a free Am-module for all maximal ideals m of A;
(c) there exists a finite family .fi /i2I of elements of A generating the ideal A and such

that, for all i 2 I , the Afi
-module Mfi

is free of finite rank;
(d) M is finitely presented and flat.

Moreover, when A is an integral domain and M is finitely presented, they are equivalent to:
(e) dimk.p/.M ˝A k.p// is the same for all prime ideals p of A (here k.p/ denotes the

field of fractions of A=p).

PROOF. (a))(d). As tensor products commute with direct sums, every free module is flat
and every direct summand of a flat module is flat. Therefore, every projective module M is
flat, and we saw above that such a module is finitely presented if it is finitely generated.

(b))(c). Let m be a maximal ideal of A, and let x1; : : : ; xr be elements of M
whose images in Mm form a basis for Mm over Am. The kernel N 0 and cokernel N of the
homomorphism

˛W Ar !M; g.a1; : : : ; ar/D
X

aixi ;

are both finitely generated, and N 0m D 0DNm. Therefore, there exists15 an f 2 AXm such
that N 0

f
D 0DNf . Now ˛ becomes an isomorphism when tensored with Af .

The set T of elements f arising in this way is contained in no maximal ideal, and so
generates the ideal A. Therefore, 1D

P
i2I aifi for certain ai 2 A and fi 2 T .

(c))(d). Let B D
Q
i2I Afi

. Then B is faithfully flat over A, and B˝AM D
Q
Mfi

,
which is clearly a flat B-module. It follows that M is a flat A-module (apply 9.4).

(c))(e). This is obvious.
(e))(c): Fix a prime ideal p of A. For some f … p, there exist elements x1; : : : ; xr of

Mf whose images in M ˝A k.p/ form a basis. Then the map

˛WArf !Mf ; ˛.a1; : : : ; ar/D
P
aixi ;

defines a surjection Arp !Mp (Nakayama’s lemma; note that k.p/' Ap=pAp). Because
the cokernel of ˛ is finitely generated, the map ˛ itself will be surjective once f has been
replaced by a multiple. For any prime ideal q of Af , the map k.q/r !M ˝A k.q/ defined
by ˛ is surjective, and hence is an isomorphism because dim.M ˝A k.q// D r . Thus
Ker.˛/� qAr

f
for every q, which implies that it is zero as Af is reduced. Therefore Mf is

free. As in the proof of (b), a finite set of such f ’s will generate A. 2

To prove the remaining implications, (d))(a);(b) we shall need the following lemma.

15To say that S�1N D 0 means that, for each x 2N , there exists an sx 2 S such that sxx D 0. If x1; : : : ;xn
generate N , then s def

D sx1
� � �sxn lies in S and has the property that sN D 0. Therefore, Ns D 0.
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LEMMA 10.5. Let
0!N ! F !M ! 0 (17)

be an exact sequence of A-modules with N a submodule of F .
(a) lf M and F are flat over A, then N \aF D aN (inside F ) for all ideals a of A.
(b) Assume that F is free with basis .yi /i2I and that M is flat. If the element n DP

i2I aiyi of F lies in N , then there exist ni 2N such that nD
P
i2I aini :

(c) Assume that M is flat and F is free. For every finite set fn1; : : : ; nrg of elements of
N , there exists an A-linear map f WF !N with f .nj /D nj ; j D 1; : : : , r .

PROOF. (a) Consider

a˝N a˝F a˝M

0 N \aF aF aM

' '

The first row is obtained from (17) by tensoring with a, and the second row is a subsequence
of (17). Both rows are exact. On tensoring a!A with F we get a map a˝F !F , which is
injective because F is flat. Therefore a˝F ! aF is an isomorphism. Similarly, a˝M !
aM is an isomorphism. From the diagram we get a surjective map a˝N !N \aF , and
so the image of a˝N in aF is N \aF . But this image is aN .

(b) Let a be the ideal generated by the ai . Then n 2 N \ aF D aN , and so there are
ni 2N such that nD

P
aini :

(c) We use induction on r . Assume first that r D 1, and write

n1 D
P
i2I0

aiyi

where .yi /i2I is a basis for F and I0 is a finite subset of I . Then

n1 D
P
i2I0

ain
0
i

for some n0i 2N (by (b)), and f may be taken to be the map such that f .yi /D n0i for i 2 I0
and f .yi /D 0 otherwise. Now suppose that r > 1, and that there are maps f1; f2 : F !N

such that f1.n1/D n1 and

f2.ni �f1.ni //D ni �f1.ni /; i D 2; : : : r:

Then
f WF !N; f D f1Cf2�f2 ıf1

has the required property. 2

We now complete the proof of the theorem.
(d))(a). Because M is finitely presented, there is an exact sequence

0!N ! F !M ! 0

in which F is free and N and F are both finitely generated. Because M is flat, (c) of the
lemma shows that this sequence splits, and so M is projective.
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(d))(b):We may suppose that A itself is local, with maximal ideal m. Let x1; : : : ; xr 2
M be such that their images in M=mM form a basis for this over the field A=m. Then the
xi generate M (by Nakayama’s lemma), and so there exists an exact

0!N ! F
g
�!M ! 0

in which F is free with basis fy1; : : : ; yrg and g.yi /D xi . According to (a) of the lemma,
mN DN \ .mF /, which equals N because N �mF . Therefore N is zero by Nakayama’s
lemma.

EXAMPLE 10.6. (a) When regarded as a Z-module, Q is flat but not projective (it is not
finitely generated, much less finitely presented, and so this doesn’t contradict the theorem).

(b) LetR be a product of copies of F2 indexed by N, and let a be the ideal inR consisting
of the elements .an/n2N such that an is nonzero for only finitely many values of n (so a is a
direct sum of copies of F2 indexed by N). The R-module R=I is finitely generated and flat,
but not projective (it is not finitely presented, and so this doesn’t contradict the theorem).

ASIDE 10.7. Nonfree projective finitely generated modules are common: for example, the ideals
in a Dedekind domain are projective and finitely generated, but they are free only if principal. The
situation with modules that are not finitely generated is quite different: if A is a noetherian ring with
no nontrivial idempotents, then every nonfinitely generated projective A-module is free (Bass, Hyman.
Big projective modules are free. Illinois J. Math. 7 1963, 24–31, Corollary 4.5). The condition on the
idempotents is necessary because, for a ring A�B , the module A.I /�B.J / is not free when the sets
I and J have different cardinalities.

Duals

The dual HomA-lin.M;A/ of an A-module M is denoted M_.

PROPOSITION 10.8. For any A-modulesM , S , T withM finitely generated and projective,
the canonical maps

HomA-lin.S;T ˝AM/! HomA-lin.S˝AM
_;T / (18)

T ˝AM ! HomA-lin.M
_;T / (19)

M_˝T _! .M ˝T /_ (20)

M !M__ (21)

are isomorphisms.

PROOF. The canonical map (18) sends f WS ! T ˝AM to the map f 0WS ˝AM_! T

such that f 0.s˝g/D .T ˝g/.f .s//. It becomes the canonical isomorphism

HomA-lin.S;T
n/! HomA-lin.S

n;T /

when M D An. It follows that (18) is an isomorphism whenever M is a direct summand of
a finitely generated free module, i.e., whenever M is finitely generated and projective.

The canonical map (19) sends t˝m to the map f 7! f .m/t . It is the special case of
(18) in which S D A.

The canonical map (20) sends f ˝g 2M_˝T _ to the mapm˝ t 7! f .m/˝g.t/WM˝

T ! A, and the canonical map (21) sends m to the map f 7! f .m/WM_! A. Again, it is
obviously an isomorphism if one of M or T is free of finite rank, and hence also if one is a
direct summand of such a module. 2
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We let evWM_˝AM ! A denote the evaluation map f ˝m 7! f .m/.

LEMMA 10.9. LetM andN be modules over commutative ringA, and let eWN ˝AM !A

be an A-linear map. There exists at most one A-linear map ıWA!M ˝AN such that the
composites

M
ı˝M
����! M ˝N ˝M

M˝e
����! M

N
N˝ı
���! N ˝M ˝N

e˝N
���! N

(22)

are the identity maps on M and N respectively. When such a map exists,

T ˝AN ' HomA-lin.M;T / (23)

for all A-modules T . In particular,

.N;e/' .M_;ev/. (24)

PROOF. From e we get an A-linear map

T ˝ eWT ˝AN ˝AM ! T;

which allows us to define an A-linear map

x 7! fx WT ˝AN ! HomA-lin.M;T / (25)

by setting
fx.m/D .T ˝ e/.x˝m/; x 2 T ˝AN , m 2M .

An A-linear map f WM ! T defines a map f ˝N WM ˝AN ! T ˝AN , and so a map
ıWA!M ˝AN defines an A-linear map

f 7! .f ˝N/.ı.1//WHomA-lin.M;T /! T ˝AN: (26)

When the first (resp. the second) composite in (22) is the identity, then (26) is a right
(resp. a left) inverse to (25).16 Therefore, when a map ı exists with the required properties,
the map (25) defined by e is an isomorphism. In particular, e defines an isomorphism

x 7! fx WM ˝AN ! HomA-lin.M;M/;

which sends ı.a/ to the endomorphism x 7! ax of M . This proves that ı is unique.
To get (24), take T DM in (23). 2

16Assume ı satisfies the condition in the statement of the lemma.
Let x 2 T ˝AN ; by definition, .fx˝N/.ı.1//D .T ˝e˝N/.x˝ı.1//. On tensoring the second sequence

in (22) with T , we obtain maps

T ˝AN ' T ˝AN ˝AA
T˝N˝ı
������! T ˝AN ˝AM ˝AN

T˝e˝N
������! T ˝AN

whose composite is the identity map on T ˝AN . As x D x˝1 maps to x˝ ı.1/ under T ˝N ˝ ı, this shows
that .fx˝N/.ı.1//D x.

Let f 2 HomA-lin.M;T /, and consider the commutative diagram

T ˝AN ˝AM T

M M ˝AN ˝AM M:

T ˝e

ı˝M M ˝e

f ˝N ˝M f

For m 2M , the two images of ı.1/˝m in T are f .m/ and f.f˝N/.ı.1//.m/, and so f D f.f˝N/.ı.1//.
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PROPOSITION 10.10. An A-module M is finitely generated and projective if and only if
there exists an A-linear map ıWA!M ˝M_ such that

.M ˝ ev/ı .ı˝M/D idM and

.M_˝ ı/ı .ev˝M_/D idM_ :

PROOF. H) : Suppose first that M is free with finite basis .ei /i2I , and let .e0i /i2I be the
dual basis of M_. The linear map ıWA!M ˝M_, 1 7!˙ei ˝ e

0
i , satisfies the conditions.

Let .fi /i2I be as in (10.4c). Then ı is defined for each module Mfi
, and the uniqueness

assertion in Lemma 10.9 implies that the ı’s for the different Mfi
’s patch together to give a

ı for M .
(H: On taking T DM in (23), we see thatM_˝AM 'EndA-lin.M/. If

P
i2I fi˝mi

corresponds to idM , so that
P
i2I fi .m/mi Dm for all m 2M , then

M
m 7!.fi .m//
��������! AI

.ai / 7!
P
aimi

���������!M

is a factorization of idM . Therefore M is a direct summand of a free module of finite rank.2

ASIDE 10.11. A module M over a ring A is said to be reflexive if the canonical map M !M__ is
an isomorphism. We have seen that for finitely generated modules “projective” implies “reflexive”,
but the converse is false. In fact, for a finite generated module M over an integrally closed noetherian
integral domain A, the following are equivalent (Bourbaki AC, VII �4, 2):

(a) M is reflexive;
(b) M is torsion-free and equals the intersection of its localizations at the prime ideals of A of

height 1;
(c) M is the dual of a finitely generated module.

For noetherian rings of global dimension � 2, for example, for regular local rings of Krull
dimension � 2, every finitely generated reflexive module is projective: for every finitely generated
module M over a noetherian ring A, there exists an exact sequence

Am! An!M ! 0

with m;n 2 N; on taking duals and forming the cokernel, we get an exact sequence

0!M_! An! Am!N ! 0I

if A has global dimension � 2, then M_ is projective, and if M is reflexive, then M ' .M_/_.17

17For those interested in general statements, here is a summary of the assumptions under which the canonical
morphisms of A-modules below are isomorphisms:

If P is finitely generated projective:

P
'
�! P__

A module P is finitely generated projective if and only if the following canonical map is an isomorphism

P_˝P
'
�! End.P /:

If P or P 0 is finitely generated projective:

P_˝P 0
'
�! Hom.P;P 0/:

If both P and P 0 or both P and M or both P 0 and M 0 are finitely generated projective

Hom.P;M/˝Hom.P 0;M 0/
'
�! Hom.P ˝P 0;M ˝M 0/:

In particular, for P or P 0 finitely generated projective

P_˝P 0_
'
�! .P ˝P 0/_:

(Georges Elencwajg on mathoverflow.net).
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ASIDE 10.12. For a finitely generated torsion-free module M over an integrally closed noetherian
integral domain A, there exists a free submodule L of M such that M=L is isomorphic an ideal a in
A (Bourbaki AC, VII, �4, Thm 6). When A is Dedekind, every ideal is projective, and so M 'L˚a.
In particular, M is projective. Therefore, the finitely generated projective modules over a Dedekind
domain are exactly the finitely generated torsion-free modules.

