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Abstract

Connected Shimura varieties are the quotients of hermitian symmetric domains by discrete
groups defined by congruence conditions. We examine how to interprete them as moduli vari-
eties.
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Introduction
The hermitian symmetric domains are the complex manifolds isomorphic to bounded symmetric
domains. Each is a product of indecomposable hermitian symmetric domains, which themselves
are classified by the “special” nodes on Dynkin diagrams.

The Griffiths period domains are the parameter spaces for polarized rational Hodge structures.
A period domain is a hermitian symmetric domain if the universal family of Hodge structures on it
is a variation of Hodge structures, i.e., satisfies Griffiths transversality. This rarely happens, but, as
Deligne showed, every hermitian symmetric domain can be realized as the subdomain of a period
domain on which certain tensors for the universal family are of type .p;p/ (i.e., are Hodge tensors).

In particular, every hermitian symmetric domain can be realized as a moduli space for Hodge
structures plus tensors. This all takes place in the analytic realm, because hermitian symmetric
domains are not algebraic varieties. To obtain an algebraic variety, we must pass to the quotient
by an arithmetic group. In fact, in order to obtain a moduli variety, we should assume that the
arithmetic group is defined by congruence conditions. The algebraic varieties obtained in this way
are the connected Shimura varieties.

The arithmetic subgroup lives in a semisimple algebraic group over Q, and the variations of
Hodge structures on the connected Shimura variety are classified in terms of auxiliary reductive
algebraic groups. In order to realize the connected Shimura variety as a moduli variety, we must
choose the additional data so that the variation of Hodge structures is of geometric origin. The
main result of the article classifies the connected Shimura varieties for which this is known to be
possible. Briefly, in a small number of cases, the connected Shimura variety is a moduli variety for
abelian varieties with polarization, endomorphism, and level structure (the PEL case); for a much
larger class, the variety is a moduli variety for abelian varieties with polarization, Hodge class, and
level structure (the PHL case); for all connected Shimura varieties except those of type E6, E7, and
certain types D, the variety is a moduli variety for abelian motives with additional structure. In the
remaining cases, the connected Shimura variety is not a moduli variety for abelian motives, and it
is not known whether it is a moduli variety at all.
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We now summarize the contents of the article.
�1. As an introduction to the general theory, we review the case of elliptic modular curves.

In particular, we prove that the modular curve constructed analytically coincides with the modular
curve constructed algebraically using geometric invariant theory.

�2. To give a hermitian symmetric domain amounts to giving a real semisimple algebraic group
H with trivial centre and a homomorphism uWU 1!H.R/ satisfying certain conditions. We briefly
review the theory of hermitian symmetric domains and their classification in terms of Dynkin dia-
grams and special nodes.

�3. The group of holomorphic automorphisms of a hermitian symmetric domain is a real Lie
group, and the algebraic varieties we are concerned with are quotients of hermitian symmetric do-
mains by discrete subgroups of this Lie group. In this section we review the fundamental theorems
of Borel, Harish-Chandra, Margulis, Mostow, Selberg, Tamagawa, and others concerning discrete
subgroups of Lie groups.

�4. The arithmetic locally symmetric varieties (resp. connected Shimura varieties) are the
quotients of hermitian symmetric domains by arithmetic (resp. congruence) groups. We explain the
fundamental theorems of Baily and Borel on the algebraicity of these varieties and of the maps into
them.

�5. We review the definition of Hodge structures and of their variations, and state the funda-
mental theorem of Griffiths that motivates their definition.

�6. We define the Mumford-Tate group of a rational Hodge structure, and we prove the basic
results concerning their behaviour in families.

�7. We review the theory of period domains, and explain Deligne’s interpretation of hermitian
symmetric domains as period subdomains.

�8. We classify certain variations of Hodge structures on locally symmetric varieties in terms of
group-theoretic data.

�9. In order to be able to realize all but a handful of locally symmetric varieties as moduli
varieties, we shall need to replace algebraic varieties and algebraic classes by more general objects.
In this section, we prove Deligne’s theorem that all Hodge classes on abelian varieties are absolutely
Hodge, and so make sense algebraically.

�10. Following Satake and Deligne, we classify the symplectic embeddings of an algebraic
group that give rise to an embedding of the associated hermitian symmetric domain into a Siegel
upper half space.

�11. We use the results of the preceding sections to determine which Shimura varieties can be
realized as moduli varieties for abelian varieties (or abelian motives) plus absolute Hodge classes
and level structure.

Although the expert will find little that is new in this article, there is much that is not well
explained in the literature. As far as possible, complete proofs have been included.

Notations

We use k to denote the base field (always of characteristic zero), and kal to denote an algebraic
closure of k. “Algebraic group” means “affine algebraic group scheme” and “algebraic variety”
means “geometrically reduced scheme of finite type over a field”. For a smooth algebraic variety X
over C, we let X an denote the set X.C/ endowed with its natural structure of a complex manifold.
The tangent space at a point p of space X is denoted by Tp.X/.

Vector spaces and representations are finite dimensional unless indicated otherwise. The dual
of a vector space V is denoted by V _. For a k-vector space V and commutative k-algebra R,
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VR DR˝k V . Similarly, we write VS for the constant sheaf (or free sheaf OS˝V of OS -modules)
on a space S defined by a vector space V .

A vector sheaf on a complex manifold (or scheme) S is a locally free sheaf of OS -modules of
finite rank. In order for W to be a vector subsheaf of a vector sheaf V , we require that the maps
on the fibres Ws ! Vs be injective. With these definitions, vector sheaves correspond to vector
bundles and vector subsheaves to vector subbundles.

The quotient of a Lie group or algebraic group G by its centre Z.G/ is denoted by Gad. A
Lie group or algebraic group is said to be adjoint if it is semisimple (in particular, connected) with
trivial centre. An algebraic group G is simply connected if it is semisimple and every surjective
homomorphism G0 ! G (of algebraic groups) with finite kernel is an isomorphism. The inner
automorphism of G or Gad defined by an element g is denoted by inn.g/. Let adWG! Gad be the
quotient map. There is an action of Gad on G such that ad.g/ acts as inn.g/ for all g 2G.kal/. For
an algebraic group G over R, G.R/C is the identity component of G.R/ for the real topology. For
a finite extension of fields L=k and an algebraic group G over L, we write .G/L=k for algebraic
group over k obtained by (Weil) restriction of scalars. We sometimes use the term “simple” for
representations as well as modules.

A prime1 of a number field k is a prime ideal in Ok (a finite prime), an embedding of k into R
(a real prime), or a conjugate pair of embeddings of k into C (a complex prime). The ring of finite
adèles of Q is Af DQ˝

�Q
pZp

�
.

We use � or z 7! xz to denote complex conjugation on C or on a subfield of C.
We use the language of modern algebraic geometry, not Weil’s Foundations. For example,

if G and G0 are algebraic groups over a field k, then by a homomorphism G ! G0 we mean a
homomorphism defined over k, not over some universal domain. Similarly, a simple algebraic
group need not be geometrically (i.e., absolutely) simple.

1. Elliptic modular curves
The first Shimura varieties, and the first moduli varieties, were the elliptic modular curves. In
this section, we review the theory of elliptic modular curves as an introduction to the general
theory.

Definition
Let D be the complex upper half plane,

D D fz 2 C j =.z/ > 0g:

The group SL2.R/ acts transitively on D by the rule�
a b

c d

�
z D

azCb

czCd
:

A subgroup � of SL2.Z/ is a congruence subgroup if, for some integer N � 1, � contains the
principal congruence subgroup of level N ,

� .N/
def
D fA 2 SL2.Z/ j A� I modulo N g .

1Some authors say “place”.
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An elliptic modular curve is the quotient � nD of D by a congruence group � . Initially this is a
one-dimensional complex manifold, but it can be compactified by adding a finite number of “cusps”,
and so it has a unique structure of an algebraic curve. This curve can be realized as a moduli variety
for elliptic curves with level structure, from which it is possible deduce many beautiful properties
of the curve, for example, that it has a canonical model over a specific number field, and that the
coordinates of the special points on the model generate class fields.

Elliptic modular curves as moduli varieties
For an elliptic curve E over C, the exponential map defines an exact sequence

0!�! T0.E
an/

exp
�!Ean

! 0 (1)

with
�' �1.E

an;0/'H1.E
an;Z/:

The functor E  .T0E;�/ is an equivalence from the category of complex elliptic curves to the
category of pairs consisting of a one-dimensional C-vector space and a lattice. Thus, to give an
elliptic curve over C amounts to giving a two-dimensional R-vector space V , a complex structure
on V , and a lattice in V . It is known that D parametrizes elliptic curves plus additional data.
Traditionally, to a point � of D one attaches the quotient of C by the lattice spanned by 1 and � . In
other words, one fixes the real vector space and the complex structure, and varies the lattice. From
the point of view of period domains and Shimura varieties, it is more natural to fix the real vector
space and the lattice, and vary the complex structure.

Thus, let V be a two-dimensional vector space over R. Let J be a complex structure on V (i.e.,
an endomorphism of V such that J 2D�1), and let VCD V CJ ˚V

�
J be the decomposition of VC into

its C1 and �1 eigenspaces. The isomorphism V ! VC=V
�
J ' V

C

J carries the complex structure
J on V to the natural complex structure on V CJ . The map J 7! V CJ identifies the set of complex
structures on V with the set of nonreal one-dimensional quotients of VC, i.e., with P.VC/rP.V /.
This set has two connected components.

Now choose a basis for V , and identify it with R2. Let  WV �V ! R be the alternating form

 .
�
a
b

�
;
�
c
d

�
/D det

�
a c
b d

�
D ad �bc:

On one of the connected components, which we denote D, the symmetric bilinear form

.x;y/ 7!  J .x;y/
def
D  .x;Jy/WV �V ! R

is positive definite and on the other it is negative definite. Thus D is the set of complex structures
on V for which C (rather than � ) is a Riemann form. Our choice of a basis for V identifies
P.VC/rP.V / with P1.C/rP1.R/ and D with the complex upper half plane.

Now let � be the lattice Z2 in V . For each J 2D, the quotient V CJ =� is an elliptic curve E
with �'H1.Ean;Z/. In this way, D classifies the isomorphism classes of pairs consisting of an
elliptic curve E over C and a basis for H1.Ean;Z/.

We let EN denote the kernel of multiplication by N on an elliptic curve E. Thus, for the curve
E D V CJ =�,

EN .C/D 1
N
�=�'�=N�:

A level-N structure on an elliptic curve E is a pair of points �D .t1; t2/ in E.C/ that form a basis
for EN .C/. In the following, we always require that eN .t1; t2/ D � where eN is the Weil pairing
EN �EN ! �N and � is a fixed N th root of 1 in C.
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Identify � .N/ with the subgroup of SL.V / whose elements map � into itself and act as the
identity on �=N�. On passing to the quotient by � .N/, we obtain a one-to-one correspondence
between the points of � .N/nD and the isomorphism classes of pairs consisting of an elliptic curve
E over C and a level-N structure � on E. Let YN denote the algebraic curve over C with Y an

N D

� .N/nD.
Let f WE! S be a family of elliptic curves over a scheme S . A level N structure on E=S is a

pair of sections to f that give a level-N structure on Es for each point s of S .

PROPOSITION 1.1. Let f WE ! S be a family of elliptic curves on a smooth algebraic curve S
over C, and let � be a level-N structure on E=S . The map  WS.C/! YN .C/ sending s 2 S.C/ to
the point of � .N/nD corresponding to .Es;�s/ is regular, i.e., defined by a morphism of algebraic
curves.

PROOF. We first show that  is holomorphic. For this, we regard P.VC/ as the Grassmann manifold
classifying the one-dimensional quotients of VC. Thus, for any surjective homomorphism OM ˝R

V
˛
�! W of vector sheaves on a complex manifold M such that Wm has dimension 1 for all

m 2M , the map sending m 2M to the point of P.VC/ corresponding to the quotient VC
˛s
�!Wm

is holomorphic.
Let f WE ! S be a family of elliptic curves on a connected smooth algebraic variety S (not

necessary of dimension one). The exponential map defines an exact sequence of sheaves on S an

0 �!R1f�Z �! T 0.Ean=S an/ �!Ean
�! 0

whose fibre at a point s 2 S an is the sequence (1) for Es . From the first map in the sequence we get
a surjective map

OS an˝ZR1f�Z� T 0.Ean=S an/: (2)

Each point of S an has an open neighbourhood U for which there exists an isomorphism

Z2U !R1f�ZjU

compatible with the level-N structure. On tensoring such an isomorphism with OU an ,

OU an˝ZZ2U !OU an˝R1f�ZjU

and composing with (2), we get a surjective map

OU an˝R V � T 0.Ean=S an/jU ,

which defines a holomorphic map U ! P.VC/. With the correct choice of (2), this will map into
D (rather than �D), and its composite with the quotient map D! � .N/nD will be the map  .
Therefore  is holomorphic.

It remains to show that  is algebraic. We now assume that S has dimension 1. After passing to
a finite covering, we may suppose that N is even. Let xYN (resp. xS ) be the completion of YN (resp.
S ) to a smooth complete algebraic curve. We have a holomorphic map

S an 
�! Y an

N �
xY an
N

which we wish to show to be regular. The curve Y2 is isomorphic to the projective line minus three
points and is a quotient of Y . The composite

S an 
�! Y an

N

onto
�! Y an

2 ' P1.C/r f0;1;1g



2 HERMITIAN SYMMETRIC DOMAINS 8

does not have an essential singularity at any of the (finitely many) points of xS an rS an because this
would violate the big Picard theorem. Therefore, it extends to a holomorphic map xS an! P1.C/,
which implies that  extends to a holomorphic map x W xS an ! xY an

N . As xYN and xS are complete
algebraic curves, x is regular. 2

Let F be the functor sending a scheme S of finite type over C to the set of isomorphism classes
of pairs consisting of a family elliptic curves f WE! S over S and a level-N structure on E. When
3jN , Mumford (1965, Chapter 7) proves that F is representable by a smooth algebraic curve SN
over C. This means that there exists a (universal) family of elliptic curves E=SN over SN and a
level-N structure � onE=SN such that, for any similar pair .E 0=S;�0/ over a scheme S , there exists
a unique morphism ˛WS ! SN for which ˛�.E=SN ;�/� .E 0=S 0;�0/.

THEOREM 1.2. There is a canonical isomorphism  WSN ! YN .

PROOF. According to Proposition 1.1, the universal family of elliptic curves with level-N structure
on SN defines a morphism of algebraic curves  WSN ! YN . Both sets SN .C/ and YN .C/ are in
natural one-to-one correspondence with the set of isomorphism classes of complex elliptic curves
with level-N structure, and  sends the point in SN .C/ corresponding to a pair .E;�/ to the point
in YN .C/ corresponding to the same pair. Therefore, .C/ is bijective, which implies that  is an
isomorphism. 2

In particular, we have shown that the curve SN , constructed by Mumford purely in terms of
algebraic geometry, is isomorphic by the obvious map to the curve YN , constructed analytically. Of
course, this is well known, but it is difficult to find a proof of it in the literature.2

2. Hermitian symmetric domains
The natural generalization of the complex upper half plane is a hermitian symmetric domain.

Preliminaries on Cartan involutions and polarizations
Let G be a connected algebraic group over R, and let g 7! xg denote complex conjugation on G.C/.
An involution � of G (as an algebraic group over R) is said to be Cartan if the group

G.�/.R/D fg 2G.C/ j g D �.xg/g

is compact.

THEOREM 2.1. There exists a Cartan involution if and only if G is reductive, in which case any
two are conjugate by an element of G.R/ (Satake 1980, I 4.3, 4.4).

EXAMPLE 2.2. Consider the algebraic group GLV attached to a real vector space V . The choice
of a basis for V determines a transpose operator g 7! gt , and g 7! .gt /�1 is obviously a Cartan
involution. The theorem says that all Cartan involutions of GLV arise in this way. An algebraic
subgroup G of GLV is reductive if and only if it is stable under g 7! gt for some basis of V , in
which case the restriction of g 7! .gt /�1 to G is a Cartan involution. All Cartan involutions of G
arise in this way for a suitable choice of basis for V .

2For example, Brian Conrad has pointed out that it is not proved in Katz and Mazur 1985 (mathoverflow.net, 21755).
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Let C be an element of G.R/ whose square is central (so inn.C / is an involution). A C -
polarization on a real representation V of G is a G-invariant bilinear form 'WV �V ! R such that
the form 'C W.x;y/ 7! '.x;Cy/ is symmetric and positive definite.

THEOREM 2.3. If inn.C / is a Cartan involution ofG, then every finite dimensional real representa-
tion of G carries a C -polarization; conversely, if one faithful finite dimensional real representation
of G carries a C -polarization, then inn.C / is a Cartan involution.

PROOF. Let G! GLV be a faithful representation of G, and let ' be a C -polarization. Let �C be
the sesquilinear form

.u;v/ 7! 'C.u;C xv/WVC�VC! C

defined by 'C . Because 'C is symmetric and positive definite, �C is hermitian and positive definite;
because ' is G-invariant, �C is G.innC/-invariant. Therefore G.innC/.R/ is compact and so inn.C /
is a Cartan involution.

Conversely, if G.innC/.R/ is compact, every real representation G ! GLV of G carries a
G.innC/.R/-invariant positive definitive symmetric bilinear form '.3 For such a ', the bilinear
form 'C�1 is a C -polarization on V . 2

2.4. VARIANT. Let G be an algebraic group over Q, and let C be an element of G.R/ whose
square is central. A C -polarization on a Q-representation V of G is a G-invariant bilinear form
'WV �V ! Q such that 'R is a C -polarization on VR. In order to show that a Q-representation
V of G is polarizable, it suffices to check that VR is polarizable. Consider, for example, the case
that C 2 acts as C1 or �1 on V . Let P.Q/ (resp. P.R/) denote the space of G-invariant bilinear
forms on V (resp. on VR) that are symmetric when C 2 acts as C1 or skew-symmetric when it acts
as �1. Then P.R/D R˝QP.Q/. The C -polarizations of VR form an open subset of P.R/, whose
intersection with P.Q/ consists of the C -polarizations of V .

Definition

Let M be a complex manifold, and let JpWTpM ! TpM denote the action of
p
�1 on the tangent

space at a point p of M . A hermitian metric on M is a riemannian metric g on the underlying
smooth manifold of M such that Jp is an isometry for all p.4 A hermitian manifold is a complex
manifold equipped with a hermitian metric g, and a hermitian symmetric space is a connected
hermitian manifold M that admits a symmetry at each point p, i.e., an involution sp having p as an
isolated fixed point. The group Hol.M/ of holomorphic automorphisms of a hermitian symmetric
space M is a real Lie group whose identity component Hol.M/C acts transitively on M .

Every hermitian symmetric spaceM is a product of hermitian symmetric spaces of the following
types:

˘ Noncompact type — the curvature is negative5 and Hol.M/C is a noncompact adjoint Lie
group; example, the complex upper half plane.

˘ Compact type — the curvature is positive and Hol.M/C is a compact adjoint Lie group;
example, the Riemann sphere.

3Let V be a real representation of a compact groupU ; for any positive definite symmetric bilinear form 'WV �V !R,
the form .x;y/ 7!

R
u2U '.ux;uy/du is positive definite, symmetric, bilinear, and U -invariant.

4Then gp is the real part of a unique hermitian form on TpM , which explains the name.
5This means that the sectional curvature K.p;E/ is < 0 for every p 2M and every two-dimensional subspace E of

TpM .
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˘ Euclidean type — the curvature is zero; M is isomorphic to a quotient of a space Cn by a
discrete group of translations.

In the first two cases, the space is simply connected. A hermitian symmetric space is indecompos-
able if it is not a product of two hermitian symmetric spaces of lower dimension. For an indecom-
posable hermitian symmetric space M of compact or noncompact type, the Lie group Hol.M/C is
simple.

A hermitian symmetric domain is a connected complex manifold that admits a hermitian metric
for which it is a hermitian symmetric space of noncompact type.6 The hermitian symmetric domains
are exactly the complex manifolds isomorphic to bounded symmetric domains (via the Harish-
Chandra embedding; Satake 1980, II �4). Thus a connected complex manifold M is a hermitian
symmetric domain if and only if

(a) it is isomorphic to a bounded open subset of Cn for some n, and
(b) each point p of M admits a symmetry, i.e, a holomorphic involution having p as an isolated

fixed point.

For example, the bounded domain fz 2 C j jzj < 1g is symmetric because it is homogeneous
and admits a symmetry at the origin (rotation through 180 degrees). The map z 7! z�i

zCi
is an

isomorphism from the complex upper half plane D onto the open unit disk, and so D is a hermitian
symmetric domain. Its automorphism group is

Hol.D/' SL2.R/=f˙I g ' PGL2.R/C.

NOTES. The standard reference for hermitian symmetric spaces is Helgason 1978, Chapter VIII.

Classification

Let U 1 be the circle group U 1 D fz 2 C j jzj D 1g. For each point o of a hermitian symmetric
domain D, there is a unique homomorphism uoWU

1! Hol.D/ such that uo.z/ fixes o and acts on
ToD as multiplication by z (z 2 U 1).7 In particular, uo.�1/ is the symmetry at o.

EXAMPLE 2.5. Let D be the complex upper half plane and let oD i . Let hWU 1! SL2.R/ be the
homomorphism aC bi 7!

�
a b
�b a

�
. Then h.z/ fixes o, and it acts as z2 on To.D/. For z 2 U 1,

choose a square root
p
z in U 1, and let uo.z/D h.

p
z/ mod˙I . Then uo.z/ is independent of the

choice of
p
z because h.�1/D �I . The homomorphism uoWU

1! SL2.Z/=f˙I g D Hol.D/ has
the correct properties.

Now let D be a hermitian symmetric domain. Because Hol.D/ is an adjoint Lie group, there
is a unique real algebraic group H such that H.R/C D Hol.D/C. Similarly, U 1 is the group of
R-points of the algebraic torus S1 defined by the equation X2CY 2 D 1. A point o 2D defines a
homomorphism uWS1!H of real algebraic groups.

THEOREM 2.6. The homomorphism uWS1!H has the following properties:

SU1: only the characters z;1;z�1 occur in the representation of S1 on Lie.H/C defined by u;8

6Usually a hermitian symmetric domain is defined to be a complex manifold equipped with a hermitian metric etc..
However, a hermitian symmetric domain in our sense satisfies conditions (A.1) and (A.2) of Kobayashi 1959, and so has
a canonical Bergman metric, invariant under all holomorphic automorphisms.