11 The Hilbert Nullstellensatz

Zariski’s lemma
In proving Zariski’s lemma, we shall need to use that the ring kŒX� contains infinitely many
distinct monic irreducible polynomials. When k is infinite, this is obvious, because the
polynomialsX�a, a 2 k, are distinct and irreducible. When k is finite, we can adapt Euclid’s
argument: if p1; : : : ;pr are monic irreducible polynomials in kŒX�, then p1 � � �pr C 1 is
divisible by a monic irreducible polynomial distinct from p1; : : : ;pr .

THEOREM 11.1 (ZARISKI’S LEMMA). Let k �K be fields. If K is finitely generated as a
k-algebra, then it is algebraic over k (hence finite over k, andK equals k if k is algebraically
closed).

PROOF. We shall prove this by induction on r , the smallest number of elements required to
generate K as a k-algebra. The case r D 0 being trivial, we may suppose that

K D kŒx1; : : : ;xr � with r � 1:

If K is not algebraic over k, then at least one xi , say x1, is not algebraic over k. Then, kŒx1�
is a polynomial ring in one symbol over k, and its field of fractions k.x1/ is a subfield of
K. Clearly K is generated as a k.x1/-algebra by x2; : : : ;xr , and so the induction hypothesis
implies that x2; : : : ;xr are algebraic over k.x1/. Proposition 5.5 shows that there exists a
c 2 kŒx1� such that cx2; : : : ; cxr are integral over kŒx1�. Let f 2K. For a sufficiently large
N , cNf 2 kŒx1; cx2; : : : ; cxr �, and so cNf is integral over kŒx1� by 5.3. When we apply this
statement to an element f of k.x1/, it shows that cNf 2 kŒx1� because kŒx1� is integrally
closed. Therefore, k.x1/D

S
N c
�NkŒx1�, but this is absurd, because kŒx1� (' kŒX�) has

infinitely many distinct monic irreducible polynomials that can occur as denominators of
elements of k.x1/. 2

Alternative proof of Zariski’s lemma 18

LEMMA 11.2. For an integral domain A, there does not exist an f 2AŒX� such that AŒX�f
is a field.

PROOF. Suppose, on the contrary, that AŒX�f is a field. Then f … A, and so f � 1 … A.
Write .f �1/�1 D g=f n with g 2 AŒX� and n� 1. Then

.f �1/g D f n D .1C .f �1//n D 1C .f �1/h

with h 2 AŒX�, and so .f �1/.g�h/D 1. Hence f �1 is a unit in A, which is absurd. 2

18A simplification of Swan’s simplication of a proof of Munshi — see www.math.uchicago.edu/~swan/.

www.math.uchicago.edu/~swan/
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LEMMA 11.3. Consider rings A � B . If B is integral over A, then A\B� D A�. In
particular, if B is a field, then so also is A.

PROOF. Let a be an element of A that becomes a unit in B , say, ab D 1 with b 2 B . There
exist a1; : : : ;an 2A such that bnCa1bn�1C�� �CanD 0. On multiplying through by an�1,
we find that b D�a1�� � ��anan�1 2 A, and so a 2 A�. 2

PROPOSITION 11.4. Let A be an integral domain, and suppose that there exists a maximal
ideal m in AŒX1; : : : ;Xn� such that A\mD .0/. Then there exists a nonzero element a in A
such that Aa is a field and AŒX1; : : : ;Xn�=m is a finite extension of Aa.

PROOF. Note that the condition A\mD .0/ implies that A (hence also Aa) is a subring of
the field K D AŒX1; : : : ;Xn�=m, and so the statement makes sense.

We argue by induction on n. When n D 0, A is a field, and the statement is trivial.
Therefore, suppose that n � 1, and regard AŒX1; : : : ;Xn� as a polynomial ring in n� 1
symbols over AŒXi �. Then m\AŒXi � ¤ .0/ because otherwise the induction hypothesis
would contradict Lemma 11.2. Let aiX

ni

i C�� � be a nonzero element of m\AŒXi �. The
image xi of Xi in K satisfies the equation

aix
n
i C�� � D 0;

and so K is integral over its subring Aa1���an
. By Lemma 11.3, Aa1���an

is a field, and K is
finite over it because it is integral (algebraic) and finitely generated. 2

We now prove Zariski’s lemma. Write K D kŒX1; : : : ;Xn�=m. According to the proposi-
tion, K is a finite extension of ka for some nonzero a 2 k, but because k is a field ka D k.

The Nullstellensatz

Recall that kal denotes an algebraic closure of the field k.

THEOREM 11.5 (NULLSTELLENSATZ). Every proper ideal a in kŒX1; : : : ;Xn� has a zero in
.kal/n

def
D kal�� � ��kal, i.e., there exists a point .a1; : : : ;an/2 .kal/n such that f .a1; : : : ;an/D

0 for all f 2 a.

PROOF. We have to show that there exists a k-algebra homomorphism kŒX1; : : : ;Xn�! kal

containing a in its kernel. Let m be a maximal ideal containing a. Then kŒX1; : : : ;Xn�=m
is a field, which is algebraic over k by Zariski’s lemma, and so there exists a k-algebra
homomorphism kŒX1; : : : ;Xn�=m! kal. The composite of this with the quotient map
kŒX1; : : : ;Xn�! kŒX1; : : : ;Xn�=m contains a in its kernel. 2

COROLLARY 11.6. When k is algebraically closed, the maximal ideals in kŒX1; : : : ;Xn�
are exactly the ideals .X1�a1; : : : ;Xn�an/, .a1; : : : ;an/ 2 kn.

PROOF. Clearly, kŒX1; : : : ;Xn�=.X1 � a1; : : : ;Xn � an/ ' k, and so .X1 � a1; : : : ;Xn �
an/ is maximal. Conversely, because k is algebraically closed, a proper ideal a has a
zero .a1; : : : ;an/ in kn. Let f 2 kŒX1; : : : ;Xn�; when we write f as a polynomial in
X1 � a1; : : : ;Xn � an, its constant term is f .a1; : : : ;an/. Therefore, if f 2 a, then f 2
.X1�a1; : : : ;Xn�an/. 2
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THEOREM 11.7 (STRONG NULLSTELLENSATZ). For an ideal a in kŒX1; : : : ;Xn�, letZ.a/
be the set of zeros of a in .kal/n. If a polynomial h 2 kŒX1; : : : ;Xn� is zero on Z.a/, then
some power of h lies in a.

PROOF. We may assume h ¤ 0. Let g1; : : : ;gm generate a, and consider the system of
mC1 equations in nC1 variables, X1; : : : ;Xn;Y;�

gi .X1; : : : ;Xn/ D 0; i D 1; : : : ;m

1�Yh.X1; : : : ;Xn/ D 0:

If .a1; : : : ;an;b/ satisfies the first m equations, then .a1; : : : ;an/ 2 Z.a/; consequently,
h.a1; : : : ;an/D 0, and .a1; : : : ;an;b/ doesn’t satisfy the last equation. Therefore, the equa-
tions are inconsistent, and so, according to the Nullstellensatz (11.5), the ideal

.g1; : : : ;gm;1�Yh/D kŒX1; : : : ;Xn;Y �

and there exist fi 2 kŒX1; : : : ;Xn;Y � such that

1D

mX
iD1

fi �gi CfmC1 � .1�Yh/.

On applying the homomorphism�
Xi 7!Xi
Y 7! h�1

WkŒX1; : : : ;Xn;Y �! k.X1; : : : ;Xn/

to the above equality, we obtain the identity

1D
X

i
fi .X1; : : : ;Xn;h

�1/ �gi .X1; : : : ;Xn/ (27)

in k.X1; : : : ;Xn/. Clearly

fi .X1; : : : ;Xn;h
�1/D

polynomial in X1; : : : ;Xn
hNi

for some Ni . Let N be the largest of the Ni . On multiplying (27) by hN we obtain an
identity

hN D
X

i
(polynomial in X1; : : : ;Xn/ �gi .X1; : : : ;Xn/;

which shows that hN 2 a. 2

PROPOSITION 11.8. The radical of an ideal a in a finitely generated k-algebra A is equal
to the intersection of the maximal ideals containing it: rad.a/D

T
m�am. In particular, if A

is reduced, then
T

m maximalmD 0.

PROOF. Because of the correspondence (2), p. 3, it suffices to prove this forAD kŒX1; : : : ;Xn�.
Let a be an ideal in kŒX1; : : : ;Xn�. Because rad.a/ is the smallest radical ideal containing

a and maximal ideals are radical rad.a/�
T

m�am. Conversely, suppose h is contained in
all maximal ideals containing a, and let .a1; : : : ;an/ 2Z.a/. The evaluation map

f 7! f .a1; : : : ;an/WkŒX1; : : : ;Xn�! kal

has image a subring of kal which is algebraic over k, and hence is a field (see �1). Therefore,
the kernel of the map is a maximal ideal, which contains a, and therefore also contains h.
This shows that h.a1; : : : ;an/ D 0, and we conclude from the strong Nullstellensatz that
h 2 rad.a/. 2
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12 The max spectrum of a ring
Let A be a ring, and let V be the set of maximal ideals in A. For an ideal a in A, let

V.a/D fm 2 V jm� ag:

PROPOSITION 12.1. There are the following relations:
(a) a� b H) V.a/� V.b/I
(b) V.0/D V ; V.A/D ;I

(c) V.ab/D V.a\b/D V.a/[V.b/I
(d) V.

P
i2I ai /D

T
i2I V.ai / for every family of ideals .ai /i2I .

PROOF. The first two statements are obvious. For (c), note that

ab� a\b� a;b H) V.ab/� V.a\b/� V.a/[V.b/:

For the reverse inclusions, observe that if m … V.a/[V.b/, then there exist an f 2 aXm
and a g 2 bXm; but then fg 2 abXm, and so m … V.ab/. For (d) recall that, by definition,P

ai consists of all finite sums of the form
P
fi , fi 2 ai . Thus (d) is obvious. 2

Statements (b), (c), and (d) show that the sets V.a/ satisfy the axioms to be the closed
subsets for a topology on V : both the whole space and the empty set are closed; a finite
union of closed sets is closed; an arbitrary intersection of closed sets is closed. This topology
is called the Zariski topology on V . We let specm.A/ denote the set of maximal ideals in A
endowed with its Zariski topology.

For h 2 A, let
D.h/D fm 2 V j h …mg.

Then D.h/ is open in V , being the complement of V..h//. If S is a set of generators for an
ideal a, then

V XV.a/D
[

h2S
D.h/;

and so the sets D.h/ form a base for the topology on V . Note that, because maximal ideals
are prime,

D.h1 � � �hn/DD.h1/\� � �\D.hn/:

For every element h of A, specm.Ah/ ' D.h/ (see 6.4), and for every ideal a in A,
specm.A/=a' V.a/ (isomorphisms of topological spaces).

The ideals in a finite product of rings AD A1� � � ��An are all of the form a1� � � ��an
with ai an ideal in Ai (cf. p.7). The prime (resp. maximal) ideals are those of the form

A1� � � ��Ai�1�ai �AiC1� � � ��An

with ai prime (resp. maximal). It follows that specm.A/D
F
i specm.Ai / (disjoint union of

open subsets).
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The max spectrum of a finitely generated k-algebra
Let k be a field, and let A be a finitely generated k-algebra. For any maximal ideal m of A,
the field k.m/ def

DA=m is a finitely generated k-algebra, and so k.m/ is finite over k (Zariski’s
lemma, 11.1). In particular, it equals k.m/D k when k is algebraically closed.

Now fix an algebraic closure kal. The image of any k-algebra homomorphism A! kal

is a subring of kal which is an integral domain algebraic over k and therefore a field (see
�1). Hence the kernel of the homomorphism is a maximal ideal in A. In this way, we get a
surjective map

Homk-alg.A;k
al/! specm.A/: (28)

Two homomorphisms A! kal with the same kernel m factor as

A! k.m/! kal;

and so differ by an automorphism19 of kal. Therefore, the fibres of (28) are exactly the orbits
of Gal.kal=k/. When k is perfect, each extension k.m/=k is separable, and so each orbit
has Œk.m/Wk� elements, and when k is algebraically closed, the map (28) is a bijection.

Set AD kŒX1; : : : ;Xn�=a. Then to give a homomorphism A! kal is the same as giving
an n-tuple .a1; : : : ;an/ of elements of kal (the images of the Xi ) such that f .a1; : : : ;an/D 0
for all f 2 a, i.e., an element of the zero-set Z.a/ of a. The homomorphism corresponding
to .a1; : : : ;an/ maps k.m/ isomorphically onto the subfield of kal generated by the ai ’s.
Therefore, we have a canonical surjection

Z.a/! specm.A/ (29)

whose fibres are the orbits of Gal.kal=k/. When the field k is perfect, each orbit has
ŒkŒa1; : : : ;an� W k�-elements, and when k is algebraically closed, Z.a/' specm.A/.

ASIDE 12.2. Let k D R or C. Let X be a set and let A be a k-algebra of k-valued functions on X .
In analysis, X is called the spectrum of A if, for each k-algebra homomorphism 'WA! k, there
exists a unique x 2X such that '.f /D f .x/ for all f 2 A, and every x arises from a ' (cf. Cartier
2007, 3.3.1, footnote).

Let A be a finitely generated algebra over an arbitrary algebraically closed field k, and let
X D specm.A/. An element f of A defines a k-valued function

m 7! f modm

on X . When A is reduced, Proposition 11.8 shows that this realizes A as a ring of k-valued functions
on X . Moreover, because (29) is an isomorphism in this case, for each k-algebra homomorphism
'WA! k, there exists a unique x 2 X such that '.f /D f .x/ for all f 2 A. In particular, when
k D C and A is reduced, specm.A/ is the spectrum of A in the sense of analysis.

Jacobson rings
DEFINITION 12.3. A ring A is Jacobson if every prime ideal in A is an intersection of
maximal ideals.

19Let f and g be two k-homomorphisms from a finite field extension k0 of k into kal. We consider the set
of pairs .K;˛/ in which ˛ is a k-homomorphism from a subfield K of kal containing f .k0/ into kal such that
˛ ıf D g. The set is nonempty, and Zorn’s lemma can be applied to show that it has a maximal element .K0;˛0/.
For such an element K0 will be algebraically closed, and hence equal to kal.
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A field is Jacobson. The ring Z is Jacobson because every nonzero prime ideal is
maximal and .0/D

T
pD2;3;5;:::.p/. A principal ideal domain (more generally, a Dedekind

domain) is Jacobson if it has infinitely many maximal ideals.20 A local ring is Jacobson
if and only if its maximal ideal is its only prime ideal. Proposition 11.8 shows that every
finitely generated algebra over a field is Jacobson.

PROPOSITION 12.4. The radical of an ideal in a Jacobson ring is equal to the intersection of
the maximal ideals containing it. (Therefore, the radical ideals are precisely the intersections
of maximal ideals.)

PROOF. Proposition 2.5 says that the radical of an ideal is an intersection of prime ideals,
and so this follows from the definition of a Jacobson ring. 2

ASIDE 12.5. Any ring of finite type over a Jacobson ring is a Jacobson ring (EGA IV 10.4.6).
Moreover, if B is of finite type over A and A is Jacobson, then the map A! B defines a continuous
map specm.B/! specm.A/.

The topological space specm.A/
We study more closely the Zariski topology on specm.A/. For each subset S of A, let V.S/
denote the set of maximal ideals containing S , and for each subsetW of specm.A/, let I.W /
denote the intersection of the maximal ideals in W :

S � A; V.S/D fm 2 specm.A/ j S �mg;

W � specm.A/; I.W /D
\

m2W
m:

Thus V.S/ is a closed subset of specm.A/ and I.W / is a radical ideal in A. If V.a/�W ,
then a � I.W /, and so V.a/ � VI.W /. Therefore VI.W / is the closure of W (smallest
closed subset of specm.A/ containing W ); in particular, VI.W /DW if W is closed.

PROPOSITION 12.6. Let V be a closed subset of specm.A/.
(a) The points of V are closed for the Zariski topology.
(b) If A is noetherien, then every ascending chain of open subsets U1 � U2 � � � � of V

eventually becomes constant; equivalently, every descending chain of closed subsets of V
eventually becomes constant.

(c) If A is noetherian, every open covering of V has a finite subcovering.

PROOF. (a) Clearly fmg D V.m/, and so it is closed.
(b) We prove the second statement. A sequence V1 � V2 � �� � of closed subsets of V

gives rise to a sequence of ideals I.V1/� I.V2/� : : :, which eventually becomes constant.
If I.Vm/D I.VmC1/, then VI.Vm/D VI.VmC1/, i.e., Vm D VmC1.

(c) Let V D
S
i2I Ui with each Ui open. Choose an i0 2 I ; if Ui0 ¤ V , then there

exists an i1 2 I such that Ui0 ¦ Ui0 [Ui1 . If Ui0 [Ui1 ¤ V , then there exists an i2 2 I etc..
Because of (b), this process must eventually stop. 2

20In a principal ideal domain, a nonzero element a factors as aD upr11 � � �p
rs
s with u a unit and the pi prime.

The only prime divisors of a are p1; : : : ;ps , and so a is contained in only finitely many prime ideals. Similarly,
in a Dedekind domain, a nonzero ideal a factors as aD p

r1
1 � � �p

rs
s with the pi prime ideals (cf. 14.17 below),

and p1; : : : ;pr are the only prime ideals containing a. On taking aD .a/, we see that again a is contained in
only finitely many prime ideals.
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A topological space V having the property (b) is said to be noetherian. This condition
is equivalent to the following: every nonempty set of closed subsets of V has a minimal
element. A topological space V having property (c) is said to be quasicompact (by Bourbaki
at least; others call it compact, but Bourbaki requires a compact space to be Hausdorff). The
proof of (c) shows that every noetherian space is quasicompact. Since an open subspace of a
noetherian space is again noetherian, it will also be quasicompact.

DEFINITION 12.7. A nonempty topological space is said to be irreducible if it is not the
union of two proper closed subsets. Equivalent conditions: any two nonempty open subsets
have a nonempty intersection; every nonempty open subset is dense.

If an irreducible space W is a finite union of closed subsets, W DW1[ : : :[Wr , then
W DW1 or W2[ : : :[Wr ; if the latter, then W DW2 or W3[ : : :[Wr , etc.. Continuing in
this fashion, we find that W DWi for some i .

The notion of irreducibility is not useful for Hausdorff topological spaces, because the
only irreducible Hausdorff spaces are those consisting of a single point — two points would
have disjoint open neighbourhoods.

PROPOSITION 12.8. LetW be a closed subset of specm.A/. IfW is irreducible, then I.W /
is prime; the converse is true if A is a Jacobson ring. In particular, the max spectrum of a
Jacobson ring A is irreducible if and only if the nilradical of A is prime.

PROOF. ): Let W be an irreducible closed subset of specm.A/, and suppose fg 2 I.W /.
Then fg lies in each m in W , and so either f 2m or g 2m; hence W � V.f /[V.g/, and
so

W D .W \V.f //[ .W \V.g//:

As W is irreducible, one of these sets, say W \V.f /, must equal W . But then f 2 I.W /.
We have shown that I.W / is prime.
(: Assume I.W / is prime, and suppose W D V.a/[V.b/ with a and b radical ideals

— we have to show that W equals V.a/ or V.b/. Recall that V.a/[V.b/D V.a\b/ (see
12.1c) and that a\ b is radical; hence I.W /D a\ b (by 12.4). If W ¤ V.a/, then there
exists an f 2 aXI.W /. For all g 2 b,

fg 2 a\bD I.W /:

Because I.W / is prime, this implies that b� I.W /; therefore W � V.b/. 2

Thus, in the max spectrum of a Jacobson ring, there are one-to-one correspondences

radical ideals $ closed subsets

prime ideals $ irreducible closed subsets

maximal ideals $ one-point sets:

EXAMPLE 12.9. Let f 2 kŒX1; : : : ;Xn�. According to Theorem 4.6, kŒX1; : : : ;Xn� is a
unique factorization domain, and so .f / is a prime ideal if and only if f is irreducible (4.1).
Thus

V.f / is irreducible ” f is irreducible.

On the other hand, suppose f factors,

f D
Y
f
mi

i ; fi distinct irreducible polynomials.
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Then

.f /D
\
.f

mi

i /; .f
mi

i / distinct ideals,

rad..f //D
\
.fi /; .fi / distinct prime ideals,

V.f /D
[
V.fi /; V .fi / distinct irreducible algebraic sets.

PROPOSITION 12.10. Let V be a noetherian topological space. Then V is a finite union of
irreducible closed subsets, V D V1[ : : :[Vm. If the decomposition is irredundant in the
sense that there are no inclusions among the Vi , then the Vi are uniquely determined up to
order.

PROOF. Suppose that V can not be written as a finite union of irreducible closed subsets.
Then, because V is noetherian, there will be a closed subset W of V that is minimal
among those that cannot be written in this way. But W itself cannot be irreducible, and so
W DW1[W2, with each Wi a proper closed subset of W . Because W is minimal, both W1
and W2 can be expressed as finite unions of irreducible closed subsets, but then so can W .
We have arrived at a contradiction.

Suppose that
V D V1[ : : :[Vm DW1[ : : :[Wn

are two irredundant decompositions. Then Vi D
S
j .Vi \Wj /, and so, because Vi is

irreducible, Vi D Vi \Wj for some j . Consequently, there exists a function f W f1; : : : ;mg!
f1; : : : ;ng such that Vi � Wf .i/ for each i . Similarly, there is a function gW f1; : : : ;ng !
f1; : : : ;mg such that Wj � Vg.j / for each j . Since Vi � Wf .i/ � Vgf .i/, we must have
gf .i/ D i and Vi D Wf .i/; similarly fg D id. Thus f and g are bijections, and the
decompositions differ only in the numbering of the sets. 2

The Vi given uniquely by the proposition are called the irreducible components of V .
They are the maximal closed irreducible subsets of V . In Example 12.9, the V.fi / are the
irreducible components of V.f /.

COROLLARY 12.11. A radical ideal a in a noetherian Jacobson ring is a finite intersection
of prime ideals, aD p1\ : : :\pn; if there are no inclusions among the pi , then the pi are
uniquely determined up to order.

PROOF. Write V.a/ as a union of its irreducible components, V.a/D
S
Vi , and take pi D

I.Vi /. 2

COROLLARY 12.12. A noetherian topological space has only finitely many connected
components (each of which is open).

PROOF. Each connected component is closed, hence noetherian, and so is a finite union of
its irreducible components. Each of these is an irreducible component of the whole space,
and so there can be only finitely many. 2

REMARK 12.13. (a) An irreducible topological space is connected, but a connected topo-
logical space need not be irreducible. For example, Z.X1X2/ is the union of the coordinate
axes in k2, which is connected but not irreducible. A closed subset V of specm.A/ is not
connected if and only if there exist ideals a and b such that a\bD I.V / and aCbD A.
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(b) A Hausdorff space is noetherian if and only if it is finite, in which case its irreducible
components are the one-point sets.

(c) In a noetherian ring, every proper ideal a has a decomposition into primary ideals:
aD

T
qi (see �14). For radical ideals, this becomes a simpler decomposition into prime

ideals, as in the corollary. For an ideal .f / in kŒX1; : : : ;Xn� with f D
Q
f
mi

i , it is the
decomposition .f /D

T
.f

mi

i / noted in Example 12.9.

Maps of max spectra
Let 'WA! B be a homomorphism of finitely generated k-algebras (k a field). Because B is
finitely generated over k, its quotient B=m by any maximal ideal m is a finite field extension
of k (Zariski’s lemma, 11.1). Therefore the image of A in B=m is an integral domain finite
over k, and hence is a field (see �1). Since this image is isomorphic to A='�1.m/, this
shows that the ideal '�1.m/ is maximal in A. Therefore ' defines a map

'�Wspecm.B/! specm.A/; m 7! '�1.m/;

which is continuous because .'�/�1.D.f // DD.'.f //. In this way, specm becomes a
functor from finitely generated k-algebras to topological spaces.

THEOREM 12.14. Let 'WA! B be a homomorphism of finitely generated k-algebras. Let
U be a nonempty open subset of specm.B/, and let '�.U /� be the closure of its image in
specm.A/. Then '�.U / contains a nonempty open subset of each irreducible component of
'�.U /�.

PROOF. Let W D specm.B/ and V D specm.A/, so that '� is a continuous map W ! V .
We first prove the theorem in the case that ' is an injective homomorphism of integral

domains. For some b ¤ 0, D.b/� U . According to Proposition 12.15 below, there exists
a nonzero element a 2 A such that every homomorphim ˛WA! kal such that ˛.a/ ¤ 0
extends to a homomorphism ˇWB! kal such that ˇ.b/¤ 0. Let m 2D.a/, and choose ˛ to
be a homomorphism A! kal with kernel m. The kernel of ˇ is a maximal ideal n 2D.b/
such that '�1.n/Dm, and so D.a/� '�.D.b//.

We now prove the general case. If W1; : : : ;Wr are the irreducible components of W ,
then '�.W /� is a union of the sets '�.Wi /�, and any irreducible component C of '�.U /�

is contained in one of '�.Wi /�, say '�.W1/�. Let qD I.W1/ and let pD '�1.q/. Because
W1 is irreducible, they are both prime ideals. The homomorphism 'WA! B induces an
injective homomorphism x'WA=p! B=q, and x'� can be identified with the restriction of '�

to W1. From the first case, we know that x'�.U \W1/ contains a nonempty open subset of
C , which implies that '�.U / does also. 2

In the next two statements, A and B are arbitrary commutative rings — they need not be
k-algebras.