7See, for example, Milne 2005, Theorem 1.9.
8The maps S1

u
�!HR

Ad
�! Aut.Lie.H// define an action of S1 on Lie.H/, and hence on Lie.H/C. The condition

means that Lie.H/C is a direct sum of subspaces on which u.z/ acts as z, 1, or z�1.
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SU2: inn.u.�1// is a Cartan involution.

Conversely, ifH is a real adjoint algebraic group with no compact factor and uWS1!H satisfies the
conditions (SU1,2), then the setD of conjugates of u by elements ofH.R/C has a natural structure
of a hermitian symmetric domain for which u.z/ acts on TuD as multiplication by z; moreover,
H.R/C D Hol.D/C.

PROOF. See Satake 1980, II, Proposition 3.2; cf. also Milne 2005, 1.21. 2

Now assume that D is indecomposable. Then H is simple, and HC is also simple because H
is an inner form of its compact form (by SU2).9 Thus, from D and a point o, we get a simple
adjoint algebraic group HC over C and a nontrivial cocharacter � def

D uCWGm!HC satisfying the
condition:

(*) Gm acts on Lie.HC/ through the characters z, 1, z�1.

Moreover, we can recover .H;u/ from .HC;�/: the real group H is the twist of the (unique)
compact real form of HC defined by the involution inn.�.�1//, and u is the restriction of � to
U 1 � C�. Changing o replaces � by a conjugate.

In sum, the indecomposable hermitian symmetric domains are classified by the pairs .G;M/

consisting of a simple adjoint algebraic group over C and a conjugacy class of nontrivial cocharac-
ters of G satisfying (*) (Deligne 1979b, 1.2.2). It remains to classify the pairs .G;M/.

Fix a maximal torus T of G and a base S for the root system R D R.G;T /, and let RC be
the corresponding set of positive roots. As each � in M factors through some maximal torus,
and all maximal tori are conjugate, we may choose � 2M to factor through T . Among the � in
M factoring through T , there is exactly one such that h˛;�i � 0 for all ˛ 2 RC (because the Weyl
group acts simply transitively on the Weyl chambers). The condition (*) says that h˛;�i 2 f1;0;�1g
for all roots ˛. Since � is nontrivial, not all of the h˛;�i can be zero, and so hz̨;�i D 1 where z̨
is the highest root. Recall that the highest root z̨ D

P
˛2S n˛˛ has the property that n˛ � m˛ for

any other root
P
˛2Sm˛˛; in particular, n˛ � 1. It follows that h˛;�i D 0 for all but one simple

root ˛, and that for that simple root h˛;�i D 1 and n˛ D 1. Thus, the pairs .G;M/ are classified by
the simple roots ˛ for which n˛ D 1 — these are called the special simple roots. On examining the
tables, one finds that the special simple roots are as in the following table:

type z̨ special roots #

An ˛1C˛2C�� �C˛n ˛1; : : : ;˛n n

Bn ˛1C2˛2C�� �C2˛n ˛1 1

Cn 2˛1C�� �C2˛n�1C˛n ˛n 1

Dn ˛1C2˛2C�� �C2˛n�2C˛n�1C˛n ˛1;˛n�1;˛n 3

E6 ˛1C2˛2C2˛3C3˛4C2˛5C˛6 ˛1;˛6 2

E7 2˛1C2˛2C3˛3C4˛4C3˛5C2˛6C˛7 ˛7 1

E8;F4;G2 none 0

9If HC is not simple, say, HC DH1�H2, then H D .H1/C=R, and every inner form of H is isomorphic to H itself,
which is not compact because H.R/DH1.C/.
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Thus there are indecomposable hermitian symmetric domains of all possible types except E8, F4,
and G2. Mnemonic: the number of special simple roots is one less than the connection index
.P.R/WQ.R// of the root system.10

Example: the Siegel upper half space
A symplectic space .V; / over a field k is a finite dimensional vector space V over k together with
a nondegenerate alternating form  on V . The symplectic group S. / is the algebraic subgroup
of GLV of elements fixing  . It is an almost simple simply connected group of type Cn�1 where
nD 1

2
dimk V .

Now let k D R, and let H D S. /. Let D be the space of complex structures J on V such that
.x;y/ 7!  J .x;y/

def
D  .x;Jy/ is symmetric and positive definite. The symmetry is equivalent to

J lying in S. /. Therefore, D is the set of complex structures J on V for which J 2H.R/ and  
is a J -polarization for H .

The action,
g;J 7! gJg�1WH.R/�D!D;

of H.R/ on D is transitive.11 Each J 2D defines an action of C on V , and

 .Jx;Jy/D  .x;y/ all x;y 2 V H)  .zx;zy/D jzj2 .x;y/ all x;y 2 V:

Let hJ WU 1!H.R/ be the homomorphism such that hJ .z/ acts on V as multiplication by z. As

Lie.H/� End.V /' V _˝V;

hJ .z/ acts on Lie.H/C through the characters z=xz D z2, 1, and xz=z D z�2.
For z 2 U 1, choose a square root

p
z in U 1, and let uJ .z/ D hJ .

p
z/ mod ˙1. Then uJ is

a well-defined homomorphism U 1!H ad.R/, and it satisfies the conditions (SU1,2) of Theorem
2.6. Therefore, there is a unique complex structure on D such that z 2 U 1 acts on TJ .D/ as
multiplication by z, and, relative to this structure, D is the (unique) indecomposable hermitian
symmetric domain of type Cn�1. It is called the Siegel upper half space (of degree, or genus, n).

3. Discrete subgroups of Lie groups
The algebraic varieties we are concerned with are quotients of hermitian symmetric domains by
the action of discrete groups. In this section, we describe the discrete groups of interest to us.

10It is possible to prove this directly. Let SC D S [f˛0g where ˛0 is the negative of the highest root — the elements
of SC correspond to the nodes of the completed Dynkin diagram (Bourbaki Lie, VI 4, 3). The group P=Q acts on SC,
and it acts simply transitively on the set fsimple rootsg[f˛0g (Deligne 1979b, 1.2.5).

11Recall that a basis .e˙i /1�i�n for V is symplectic if  .ei ; e�i /D 1 (1� i � n),  .e�i ; ei /D�1 (1� i � n), and
 .ei ; ej /D 0 (iC j ¤ 0). The group H.R/ acts simply transitively on the set of symplectic bases for V : for any bases
.e˙i / and .f˙i / for V , there is a unique g 2GL.V / such that ge˙i D f˙i ; clearly, g 2H.k/ if the bases are symplectic.
A symplectic basis e D .e˙i / of V defines a complex structure Je on V by Jee˙i D˙e�i , i.e.,

ei
Je
�! e�i

Je
�!�ei ; 1� i � n:

Then Je 2D — in fact, e is an orthonormal basis for  Je . Conversely, if J 2D, then J D Je for any orthonormal basis
e for  J . As the map e 7! Je is equivariant, this shows that H.R/ acts transitively on D.
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Lattices in Lie groups
LetH be a real Lie group. A lattice inH is a discrete subgroup � of finite covolume, i.e., such that
� C DH for some Borel subset C of H with finite measure relative to a Haar measure on H . For
example, the lattices in Rn are exactly the Z-submodules generated by bases for Rn, and two such
lattices are commensurable12 if and only if they generate the same Q-vector space. Every discrete
subgroup commensurable with a lattice is itself a lattice.

Now assume that H is semisimple with finite centre. A lattice � is irreducible if �N is dense
in H for every noncompact closed normal subgroup N of H .

THEOREM 3.1. Let H be an adjoint Lie group with no compact factors, and let � be a lattice H .
Then H can be written (uniquely) as a direct product H DH1�� � ��Hr of Lie subgroups Hi such
that �i

def
D � \Hi is an irreducible lattice in Hi and �1� � � ���r has finite index in �

PROOF. See Morris 2008, 4.24. 2

THEOREM 3.2. Let D be a hermitian symmetric domain, and let H D Hol.D/C. A discrete sub-
group � ofH is a lattice if and only if � nD has finite volume. Let � be a lattice inH ; then there is
a (unique) decomposition D DD1� � � ��Dr of D into a product of hermitian symmetric domains
such that �i

def
D � \Hol.Di /C is an irreducible lattice in Hol.Di /C and �1nD1� � � � ��rnDr is a

finite covering of � nD.

PROOF. The first statement of (3.2) follows from the fact that D is a quotient of H by a compact
subgroup. The second statement follows from (3.1) and �2. 2

Arithmetic subgroups of algebraic groups
Arithmetic is the main source for lattices in Lie groups.

Let G be an algebraic group over Q. When r WG! GLn is an injective homomorphism, we let

G.Z/r D fg 2G.Q/ j r.g/ 2 GLn.Z/g:

Then G.Z/r is independent of r up to commensurability (Borel 1969, 7.13), and we sometimes
omit r from the notation. A subgroup � of G.Q/ is arithmetic if it is commensurable with G.Z/r
for some r .

THEOREM 3.3. Let �WG!G0 be a surjective homomorphism of algebraic groups over Q. If � �
G.Q/ is arithmetic, then so also is �.� /�G0.Q/:

PROOF. See Borel 1969, 8.9, 8.11. 2

An arithmetic subgroup � of G.Q/ is obviously discrete in G.R/, but it need not have finite
covolume. For example, Gm.Z/D f˙1g is an arithmetic subgroup of Gm.Q/ of infinite covolume
in Gm.R/DR�. More generally, if G has Gm as a quotient, then it may have arithmetic subgroups
of infinite covolume.

THEOREM 3.4. Let G be a reductive algebraic group over Q, and let � be an arithmetic subgroup
of G.Q/.

12Recall that two subgroup S1 and S2 of a group are commensurable if S1\S2 has finite index in both S1 and S2.
Commensurability is an equivalence relation.
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(a) The quotient � nG.R/ has finite volume if and only if Hom.G;Gm/D 0; in particular, � is a
lattice if G is semisimple.13

(b) (Godement compactness criterion) The quotient � nG.R/ is compact if and only if Hom.G;Gm/D
0 and G.Q/ contains no unipotent element other than 1.14

PROOF. See Borel 1969, 13.2, 8.4. 2

Let k be a subfield of C. An automorphism ˛ of a k-vector space V is said to be neat if its
eigenvalues in C generate a torsion free subgroup of C�. Let G be an algebraic group over Q. An
element g 2G.Q/ is neat if �.g/ is neat for one faithful representation G ,!GL.V /, in which case
�.g/ is neat for every representation � of G defined over a subfield of C. A subgroup of G.Q/ is
neat if all its elements are.

THEOREM 3.5. Let G be an algebraic group over Q, and let � be an arithmetic subgroup ofG.Q/.
Then, � contains a neat subgroup of finite index. In particular, � contains a torsion free subgroup
of finite index.

PROOF. In fact, the neat subgroup can be defined by congruence conditions. See Borel 1969, 17.4.2

DEFINITION 3.6. A semisimple group G over Q is said to be of compact type if G.R/ is compact,
and it is said to be of noncompact type if it does not contain a nontrivial connected normal algebraic
subgroup of compact type.

Thus a simply connected15 or adjoint group over Q is of compact type if all of its almost simple
factors are of compact type, and it is of noncompact type if none of its almost simple factors is of
compact type. In particular, a group may fail to be of compact type without being of noncompact
type.

THEOREM 3.7 (BOREL DENSITY THEOREM). Let G be a semisimple algebraic group over Q. If
G is of noncompact type, then every arithmetic subgroup of G.Q/ is dense in the Zariski topology.

PROOF. See Borel 1969, 15.12. 2

THEOREM 3.8 (MARGULIS SUPERRIGIDITY THEOREM). Let G and H be algebraic groups over
Q with G simply connected and almost simple. Let � be an arithmetic subgroup of G.Q/, and
let ıW� ! H.Q/ a homomorphism. If rankGR � 2, then the Zariski closure of ı.� / in H is
a semisimple algebraic group (not necessarily connected), and there is a unique homomorphism
'WG!H of algebraic groups such that './D ı./ for all  in a subgroup of finite index in � .

PROOF. The conditions on G imply that G D .G0/F=Q for some simply connected geometrically
almost simple algebraic group G0 over a number field F . Thus, the statement is a special case of
Margulis 1991, Theorem B, p. 258. 2

13This was proved in particular cases by Siegel and others, and in general by Borel and Harish-Chandra (1962).
14This was conjectured by Godement, and proved independently by Mostow and Tamagawa (1962) and by Borel and

Harish-Chandra (1962).
15When G is simply connected, a theorem of Cartan says that G.R/ is connected.
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Arithmetic subgroups of Lie groups
LetH be a semisimple real Lie group with finite centre. A lattice � inH is arithmetic if there exists
a simply connected algebraic group G over Q and a surjective homomorphism 'WG.R/!H with
compact kernel such that � is commensurable with '.G.Z//. The arithmetic group � is irreducible
if and only if the algebraic group G is almost simple.16

EXAMPLE 3.9. For example, let H D SL2.R/. Let B be a quaternion algebra over a totally real
number field F such that H ˝F;vR�M2.R/ for exactly one real prime v. Let G be the algebraic
group over Q such that G.Q/D fb 2B jNormB=Q.b/D 1g. ThenH ˝QR'M2.R/�H�H�� � �
where H is usual quaternion algebra, and so there exists a surjective homomorphism 'WG.R/!
SL2.R/ with compact kernel. The image under ' of any arithmetic subgroup of G.Q/ is an arith-
metic subgroup � of SL2.R/, and every arithmetic subgroup of SL2.R/ is commensurable with one
of this form. If F D Q and B DM2.Q/, then G D SL2Q and � nSL2.R/ is noncompact (see �1),
and otherwise B is a division algebra, and � nSL2.R/ is compact by Godement’s criterion (3.4b).

THEOREM 3.10. If H admits a faithful finite dimensional representation, then every lattice in H
contains a torsion free subgroup of finite index.

PROOF. This is a variant of Theorem 3.5 (the condition onH is necessary). See Morris 2008, �4I.2

There are many nonarithmetic lattices in SL2.R/. However, except in a few groups of low rank
like SL2.R/, no one was able to find a lattice that was not arithmetic. Eventually Selberg conjectured
that there are none, and this was proved by Margulis.

THEOREM 3.11 (MARGULIS ARITHMETICITY THEOREM). Every irreducible lattice in a semisim-
ple Lie group is arithmetic unless the group is isogenous to SO.1;n/� .compact/ or SU.1;n/�
.compact/.

For a discussion of the theorem, see Morris 2008, �5B.

THEOREM 3.12. Let H be the identity component of the group of automorphisms of a hermitian
symmetric domain (see 2.6), and let � be a lattice in H . If rankHi � 2 for each factor Hi in (3.1),
then there exists a simply connected algebraic group G of noncompact type over Q and a surjective
homomorphism 'WG.R/!H with compact kernel such that � is commensurable with '.G.Z//.
Moreover, the pair .G;'/ is unique up to a unique isomorphism.

PROOF. Each factor Hi is again the identity component of the group of automorphisms of a her-
mitian symmetric domain, and so we may suppose that � is irreducible. The existence of the
pair .G;'/ just means that � is arithmetic, which follows from the Margulis arithmeticity theorem
(3.10).

The group G is a product of its almost simple factors (because it is simply connected), and
because � is irreducible, it is almost simple. Therefore G D .Gs/F=Q where F is a number field
and Gs is a geometrically almost simple algebraic group over F . Recall that GR is an inner form of
its compact form (by SU2). If F had a complex prime, GR would have a factor .G0/C=R, but every
inner form of .G0/C=R is isomorphic to .G0/C=R, which is not compact. Therefore F is totally real.

16Let G D G1 �G2; if � is an arithmetic subgroup of G.Q/, then �1
def
D � \G1.Q/ and �2

def
D � \G2.Q/ are

arithmetic, and � is commensurable with �1��2 (and � �G2.R/D �2 �G2.R/ is not dense in G.R/). This proves the
implication “irreducible implies almost simple”, and the converse follows from (3.1).
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Let .G1;'1/ be a second pair. Because the kernel of '1 is compact, its intersection with G1.Z/
is finite, and so there exists an arithmetic subgroup �1 of G1.Q/ such '1j�1 is injective. Because
'.G.Z// and '1.�1/ are commensurable, there exists an arithmetic subgroup � 0 of G.Q/ such that
'.� 0/ � '1.�1/. Now the Margulis superrigidity theorem 3.8 shows that there exists a homomor-
phism ˛WG!G1 such that

'1.˛.//D './ (3)

for all  in a subgroup � 00 of � 0 of finite index. The subgroup � 00 of G.Q/ is Zariski-dense in G
(Borel density theorem 3.7), and so (3) implies that

'1 ı˛ D ': (4)

Because G and G1 are almost simple, (4) implies that ˛ is an isogeny, and because G1 is simply
connected, this implies that ˛ is an isomorphism. It is unique because it is uniquely determined on
an arithmetic subgroup of G. 2

Congruence subgroups of algebraic groups
As in the case of elliptic modular curves, we shall need to consider a special class of arithmetic
subgroups, namely, the congruence subgroups.

Let G be an algebraic group over Q. Choose an embedding of G into GLn, and define

� .N/DG.Q/\fA 2 GLn.Z/ j A� 1 mod N g :

A congruence subgroup17 ofG.Q/ is any subgroup containing � .N/ as a subgroup of finite index.
Although � .N/ depends on the choice of the embedding, this definition does not — in fact, the
congruence subgroups are exactly those of the form K\G.Q/ for K a compact open subgroup of
G.Af /.

For a surjective homomorphismG!G0 of algebraic groups over Q, the homomorphismG.Q/!
G0.Q/ need not send congruence subgroups to congruence subgroups. For example, the image in
PGL2.Q/ of a congruence subgroup of SL2.Q/ is an arithmetic subgroup (see 3.3) but not neces-
sarily a congruence subgroup.

Every congruence subgroup is an arithmetic subgroup, and for a simply connected group the
converse is often, but not always, true. For a survey of what is known about the relation of congru-
ence subgroups to arithmetic groups (the congruence subgroup problem), see Prasad and Rapinchuk
2008.

ASIDE 3.13. Let H be a connected adjoint real Lie group without compact factors. The pairs .G;'/ con-
sisting of a simply connected algebraic group over Q and a surjective homomorphism 'WG.R/! H with
compact kernel have been classified (this requires class field theory). Therefore the arithmetic subgroups
of H have been classified up to commensurability. When all arithmetic subgroups are congruence, there is
even a classification of the groups themselves in terms of congruence conditions or, equivalently, in terms of
compact open subgroups of G.Af /.

4. Locally symmetric varieties
A hermitian symmetric domain is never an algebraic variety. To obtain an algebraic variety, we
must pass to the quotient by an arithmetic group.

17Subgroup defined by congruence conditions.
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Quotients of hermitian symmetric domains

Let D be a hermitian symmetric domain, and let � be a discrete subgroup of Hol.D/C. If � is
torsion free, then � acts freely on D, and there is a unique complex structure on � nD for which
the quotient map � WD! � nD is a local isomorphism. Relative to this structure, a map ' from
� nD to a second complex manifold is holomorphic if and only if ' ı� is holomorphic.

When � is torsion free, we often write D.� / for � nD regarded as a complex manifold. In
this case, D is the universal covering space of D.� / and � is the group of covering transforma-
tions. The choice of a point p 2D determines an isomorphism of � with the fundamental group
�1.D.� /;�p/.18

The complex manifold D.� / is locally symmetric in the sense that, for each p 2D.� /, there
is an involution sp defined on a neighbourhood of p having p as an isolated fixed point.

The algebraic structure on the quotient
Recall that X an denotes the complex manifold attached to a smooth complex algebraic variety X .
The functor X  X an is faithful, but it is far from being surjective on arrows or on objects. For
example,

�
A1
�an
D C and the exponential function is a nonpolynomial holomorphic map C! C.

A Riemann surface arises from an algebraic curve if and only if it can be compactified by adding a
finite number of points. In particular, if a Riemann surface is an algebraic curve, then every bounded
function on it is constant and so the complex upper half plane is not an algebraic curve.19

CHOW’S THEOREM

An algebraic variety (resp. complex manifold) is projective if it can be realized as a closed subvari-
ety of Pn for some n (resp. closed submanifold of .Pn/an).

THEOREM 4.1 (CHOW 1949). The functor X  X an from smooth projective complex algebraic
varieties to projective complex manifolds is an equivalence of categories.

In other words, a projective complex manifold has a unique structure of a smooth projective al-
gebraic variety, and every holomorphic map of projective complex manifolds is regular for these
structures. See Taylor 2002, 13.6, for the proof.

Chow’s theorem remains true when singularities are allowed.

THE BAILY-BOREL THEOREM

THEOREM 4.2 (BAILY AND BOREL 1966). Every quotient D.� / of a hermitian symmetric do-
main D by a torsion-free arithmetic subgroup � of Hol.D/C has a canonical structure of an alge-
braic variety.

Let G be the algebraic group attached to .D;� / by Theorem 3.12. Assume, for simplicity, that
G has no normal algebraic subgroup of dimension 3, and let An be the vector space of automorphic
forms on D for the nth power of the canonical automorphy factor. Then AD

L
n�0An is a finitely

generated graded C-algebra, and the canonical map

D.� /!D.� /�
def
D Proj.A/

18Let  2 � , and choose a path from p to p; the image of this in � nD is a loop whose homotopy class does not
depend on the choice of the path.

19For example, z�izCi is bounded on the complex upper half plane.
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realizes D.� / as a Zariski-open subvariety of the projective algebraic variety D.� /� (Baily and
Borel 1966, �10).

BOREL’S THEOREM

THEOREM 4.3 (BOREL 1972). Let D.� / be the quotient � nD in (4.2) endowed with its canon-
ical algebraic structure, and let V be a smooth complex algebraic variety. Every holomorphic map
f WV an!D.� /an is regular.

In the proof of Proposition 1.1, we saw that for curves this theorem follows from the big Picard
theorem. Recall that this theorem says every holomorphic map from a punctured disk to P1.C/r
fthree pointsg extends to a holomorphic map from the whole disk to P1.C/. Following earlier work
of Kwack and others, Borel generalized the big Picard theorem in two respects: the punctured disk
is replaced by a product of punctured disks and disks, and the target space is allowed to be any
quotient of a hermitian symmetric domain by a torsion-free arithmetic group.

Resolution of singularities (Hironaka 1964) shows that every open affine subvariety U of an
algebraic variety V can be embedded in a smooth projective variety xU as the complement of a
divisor with normal crossings. This means that xU anrU an is locally a product of disks and punctured
disks. Therefore f jU an extends to a holomorphic map xU an!D.� /� (by Borel) and so is a regular
map (by Chow).