PROPOSITION 12.15. Let A � B be integral domains with B finitely generated as an
algebra over A, and let b be a nonzero element of B . Then there exists an element a¤ 0 in A
with the following property: every homomorphism ˛WA!˝ from A into an algebraically
closed field ˝ such that ˛.a/¤ 0 can be extended to a homomorphism ˇWB!˝ such that
ˇ.b/¤ 0.

We first need a lemma.
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LEMMA 12.16. LetB �A be integral domains, and assumeB DAŒt�DAŒT �=a. Let c�A
be the ideal of leading coefficients of the polynomials in a. Then every homomorphism
˛WA!˝ from A into an algebraically closed field ˝ such that ˛.c/¤ 0 can be extended
to a homomorphism of B into ˝.

PROOF. If aD 0, then cD 0, and every ˛ extends. Thus we may assume a¤ 0. Let ˛ be a
homomorphism A!˝ such that ˛.c/¤ 0. Then there exist polynomials amTmC�� �Ca0
in a such that ˛.am/¤ 0, and we choose one, denoted f , of minimum degree. Because
B ¤ 0, the polynomial f is nonconstant.

Extend ˛ to a homomorphism AŒT �!˝ŒT �, again denoted ˛, by sending T to T , and
consider the subset ˛.a/ of ˝ŒT �.

FIRST CASE: ˛.a/ DOES NOT CONTAIN A NONZERO CONSTANT. If the ˝-subspace
of ˝ŒT � spanned by ˛.a/ contained 1, then so also would ˛.a/,21 contrary to hypothesis.
Because

T �
P
ci˛.gi /D

P
ci˛.giT /; ci 2˝; gi 2 a;

this ˝-subspace an ideal, which we have shown to be proper, and so it has a zero c in ˝.
The composite of the homomorphisms

AŒT �
˛
�!˝ŒT � �!˝; T 7! T 7! c;

factors through AŒT �=aD B and extends ˛.
SECOND CASE: ˛.a/ CONTAINS A NONZERO CONSTANT. This means that a contains a

polynomial

g.T /D bnT
n
C�� �Cb0 such that ˛.b0/¤ 0; ˛.b1/D ˛.b2/D �� � D 0:

On dividing f .T / into g.T / we obtain an equation

admg.T /D q.T /f .T /C r.T /; d 2 N; q;r 2 AŒT �; degr < m:

When we apply ˛, this becomes

˛.am/
d˛.b0/D ˛.q/˛.f /C˛.r/:

Because ˛.f / has degree m> 0, we must have ˛.q/D 0, and so ˛.r/ is a nonzero constant.
After replacing g.T / with r.T /, we may suppose n < m. If mD 1, such a g.T / can’t exist,
and so we may suppose m> 1 and (by induction) that the lemma holds for smaller values of
m.

For h.T / D crT r C cr�1T r�1C �� � C c0, let h0.T / D cr C �� � C c0T r . Then the A-
module generated by the polynomials T sh0.T /, s � 0, h2 a, is an ideal a0 inAŒT �. Moreover,
a0 contains a nonzero constant if and only if a contains a nonzero polynomial cT r , which
implies t D 0 and AD B (since B is an integral domain).

When a0 does not contain a nonzero constant, we set B 0 D AŒT �=a0 D AŒt 0�. Then a0

contains the polynomial g0 D bnC �� �C b0T n, and ˛.b0/¤ 0. Because degg0 < m, the
induction hypothesis implies that ˛ extends to a homomorphism B 0!˝. Therefore, there
exists a c 2˝ such that, for all h.T /D crT rC cr�1T r�1C�� �C c0 2 a,

h0.c/D ˛.cr/C˛.cr�1/cC�� �C c0c
r
D 0:

On taking h D g, we see that c D 0, and on taking h D f , we obtain the contradiction
˛.am/D 0. 2

21Use that, if a system of linear equation with coefficients in a field k has a solution in some larger field, then
it has a solution in k.
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SKETCH OF PROOF (OF 12.15). Suppose that we know the proposition in the case that B
is generated by a single element, and write B D AŒt1; : : : ; tn�. Then there exists an element
bn�1 such that any homomorphism ˛WAŒt1; : : : ; tn�1�!˝ such that ˛.bn�1/¤ 0 extends
to a homomorphism ˇWB!˝ such that ˇ.b/¤ 0. Continuing in this fashion (with bn�1
for b), we eventually obtain an element a 2 A with the required property.

Thus we may assume B D AŒt�. Let a be the kernel of the homomorphism T 7! t ,
AŒT �! AŒt�.

Case (i). The ideal aD .0/. Write

b D f .t/D a0t
n
Ca1t

n�1
C�� �Can; ai 2 A;

and take a D a0. If ˛WA!˝ is such that ˛.a0/¤ 0, then there exists a c 2˝ such that
f .c/¤ 0, and we can take ˇ to be the homomorphism

P
di t

i 7!
P
˛.di /c

i .
Case (ii). The ideal a¤ .0/. Let f .T /D amTmC�� �Ca0, am ¤ 0, be an element of

a of minimum degree. Let h.T / 2 AŒT � represent b. Since b ¤ 0, h … a. Because f is
irreducible over the field of fractions of A, it and h are coprime over that field. In other
words, there exist u;v 2 AŒT � and a nonzero c 2 A such that

uhCvf D c:

It follows now that cam satisfies our requirements, for if ˛.cam/¤ 0, then ˛ can be extended
to ˇWB!˝ by the lemma, and ˇ.u.t/ �b/D ˇ.c/¤ 0, and so ˇ.b/¤ 0. 2

REMARK 12.17. In case (ii) of the last proof, both b and b�1 are algebraic over A, and so
there exist equations

a0b
m
C�� �Cam D 0; ai 2 A; a0 ¤ 0I

a00b
�n
C�� �Ca0n D 0; a0i 2 A; a00 ¤ 0:

One can show that aD a0a00 has the property required by the proposition.

ASIDE 12.18. The spectrum spec.A/ of a ring A is the set of prime ideals in A endowed with the
topology for which the closed subsets are those of the form

V.a/D fp j p� ag; a an ideal in A:

Thus specm.A/ is the subspace of spec.A/ consisting of the closed points. When A is Jacobson,
the map U 7! U \ specm.A/ is a bijection from the set of open subsets of spec.A/ onto the set of
open subsets of specm.A/; therefore specm.A/ and spec.A/ have the same topologies — only the
underlying sets differ.

13 Dimension theory for finitely generated k-algebras
Throughout this section, A is both a finitely generated algebra over field k and an integral
domain. We define the transcendence degree of A over k, trdegkA, to be the transcendence
degree over k of the field of fractions of A (see �8 of my notes Fields and Galois Theory).
Thus A has transcendence degree d if it contains an algebraically independent set of d
elements, but no larger set (ibid. 8.12).
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PROPOSITION 13.1. For any linear forms `1; : : : ; `m in X1; : : : ;Xn, the quotient ring

kŒX1; : : : ;Xn�=.`1; : : : ; `m/

is an integral domain of transcendence degree equal to the dimension of the subspace of kn

defined by the equations
`i D 0; i D 1; : : : ;m:

PROOF. This follows from the more precise statement:

Let c be an ideal in kŒX1; : : : ;Xn� generated by linearly independent linear
forms `1; : : : ; `r , and let Xi1 ; : : : ;Xin�r

be such that

f`1; : : : ; `r ;Xi1 ; : : : ;Xin�r
g

is a basis for the linear forms in X1; : : : ;Xn. Then

kŒX1; : : : ;Xn�=c' kŒXi1 ; : : : ;Xin�r
�:

This is obvious if the forms `i are X1; : : : ;Xr . In the general case, because fX1; : : : ;Xng
and f`1; : : : ; `r ;Xi1 ; : : : ;Xin�r

g are both bases for the linear forms, each element of one set
can be expressed as a linear combination of the elements of the other. Therefore,

kŒX1; : : : ;Xn�D kŒ`1; : : : ; `r ;Xi1 ; : : : ;Xin�r
�;

and so

kŒX1; : : : ;Xn�=cD kŒ`1; : : : ; `r ;Xi1 ; : : : ;Xin�r
�=c

' kŒXi1 ; : : : ;Xin�r
�: 2

PROPOSITION 13.2. For any irreducible polynomial f in kŒX1; : : : ;Xn�, the quotient ring
kŒX1; : : : ;Xn�=.f / has transcendence degree n�1.

PROOF. Let
kŒx1; : : : ;xn�D kŒX1; : : : ;Xn�=.f /; xi DXi C .f /;

and let k.x1; : : : ;xn/ be the field of fractions of kŒx1; : : : ;xn�. Since f is not zero, some Xi ,
say, Xn, occurs in it. Then Xn occurs in every nonzero multiple of f , and so no nonzero
polynomial in X1; : : : ;Xn�1 belongs to .f /. This means that x1; : : : ;xn�1 are algebraically
independent. On the other hand, xn is algebraic over k.x1; : : : ;xn�1/, and so fx1; : : : ;xn�1g
is a transcendence basis for k.x1; : : : ;xn/ over k. 2

PROPOSITION 13.3. For every nonzero prime ideal p in a k-algebra A,

trdegk.A=p/ < trdegk.A/:

PROOF. We may suppose

AD kŒX1; : : : ;Xn�=aD kŒx1; : : : ;xn�:

For f 2 A, let xf denote the image of f in A=p, so that A=p D kŒxx1; : : : ; xxn�. Let d D
trdegkA=p, and number the Xi so that xx1; : : : ; xxd are algebraically independent (for a proof
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that this is possible, see 8.9 of my notes Fields and Galois Theory). I shall show that, for
any nonzero f 2 p, the d C1 elements x1; : : : ;xd ;f are algebraically independent, which
shows that trdegkA� d C1.

Suppose otherwise. Then there is a nontrivial algebraic relation, which we can write

a0.x1; : : : ;xd /f
m
Ca1.x1; : : : ;xd /f

m�1
C�� �Cam.x1; : : : ;xd /D 0;

with ai 2 kŒX1; : : : ;Xd � and a0 ¤ 0. Because A is an integral domain, we can cancel a
power of f if necessary to make am.x1; : : : ;xd / nonzero. On applying the homomorphism
A! A=p to the above equality, we find that

am.xx1; : : : ; xxd /D 0;

which contradicts the algebraic independence of xx1; : : : ; xxd . 2

PROPOSITION 13.4. Let A be a unique factorization domain. If p is a prime ideal in A such
that trdegkA=pD trdegkA�1, then pD .f / for some f 2 A.

PROOF. The ideal p is nonzero because otherwise A and A=p would have the same tran-
scendence degree. Therefore p contains a nonzero polynomial, and even an irreducible
polynomial f , because it is prime. According to (4.1), the ideal .f / is prime. If .f /¤ p,
then

trdegkA=p
13.3
> trdegkA=.f /

13.2
D trdegkA�1;

which contradicts the hypothesis. 2

THEOREM 13.5. Let f 2 A be neither zero nor a unit, and let p be a prime ideal that is
minimal among those containing .f /; then

trdegkA=pD trdegkA�1:

We first need a lemma.

LEMMA 13.6. Let A be an integrally closed integral domain, and let L be a finite extension
of the field of fractions K of A. If ˛ 2 L is integral over A, then NmL=K˛ 2 A, and ˛
divides NmL=K ˛ in the ring AŒ˛�.

PROOF. Let Xr Car�1Xr�1C�� �Ca0 be the minimum polynomial of ˛ over K. Then

r divides the degree n of L=K, and NmL=K.˛/D˙a
n
r

0 (see 5.40 of my notes Fields and
Galois Theory). Moreover, a0 lies in A by (5.9). From the equation

0D ˛.˛r�1Car�1˛
r�2
C�� �Ca1/Ca0

we see that ˛ divides a0 in AŒ˛�, and therefore it also divides NmL=K ˛. 2

PROOF (OF THEOREM 13.5). Write rad.f / as an irredundant intersection of prime ideals
rad.f /D p1\ : : :\pr (see 12.11). Then V.a/D V.p1/[� � �[V.pr/ is the decomposition
of V.a/ into its irreducible components. There exists an m0 2 V.p1/X

S
i�2V.pi / and an

open neighbourhood D.h/ of m0 disjoint from
S
i�2V.pi /. The ring Ah (resp. Ah=S�1p)

is an integral domain with the same transcendance degree as A (resp. A=p) — in fact, with
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the same field of fractions. In Ah, rad.f
1
/D rad.f /e D pe1. Therefore, after replacing A

with Ah, we may suppose that rad.f / is prime, say, equal to p.
According to the Noether normalization theorem (5.11), there exist algebraically inde-

pendent elements x1; : : : ;xd in A such that A is a finite kŒx1; : : : ;xd �-algebra. Note that
d D trdegkA. According to the lemma, f0

def
D Nm.f / lies in kŒx1; : : : ;xd �, and we shall

show that p\kŒx1; : : : ;xd �D rad.f0/. Therefore, the homomorphism

kŒx1; : : : ;xd �=rad.f0/! A=p

is injective. As it is also finite, this implies that

trdegkA=pD trdegkkŒx1; : : : ;xd �=rad.f0/
13.2
D d �1;

as required.
By assumption A is finite (hence integral) over its subring kŒx1; : : : ;xd �. The lemma

shows that f divides f0 in A, and so f0 2 .f /� p. Hence .f0/� p\kŒx1; : : : ;xd �, which
implies

rad.f0/� p\kŒx1; : : : ;xd �

because p is radical. For the reverse inclusion, let g 2 p\kŒx1; : : : ;xd �. Then g 2 rad.f /,
and so gm D f h for some h 2 A, m 2 N. Taking norms, we find that

gme D Nm.f h/D f0 �Nm.h/ 2 .f0/;

where e is the degree of the extension of the fields of fractions, which proves the claim. 2

COROLLARY 13.7. Let p be a minimal nonzero prime ideal in A; then trdegk .A=p/ D
trdegk .A/�1.