Locally symmetric varieties
A locally symmetric variety is a smooth algebraic variety X over C such that X an is isomorphic
to � nD for some hermitian symmetric domain D and torsion-free subgroup � of Hol.D/.20 In
other words, X is a locally symmetric variety if the universal covering space D of X an is a hermi-
tian symmetric domain and the group of covering transformations of D over X an is a torsion-free
subgroup � of Hol.D/. When � is an arithmetic subgroup of Hol.D/C, X is called an arithmetic
locally symmetric variety. The group � is automatically a lattice, and so the Margulis arithmeticity
theorem (3.11) shows that nonarithmetic locally symmetric varieties can occur only when there are
factors of low dimension.

A nonsingular projective curve over C has a model over Qal if and only if it contains an arith-
metic locally symmetric curve as the complement of a finite set (Belyi; see Serre 1990, p. 71). This
suggests that there are too many arithmetic locally symmetric varieties for us to be able to say much
about their arithmetic.

Let D.� / be an arithmetic locally symmetric variety. Recall that � is arithmetic if there is a
simply connected algebraic group G over Q and a surjective homomorphism 'WG.R/! Hol.D/C

with compact kernel such that � is commensurable with '.G.Z//. If there exists a congruence
subgroup �0 of G.Z/ such that � contains '.�0/ as a subgroup of finite index, then we call D.� /
a connected Shimura variety. Only for Shimura varieties do we have a rich arithmetic theory (see
Deligne 1971b, Deligne 1979b, and the many articles of Shimura, especially, Shimura 1964, 1966,
1967a,b, 1970).

20As Hol.D/ has only finitely many components, � \Hol.D/C has finite index in � . Sometimes we only allow
discrete subgroups of Hol.D/ contained in Hol.D/C. In the theory of Shimura varieties, we generally consider only
“sufficiently small” discrete subgroups, and we regard the remainder as “noise”. Algebraic geometers do the opposite.
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Example: Siegel modular varieties
For an abelian variety A over C, the exponential map defines an exact sequence

0 �!� �! T0.A
an/

exp
�! Aan

�! 0

with T0.Aan/ a complex vector space and � a lattice in T0.Aan/ (isomorphic to H1.Aan;Z/).

THEOREM 4.4 (RIEMANN’S THEOREM). The functor A .T0.A/;�/ is an equivalence from the
category of abelian varieties over C to the category of pairs consisting of a C-vector space V and a
lattice � in V that admits a Riemann form.

PROOF. See, for example, Mumford 1970, Chapter I. 2

A Riemann form for a pair .V;�/ is an alternating form  W���! Z such that the pairing
.x;y/ 7! R.x;

p
�1y/WV �V !R is symmetric and positive definite. Here  R denotes the linear

extension of to R˝Z�' V . A principal polarization on an abelian varietyA is Riemann form for
.T0.A/;�/ whose discriminant is˙1. A level-N structure on an abelian variety is defined similarly
to an elliptic curve.

Let D denote the Siegel upper half space of degree n, and let DN be the quotient of D by the
principal congruence subgroup � .N/ of level N in the corresponding symplectic group.

PROPOSITION 4.5. Let f WA! S be a family of principally polarized abelian varieties on a smooth
algebraic variety S over C, and let � be a level-N structure on A=S . The map  WS.C/!DN .C/
sending s 2 S.C/ to the point of � .N/nD corresponding to .As;�s/ is regular.

PROOF. The holomorphicity of  can be proved by the same argument as in the proof of Proposition
1.1. Its algebraicity then follows from Borel’s theorem 4.3. 2

Let F be the functor sending a scheme S of finite type over C to the set of isomorphism classes
of pairs consisting of a family of principally polarized abelian varieties f WA! S over S and a
level-N structure on A. When 3jN , Mumford (1965, Chapter 7) proves that F is representable
by a smooth algebraic variety SN over C. This means that there exists a (universal) family of
principally polarized abelian varieties A=SN and a level-N structure � on A=SN such that, for
any similar pair .A0=S;�0/ over a scheme S , there exists a unique morphism ˛WS ! SN for which
˛�.A=SN ;�/� .A

0=S 0;�0/.

THEOREM 4.6. There is a canonical isomorphism  WSN !DN .

PROOF. The proof is the same as that of Theorem 1.2. 2

COROLLARY 4.7. The universal family of complex tori on DN is algebraic.

5. Variations of Hodge structures
We review the definitions.
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The Deligne torus
The Deligne torus is the algebraic torus S over R obtained from Gm over C by restriction of the
base field; thus

S.R/D C�; SC 'Gm�Gm:
The map S.R/! S.C/ induced by R! C is z 7! .z;xz/. There are homomorphisms

Gm
w

�����! S
t

����! Gm; t ıw D�2;

R�
a 7!a�1

�����! C�
z 7!zxz
����! R�:

The kernel of t is S1. A homomorphism hWS!G of real algebraic groups gives rise to cocharacters

�hWGm!GC; z 7! hC.z;1/; z 2Gm.C/D C�;
whWGm!G; wh D hıw (weight homomorphism).

The following formulas are useful (�D �h):

hC.z1;z2/D �.z1/ ��.z2/I h.z/D �.z/ ��.z/ (5)

h.i/D �.�1/ �wh.i/: (6)

Real Hodge structures
A real Hodge structure is a representation hWS!GLV of S on a real vector space V . Equivalently,
it is a real vector space V together with a (Hodge) decomposition,

VC D
M

p;q2Z
V p;q such that V p;q D V q;p for all p;q:

To pass from one description to the other, use the rule (Deligne 1973, 1979b):

v 2 V p;q ” h.z/v D z�pxz�qv, all z 2 C�.

The integers hp;q def
D dimCV

p;q are called the Hodge numbers of the Hodge structure. A real Hodge
structure defines a (weight) gradation on V ,

V D
M

m2Z
Vm; Vm D V \

�M
pCqDm

V p;q
�

,

and a descending (Hodge) filtration,

VC � �� � � F
p
� F pC1 � �� � � 0; F p D

M
p0�p

V p
0;q0 .

The weight gradation and Hodge filtration together determine the Hodge structure because

V p;q D
�
VpCq

�
C\F

p
\F q:

Note that the weight gradation is defined by wh. A filtration F on VC arises from a Hodge structure
of weight m on V if and only if

V D F p˚F q whenever pCq DmC1:

The R-linear map C D h.i/ is called the Weil operator. It acts as iq�p on V p;q , and C 2 acts as
.�1/m on Vm.

5.1. Let V be a real vector space. To give a Hodge structure h on V of type f.�1;0/; .0;�1/g is
the same as giving a complex structure on V : given h we get a complex structure from V ' VC=F

0;
given a complex structure, we let h.z/ act on V as multiplication by z.
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Rational Hodge structures
A rational Hodge structure is a Q-vector space V together with a real Hodge structure on VR such
that the weight gradation is defined over Q. Thus to give a rational Hodge structure on V is the
same as giving

˘ a gradation V D
L
mVm on V together with a real Hodge structure of weight m on VmR for

each m, or
˘ a homomorphism hWS! GLVR such that whWGm! GLVR is defined over Q.

The Tate Hodge structure Q.m/ is defined to be the Q-subspace .2�i/mQ of C with h.z/ acting as
multiplication by NormC=R.z/

m D .zxz/m. It has weight �2m and type .�m;�m/.

Polarizations
A polarization of a real Hodge structure .V;h/ of weight m is a morphism of Hodge structures

 WV ˝V ! R.�m/; m 2 Z; (7)

such that
.x;y/ 7! .2�i/m .x;Cy/WV �V ! R (8)

is symmetric and positive definite. The condition (8) means that  is symmetric if m is even and
skew-symmetric if it is odd, and that .2�i/m � ip�q C.x; xx/ > 0 for x 2 V p;q .

A polarization of a rational Hodge structure .V;h/ of weightm is a morphism of rational Hodge
structures  WV ˝V !Q.�m/ such that  R is a polarization of .VR;h/. A rational Hodge structure
.V;h/ is polarizable if and only if .VR;h/ is polarizable (cf. 2.4).

The rational Hodge structures form a tannakian category over Q, and the polarizable rational
Hodge structures form a semisimple tannakian category, which we denote HdgQ.

Local systems and vector sheaves with connection
Let S be a complex manifold. A connection on a vector sheaf V on S is a C-linear homomorphism
rWV!˝1S ˝V satisfying the Leibniz condition

r.f v/D df ˝vCf �rv

for all local sections f of OS and v of V . The curvature of r is the composite of r with the map

r1W˝
1
S ˝V!˝2S ˝V
!˝v 7! d!˝v�!^r.v/:

A connection r is said to be flat if its curvature is zero. In this case, the kernel Vr of r is a local
system of complex vector spaces on S such that OS ˝Vr ' V .

Conversely, let V be a local system of complex vector spaces on S . The vector sheaf V DOS˝V
has a canonical connection r: on any open set where V is trivial, say V� Cn, the connection is the
map .fi / 7! .dfi /W.OS /n!

�
˝1S

�n. This connection is flat because d ıd D 0. Obviously for this
connection, Vr ' V.

In this way, we obtain an equivalence between the category of vector sheaves on S equipped
with a flat connection and the category of local systems of complex vector spaces.
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Variations of Hodge structures
Let S be a complex manifold. By a family of real Hodge structures on S we mean a holomorphic
family. Thus a family of real Hodge structures on S is a local system V of R-vector spaces on S
together with a filtration F on V def

DOS˝RV by (holomorphic) vector subsheaves that gives a Hodge
filtration at each point. For example, for a family of weight m, the last condition means that

F pVs˚FmC1�pVs ' Vs; all s 2 S , p 2 Z:

For the notion of a family of rational Hodge structures, replace R with Q.
A polarization of a family of real Hodge structures of weight m is a bilinear pairing of local

systems
 WV�V! R.�m/

that gives a polarization at each point s of S . For rational Hodge structures, replace R with Q.
Let r be connection on a vector sheaf V . A holomorphic vector field Z on S defines a map

˝1S!OS and hence a maprZ WV!V . A family of rational Hodge structures V on S is a variation
of rational Hodge structures on S if it satisfies the following axiom (Griffiths transversality):

rZ.F
pV/� F p�1V for all p and Z.

Equivalently,
r.F pV/�˝1S ˝F

p�1V for all p:

Here r is the flat connection on V def
DOS ˝Q V defined by V.

These definitions are motivated by the following theorem.

THEOREM 5.2 (GRIFFITHS 1968). Let f WX!S be a smooth projective map of smooth algebraic
varieties over C. For each m, the local system Rmf�Q of Q-vector spaces on S an together with the
de Rham filtration on OS ˝Q Rf�Q ' Rf�.˝�X=C/ is a polarizable variation of rational Hodge
structures of weight m on S an.

This theorem suggests that the first step in realizing an algebraic variety as a moduli variety
should be to show that it carries a polarized variation of rational Hodge structures.

6. Mumford-Tate groups and their variation in families
We define Mumford-Tate groups, and we study their variation in families. Throughout this section, “Hodge
structure” means “rational Hodge structure”.

The conditions (SV)
We list some conditions on a homomorphism hWS!G of real connected algebraic groups:

SV1: the Hodge structure on the Lie algebra of G defined by AdıhWS! GLLie.G/ is of type
f.1;�1/; .0;0/; .�1;1/g;

SV2: inn.h.i// is a Cartan involution of Gad.

In particular, (SV2) says that the Cartan involutions of Gad are inner, and so Gad is an inner form of
its compact form. This implies that the simple factors of Gad are geometrically simple (see footnote
9).
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Condition (SV1) implies that the Hodge structure on Lie.G/ defined by h has weight 0, and so
wh.Gm/�Z.G/. In the presence of this condition, we sometimes need to consider a stronger form
of (SV2):
SV2*: inn.h.i// is a Cartan involution of G=wh.Gm/.
Note that (SV2*) implies that G is reductive.

Let G be an algebraic group over Q, and let h be a homomorphism S!GR. We say that .G;h/
satisfies the condition (SV1) or (SV2) if .GR;h/ does. When wh is defined over Q, we say that
.G;h/ satisfies (SV2*) if .GR;h/ does. We shall also need to consider the condition:
SV3: Gad has no Q-factor on which the projection of h is trivial.
In the presence of (SV1,2), the condition (SV3) is equivalent to Gad being of noncompact type
(apply Lemma 4.7 of Milne 2005).

Each condition holds for a homomorphism h if and only if it holds for a conjugate of h by an
element of G.R/.

Let G be a reductive group over Q. Let h be a homomorphism S! GR, and let xhWS! Gad
R be

adıh. Then .G;h/ satisfies (SV1,2,3) if and only if .Gad; xh/ satisfies the same conditions.21

NOTES. Conditions (SV1), (SV2), and (SV3) are respectively the conditions (2.1.1.1), (2.1.1.2), and (2.1.1.3)
of Deligne 1979b, and (SV2*) is the condition (2.1.1.5).

Definition
Let .V;h/ be a rational Hodge structure. Following Deligne 1972, 7.1, we define the Mumford-Tate
group of .V;h/ to be the smallest algebraic subgroup G of GLV such that GR � h.S/. It is also
the smallest algebraic subgroup G of GLV such that GC � �h.Gm/ (apply (5), p. 20). We usually
regard the Mumford-Tate group as a pair .G;h/, and we sometimes denote it by MTV . Note that G
is connected (otherwise we could replace it with its identity component), and that whWGm!GR is
defined over Q and maps into the centre of G.22

For m;n 2 N, let Tm;n denote the Hodge structure V ˝m˝V _˝n. By a Hodge class of V , we
mean an element of V of type .0;0/, and by a Hodge tensor of V , we mean a Hodge class of some
Tm;n. The elements of Tm;n fixed by the Mumford-Tate group G are exactly the Hodge tensors,
and G is the largest algebraic subgroup of GLV fixing all the Hodge tensors of V (apply Deligne
1982, 3.1c)23.

The Hodge structures form a tannakian category over Q with a canonical fibre functor, namely,
the forgetful functor. The Mumford-Tate group of .V;h/ is the algebraic group attached to the
tannakian subcategory hV;hi˝ generated by .V;h/.

Let G and Ge respectively denote the Mumford-Tate groups of V and V ˚Q.1/. The action of
Ge on V defines a homomorphism Ge! G, which is an isogeny unless V has weight 0, in which
case Ge ' G �Gm. The action of Ge on Q.1/ defines a homomorphism Ge ! GLQ.1/ whose
kernel we denoteG1 and call the special Mumford-Tate group of V . Thus G1 �GLV , and it is the
smallest algebraic subgroup of GLV such thatG1R � h.S

1/. ClearlyG1 �G andG DG1 �wh.Gm/.

PROPOSITION 6.1. Let G be a connected algebraic group over Q, and let h be a homomorphism
S!GR. The pair .G;h/ is the Mumford-Tate group of a Hodge structure if and only if the weight

21For (SV1), note that Ad.h.z//WLie.G/! Lie.G/ is the derivative of ad.h.z//WG!G. The latter is trivial on Z.G/,
and so the former is trivial on Lie.Z.G//.

22Let Z.wh/ be the centralizer of wh in G. For any a 2 R�, wh.a/WVR! VR is a morphism of real Hodge structures,
and so it commutes with the action of h.S/. Hence h.S/�Z.wh/R. As h generates G, this implies that Z.wh/DG.

23The argument in the proof of Lemma 3.5 of Deligne 1982 shows that some multiple of every Q-character of G
extends to GLV .
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homomorphism whWGm! GR is defined over Q and G is generated by h (i.e., any algebraic sub-
group H of G such that h.S/�HR equals G).

PROOF. If .G;h/ is the Mumford-Tate group of a Hodge structure .V;h/, then certainly h generates
G. The weight homomorphism wh is defined over Q because .V;h/ is a rational Hodge structure.

Conversely, suppose that .G;h/ satisfy the conditions. For any faithful representation �WG!
GLV of G, the pair .V;hı�/ is a rational Hodge structure, and .G;h/ is its Mumford-Tate group.2

PROPOSITION 6.2. Let .G;h/ be the Mumford-Tate group of a Hodge structure .V;h/. Then .V;h/
is polarizable if and only if .G;h/ satisfies (SV2*).

PROOF. Let C D h.i/. For simplicity, assume that .V;h/ has a single weight m. Let G1 be the
special Mumford-Tate group of .V;h/. Then C 2 G1.R/, and a pairing  WV �V ! Q.�m/ is a
polarization of .V;h/ if and only if .2�i/m is a C -polarization of V for G1 in the sense of �2. It
follows from (2.3) and (2.4) that a polarization  for .V;h/ exists if and only if inn.C / is a Cartan
involution of G1R. Now G1 � G and the quotient map G1 ! G=wh.Gm/ is an isogeny, and so
inn.C / is a Cartan involution of G1 if and only if it is a Cartan involution of G=wh.Gm/. 2

COROLLARY 6.3. The Mumford-Tate group of a polarizable Hodge structure is reductive.

PROOF. An algebraic group G over Q is reductive if and only if GR is reductive, and we have
already observed that (SV2*) implies that a group is reductive. Alternatively, polarizable Hodge
structures are semisimple (obviously), and an algebraic group in characteristic zero is reductive if
its representations are semisimple (e.g., Deligne and Milne 1982, 2.23). 2

REMARK 6.4. Note that (6.2) implies the following statement: let .V;h/ be a Hodge structure; if
there exists an algebraic group G � GLV such that h.S/ � GR and .G;h/ satisfies (SV2*), then
.V;h/ is polarizable.

NOTES. The Mumford-Tate group of a complex abelian variety A is defined to be the Mumford-Tate group
of the Hodge structure H1.Aan;Q/. In this context, they were first introduced in the talk of Mumford (1966).

Special Hodge structures

A rational Hodge structure is special24 if its Mumford-Tate group satisfies (SV1,2*) or, equivalently,
if it is polarizable and its Mumford-Tate group satisfies (SV1).

PROPOSITION 6.5. The special Hodge structures form a tannakian subcategory of HdgQ.

PROOF. Let .V;h/ be a special Hodge structure. The Mumford-Tate group of any object in the
tannakian subcategory of HdgQ generated by .V;h/ is a quotient of MTV , and hence satisfies
(SV1,2*). 2

Recall that the level of a Hodge structure .V;h/ is the maximum value of jp�qj as .p;q/ runs
over the pairs .p;q/ with V p;q ¤ 0. It has the same parity as the weight of .V;h/.

EXAMPLE 6.6. Let Vn.a1; : : : ;ad / denote a complete intersection of d smooth hypersurfaces of
degrees a1; : : : ;ad in general position in PnCd over C. Then Hn.Vn;Q/ has level � 1 only for the
varieties Vn.2/, Vn.2;2/, V2.3/, Vn.2;2;2/ (n odd), V3.3/, V3.2;3/, V5.3/, V3.4/ (Rapoport 1972).

24Poor choice of name, since “special” is overused and special points on Shimura varieties don’t correspond to special
Hodge structures, but I can’t think of a better one. Perhaps an “SV Hodge structure”?
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PROPOSITION 6.7. Every polarizable Hodge structure of level � 1 is special.

PROOF. A Hodge structure of level 0 is direct sum of copies of Q.m/ for some m, and so its
Mumford-Tate group is Gm. A Hodge structure .V;h/ of level 1 is of type f.p;pC1/; .pC1;p/g
for some p. Then

Lie.MTV /� End.V /D V _˝V;

which is of type f.�1;1/; .0;0/; .1;�1/g. 2

EXAMPLE 6.8. Let A be an abelian variety over C. The Hodge structures Hn
B.A/ are special for

all n. To see this, note that H 1
B.A/ is of level 1, and hence is special by (6.7), and that

Hn
B.A/'

^n
H 1
B.A/�H

1
B.A/

˝n;

and hence Hn
B.A/ is special by (6.5).

It follows that a nonspecial Hodge structure does not lie in the tannakian subcategory of HdgQ
generated by the cohomology groups of abelian varieties.

PROPOSITION 6.9. A pair .G;h/ is the Mumford-Tate group of a special Hodge structure if and
only if h satisfies (SV1,2*), the weight wh is defined over Q, and G is generated by h.

PROOF. Immediate consequence of Proposition 6.1, and of the definition of a special Hodge struc-
ture. 2

Note that, because h generates G, it also satisfies (SV3).

EXAMPLE 6.10. Let f WX ! S be the universal family of smooth hypersurfaces of a fixed de-
gree ı and of a fixed odd dimension n. For s outside a meagre subset of S , the Mumford-Tate
group of Hn.Xs;Q/ is the full group of symplectic similitudes (see 6.20 below). This implies that
Hn.Xs;Q/ is not special unless it has level � 1. According to (6.6), this rarely happens.

The generic Mumford-Tate group
Throughout this subsection, .V;F / is a family of Hodge structures on a connected complex manifold
S . Recall that “family” means “holomorphic family”.

LEMMA 6.11. For any t 2 � .S;V/, the set

Z.t/D fs 2 S j ts is of type .0;0/ in Vsg

is an analytic subset of S .

PROOF. An element of Vs is of type .0;0/ if and only if it lies in F 0Vs . On S , we have an exact
sequence

0! F 0V! V!Q! 0

of locally free sheaves of OS -modules. Let U be an open subset of S such that Q is free over U .
Choose an isomorphism Q'OrU , and let t jU map to .t1; : : : ; tr/ in OrU . Then

Z.t/\U D fs 2 U j t1.s/D �� � D tr.s/D 0g: 2
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For m;n 2 N, let Tm;n D Tm;nV be the family of Hodge structures V˝m˝V_˝n on S . Let
� W zS ! S be a universal covering space of S , and define

VS D S r
[

t
��.Z.t// (9)

where t runs over the global sections of the local systems ��Tm;n (m;n 2N) such that ��.Z.t//¤
S . Thus VS is the complement in S of a countable union of proper analytic subvarieties (in particular,
S r VS is meagre).

EXAMPLE 6.12. For a “general” abelian variety of dimension g over C, it is known that the Q-
algebra of Hodge classes is generated by the class of an ample divisor class (Comessatti 1938,
Mattuck 1958). It follows that the same is true for all abelian varieties in the subset VS of the moduli
space S . The Hodge conjecture obviously holds for these abelian varieties.

Let t be a section of Tm;n over an open subsetU of VS ; if t is a Hodge class in Tm;ns for one s 2U ,
then it is Hodge tensor for every s 2 U . Thus, there exists a local system of Q-subspaces HTm;n

on VS such that .HTm;n/s is the space of Hodge classes in Tm;ns for each s. Since the Mumford-Tate
group of .Vs;Fs/ is the largest algebraic subgroup of GLVs fixing the Hodge tensors in the spaces
Tm;ns , we have the following result.

PROPOSITION 6.13. Let Gs be the Mumford-Tate group of .Vs;Fs/. Then Gs is locally constant
on VS .

More precisely:

Let U be an open subset of S on which V is constant25, say, VD VU ; identify the stalk
Vs (s 2U ) with V , so that Gs is a subgroup of GLV ; then Gs is constant for s 2U \ VS ,
say Gs DG, and G �Gs for all s 2 U r .U \ VS/.

6.14. We say that Gs is generic if s 2 VS . Suppose that V is constant, say V D VS , and let G D
Gs0 � GLV be generic. By definition, G is the smallest algebraic subgroup of GLV such that GR
contains hs0.S/. As G �Gs for all s 2 S , the generic Mumford-Tate group of .V;F / is the smallest
algebraic subgroup G of GLV such that GR contains hs.S/ for all s 2 S .

Let � W zS ! S be a universal covering of S , and fix a trivialization ��V' VS of V. Then, for
each s 2 S , there are given isomorphisms

V ' .��V/s ' V�s . (10)

There is an algebraic subgroup G of GLV such that, for each s 2 ��1. VS/, G maps isomorphically
ontoGs under the isomorphism GLV 'GLV�s defined by (10). It is the smallest algebraic subgroup
of GLV such that GR contains the image of hsWS! GLVR for all s 2 zS .

QUESTION 6.15. Let f WX ! S be a projective map of smooth algebraic varieties over the alge-
braic closure Qal of Q in C, and let .V;F /DRm .fC/�Q. Does there exist an s 2 S.Qal/ such that
the Mumford-Tate group of Hm.XsC;Qal/ is generic? In other words, is VS \S.Q/ nonempty? I
expect that the answer is yes in general.

ASIDE 6.16. For a polarizable integral variation of Hodge structures on a smooth algebraic variety S , Cat-
tani, Deligne, and Kaplan (1995, Corollary 1.3) show that the sets ��.Z.t// in (9) are algebraic subvarieties
of S . This answers a question of Weil 1977.

25For example, U can be any simply connected subset of S .
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Variation of Mumford-Tate groups in families
DEFINITION 6.17. Let .V;F / be a family of Hodge structures on a connected complex manifold
S .

(a) An integral structure on .V;F / is a local system of Z-modules�� V such that Q˝Z�' V.
(b) The family .V;F / is said to satisfy the theorem of the fixed part if, for every finite covering

aWS 0! S of S , there is a Hodge structure on the Q-vector space � .S 0;a�V/ such that, for
all s 2 S 0, the canonical map � .S 0;a�V/! a�Vs is a morphism of Hodge structures, or, in
other words, if the largest constant local subsystem Vf of a�V is a constant family of Hodge
substructures of a�V.

(c) The algebraic monodromy group at point s 2 S is the smallest algebraic subgroup of GLVs
containing the image of the monodromy homomorphism �1.S;s/! GL.Vs/. Its identity
connected component is called the connected monodromy group Ms at s. In other words,
Ms is the smallest connected algebraic subgroup of GLVs such thatMs.Q/ contains the image
of a subgroup of �1.S;s/ of finite index.

6.18. Let � W zS! S be the universal covering of S , and let � be the group of covering transforma-
tions of zS=S . The choice of a point s 2 zS determines an isomorphism � ' �1.S;�s/. Now choose
a trivialization ��V � V zS . The choice of a point s 2 zS determines an isomorphism V ' V�.s/.
There is an action of � on V such that, for each s 2 zS , the diagram

� � V ! V

' ' '

�1.S;�s/ � Vs ! Vs

commutes. Let M be the smallest connected algebraic subgroup of GLV such M.Q/ contains
a subgroup of � of finite index. Under the isomorphism V ' V�s defined by s 2 S , M maps
isomorphically onto Ms .

THEOREM 6.19. Let .V;F / be a polarizable family of Hodge structures on a connected complex
manifold S , and assume that .V;F / admits an integral structure. Let Gs (resp. Ms) denote the
Mumford-Tate (resp. the connected monodromy group) at s 2 S .

(a) For all s 2 VS , Ms �G
der
s .

(b) If Tm;n satisfies the theorem of the fixed part for all m;n, then Ms is normal in Gder
s for all

s 2 VS ; moreover, if Gs0 is commutative for some s0 2 S , then Ms DG
der
s for all s 2 VS .

EXAMPLE 6.20. Let f WX ! P1 be a Lefschetz pencil over C of hypersurfaces of fixed degree
and odd dimension n, and let S be the open subset of P1 where Xs is smooth. Let .V;F / be the
variation of Hodge structures Rnf�Q on S . The action of �1.S;s/ on Vs DHn.X an

s ;Q/ preserves
the cup-product form on Vs , and a theorem of Kazhdan and Margulis (Deligne 1974, 5.10) says that
the image of �1.S;s/ is Zariski-dense in the symplectic group. It follows that the generic Mumford-
Tate group Gs is the full group of symplectic similitudes. This implies that, for s 2 VS , the Hodge
structure Vs is not special unless it has level � 1.

The proof of Theorem 6.19 will occupy the rest of this subsection.
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PROOF OF (a) OF THEOREM 6.19

We first show that Ms � Gs for s 2 VS . Recall that on VS there is a local system of Q-vector spaces
HTm;n � Tm;n such that HTm;ns is the space of Hodge tensors in Tm;ns . The fundamental group
�1.S;s/ acts on HTm;ns through a discrete subgroup of GL.HTm;ns / (because it preserves a lattice
in Tm;ns ), and it preserves a positive definite quadratic form on HTm;ns . It therefore acts on HTm;ns

through a finite quotient. AsGs is the algebraic subgroup of GLVs fixing the Hodge tensors in some
finite direct sum of spaces Tm;ns , this shows that the image of some finite index subgroup of �1.S;s/
is contained in Gs.Q/. Hence Ms �Gs .

We next show that Ms is contained in the special Mumford-Tate group G1s at s. Consider the
family of Hodge structures V˚Q.1/, and let Ges be its Mumford-Tate group at s. As V˚Q.1/ is
polarizable and admits an integral structure, its connected monodromy group M e

s at s is contained
in Ges . As Q.1/ is a constant family, M e

s �Ker.Ges !GLQ.1//DG
1
s . Therefore Ms DM

e
s �G

1
s .

There exists an object W in RepQGs ' hVsi
˝ � HdgQ such that Gder

s �whs .Gm/ is the kernel
of Gs ! GLW . The Hodge structure W admits an integral structure, and its Mumford-Tate group
is G0 ' Gs=

�
Gder
s �whs .Gm/

�
. As W has weight 0 and G0 is commutative, we find from (6.2) that

G0.R/ is compact. As the action of �1.S;s/ on W preserves a lattice, its image in G0.R/ must be
discrete, and hence finite. This shows that

Ms �
�
Gder
s �whs .Gm/

�
\G1s DG

der
s :

PROOF OF THE FIRST STATEMENT OF (b) OF THEOREM 6.19

We first prove two lemmas.

LEMMA 6.21. Let V be a Q-vector space, and letH �G be algebraic subgroups of GLV . Assume:

(a) the action of H on any H -stable line in a finite direct sum of spaces Tm;n is trivial;
(b) .Tm;n/H is G-stable for all m;n 2 N.

Then H is normal in G.

PROOF. There exists a line L in some finite direct sum T of spaces Tm;n such that H D Stab.L/
(Chevalley’s theorem, Deligne 1982, 3.1a,b). According to (a), H acts trivially on L. Let W be the
intersection of the G-stable subspaces of T containing L. Then W � TH because TH is G-stable
by (b). Let ' be the homomorphism G! GLW _˝W defined by the action of G on W . As H acts
trivially on W , it is contained in the kernel of '. On the other hand, the elements of the kernel of '
act as scalars on W , and so stabilize L. Therefore Ker.'/�H . 2

LEMMA 6.22. Let .V;F / be a polarizable family of Hodge structures on a connected complex
manifold S . Let L be a local system of Q-vector spaces on S contained in a finite direct sum of
local systems Tm;n. If .V;F / admits an integral structure and L has dimension 1, then Ms acts
trivially on Ls .

PROOF. The hypotheses imply that L also admits an integral structure, and so �1.S;s/ acts through
the finite subgroup f˙1g of GLLs . This implies that Ms acts trivially on Ls . 2

We now prove the first part of (b) of the theorem. Let s 2 VS ; we shall apply Lemma 6.21 to
Ms �Gs � GLVs . After passing to a finite covering of S , we may suppose that �1.S;s/�Ms.Q/.
Any Ms-stable line in

L
m;nTm;ns is of the form Ls for a local subsystem L of

L
m;nTm;ns , and so

hypothesis (a) of Lemma 6.21 follows from (6.22). It remains to show .Tm;ns /Ms is stable underGs .
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Let H be the largest algebraic subgroup of GLTm;ns
stabilizing .Tm;ns /Ms .26 Because Tm;n satisfies

the theorem of the fixed part, .Tm;ns /Ms is a Hodge substructure of Tm;ns , and so .Tm;ns /
Ms
R is stable

under h.S/. Therefore h.S/�GR, and this implies that Gs �G.

PROOF OF THE SECOND STATEMENT OF (b) OF THEOREM 6.19

We first prove a lemma.

LEMMA 6.23. Let .V;F / be a variation of polarizable Hodge structures on a connected complex
manifold S . Assume:

(a) Ms is normal in Gs for all s 2 VS ;
(b) �1.S;s/�Ms.Q/ for one (hence every) s 2 S ;
(c) .V;F / satisfies the theorem of the fixed part.

Then the subspace � .S;V/ of Vs is stable underGs , and the image ofGs in GL� .S;V/ is independent
of s 2 S .

In fact, (c) implies that � .S;V/ has a well-defined Hodge structure, and we shall show that the
image of Gs in GL� .S;V/ is the Mumford-Tate group of � .S;V/.

PROOF. We shall apply the following statement:

(*) For any polarizable Hodge structure .V;h/ and Hodge structure W in hV;hi˝, the
action of MTV onW is described by a surjective homomorphism MTV !MTW (apply
Deligne and Milne 1982, 2.21a).

For every s 2 S ,

� .S;V/D � .S;Vf /D .Vf /s D V�1.S;s/s

(b)
D VMss :

The subspace VMss of Vs is stable under Gs when s 2 VS because then Ms is normal in Gs , and it
is stable under Gs when s … VS because then Gs is contained in some generic Mumford-Tate group.
Because .V;F / satisfies the theorem of the fixed part, � .S;V/ has a Hodge structure (independent
of s) for which the inclusion � .S;V/! Vs is a morphism of Hodge structures. From (*), the image
of Gs in GL� .S;V/ is the Mumford-Tate group of � .S;V/, which does not depend on s. 2

We now prove that Ms DG
der
s when some Mumford-Tate group Gs0 is commutative. We know

that Ms is a normal subgroup of Gder
s for s 2 VS , and so it remains to show that Gs=Ms is commuta-

tive for s 2 VS under the hypothesis.
We begin with a remark. Let N be a normal algebraic subgroup of an algebraic group G. The

category of representations of G=N can be identified with the category of representations of G on
which N acts trivially. Therefore, to show that G=N is commutative, it suffices to show that G acts
through a commutative quotient on every V on which N acts trivially. If G is reductive and we are
in characteristic zero, then it suffices to show that, for one faithful representation V of G, the group
G acts through a commutative quotient on .Tm;n/N for all m;n 2 N.

26Recall: let G! GLV be a representation of an algebraic group G, and let W be a subspace of V ; then there exists
an algebraic subgroup H of G such that

H.R/D fg 2G.R/ j g .WR/DWRg

for all k-algebras R. The subgroup H is called the stabilizer of W . Clearly it commutes with extension of the base field.
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Let T D Tm;n. According to the remark, it suffices to show that, for s 2 VS , Gs acts on TMss
through a commutative quotient. This will follow from the hypothesis, once we check that T satisfies
the hypotheses of Lemma 6.23. Certainly, Ms is a normal subgroup of Gs for s 2 VS , and �1.S;s/
will be contained in Ms once we have passed to a finite cover. Finally, we are assuming that T
satisfies the theorem of the fixed part.

NOTES. Theorem 6.19 is due to Deligne (see Deligne 1972, 7.5; Zarhin 1984, 7.3) except for the second
statement of (b), which is taken from André 1992a, p. 12.

Variation of Mumford-Tate groups in algebraic families
When the underlying manifold is an algebraic variety, we have the following theorem.

THEOREM 6.24 (GRIFFITHS, SCHMID). A variation of Hodge structures on a smooth algebraic
variety over C satisfies the theorem of the fixed part if it is polarizable and admits an integral
structure.

PROOF. When the variation of Hodge structures arises from a projective smooth map X ! S of
algebraic varieties and S is complete, this is the original theorem of the fixed part (Griffiths 1970,
�7). In the general case it is proved in Schmid 1973, 7.22. See also Deligne 1971a, 4.1.2 and the
footnote on p. 45. 2

THEOREM 6.25. Let .V;F / variation of Hodge structures on a connected smooth complex alge-
braic variety S . If .V;F / is polarizable and admits an integral structure, then Ms is a normal
subgroup of Gder

s for all s 2 VS , and the two groups are equal if Gs is commutative for some s 2 S .

PROOF. If .V;F / is polarizable variation of Hodge structures that admits an integral structure, then
so also is Tm;n, and so it satisfies the theorem of the fixed part (Theorem 6.24). Now Theorem 6.19
implies Theorem 6.25. 2

7. Period subdomains
We define the notion of a period subdomain, and we show that the hermitian symmetric do-
mains are exactly the period subdomains on which the universal family of Hodge structures is
a polarizable variation of Hodge structures.

Flag manifolds
Let V be a complex vector space and let dD .d1; : : : ;dr/ be a sequence of integers with dimV >
d1 > � � �> dr > 0. The flag manifold Grd.V / has as points the filtrations

V � F 1V � �� � � F rV � 0; dimF iV D di .

It is a projective complex manifold, and the tangent space to Grd.V / at the point corresponding to a
filtration F is

TF .Grd.V //' End.V /=F 0End.V /

where
F j End.V /D f˛ 2 End.V / j ˛.F iV /� F iCjV for all ig:
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THEOREM 7.1. Let VS be the constant sheaf on a connected complex manifold S defined by a real
vector space V , and let .VS ;F / be a family of Hodge structures on S . Let d be the sequence of
ranks of the subsheaves in F .

(a) The map 'WS!Grd.VC/ sending a point s of S to the point of Grd.VC/ corresponding to the
filtration F s on V is holomorphic.

(b) The family .VS ;F / satisfies Griffiths transversality if and only if the image of the map

.d'/sWTsS ! T'.s/Grd.VC/

lies in the subspace F�1s End.VC/=F 0s End.VC/ of End.VC/=F 0s End.VC/ for all s 2 S .

PROOF. Statement (a) simply says that the filtration is holomorphic, and (b) restates the definition
of Griffiths transversality. 2

Period domains
Let V be a real vector space, and let F0 be a Hodge filtration on V of weight m. Let  WV �V !
R.m/ be a polarization of the Hodge structure .V;F0/.

Let D be the set of Hodge filtrations of weight m on V for which  is a polarization and which
have the same Hodge numbers as F0. Thus D is the set of descending filtrations

VC � �� � � F
p
� F pC1 � �� � � 0

on VC such that

(a) dimCF
p D dimCF

p
0 for all p,

(b) VC D F p˚F q whenever pCq DmC1,
(c)  .F p;F q/D 0 whenever pCq DmC1, and
(d) .2�i/m C.v;C xv/ > 0 for all nonzero elements v of VC.

Condition (b) says that the filtration is a Hodge filtration of weightm, and the conditions (c) and (d)
say that  is a polarization.

Let D_ be the set of filtrations of VC satisfying (a) and (c).

THEOREM 7.2. The set D_ is a compact complex submanifold of Grd.V /, and D is an open sub-
manifold of D_.

PROOF. In the presence of (a), condition (c) says that FmC1�p is the orthogonal complement of
F p for all p. In particular, each of F p and FmC1�p determines the other.

Whenm is odd,  is alternating, and the remark shows thatD_ can be identified with the set of
filtrations

VC � F
.mC1/=2

� F .mC3/=2 � �� � � 0

satisfying (a) and such that F .mC1/=2 is totally isotropic for  . Let S be the symplectic group for
 . Then S.C/ acts transitively on these filtrations, and the stabilizer P of any one filtration is a
parabolic subgroup of S . Therefore S.C/=P.C/ is a compact complex manifold, and the bijection
S.C/=P.C/'D_ is holomorphic. The proof when m is even is similar.

The submanifold D of D_ is open because the conditions (b) and (d) are open. 2

The complex manifoldDDD.V;F0; / is the (Griffiths) period domain defined by .V;F0; /.
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THEOREM 7.3. Let .V;F; / be a polarized family of Hodge structures on a complex manifold S .
Let U be an open subset of S on which the local system V is trivial, and choose an isomorphism
VjU ' VU . The map P WU ! D.V;F0; 0/ sending a point s 2 U to the point .Vs;Fs; s/ is
holomorphic.

PROOF. The map s 7! FsWU ! Grd.V / is holomorphic by (7.1) and it takes values in D. As D is
a complex submanifold of Grd.V / this implies that the map U !D is holomorphic (Grauert and
Remmert 1984, 4.3.3). 2

The map P is called the period map.

THEOREM 7.4. If the universal family of Hodge structures on D DD.V;F0; / satisfies Griffiths
transversality, then D is a hermitian symmetric domain.

PROOF. Let G be the algebraic subgroup of GLV of elements fixing  up to scalar. Then G is a
real reductive algebraic group whose centre contains �1, and the Hodge structure on V defines a
homomorphism hWS! G. As in (2.5), there exists a homomorphism uWU 1! Gad.R/ such that
u.z/D h.

p
z/ mod Z.G/.Q/.

Let gD LieG, with its Hodge structure provided by Adıh. Then

gC=g
00
' To.D/� To.Grd.V //' End.V /=F 0End.V /:

If the universal family of Hodge structures satisfies Griffiths transversality, then gC D F
�1gC (by

7.1b), and so h.z/ acts on gC through the characters z=xz, 1, xz=z. This implies that u.z/ acts on
Lie.Gad/C through the characters z;1;z�1, and so u satisfies condition (SU1) of Theorem 2.6.

Let G1 be the subgroup of G of elements fixing  . As  is a polarization of the Hodge struc-
ture, .2�i/m is a C -polarization of V relative to G1, and so innC is a Cartan involution of G1

(Theorem 2.3). Now C D h.i/ D u.�1/, and so u satisfies condition (SU2) of Theorem 2.6. As
G1 obviously has no compact factors, and D can be identified with the set of conjugates of u by
elements of Gad.R/C, this shows that D is a hermitian symmetric domain. 2

Period subdomains
7.5. Let G be a real algebraic group, and let X be a (topological) connected component of the

space of homomorphisms S! G. Let G1 be the smallest algebraic subgroup of G through which
all the h 2 X factor. Then X is again a connected component of the space of homomorphisms
of S into G1. Since S is a torus, any two elements of X are conjugate, and so the space X is a
G1.R/C-conjugacy class of morphisms from S into G. It is also a G.R/C-conjugacy class, and G1
is a normal subgroup of the identity component of G. (See Deligne 1979b, 1.1.12.)

Let V be a real vector space. By a tensor27 of V we mean a homomorphism t WV ˝r ! R.�m/
for some r and m. When V is a Hodge structure and t is a morphism of Hodge structures, then we
call it a Hodge tensor. Concretely, this means that t is of type .0;0/ for the natural Hodge structure
on Hom.V ˝r ;R.�m//, or that it lies in F 0

�
Hom.V ˝r ;R.�m//

�
.

Let tD .ti /i2I be a family of tensors of V . Assume that I contains an element 0 such that t0
is a linear map V ˝V ! Q.�m/ for some m. Let h0 be a Hodge structure on V such that each ti

27Since we shall be considering only Hodge structures V together with a polarization, and hence a given nondegenerate
pairing V �V ! Q.�m/, this definition of tensor is essentially the same as that in the last section. Explicitly, V '
V _.�m/, and so V ˝n1˝V _˝n2 ' Hom.V ˝n1Cn2 ;Q.�mn1//.
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is a Hodge tensor and t0 is a polarization, and let D be the connected component, containing h0,
of the Hodge structures on V such that each ti is a Hodge tensor and t0 is a polarization. In other
words, D is a connected component of the subset ofD.V;h0; t0/ consisting of the Hodge structures
for which every ti is a Hodge tensor.

LetG be the algebraic subgroup of GLV �GLQ.1/ fixing the ti . ThenG.R/ consists of the pairs
.g;c/ such that

ti .gv1; : : : ;gvn/D c
mti .v1; : : : ;vn/

for i 2 I . The ti are Hodge tensors for hWS!GLV on V if and only if .h; t/WS!GLV �Gm factors
through G. Thus, to give a Hodge structure on V for which all the ti are Hodge tensors is the same
as giving a homomorphism hWS!G.

LetG1 be the smallest algebraic subgroup ofG through which all h 2D. According to (7.5),D
is aG1.R/C-conjugacy class of homomorphisms S!G1. The groupG1.C/ acts onD_.V;h0; t0/,
and we let D_ denote the orbit of F0.

THEOREM 7.6. The setD_ is a compact complex submanifold ofD_.V;h0; t0/, andD is an open
complex submanifold of D_.

PROOF. In fact, D_ is a closed algebraic subvariety of D_.V;h0; t0/ (namely, the intersection
of the zero-sets of certain sections of vector sheaves). It is also homogeneous, being isomorphic
to G1.C/=P where P is the (parabolic) subgroup of G1 stabilizing F0, and hence it is smooth.
Therefore it is a compact complex submanifold of D_.V;h0; t0/. Finally, D D D.V;h0; t0/\

D_.V;h0; t0/. 2

We call D DD.V;h0; t/ the period subdomain defined by .V;h0; t/.

THEOREM 7.7. Let (V;F / be a family of Hodge structures on a complex manifold S , and let tD
.ti /i2I be a family of Hodge tensors of V. Assume that I contains an element 0 such that t0 is
a polarization. Let U be an open subset of S on which the local system V is trivial, and fix a
trivialization VjU

�
�! VU . If .Vs;Fs; ts/ 2D for one s, then .Vs;Fs; ts/ 2D for all s, and the map

P WU !D.V;h0; t0/ sending a point s 2 U to the point .Vs;Fs; ts/ 2D is holomorphic.

PROOF. Same as that of Theorem 7.3. 2

THEOREM 7.8. If the universal family of Hodge structures on D satisfies Griffiths transversality,
then D is a hermitian symmetric domain.

PROOF. Essentially the same as that of Theorem 7.4. 2

THEOREM 7.9. Every hermitian symmetric domain arises as a period subdomain.