PROOF. Let f be a nonzero element of p. Then f is not a unit, and p is minimal among the
prime ideals containing f . 2

THEOREM 13.8. The length d of any maximal (i.e., nonrefinable) chain of distinct prime
ideals

pd � pd�1 � �� � � p0 (30)

in A is trdegk .A/. In particular, every maximal ideal of A has height trdegk .A/, and so the
Krull dimension of A is equal to trdegk .A/.

PROOF. From (13.7), we find that

trdegk.A/D trdegk.A=p1/C1D �� � D trdegk.A=pd /Cd:

But pd is maximal, and soA=pd is a finite field extension of k. In particular, trdegk.A=pd /D
0. 2

EXAMPLE 13.9. Let f .X;Y / and g.X;Y / be nonconstant polynomials with no common
factor. Then kŒX;Y �=.f / has Krull dimension 1, and so kŒX;Y �=.f;g/ has dimension zero.

EXAMPLE 13.10. We classify the prime ideals p in AD kŒX;Y �. If A=p has dimension
2, then pD .0/. If A=p has dimension 1, then pD .f / for some irreducible polynomial
f of A (by 13.4). Finally, if A=p has dimension zero, then p is maximal. Thus, when k
is algebraically closed, the prime ideals in kŒX;Y � are exactly the ideals .0/, .f / (with f
irreducible), and .X �a;Y �b/ (with a;b 2 k).
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REMARK 13.11. Let A be a finitely generated k-algebra (not necessarily an integral do-
main). Every maximal chain of prime ideals in A ending in fixed prime ideal p has length
trdegk.A=p/, and so the Krull dimension of A is max.trdegk.A=p// where p runs over the
minimal prime ideals of A. In the next section, we show that a noetherian ring has only
finitely many minimal prime ideals, and so the Krull dimension of A is finite.

If x1; : : : ;xm is an algebraically independent set of elements of A such that A is a finite
kŒx1; : : : ;xm�-algebra, then dimADm.

14 Primary decompositions
In this section, A is an arbitrary commutative ring.

DEFINITION 14.1. An ideal q in A is primary if it is proper and

ab 2 q, b … q H) an 2 q for some n� 1:

Thus, a proper ideal q in A is primary if and only if all zero-divisors in A=q are nilpotent. A
radical ideal is primary if and only if it is prime. An ideal .m/ in Z is primary if and only if
m is a power of a prime.

PROPOSITION 14.2. The radical of a primary ideal q is a prime ideal containing q, and
it is contained in every other prime ideal containing q (i.e., it is the smallest prime ideal
containing p).

PROOF. Suppose ab 2 rad.q/ but b … rad.q/. Then some power, say anbn, of ab lies in q,
but bn … q, and so a 2 rad.q/. This shows that rad.q/ is primary, and hence prime (because
it is radical).

Let p be a second prime ideal containing q, and let a 2 rad.q/. For some n, an 2 q� p,
which implies that a 2 p. 2

When q is a primary ideal and p is its radical, we say that q is p-primary.

PROPOSITION 14.3. Every ideal q whose radical is a maximal ideal m is primary (in fact,
m-primary); in particular, every power of a maximal ideal m is m-primary.

PROOF. Every prime ideal containing q contains its radical m, and therefore equals m. This
shows that A=a is local with maximal ideal m=a. Therefore, every element of A=a is either
a unit, and hence is not a zero-divisor, or it lies in m=a, and hence is nilpotent. 2

PROPOSITION 14.4. Let 'WA! B be a homomorphism of rings. If q is a p-primary ideal
in B , then qc

def
D '�1.q/ is a pc-primary ideal in A.

PROOF. The map A=qc! B=q is injective, and so every zero-divisor in A=qc is nilpotent.
This shows that qc is primary, and therefore rad.qc/-primary. But (see 2.10), rad.qc/ D
rad.q/c D pc , as claimed. 2

LEMMA 14.5. Let q and p be a pair of ideals in A such that q� p� rad.q/ and

ab 2 q H) a 2 p or b 2 q. (31)

Then p is a prime ideal and q is p-primary.
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PROOF. Clearly q is primary, hence rad.q/-primary, and rad.q/ is prime. By assumption
p � rad.q/, and it remains to show that they are equal. Let a 2 rad.q/, and let n be the
smallest positive integer such that an 2 q. If nD 1, then a 2 q � p; on the other hand, if
n > 1, then an D aan�1 2 q and an�1 … q, and so a 2 p by (31). 2

PROPOSITION 14.6. A finite intersection of p-primary ideals is p-primary.

PROOF. Let q1; : : : ;qn be p-primary, and let q D q1\ : : :\ qn. We show that the pair of
ideals q� p satisfies the conditions of (14.5).

Let a 2 p; since some power of a belongs to each qi , a sufficiently high power of it will
belong to all of them, and so p� rad.q/.

Let ab 2 q but a … p. Then ab 2 qi but a … p, and so b 2 qi . Since this is true for all i ,
we have that b 2 q. 2

The minimal prime ideals of an ideal a are the minimal elements of the set of prime
ideals containing a.

DEFINITION 14.7. A primary decomposition of an ideal a is a finite set of primary ideals
whose intersection is a. A primary decomposition S of a is minimal if

(a) the prime ideals rad.q/, q 2 S , are distinct, and
(b) no element of S can be omitted, i.e., for no q0 2 S is q0 �

T
fq j q 2 S , q¤ q0g.

If a admits a primary decomposition, then it admits a minimal primary decomposition,
because Proposition 14.6 can be used to combine primary ideals with the same radical, and
any qi that fails (b) can simply be omitted. The prime ideals occurring as the radical of an
ideal in a minimal primary decomposition of a are said to belong to a.

PROPOSITION 14.8. Suppose a D q1 \ � � � \ qn where qi is pi -primary for i D 1; : : : ;n.
Then the minimal prime ideals of a are the minimal elements of the set fp1; : : : ;png.

PROOF. Let p be a prime ideal containing a, and let q0i be the image of qi in the integral
domain A=p. Then p contains q1 � � �qn, and so q01 � � �q

0
n D 0. This implies that, for some i ,

q0i D 0, and so p contains qi . Now (14.2) shows that p contains pi : 2

In particular, if a admits a primary decomposition, then it has only finitely many minimal
prime ideals, and so its radical is a finite intersection of prime ideals.

For an ideal a in A and an element x 2 A, we let

.aWx/D fa 2 A j ax 2 ag:

It is again an ideal in A, which equals A if x 2 a.

LEMMA 14.9. Let q be a p-primary ideal and let x 2 AXq. Then .qWx/ is p-primary (and
hence rad.qWx/D p).

PROOF. For any a 2 .qWx/, we know that ax 2 q and x … q, and so a 2 p. Hence .qWx/� p.
On taking radicals, we find that rad.qWx/D p. Let ab 2 .qWx/. Then xab 2 q, and so either
a 2 p or xb 2 q (because q is p-primary); in the second case, b 2 .qWx/ as required. 2
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THEOREM 14.10. Let aD q1\ : : :\qn be a minimal primary decomposition of a, and let
pi D rad.qi /. Then

fp1; : : : ;png D frad.aWx/ j x 2 A; rad.aWx/ primeg.

In particular, the set fp1; : : : ;png is independent of the choice of the minimal primary
decomposition.

PROOF. For any a 2 A,
.aWa/D .

T
qi Wa/D

T
.qi Wa/;

and so
rad.aWa/D rad

T
.qi Wa/

(14.9)
D

T
a…qi

pi : (32)

If rad.aWa/ is prime, then it equals one of the pi (otherwise, for each i there exists an
ai 2 pi Xp, and a1 � � �an 2

T
a…qi

pi but not p, which is a contradiction). Hence RHS�LHS.
For each i , there exists an a 2

T
j¤i qj Xqi because the decomposition is minimal, and (32)

shows that rad.aWa/D pi . 2

THEOREM 14.11. In a noetherian ring, every ideal admits a primary decomposition.

The theorem is a consequence of the following more precise statement, but first we need
a definition: an ideal a is said to be irreducible if

aD b\ c (b, c ideals) H) aD b or aD c:

PROPOSITION 14.12. Let A be a noetherian ring.
(a) Every ideal in A can be expressed as a finite intersection of irreducible ideals.
(b) Every irreducible ideal in A is primary.

PROOF. (a) Suppose (a) fails, and let a be maximal among the ideals for which it fails. Then,
in particular, a itself is not irreducible, and so aD b\ c with b and c properly containing a.
Because a is maximal, both b and c can be expressed as finite intersections of irreducible
ideals, but then so can a.

(b) Let a be irreducible in A, and consider the quotient ring A0 def
D A=a: Let a be a

zero-divisor in A0, say ab D 0 with b ¤ 0. We have to show that a is nilpotent. As A0 is
noetherian, the chain of ideals

..0/Wa/� ..0/Wa2/� �� �

becomes constant, say, ..0/Wam/D ..0/WamC1//D �� � . Let c 2 .am/\ .b/. Then c 2 .b/
implies caD 0, and c 2 .am/ implies that c D dam for some d 2 A. Now

.dam/aD 0) d 2 .0WamC1/D .0Wam/) c D 0:

Hence .am/\ .b/ D .0/. Because a is irreducible, so also is the zero ideal in A0, and it
follows that am D 0. 2

A p-primary ideal a in a noetherian ring contains a power of p by Proposition 3.15. The
next result proves a converse when p is maximal.

PROPOSITION 14.13. Let m be a maximal ideal of a noetherian ring. Any proper ideal a of
A that contains a power of a maximal ideal m is m-primary.
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PROOF. Suppose that mr � a, and let p be a prime ideal belonging to a. Then mr � a� p,
so that m � p, which implies that mD p. Thus m is the only prime ideal belonging to a,
which means that a is m-primary. 2

EXAMPLE 14.14. We give an example of a power of a prime ideal p that is not p-primary.
Let

AD kŒX;Y;Z�=.Y 2�XZ/D kŒx;y;z�:

The ideal .X;Y / in kŒX;Y;Z� is prime and contains .Y 2�XZ/, and so the ideal pD .x;y/
in A is prime. Now xz D y2 2 p2, but one checks easily that x … p2 and z … p, and so p2 is
not p-primary.

REMARK 14.15. Let a be an ideal in a noetherian ring, and let b D
T
n�1 a

n. We give
another proof that abD b (see p. 12). Let

abD q1\ : : :\qs; rad.qi /D pi ;

be a minimal primary decomposition of ab. We shall show that b � ab by showing that
b� qi for each i .

If there exists a b 2 bXqi , then

ab � ab� qi ,

from which it follows that a� pi . We know that pri � qi for some r (see 3.15), and so

bD
\

an � ar � pri � qi ,

which is a contradiction. This completes the proof.

DEFINITION 14.16. A Dedekind domain is a noetherian integrally closed integral domain
of dimension 1.

THEOREM 14.17. Every proper nonzero ideal a in a Dedekind domain can be written in
the form

aD pr1

1 � � �p
rs
s

with the pi distinct prime ideals and the ri > 0; the ideals pi are exactly the prime ideals
containing a, and the exponents ri are uniquely determined.

PROOF. For the proof, which is quite elementary, see Chapter 3 of my notes Algebraic
Number Theory. 2

15 Artinian rings
A ring A is artinian if every descending chain of ideals a1 � a2 � �� � in A eventually
becomes constant; equivalently, if every nonempty set of ideals has a minimal element.
Similarly, a module M over a ring A is artinian if every descending chain of submodules
N1 �N2 � �� � in M eventually becomes constant.

PROPOSITION 15.1. An artinian ring has Krull dimension zero; in other words, every prime
ideal is maximal.
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PROOF. Let p be a prime ideal of an artinian ringA, and letA0DA=p. ThenA0 is an artinian
integral domain. For any nonzero element a of A0, the chain .a/ � .a2/ � �� � eventually
becomes constant, and so an D anC1b for some b 2 A0 and n � 1. We can cancel an to
obtain 1D ab. Thus a is a unit, A0 is a field, and p is maximal: 2

COROLLARY 15.2. In an artinian ring, the nilradical and the Jacobson radical coincide.

PROOF. The first is the intersection of the prime ideals (2.5), and the second is the intersec-
tion of the maximal ideals (2.6). 2

PROPOSITION 15.3. An artinian ring has only finitely many maximal ideals.