PROOF. LetD be a hermitian symmetric domain, and let o 2D. LetH be the real adjoint algebraic
group such thatH.R/C DHol.D/C, and let uWS1!H be the homomorphism such that u.z/ fixes
o and acts on T0.D/ as multiplication by z (see �2). Let hWS!H be the homomorphism such that
h.z/D uo.z=xz/ for z 2C�D S.R/. Choose a faithful representation �WH !GLV ofG. Because u
satisfies (2.6, SU2), the Hodge structure .V;� ıh/ is polarizable. Choose a polarization and include
it in a family t of tensors for V such that H is the subgroup of GLV �GLQ.1/ fixing the elements
of t. Then D 'D.V;h; t/. 2

NOTES. The interpretation of hermitian symmetric domains as moduli spaces for Hodge structures with
tensors follows Deligne 1979b, 1.1.17.



7 PERIOD SUBDOMAINS 34

Why moduli varieties are (sometimes) locally symmetric
Fix a base field k. A moduli problem over k is a contravariant functor F from the category of
(some class of) schemes over k to the category of sets. A variety S over k together with a natural
isomorphism �WF ! Homk.�;S/ is called a fine solution to the moduli problem. A variety that
arises in this way is called a moduli variety.

Clearly, this definition is too general: every variety S represents the functor hS DHomk.�;S/.
In practice, we only consider functors for which F.T / is the set of isomorphism classes of some
algebro-geometric objects over T , for example, families of algebraic varieties with additional struc-
ture.

If S represents such a functor, then there is an object ˛ 2 F.S/ that is universal in the sense
that, for any ˛0 2 F.T /, there is a unique morphism aWT ! S such that F.a/.˛/ D ˛0. Suppose
that ˛ is, in fact, a smooth projective map f WX ! S of smooth varieties over C. Then Rmf�Q is
a polarizable variation of Hodge structures on S admitting an integral structure (Theorem 5.2). A
polarization of X=S defines a polarization of Rmf�Q and a family of algebraic classes on X=S of
codimensionm defines a family of global sections ofR2mf�Q.m/. LetD be the universal covering
space of S an. The pull-back of Rmf�Q to D is a variation of Hodge structures whose underlying
locally constant sheaf of Q-vector spaces is constant, say, equal to VS ; thus we have a variation of
Hodge structures .VS ;F / on D. We suppose that the additional structure on X=S defines a family
tD .ti /i2I of Hodge tensors of VS with t0 a polarization. We also suppose that the family of Hodge
structures on D is universal28, i.e., that D D D.V;F0; t/. Because .VS ;F / is a variation of Hodge
structures, D is a hermitian symmetric domain (by 7.8). The Margulis arithmeticity theorem (3.11)
shows that � is an arithmetic subgroup of G.D/ except possibly when G.D/ has factors of small
dimension. Thus, when looking at moduli varieties, we are naturally led to consider arithmetic
locally symmetric varieties.

Application: Riemann’s theorem in families
Let A be an abelian variety over C. The exponential map defines an exact sequence

0!H1.A
an;Z/! T0.A

an/
exp
�! Aan

! 0:

From the first map in this sequence, we get an exact sequence

0! Ker.˛/!H1.A
an;Z/C

˛
�! T0.A

an/! 0:

The Z-module H1.Aan;Z/ is an integral Hodge structure with Hodge filtration

H1.A
an;Z/C � Ker.˛/ � 0:

F�1 F 0

Let  be a Riemann form for A. Then 2�i is a polarization for the Hodge structure H1.Aan;Z/.

THEOREM 7.10. The functor A H1.A
an;Z/ is an equivalence from the category of abelian va-

rieties over C to the category of polarizable integral Hodge structures of type f.�1;0/; .0;�1/g.

PROOF. In view of the correspondence between complex structures and Hodge structures of type
f.�1;0/; .0;�1/g (see 5.1), this is simply a restatement of Theorem 4.4. 2

28This happens rarely!
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THEOREM 7.11. Let S be a smooth algebraic variety over C. The functor

.A
f
�! S/ R1f�Z

is an equivalence from the category of families of abelian varieties29 over S to the category of
polarizable integral variations of Hodge structures of type f.�1;0/; .0;�1/g.

PROOF. Let f AWA! S be a family of abelian varieties over S . The exponential defines an exact
sequence of sheaves on S an,

0!R1f
A
� Z! T 0.Aan/! Aan

! 0:

From this one sees that the map Hom.Aan;Ban/! Hom.R1f A� Z;R1f B� Z/ is an isomorphism.
The S -scheme HomS .A;B/ is unramified over S , and so its algebraic sections coincide with its
holomorphic sections (cf. Deligne 1971a, 4.4.3). Hence the functor is fully faithful. In particular, a
family of abelian varieties is uniquely determined by its variation of Hodge structures up to a unique
isomorphism. This allows us to construct the family of abelian varieties attached to a variation of
Hodge structures locally. Thus, we may suppose that the underlying local system of Z-modules is
trivial. Assume initially that the variation of Hodge structures on S has a principal polarization, and
endow it with a level-N structure. According Proposition 4.5, the variation of Hodge structures on S
is the pull-back of the canonical variation of Hodge structures onDN by a regular map ˛WS!DN .
Since the latter variation arises from a family of abelian varieties (Theorem 4.6), so does the former.

To remove the “principally polarized” condition in the above argument (a) rewrite it to allow
polarizations of a fixed degree d , not necessarily 1, or (b) change the lattice (locally) so that the vari-
ation of Hodge structures is principally polarized, or (c) apply Zarhin’s trick to show that (locally)
the fourth multiple of the variation of Hodge structures is principally polarized. 2

8. Variations of Hodge structures on locally symmetric va-
rieties

In this section, we explain how to classify variations of Hodge structures on arithmetic locally
symmetric varieties in terms of certain auxiliary reductive groups. Throughout, we write “fam-
ily of integral Hodge structures” to mean “family of rational Hodge structures that admits an
integral structure”.

Generalities on u and h

8.1. Let H be a real algebraic group. The map z 7! z=xz defines an isomorphism S=w.Gm/' S1,
and so the formula

h.z/D u.z=xz/ (11)

defines a one-to-one correspondence between homomorphisms hWS! H trivial on w.Gm/ and
homomorphisms uWS1!H . Note that h.z/D u.z/2 for z 2 S1.R/D U 1. We use hWS=Gm!H

to denote a homomorphism hWS!H trivial on w.Gm/.
29By a family of abelian varieties over S we mean an abelian scheme over S , i.e., a smooth group scheme over S

whose fibres are abelian varieties.



8 VARIATIONS OF HODGE STRUCTURES ON LOCALLY SYMMETRIC VARIETIES 36

8.2. Let H be a real adjoint algebraic group. If hWS ! H satisfies (SV1), then it is trivial
on w.Gm/, and so (8.1) provides us with a one-to-one correspondence between homomorphisms
hWS!H satisfying (SV1) and homomorphisms uWS1!H satisfying the condition (SU1), p. 10.
Since h.i/D u.�1/, h satisfies (SV2) if and only if u satisfies (SU2).

8.3. LetH be an adjoint algebraic group over Q. As noted in �6, a homomorphism hWS=Gm!H

satisfies (SV3) if and only if H is of noncompact type.

Existence of Hodge structures of CM-type in a family
PROPOSITION 8.4. Let G be a reductive group over Q, and let hWS! GR be a homomorphism.
There exists a G.R/C-conjugate h0 of h such that h0.S/� T0R for some maximal torus T0 of G.

PROOF (Cf. Mumford 1969, p. 348). Let K be the centralizer of h in GR. Let T be the centralizer
inGR of some regular element of LieK; it is a maximal torus inK. Because h.S/ is contained in the
centre ofK and T is maximal, h.S/� T . If T 0 is a torus in GR containing T , then T 0 centralizes h,
and so T 0 �K and T D T 0; therefore T is maximal in GR. For a regular element � of Lie.T /, T is
the centralizer of �. Choose a �0 2 Lie.G/ that is close to � in Lie.G/R, and let T0 be its centralizer
in G. Then T0 is a maximal torus of G (over Q/. Because T0R and TR are close, they are conjugate:
T0R D gTg

�1 for some g 2G.R/C. Now h0
def
D inn.g/ıh factors through T0R. 2

A polarizable rational Hodge structure is of CM-type if its Mumford-Tate group is commutative
(hence a torus). Let .G;h/ be as in the proposition, and assume that h satisfies (SV2*). For any
representation �WG!GLV , the Hodge structure .V;�R ıh/ is polarizable (by 6.4). The proposition
shows that there exists a G.R/C-conjugate h0 of h such that .V;�R ıh0/ is of CM-type. For exam-
ple, the universal family of Hodge structures on a period subdomain contains Hodge structures of
CM-type.

Description of the variations of Hodge structures on D.� /
Consider an arithmetic locally symmetric variety D.� /. Recall that this means that D.� / is an
algebraic variety whose universal covering space is a hermitian symmetric domain D and that the
group of covering transformations � is an arithmetic subgroup of the real Lie group Hol.D/C;
moreover, D.� /an D � nD.

According to Theorem 3.2, D decomposes into a productD DD1�� � ��Dr of hermitian sym-
metric domains with the property that each group �i

def
D � \Hol.Di /C is an irreducible arithmetic

subgroup of Hol.Di /C and the map

D1.�1/� � � ��Dr.�r/!D.� /

is finite covering. In the remainder of this subsection, we assume:

rank.Hol.Di //� 2 for each i: (12)

We also fix a point o 2D.
Recall (�2) that the group Hol.D/ of holomorphic automorphisms of D is a semisimple Lie

group without compact factors, and that there exists a unique homomorphism uWU 1 ! Hol.D/
such that u.z/ fixes o and acts as multiplication by z on To.D/. That � is arithmetic means
that there exists a simply connected algebraic group H over Q and a surjective homomorphism
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'WH.R/!Hol.D/C with compact kernel such that � is commensurable with '.H.Z//. The Mar-
gulis superrigidity theorem implies that the pair .H;'/ is unique up to a unique isomorphism (see
3.12).

Let
H ad

R DHc�Hnc

where Hc (resp. Hnc) is the product of the compact (resp. noncompact) simple factors of H ad
R .

The homomorphism '.R/WH.R/! Hol.D/C factors through Hnc.R/C, and defines an isomor-
phism of Lie groupsHnc.R/C!Hol.D/C. Let xh denote the homomorphism S=Gm!H ad

R whose
projection into Hc is trivial and whose projection into Hnc corresponds to u. In other words,

xh.z/D .hc.z/;hnc.z// 2Hc.R/�Hnc.R/ (13)

where hc.z/ D 1 and hnc.z/ D u.z=xz/ in Hnc.R/C ' Hol.D/C. The map gh 7! go identifies D
with the set of H ad.R/C-conjugates of xh (Theorem 2.6).

Let .V;F / be a polarizable variation of integral Hodge structures on D.� /, and let V D V�.o/.
Then ��V' VD where � WD! � nD is the quotient map. Let G �GLV be the generic Mumford-
Tate group of .V;F / (see p. 6.14), and let t be a family of tensors of V (in the sense of �7), including
a polarization t0, such that G is the subgroup of GLV �GLQ.1/ fixing the elements of t. As G
contains the Mumford-Tate group at each point of D, t is a family of Hodge tensors of .VD;F /.
The period map P WD!D.V;ho; t/ is holomorphic (Theorem 7.7).

We now assume that the monodromy map '0W� ! GL.V / has finite kernel, and we pass to a
finite covering, so that � �G.Q/. Now the elements of t are Hodge tensors of .V;F /.

There exists an arithmetic subgroup � 0 of H.Q/ such that '.� 0/ � � . The Margulis super-
rigidity theorem 3.8, shows that there is a (unique) homomorphism '00WH !G of algebraic groups
that agrees with '0 ı' on a subgroup of finite index in � 0,

H.Q/C
'
�! Hol.D/C H

[ [ & '00

� 0
'j� 0

�! �
'0

�! G.Q/ G:

It follows from the Borel density theorem 3.9 that '00.H/ is the connected monodromy group at
each point of D.� /. Hence H � Gder, and the two groups are equal if the Mumford-Tate group at
some point of D.� / is commutative (Theorem 6.19). When we assume that, the homomorphism
'00WH !G induces an isogenyH !Gder, and hence30 an isomorphismH ad!Gad. Let .V;ho/D
.V;F /o. Then

adıhoWS!Gad
R 'H

ad

equals xh. Thus, we have a commutative diagram

H

.H ad; xh/ .G;h/ GLV
�

(14)

30Let G be a reductive group. The algebraic subgroup Z.G/ �Gder is normal, and the quotient G=
�
Z.G/ı �Gder�

is both semisimple and commutative, and hence is trivial. Therefore G D Z.G/ı �Gder, from which it follows that
Z.Gder/ D Z.G/\Gder. For any isogeny H ! Gder, the map H ad ! .Gder/ad is certainly an isomorphism, and we
have just shown that .Gder/ad!Gad is an isomorphism. Therefore H ad!Gad is an isomorphism.



8 VARIATIONS OF HODGE STRUCTURES ON LOCALLY SYMMETRIC VARIETIES 38

in which G is a reductive group, the homomorphismH !G has image Gder, wh is defined over Q,
and h satisfies (SV2*).

Conversely, suppose that we are given such a diagram (14). Choose a family t of tensors for V ,
including a polarization, such that G is the subgroup of GLV �GQ.1/ fixing the tensors. Then we
get a period subdomain D.V;h; t/ and a canonical variation of Hodge structures .V;F / on it. Pull
this back to D using the period isomorphism, and descend it to a variation of Hodge structures on
D.� /. The monodromy representation is injective, and some fibre is of CM-type by Proposition
8.4.

SUMMARY 8.5. LetD.� / be an arithmetic locally symmetric domain satisfying the condition (12)
and fix a point o 2D. To give

a polarizable variation of integral Hodge structures on D.� / such that some fibre is of
CM-type and the monodromy representation has finite kernel

is the same as giving

a diagram (14) in which G is a reductive group, the homomorphismH !G has image
Gder, wh is defined over Q, and h satisfies (SV2*).

REMARK 8.6. When H is almost simple, it is not necessary to require the existence of a fibre of
CM-type — it is automatic.

QUESTION 8.7. For which arithmetic locally symmetric varieties D.� / is it possible to find a dia-
gram (14) such that the corresponding variation of Hodge structures underlies a family of algebraic
varieties? or, more generally, a family of motives?

In ��10,11, we shall answer Question 8.7 completely when “algebraic variety” and “motive” are
replaced with “abelian variety” and “abelian motive”.

Existence of variations of Hodge structures
In this subsection, we show that, for any arithmetic locally symmetric variety, there always exists a
diagram (14), and hence a variation of polarizable integral Hodge structures on the variety.

PROPOSITION 8.8. Let H be a semisimple algebraic group over Q, and let xhWS! H ad be a ho-
momorphism satisfying (SV1,2,3). Then there exists a reductive algebraic group G over Q and a
homomorphism hWS!GR such that

(a) Gder DH and xhD adıh,
(b) the weight wh is defined over Q, and
(c) the centre of G is split by a CM field.31

PROOF. We shall need the following statement:

Let G be a reductive group over a field k (of characteristic zero), and let L be a finite
Galois extension of k splitting G. Let G0!Gder be a covering of the derived group of
G. Then there exists a central extension

1!N !G1!G! 1

such that G1 is a reductive group, N is a product of copies of .Gm/L=k , and .Gder
1 !

Gder/D .G0!Gder/. (See Milne and Shih 1982, 3.1)
31A field E is CM if it is a totally imaginary quadratic extension of a totally real field.
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A number field L is CM if it admits a nontrivial involution �L such that � ı �L D � ı � for every
homomorphism � WL! C. We may replace xh with an H ad.R/C-conjugate, and so assume (by
Proposition 8.4) that there exists a maximal torus xT of H ad such that xh factors through xTR. Then
xTR is anisotropic (by (SV2)), and so � acts as �1 on X�. xT /. It follows that, for any � 2 Aut.C/, ��
and �� have the same action on X�. xT /, and so xT splits over a CM-field L, which can be chosen to
be Galois over Q. From the statement, there exists a reductive group G and a central extension

1!N !G!H ad
! 1

such that Gder DH and N is a product of copies of .Gm/L=Q. The inverse image T of xT in G is a
maximal torus, and the kernel of T � xT is N . Because N is connected, there exists a � 2 X�.T /
lifting �xh 2X�. xT /.

32 The weightwD��� �� of � lies inX�.Z/, whereZDZ.G/DN . Clearly
�wDw and so, as the Tate cohomology group33 H 0

T .R;X�.Z//D 0, there exists a�0 2X�.Z/ such
that .�C1/�0 Dw. When we replace � with ���0, we find that wD 0; in particular, w is defined
over Q. Let hWS!GR correspond to � as in (5), p. 20. Then .G;h/ fulfils the requirements. 2

COROLLARY 8.9. For any semisimple algebraic group H over Q and homomorphism xhWS=Gm!
H ad

R satisfying (SV1,2,3), there exists a reductive group G with Gder D H and a homomorphism
hWS!GR lifting xh and satisfying (SV1,2*,3).

PROOF. Let .G;h/ be as in the proposition. Then G=Gder is a torus, and we let T be the smallest
subtorus of it such that TR contains the image of h. Then TR is anisotropic, and when we replace G
with the inverse image of T , we obtain a pair .G;h/ satisfying (SV1,2*,3). 2

LetG be a reductive group over Q, and let hWS!GR be a homomorphism satisfying (SV1,2,3).
The homomorphism h is said to be special if h.S/� TR for some torus T �G.34 In this case, there
is a smallest such T , and when .T;h/ is the Mumford-Tate group of a CM Hodge structure we say
that h is CM.

PROPOSITION 8.10. Let hWS!GR be special. Then h is CM if
(a) wh is defined over Q, and
(b) the connected centre of G is split by a CM-field.

PROOF. It is known that a special h is CM if and only if it satisfies the Serre condition:

.� �1/.�C1/�h D 0D .�C1/.� �1/�h for all � 2 Gal.Qal=Q/.

As wh D .�C1/�h, the first condition says that

.� �1/.�C1/�h D 0 for all � 2 Aut.C/;
32The functor X� is exact, and so

0!X�.T 0/!X�.T /!X�.N /! 0

is exact. In fact, it is split-exact because X�.N / is torsion-free. On applying Hom.�;Z/ to it, we get the exact sequence

0!X�.N /!X�.T /!X�.T
0/! 0.

33Let g D Gal.C=R/. The g-module X�.Z/ is induced, and so the Tate cohomology group H0
T
.g;X�.Z//D 0. By

definition, H0
T
.g;X�.Z//DX�.Z/

g=.�C1/X�.Z/.
34Of course, h.S/ is always contained in a subtorus ofGR, even a maximal subtorus; the point is that there should exist

such a torus defined over Q.
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and the second condition implies that

���h D ���h for all � 2 Aut.C/:

Let T � G be a maximal torus such that h.S/� TR. The argument in the proof of (8.8) shows that
���D ��� for � 2X�.T /, and since

X�.T /Q DX�.Z/Q˚X�.T=Z/Q

we see that the same equation holds for � 2 X�.T /. Therefore .�C 1/.� � 1/�D .� � 1/.�C 1/�,
and we have already observed that this is zero. 2

9. Absolute Hodge classes and motives
In order to be able to realize all but a handful of Shimura varieties as moduli varieties, we shall
need to replace algebraic varieties and algebraic classes by more general objects, namely, by
motives and absolute Hodge classes.

The standard cohomology theories

LetX be a smooth complete35 algebraic variety over an algebraically closed field k (of characteristic
zero as always).

For each prime number `, the étale cohomology groups36 H r
`
.X/.m/

def
D H r

`
.Xet;Q`.m// are

finite dimensional Q`-vector spaces. For any homomorphism � Wk ! k0 of algebraically closed
fields, there is a canonical base change isomorphism

H r
` .X/.m/

�
�!H r

` .�X/.m/; �X
def
DX˝k;� k

0: (15)

When k D C, there is a canonical comparison isomorphism

Q`˝QH
r
B.X/.m/!H r

` .X/.m/: (16)

Here H r
B.X/ denotes the Betti cohomology group H r.X an;Q/.

The de Rham cohomology groups H r
dR.X/.m/

def
D Hr.XZar;˝

�
X=k

/.m/ are finite dimensional
k-vector spaces. For any homomorphism � Wk ! k0 of fields, there is a canonical base change
isomorphism

k0˝kH
r
dR.X/.m/

�
�!H r

dR.�X/.m/: (17)

When k D C, there is a canonical comparison isomorphism

C˝QH
r
B.X/.m/!H r

dR.X/.m/: (18)

We letH r
k�Af

.X/.m/ denote the product ofH r
dR.X/.m/with the restricted product of the topo-

logical spaces H r
`
.X/.m/ relative to their subspaces H r.Xet;Z`/.m/. This is a finitely generated

35Many statements hold without this hypothesis, but we shall need to consider only this case.
36The “.m/” denotes a Tate twist. Specifically, for Betti cohomology it denotes the tensor product with the Tate Hodge

structure Q.m/, for de Rham cohomology it denotes a shift in the numbering of the filtration, and for étale cohomology
it denotes a change in Galois action by a multiple of the cyclotomic character.
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free module over the ring k�Af . For any homomorphism � Wk! k0 of algebraically closed fields,
the maps (15) and (17) give a base change homomorphism

H r
k�Af .X/.m/

�
�!H r

k0�Af .�X/.m/. (19)

When k D C, the maps (16) and (18) give a comparison isomorphism

.C�Af /˝QH
r
B.X/.m/!H r

C�Af .X/.m/: (20)

NOTES. For more details and references, see Deligne 1982, �1.

Absolute Hodge classes

Let X be a smooth complete algebraic variety over C. The cohomology group H 2r
B .X/.r/ has a

Hodge structure of weight 0, and an element of type .0;0/ in it is called a Hodge class of codimen-
sion r on X .37 We wish to extend this notion to all base fields of characteristic zero. Of course,
given a variety X over a field k, we can choose a homomorphism � Wk ! C and define a Hodge
class on X to be a Hodge class on �X , but this notion depends on the choice of the embedding.
Deligne’s idea for avoiding this problem is to use all embeddings (Deligne 1979a, 0.7).

H 2r
B .�X/.r/\H 0;0 H 2r

C�Af .�X/.r/

AH r.X/ H 2r
k�Af

.X/.r/

(20)

�(19)

Let X be a smooth complete algebraic vari-
ety over an algebraically closed field k of charac-
teristic zero, and let � be a homomorphism k !

C. An element  of H 2r
k�Af

.X/.r/ is a � -Hodge
class of codimension r if � lies in the subspace
H 2r
B .�X/.r/\H 0;0 of H 2r

C�Af .�X/.r/. When k
has finite transcendence degree over Q, an element
 of H 2r

k�A.X/.r/ is an absolute Hodge class if it
is � -Hodge for all homomorphisms � Wk! C. The absolute Hodge classes of codimension r on X
form a Q-subspace AH r.X/ of H 2r

k�Af
.X/.r/.

We list the basic properties of absolute Hodge classes.

9.1. The inclusion AH r.X/�H 2r
k�Af

.X/.r/ induces an injective map�
k�Af

�
˝QAH

r.X/!H 2r
k�Af .X/.r/I

in particular AH r.X/ is a finite dimensional Q-vector space.

This follows from (20) because AH r.X/ is isomorphic to a Q-subspace of H 2r
B .�X/.r/ (each � ).

9.2. For any homomorphism � Wk! k0 of algebraically closed fields of finite transcendence degree
over Q, the map (19) induces an isomorphism AH r.X/! AH r.�X/ (Deligne 1982, 2.9a).

This allows us to define AH r.X/ for a smooth complete variety over an arbitrary algebraically
closed field k of characteristic zero: choose a model X0 of X over an algebraically closed subfield
k0 of k of finite transcendence degree over Q, and define AH r.X/ to be the image of AH r.X0/

under the mapH 2r
k0�Af

.X0/.r/!H 2r
k�Af

.X/.r/. With this definition, (9.2) holds for all homomor-
phisms of algebraically closed fields k of characteristic zero. Moreover, if k admits an embedding
in C, then a cohomology class is absolutely Hodge if and only if it is � -Hodge for every such
embedding.

37As H2r
B
.X/.r/'H2r

B
.X/˝Q.r/, this is essentially the same as an element of H2r

B
.X/ of type .r; r/.



9 ABSOLUTE HODGE CLASSES AND MOTIVES 42

9.3. The cohomology class of an algebraic cycle on X is absolutely Hodge; thus, the algebraic
cohomology classes of codimension r on X form a Q-subspace Ar.X/ of AH r.X/ (Deligne 1982,
2.1a).

9.4. The Künneth components of the diagonal are absolute Hodge classes (ibid., 2.1b).

9.5. Let X0 be a model of X over a subfield k0 of k such that k is algebraic over k0; then
Gal.k=k0/ acts on AH r.X/ through a finite discrete quotient (ibid. 2.9b).

9.6. Let
AH�.X/D

M
r�0

AH r.X/I

then AH�.X/ is a Q-subalgebra of
L
H 2r
k�Af

.X/.r/. For any regular map ˛WY !X of complete
nonsingular varieties, the maps ˛� and ˛� send absolute Hodge classes to absolute Hodge classes.
(This follows easily from the definitions.)

THEOREM 9.7 (DELIGNE 1982, 2.12, 2.14). Let S be a smooth connected algebraic variety over
C, and let � WX ! S be a smooth proper morphism. Let  2 � .S;R2r��Q.r//, and let s be the
image of  in H 2r

B .Xs/.r/ (s 2 S.C/).
(a) If s is a Hodge class for one s 2 S.C/, then it is a Hodge class for every s 2 S.C/.
(b) If s is an absolute Hodge class for one s 2 S.C/, then it is an absolute Hodge class for every

s 2 S.C/.

PROOF. Let xX be a smooth compactification of X whose boundary xX rX is a union of smooth
divisors with normal crossings, and let s 2 S.C/. According to Deligne 1971b, 4.1.1, 4.1.2, there
are maps

H 2r
B . xX/.r/

onto
����! � .S;R2r��Q.r//

injective
����! H 2r

B .Xs/.r/

whose composite H 2r
B . xX/.r/ ! H 2r

B .Xs/.r/ is defined by the inclusion Xs ,! xX ; moreover
� .S;R2r��Q.r// has a Hodge structure (independent of s) for which the injective maps are mor-
phisms of Hodge structures (theorem of the fixed part).

Let  2 � .S;R2r��Q.r//. If s is of type .0;0/ for one s, then so also is  ; then s is of type
.0;0/ for all s. This proves (a).

Let � be an automorphism of C (as an abstract field). It suffices to prove (b) with “absolute
Hodge” replaced with “� -Hodge”. We shall use the commutative diagram (AD C�Af ):

H 2r
B . xX/.r/

onto
����! � .S;R2r��Q.r//

injective
����! H 2r

B .Xs/.r/??y‹7!‹A ??y ??y
H 2r

A . xX/.r/
onto
����! � .S;R2r��A.r//

injective
����! H 2r

A .Xs/.r/??y� ??y� ??y�
H 2r

A .� xX/.r/
onto
����! � .�S;R2r.��/�A.r//

injective
����! H 2r

A .�Xs/.r/x?? x?? x??
H 2r
B .� xX/.r/

onto
����! � .�S;R2r.��/�Q.r//

injective
����! H 2r

B .�Xs/.r/:
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The middle map � uses a relative version of the base change map (19). The other maps � are the
base change isomorphisms and the remaining vertical maps are essential tensoring with A (and are
denoted ‹ 7!‹A).

Let  be an element of � .S;R2r��Q.r// such that s is � -Hodge for one s. Recall that this
means that there is a �s 2H

2r
B .�Xs/.r/ of type .0;0/ such that

�
�s
�
A D �.s/A in H 2r

A .�Xs/.r/.
As s is in the image of

H 2r
B . xX/.r/!H 2r

B .Xs/.r/;

�.s/A is in the image of
H 2r

A .� xX/.r/!H 2r
A .�Xs/.r/.

Therefore
�
�s
�
A is also, which implies (by linear algebra38) that �s is in the image of

H 2r
B .� xX/.r/!H 2r

B .�Xs/.r/:

Let z� be a pre-image of �s in H 2r
B .� xX/.r/.

Let s0 be a second point of S , and let z�s0 be the image of z� inH 2r
B .�Xs0/.r/. By construction,

.z� /A maps to �A in � .�S;R2r.��/�A.r//, and so
�
z�s0
�
A D �.s0/A in H 2r

A .�Xs0/.r/, which
demonstrates that s0 is � -Hodge. 2

CONJECTURE 9.8 (DELIGNE 1979a, 0.10). Every � -Hodge class on a smooth complete variety
over an algebraically closed field of characteristic zero is absolutely Hodge, i.e.,

� -Hodge (for one � ) H) absolutely Hodge.

THEOREM 9.9 (DELIGNE 1982, 2.11). Conjecture 9.8 is true for abelian varieties.

To prove the theorem, it suffices to show that every Hodge class on an abelian variety over C is
absolutely Hodge.39 We defer the proof of the theorem to the next subsection.

ASIDE 9.10. Let XC be a smooth complete algebraic variety over C. Then XC has a model X0 over a
subfield k0 of C finitely generated over Q. Let k be the algebraic closure of k0 in C, and let X DX0k . For a
prime number `, let

T r`.X/D
[

U
H 2r
` .X/.r/

U (space of Tate classes)

where U runs over the open subgroups of Gal.k=k0/ — as the notation suggests, T r
`
.X/ depends only on

X=k. The Tate conjecture (Tate 1964, Conjecture 1) says that the Q`-vector space T r
`
.X/ is spanned by

algebraic classes. Statement 9.5 implies that AH r .X/ projects into T r
`
.X/, and (9.1) implies that the map

Q`˝QAH
r .X/! T r

`
.X/ is injective. Therefore the Tate conjecture implies that Ar .X/D AH r .X/, and

so the Tate conjecture for X and one ` implies that all absolute Hodge classes on XC are algebraic. Thus, in
the presence of Conjecture 9.8, the Tate conjecture implies the Hodge conjecture. In particular, Theorem 9.9
shows that, for an abelian variety, the Tate conjecture implies the Hodge conjecture.

38Apply the following elementary statement:

Let E, W , and V be vector spaces, and let ˛WW ! V be a linear map; let v 2 V ; if e˝v is in the image
of 1˝˛WE˝W !E˝V for some nonzero e 2E, then v is in the image of ˛.

To prove the statement, choose a basis .ei /i2I for E with e0 D e for some 0 2 I . Then .1˝˛/.
P
ei ˝wi /D

P
ei ˝

˛.wi /, which equals e0˝v if and only if ˛.w0/D v and ˛.wi /D 0 for i ¤ 0.
39Let A be an abelian variety over k, and suppose that  is �0-Hodge for some homomorphism �0Wk! C. We have

to show that it is � -Hodge for every � Wk ! C. But, using the axiom of choice (!), one can show that there exists a
homomorphism � 0WC! C such that � D � 0 ı�0. Now  is � -Hodge if and only if �0 is � 0-Hodge.
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Proof of Deligne’s theorem
It is convenient to prove Theorem 9.9 in the following more abstract form.

THEOREM 9.11. Suppose that for each abelian variety A over C we have a Q-subspace C r.A/ of
the Hodge classes of codimension r on A. Assume:

(a) C r.A/ contains all algebraic classes of codimension r on A;
(b) pull-back by a homomorphism ˛WA! B of abelian varieties maps C r.B/ into C r.A/;
(c) let � WA! S be an abelian scheme over a connected smooth complex algebraic variety S ,

and let t 2 � .S;R2r��Q.r//; if ts lies in C r.As/ for one s 2 S.C/, then it lies in C r.As/ for
all s.

Then C r.A/ contains all the Hodge classes of codimension r on A.

COROLLARY 9.12. If hypothesis (c) of the theorem holds for algebraic classes on abelian varieties,
then the Hodge conjecture holds for abelian varieties. (In other words, for abelian varieties, the
variational Hodge conjecture implies the Hodge conjecture.)

PROOF. Immediate consequence of the theorem, because the algebraic classes satisfy (a) and (b).2

The proof of Theorem 9.11 requires four steps.

STEP 1: THE HODGE CONJECTURE HOLDS FOR POWERS OF AN ELLIPTIC CURVE

As Tate observed (1964, p. 19), the Q-algebra of Hodge classes on a power of an elliptic curve is
generated by those of type .1;1/.40 These are algebraic by a theorem of Lefschetz.

STEP 2: SPLIT WEIL CLASSES LIE IN C

LetA be a complex abelian variety, and let � be a homomorphism from a CM-fieldE into End.A/Q.
The pair .A;�/ is said to be of Weil type if the tangent space T0.A/ is a freeE˝QC-module. In this
case, d def

D dimEH 1
B.A/ is even and the subspace

Vd
EH

1
B.A/.

d
2
/ of Hd

B .A/.
d
2
/ consists of Hodge

classes (Deligne 1982, 4.4). When E is quadratic over Q, these Hodge classes were studied by Weil
(1977), and for this reason are called Weil classes. A polarization of .A;�/ is a polarization � of A
whose whose Rosati involution acts on �.E/ as complex conjugation. The Riemann form of such a
polarization can be written

.x;y/ 7! TrE=Q.f �.x;y//

for some totally imaginary element f of E and E-hermitian form � on H1.A;Q/. If � can be
chosen so that � is split (i.e., admits a totally isotropic subspace of dimension d=2), then the Weil
classes are said to be split.

LEMMA 9.13. All split Weil classes of codimension r on an abelian variety A lie in C r.A/.

PROOF. Let .A;�;�/ be a polarized abelian variety of split Weil type. Let V D H1.A;Q/, and
let  be the Riemann form of �. The Hodge structures on V for which the elements of E act as
morphisms and  is a polarization are parametrized by a period subdomain, which is hermitian
symmetric domain (cf. 7.8). On dividing by a suitable arithmetic subgroup, we get a smooth proper
map � WA! S of smooth algebraic varieties whose fibres are abelian varieties with an action of E
(Theorem 7.11). There is a Q-subspace W of � .S;Rd��Q.d2 // whose fibre at every point s is the

40This is most conveniently proved by applying the criterion Milne 1999, 4.8.
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space of Weil classes on As . One fibre of � is .A;�/ and another is a power of an elliptic curve.
Therefore the lemma follows from Step 1 and hypotheses (a,c). (See Deligne 1982, 4.8, for more
details.) 2

STEP 3: THEOREM 9.11 FOR ABELIAN VARIETIES OF CM-TYPE

A simple abelian variety A is of CM-type if End.A/Q is a field of degree 2dimA over Q, and a gen-
eral abelian variety is of CM-type if every simple isogeny factor of it is of CM-type. Equivalently,
it is of CM-type if the Hodge structure H1.Aan;Q/ is of CM-type. According to André 1992b:

For any complex abelian variety A of CM-type, there exist complex abelian varieties
BJ of CM-type and homomorphisms A! BJ such that every Hodge class on A is a
linear combination of the pull-backs of split Weil classes on the BJ .

Thus Theorem 9.11 for abelian varieties of CM-type follows from Step 2 and hypothesis (b). (See
Deligne 1982, �5, for the original proof of this step.)

STEP 4: COMPLETION OF THE PROOF OF THEOREM 9.11

Let t be a Hodge class on a complex abelian variety A. Choose a polarization � for A. Let V D
H1.A;Q/ and let hA be the homomorphism defining the Hodge structure on H1.A;Q/. Both t and
the Riemann form t0 of � can be regarded as Hodge tensors for V . The period subdomain D D
D.V;hA;ft; t0g/ is a hermitian symmetric domain (see 7.8). On dividing by a suitable arithmetic
subgroup, we get a smooth proper map � WA! S of smooth algebraic varieties whose fibres are
abelian varieties (Theorem 7.11) and a section t of R2r��Q.r/. For one s 2 S , the fibre .A; t /s D
.A; t/, and another fibre is an abelian variety of CM-type (apply 8.4), and so the theorem follows
from Step 3 and hypothesis (c). (See Deligne 1982, �6, for more details.)

Motives for absolute Hodge classes
We fix a base field k of characteristic zero; “variety” will mean “smooth projective variety over k”.

For varieties X and Y with X connected, we let

C r.X;Y /D AH dimXCr.X �Y /

(correspondences of degree r from X to Y ). When X has connected components Xi , i 2 I , we let

C r.X;Y /D
M

i2I
C r.Xi ;Y /:

For varieties X;Y;Z, there is a bilinear pairing

f;g 7! g ıf WC r.X;Y /�C s.Y;Z/! C rCs.X;Z/

with
g ıf

def
D .pXZ/�.p

�
XY f �p

�
YZg/:

Here the p’s are projection maps from X �Y �Z. These pairings are associative and so we get a
“category of correspondences”, which has one object hX for every variety over k, and whose Homs
are defined by

Hom.hX;hY /D C 0.X;Y /:
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Let f WY ! X be a regular map of varieties. The transpose of the graph of f is an element of
C 0.X;Y /, and so way X  hX becomes a contravariant functor.

The category of correspondences is additive, but not abelian, and so we enlarge it by adding the
images of idempotents. More precisely, we define a “category of effective motives”, which has one
object h.X;e/ for each variety X and idempotent e in the ring End.hX/D AH dimX .X �X/, and
whose Homs are defined by

Hom.h.X;e/;h.Y;f //D f ıC 0.X;Y /ı e:

This contains the old category by hX $ h.X; id/, and h.X;e/ is the image of hX
e
�! hX .

The category of effective motives is abelian, but objects need not have duals. In the enlarged
category, the motive hP1 decomposes into hP1D h0P1˚h2P1, and it turns out that, to obtain duals
for all objects, we only have to “invert” the motive h2P1. This is most conveniently done by defining
a “category of motives” which has one object h.X;e;m/ for each pair .X;e/ as before and integer
m, and whose Homs are defined by

Hom.h.X;e;m/;h.Y;f;n//D f ıC n�m.X;Y /ı e:

This contains the old category by h.X;e/$ h.X;e;0/.
We now list some properties of the category Mot.k/ of motives.

9.14. The Hom’s in Mot.k/ are finite dimensional Q-vector spaces, and Mot.k/ is a semisimple
abelian category.

9.15. Define a tensor product on Mot.k/ by

h.X;e;m/˝h.X;f;n/D h.X �Y;e�f;mCn/:

With the obvious associativity constraint and a suitable41 commutativity constraint, Mot.k/ becomes
a tannakian category.

9.16. The standard cohomology functors factor through Mot.k/. For example, define

!`.h.X;e;m//D e
�M

i
H i
` .X/.m/

�
(image of e acting on

L
iH

i
`
.X/.m/). Then !` is an exact faithful functor Mot.k/! VecQ`

commuting with tensor products. Similarly, de Rham cohomology defines an exact tensor func-
tor !dRWMot.k/ ! Veck , and, when k D C, Betti cohomology defines an exact tensor functor
Mot.k/! VecQ. The functors !`, !dR, and !B are called the `-adic, de Rham, and Betti fibre
functors, and they send a motive to its `-adic, de Rham, or Betti realization.

The Betti fibre functor on Mot.C/ takes values in HdgQ, and is faithful (almost by definition).
Deligne’s conjecture 9.8 is equivalent to saying that it is full.

ABELIAN MOTIVES

DEFINITION 9.17. A motive is abelian if it lies in the tannakian subcategory Motab.k/ of Mot.k/
generated by the motives of abelian varieties.

The Tate motive, being isomorphic to
V2

h1E for any elliptic curve E, is an abelian motive. It
is known that h.X/ is an abelian motive if X is a curve, a unirational variety of dimension � 3, a
Fermat hypersurface, or a K3 surface.

Deligne’s theorem 9.9 implies that !B WMotab.C/! HdgQ is fully faithful.

41Not the obvious one! It is necessary to change some signs.
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CM MOTIVES

DEFINITION 9.18. A motive over C is of CM-type if its Hodge realization is of CM-type.

LEMMA 9.19. Every Hodge structure of CM-type is the Betti realization of an abelian motive.

PROOF. Elementary (see, for example, Milne 1994a, 4.6). 2

Therefore !B defines an equivalence from the category of abelian motives of CM-type to the
category of Hodge structures of CM-type.

PROPOSITION 9.20. Let GHdg (resp. GMab) be the affine group scheme attached to HdgQ and its
forgetful fibre functor (resp. Motab.C/ and its Betti fibre functor). The kernel of the homomorphism
GHdg!GMab defined by the tensor functor !B WMotab.C/! HdgQ is contained in .GHdg/

der.

PROOF. Let S be the affine group scheme attached to the category Hdgcm
Q of Hodge structures of

CM-type and its forgetful fibre functor. The lemma shows that the functor Hdgcm
Q ,! HdgQ factors

through Motab.C/ ,! HdgQ, and so GHdg! S factors through GHdg!GMab:

GHdg!GMab� S:

Hence
Ker.GHdg!GMab/� Ker.GHdg� S/D

�
GHdg

�der
: 2

SPECIAL MOTIVES

DEFINITION 9.21. A motive over C is special if its Hodge realization is special (see p. 24).

It follows from (6.5) that the special motives form a tannakian subcategory of Mot.k/, which
includes the abelian motives (see 6.8).

QUESTION 9.22. Is every special Hodge structure the Betti realization of a motive?

More explicitly: for each simple special Hodge structure .V;h/, does there exist an algebraic
variety X over C and an integer m such that .V;h/ is a direct factor of

L
r�0H

r
B.X/.m/ and the

projection
L
r�0H

r
B.X/.m/! V �

L
r�0H

r
B.X/.m/ is an absolute Hodge class on X .

A positive answer to (9.22) would imply that all connected Shimura varieties are moduli vari-
eties for motives (see �11). Apparently, no special motive is known that is not abelian.

FAMILIES OF ABELIAN MOTIVES

For an abelian variety A over k, let

!f .A/D lim
 �

AN .k
al/; AN .k

al/D Ker.N WA.kal/! A.kal//.

This is a free Af -module of rank 2dimA with a continuous action of Gal.kal=k/.
Let S be a smooth connected variety over k, and let k.S/ be its function field. Fix an algebraic

closure k.S/al of k.S/, and let k.S/un be the union of the subfields L of k.S/al such that the
normalization of S in L is unramified over S . We say that an action of Gal.k.S/al=k.S// on a
module is unramified if it factors throught Gal.k.S/un=k.S//.
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THEOREM 9.23. Let S be a smooth connected variety over k. The functor A A�
def
D Ak.S/ is

a fully faithful functor from the category of families of abelian varieties over S to the category of
abelian varieties over k.S/, with essential image the abelian varieties B over k.S/ such that !f .B/
is unramified.

PROOF. When S has dimension 1, this follows from the theory of Néron models. In general,
this theory shows that an abelian variety (or a morphism of abelian varieties) extends to an open
subvariety U of S such that S rU has codimension at least 2. Now we can apply42 Chai and
Faltings 1990, I 2.7, V 6.8. 2

The functor !f extends to a functor on abelian motives such that !f .h1A/D !f .A/ if A is an
abelian variety.

DEFINITION 9.24. Let S be a smooth connected variety over k. A family M of abelian motives
over S is an abelian motive M� over k.S/ such that !f .M�/ is unramified.

Let M be a family of motives over a smooth connected variety S , and let x� D Spec.k.S/al/.
The fundamental group �1.S;x�/ D Gal.k.S/un=k.S//, and so the representation of �1.S;x�/ on
!f .M�/ defines a local system of Af -modules !f .M/. Less obvious is that, when the ground
field is C, M defines a polarizable variation of Hodge structures on S , HB.M=S/. When M can
be represented in the form .A;p;m/ on S , this is obvious. However, M can always be represented
in this fashion on an open subset of S , and the underlying local system of Q-vector spaces extends
to the whole of S because the monodromy representation is unramified. Now it is possible to show
that the variation of Hodge structures itself extends (uniquely) to the whole of S , by using results
from Schmid 1973, Cattani et al. 1986, and Griffiths and Schmid 1969. See Milne 1994b, 2.40, for
the details.

THEOREM 9.25. Let S be a smooth connected variety over C. The functor sending a family M of
abelian motives over S to its associated polarizable Hodge structure is fully faithful, with essential
image the variations of Hodge structures .V;F / such that there exists a dense open subset U of S ,
an integer m, and a family of abelian varieties f WA! S such that .V;F / is a direct summand of
Rf�Q.

PROOF. This follows from the similar statement (7.11) for families of abelian varieties (see Milne
1994b, 2.42). 2

10. Symplectic Representations
In this subsection, we classify the symplectic representations of groups. These were studied by
Satake in a series of papers (see especially Satake 1965, 1967, 1980). Our exposition follows
that of Deligne 1979b.

In �8 we proved that there exists a correspondence between variations of Hodge structures on
locally symmetric varieties and certain commutative diagrams

H

.H ad; xh/ .G;h/ GLV
�

(21)

42Recall that we are assuming that the base field has characteristic zero — the theorem is false without that condition.



10 SYMPLECTIC REPRESENTATIONS 49

In this section, we study whether there exists such a diagram and a nondegenerate alternating form 

on V such that �.G/�G. / and �R ıh 2D. /. Here G. / is the group of symplectic similitudes
(algebraic subgroup of GLV whose elements fix  up to a scalar) andD. / is the Siegel upper half
space (set of Hodge structures h on V of type f.�1;0/; .0;�1/g for which 2�i is a polarization43).
Note that G. / is a reductive group whose derived group is the symplectic group S. /.