PROOF. Let m1\ : : :\mn be minimal among finite intersections of maximal ideals in an
artinian ring, and let m be another maximal ideal in the ring. If m is not equal to one of the
mi , then, for each i , there exists an ai 2mi Xm. Now a1 � � �an lies in m1\ : : :\mn but not
in m (because m is prime), contradicting the minimality of m1\ : : :\mn. 2

PROPOSITION 15.4. In an artinian ring, some power of the nilradical is zero.

PROOF. Let N be the nilradical of the artinian ring A. The chain N�N2 � � � � eventually
becomes constant, and so Nn DNnC1 D �� � for some n� 1. Suppose Nn ¤ 0. Then there
exist ideals a such that a �Nn¤ 0, for example N, and we may suppose that a has been chosen
to be minimal among such ideals. There exists an a 2 a such that a �Nn ¤ 0, and so aD .a/
(by minimality). Now .aNn/Nn D aN2n D aNn ¤ 0 and aNn � .a/, and so aNn D .a/
(by minimality again). Hence aD ax for some x 2Nn. Now aD ax D ax2D �� � D a0D 0
because x 2N. This contradicts the definition of a, and so Nn D 0. 2

LEMMA 15.5. Let A be a ring in which some finite product of maximal ideals is zero. Then
A is artinian if and only if it is noetherian.

PROOF. Suppose m1 � � �mn D 0 with the mi maximal ideals (not necessarily distinct), and
consider

A�m1 � �� � �m1 � � �mr�1 �m1 � � �mr � �� � �m1 � � �mn D 0:

The action of A on the quotient Mr
def
Dm1 � � �mr�1=m1 � � �mr factors through the field A=mr ,

and the subspaces of the vector space Mr are in one-to-one correspondence with the ideals
of A contained between m1 � � �mr�1 and m1 � � �mr . If A is either artinian or noetherian, then
Mr satisfies a chain condition on subspaces and so it is finite-dimensional as a vector space
and both artinian and noetherian as an A-module. Now repeated applications of Proposition
3.3 (resp. its analogue for artinian modules) show that if A is artinian (resp. noetherian),
then it is noetherian (resp. artinian) as an A-module, and hence as a ring. 2

THEOREM 15.6. A ring is artinian if and only if it is noetherian of dimension zero.

PROOF. ): Let A be an artinian ring. After (15.1), it remains to show that A is noetherian,
but according to (15.2), (15.3), and (15.4), some finite product of maximal ideals is zero,
and so this follows from the lemma.
(: Let A be a noetherian ring of dimension zero. The zero ideal admits a primary

decomposition (14.11), and so A has only finitely many minimal prime ideals, which are all
maximal because dimAD 0. Hence N is a finite intersection of maximal ideals (2.5), and
since some power of N is zero (3.15), we again have that some finite product of maximal
ideals is zero, and so can apply the lemma. 2
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THEOREM 15.7. Every artinian ring is (uniquely) a product of local artinian rings.

PROOF. Let A be artinian, and let m1; : : : ;mr be the distinct maximal ideals in A. We saw
in the proof of (15.6) that some product mn1

1 � � �m
nr
r D 0. For i ¤ j , the ideal mni

i Cm
nj

j is
not contained in any maximal ideal, and so equals A. Now the Chinese remainder theorem
2.12 shows that

A' A=mn1

1 � � � ��A=m
nr
r ,

and each ring A=mni

i is obviously local. 2

PROPOSITION 15.8. Let A be a local artinian ring with maximal ideal m. If m is principal,
so also is every ideal in A; in fact, if mD .t/, then every ideal is of the form .tr/ for some
r � 0.

PROOF. Because m is the Jacobson radical of A, some power of m is zero (by 15.4); in
particular, .0/D .tr/ for some r . Let a be a nonzero ideal in A. There exists an integer r � 0
such that a�mr but a 6�mrC1. Therefore there exists an element a of a such that aD ctr

for some c 2 A but a … .trC1/. The second condition implies that c …m, and so it is a unit;
therefore aD .a/. 2

EXAMPLE 15.9. The ring AD kŒX1;X2;X3; : : :�=.X1;X22 ;X
3
3 ; : : :/ has only a single prime

ideal, namely, .x1;x2;x3; : : :/, and so has dimension zero. However, it is not noetherian
(hence not artinian).

16 Dimension theory for noetherian rings

Let A be a noetherian ring and let p be a prime ideal in A. Let Ap D S
�1A where S DAXp.

We begin by studying extension and contraction of ideals with respect to the homomorphism
A! Ap (cf. 2.9). Recall (6.6) that Ap is a local ring with maximal ideal pe def

D pAp. The
ideal �

pn
�ec
D fa 2 A j sa 2 pn for some s 2 Sg

is called the nth symbolic power of p, and is denoted p.n/. If m is maximal, then m.n/ Dmn

(see 6.7).

LEMMA 16.1. The ideal p.n/ is p-primary.

PROOF. According to Proposition 14.3, the ideal .pe/n is pe-primary. Hence (see 14.4),
..pe/n/c is .pe/c-primary. But pec D p (see 6.4), and

...pe/n/c
2.10
D ..pn/e/c

def
D p.n/: (33)

LEMMA 16.2. Consider ideals a� p0 � p with p0 prime. If p0 is a minimal prime ideal of a,
then p0e is a minimal prime ideal of ae (extension relative to A! Ap).

PROOF. If not, there exists a prime ideal p00 ¤ p0e such that p0e � p00 � ae. Now, by (6.4),
p0 D p0ec and p00c ¤ p0ec , and so

p0 D p0ec § p00c � aec � a

contradicts the minimality of p0. 2
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THEOREM 16.3 (KRULL’S PRINCIPAL IDEAL THEOREM). LetA be a noetherian ring. For
any nonunit b 2 A, the height of a minimal prime ideal p of .b/ is at most one.

PROOF. Consider A! Ap. According to Lemma 16.2, pe is a minimal prime ideal of
.b/e D .b

1
/, and (6.4) shows that the theorem for Ap � pe � .b

1
/ implies it for A� p� .b/.

Therefore, we may replace A with Ap, and so assume that A is a noetherian local ring with
maximal ideal p.

Suppose that p properly contains a prime ideal p1: we have to show that p1 � p2 H)
p1 D p2.

Let p.r/1 be the r th symbolic power of p1. The only prime ideal of the ring A=.b/ is
p=.b/, and so A=.b/ is artinian (apply 15.6). Therefore the descending chain of ideals�

p
.1/
1 C .b/

�
=.b/�

�
p
.2/
1 C .b/

�
=.b/�

�
p
.3/
1 C .b/

�
=.b/� �� �

eventually becomes constant: there exists an s such that

p
.s/
1 C .b/D p

.sC1/
1 C .b/D p

.sC2/
1 C .b/D �� � : (34)

We claim that, for any m� s,

p
.m/
1 � .b/p

.m/
1 Cp

.mC1/
1 : (35)

Let x 2 p.m/1 . Then

x 2 .b/Cp
.m/
1

(34)
D .b/Cp

.mC1/
1 ;

and so x D abC x0 with a 2 A and x0 2 p
.mC1/
1 . As p

.m/
1 is p1-primary (see 16.1) and

abD x�x0 2 p
.m/
1 but b … p1, we have that a 2 p.m/1 . Now xD abCx0 2 .b/p.m/1 Cp

.mC1/
1

as claimed.
We next show that, for any m� s,

p
.m/
1 D p

.mC1/
1 .

As b 2 p, (35) shows that p.m/1 =p
.mC1/
1 D p �

�
p
.m/
1 =p

.mC1/
1

�
, and so p

.m/
1 =p

.mC1/
1 D 0 by

Nakayama’s lemma (3.7).
Now

ps1 � p
.s/
1 D p

.sC1/
1 D p

.sC2/
1 D �� �

and so ps1 �
T
m�s p

.m/
1 . Note that\

m�s
p
.m/
1

(33)
D

\
m�s

..pe1/
m/c D .

\
m�s

.pe1/
m/c

3.14
D .0/c ;

and so for any x 2 ps1, there exists an a 2AXp1 such that ax D 0. Let x 2 p1; then axs D 0
for some a 2 AXp1 � AXp2, and so x 2 p2 (because p2 is prime). We have shown that
p1 D p2, as required. 2

In order to extend Theorem 16.6 to non principal ideals, we shall need a lemma.

LEMMA 16.4. Let p be a prime ideal in a noetherian ring A, and let S be a finite set of
prime ideals in A, none of which contains p. If there exists a chain of distinct prime ideals

p� pd�1 � �� � � p0;

then there exists such a chain with p1 not contained in any ideal in S .



16 DIMENSION THEORY FOR NOETHERIAN RINGS 63

PROOF. We first prove this in the special case that the chain has length 2. Suppose that
p � p1 � p0 are distinct prime ideals and that p is not contained in any prime ideal in S .
According to Proposition 2.8, there exists an element

a 2 pX .p0[
S
fp0 2 Sg/:

As p contains .a/Cp0, it also contains a minimal prime ideal p01 of .a/Cp0. Now p01=p0
is a minimal prime ideal of the principal ideal ..a/Cp0/=p0 in A=p0, and so has height 1,
whereas the chain p=p0 � p1=p0 � p0=p0 shows that p=p0 has height at least 2. Therefore
p� p01 � p0 are distinct primes, and p01 … S because it contains a. This completes the proof
of the special case.

Now consider the general case. On applying the special case to p� pd�1 � pd�2, we
see that there exists a chain of distinct prime ideals p� p0

d�1
� pd�2 such that p0

d�1
is not

contained in any ideal in S . Then on applying the special case to p0
d�1
� pd�2 � pd�1, we

we see that there exists a chain of distinct prime ideals p� p0
d�1
� p0

d�2
� pd�2 such that

p0
d�2

is not contained in any ideal in S . Repeat the argument until the proof is complete. 2

THEOREM 16.5. Let A be a noetherian ring. For any proper ideal a D .a1; : : : ;am/, the
height of a minimal prime ideal of a is at most m.

PROOF. FormD 1, this was just proved. Thus, we may supposem� 2 and that the theorem
has been proved for ideals generated by m�1 elements. Let p be a minimal prime ideal of a,
and let p01; : : : ;p

0
t be the minimal prime ideals of .a2; : : : ;am/. Each p0i has height at most

m�1. If p is contained in one of the p0i , it will have height �m�1, and so we may suppose
that it isn’t.

Let p have height d . We have to show that d �m. According to the lemma, there exists
a chain of distinct prime ideals

pD pd � pd�1 � �� � � p0; d � 1;

with p1 not contained in any p0i , and so Proposition 2.8 shows that there exists a

b 2 p1X
Sr
iD1 p

0
i :

We next show that p is a minimal prime ideal of .b;a2; : : : ;am/. Certainly p contains a
minimal prime ideal p0 of this ideal. As p0 � .a2; : : : ;am/, p contains one of the p0i s, but, by
construction, it cannot equal it. If p¤ p0, then

p� p0 � pi

are distinct ideals, which shows that xp def
D p=.a2; : : : ;am/ has height at least 2 in xA def

D

A=.a2; : : : ;am/. But xp is a minimal ideal in xA of the principal ideal .a1; : : : ;an/=.a2; : : : ;an/,
which contradicts Theorem 16.3. Hence p is minimal, as claimed.

But now p=.b/ is a minimal prime ideal of .b;a2; : : : ;am/ in R=.b/, and so the height
of p=.b/ is at most m�1 (by induction). The prime ideals

p=.b/D pd=.b/� pd�1=.b/� �� � � p1=.b/

are distinct, and so d �1�m�1. This completes the proof that d Dm. 2
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The height of an ideal a in a noetherian ring is the minimum height of a prime ideal
containing it,

ht.a/D min
p�a, p prime

ht.p/:

The theorem shows that ht.a/ is finite.
The following provides a (strong) converse to Theorem 16.5.

THEOREM 16.6. Let A be a noetherian ring, and let a be a proper ideal of A of height r .
Then there exist r elements a1; : : : ;ar of a such that, for each i � r , .a1; : : : ;ai / has height
i .

PROOF. If r D 0, then we take the empty set of ais. Thus, suppose r � 1. There are only
finitely many prime ideals of height 0, because such an ideal is a minimal prime ideal of .0/,
and none of these ideals can contain a because it has height � 1. Proposition 2.8 shows that
there exists an

a1 2 aX
S
fprime ideals of height 0g:

By construction, .a1/ has height at least 1, and so Theorem 16.3 shows it has height exactly
1.

This completes the proof when r D 1, and so suppose that r � 2. There are only finitely
many prime ideals of height 1 containing .a1/ because such an ideal is a minimal prime
ideal of .a1/, and none of these ideals can contain a because it has height � 2. Choose

a2 2 aX
S
fprime ideals of height 1 containing .a1/g:

By construction, .a1;a2/ has height at least 2, and so Theorem 16.5 shows that it has height
exactly 2.

This completes the proof when r D 2, and when r > 2 we can continue in this fashion
until it is complete.

COROLLARY 16.7. Every prime ideal of height r in a noetherian ring arises as a minimal
prime ideal for an ideal generated by r elements.