Preliminaries

10.1. The universal covering torus zT of a torus T is the projective system .Tn;Tnm
m
�! Tn/ in

which Tn D T for all n and the indexing set is Nr f0g ordered by divisibility. For any algebraic
group G,

Hom. zT ;G/D lim
�!
n�1

Hom.Tn;G/.

Concretely, a homomorphism zT ! G is represented by a pair .f;n/ with f a homomorphism
T ! G and n 2 Nr f0g; two pairs .f;n/ and .g;m/ represent the same homomorphism zT ! G

if and only if f ım D g ı n. A homomorphism f W zT ! G factors through T if and only if it
is represented by a pair .f;1/. A homomorphism zGm ! GLV represented by .�;n/ defines a
gradation V D

L
Vr , r 2 1

n
Z, and a homomorphism zS! GLV represented by .h;n/ defines a

fractional Hodge decomposition VC D
L
V p;q with p;q 2 1

n
Z.

The real case

LetH be a simply connected real algebraic group without compact factors, and let xh be a homomor-
phism S=Gm!H ad satisfying the conditions (SV1,2), p. 6, and whose projection on each simple
factor of H ad is nontrivial.

DEFINITION 10.2. A homomorphism H ! GLV with finite kernel is a symplectic representation
of .H; xh/ if there exists a commutative diagram

H

.H ad; xh/ .G;h/ .G. /;D. //;

in which G is a reductive group, the homomorphismH !G has image Gder, and  is a nondegen-
erate alternating form on V .

In more detail, this means there exists a real reductive group G, a nondegenerate alternating
form  on V , and a factorization

H
a
�!G

b
�! GLV

of H ! GLV such that a.H/ D Gder, b.G/ � G. /, and b ıh 2 D. /; the isogeny H ! Gder

induces an isomorphism H ad c
�!Gad (see footnote 30), and it is required that xhD c�1 ı adıh.

We shall determine the complex representations of H that occur in the complexification of a
symplectic representation (and we shall omit “the complexification of”).

43This description agrees with that in �2 because of the correspondence in (5.1).
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PROPOSITION 10.3. A homomorphismH!GLV with finite kernel is a symplectic representation
of .H; xh/ if there exists a commutative diagram

H

.H ad; xh/ .G;h/ GLV ;
�

in which G is a reductive group, the homomorphism H ! G has image Gder, and .V;� ı h/ has
type f.�1;0/; .0;�1/g.

PROOF. LetG0 be the algebraic subgroup ofG generated byGder and h.S/. After replacingG with
G0, we may suppose that G itself is generated by Gder and h.S/. Then .G;h/ satisfies (SV2*), and
it follows from Theorem 2.3 that there exists a polarization  of .V;� ıh/ such that G maps into
G. / (cf. the proof of 6.2). 2

Let .H; xh/ be as before. The cocharacter �xh of H ad
C lifts to a fractional cocharacter z� of HC:

zGm
z�

����! HC??y ??yad

Gm
�xh
����! H ad

C :

LEMMA 10.4. If an irreducible complex representation W of H occurs in a symplectic represen-
tation, then z� has at most two weights a and aC1 on W .

PROOF. Let H
'
�! .G;h/ �! GLV be a symplectic representation of .H; xh/, and let W be an

irreducible direct summand of VC. The homomorphisms 'C ı z�W zGm ! GC coincides with �h
when composed with GC!Gad

C , and so 'C ı z�D �h �� with � central. On V , �h has weights 0;1.
If a is the unique weight of � on W , then the only weights of z� on W are a and aC1. 2

LEMMA 10.5. Assume that H is almost simple. A nontrivial irreducible complex representation
W of H occurs in a symplectic representation if and only if z� has exactly two weights a and aC1
on W .

PROOF. ): Let .�;n/ represent z�. As HC is almost simple and W nontrivial, the homomorphism
Gm!GLW defined by � is nontrivial, therefore noncentral, and the two weights a and aC1 occur.
(: Let .W;r/ be an irreducible complex representation of H with weights a;aC1, and let V

be the real vector space underlyingW . DefineG to be the subgroup of GLV generated by the image
of H and the homotheties: G D r.H/ �Gm. Let zh be a fractional lifting of xh to zH :

zS
zh

����! HC??y ??yad

S
xh

����! H ad
C :

Let Wa and WaC1 be the subspaces of weight a and aC1 of W . Then zh.z/ acts on Wa as .z=xz/a

and on WaC1 as .z=xz/aC1, and so h.z/ def
D zh.z/z�axz1Ca acts on these spaces as xz and z respec-

tively. Therefore h is a true homomorphism S! G, projecting to xh on H ad, and V is of type
f.�1;0/; .0;�1/g relative to h. We may now apply Lemma 10.3. 2
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We interprete the condition in Lemma 10.5 in terms of roots and weights. Let x�D �xh. Fix a
maximal torus T inHC, and letRDR.H;T /�X�.T /Q be the corresponding root system. Choose
a base S for R such that h˛; x�i � 0 for all ˛ 2 S (cf. �2).

Recall that, for each ˛ 2 R, there exists a unique ˛_ 2 X�.T /Q such that h˛;˛_i D 2 and the
symmetry s˛Wx 7! x�hx;˛_i˛ preserves R; moreover, for all ˛ 2 R, hR;˛_i � Z. The lattice of
weights is

P.R/D f$ 2X�.T /Q j h$;˛
_
i 2 Z all ˛ 2Rg;

the fundamental weights are the elements of the dual basis f$1; : : : ;$ng to f˛_1 ; : : : ;˛
_
n g, and that

the dominant weights are the elements
P
ni$i , ni 2 N. The quotient P.R/=Q.R/ of P.R/ by the

lattice Q.R/ generated by R is the character group of Z.H/:

P.R/=Q.R/'X�.Z.H//:

The irreducible complex representations of H are classified by the dominant weights. We shall
determine the dominant weights of the irreducible complex representations such that z� has exactly
two weights a and aC1.

There is a unique permutation � of the simple roots, called the opposition involution, such that
the �2 D 1 and the map ˛ 7! ��.˛/ extends to an action of the Weyl group. Its action on the
Dynkin diagram is determined by the following rules: it preserves each connected component; on a
connected component of type An,Dn (n odd), or E6, it acts as the unique nontrivial involution, and
on all other connected components, it acts trivially (Tits 1966, 1.5.1). Thus:

An

Dn n odd

E6

PROPOSITION 10.6. Let W be an irreducible complex representation of H , and let $ be its high-
est weight. The representation W occurs in a symplectic representation if and only if

h$C �$; x�i D 1: (22)

PROOF. The lowest weight of W is ��.$/. The weights ˇ of W are of the form

ˇ D$C
X
˛2R

m˛˛, m˛ 2 Z,

and
hˇ; x�i 2 Z.

Thus, hˇ; x�i takes only two values a;aC1 if and only if

h��.$/; x�i D h$; x�i�1;

i.e., if and only if (22) holds. 2
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COROLLARY 10.7. If � is symplectic, then $ is a fundamental weight. Therefore the representa-
tion factors through an almost simple quotient of H .

PROOF. For every dominant weight $ , h$ C �$; x�i 2 Z because $ C �$ 2Q.R/. If $ ¤ 0,
then h$ C �$; x�i > 0 unless x� kills all the weights of the representation corresponding to $ .
Hence a dominant weight satisfying (22) can not be a sum of two dominant weights. 2

The corollary allows us to assume thatH is almost simple. Recall from �2 that there is a unique
special simple root ˛s such that, for ˛ 2 S ,

h˛; x�i D

�
1 if ˛ D ˛s
0 otherwise.

When a weight $ is expressed as a Q-linear combination of the simple roots, h$; x�i is the coeffi-
cient of ˛s . For the fundamental weights, these coefficients can be found in the tables in Bourbaki
Lie, VI. A fundamental weight $ satisfies (22) if and only if

.coefficient of ˛s in $C �$/D 1: (23)

In the following, we write ˛1; : : : ;˛n for the simple roots and $1; : : : ;$n for the fundamental
weights with the usual numbering. In the diagrams, the solid node is the special node correspond-
ing to ˛s , and the nodes correspond to symplectic representations (and we call them symplectic
nodes).

TYPE An.

The opposition involution � switches the nodes i and nC1� i . According to the tables in Bourbaki,
for 1� i � .nC1/=2;

$i D
nC1�i
nC1

˛1C
2.nC1�i/
nC1

˛2C�� �C
i.nC1�i/
nC1

˛i C�� �C
2i
nC1

˛n�1C
i

nC1
˛n:

Replacing i with nC1� i reflects the coefficients, and so

�$i D$nC1�i D
i

nC1
˛1C

2i
nC1

˛2C�� �C
2.nC1�i/
nC1

˛n�1C
nC1�i
nC1

˛n:

Therefore,

$i C �$i D ˛1C2˛2C�� �C i˛i C i˛iC1C�� �C i˛nC1�.iC1/C i˛nC1�i C�� �C2˛n�1C˛n;

i.e., the sequence of coefficients is

.1;2; : : : ; i; i; : : : ; i; i; : : : ;2;1/:

Let ˛s D ˛1 or ˛n. Then every fundamental weight satisfies (23):44

An.1/

An.n/

Let ˛s D ˛j , with 1 < j < n. Then only the fundamental weights $1 and $n satisfy (23):

An.j /
j

As P=Q is generated by $1, the symplectic representations form a faithful family.

44Deligne 1979b, Table 1.3.9, overlooks this possibility.
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TYPE Bn.

In this case, ˛s D ˛1 and the opposition involution acts trivially on the Dynkin diagram, and so we
seek a fundamental weight $i such that $i D 1

2
˛1C�� � . According to the tables in Bourbaki,

$i D ˛1C2˛2C�� �C .i �1/˛i�1C i.˛i C˛iC1C�� �C˛n/ .1� i < n/

$n D
1
2
.˛1C2˛2C�� �Cn˛n/;

and so only $n satisfies (23):

Bn.1/

As P=Q is generated by $n, the symplectic representations form a faithful family.

TYPE Cn.

In this case ˛s D ˛n and the opposition involution acts trivially on the Dynkin diagram, and so we
seek a fundamental weight $i such that $i D �� �C 1

2
˛n. According to the tables in Bourbaki,

$i D ˛1C2˛2C�� �C .i �1/˛i�1C i.˛i C˛iC1C�� �C˛n�1C
1
2
˛n/;

and so only $1 satisfies (23):

Cn

As P=Q is generated by $1, the symplectic representations form a faithful family.

TYPE Dn.

The opposition involution acts trivially if n is even, and switches ˛n�1 and ˛n if n is odd. According
to the tables in Bourbaki,

$i D ˛1C2˛2C�� �C .i �1/˛i�1C i.˛i C�� �C˛n�2/C
i
2
.˛n�1C˛n/; 1� i � n�2

$n�1 D
1
2

�
˛1C2˛2C�� �C .n�2/˛n�2C

1
2
n˛n�1C

1
2
.n�2/˛n

�
$n D

1
2

�
˛1C2˛2C�� �C .n�2/˛n�2C

1
2
.n�2/˛n�1C

1
2
n˛n

�
Let ˛s D ˛1. As ˛1 is fixed by the opposition involution, we seek a fundamental weight $i

such that $i D 1
2
˛1C�� � . Both $n�1 and $n give rise to symplectic representations:

Dn.1/

When n is odd, $n�1 and $n each generates P=Q, and when n is even $n�1 and $n together
generate P=Q. Therefore, in both cases, the symplectic representations form a faithful family.

Let ˛s D ˛n�1 or ˛n and let nD 4. The nodes ˛1, ˛3, and ˛4 are permuted by automorphisms
of the Dynkin diagram (hence by outer automorphisms of the corresponding group), and so this case
is the same as the case ˛s D ˛1:

D4.1/ D4.3/ D4.4/
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The symplectic representations form a faithful family.
Let ˛s D ˛n�1 or ˛n and let n � 5. When n is odd, � interchanges ˛n�1 and ˛n, and so we

seek a fundamental weight $i such that $i D �� �Ca˛n�1Cb˛n with aCb D 1; when n is even,
� is trivial, and we seek a fundamental weight$i such that$i D �� �C 1

2
˛n�1C�� � or � � �C 1

2
˛n. In

each case, only $1 gives rise to a symplectic representation:

Dn.n�1/

Dn.n/

The weight$1 generates a subgroup of order 2 (and index 2) in P=Q. Let C �Z.H/ be the kernel
of $1 regarded as a character of Z.H/. Then every symplectic representation factors through
H=C , and the symplectic representations form a faithful family of representations of H=C .

TYPE E6.

In this case, ˛s D ˛1 or ˛6, and the opposition involution interchanges ˛1 and ˛6. Therefore, we
seek a fundamental weight $i such that $i D a˛1C �� �C b˛6 with aC b D 1. In the following
diagram, we list the value aCb for each fundamental weight $i :

E6.1/
2 2 3

4

3 2

As no value equals 1, there are no symplectic representations.

TYPE E7.

In this case, ˛s D ˛7, and the opposition involution is trivial. Therefore, we seek a fundamental
weight$i such that$i D �� �C 1

2
˛7. In the following diagram, we list the coefficient of ˛7 for each

fundamental weight $i :

E7.7/
1 2 3

3
2

5
2

4
2

3
2

As no value is 1
2

, there are no symplectic representations.

Following Deligne 1979b, 1.3.9, we write DR for the case Dn.1/ and DH for the cases Dn.n�
1/ and Dn.n/.

SUMMARY 10.8. Let H be a simply connected almost simple group over R, and let xhWS=Gm!
H ad be a nontrivial homomorphism satisfying (SV1,2). There exists a symplectic representation of
.H; xh/ if and only if it is of type A, B , C , or D. Except when .H; xh/ is of type DH

n , n � 5, the
symplectic representations form a faithful family of representations of H ; when .H; xh/ is of type
DH
n , n � 5, they form a faithful family of representations of the quotient of the simply connected

group by the kernel of $1.
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The rational case

Let H be a semisimple algebraic group over Q, and let xh be a homomorphism S=Gm ! H ad
R

satisfying (SV1,2) and generating H ad.

DEFINITION 10.9. A homomorphism H ! GLV with finite kernel is a symplectic representation
of .H; xh/ if there exists a commutative diagram

H

.H ad; xh/ .G;h/ .G. /;D. //;
�

(24)

in which G is a reductive group (over Q), the homomorphism H ! G has image Gder, and  is a
nondegenerate alternating form on V .

Given a diagram (24), we may replace G with its image in GLV and so assume that the repre-
sentation � is faithful.

We now assume that H is simply connected and almost simple. Then H D .H s/F=Q for some
geometrically almost simple algebraic group H s over a number field F . Because HR is an inner
form of its compact form, the field F is totally real (see the proof of 3.12). Let I D Hom.F;R/.
Then,

HR D
Y
v2I

Hv; Hv DH
s
˝F;vR:

The Dynkin diagramD ofHC is a disjoint union of the Dynkin diagramsDv of the groupHvC. The
Galois group Gal.Qal=Q/ acts on it in a manner consistent with its projection to I . In particular, it
acts transitively on D and so all the factors Hv of HR are of the same type. We let Ic (resp. Inc)
denote the subset of I of v for whichHv is compact (resp. not compact), and we letHcD

Q
v2Ic

Hv

and Hnc D
Q
v2Inc

Hv. Because xh generates H ad, Inc is nonempty.

PROPOSITION 10.10. Let F be a totally real number field. Suppose that for each real prime v of
F , we are given a pair .Hv; xhv/ in which Hv is a simply connected algebraic group over R of a
fixed type, and xhv is a homomorphism S=Gm! H ad

v satisfying (SV1,2) (possibly trivial). Then
there exists an algebraic group H over Q such that H ˝F;vR�Hv for all v.

PROOF. There exists an algebraic group H over F such that H ˝F;v R is an inner form of its
compact form for all real primes v of F . For each such v, Hv is an inner form of H ˝F;vR, and so
defines a cohomology class in H 1.Fv;H

ad/. The proposition now follows from the surjectivity of
the map

H 1.F;H ad/!
Y

v real
H 1.Fv;H

ad/

(Prasad and Rapinchuk 2006, Proposition 1). 2

PAIRS .H; xh/ FOR WHICH THERE DO NOT EXIST SYMPLECTIC REPRESENTATIONS

H is of exceptional type Assume that H is of exceptional type. If there exists an xh satisfying
(SV1,2), then H is of type E6 or E7 (see �2). A symplectic representation of .H; xh/ over Q
gives rise to a symplectic representation of .HR; xh/ over R, but we have seen (10.8) that no such
representations exist.
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.H; xh/ is of mixed type D. By this we mean that H is of type Dn with n� 5 and that at least one
factor .Hv; xhv/ is of type DR

n and one of type DH
n . Such pairs .H; xh/ exist by Proposition 10.10.

The Dynkin diagram of HR contains connected components

Dn.1/

and

Dn.n/

or Dn.n� 1/. To give a symplectic representation for HR, we have to choose a symplectic node
for each real prime v such that Hv is noncompact. In order for the representation to be rational,
the collection of symplectic nodes must be stable under Gal.Qal=Q/, but this is impossible, because
there is no automorphism of the Dynkin diagram of type Dn, n� 5, carrying the node 1 into either
the node n�1 or the node n.

PAIRS .H; xh/ FOR WHICH THERE EXIST SYMPLECTIC REPRESENTATIONS

LEMMA 10.11. Let G be a reductive group over Q and let h be a homomorphism S! GR satis-
fying (SV1,2*) and generating G. For any representation .V;�/ of G such that .V;� ıh/ is of type
f.�1;0/; .0;�1/g, there exists an alternating form  on V such that � induces a homomorphism
.G;h/! .G. /;D. //.

PROOF. The pair .�G;� ı h/ is the Mumford-Tate group of .V;� ı h/ and satisfies (SV2*). The
proof of Proposition 6.2 constructs a polarization  for .V;� ıh/ such that �G �G. /. 2

PROPOSITION 10.12. A homomorphism H ! GLV is a symplectic representation of .H; xh/ if
there exists a commutative diagram

H

.H ad; xh/ .G;h/ GLV ;
�

in which G is a reductive group whose connected centre splits over a CM-field, the homomorphism
H ! G has image Gder, the weight wh is defined over Q, and the Hodge structure .V;� ıh/ is of
type f.�1;0/; .0;�1/g.

PROOF. The hypothesis on the connected centre Zı says that the largest compact subtorus of ZıR
is defined over Q. Take G0 to be the subgroup of G generated by this torus, Gder, and the image of
wh. Now .G0;h/ satisfies (SV2*), and we can apply 10.11. 2

We classify the symplectic representations of .H; xh/ with � faithful. Note that the quotient of
H acting faithfully on V is isomorphic to Gder.

Let .V;r/ be a symplectic representation of .H; xh/. The restriction of the representation to Hnc
is a real symplectic representation of Hnc, and so, according to Corollary 10.7, every nontrivial
irreducible direct summand of rCjHnc factors through Hv for some v 2 Inc and corresponds to a
symplectic node of the Dynkin diagram Dv of Hv.
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D

I T

s
Let W be an irreducible direct summand of VC. Then

W �
O

v2T
Wv

for some irreducible symplectic representations Wv of HvC indexed by
a subset T of I . The irreducible representation Wv corresponds to a symplectic node s.v/ of Dv.
Because r is defined over Q, the set s.T / is stable under the action of Gal.Qal=Q/. For v 2 Inc, the
set s.T /\Dv consists of a single symplectic node.

Given a diagram (24), we let S.V / denote the set of subsets s.T / of the nodes of D as W runs
over the irreducible direct summands of V . The set S.V / satisfies the following conditions:

(10.13a) for S 2 S.V /, S \Dnc is either empty or consists of a single symplectic node of Dv for
some v 2 Inc;

(10.13b) S is stable under Gal.Qal=Q/ and contains a nonempty subset.

Given such a set S, let H.S/C be the quotient of HC that acts faithfully on the representation
defined by S. The condition (10.13b) ensures that H.S/ is defined over Q. According to Galois
theory (in the sense of Grothendieck), there exists an étale Q-algebra KS such that

Hom.KS ;Qal/' S (as sets with an action of Gal.Qal=Q/):

THEOREM 10.14. For any set S satisfying the conditions (10.13), there exists a diagram (24) such
that the quotient of H acting faithfully on V is H.S/.

PROOF. We prove this only in the case that S consists of one-point sets. For an S as in the theorem,
the set S 0 of fsg for s 2 S 2 S satisfies (10.13) and H.S/ is a quotient of H.S 0/.

Recall thatH D .H s/F=Q for some totally real field F . We choose a totally imaginary quadratic
extension E of F and, for each real embedding v of F in Ic, we choose an extension � of v to a
complex embedding of E. Let T denote the set of � ’s. Thus

E
�
�! C

[ [

F
v
�! R

T D f� j v 2 Icg:

We regard E as a Q-vector space, and define a Hodge structure hT on it as follows: E˝QC'
CHom.E;C/ and the factor with index � is of type .�1;0/ if � 2 T , type .0;�1/ if x� 2 T , and of type
.0;0/ if � lies above Inc. Thus (C� D C):

E˝QC D
L
�2T C� ˚

L
x�2T C� ˚

L
�…T[xT C� :

hT .z/ z xz 1

Because the elements of S are one-point subsets of D, we can identify them with elements of
D, and so regard S as a subset of D. It has the properties:

(a) if s 2 S\Dnc, then s is a symplectic node;
(b) S is stable under Gal.Qal=Q/ and is nonempty.

Let KD be the smallest subfield of Qal such that Gal.Qal=KD/ acts trivially on D. Then KD
is a Galois extension of Q in Qal such that Gal.KD=K/ acts faithfully on D. Complex conjugation
acts as the opposition involution on D, which lies in the centre of Aut.D/; therefore KD is either
totally real or CM.
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The Q-algebra KS can be taken to be a product of subfields of KD . In particular, KS is a
product of totally real fields and CM fields. The projection S! I corresponds to a homomorphism
F !KS .

For s 2 S, let V.s/ be a complex representation of HC with dominant weight the fundamental
weight corresponding to s. The isomorphism class of the representation

L
s2S V.s/ is defined over

Q. The obstruction to the representation itself being defined over Q lies in the Brauer group of
Q, which is torsion, and so some multiple of the representation is defined over Q. Let V be a
representation of H over Q such that VC �

L
s2S nV.s/ for some integer n, and let Vs denote the

direct summand of VC isomorphic to nV.s/. These summands are permuted by Gal.Qal=Q/ in a
fashion compatible with the action of Gal.Qal=Q/ on S, and the decomposition VC D

L
s2S Vs

corresponds therefore to a structure of a KS-module on V : let s0WKS !Qal be the homomorphism
corresponding to s 2 S; then a 2KS acts on Vs as multiplication by s0.a/.

Let H 0 denote the quotient of H that acts faithfully on V . Then H 0R is the quotient of HR
described in (10.8).

A lifting of xh to a fractional morphism of S into H 0R defines a fractional Hodge structure on V
of weight 0, which can be described as follows. Let s 2 S, and let v be its image in I ; if v 2 Ic,
then Vs is of type .0;0/; if v 2 Inc, then Vs is of type f.r;�r/; .r � 1;1� r/g where r D h$s; x�i
(notations as in 10.6). We renumber this Hodge structure to obtain a new Hodge structure on V :

old new

Vs , v 2 Ic .0;0/ .0;0/

Vs , v 2 Inc .r;�r/ .0;�1/

Vs , v 2 Inc .r �1;1� r/ .�1;0/:

We endow the Q-vector space E˝F V with the tensor product Hodge structure. The decompo-
sition

.E˝F V /˝QRD
M

v2I
.E˝F;vR/˝R .V ˝F;vR/;

is compatible with the Hodge structures. The type of the Hodge structure on each direct summand
is given by the following table:

E˝F;vR V ˝F;vR

v 2 Ic f.�1;0/; .0;�1/g f.0;0/g

v 2 Inc f.0;0/g f.�1;0/; .0;�1/g:

Therefore, E ˝F V has type f.�1;0/; .0;�1/g. Let G be the algebraic subgroup of GLE˝FV
generated by E� and H 0. The homomorphism hWS! .GLE˝FV /R corresponding to the Hodge
structure factors through GR, and the derived group of G is H 0. Now apply (10.12). 2

ASIDE 10.15. The trick of using a quadratic imaginary extensionE of F in order to obtain a Hodge structure
of type f.�1;0/; .0;�1/g from one of type f.�1;0/; .0;0/; .0;�1/g in essence goes back to Shimura (cf.
Deligne 1971b, �6).

CONCLUSION

Now let H be a semisimple algebraic group over Q, and let xh be a homomorphism S! H ad
R

satisfying (SV1,2) and generating H .
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DEFINITION 10.16. The pair .H; xh/ is of Hodge type if it admits a faithful family of symplectic
representations.

THEOREM 10.17. A pair .H; xh/ is of Hodge type if it is a product of pairs .Hi ; xhi / such that either
(a) .Hi ; xhi / is of type A, B , C , or DR, and H is simply connected, or
(b) .Hi ; xhi / is of type DH

n .n � 5/ and equals .H s/F=Q for the quotient H s of the simply con-
nected group of type DH

n by the kernel of $1 (cf. 10.8).
Conversely, if .H; xh/ is a Hodge type, then it is a quotient of a product of pairs satisfying (a) or (b).

PROOF. Suppose that .H; xh/ is a product of pairs satisfying (a) and (b), and let .H 0; xh0/ be one of
these factors with H 0 almost simple. Let zH 0 be the simply connected covering group of H . Then
(10.8) allows us to choose a set S satisfying (10.13) and such thatH 0DH.S/. Now Theorem 10.14
shows that .H 0; xh0/ admits a faithful symplectic representation. A product of pairs of Hodge type is
clearly of Hodge type.

Conversely, suppose that .H; xh/ is of Hodge type, let zH be the simply connected covering group
of H , and let .H 0; xh0/ be an almost simple factor of . zH; xh/. Then .H 0; xh0/ admits a symplectic
representation with finite kernel, and so .H 0; xh0/ is not of type E6, E7, or mixed typeD (see p. 55).
Moreover, if .H 0; xh0/ is of type DH

n , n � 5, then (10.8) shows that it factors through the quotient
described in (b). 2

Notice that we haven’t completely classified the pairs .H; xh/ of Hodge type because we haven’t
determined exactly which quotients of products of pairs satisfying (a) or (b) occur asH.S/ for some
set S satisfying (10.13).

11. Moduli
In this section, we determine (a) the pairs .G;h/ that arise as the Mumford-Tate group of an
abelian variety (or an abelian motive); (b) the arithmetic locally symmetric varieties that carry
a faithful family of abelian varieties (or abelian motives); (c) the Shimura varieties that arise as
moduli varieties for polarized abelian varieties (or motives) with Hodge class and level struc-
ture.

Mumford-Tate groups
THEOREM 11.1. Let G be an algebraic group over Q, and let hWS!GR be a homomorphism that
generates G and whose weight is rational. The pair .G;h/ is the Mumford-Tate group of an abelian
variety if and only if h satisfies (SV2*) and there exists a faithful representation �WG! GLV such
that .V;� ıh/ is of type f.�1;0/; .0;�1/g

PROOF. The necessity is obvious (apply (6.2) to see that .G;h/ satisfies (SV2*)). For the suffi-
ciency, note that .G;h/ is the Mumford-Tate group of .V;� ıh/ because h generates G. The Hodge
structure is polarizable because .G;h/ satisfies (SV2*) (apply 6.2), and so it is the Hodge structure
H1.A

an;Q/ of an abelian variety A by Riemann’s theorem 4.4. 2

THEOREM 11.2. Let .G;h/ be an algebraic group over Q, and let hWS!GR be a homomorphism
satisfying (SV1,2*) and generating G. Assume that wh is defined over Q. The pair .G;h/ is the
Mumford-Tate group of an abelian motive if and only if .Gder; xh/ is a quotient of a product of pairs
satisfying (a) and (b) of (10.17).
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The proof will occupy the rest of this subsection. Recall that GHdg is the affine group scheme
attached to the tannakian category HdgQ of polarizable rational Hodge structures and the forgetful
fibre functor (see 9.20). It is equipped with a homomorphism hHdgWS! .GHdg/R. If .G;h/ is
the Mumford-Tate group of a polarizable Hodge structure, then there is a unique homomorphism
�.h/WGHdg!G such that hD �.h/R ıhHdg. Moreover, .GHdg;hHdg/D lim

 �
.G;h/.

LEMMA 11.3. Let H be a semisimple algebraic group over Q, and let xhWS=Gm! H ad
R be a ho-

momorphism satisfying (SV1,2,3). There exists a unique homomorphism

�.H; xh/W
�
GHdg

�der
!H

such that the following diagram commutes:

.GHdg/
der �.H;xh/
����! H??y ??y

GHdg
�.xh/
����! H ad:

PROOF. Two such homomorphisms �.H; xh/ would differ by a map into Z.H/. Because .GHdg/
der

is connected, any such map is constant, and so the homomorphisms are equal.
For the existence, choose a pair .G;h/ as in (8.9). Then .G;h/ is the Mumford-Tate group of a

polarizable Hodge structure, and we can take �.H; xh/D �.h/j.GHdg/
der. 2

LEMMA 11.4. The assignment .H; xh/ 7! �.H; xh/ is functorial: if ˛WH !H 0 is a homomorphism
mapping Z.H/ into Z.H 0/ and carrying xh to xh0, then �.H 0; xh0/D ˛ ı�.H; xh/.

PROOF. The homomorphism xh0 generatesH 0ad (by SV3), and so the homomorphism ˛ is surjective.
Choose a pair .G;h/ for .H; xh/ as in (8.9), and letG0DG=Ker.˛/. Write ˛ again for the projection
G!G0 and let h0 D ˛R ıh. This equality implies that

�.h0/D ˛ ı�.h/:

On restricting this to .GHdg/
der, we obtain the equality

�.H 0; xh0/D ˛ ı�.H; xh/: 2

Recall that GMab is the affine group scheme attached to the category of abelian motives over C
and the Betti fibre functor. The functor Motab.C/! HdgQ is fully faithful by Deligne’s theorem
(9.9), and so it induces a surjective map GHdg!GMab.

LEMMA 11.5. If .H;h/ is of Hodge type, then �.H; xh/ factors through .GMab/
der.

PROOF. Let .G;h/ be as in the definition (10.9), and replace G with the algebraic subgroup gen-
erated by h. Then .G;h/ is the Mumford-Tate group of an abelian variety (Riemann’s theorem
4.4), and so �.h/WGHdg! G factors through GHdg! GMab. Therefore �.H; xh/ maps the kernel of�
GHdg

�der
! .GMab/

der into the kernel of H !G. By assumption, the intersection of these kernels
is trivial. 2

LEMMA 11.6. The homomorphism �.H; xh/ factors through .GMab/
der if and only if .H; xh/ has a

finite covering by a pair of Hodge type.
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PROOF. Suppose that there is a finite covering ˛WH 0!H such that .H 0; xh/ is of Hodge type. By
Lemma 11.5, �.H 0; xh/ factors through .GMab/

der, and therefore so also does �.H; xh/D ˛ı�.H 0; xh/.
Conversely, suppose that �.H; xh/ factors through .GMab/

der. There will be an algebraic quotient
.G;h/ of .GMab;hMab/ such that .H; xh/ is a quotient of .Gder;adıh/. Consider the category of
abelian motives M such that the action of GMab on !B.M/ factors through G. By definition, this
category is contained in the tensor category generated by h1.A/ for some abelian variety A. We
can replace G with the Mumford-Tate group of A. Then .Gder;adıh/ has a faithful symplectic
embedding, and so it is of Hodge type. 2

We can now complete the proof of the Theorem 11.2. From (9.20), we know that �.h/ factors
through GMab if and only if �.Gder;adıh/ factors through .GMab/

der, and from (11.6) we know that
this is true if and only if .Gder;adıh/ has a finite covering by a pair of Hodge type.

NOTES. This subsection follows �1 of Milne 1994b.

Families of abelian varieties and motives
Let S be a connected smooth algebraic variety over C, and let o 2 S.C/. A family f WA! S of
abelian varieties over S defines a local system VD R1f�Z of Z-modules on S an. We say that the
family is faithful if the monodromy representation �1.S an;o/! GL.Vo/ is injective.

LetD.� /D� nD be an arithmetic locally symmetric variety, and let o2D. By definition, there
exists a simply connected algebraic group H over Q and a surjective homomorphism 'WH.R/!
Hol.D/C with compact kernel such that '.H.Z// is commensurable with � . Moreover, the pair
.H;'/ is uniquely determined up to a unique isomorphism (see 3.12). Let xhWS! H ad be the
homomorphism whose projection into a compact factor of H ad is trivial and is such that '.xh.z=xz//
fixes o and acts on To.D/ as multiplication by z=xz (cf. (13), p. 37).

THEOREM 11.7. There exists a faithful family of abelian varieties on D.� / having a fibre of CM-
type if and only if .H; xh/ admits a symplectic representation (10.9).

PROOF. Let f WA!D.� / be a faithful family of abelian varieties on D.� /, and let .V;F / be the
variation of Hodge structures R1f�Q. Choose a trivialization ��V� VD , and let G � GLV be the
generic Mumford-Tate group (see 6.14). As in (�8), we get a commutative diagram

H

.H ad; xh/ .G;h/ GLV
�

(25)

in which the image of H ! G is Gder. Because the family is faithful, the map H ! Gder is an
isogeny, and so .H; xh/ admits a symplectic representation.

Conversely, a symplectic representation of .H; xh/ defines a variation of Hodge structures (8.5),
which arises from a family of abelian varieties by Theorem 7.11 (Riemann’s theorem in families).2

THEOREM 11.8. There exists a faithful family of abelian motives on D.� / having a fibre of CM-
type if and only if .H; xh/ has finite covering by a pair of Hodge type.

PROOF. Similar to that of 11.7. The key point is the determination of the Mumford-Tate groups of
abelian motives in (11.2). 2
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Shimura varieties
In the above, we have always considered connected varieties. As Deligne (1971) observed, it is
often more convenient to consider nonconnected varieties.

DEFINITION 11.9. A Shimura datum is a pair .G;X/ consisting of a reductive group G over Q
and a G.R/C-conjugacy class of homomorphisms S!GR satisfying (SV1,2,3).45

EXAMPLE 11.10. Let .V; / be a symplectic space over Q. The group G. / of symplectic simili-
tudes together with the space X. / of all complex structures J on VR such that .x;y/ 7!  .x;Jy/

is positive definite is a Shimura datum.

Let .G;X/ be a Shimura datum. The map h 7! xh def
D adıh identifies X with a Gad.R/C-

conjugacy class of homomorphisms xhWS=Gm! Gad
R (satisfying SV1,2,3). Thus X is a hermitian

symmetric domain. More canonically, the set X has a unique structure of a complex manifold such
that, for every representation �RWGR ! GLV , .VX ;� ı h/h2X is a holomorphic family of Hodge
structures. For this complex structure, .VX ;� ıh/h2X is a variation of Hodge structures, and so X
is a hermitian symmetric domain.

The Shimura variety attached to .G;X/ and the choice of an compact open subgroup K of
G.Af / is46

ShK.G;X/DG.Q/CnX �G.Af /=K

where G.Q/C D G.Q/\G.R/C. In this quotient, G.Q/C acts on both X (by conjugation) and
G.Af /, and K acts on G.Af /. Let C be a set of representatives for the (finite) double coset space
G.Q/CnG.Af /=K; then

G.Q/CnX �G.Af /=K '
G

g2C
�gnX; �g D gKg

�1
\G.Q/C:

Because �g is a congruence subgroup of G.Q/, its image in Gad.Q/ is arithmetic (3.3), and so
ShK.G;X/ is a finite disjoint union of connected Shimura varieties. It therefore has a unique
structure of an algebraic variety. As K varies, these varieties form a projective system.

We make this more explicit in the case that Gder is simply connected. Let �WG ! T be the
quotient of G by Gder, and let Z be the centre of G. Then � defines an isogeny Z! T , and we let

T .R/� D Im.Z.R/! T .R//;

T .Q/� D T .Q/\T .R/�:

The set T .Q/�nT .Af /=�.K/ is finite and discrete. For K sufficiently small, the map

Œx;a� 7! Œ�.a/�WG.Q/nX �G.Af /=K! T .Q/�nT .Af /=�.K/ (26)

is surjective, and each fibre is isomorphic to � nX for some congruence subgroup � of Gder.Q/.
For the fibre over Œ1�, the congruence subgroup � is contained in K \Gder.Q/, and equals it if
Z.Gder/ satisfies the Hasse principal for H 1, for example, if Gder has no factors of type A.

45In the usual definition, X is taken to be a G.R/-conjugacy class. For our purposes, it is convenient to choose a
connected component of X .

46This agrees with the usual definition because of Milne 2005, 5.11.
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EXAMPLE 11.11. Let G D GL2. Then .G
�
�! T /D .GL2

det
�! Gm/ and .Z

�
�! T /D .Gm

2
�!

Gm/; therefore
T .Q/�nT .Af /=�.K/DQ>0nA�f =det.K/:

Note that A�
f
DQ>0 � yZ� (direct product) where yZD lim

 �n
Z=nZ'

Q
`Z`. For K DK.N/ def

D fa 2

yZ� j a� 1 mod N g, we find that

T .Q/�nT .Af /=�.K/' .Z=NZ/�:

DEFINITION 11.12. A Shimura datum .G;X/ is of Hodge type if there exists an injective homo-
morphism G!G. / sending X into X. / for some symplectic pair .V; / over Q.

DEFINITION 11.13. A Shimura datum .G;X/ is of abelian type if, for one (hence all) h 2 X , the
pair .Gder;adıh/ is a quotient of a product of pairs satisfying (a) or (b) of (10.17).

A Shimura variety Sh.G;X/ is said to be of Hodge or abelian type if .G;X/ is.

NOTES. See Milne 2005, �5, for proofs of the statements in this subsection. For the structure of the Shimura
variety when Gder is not simply connected, see Deligne 1979b, 2.1.16.

Shimura varieties as moduli varieties
Throughout this subsection, .G;X/ is a Shimura datum such that

(a) wX is defined over Q and the connected centre of G is split by a CM-field, and
(b) there exists a homomorphism �WG!Gm ' GLQ.1/ such that � ıwX D�2.

Fix a faithful representation �WG!GLV . Assume that there exists a pairing t0WV �V !Q.m/
such that (i) gt0D �.g/mt0 for all g 2G and (ii) t0 is a polarization of .V;�Rıh/ for all h2X . Then
there exist homomorphisms ti WV ˝ri ! Q.mri

2
/, 1 � i � n, such that G is the subgroup of GLV

whose elements fix t0; t1; : : : ; tn. When .G;X/ is of Hodge type, we choose � to be a symplectic
representation.

Let K be a compact open subgroup of G.Af /. Define HK.C/ to be the set of triples

.W;.si /0�i�n;�K/

in which
˘ W D .W;hW / is a rational Hodge structure,
˘ each si is a morphism of Hodge structures W ˝ri !Q.mri

2
/ and s0 is a polarization of W ,

˘ �K is a K-orbit of Af -linear isomorphisms VAf !WAf sending each ti to si ,
satisfying the following condition:

(*) there exists an isomorphism  WW !V sending each si to ti and hW onto an element
of X .

LEMMA 11.14. For .W; : : :/ in HK.C/, choose an isomorphism  as in (*), let h be the image of
hW in X , and let a 2G.Af / be the composite VAf

�
�!WAf


�! VAf . The class Œh;a� of the pair

.h;a/ in G.Q/CnX �G.Af /=K is independent of all choices, and the map

.W; : : :/ 7! Œh;a�WHK.C/! ShK.G;X/.C/

is surjective with fibres equal to the isomorphism classes:
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PROOF. The proof involves only routine checking. 2

For a smooth algebraic variety S over C, let FK.S/ be the set of isomorphism classes of triples
.A;.si /0�i�n;�K/ in which

˘ A is a family of abelian motives over S ,
˘ each si is a morphism of abelian motives A˝ri !Q.mri

2
/, and

˘ �K is a K-orbit of Af -linear isomorphisms VS ! !f .A=S/ sending each ti to si ,47

satisfying the following condition:

(**) for each s 2 S.C/, the Betti realization of .A;.si /;�K/s lies in HK.C/.

With the obvious notion of pullback, FK becomes a functor from smooth complex algebraic vari-
eties to sets. There is a well-defined injective map FK.C/!HK.C/=�, which is surjective when
.G;X/ is of abelian type. Hence, in this case, we get an isomorphism ˛WFK.C/! ShK.C/.

THEOREM 11.15. Assume that .G;X/ is of abelian type. The map ˛ realizes ShK as a coarse
moduli variety for FK , and even a fine moduli variety whenZ.Q/ is discrete inZ.R/ (Z DZ.G/).

PROOF. To say that .ShK ;˛/ is coarse moduli variety means the following:

(a) for any smooth algebraic variety S over C, and � 2 F.S/, the map s 7! ˛.�s/WS.C/!
ShK.C/ is regular;

(b) .ShK ;˛/ is universal among pairs satisfying (a) .

To prove (a), we use that � defines a variation of Hodge structures on S (see p. 48). Now the
universal property of hermitian symmetric domains (7.7) shows that the map s 7! ˛.�s/ is holomor-
phic (on the universal covering space, and hence on the variety), and Borel’s theorem 4.3 shows that
it is regular.

Next assume that Z.Q/ is discrete in Z.R/. Then the representation � defines a variation of
Hodge structures on ShK itself (not just its universal covering space), which arises from a family of
abelian motives. This family is universal, and so ShK is a fine moduli variety.

We now prove (b). Let S 0 be a smooth algebraic variety over C and let ˛0WFK.C/! S 0.C/ be
a map with the following property: for any smooth algebraic variety S over C and � 2 F.S/, the
map s 7! ˛0.�s/WS.C/! S 0.C/ is regular. We have to show that the map s 7! ˛0˛�1.s/WShK.C/!
S 0.C/ is regular. When Z.Q/ is discrete in Z.R/, the map is that defined by ˛0 and the universal
family of abelian motives on ShK , and so it is regular by definition. In the general case, we letG0 be
the smallest algebraic subgroup of G such that h.S/�G0R for all h 2X . Then .G0;X/ is a Shimura
datum (cf. 7.5), which now is such that Z.Q/ is discrete in Z.R/; moreover, ShK\G0.Af /.G

0;X/

consists of a certain number of connected components of ShK.G;X/. As the map is regular on
ShK\G0.Af /.G

0;X/, and ShK.G;X/ is a union of translates of ShK\G0.Af /.G
0;X/, this shows

that the map is regular on ShK.G;X/. 2

REMARKS

11.16. When .G;X/ is of Hodge type in Theorem 11.15, the Shimura variety is a moduli variety
for abelian varieties with additional structure. In this case, the moduli problem can be defined for all
schemes algebraic over C (not necessarily smooth), and Mumford’s theorem can be used to prove
that the Shimura variety is moduli variety for the expanded functor.

47The isomorphism � is defined only on the universal covering space of San, but the family �K is stable under �1.S;o/,
and so is “defined” on S .
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11.17. It is possible to describe the structure �K by passing only to a finite covering, rather than
the full universal covering. This means that it can be described purely algebraically.

11.18. For certain compact open groups K, the structure �K can be interpreted as a level-N
structure in the usual sense.

11.19. Consider a pair .H; xh/ having a finite covering of Hodge type. Then there exists a Shimura
datum .G;X/ of abelian type such that .Gder;adıh/ D .H; xh/ for some h 2 X . The choice of
a faithful representation � for G gives a realization of the connected Shimura variety defined by
any (sufficiently small) congruence subgroup of H.Q/ as a fine moduli variety for abelian motives
with additional structure. For example, when H is simply connected, there is a map HK.C/!
T .Q/�nT .Af /=�.K/ (see (26)), and the moduli problem is obtained from FK by replacing HK.C/
with its fibre over Œ1�. Note that the realization involves many choices.

11.20. For each Shimura variety, there is a well-defined number field E.G;X/, called the reflex
field. When the Shimura variety is a moduli variety, it is possible choose the moduli problem so that
it is defined over E.G;X/. Then an elementary descent argument shows that the Shimura variety
itself has a model over E.G;X/. A priori, it may appear that this model depends on the choice of
the moduli problem. However, the theory of complex multiplication shows that the model satisfies
a certain reciprocity law at the special points, which characterize it.

11.21. The (unique) model of a Shimura variety over the reflex fieldE.G;X/ satisfying (Shimura’s)
reciprocity law at the special points is called the canonical model. As we have just noted, when
a Shimura variety can be realized as a moduli variety, it has a canonical model. More generally,
when the associated connected Shimura variety is a moduli variety, then Sh.G;X/ has a canonical
model (Shimura 1970, Deligne 1979b). Otherwise, the Shimura variety can be embedded in a larger
Shimura variety that contains many Shimura subvarieties of type A1, and this can be used to prove
that the Shimura variety has a canonical model (Milne 1983).

NOTES. For more details on this subsection, see Milne 1994b.
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ANDRÉ, Y. 1992a. Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part.

Compositio Math. 82:1–24.
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