PROOF. According to the theorem, an ideal a of height r contains an ideal .a1; : : : ;ar/ of
height r . If a is prime, then it is a minimal ideal of .a1; : : : ;ar/. 2

COROLLARY 16.8. Let A be a commutative noetherian ring, and let a be an ideal in A that
can be generated by n elements. For any prime ideal p in A containing a,

ht.p=a/� ht.p/�ht.p=a/Cn:

PROOF. The first inequality follows immediately from the correspondence between ideals
in A and in A=a.

Denote the quotient map A! A0
def
D A=a by a 7! a0. Let ht.p=a/ D d . Then there

exist elements a1; : : : ;ad in A such that p=a is a minimal prime ideal of .a01; : : : ;a
0
d
/. Let

b1; : : : ;bn generate a. Then p is a minimal prime ideal of .a1; : : : ;ad ;b1; : : : ;bn/, and hence
has height � d Cn. 2

We now use dimension theory to prove a stronger version of “generic flatness” (9.11).
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THEOREM 16.9 (GENERIC FREENESS). Let A be a noetherian integral domain, and let B
be a finitely generated A-algebra. For any finitely generated B-module M , there exists a
nonzero element a of A such that Ma is a free Aa-module.

PROOF. Let F be the field of fractions of A. We prove the theorem by induction on the
Krull dimension of F ˝AB , starting with the case of Krull dimension �1. Recall that this
means that F ˝AB D 0, and so a1B D 0 for some nonzero a 2 A. Then Ma D 0, and so
the theorem is trivially true (Ma is the free Aa-module generated by the empty set).

In the general case, an argument as in (9.12) shows that, after replacing A, B , and M
with Aa, Ba, and Ma for a suitable a 2 A, we may suppose that the map B ! F ˝AB

is injective — we identify B with its image. The Noether normalization theorem (5.11)
shows that there exist algebraically independent elements x1; : : : ;xm of F ˝AB such that
F ˝AB is a finite F Œx1; : : : ;xm�-algebra. As in the proof of (9.11), there exists a nonzero
a 2 A such that Ba is a finite AaŒx1; : : : ;xm�-algebra. Hence Ma is a finitely generated
AaŒx1; : : : ;xm�-module.

As any extension of free modules is free22, Proposition 3.5 shows that it suffices to
prove the theorem for Ma D AaŒx1; : : : ;xm�=p for some prime ideal p in AaŒx1; : : : ;xm�. If
p D 0, then Ma is free over Aa (with basis the monomials in the xi ). Otherwise, F ˝A
.AaŒx1; : : : ;xm�=p/ has Krull dimension less than that of F ˝AB , and so we can apply the
induction hypothesis. 2

17 Regular local rings
Throughout this section, A is a noetherian local ring with maximal ideal m and residue field
k. The Krull dimension d of A is equal to the height of m, and

ht.m/
(16.5)
� minimum number of generators of m

(3.9)
D dimk.m=m

2/:

When equality holds, the ring A is said to be regular. In other words, dimk.m=m2/ � d ,
and equality holds exactly when the ring is regular.

For example, when A has dimension zero, it is regular if and only if its maximal ideal
can be generated by the empty set, and so is zero. This means that A is a field; in particular,
it is an integral domain. The main result of this section is that all regular rings are integral
domains.

LEMMA 17.1. Let A be a noetherian local ring with maximal ideal m, and let c 2mXm2.
Denote the quotient map A! A0

def
D A=.c/ by a 7! a0. Then

dimkm=m
2
D dimkm

0=m02C1

where m0
def
Dm=.c/ is the maximal ideal of A0.

PROOF. Let e1; : : : ; en be elements of m such that fe01; : : : ; e
0
ng is a k-linear basis for m0=m02.

We shall show that fe1; : : : ; en; cg is a basis for m=m2.
As e01; : : : ; e

0
n span m0=m02, they generate the ideal m0 (see 3.9), and so mD .e1; : : : ; en/C

.c/, which implies that fe1; : : : ; en; cg spans m=m2.

22If M 0 is a submodule of M such that M 00 def
DM=M 0 is free, then M �M 0˚M 00.
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Suppose that a1; : : : ;anC1 are elements of A such that

a1e1C�� �CanenCanC1c � 0 mod m2. (36)

Then
a01e
0
1C�� �Ca

0
ne
0
n � 0 mod m02,

and so a01; : : : ;a
0
n 2 m

0. It follows that a1; : : : ;an 2 m. Now (36) shows that anC1c 2 m2.
If anC1 …m, then it is a unit in A, and c 2m2, which contradicts its definition. Therefore,
anC1 2m, and the relation (36) is the trivial one. 2

PROPOSITION 17.2. If A is regular, then so also is A=.a/ for any a 2 mXm2; moreover,
dimAD dimA=.a/C1.

PROOF. With the usual notations, (16.8) shows that

ht.m0/� ht.m/� ht.m0/C1:

Therefore

dimk.m
0=m02/� ht.m0/� ht.m/�1D dimk.m=m

2/�1D dimk.m
0=m02/:

Equalities must hold throughout, which proves that A0 is regular with dimension dimA�1.2

THEOREM 17.3. Every regular noetherian local ring is an integral domain.

PROOF. Let A be a regular local ring of dimension d . We have already noted that the
statement is true when d D 0.

We next prove that A is an integral domain if it contains distinct ideals a � p with
aD .a/ principal and p prime. Let b 2 p, and suppose b 2 an D .an/ for some n� 1. Then
b D anc for some c 2 A. As a is not in the prime ideal p, we must have that c 2 p� a, and
so b 2 anC1. Continuing in this fashion, we see that b 2

T
n a
n 3.14
D f0g. Therefore pD f0g,

and so A is an integral domain.
We now assume d � 1, and proceed by induction on d . Let a 2 mXm2. As A=.a/ is

regular of dimension d � 1, it is an integral domain, and so .a/ is a prime ideal. If it has
height 1, then the last paragraph shows that A is an integral domain. Thus, we may suppose
that, for all a 2 mXm2, the prime ideal .a/ has height 0, and so is a minimal prime ideal
of A. Let S be the set of all minimal prime ideals of A — recall (�14) that S is finite. We
have shown that mXm2 �

S
fp j p 2 Sg, and so m � m2[

S
fp j p 2 Sg. It follows from

Proposition 2.8 that either m�m2 (and hence mD 0) or m is a minimal prime ideal of A,
but both of these statements contradict the assumption that d � 1: 2

COROLLARY 17.4. A regular noetherian local ring of dimension 1 is a principal ideal
domain (with a single nonzero prime ideal).

PROOF. Let A be a regular local ring of dimension 1 with maximal ideal m;and let a be
a nonzero proper ideal in A. The conditions imply that m is principal, say mD .t/. The
radical of a is m because m is the only prime ideal containing a, and so a� mr for some
r (by 3.15). The ring A=mr is local and artinian, and so aD .ts/Cmr for some s � 1 (by
15.8). This implies that aD .ts/ by Nakayama’s lemma (3.7). 2
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THEOREM 17.5. Let A be a regular noetherian local ring.
(a) For any prime ideal p in A, the ring Ap is regular.
(b) The ring A is a unique factorization domain (hence is integrally closed).

PROOF. The best proofs use homological algebra, and are (at present) beyond this primer.
For an account of the theorems in the same spirit as this primer, see http://www.math.

uchicago.edu/~may/MISC/RegularLocal.pdf. See also Matsumura 1986 19.3, 20.3.2

18 Connections with geometry
Throughout this section, k is a field.

Affine k-algebras
Let A be a finitely generated k-algebra. Recall (11.8) that the nilradical of A is equal to the
intersection of the maximal ideals of A.

PROPOSITION 18.1. Let A be a finitely generated k-algebra over a perfect field k. If A is
reduced, then so also is K˝k A for every field K � k.

PROOF. Let .ei / be a basis for K as a k-vector space, and suppose ˛ D
P
ei ˝ ai is a

nonzero nilpotent element in K˝k A. Because A is reduced, there exists a maximal ideal m
in A such that some ai do not belong to m. The image x̨ of ˛ in K˝k .A=m/ is a nonzero
nilpotent, but A=m is a finite separable field extension of k, and so this is impossible.23

2

When k is not perfect, Proposition 18.1 fails, because then k has characteristic p ¤ 0
and it contains an element a that is not a pth power. The polynomial Xp�a is irreducible
in kŒX�, but Xp �a D .X �˛/p in kalŒX�. Therefore, AD kŒX�=.Xp �a/ is a field, but
kal˝k AD k

alŒX�=.X �˛/p is not reduced.

DEFINITION 18.2. An affine k-algebra is a finitely generated k-algebra A such that kal˝k
A is reduced.

Let A be a finitely generated k-algebra. If A is affine, then K˝k A is reduced for
every finite extension K of k, because a k-homomorphism K ! kal defines an injective
homomorphism K˝k A! kal˝k A. Conversely, if A is reduced and k is perfect, then
(18.1) shows that A is affine.

PROPOSITION 18.3. If A is an affine k-algebra and B is a reduced k-algebra, then A˝k B
is reduced.

PROOF. Let .ei / be a basis for A as a k-vector space, and suppose ˛ D
P
ei ˝ bi is a

nonzero nilpotent element of A˝k B . Let B 0 be the k-subalgebra of B generated by the
(finitely many) nonzero bi . Because B 0 is reduced, there exists a maximal ideal m in B 0

such that some bi do not belong to m. Then the image x̨ of ˛ in A˝k .B 0=m/ is a nonzero
nilpotent, but B 0=m is a finite field extension of k (Zariski’s lemma, 11.1), and so this is
impossible. 2

23Every finite separable field extension of k is of the form kŒX�=.f .X// with f .X/ separable and therefore
without repeated factors in any extension field of k; hence K˝k kŒX�=.f .X//'KŒX�=.f .X// is a product of
fields.

http://www.math.uchicago.edu/~may/MISC/RegularLocal.pdf
http://www.math.uchicago.edu/~may/MISC/RegularLocal.pdf
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COROLLARY 18.4. If A and B are affine k-algebras, then so also is A˝k B .

PROOF. By definition, kal˝kA is reduced, and kal˝k .A˝kB/' .k
al˝kA/˝kB , which

is reduced by (18.3). 2

Locally ringed spaces
Let V be a topological space, and let k be a k-algebra. A presheaf O of k-algebras on
V assigns to each open subset U of V a k-algebra O.U / and to each inclusion U 0 � U a
“restriction” map

f 7! f jU 0WO.U /!O.U 0/I

when U D U 0 the restriction map is required to be the identity map, and if

U 00 � U 0 � U;

then the composite of the restriction maps

O.U /!O.U 0/!O.U 00/

is required to be the restriction map O.U /! O.U 00/. In other words, a presheaf is a
contravariant functor to the category of k-algebras from the category whose objects are
the open subsets of V and whose morphisms are the inclusions. A homomorphism of
presheaves ˛WO!O0 is a family of homomorphisms of k-algebras

˛.U /WO.U /!O0.U /

commuting with the restriction maps, i.e., a natural transformation.
A presheaf O is a sheaf if for every open covering fUig of an open subset U of V

and family of elements fi 2O.Ui / agreeing on overlaps (that is, such that fi jUi \Uj D
fj jUi \Uj for all i;j ), there is a unique element f 2 O.U / such that fi D f jUi for all
i .24 A homomorphism of sheaves on V is a homomorphism of presheaves.

For v 2 V , the stalk of a sheaf O (or presheaf) at v is

Ov D lim
�!

O.U / (limit over open neighbourhoods of v/:

In other words, it is the set of equivalence classes of pairs .U;f / with U an open neighbour-
hood of v and f 2O.U /; two pairs .U;f / and .U 0;f 0/ are equivalent if f jU 00 D f 0jU 00

for some open neighbourhood U 00 of v contained in U \U 0.
A ringed space is a pair .V;O/ consisting of topological space V together with a sheaf

of rings. If the stalk Ov of O at v is a local ring for all v 2 V , then .V;O/ is called a locally
ringed space.

A morphism .V;O/! .V 0;O0/ of ringed spaces is a pair .'; / with ' a continuous
map V ! V 0 and  a family of maps

 .U 0/WO0.U 0/!O.'�1.U 0//; U 0 open in V 0,

commuting with the restriction maps. Such a pair defines homomorphism of rings vWO0'.v/!
Ov for all v 2 V . A morphism of locally ringed spaces is a morphism of ringed space such
that  v is a local homomorphism for all v.

24This condition implies that O.;/D 0.
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Let B be a base for the topology on V that is closed under finite intersections. A sheaf
on B can be defined in the obvious way, and such a sheaf O extends to a sheaf O0 on V : for
any open subset U of V , define O0.U / to be the set of families

.fU 0/U 0�U;U 02B; fU 0 2O.U 0/;

agreeing on overlaps. Then O0 is a sheaf of k-algebras on V , and there is a canonical
isomorphism O!O0jB.

Affine algebraic spaces and varieties
Let A be a finitely generated k-algebra, and let V D specm.A/. Recall (�12) that the set of
principal open subsets of V

B D fD.f / j f 2 Ag

is a base for the topology on V . Moreover, B is closed under finite intersections because

D.f1 � � �fr/DD.f1/\ : : :\D.fr/:

For a principal open subset D of V , define OA.D/D S�1D A where SD is the multiplicative
subset AX

S
p2D p. If D DD.f /, then SD is the smallest saturated multiplicative subset

containing f , and so OA.D/' Af (see 6.12). If D �D0, then SD � SD0 , and so there
is a canonical “restriction” homomorphism OA.D/! OA.D0/. These restriction maps
make D OA.D/ into a functor on B satisfying the sheaf condition: for any covering
D D

S
i2I Di of a D 2 B by Di 2 B and family of elements fi 2 OA.Di / agreeing on

overlaps, there is a unique element f 2OA.D/ such that fi D f jDi for all i .
For an open subset U of V , define OA.U / to be the set of families .fD/D agreeing on

overlaps; hereD runs over the principal open setsD �U . Clearly U  OA.U / is a functor
on the open subsets of V , and it is not difficult to check that it is a sheaf. Moreover, in the
definition of OA.U /, instead of taking all principal open subsets of U , it suffices to take a
covering collection. In particular, if U DD.f /, then

OA.U /'OA.D.f //' Af :

In summary:

PROPOSITION 18.5. There exists an essentially unique sheaf OA of k-algebras on V D
specm.A/ such that

(a) for all basic open subsets D DD.f / of V ,

O.D/D S�1D A' Af ;

(b) for all inclusions D0 �D of basic open subsets, the restriction map O.D/!O.D0/
is the canonical map S�1D A! S�1D0 A.

We write Specm.A/ for specm.A/ endowed with this sheaf of k-algebras.

PROPOSITION 18.6. For every m 2 specm.A/, the stalk Om is canonically isomorphic to
Om.

PROOF. Apply (7.3). 2
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Thus Specm.A/ is a locally ringed space. An affine algebraic space is topological space
V together with a sheaf of k-algebras O such that .V;O/ is isomorphic to Specm.A/ for
some finitely generated k-algebra A. A regular map of affine algebraic spaces is morphism
of locally ringed spaces.

EXAMPLE 18.7. Affine n-space An D Specm.kŒX1; : : : ;Xn�/. To give a regular map V !
A1 is the same as giving a homomorphism of k-algebras kŒX�!O.V /, i.e., an element of
O.V /. For this reason, O.V / is often called the ring (or k-algebra) of regular functions
on V .

PROPOSITION 18.8. For any affine algebraic space .V;OV / and locally ringed space
.W;OW /, the canonical map

Hom.V;W /! Homk-alg.OW .W /;OV .V //

is an isomorphism.

PROOF. Exercise for the reader. 2

An affine algebraic space V defines a functor

R V.R/
def
D Homk-alg.O.V /;R/: (37)

from k-algebras to sets. For example, An.R/'Rn for all k-algebras R.
An affine algebraic variety is an affine algebraic space V such that OV .V / is an affine

algebra.

Tangent spaces; nonsingular points; regular points

Let kŒ"� be the ring of dual numbers (so "2 D 0). For an affine algebraic space V over k, the
map " 7! 0WkŒ"�! k defines a map

V.kŒ"�/! V.k/.

For any a 2 V.k/, we define the tangent space to V at a, Tgta.V /, to be the inverse image
of a under this map.

PROPOSITION 18.9. There is a canonical isomorphism

Tgta.V /' Homk-lin.ma=m
2
a;k/:

This follows from the next two lemmas.
Let V D V.a/ � kn, and assume that the origin o lies on V . Let a` be the ideal

generated by the linear terms f` of the f 2 a. By definition, To.V /D V.a`/. Let A` D
kŒX1; : : : ;Xn�=a`, and let m be the maximal ideal in kŒV � consisting of the functions zero at
o; thus mD .x1; : : : ;xn/.

LEMMA 18.10. There is a canonical isomorphism

Homk-lin.m=m
2;k/

'
�! Homk-alg.A`;k/:
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PROOF. Let nD .X1; : : : ;Xn/ be the maximal ideal at the origin in kŒX1; : : : ;Xn�. Then
m=m2' n=.n2Ca/, and as f �f` 2 n2 for every f 2 a, it follows that m=m2' n=.n2Ca`/.
Let f1;`; : : : ;fr;` be a basis for the vector space a`. From linear algebra we know that there
are n� r linear forms Xi1 ; : : : ;Xin�r

forming with the fi;` a basis for the linear forms on
kn. Then Xi1Cm2; : : : ;Xin�r

Cm2 form a basis for m=m2 as a k-vector space, and the
lemma shows that A` ' kŒXi1 : : : ;Xin�r

�. A homomorphism ˛WA`! k of k-algebras is
determined by its values ˛.Xi1/; : : : ;˛.Xin�r

/, and they can be arbitrarily given. Since the
k-linear maps m=m2! k have a similar description, the first isomorphism is now obvious.2

LEMMA 18.11. There is a canonical isomorphism

Homk-alg.A`;k/
'
�! To.V /:

PROOF. To give a k-algebra homomorphism A`! k is the same as to give an element
.a1; : : : ;an/ 2 k

n such that f .a1; : : : ;an/D 0 for all f 2 A`, which is the same as to give
an element of TP .V /. 2

REMARK 18.12. Let V D SpecmkŒX1; : : : ;Xn�=.f1; : : : ;fm/, and let .a1; : : : ;an/ 2 V.k/.
Then Tgta.V / is canonically isomorphic to the subspace of kn defined by the equations

@fi

@X1

ˇ̌̌̌
a

X1C�� �C
@fi

@Xn

ˇ̌̌̌
a

Xn, i D 1; : : : ;m:

When a is the origin, this is a restatement of (18.11), and the general case can be deduced
from this case by a translation.

The dimension of an affine algebraic space V is the Krull dimension of O.V /. If V is
irreducible, then O.V /=N is an integral domain, and the dimension of V is equal to the
transcendence degree over k of the field of fractions of O.V /=N; moreover, all maximal
ideals have height dimV (13.11).

PROPOSITION 18.13. Let V be an affine algebraic space over k, and let a 2 V.k/. Then
dimTgta.V /� dimV , and equality holds if and only if O.V /ma

is regular.

PROOF. Let n be the maximal ideal of the local ring AD O.V /ma
. Then A=nD k, and

dimk n=n2 � ht.n/, with equality if and only if A is regular. As ma=m
2
a ' n=n2 (6.7),

Proposition 18.9 implies that dimTgta.V /D dimk n=n2, from which the statement follows.2

An a 2 V.k/ is nonsingular if dimTgta.V /D dimV ; otherwise it is singular. An affine
algebraic space V is regular if all of its local rings O.V /m are regular, and it is smooth if
Vkal is regular. Thus an algebraic space over an algebraically closed field is smooth if and
only if all a 2 V.k/ are nonsingular. A smooth algebraic space is regular, but the converse
is false. For example, let k0 be a finite inseparable extension of k, and let V be a smooth
algebraic space over k0; when we regard V is an algebraic space over k, it is regular, but not
smooth.

PROPOSITION 18.14. A smooth affine algebraic space V is a regular affine algebraic vari-
ety; in particular, O.V / is an integral domain. Conversely, if k is perfect, then every regular
affine algebraic space over k is smooth.
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PROOF. Let ADO.V /. If V is smooth, then all the local rings of kal˝k A are regular; in
particular, they are integral domains (17.3). This implies that kal˝k A is reduced, because it
implies that the annihilator of any nilpotent element is not contained in any maximal ideal,
and so is the whole ring. Therefore A is an affine algebra, and so V is an affine algebraic
variety. Let m be a maximal ideal in A, and let n D m.kal˝k A/. Then n is a maximal
ideal25 of kal˝k A, and

n=n2 ' kal
˝ .m=m2/;

and so dimk.m=m2/D dimkal.n=n2/. This implies that Am is regular. In particular, Am is
an integral domain for all maximal ideals of A, which implies that A is integral domain,
because it implies that the annihilator of any zero-divisor is not contained in any maximal
ideal. Conversely, if V is regular, A is an integral domain, and hence an affine k-algebra if k
is perfect. 2

PROPOSITION 18.15. Let V be an irreducible affine algebraic space over an algebraically
closed field k, and identify V with V.k/. The set of nonsingular points of V is open, and it
is nonempty if V is an algebraic variety.

PROOF. We may suppose V D SpecmkŒX1; : : : ;Xn�=.f1; : : : ;fm/. Let d D dimV . Accord-
ing to Remark 18.12, the set of singular points of V is the zero-set of the ideal generated by
the .n�d/� .n�d/ minors of the matrix

Jac.f1; : : : ;fm/.a/D

0BB@
@f1

@X1
.a/ � � � @f1

@Xn
.a/

:::
:::

@fm

@X1
.a/ � � � @fm

@Xn
.a/

1CCA ;
which is closed. Therefore the set of nonsingular points is open.

Now suppose that V is an algebraic variety. The next two lemmas allow us to suppose that
V D kŒX1; : : : ;Xn�=.f / where f is a nonconstant irreducible polynomial. Then dimV D
n�1, and so we have to show that the equations

f D 0;
@f

@X1
D 0; � � � ;

@f

@Xn
D 0

have no common zero. If @f
@X1

is identically zero on V.f /, then f divides it. But @f
@X1

has

degree less than that of f and f is irreducible, and so this implies that @f
@X1
D 0. Therefore

f is a polynomial in X2; : : : ;Xn (characteristic zero) or Xp1 ;X2; : : : ;Xn (characteristic p).
Continuing in this fashion, we find that either f is constant (characteristic zero) or a pth
power (characteristic p), which contradict the hypothesis. 2

Let V be an irreducible affine algebraic variety. Then O.V / is an integral domain, and
we let k.V / denote its field of fractions. Two irreducible affine algebraic varieties V and W
are said to be birationally equivalent if k.V /� k.W /.

LEMMA 18.16. Two irreducible varieties V and W are birationally equivalent if and only
if there are open subsets U and U 0 of V and W respectively such that U � U 0.

25This is only true if m corresponds to some k-valued point of A, i.e., if A=mD k. To fix this, let n be a
maximal ideal of .kal˝A/, and let m be the intersection of n with A. Then the displayed equation is true if the
tensor product is taken over A=m; in the next line, k should be replaced with A=m. [In fact, the whole proof
should be rewritten and completed.]
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PROOF. Assume that V andW are birationally equivalent. We may suppose that ADO.V /
and B D O.W / have a common field of fractions K. Write B D kŒx1; : : : ;xn�. Then
xi D ai=bi , ai ;bi 2 A, and B � Ab1:::br

. Since Specm.Ab1:::br
/ is a basic open subvariety

of V , we may replace A with Ab1:::br
, and suppose that B � A. The same argument shows

that there exists a d 2 B � A such A� Bd . Now

B � A� Bd H) Bd � Ad � .Bd /d D Bd ;

and so Ad D Bd . This shows that the open subvarieties D.b/ � V and D.b/ � W are
isomorphic. This proves the “only if” part, and the “if” part is obvious. 2

LEMMA 18.17. Every irreducible algebraic variety of dimension d is birationally equivalent
to a hypersurface in AdC1.

PROOF. Let V be an irreducible variety of dimension d . According to 8.21 of my notes
Fields and Galois Theory, there exist algebraically independent elements x1; : : : ;xd 2 k.V /
such that k.V / is finite and separable over k.x1; : : : ;xd /. By the primitive element theorem
(ibid. 5.1), k.V /D k.x1; : : : ;xd ;xdC1/ for some xdC1. Let f 2 kŒX1; : : : ;XdC1� be an
irreducible polynomial satisfied by the xi , and let H be the hypersurface f D 0. Then
k.V /� k.H/. 2

Algebraic schemes, spaces, and varieties
An algebraic space over k is a locally ringed space that admits a finite open covering by
affine algebraic spaces. An algebraic variety over k is a locally ringed space .X;OX / that
admits a finite open covering by affine algebraic spaces and satisfies the following separation
condition: for every pair '1;'2WZ!X of locally ringed space with Z and affine algebraic
variety, the subset of Z on which '1 and '2 agree is closed.

Let .X;OX / be an algebraic scheme over k, i.e., a scheme of finite type over k, and let
X 0 be the subset of X obtained by omitting all the nonclosed points. Then .X 0;OX jX 0/ is
an algebraic space over k. Conversely, let .X;OX / be an algebraic space over k; for each
open subset U of X , let U 0 be the set of irreducible closed subsets of U , and regard U 0 as a
subset of X 0 in the obvious way; then .X 0;OX 0/ where OX 0.U 0/DOX .U / is an algebraic
scheme over k.
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regular, 71
relations

between generators, 36
relatively prime, 7
ring

artinian, 59
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Jacobson, 46
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of regular functions, 69
reduced, 5
regular local, 65

ringed space, 68
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singular, 71
smooth, 71
space

affine algebraic, 69
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spectrum, 46
stalk, 68
subring, 2
symbolic power, 61
system

direct, 25

tensor product
of algebras, 28
of modules, 27

theorem
Chinese remainder, 7
generic flatness, 34
Hilbert basis, 10
Krull intersection, 12
Krull’s principal ideal, 62
Noether normalization, 19
Nullstellensatz, 43
strong Nullstellensatz, 44
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